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Abstract
How many edges in an n-vertex graph will force the exis-

tence of a cycle with as many chords as it has vertices?

Almost 30 years ago, Chen, Erdős and Staton considered

this question and showed that any n-vertex graph with 2n3∕2

edges contains such a cycle. We significantly improve this

old bound by showing that Ω(n log
8n) edges are enough to

guarantee the existence of such a cycle. Our proof exploits

a delicate interplay between certain properties of random

walks in almost regular expanders. We argue that while

the probability that a random walk of certain length in an

almost regular expander is self-avoiding is very small, one

can still guarantee that it spans many edges (and that it can

be closed into a cycle) with large enough probability to

ensure that these two events happen simultaneously.
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1 INTRODUCTION

One of the classical problem frameworks in combinatorics deals with questions of the following type.

How many edges does an n-vertex graph need to have to contain a subgraph with a certain prescribed

structure? In many instances of such problems, it turns out that we can find subgraphs with very

interesting structure only assuming very weak bounds on the number of edges.

For example, Janzer and Sudakov [8] showed that any n-vertex graph with average degree at least

Ω(log log n) contains a k-regular subgraph, which is optimal up to a constant factor and answers an old

question of Erdős and Sauer. Liu and Montgomery [10] recently solved several open problems using
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4 DRAGANIĆ ET AL.

methods related to sublinear expansion. In particular, they showed that any graph with a large enough

constant average degree contains a cycle whose length is a power of 2. Another result of similar flavour

by Bucić, Gishboliner, and Sudakov [3] shows that for k ≥ 3, every k-regular Hamiltonian graph has

cycles of n1−o(1)
many lengths, asymptotically solving a problem of Jacobson and Lehel. Furthermore,

Fernández and Liu [6] proved a conjecture of Thomassen [14], showing that large enough constant

average degree forces the existence of a pillar (two vertex-disjoint cycles of the same length, along with

vertex-disjoint paths of the same length which connect matching vertices in order around the cycles).

Many of the problems of this sort also deal with conditions which force the existence of cycles with

chords. Answering a question of Erdős [5], Bollobás [1] proved that a large enough constant average

degree is enough to force the existence of a cycle whose chords also contain a cycle. Extending this

result, Chen, Erdős and Staton [4] proved that for every k ≥ 2 there is a constant ck such that any graph

with average degree at least ck contains k cycles C1, … ,Ck, such that the edges of Ci+1 are chords of

the cycle Ci. This answered a question of Bollobás [1]. More recently, Fernández, Kim, Kim and Liu [7]

strengthened the result of Bollobás, showing that large enough constant average degree is enough to

force the existence of a cycle whose chords contain a cycle whose vertices follow the orientation of

the first cycle. Another similar result was shown by Thomassen [13], who proved that for every k ≥ 1,

there exists gk such that any graph with minimum degree 3 and girth at least gk contains a cycle with

at least k chords.

In 1996, Chen, Erdős and Staton [4] also considered the following natural question: how many

edges force the existence of a cycle with as many chords as it has vertices? They showed that if an

n-vertex graph has minimum degree at least 2
√

n then it contains a cycle which has n chords, thus

showing that 2n3∕2
edges are enough. In this paper, we significantly improve this old result of Chen,

Erdős and Staton, by showing that Ω(n log
8n) edges are enough to force a cycle with at least as many

chords as it has vertices.

Theorem 1.1. If n is sufficiently large, then every n-vertex graph with at least n log
8n

edges contains a cycle C with at least |C| chords.

Overview of the proof. Initially, we undertake a process of cleaning the graph, that is, finding a

subgraph that is nearly regular (with a constant factor difference between the minimum and maximum

degrees), good expansion properties, and a sufficiently high average degree. Subsequently, we inves-

tigate a random walk of an appropriate length 𝓁 within this subgraph. We consider two critical events:

first, we analyze the probability that the random walk is self-avoiding, meaning that it does not revisit

any of the previously visited vertices. Second, we assess what is the likelihood of the set of vertices

visited by the random walk to span at least 𝓁 chords. While the occurrence of the first event is charac-

terized by an exponentially small probability q, we carefully establish that the second event still holds

with probability more than 1− q. Crucially, for bounding the probability for the first event we use the

fact that the obtained graph has good expansion properties. For the second event, directly applying

standard concentration inequalities does not yield a strong enough bound on the required probabil-

ity. To remedy the situation, we prove an edge-decomposition result in almost-regular graphs, which

combined with concentration inequalities produces the required bound.

Notation. We use standard graph theoretic notation throughout the paper. In particular, for a graph G,

we denote by 𝑑(G) its average degree, and by 𝛿(G), Δ(G) its minimum degree and maximum degree,

respectively. By e(G), we denote the number of edges of G, and for S ⊆ V(G), by eG(S) we denote the

number of edges induced by S. For two disjoint sets A,B ⊆ V(G), eG(A,B) is the number of edges of G
which are incident to both A and B. We omit the subscripts if it is clear from the context which graph

we refer to. Given an event E in a probability space, we denote by 𝟙E the indicator random variable of

E, which is equal to 1 when E holds, and 0 otherwise.
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DRAGANIĆ ET AL. 5

2 PRELIMINARIES

In this section, we collect several useful definitions and results used in our proofs.

Definition 2.1. Let K > 0 and let G be a graph. We say that G is K-almost-regular if

Δ(G) ≤ K𝛿(G).

