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In this paper, we present several density-type theorems which show how to find a copy of a
sparse bipartite graph in a graph of positive density. Our results imply several new bounds
for classical problems in graph Ramsey theory and improve and generalize earlier results of
various researchers. The proofs combine probabilistic arguments with some combinatorial
ideas. In addition, these techniques can be used to study properties of graphs with a
forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain
several other Ramsey-type statements.

1. Background and Introduction

Ramsey theory refers to a large body of deep results in mathematics whose
underlying philosophy is captured succinctly by the statement that “In a
large system, complete disorder is impossible.” This is an area in which a
great variety of techniques from many branches of mathematics are used
and whose results are important not only to graph theory and combina-
torics but also to logic, analysis, number theory, and geometry. Since the
publication of the seminal paper of Ramsey [44] in 1930, this subject has
grown with increasing vitality, and is currently among the most active areas
in combinatorics.
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For a graph H, the Ramsey number r(H) is the least positive integer n
such that every two-coloring of the edges of the complete graph K,, on n
vertices contains a monochromatic copy of H. Ramsey’s theorem states that
r(H) exists for every graph H. A classical result of Erdds and Szekeres [20],
which is a quantitative version of Ramsey’s theorem, implies that r(K},) < 2%¢
for every positive integer k. Erdés [16] showed using probabilistic arguments
that r(Kj) > 2k/2 for k>2. Over the last sixty years, there have been several
improvements on these bounds (see, e.g., [13]). However, despite efforts by
various researchers, the constant factors in the above exponents remain the
same.

Determining or estimating Ramsey numbers is one of the central prob-
lems in combinatorics, see the book Ramsey theory [28] for details. Besides
the complete graph, the next most classical topic in this area concerns the
Ramsey numbers of sparse graphs, i.e., graphs with certain upper bound
constraints on the degrees of the vertices. The study of these Ramsey num-
bers was initiated by Burr and Erdds in 1975, and this topic has since placed
a central role in graph Ramsey theory.

An induced subgraph is a subset of the vertices of a graph together with all
edges whose both endpoints are in this subset. There are several results and
conjectures which indicate that graphs which do not contain a fixed induced
subgraph are highly structured. In particular, the most famous conjecture
of this sort by Erdds and Hajnal [18] says that every graph G on n vertices
which does not contain a fixed induced subgraph H has a clique or indepen-
dent set of size a power of n. This is in striking contrast with the general
case where one can not guarantee a clique or independent set of size larger
than logarithmic in the number of vertices.

Results in Ramsey theory generally say that if a large enough structure
is partitioned into a small number of parts, then one of the resulting parts
will contain some desired substructure. Sometimes, a stronger density-type
result can be proved, which shows that any dense subset of a large enough
structure contains the desired substructure. One famous example is Sze-
merédi’s theorem [51], which says that every subset of the positive integers
of positive upper density contains arbitrarily long arithmetic progressions.
It strengthens the earlier result of van der Waerden [53] that every finite
partition of the positive integers contain arbitrarily long arithmetic progres-
sions, and has led to many deep and beautiful results in various areas of
mathematics, including the recent spectacular result of Green and Tao [29]
that there are arbitrarily long arithmetic progressions in primes.

It is easy to see that Ramsey’s theorem has no density-type analogue.
Indeed, the complete bipartite graph with both parts of size n/2 has n?/4
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edges, i.e., more than half the total possible number of edges, and still does
not contain a triangle. However, for bipartite graphs, a density version exists
as was shown by K6vari, Sés, and Turdn [38] in 1954.

In this paper, we present several density-type theorems which show how
to find a copy of a sparse bipartite graph in a graph of positive density.
Our results imply several new bounds for classical problems in graph Ram-
sey theory and improve and generalize earlier results of various researchers.
The proofs combine probabilistic arguments with some combinatorial ideas.
In addition, these techniques can be used to study edge intersection pat-
terns in topological graphs, make some progress towards the Erdés—Hajnal
conjecture, and obtain several other Ramsey-type statements. In the sub-
sequent sections we present in full detail our theorems and compare them
with previously obtained results.

1.1. Ramsey numbers and density-type theorems for bipartite
graphs

Estimating Ramsey numbers is one of the central (and difficult) problems
in modern combinatorics. Among the most interesting questions in this area
are the linear bounds for Ramsey numbers of graphs with certain degree
constraints. In 1975, Burr and Erdés [8] conjectured that, for each positive
integer A, there is a constant ¢(A) such that every graph H with n vertices
and maximum degree A satisfies 7(H ) <c(A)n. This conjecture was proved
by Chvatél, R6dl, Szemerédi, and Trotter [11]. Their proof is a beautiful
illustration of the power of Szemerédi’s regularity lemma [32]. However, the
use of this lemma forces the upper bound on ¢(A) to grow as a tower of
2s with height polynomial in A. Since then, the problem of determining
the correct order of magnitude of ¢(A) as a function of A has received
considerable attention from various researchers. Still using a variant of the
regularity lemma, Eaton [15] showed that ¢(A) < 22°% for some fixed c.
A novel approach of Graham, Rodl, and Rucinski [26] gave the first linear
upper bound on Ramsey numbers of bounded degree graphs without using
any form of the regularity lemma. Their proof implies that ¢(A) < gcAlog® A,
(Here, and throughout the paper, all logarithms are base 2.)

The case of bipartite graphs with bounded degree was studied by Gra-
ham, Rodl, and Rucinski more thoroughly in [27], where they improved
their upper bound, showing that r(H) < 24logA+0(A)y for every bipartite
graph H with n vertices and maximum degree A. As they point out, their
proof does not give a stronger density-type result. In the other direction,
they proved that there is a positive constant ¢ such that, for every A > 2
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and n>2A, there is a bipartite graph H with n vertices and maximum de-
gree A satisfying r(H) > 2°?n. Closing the gaps between these two bounds
remained a challenging open problem. In this paper, we solve this problem
by showing that the correct order of magnitude of the Ramsey number of
bounded degree bipartite graphs is essentially given by the lower bound.
This follows from the following density-type theorem.

Theorem 1.1. Let H be a bipartite graph with n vertices and maximum
degree A>1. If >0 and G is a graph with N >32Ae “n vertices and at
least e(g/) edges, then H is a subgraph of G.

Taking € = 1/2 together with the majority color in a 2-coloring of the
edges of K, we obtain a corollary which gives a best possible upper bound
up to the constant factor in the exponent on Ramsey numbers of bounded
degree bipartite graphs.

Corollary 1.2. If H is bipartite, has n vertices and maximum degree A>1,
then r(H) < A24%5n,

Moreover, the above theorem also easily gives an upper bound on mul-
ticolor Ramsey numbers of bipartite graphs. The k-color Ramsey number
r(Hy,...,Hy) is the least positive integer N such that for every k-coloring of
the edges of the complete graph K, there is a monochromatic copy of H; in
color ¢ for some 1<i<k. Taking e=1/k in Theorem 1.1 and considering the
majority color in a k-coloring of the edges of a complete graph shows that
for bipartite graphs Hy,..., H; each with n vertices and maximum degree
at most A, r(Hy, ..., H}) <32Ak%n.

One family of bipartite graphs that have received particular attention are
the d-cubes. The d-cube Qg is the d-regular graph with 2% vertices whose
vertex set is {0,1}¢ and two vertices are adjacent if they differ in exactly one
coordinate. Burr and Erdés conjectured that (@) is linear in the number
of vertices of the d-cube. Beck [6] proved that r(Qg) < 2°". The bound of
Graham et al. [26] gives the improvement 7(Qq) < 8(16d)?. Shi [46], using

ideas of Kostochka and Rodl [34], proved that r(Qg) < 2(3+2\/5)d+0(d), which is

a polynomial bound in the number of vertices with exponent 3"'2\/5 ~2.618.
A very special case of Corollary 1.2, when H = @)y, gives immediately the
following improved result.

Corollary 1.3. For every positive integer d, r(Qg) < d22?+5.

A graph is d-degenerate if every subgraph of it has a vertex of degree
at most d. Notice that graphs with maximum degree d are d-degenerate.
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This notion nicely captures the concept of sparse graphs as every t-vertex
subgraph of a d-degenerate graph has at most td edges. (Indeed, remove
from the subgraph a vertex of minimum degree, and repeat this process
in the remaining subgraph.) Burr and Erddés [8] conjectured that, for each
positive integer d, there is a constant ¢(d) such that r(H) <c(d)n for every d-
degenerate graph H on n vertices. This well-known and difficult conjecture
is a substantial generalization of the above mentioned results on Ramsey
numbers of bounded degree graphs and progress on this problem was made
only recently.

Kostochka and Rodl [35] were the first to prove a polynomial upper bound
on the Ramsey numbers of d-degenerate graphs. They showed that r(H) <
cqn? for every d-degenerate graph H with n vertices. A nearly linear bound
of the form 7(H) < ¢qn'*€ for any fixed € > 0 was obtained in [37]. For
bipartite H, Kostochka and Rodl proved that r(H) < dt°@ An, where
A is the maximum degree of H. Kostochka and Sudakov [37] proved that
r(H)< 90008 % 1)y for every d-degenerate bipartite graph H with n vertices
and constant d. Here we improve on both of these results.

Theorem 1.4. If d/n<§ <1, H is a d-degenerate bipartite graph with n
vertices and maximum degree A>1, GG is a graph with N vertices and at
least e(g/) edges, and N >212¢=(1/0+3)d=2 A0y then H is a subgraph of G.

For § and H as in the above theorem, taking e=1/2 and considering the
majority color in a 2-coloring of the edges of Ky shows that

T(H) < 25*1d+3d+14A5n.

This new upper bound on Ramsey numbers for bipartite graphs is quite
versatile. Taking §=1, we have r(H) <214 An, for bipartite d-degenerate
graphs with n vertices and maximum degree A. This improves upon the

bound of Kostochka and Rodl. If A>29, then taking § = (logA)l/z’ we have

T(H) < 22\/d log A+3d+14n

for bipartite d-degenerate graphs H with n vertices and maximum degree A.
In particular, we have r(H) < 20(0g"* 1)y for constant d. This improves on
the bound of Kostochka and Sudakov, and is another step closer to the
Burr-Erdés conjecture.

Moreover, as long as A is at most exponential in d, we still have
r(H)< 20(dpn. This has interesting applications to another notion of sparse-
ness introduced by Chen and Schelp [10]. A graph is p-arrangeable if there is

an ordering vy, ...,v, of the vertices such that for any vertex v;, its neighbors
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to the right of v; have together at most p neighbors to the left of v; (includ-
ing v;). This is an intermediate notion of sparseness not as strict as bounded
degree though not as general as bounded degeneracy. Extending the result
of [11], Chen and Schelp proved that there is a constant ¢(p) such that ev-
ery p-arrangeable graph H on n vertices has Ramsey number at most ¢(p)n.
This gives linear Ramsey numbers for planar graphs and more generally for
graphs that can be drawn on a bounded genus surfaces. The best known
bound [26] for p-arrangeable bipartite H is r(H) < 2°1°8Ppn where ¢ is a
constant. The proof of Theorem 1.4 can be modified to give r(H ) <2%n for
every p-arrangeable bipartite graph H, which is an essentially best possible
bound. Note that for every vertex v; in a p-arrangeable graph, there is a sub-
set S; C{vi,...,vi—1} of size at most p—1 such that for any vertex v;,j >
adjacent to v;, its neighbors in {vy,...,v;_1} form a subset of S;. Therefore,
there are at most 2P~! distinct such subsets of neighbors. This important
observation essentially allows us to treat p-arrangeable bipartite graphs as
if they were p-degenerate graphs with maximum degree at most 2°~!, which
in turn gives the above bound on Ramsey numbers.

In spite of the above mentioned progress, the Burr-Erdés conjecture is
still open even for the special case of d-degenerate bipartite graphs in which
every vertex in one part has degree at most d > 3. Using our approach,
one can make some progress on this special case, which is discussed in the
concluding remarks.

It seems plausible that r(H) < 2¢4p holds in general for every graph H
with n vertices and maximum degree A. The following result shows that
this is at least true for graphs of bounded chromatic number.