Definition 2.2. Let 𝜆 > 0. We say that a graph G is a 𝜆-expander if every set X ⊆ V(G)
with |X| ≤ 1

2
|V(G)| satisfies e(X,X) ≥ 𝜆𝑑(G)|X|.

We use the following lemma from [2], which states that every graph contains an almost regular

subgraph whose average degree is at most by a logarithmic factor smaller than that of the original

graph.

Lemma 2.3. Every graph G on n vertices contains a 6-almost regular subgraph G′
⊆ G

with average degree at least 𝑑(G)
100 log n

.

2.1 Finding an almost regular expanding subgraph

The goal of this subsection is to prove the following standard statement which allows us to find a

(weakly) expanding subgraph in any graph with large enough degree. Its proof is a standard application

of the density increment method.

Lemma 2.4. Let G be an n-vertex graph with average degree 𝑑 ≥ log
2n and let n be large

enough. Then there exists a bipartite subgraph G′
⊆ G with the following properties.

• 𝑑(G′) ≥ 𝑑

600 log n
.

• G′ is 100-almost-regular.

• G′ is a 1

10 log n
-expander.

Proof. First, let G0 be a bipartite subgraph G with average degree at least
𝑑

3
. Then, we

apply Lemma 2.3 to G0 in order to find a (bipartite) 6-almost regular subgraph G1 ⊆ G0

with 𝑑(G1) ≥ 𝑑

300 log n
. Now let 𝜆 ∶= 1

2 log n
and let 𝑑1 ∶= 𝑑(G1).

We now perform a procedure which finds the desired subgraph G′
in G1. At every step,

we consider a subgraph H and show that either G′ ∶= H satisfies the desired properties

and we finish the procedure or we will find a certain subgraph H′
⊆ H and continue the

procedure with H′
. We will then show that at some point this procedure must finish.

Let us now describe the first kind of step in this procedure. Consider a subgraph H
with average degree 𝑑(H). Whenever H has a vertex v with degree less than 𝑑(H)∕2, we

remove it and define H′ ∶= H ⧵v and proceed to the next step with H′
. Note that in this

case, 𝑑(H′) ≥ 𝑑(H). Before describing the second kind of step in this procedure, we need

the following claim.

Claim 1. If there is a set U ⊆ V(H) with |U| ≤ |V(H)|
2

such that e(U,
̄U) < 𝜆

3
𝑑(H)|U|,

then we have either 𝑑(H[U]) ≥ 𝑑(H) or 𝑑(H[U]) ≥ (1 − 𝜆)𝑑(H).

Proof. Suppose for a contradiction that 𝑑(H[U]) < 𝑑(H) and 𝑑(H[U]) < (1 − 𝜆)𝑑(H).
Then by the assumption on e(U,

̄U) we have e(H) = e(H[U]) + e(H[U,U]) + e(H[U]) <
|U|𝑑(H)

(
1−𝜆

2
+ 𝜆

3

)
+ |U| 𝑑(H)

2
< |V(H)| 𝑑(H)

2
which is a contradiction. ▪
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6 DRAGANIĆ ET AL.

Let us now describe the second kind of step in this procedure. By Claim 1, if there is

any set U ⊆ V(H)with |U| ≤ |V(H)|
2

such that e(U,
̄U) < 𝜆

3
𝑑(H)|U| then either 𝑑(H[U]) ≥

𝑑(H) or 𝑑(H[U]) ≥ (1− 𝜆)𝑑(H). If 𝑑(H[U]) ≥ 𝑑(H), we define H′ ∶= H[U] and proceed

to the next step with H′
. On the other hand, if 𝑑(H[U]) ≥ (1 − 𝜆)𝑑(H), we define H′ ∶=

H[U] and proceed to the next step with H′
. We perform both kinds of steps described

above in any order, as long as possible. If we arrive at a subgraph H such that for every

set U ⊆ V(H) with |U| ≤ |V(H)|
2

we have that e(U,
̄U) ≥ 𝜆

3
𝑑(H)|U|, and moreover, 𝛿(H) ≥

𝑑(H)∕2, then we terminate the procedure.

Now, note that at any step of our procedure, we can have 𝑑(H′) < 𝑑(H) only if |V(H′)|
< |V(H)|∕2 and 𝑑(H′) ≥ (1 − 𝜆)𝑑(H). Furthermore, since |V(H′)| < |V(H)|∕2 can only

occur for at most log n steps, at any step of the procedure the subgraph H we consider

satisfies 𝑑(H) ≥ (1 − 𝜆 log n)𝑑(G1) ≥ 𝑑(G1)∕2 > 0, and therefore, the procedure must

eventually stop with a non-empty subgraph G′
satisfying 𝑑(G′) ≥ 𝑑(G1)∕2.

We now show that this final subgraph G′
satifies the desired properties. First, the

discussion above implies that 𝑑(G′) ≥ 𝑑(G
1
)

2
≥

𝑑

600 log n
. Second, note that since the pro-

cedure removes every vertex of low degree, we have 𝛿(G′) ≥ 𝑑(G′)∕2. Since G1 was

6-almost regular and 𝑑(G′) ≥ 𝑑(G1)∕2 we have thatΔ(G′) ≤ 100𝛿(G′) as desired. Finally,

the procedure also implies that every set U ⊆ V(G′) of size at most |V(G′)|∕2 satisfies

e(U,
̄U) ≥ 𝜆

3
𝑑(G′)|U| ≥ 1

10 log n
𝑑(G′)|U|, so G′

is a
1

10 log n
-expander, as required. ▪

2.2 Random walks in expanders

In this subsection we compute the mixing time of a random walk in an almost regular expander. The

notation and results that we cite in this subsection can be found in [9] and [11].