Theorem 1.5. If H has n vertices, chromatic number ¢, and maximum
degree A, then r(H)<2%4%n,

1.2. Subgraph Multiplicity

Recall that Ramsey’s theorem states that every 2-edge-coloring of a suffi-
ciently large complete graph Ky contains at least one monochromatic copy
of a given graph H. Let cy y denote the fraction of copies of H in Ky that
must be monochromatic in any 2-edge-coloring. By an averaging argument,
cy,N is a bounded, monotone increasing function in N, and therefore has
a limit ¢y as N — oco. The constant cy is known as the Ramsey multi-
plicity constant for the graph H. It is simple to show for H with m edges
that ¢z <2'~™, where this bound comes from considering a random 2-edge-
coloring of K with each coloring equally likely.
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Erdés and in a more general form Burr and Rosta suggested that the
Ramsey multiplicity constant is achieved by a random coloring. These con-
jectures are false as was demonstrated by Thomason [52] even for H being
any complete graph K, with n>4. Moreover, as shown in [21], there are H
with m edges and ¢y <m~"™/2t°(™) which demonstrates that the random
coloring is far from being optimal for some graphs.

For bipartite graphs the situation seems to be very different. The edge
density of a graph is the fraction of pairs of vertices that are edges. The
conjectures of Simonovits [48] and Sidorenko [47] suggest that for any bi-
partite H the number of its copies in any graph G on N vertices and edge
density € (e> N —v(H )) is asymptotically at least the same as in the N-vertex
random graph with edge density €. So far it is known only in very special
cases, i.e., for complete bipartite graphs, trees, even cycles (see [47]), and
recently for cubes [30]. Our Theorem 1.1 can be strengthened as follows to
give additional evidence for the validity of this conjecture.

Theorem 1.6. Let H be a bipartite graph with n vertices and maximum
degree d>1. If e>0 and G is a graph with N >32de~%n vertices and at least
e(g) edges, then G contains at least (27d)~"/2¢ N labeled copies of H.

Notice that this theorem roughly says that a large graph with edge den-
sity e contains at least an €% fraction of all possible copies of H. If H is
d-regular, i.e., has dn/2 edges, then the random graph with edge density e
contains an €¥/2 fraction of all possible copies of H. This shows that for
regular H the exponent of € in the above theorem is only by a factor of 2
away from the conjectured bound. Moreover, the same is true with a differ-
ent factor for every d-degenerate bipartite graph H with maximum degree
at most exponential in d. This follows from an extension of our result on
d-degenerate bipartite graphs which is discussed in Section 3. A similar ex-
tension for graphs with bounded chromatic number is discussed in Section 4.

1.3. Subdivided subgraphs in dense graphs

A topological copy of a graph H is any graph formed by replacing edges of
H by internally vertex disjoint paths. This is an important notion in graph
theory, e.g., the celebrated theorem of Kuratowski uses it to characterize
planar graphs. In the special case in which each of the paths replacing edges
of H has length ¢+ 1, we obtain a t-subdivision of H. An old conjecture
of Mader and Erdés-Hajnal which was proved in [7,33] says that there is
a constant ¢ such that every graph with n vertices and at least cp®n edges
contains a topological copy of K.
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Erdés [17] asked whether every graph on n vertices with c;n? edges con-
tains a l-subdivision of a complete graph K,, with m > coy/n for some
constant ¢y depending on c;. Note that the above mentioned result implies
that any such graph on n vertices will contain a topological copy of a com-
plete graph on 2(y/n) vertices, but not necessarily a 1l-subdivision. The
existence of such a subdivision was proved in [3], giving a positive answer
to the question of Erdés. Note that clique of order O(y/n) has O(n) edges.
So it is natural to ask whether the conjecture of Erdos can be generalized to
show that under the same conditions as above one can find a 1-subdivision
of every graph with O(n) edges, not just of a clique.

A result closely related to this question was obtained by Alon et al. in [2]
(see also [32]). They proved, using Szemeredi’s regularity lemma, that any
graph with n vertices and at least ¢;n? edges contains a topological copy
of every graph with at most con edges (co depends on c;). Moreover, their
proof shows that the topological copy of H can be taken to be a 3-subdivision
of H.

Motivated by the conjecture of Burr and Erdés that graphs with bounded
degeneracy have linear Ramsey numbers, Alon [1] proved that any graph on
n vertices in which no two vertices of degree at least three are adjacent
has Ramsey number at most 12n. In particular, the Ramsey number of a
1-subdivision of an arbitrary graph without isolated vertices with n edges is
linear in n.

The following density-type theorem improves on these previous results
concerning subdivided graphs, and gives a positive answer to the general-
ization of the Erdds conjecture mentioned above.

Theorem 1.7. Let H be a graph with n edges and no isolated vertices and
let G be a graph with N vertices and eN? edges such that N > 100e >n.
Then G contains the 1-subdivision of H.

1.4. Forbidden induced subgraphs

A graph is H-free if it does not contain H as an induced subgraph. A basic
property of large random graphs is that they almost surely contain any fixed
graph H as an induced subgraph. Therefore, there is a general belief that H-
free graphs are highly structured. For example, Erd6s and Hajnal [18] proved
that every H-free graph on N vertices contains a clique or independent set
of size at least 2°V18N where ¢>0 only depends on H. This is in striking
contrast with the general case where one can not guarantee a clique or
independent set of size larger than logarithmic in N. Erdés and Hajnal
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further conjectured that this bound can be improved to N€¢. This famous
conjecture has only been solved for some particular H (see, e.g., [4] and [12]).

An interesting partial result for the general case was obtained by Erdés,
Hajnal, and Pach [19]. They show that every H-free graph G with N ver-
tices or its complement G contains a complete bipartite graph with parts of
size N“) We obtain a strengthening of this result which brings it closer
to the Erdés—Hajnal conjecture.

Theorem 1.8. For every graph H, there is ¢>0 such that any H-free graph
on N vertices contains a complete bipartite graph with parts of size N¢ or
an independent set of size N€.

To get a better understanding of the properties of H-free graphs, one
can naturally ask for an asymmetric version of the Erdés—Hajnal result. The
proof in [18] first shows that every H-free graph G on N vertices contains
a perfect induced subgraph of order 2¢V10gN Tt then uses a well known fact
that every perfect graph on n vertices contains a clique or an independent
set of order y/n. Therefore, it is not clear how to adjust this proof to improve
the bound of 2°V1°eN in the case when we know that the maximum clique or
independent set in G is rather small. The general framework we develop in
this paper can be used to obtain such a generalization of the Erdés—Hajnal
result.

Theorem 1.9. There exists ¢ = c¢(H) > 0 such that for any H-free graph
G on N vertices and ny,ne satisfying (logn)(logns) <clog N, G contains a
clique of size ny or an independent set of size ns.

1.5. Edge intersection patterns in topological graphs

The origins of graph theory are closely connected with topology and geom-
etry. Indeed, the first monograph on graph theory, by Konig in 1935, was
entitled Combinatorial Topology of Systems of Segments. In recent years,
geometric graph theory, which studies intersection patterns of geometric ob-
jects and graph drawings, has rapidly developed.

A topological graph is a graph drawn in the plane with vertices as points
and edges as curves connecting endpoints and passing through no other ver-
tices. A topological graph is simple if any two edges have at most one point in
common. A very special case of simple topological graphs is geometric graphs
in which edges are straight-line segments. There are many well known open
problems about graph drawings and in particular edge intersection patterns
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of topological graphs. Even some innocent looking questions in this area can
be quite difficult.

For example, more than 40 years ago Conway asked what is the maximum
size of a thrackle, that is, a simple topological graph in which every two
edges intersect. He conjectured that every n-vertex thrackle has at most n
edges. Lovdsz, Pach, and Szegedy [40] were the first to prove a linear upper
bound on the number of edges in a thrackle, and despite some improvement
in [9], the conjecture is still open. On the other hand, Pach and Téth [43]
constructed drawings of the complete graph in the plane with each pair of
edges having at least one and at most two points in common. Hence, to
ensure a pair of disjoint edges, the assumption that the topological graph is
simple is necessary.

For dense simple topological graphs, one might expect to obtain a much
stronger conclusion than that of Conway’s conjecture, showing that these
graphs contain large patterns of pairwise disjoint edges. Our next theorem
proves that this is indeed true, extending an earlier result of Pach and Soly-
mosi [42] for geometric graphs.

Theorem 1.10. For each ~v>0 there is >0 and ng such that every simple
topological graph G = (V, E) with n >ngq vertices and m >~n? edges contains
two disjoint edge subsets Ey,Fy each of cardinality at least én® such that
every edge in F is disjoint from every edge in Es.

This result has a natural interpretation in the context of Ramsey theory
for intersection graphs. The intersection graph of a collection of curves in
the plane has a vertex for each curve and two of its vertices are adjacent if
their corresponding curves intersect. It is easy to show that the 1-subdivision
of K35 is not an intersection graph of curves in the plane and thus the edge
intersection graph of a topological graph has a fixed forbidden induced sub-
graph. Therefore, the properties of intersection graphs are closely related to
the Erdos—Hajnal conjecture mentioned in the previous subsection, and one
might expect to find in these graphs two large vertex subsets with no edges
between them. Nevertheless, Theorem 1.10 is still quite surprising because
it shows that the edge intersection graph of any dense simple topological
graph contains two linear-sized subsets with no edges between them.

Another interesting Ramsey-type problem is to estimate the maximum
number of pairwise disjoint edges in any complete simple topological graph.
Pach and Téth [43] proved that every simple topological graph of order
n without £ pairwise disjoint edges has O(n(logn)4k_8) edges. They use
this to show that every complete simple topological graph of order n has
2(logn/loglogn) pairwise disjoint edges. Using Theorem 1.10, we give a
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modest improvement on this bound (the truth here is probably n¢). Our
result is valid for dense (not only complete) simple topological graphs as
well.

Corollary 1.11. There is € >0 such that every complete simple topological
graph of order n contains Q((log n)He) pairwise disjoint edges.

The proof of the above two results rely on a new theorem concerning the
edge distribution of H-free graphs. It extends earlier results of [45] and [23]
which show that H-free graphs contain large induced subgraphs that are very
sparse or dense. However, these results are not sufficient for our purposes. We
prove that H-free graphs satisfying a seemingly weak edge density condition
contain a very dense linear-sized induced subgraph.

1.6. Induced Ramsey numbers

In the early 1970’s an important generalization of Ramsey’s theorem, the
Induced Ramsey Theorem, was discovered independently by Deuber; Erdos,
Hajnal, and Pésa; and Rodl. We write
G2 (Hy,..., Hy)

if, for every k-coloring of the edges of G with colors 1,...,k, there is an
index ¢ and an induced copy of H; in G that is monochromatic of color .
The Induced Ramsey Theorem states that for all graphs Hy,..., Hg, there
is a graph G such that G nd, (Hyq,...,Hy), and the induced Ramsey number
Tind(H1, ..., Hy) is the minimum number of vertices in such G. If all H;=H,
then we denote rinq(Hq,...,Hi)=rinqa(H;k).

Early proofs of the Induced Ramsey Theorem give weak bounds on these
numbers. For two colors, the more recent results [23,31] significantly im-
prove these estimates. However, it seems that the approaches in those pa-
pers do not generalize to give good results for many colors. There is a
simple way of giving an upper bound on the multicolor induced Ramsey
Tind(H1,...,Hy) in terms of induced Ramsey numbers with fewer colors. No-

tice that if Gy % (Hy,...,Hy), Go 2% (Hyis, ..., Hy), and G 2% (G1,Go),
then G 29, (Hy,...,Hy). (To see this, just group together the first ¢ colors
and the last k — ¢ colors.) For fixed H, this gives that ri,q(H;k) grows at

most like a tower of 2s of height roughly log k. The following result improves
considerably on this tower bound.

Theorem 1.12. For every graph H there is a constant ¢(H) such that
Find(H; k) < kCUDE for every integer k> 2.
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For H on n vertices, the proof shows that ¢(H) can be taken to be 500n3.
It is worth mentioning that as a function of k£ (up to the constant ¢(H)),
the upper bound in Theorem 1.12 is similar to the best known estimate for
ordinary Ramsey numbers. On the other hand, it is known and easy to show
that in general these numbers grow at least exponentially in k. The proof
of the above theorem combines ideas used to establish bounds on Ramsey
numbers of graphs with bounded chromatic number together with some
properties of pseudo-random graphs.