Let G be a connected graph on the vertex set [n]. Consider a random walk on V(G), where we start

at some vertex v0 and at the i-th step we move from vi to one of its neighbours, say vi+1, where each

neighbour of vi is chosen as vi+1 with probability
1

𝑑(vi)
. Let M be an n×n matrix defined as follows. Let

Mv,u be the probability of stepping from v to u; so Mv,u = 1

𝑑(v)
if vu ∈ E(G), and Mv,u = 0 otherwise.

Denote by D the n × n diagonal matrix with Dv,v = 1

𝑑(v)
for v ∈ [n], and let A be the adjacency matrix

of G. Then M = DA. So the probability that a random walk starting at vertex v ends in u after t steps

is (Mt)v,u.

Definition 2.5. Let the graph G and matrices M,D,A be as above and define N(G) =
D1∕2AD1∕2

. Note that the matrix N(G) is symmetric, so it has n real eigenvalues. Let

𝜆1(N) ≥ 𝜆2(N) ≥ … ≥ 𝜆n(N) denote the eigenvalues of N ∶= N(G).

Lemma 2.6. [Lemma 5.2 in [9]]. Let G be a connected n-vertex bipartite graph, with
the bipartition {X,Y} with m edges. Let M = D(G)A(G) and N = N(G). Then for every
v, u ∈ V(G) and integer k ≥ 1, we have

||||
(Mk)v,u −

𝑑(u)
2m

(
1 + (−1)k+𝟙v∈X+𝟙u∈X

)||||
≤

√
𝑑(u)
𝑑(v)

⋅ (𝜆2(N))k.

Note that Lemma 2.6 says that when k is even and both v, u are in the same part or when k is odd

and v, u are in different parts then
|||(M

k)v,u − 𝑑(u)
m
||| ≤

√
𝑑(u)
𝑑(v)

⋅ (𝜆2(N))k. Also observe that when k is even

and v and u are in different parts or when k is odd and v and u are in the same part then (Mk)v,u = 0.
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DRAGANIĆ ET AL. 7

Definition 2.7. [Conductance]. For a graph G with m edges, let 𝜋(v) = 𝑑(v)
2m

, and for any

S ⊆ V(G), let 𝜋(S) ∶=
∑

s∈S 𝜋(s); observe that 𝜋(S) ≤ 1 for every S ⊆ V(G). Define the

conductance of a set S, denoted by Φ(S), as

Φ(S) ∶= e(S, S)
2m ⋅ 𝜋(S)𝜋(S)

,

and let the conductance of a graph G, denoted by ΦG, be defined as

ΦG ∶= min
S⊆V(G)

Φ(S).

Theorem 2.8. [Theorem 5.3 in [11]]. Let G be a graph and let 𝜆2 = 𝜆2(N(G)). Then
𝜆2 ≤ 1 − Φ2

G
8

.

Lemma 2.9. Let 𝜆 > 0, K ≥ 1, and let G be a K-almost-regular 𝜆-expander. Then
ΦG ≥

𝜆

K
.

Proof. Suppose all the vertices in G have their degrees between 𝑑 and K𝑑. Let S ⊆ V(G).
Since Φ(S) = Φ(S), we may assume that |S| ≤ n

2
. Since G is a 𝜆-expander, we have

e(S, S) ≥ 𝜆𝑑(G)|S| ≥ 𝜆𝑑|S|. Note that
∑

v∈S 𝑑(v) ≤ K𝑑|S|. Also, observe that 𝜋(S) ≤ 1.

Hence

Φ(S) = e(S, S)
2e(G)𝜋(S)𝜋(S)

≥
e(S, S)∑
v∈S 𝑑(v)

≥
𝜆𝑑|S|
K𝑑|S|

≥
𝜆

K
.

The above inequality thus implies ΦG ≥
𝜆

K
. ▪

Combining Lemma 2.9 and Theorem 2.8, we obtain that if G is a K-almost-regular 𝜆-expander and

𝜆2 = 𝜆2(N(G)), then 𝜆2 ≤ 1 − 1

8
( 𝜆

K
)2. Therefore, Lemma 2.6 implies the following.

Corollary 2.10. Let 𝜆 > 0, K ≥ 1, and let G be a bipartite graph on n vertices which is
a K-almost-regular 𝜆-expander. Let {X,Y} be the bipartition of G with m edges and no
isolated vertices. Let M = D(G)A(G) and N = N(G). Then for every v, u ∈ V(G) and
integer k ≥ 1, the probability (Mk)v,u that a random walk starting at vertex v ends in u
after k steps satisfies

||||
(Mk)v,u −

𝑑(u)
2m

(
1 + (−1)k+𝟙v∈X+𝟙u∈X

)||||
≤

√
K ⋅

(
1 − 1

8

(
𝜆

K

)2
)k

.

We shall utilize the following definition of mixing time in bipartite graphs.

Definition 2.11. [mixing time]. Let G be a bipartite graph on n vertices. Let {X,Y} be

the bipartition of G with m edges and no isolated vertices. We say that G has mixing time

k if for every u, v ∈ G, the probability (Mk)v,u that a random walk starting at vertex v ends

in u after k steps satisfies

||||
(Mk)v,u −

𝑑(u)
2m

(
1 + (−1)k+𝟙v∈X+𝟙u∈X

)||||
≤

1

n2
.

The following is a corollary of the previous statements and succinctly summarizes a few pertinent

properties of mixing time that are essential for our proofs.
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8 DRAGANIĆ ET AL.

Corollary 2.12. Let K ≥ 1, let G be a connected K-almost-regular bipartite graph on n
vertices with mixing time k and suppose n is large enough. Let {X,Y} be the bipartition
of G. Then the following holds:

(i) For any given set S ⊆ V(G), the probability that a random walk starting at a given
vertex ends in a vertex of S after at least k steps is at most 4K

n
|S|.

(ii) If k′ is even (if k′ is odd), then the probability that a random walk starting at a vertex
of X ends in any given vertex of X (of Y respectively) after k′ ≥ k steps is at least 1

Kn
.

(iii) If G is a 𝜆-expander for some 𝜆 > 0, then it has mixing time k ≤ 30K2

𝜆
2

log n.

Proof. Suppose G has m edges. Since G is K-almost-regular and k is its mixing time, the

probability that a random walk starting at a given vertex ends in a vertex of S after k steps

is at most

∑

u∈S

(
𝑑(u)

m
+ 1

n2

)
≤

4K
n
|S|.

Similarly, the required probability in (ii) is at least

𝑑(u)
m

− 1

n2
≥

1

Kn
.

Finally, by Corollary 2.10, if G is a 𝜆-expander, then it has mixing time at most
30K2

𝜆
2

log n. ▪

3 PROOF

As mentioned earlier, our strategy for proving Theorem 1.1 is to first pass to an almost-regular expander

(using Lemma 2.4).

In Section 3.1, we show that one can find a collection of star-forests in almost-regular graphs. In

Section 3.2, we prove a concentration inequality that allows us to show that a random walk must contain

many vertices from any large enough set with high probability. Using this result and the star-forests

that we found, we show that the random walk must contain many chords and that it can be closed into

a cycle with high enough probability in Section 3.3. In Section 3.4, we compute the probability that a

random walk is self-avoiding, and we put everything together and prove Theorem 1.1 in Section 3.5.

3.1 Finding star forests in an almost-regular graph

Given disjoint sets A and B, an AB-star-forest F is a set of vertex-disjoint stars such that the root of

each of the stars is in A and the leaves are in B. Two star forests F and F′ are called root-disjoint if the

set of root vertices of the stars in F is disjoint from the set of root vertices of the stars in F′.

Lemma 3.1. Let G = (A,B) be a 1000-almost-regular bipartite graph on n vertices, and
let 𝑑 ∶= 𝛿(G) ≥ 10

6
. Then, there exists an AB-star-forest F ⊆ G consisting of n

100𝑑
stars

of size 𝑑

10
6
.

Proof. Note that since G is 1000-almost-regular, by double counting the edges we have

|B| ≤ 1000|A|. Then n = |A| + |B| ≤ 1001|A|, and so |A| ≥ n∕1001. Let F be a maximal

AB-star-forest F ⊆ G consisting of stars of size 𝑑∕10
6

and for the sake of contradiction
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DRAGANIĆ ET AL. 9

assume that F contains less than
n

100𝑑
stars. Consider A′ ∶= A⧵V(F),A′′ ∶= A∩V(F) and

B′ ∶= B ⧵ V(F), B′′ ∶= B ∩ V(F). By assumption, note that |A′′| < n∕100𝑑 ≤ n∕10
5
≤

|A|∕4 and |B′′| ≤ n∕10
8
. Every vertex in A′ must have less than 𝑑∕10

6
neighbours in B′,

as otherwise F would not be maximal. Hence e(A′,B′′) ≥ |A′|(1 − 10
−6)𝑑 ≥ |A|𝑑∕4.

Therefore there is a vertex in B′′ with degree at least

e(A′,B′′)
|B′′|

≥
|A|𝑑
4|B′′|

≥
|A|𝑑

4n∕10
8
> 1000𝑑

a contradiction with the fact that G is 1000-almost-regular. ▪

Repeated application of the lemma above produces a collection of root-disjoint AB-star forests.

This is shown by the following corollary.

Corollary 3.2. Let G = (A,B) be a 100-almost-regular bipartite graph on n vertices, and
let 𝑑 ∶= 𝛿(G) ≥ 10

7
. Then, there exist 𝑑

10
root-disjoint AB-star-forests F1,F2, … ,F

𝑑∕10

in G, where each Fi consists of n
10

5
𝑑

stars of size 𝑑

10
7
.

Proof. Suppose we have already found the desired AB-star-forests F1,F2, … ,Fi for

i < 𝑑

10
, we find the next one Fi+1 as follows. We remove the root vertices of the stars in

F1,F2, … ,Fi from A ⊆ V(G). This removes at most i ⋅ n
10

5
𝑑

⋅ 100𝑑 <

n𝑑
10

4
edges from G

as Δ(G) ≤ 100𝑑 (since G is 100-almost-regular), let the resulting graph be G′
. Hence, G′

still has at least

(
1

2
− 10

−4

)
n𝑑 edges, so by repeatedly removing vertices of degree less

than
𝑑

4
, we obtain a subgraph G′′

of G′
with minimum degree

𝑑

4
≥ 10

6
, while its maxi-

mum degree is still at most 100𝑑, so G′′
is 1000-almost-regular. Moreover, G′′

contains

at least

(
1

2
− 10

−4

)
n𝑑 − n𝑑

4
≥

(
1

4
− 10

−4

)
n𝑑 edges, so G′′

has at least
2

(
1

4
−10

−4

)
n𝑑

100𝑑
≥

n
250

vertices (as Δ(G′′) ≤ 100𝑑). So by Lemma 3.1, G′′
has an AB-star-forest Fi+1 consisting

of
n

10
5
𝑑

stars of size
𝑑

10
7
, as desired. ▪

3.2 Intersection of random walks with arbitrary sets

For a random walk W = {Xi} on a graph G with mixing time k, the set of vertices {Xik ∶ i ∈ [t]} for

some t ≥ 1 behaves almost like a random set of t vertices chosen uniformly at random with repetition

from G. We exploit this fact in this subsection.