Organization of the paper. In the next section we present our key ideas
and techniques and illustrate them on a simple example, the proof of The-
orem 1.6. More involved applications of these techniques which require ad-
ditional ideas are given in Sections 3-5. There we prove results on bipartite
degenerate graphs, graphs with bounded chromatic number, and subdivided
graphs, respectively. In Section 6, we prove a useful embedding lemma for
induced subgraphs which we apply in Section 7 together with our basic tech-
niques to obtain two results on the Erdés-Hajnal conjecture. In Section 8,
we apply this lemma again to show that H-free graphs satisfying a rather
weak edge density condition contain a very dense linear-sized induced sub-
graph. We then use this fact about H-free graphs in Section 9 to prove two
results on disjoint edge patterns in simple topological graphs. In Section 10,
we prove Theorem 1.12 which gives an upper bound on multicolor induced
Ramsey numbers. The last section of this paper contains some concluding
remarks together with a few conjectures and open problems. Throughout
the paper, we systematically omit floor and ceiling signs whenever they are
not crucial for the sake of clarity of presentation. We also do not make any
serious attempt to optimize absolute constants in our statements and proofs.

2. Dependent random choice and graph embeddings

The purpose of this section is to illustrate on the simplest example, the
proof of Theorem 1.6, the key ideas and techniques that we will use. The
first tool is a simple yet surprisingly powerful lemma whose proof uses a
probabilistic argument known as dependent random choice. Early versions
of this technique were developed in the papers [25,34,49]. Later, variants
were discovered and applied to various Ramsey and density-type problems
(see, e.g., [37,3,50,36]).

This lemma demonstrates that every dense graph contains a large set
of vertices A with the useful property that almost all small subsets of A
have many common neighbors. The earlier applications of dependent ran-
dom choice for Ramsey-type problems (e.g., [34,49,37,3,36]) required that



DENSITY THEOREMS AND RELATED RAMSEY-TYPE RESULTS 165

all small subsets of A have large common neighborhood. This stronger as-
sumption, which is possible to obtain using dependent random choice, allows
one to use a simple greedy procedure to embed sparse graphs. However, the
price of achieving this stronger property is rather high, since the resulting set
A has a sublinear number of vertices in the order of the graph. Consequently,
one cannot use this to prove a linear upper bound on Ramsey numbers. Our
main contribution here shows how to circumvent this difficulty. The second
tool, Lemma 2.2, is an embedding result for hypergraphs. It can be used
to embed sparse bipartite graphs without requiring all subsets of A to have
large common neighborhood.

For a vertex v in a graph G, let N(v) denote the set of neighbors of v
in G. Given a subset U C G, the common neighborhood N(U) of U is the
set of all vertices of G that are adjacent to U, i.e., to every vertex in U.
Sometimes, we write N (U) to stress that the underlying graph is G when
this is not entirely clear from the context. By a d-set, we mean a set of
cardinality d. The following lemma demonstrates that every dense bipartite
graph contains a large set of vertices A such that almost every d-set in A
has many common neighbors.

Lemma 2.1. If ¢ > 0 and G = (V1,Vo;E) is a bipartite graph with
|Vi|=|Va|=N and at least eN? edges, then for all positive integers a,d,t,,
there is a subset A C Vy with |A| > 219N such that for all but at most
26_’5“(]9\”[)’5(']’3‘)(1(];) d-sets S in A, we have [N(S)|>=.

Proof. Let T be a subset of ¢t random vertices of V7, chosen uniformly with

repetitions. Set A= N(T), and let X denote the cardinality of A C V5. By

linearity of expectation and by convexity of f(z)=2?,

BIX = 3 (rN]<Vv>|>f: NS s (EUGV%N@W .

vEVs veVa

Let Y denote the random variable counting the number of d-sets in A
with fewer than z common neighbors. For a given d-set S, the probability

that S is a subset of A is ('NZ(VS”)t. Therefore, we have

s () ()’

By convexity, E[X?] >E[X]?®. Thus, using linearity of expectation, we obtain

o E[X]°  E[x]°
IE[X _2IE[Y]Y_ 5 } > 0.
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Therefore, there is a choice of T for which this expression is nonnegative.

Then 1 1
Xa> ]EXa> taNa
> EIX"2 e

Y < 2X°E[Y]E[X]® < 2¢ 1@ (;)t (’;')a @7)

This implies |A|=X >9-1aet N completing the proof.

and

A hypergraph F = (V,E) consists of a vertex set V' and an edge set E,
which is a collection of subsets of V. It is down-closed if e; Ceg and es € E
implies e; € E. The following lemma shows how to embed a sparse hyper-
graph in a very dense hypergraph.

Lemma 2.2. Let ‘H be an n-vertex hypergraph with maximum degree d
such that each edge of H has size at most h. If F=(V, E) is a down-closed
hypergraph with N > 4n vertices and more than (1 — (4d)_h)(1}\[) edges of
cardinality h, then there are at least (N/2)" labeled copies of H in F.

Proof. Call a subset S CV of size |S| <h good if S is contained in more
than (1 — (4d)|5‘_h) (hi\(S\) edges of F of cardinality h. For a good set S
with |S| <h and a vertex j € V'\ S, call j bad with respect to S if SU{j}
is not good. Let Bg denote the set of vertices j € V'\ S that are bad with
respect to S. The key observation is that if S is good with |S| < h, then
|Bs| < N/(4d). Indeed, suppose |Bg|> N/(4d), then the number of h-sets

containing S that are not edges of G is at least

|Bs| _ N B N
U h(h 18] - 1) > () h(h - |S|>’

which contradicts the fact that S is good.

Fix a labeling {v1,...,v,} of the vertices of H. Since the maximum degree
of H is d, for every vertex v; there are at most d subsets S C L;={v1,...,v;}
containing v; such that S=eNL; for some edge e of H. We use induction on
7 to find many embeddings f of H in F such that for each edge e of H, the
set f(eNL;) is good.

By our definition, the empty set is good. Assume at step ¢, for all edges
the sets f(eNL;) are good. There are at most d subsets S of L;y; that are
of the form S =eN L;11 where e is an edge of H containing v;+1. By the
induction hypothesis, for each such subset S, the set f(S\{v;t+1}) is good
and therefore there are at most i\é bad vertices in F with respect to it. In

total this gives at most d i\(; = N/4 vertices. The remaining at least 3N/4—i
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vertices in F\ f(L;) are good with respect to all the above sets f(S\{vi+1})
and we can pick any of them to be f(v;41). Notice that this construction
guarantees that f(eN L;;1) is good for every edge e in H. In the end of
the process we obtain a mapping f such that f(eNL,)= f(e) is good for
every e in H. In particular, f(e) is contained in at least one edge of F of
cardinality h and therefore f(e) itself is an edge of F since F is down-closed.
This shows that f is indeed an embedding of H in F. Since at step ¢ we
have at least 3N/4 —i choices for vertex v;41 and since N >4n, we get at
least H?;OI(iN—i) > (N/2)™ labeled copies of H.