More precisely, the setup is as follows. We let G be a 100-almost-regular bipartite graph on n
vertices with parts A,B. Consider a random walk R of length t starting at some vertex v0 ∈ A. Take a

k′ ∈ {k, k + 1} which is odd, where k is the mixing time of G. Let S be a random set obtained by the

following procedure which consists of ⌊t∕k′⌋ steps:

• In each step 1 ≤ i ≤ ⌊t∕k′⌋, with probability 10
−5

we either choose a uniformly random vertex

vi from A (if i is even) or from B (if i is odd), or we do nothing (with probability 1 − 10
−5

).

• The set S = {vi ∶ 1 ≤ i ≤ ⌊t∕k′⌋} consists of all of the chosen vertices.

Now, consider the set of vertices R(k) ∶= {u1, u2, …} where for each 1 ≤ i ≤ ⌊t∕k′⌋, ui is the

ik′-th vertex of the random walk R. We then have the following property given by the definition of

mixing time and Corollary 2.12.
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10 DRAGANIĆ ET AL.

Observation 3.3. Conditioning on the choice of u0, u1, … , ui−1, we have that for every
a ∈ A and b ∈ B it holds that:

• If i is even, then P[ui = a] ≥ 1

100n
≥

10
−5

|A|
(since n = |A| + |B| ≤ 101|A| as G is

100-almost-regular)
• If i is odd, then P[ui = b] ≥ 10

−5

|B|
.

By definition of S this implies that for any fixed set X ⊆ V(G), the random variable |R(k) ∩ X|
stochastically dominates |S ∩ X|. Therefore, we have the following.

Lemma 3.4. Let G be an n-vertex 100-almost regular bipartite graph with parts A,B with
mixing time k and let R be a random walk in G of length t ≤ 10n starting at a given vertex.
Then, for any set X ⊆ V(G) we have that

P

(
|R(k) ∩ X| ≤ |X|t

10
9kn

)
≤ e−

|X|t
109kn .

Proof. Let R = {Xi ∶ 0 ≤ i ≤ t} be a random walk, and without loss of generality,

suppose X0 ∈ A. As noticed before, |S∩X| is stochastically dominated by |R(k) ∩X|, so it

is enough to show the statement with |S∩X| instead of |R(k)∩X|. Note that either X∩A or

X ∩B has size at least |X|∕2. Suppose without loss of generality that |X ∩A| ≥ |X|∕2, the

other case is very similar. Let C ∶= 10
−9 |X|t

kn
, and consider the procedure that was used to

define S, where in each step 1 ≤ j ≤ ⌊t∕k′⌋, a vertex vj is (randomly) added to S. Suppose

that a new vertex from X is added to S in only at most i ≤ C steps; we are interested in

the probability that this event occurs. Fix such a choice of i steps. In any such step, the

probability that a new vertex from X is added to S is at most max

{
10

−5 |X|
|A|

, 10
−5 |X|

|B|

}
≤

|X|
100n

(since G is 100-almost-regular). Moreover, note that since at most C ≤ |X|
4

vertices

from X have been added to S, the probability that a new vertex from X ∩ A is added to

S in any step j (with j even) is at least 10
−5 |X|∕2−|C|

|A|
≥ 10

−6 |X|
n

. Therefore, as there are at

least
1

2
⌊t∕k′⌋ − C ≥ 1

4
⌊t∕k′⌋ steps j (with j even) where no new vertex is added to S, the

required probability is at most

∑

0≤i≤C

(
⌊t∕k′⌋

i

)(
|X|

100n

)i(
1 − 10

−6 |X|
n

) 1

4
⌊t∕k′⌋

.

Since the common ratio satisfies

(
⌊t∕k′⌋

i

)(
|X|

100n

)i

(
⌊t∕k′⌋

i−1

)(
|X|

100n

)i−1 ≥
⌊t∕k′⌋−(i−1)

i
|X|

100n
≥

⌊t∕k′⌋−C
C

|X|
100n

≥

⌊t∕k′⌋
2C

|X|
100n
≥ 2 for 0 ≤ i ≤ C, the above sum is at most

2

(
⌊t∕k′⌋

C

)(
|X|

100n

)C(
1 − 10

−6 |X|
n

) t
8k′

≤

(
2e(t∕k′)|X|

C ⋅ 100n

)C(
1 − 10

−6 |X|
n

) t
8k′

≤ e−
|X|t

109kn ,

where in the last inequality we used

(
2e(t∕k′)|X|

C⋅100n

)C
≤ 10

10C
≤ e30C ≤ e10

−7 |X|t
kn by plugging

in the value of C, and that

(
1 − 10

−6 |X|
n

) t
8k′
≤ e−10

−6 |X|
n
⋅ t

8k′ ≤ e−10
−6 |X|

n
⋅ t

9k . This completes

the proof of the lemma. ▪
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DRAGANIĆ ET AL. 11

3.3 Chords in random walks

In this subsection, we show that with very high probability, the graph induced by the vertices of

two random walks contains many edges. Recall that for a random walk R of length t, we denote

R(k) = {u1, u2, …} where for each 1 ≤ i ≤ ⌊t∕k′⌋, ui is the ik′-th vertex of the random walk R and

k′ ∈ {k, k + 1} is odd.

Lemma 3.5. Let G be a 100-almost-regular bipartite graph on n vertices with 𝛿(G) =
𝑑 ≥ 10

8 and mixing time k. Let R1 and R2 be random walks in G of length t for n ≥ t ≥
max{10

17 kn
𝑑

, 10
25k log n}, starting at arbitrary vertices v1 and v2, respectively. Then,

P
(

e(R1(k),R2(k)) ≤
t2
𝑑

10
32k2n

)
≤ e−

t
1024k .

Proof. Let p ∶= t
10

9kn
, and note that by the bound on t we have p ≥ max

{
10

8

𝑑

,

10
16

log n
n

}
.

First, we apply Corollary 3.2 to find
𝑑

10
root-disjoint AB-star-forests Fi ⊆ G, each

consisting of
n

10
5
𝑑

stars of size
𝑑

10
7
.

Claim 2. For each i, with probability at least 1 − e−np∕10
13

, there is a set of at least n
2⋅10

5
𝑑

stars in Fi such that R1(k) contains at least 𝑑p
10

7
leaves of each of those stars.

Proof. Consider some Fi and let A,B be the bipartition of G, and denote by mi = n
10

5
𝑑

the number of stars in Fi. Fix a collection of mi∕2 stars in Fi. Note that the probability

that every star in this collection has less than 𝑑p∕10
7

leaves in R1(k) is at most e−
mi𝑑p
2⋅107 ;

indeed, this follows by applying Lemma 3.4 to the set of leaves of all the mi∕2 stars in the

collection.

Hence, by the union bound over all such collections of mi∕2 stars of Fi, we have that

the event from the statement of the claim does not hold with probability at most

2
mi ⋅ e−

𝑑pmi
2⋅107 ≤ e

𝑑pmi
108 ⋅ e−

𝑑pmi
2⋅107 ≤ e−

𝑑pmi
108 = e−

np
1013

,

where we used that mi ≤
𝑑pmi
10

8
, since p ≥ 10

8∕𝑑. ▪

By a simple union bound and since pn ≥ 10
16

log n, we then have that with probability

at least 1−ne−
pn

1013 ≥ 1−e−
pn

1014 the following holds: for every star-forest Fi, more than half

of its stars each have at least 𝑑p∕10
7

leaves in R1(k). Suppose this event occurs. Then for

each Fi, let Ai denote the set of vertices in Fi which are the roots of stars with more than

𝑑p∕10
7

leaves in R1(k). Then, we have
∑

i |Ai| ≥
1

2
⋅ 𝑑

10
⋅ n

10
5
𝑑

≥
n

10
7

and so, by Lemma 3.4,

with probability at least 1− e−
pn

107 we have that |R2(k)∩
⋃

i Ai| ≥
pn
10

7
. Hence, by the choice

of vertices in
⋃

i Ai we have e(R1(k),R2(k)) ≥ |R2(k) ∩
⋃

i Ai| ⋅
𝑑p
10

7
≥

𝑑p2n
10

14
with probability

at least

(
1 − e−

pn
1014

)(
1 − e−

pn
107

)
≥ 1 − e−

np
1015 = 1 − e−

t
1024k as required. ▪

3.4 Self-avoiding walks in expanders

In this subsection we show that a random walk with small mixing time in an almost-regular graph is

self-avoiding with a certain positive probability. The exact details are given in Theorem 3.6, whose

proof uses the ideas from [12], with the necessary changes to fit our setting.
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12 DRAGANIĆ ET AL.

Let G be a graph with mixing time k. Denote by {Xv
t } the nearest neighbour random walk in G

which starts at a vertex v. For a vertex set A ⊆ V(G), let Qv
t (A) denote the probability that Xv

t ∈ A, and

let Ev
A be the event that Xv

t ∉ A for all t ∈ [k], that is, the random walk starting at v avoids the set A in

the first k steps.

Theorem 3.6. Let 𝛽 ∶= 10
−28

, and let G be a 100-almost-regular graph with mixing time
k with 𝛿(G) ≥ 10

3k2

𝛽

. Then the probability that a random walk starting at any given vertex

of G and of length 𝛽

2n
10

6k
is self-avoiding is at least e−

𝛽

3n
105k2 .

Proof. The following claim allows us to show that most vertices v are such that if we start

a random walk at the vertex v, it is likely to avoid a given set.

Claim 3. For every set A ⊆ V(G), it holds that the set B of vertices v such that P(Ev
A) ≥ 𝛽

is of size at most 100k|A|
𝛽

.

Proof of Claim. Notice first that

P
(
Ev

A
)
≤

k∑

t=1

P(Xv
t ∈ A) =

k∑

t=1

Qv
t (A).

For every pair of vertices v, u ∈ G we have that Qv
t (u) ≤ 100 ⋅ Qu

t (v) because of our

assumption that G is 100-almost-regular. Indeed, for every walk P = v0, v1, … , vt we

know that

P
[
Xv

0

i = vi for all i ∈ [t]
]
=

t−1∏

i=0

1

𝑑(vi)
.

Since Qv
t (u) =

∑
P P

[
Xv

0

i = vi for all i ∈ [t]
]
, where the sum is over all walks P =

v0, v1, … , vt of length t with v0 = v and vt = u, we conclude that
Qv

t (u)
Qu

t (v)
= 𝑑(u)

𝑑(v)
≤

Δ(G)
𝛿(G)

≤

100.