Using these two lemmas we can now complete the proof of Theorem 1.6,
which implies also Theorem 1.1 and Corollaries 1.2, 1.3. For a graph G
and a subset A, we let G[A] denote the subgraph of G induced by A. If
G = (V,E) is a graph with N vertices and e(g ) edges, then, by averaging
over all partitions V=V, UV, with |Vi|=|V2|=N/2, we can find a partition
with at least e(IN/2)? edges between V; and Va. Hence, Theorem 1.6 follows
from the following statement.

Theorem 2.3. Let H be a bipartite graph with parts Uy and Us, n vertices
and maximum degree at most d>2. If e >0 and G=(V;,Vs; E) is a bipartite
graph with |Vi|=|V,|= N >16de~%n and at least eN? edges, then G contains
at least (32d)~"/2¢9"N™ labeled copies of H.

Proof. Assume without loss of generality that |Us| > |U;|. Let H be the
hypergraph with vertex set Uy such that a subset D C Uy is an edge of H
if and only if there is a vertex w € U; with Ny (u)=D. This H has |Us|<n
vertices, maximum degree at most d and edges of size at most d.

Let x = gZN, so in particular, = >2n > 4|U;|. We show that G contains
many copies of H so that the vertices of U; are embedded in V; for i € {1,2}.
Call a d-set S C V3 nice if [Ng(S)|>x. Let F be the down-closed hypergraph
with vertex set Vo whose edges are all subsets of V5 which are contained in a
nice d-set. An important observation is that each copy of H in F can be used
to embed many distinct copies of H in GG as follows. Suppose that f:Us — V5
is an embedding of H in F. For every copy of H use f to embed vertices
in Uy. Embed vertices in U; one by one. Suppose that the current vertex to
embed is u€ Uy and let D be the set of neighbors of v in Us. Then D is an
edge of H and therefore f(D) is contained in a nice set and has at least x
common neighbors in G. Since only at most |U;| of them can be occupied
by other vertices of the copy of H which we are embedding, we still have at
least  — |U;| > ia: available vertices to embed w. Since this holds for every
vertex in Uy, altogether we get at least (?@)'U1| distinct embeddings of H
for each copy of ‘H in F.
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Next we will find a large induced subhypergraph of F which is sufficiently
dense to apply Lemma 2.2. By Lemma 2.1 with a=t=d, V5 contains a subset
A of size |A| >271/4ed N >271/2¢4N such that the number of d-sets S C A
satisfying |Ng(S)| <z is at most

a (AN /N IN/8d\? (AN (N
2€7d2(x) 4] _ g (€'N/8 4]
N N d N N d
AN (N
_ o(3a) |
s (v) (a)
Al
ady-2 (41,
<y (%))
Here we use that |A|? < 2d_1d!(“3|) which follows from d > 2 and |A| >
27 Vded N > 8d.
Applying Lemma 2.2 with h=d, to the subhypergraph F[A] induced by
the set A, we obtain at least ("3')‘%‘ labeled copies of H. By the above
discussion each such copy of H can be extended to (Zx)‘Ul‘ labeled copies

of H. Therefore, using that |Uy| < |Us|, |Uy| + |Us| =n, |A| >271/2¢?N and
r= gZN , we conclude that G contains at least

|Uz] U1l —|U1]
<’1§|> <zx> > <332> (273/2)_|U2‘ dfn/2€ann > (32d)fn/26ann

labeled copies of H, completing the proof.

3. Degenerate bipartite graphs

The main result of this section is the following theorem which implies The-
orem 1.4.

Theorem 3.1. Let H be a d-degenerate bipartite graph with n vertices
and maximum degree A. Let G=(V1,Va; E) be a bipartite graph with |V1|=
|Va| = N vertices and at least eN? edges. Suppose d>2,d/n<§<1 and let

g =291+ (14 A5 N If 4 > 4n, then G contains at least (x/4)"
labeled copies of H.

To obtain from this statement Theorem 1.4, recall that every graph with

N vertices and 6(];) edges has a partition V =V, UV, with |[Vi| = |[Va] =

N/2 such that the number of edges between V; and V3 is at least e(IN/2)2.
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Moreover, our result shows that if H is a bipartite d-degenerate graph of
order n and maximum degree at most exponential in d, then every large
graph G with edge density € contains at least a fraction ¢©(4") of all possible
copies of H. This is best possible up to the constant factor in the exponent
and shows that Sidorenko’s conjecture discussed in Section 1.2 is not very
far from being true.

Proof of Theorem 3.1. Let t=(1+6!)d and u=t+d. By Lemma 2.1
with parameters a=1,u,t,z, Vi contains a subset A" with |A’|> ;etN such
that the number Y of u-sets T C A’ with |[N(T)| <z is at most

e G () ()= G ()

Let S be a random subset of A’ of size ¢ and let As = N(S). Denote by
Q@ the random variable counting the number of u-sets T'C A’ containing S
such that |[N(T)| < x. Note that the number of u-sets T with |N(T)| <z is
at most Y and each of them contains the random subset S with probability
(?)/("?l‘) Thus, using that t —d = 6 'd, u =t +d, 15: < e < 2%u/2 and
|A'| > 22 >wu, we have

- @ve @ Y () =2 () ()

t t _

UL N U T\ t—d
< < ot+l —(t+1)t d
—2<§et+1N2> <u> SR (N) .

U d
_ ot+1 % 5-9d/5 y—d¥ 1 —d(*
2 U!Z A ud<2(2A) g

It is important to observe that () also gives an upper bound on the number
of d-sets T" in A’\ S which have less than x common neighbors in As.
Indeed, we can correspond to every such 7”7 a set T=T"US. Since N(T)=
N(S)NN(T")=AsNN(T"), T has less than & common neighbors. Therefore
the number of sets 7" is bounded by the number of sets T'. Let A; = A’\ S.
Then, using that t =d -+ 1d < 2n < 2/2, we have that |A;| = |4'|—|S| >
20—t>x.