Using this, we obtain the following:

∑

v∈[n]
P
[
Ev

A
]
≤

∑

v∈[n]

k∑

t=1

Qv
t (A) =

∑

v∈[n]

k∑

t=1

∑

a∈A
Qv

t ({a}) ≤
k∑

t=1

∑

a∈A

∑

v∈[n]
100Qa

t ({v}) = 100k|A|.

This immediately implies the claim as
∑

v∈[n] P
[
Ev

A
]
≥ 𝛽|B| by the definition of B. ▪

The following claim gives the probability that a random walk of length k is

self-avoiding and additionally avoids a fixed set of k vertices.

Claim 4. Let S ⊆ V(G) with |S| ≤ k, and let v ∈ V(G). The probability that Xv
i ≠ Xv

j for
every 1 ≤ i < j ≤ k and that Xv

i ∉ S for all i ∈ [k], is at least 1 − 200k2

Δ(G)
.

Proof of Claim. For each i ≤ k, out of the 𝑑(Xv
i ) neighbours of Xv

i , only at most |S| + i
vertices are contained in S ∪ {Xv

0
,Xv

1
, … ,Xv

i−1
}. Hence the required probability is at least

k−1∏

i=0

(
𝑑(Xv

i ) − |S| − i
𝑑(Xv

i )

)
≥

(
1 − 2k

𝛿(G)

)k

≥ 1 − 200k2

Δ(G)
.

▪
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DRAGANIĆ ET AL. 13

Now, for every v ∈ V(G) and every set A ⊆ V(G) define

𝛼v(A) ∶= min
S⊆V(G),|S|=k

P
[
Ev

A∪S
]
.

Lemma 3.7. Let A ⊆ V(G) with |A| ≤ 𝛽

2n
10

6k
, and let X be the set of vertices v ∈ V(G) such

that 𝛼v(A) ≥ 1 − 𝛽 − 200k2

Δ(G)
. Then |X| ≥ n − 100k|A|

𝛽

. In particular, for every v ∈ V(G) we

have Qv
k(X) ≥ 1 − 10

5k|A|
𝛽n

≥ 1 − 𝛽

10
.

Proof. Note that by Claim 4, we have 𝛼v(A) ≥ P
[
Ev

A
]
− 200k2

Δ(G)
. For every vertex v ∉ X, we

have 𝛼v(A) ≤ 1 − 𝛽 − 200k2

Δ(G)
, so P

[
Ev

A
]
≤ 1 − 𝛽 that is, P

[
Ev

A
]
≥ 𝛽. Hence, by Claim 3,

|X| ≤ 100k|A|
𝛽

. Finally, for every vertex v, we have by Corollary 2.12 that Qv
k(X) ≤

400

n
|X| ≤

10
5k|A|
𝛽n

, as desired. ▪

For every t ≤ 𝛽

2n
10

6k2
, let At ∶= {Xv

j }j≤tk be the set of vertices visited by the random walk

in the first tk steps, and let Zt be the set of vertices u for which 𝛼u(At−1) ≥ 1 − 𝛽 − 200k2

Δ(G)
.

Let us now show by induction on i that with probability at least (1 − 2𝛽)i our random

walk is self-avoiding after ik steps and moreover, it ends in a vertex of Zi. By setting

i = 𝛽

2n
10

6k2
we can then complete our proof of Theorem 3.6. As (1 − 2𝛽) ≥ e−10𝛽

for small

𝛽 > 0, we get (1 − 2𝛽)
𝛽

2n
106k2 ≥ e−

𝛽

3n
105k2 .

To that end, suppose that with probability at least (1 − 2𝛽)i−1
our random walk is

self-avoiding after (i − 1)k steps and moreover, it ends in a vertex u ∈ Zi−1 that is,

Xv
(i−1)k = {u}.

Now, we claim that the probability that our random walk is self-avoiding in the next k
steps, avoids {Xv

j }j≤(i−1)k and satisfies that Xv
ik ∈ Zi is at least

1 − 𝛽

10
− (1 − 𝛼u(Ai−2)) −

200k2

Δ(G)
≥ 1 − 𝛽

10
−
(
𝛽 + 200k2

Δ(G)

)
− 200k2

Δ(G)
≥ 1 − 2𝛽.

Indeed, by Lemma 3.7, the probability that Xv
ik ∈ Zi is at least 1 − 𝛽

10
and the

probability that the random walk
{

Xv
(i−1)k+1

,Xv
(i−1)k+2

, … ,Xv
ik
}

does not avoid Ai−2 ∪{
Xv
(i−2)k+1

,Xv
(i−2)k+2

, … ,Xv
(i−1)k

}
= Ai−1 is at most 1 − 𝛼u(Ai−2) (which is at most

𝛽 + 200k2

Δ(G)
since u ∈ Zi−1), and by Claim 4, the probability that the random walk

{
Xv
(i−1)k+1

,Xv
(i−1)k+2

… ,Xv
ik
}

is not self-avoiding is at most
200k2

Δ(G)
. Putting all of this together

and using that Δ(G) ≥ 10
3k2

𝛽

, the above inequalities hold, as desired. This completes the

proof of Theorem 3.6. ▪

3.5 Putting everything together

Proof of Theorem 1.1. Let G be a graph on n vertices for n large enough, and with average

degree 𝑑(G) ∶= 𝑑 ≥ log
8n. First we use Lemma 2.4 to find a 100-almost-regular bipartite

subgraph G′
on n′ vertices with average degree at least

𝑑

600 log n
which is a

1

10 log n
-expander.