Let Z denote the random variable counting the number of subsets of As
with cardinality d with less than x common neighbors in A;. Note that such
a set has at most t+x <2z common neighbors in A’. For a given d-set R C V5,

the probability that R is a subset of As is (|N(Rt)mA’|) ("3/‘)_1 < ('N(‘IZ),TA/‘ )t.
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Therefore, using that t=d -+ 'd, we have

N\ (22\" N4/ 2z \! 2 a\t—d gzl
ElZ :22t —t
| ]<<d><w> < a <§etN> (N

d
_ 52-9d/5 t A—d T _ 1o a7
2 €A Jl <2(2A) <d>

Since ) and Z are nonnegative discrete random variables, by Markov’s in-
equality, P[Q>2E[Q]] <1/2 and P[Z >2E[Z]| <1/2. Thus there is a choice
of set S such that

Q < 2E[Q] < (2A)‘d<2>

and

d

Since @ < (%) and |A;| >z, there is a d-set in A; that has at least x
common neighbors in Ay and so |Az| > z. Therefore, for each i € {1,2},
|A;| > = and all but less than (24)7 (%) subsets of A; of size d have at
least & common neighbors in As_ ;. By Lemma 3.2 applied to the induced
subgraph of G by A; U As, we have that G contains at least (x/4)" labeled
copies of H.

Z <92E[Z] < (24)7¢ <x>

Lemma 3.2. Let H=(U;,Usy; F) be a d-degenerate bipartite graph with n
vertices and maximum degree A. Let G = (A1, As; E) be a bipartite graph
such that for i € {1,2}, |A;| > x> 4n and the number of d-sets U C A; with
N(U) <z is less than (2A)~%(%). Then G contains at least (x/4)" labeled
copies of H.

Proof. A d-set SC A; is good if [N (S)| >z, otherwise it is bad. Also, a subset
U C A; with |U| <d is good if it is contained in less than (2A)IVI=¢ (del)
bad subsets of A; of size d. A vertex v € A; is bad with respect to a subset
UCA; with |U|<d if U is good but UU{v} is not. Note that, for any good
subset U C A; with |U|<d, there are at most ,’, vertices that are bad with
respect to U. Indeed, if not, then there would be more than

x/(24) _ x _ x
d- o PO d(d— U| - 1) 2 24" d(d— rU|>

subsets of A; of size d containing U that are bad, which would contradict U
being good.

Since H is d-degenerate, then there is an ordering {vi,...,v,} of the
vertices of H such that each vertex v; has at most d neighbors v; with j <.
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Let N~ (v;) be all the neighbors v; of v; with j <i. Let L, ={v1,...,v}. We
will use induction on A to find at least (z/4)"™ embeddings f of H in G such
that f(U;) C A; for i € {1,2} and for every vertex v; and every h € [n], the
set f(N~(vj)NLy) is good.

By our definition, the empty set is good for each ¢ € {1,2}. We will
embed the vertices in the increasing order of their indices. Suppose we are
embedding vy,. Then, by the induction hypothesis, for each vertex v;, the
set f(N~(vj)NLp_1) is good. Since the set f(N~(vy)NLp—1)=f(N"(vp))
is good, it has at least  common neighbors. Also, vy, has degree at most A,
so there are at most A sets f(N~(vj)NLp_1) where v; is a neighbor of vy,
and j > h. These sets are good, so there are at most A, = /2 vertices
which are bad for at least one of them. This implies that there are at least
x—x/2—(h—1)>xz/4 vertices in the common neighborhood of f(N~(uvy))
which are not occupied yet and are good for all the above sets f(N~(v;)N
Lj_1). Any of these vertices can be chosen as f(vp). Altogether, we get at
least (z/4)™ labeled copies of H.

This proof can be modified to obtain the bound r(H) < 2%n for p-
arrangeable bipartite H, where ¢ is some absolute constant. Note that the
maximum degree A of H is only used in the last paragraph to bound the
number of sets f(N~(vj)NLp—1) where v; is a neighbor of v, and j > h.
As we already discussed in detail in the introduction if a graph H is p-
arrangeable then there is an ordering of its vertices for which the number of
distinct sets N~ (v;)NLp—1 where v; is a neighbor of vy, and j > h is bounded
by 2P~ for every h. Therefore, we can use for p-arrangeable bipartite graphs
the same proof as for p-degenerate bipartite graphs with maximum degree
at most 2P~!. We easily obtain the following slight variant of Lemma 3.2 for
the proof.

Lemma 3.3. Let H = (U;,Uy; F) be a p-arrangeable bipartite graph with
n vertices. Let G= (A1, As; E) be a bipartite graph such that for i € {1,2},
|A;| > x > 4n and the number of p-sets U C A; with Ng(U) < x is less
than 277" (i) Then G contains at least (x/4)" labeled copies of H.

The remaining details of the proof are essentially identical and therefore
omitted.
4. Graphs with bounded chromatic number

The following result implies Theorem 1.5 since every graph with chromatic
number ¢ and maximum degree d satisfies ¢ <d+1 and hence (2d+2)(2¢—3)+
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2 <4dq. Moreover, Theorem 4.1 shows that every 2-edge-coloring of Ky with
N >2%4p contains at least 2749" N labeled monochromatic copies of any
n-vertex graph H with chromatic number ¢ and maximum degree d. This
implies that the Ramsey multiplicity for graphs with fixed chromatic number
and whose average degree is at least a constant fraction of the maximum
degree is not very far from the bound given by a random coloring.

Theorem 4.1. If H is a graph with n vertices, chromatic number ¢, and
maximum degree d > 2, then for every 2-edge-coloring of Ky with N >
22d+2)(2a=3)+2p,  there are at least (27 24+2(24=9=2N)" Jabeled monochro-
matic copies of H.

Proof. Consider a 2-edge-coloring of Ky with colors 0 and 1. For j€{0,1},
let G; denote the graph of color j. Let A; be the vertex set of Ky and
z=2"2H2)23) N g0 2 > 4n. We will pick subsets A; D Ay DD Ay
such that for each i <2g—3, we have |A;;1|>|A4;]/2?¢T2 and there is a color
c(i) €{0,1} such that there are less than (2d)~¢(%) d-sets U C A;41 which
have less than = common neighbors in the induced subgraph G ;)[4;].