Now, by Corollary 2.12, we have that G′
has mixing time at most k ∶= 10

10
log

2n log n′.
Let 𝛽 = 10

−28
.
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14 DRAGANIĆ ET AL.

Consider now a random walk R = {Xv
0

j }j≤t starting at an arbitrary vertex v0 ∈ V(G′)
and of length t ∶= 𝛽

2n′

10
6k

. Let 1 be the event that R is self-avoiding, and let 2 be the event

that there is an edge between the first t∕4 and last t∕4 vertices of R.

As we have several parameters, we now collect several simple inequalities which hold

between them, and which we use to complete our proof. Note first that since the average

degree in G′
is at least

𝑑

600 log n
and G′

is 100-almost-regular, we have 𝛿(G′) ≥ 𝑑

10
5

log n
≥

log
7n

10
5

. Note further that trivially n′ ≥ 𝛿(G′) ≥ log
7n

10
5

, and also that 𝛿(G′)≫ k2 = O(log
6n).

Now, by Theorem 3.6 the event 1 occurs with probability at least e−
𝛽

3n′
105k2 = e−

10𝛽t
k . Now

we want to show that
t
4
≥ max

{
10

17kn′

𝛿(G′)
, 10

25k log n′
}

, so that we can apply Lemma 3.5

to obtain that with probability at least 1 − e−
t∕4

1024k the event 2 occurs. Indeed, the first

inequality follows from the fact that t = Θ
(

n′

k

)
and 𝛿(G′) ≫ k2

. The second inequality

follows from k2
log n′ = o(n′). To see why k2

log n′ = o(n′) holds, we have two simple

cases. If n′ ≥ log
8n then this trivially holds as k2 = O(log

6n), and otherwise log n′ =
O(log log n), so again we are done because n′ = Ω(log

7n).
Finally, for each i ∈ [k], let Wi be the random walk starting at the

(
t
4
+ i

)
-th step

of the random walk R and finishing at step
3t
4

of R. For each Wi, we will consider the

set Wi(k), and show that it spans many edges with high probability. Again, we can easily

check that
t∕2−i

2
≥

t
5
≥ max

{
10

17kn′

𝛿(G′)
, 10

25k log n′
}

, so by Lemma 3.5 for every i ∈ [k] we

have that e(Wi(k)) ≥ (t∕5)2𝛿(G′)
10

32k2n′
>

2t
k

with probability at least 1 − e−
t∕5

1024k , as we can split

the random walk Wi into two random walks of length at least t∕5. Let 3 be the event that

for all i ∈ [k], e(Wi(k)) ≥ 2t
k

. Since k = O(log
3n) and

t
k
= Ω(log n), by a union bound, 3

occurs with probability at least 1 − ke−
t

1025k ≥ 1 − e−
t

1026k .

Since 𝛽 = 10
−28

, we have P(1 ∩ 2 ∩ 3) ≥ P(1) − P(2) − P(3) ≥
e−

10𝛽t
k −e−

t
1026k −e−

t
1025k > 0. Moreover, the event 1∩2∩3 implies the existence of a cycle

of length t with at least t chords, since if the random walk R is self-avoiding, then the edges

spanned by the sets Wi(k) are mutually disjoint for i ∈ [k]. This completes our proof of

Theorem 1.1. ▪

4 CONCLUDING REMARKS

In this paper we have shown that every n-vertex graph with Ω(n log
8n) edges contains a cycle C with

at least |C| chords. Although this is a significant improvement upon the previous bound [4] of Θ(n3∕2)
edges, we believe that the truth is closer to Θ(n). It would be interesting to show an upper bound of

this order (which would be optimal), or to show any lower bound which is super-linear.

Another avenue towards understanding this problem is to consider the following closely related

question. What is the largest t = t(e, n) so that any n-vertex graph G with e = e(n) edges is guaranteed

to contain some cycle C with at least t|C| chords? Let us note that our proof gives t(e, n) = Ω
(

e
n log

7n

)

for e = Ω(n log
8n), and that the question from the previous paragraph is whether t(e, n) ≥ 1 when

e ≥ cn for a large enough absolute constant c.

Let us note that we did not make an attempt to improve the power of the logarithmic factor or

the used absolute constants in our result, in order to keep the presentation clean. We expect that one

can save a few logarithmic factors by being more careful, but new ideas are certainly required to push
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the bound very close to Θ(n), even if we assume the original graph is almost-regular and expanding.

Roughly speaking, the reason is that we can only guarantee that the random walk is self-avoiding up

to length O
(

n
k

)
, where k is the mixing time of the graph (which is at least of order log

2n in our proof).

Now, if we assume the set of vertices in the random walk behaves like a random set of vertices of size

Θ
(

n
log

2n

)
, then the expected number of edges spanned by the set isΘ

(
e
n2

(
n

log
2n

)2
)
= Θ

(
e

log
4n

)
, which

is at least Θ
(

n
log

2n

)
only when we have e = Ω(n log

2n) edges in our graph. Additional logarithmic

factors are used in our proof for cleaning the graph to find an almost-regular expander in it and because

the random walk is not exactly a random set.

Note added in proof: After the submission of this article, Jie Ma informed us about his proof

of a weaker bound of n2
O(

√
log n)

on the number of edges which force the existence of a cycle C
with |C| chords in an n-vertex graph. His proof uses an inductive argument which hinges on Pósa’s

rotation-extention technique.
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