Given A;, we can pick c(i) and A;1; as follows. Arbitrarily partition A;
into two subsets A;; and A; 9 of equal size. Let ¢(i) denote the densest of
the two colors between A;; and A;». By Lemma 2.1 with e=1/2, a =1,
and t = 2d, there is a subset A; 11 C A; 2 C A; with |A; 1| > 2_2d_1|Ai’2] =
2724=2| A;| such that for all but at most

9. 22d X 2d |Az+1| |Ai’2’ < 22d+1 T 2d ’A1|/2
| Ay |A; 2] d )~ | Ay d
d _d
d+1 [ T x (T
< (3) a<e0 ()

d-sets U C Ajy1, U has at least  common neighbors in G;)[A;]. Here, the
last inequality uses the fact that |A4;| > 2~ (~Dd+2) N > 9-(2a-4)(2d+2) y —
22d+2l‘.

Given the subsets A; D --- D Ay,_o with the desired properties and the
colors ¢(1),...,c(2q — 3), notice that |Ag, | > 27 (2d+2)(24=3) N = 2. By the
pigeonhole principle, one of the two colors is represented at least ¢—1 times
in the sequence ¢(1),...,c(2g —3). Without loss of generality suppose that
0 is this popular color. Let Vi = Ay, and for 1 <k < g, let V41 = Aj 41,
where j is the k™" smallest positive integer such that ¢(j) =0. By applying
Lemma 4.2 below to the graph G and subsets V1,...,V,, we can find at least
(z/4)™ labeled monochromatic copies of H, which completes the proof.
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Lemma 4.2. Suppose G is a graph with vertex set Vi, and let V1 D---DVj,
be a family of nested subsets of Vi such that |V;|>x>4n, and for 1<i<gq,
all but less than (2d)~%(%) d-sets U C Vi1 satisfy |[N(U)NV;|>x. Then, for
every g-partite graph H with n vertices and maximum degree at most d,
there are at least (x/4)" labeled copies of H in G.

Proof. A d-set SC V41 is good with respect to i if |N(S)NV;| >z, otherwise
it is bad with respect to i. Also, a subset U C V11 with |U|<d is good with
respect to i if there are less than (2d)IVI=¢ (d—ﬁU\) subsets of V;y; of size d
that contain U and are bad with respect to ¢. For a good subset U C V; 11
with respect to ¢ with |U| <d, call a vertex v € Vi41 bad with respect to U
and i if UU{v} is bad with respect to i. For any ¢ and subset U C V11 that
is good with respect to i, there are less than ., bad vertices with respect to
U and i. Indeed, if otherwise, then the number of subsets of V; 41 of size d
containing U that are bad is at least

v/(24) o o
a- )" d(d . 1) 2 (24" d(d— |Ur)’

which contradicts the fact that U is good with respect to .

Consider a partition WiU---UW, of the vertices of H into ¢ independent
sets. Order the vertices {v1,...,v,} of H such that the vertices of W; precede
the vertices of W; for i>j. Let L, ={v1,...,v;}. For a vertex vj, let N~ (v;)
denote the set of vertices v;,i < j adjacent to v; and N*(v;) denote the set
of vertices v;,7> j adjacent to vj. By our ordering of the vertices of H and
the fact that each Wy is an independent set, if w € Wy, v € N~ (w), and
vE Wy, then £> k. Similarly, if we Wy, ve€ N (w), and ve Wy, then £ <k.

We use induction on h to find many embeddings f of H in G such that
f(Wy) C Vy, for all k, and the set f(L,N N~ (w)) is good with respect to k
for all h, k, and w € Wj. Since f(W;) C V; and the sets V; are nested, by
the above discussion we also have that f(N~(w)) C Viiq for all w € W.
By our definition, the empty set is good with respect to every k, which
demonstrates the base case h=0 of the induction. We pick the vertices for
the embedding in order of their index. Suppose we are embedding v;, with
vp € Wy. Our induction hypothesis is that we have already embedded Lj_4
with the desired properties, so for each k and w € Wy, the set f(Lp_1N
N~ (w)) C Viy1 is good with respect to k. We need to show how to pick
f(vp) € Vy that is not already occupied such that f(v,) is adjacent to all
vertices in f(N~(vy)) and for each vertex we N (vy,) with weWj, f(vp) is
good with respect to f(N~(w)NLj_1) and j.

Since f(N~(vp) N Lp—1) = f(IN"(vp)) is good with respect to ¢, then
f(N~(vp)) is contained in a d-set that is good with respect to ¢ and so it
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has at least x common neighbors in V;. Let w € N (v;) such that w € W,
then j < /. Since V; C Vj1, then there are less than j, vertices in V; that
are bad with respect to f(N~(w)NLp_1) and j. Since there are at most d
such w, then there are at least x—d ., —(h—1) >z /4 unoccupied vertices in V
satisfying the above properties, which we can choose for f(v,). Altogether,

we get at least (z/4)" copies of H in G.

The constant factor in the exponent in Theorems 4.1 and 1.5 can be
improved for large ¢ by roughly a factor of 2 by picking t~d+logd instead
of t =2d. Also, the above proof can be easily adapted to give the following
upper bound on multicolor Ramsey numbers.

Theorem 4.3. If Hy,...,Hy are k>2 graphs with at most n vertices, chro-
matic number at most q, and maximum degree at most A, then

r(Hy,...,Hg) < k2RAdy,

5. Density theorem for subdivided graphs

Note that the 1-subdivision of a graph I' is a bipartite graph whose first
part contains the vertices of I and whose second part contains the vertices
which were used to subdivide the edges of I'. Furthermore, the vertices in
the second part have degree two. Also, if I" has n edges and no isolated ver-
tices then its 1-subdivision has at most 3n vertices. Therefore, Theorem 1.7
follows from the following theorem.

Theorem 5.1. If H=(U;,Us; F) is a bipartite graph with n vertices such
that every vertex in Uy has degree 2, G is a graph with 2N vertices, 2¢ N?
edges, and N >128¢3n, then H is a subgraph of G.

Proof. By averaging over all partitions V =V,UV; of G with |Vi|=|V2|=N,
we can find a partition with at least eN? edges between V; and Va. Delete
the vertices of V; with less than eN/2 neighbors in V5, and let V{ denote the
set of remaining vertices of V. Note that we deleted at most e N?/2 edges so
between V{ and V5 there are still at least eN?/2 edges. Let G’ be the graph
with parts V/, V5 and all edges between them. Every vertex in V] has degree
at least eN/2 in G’ and |V]|>eN/2.

Let H' be the graph with vertex set U; such that two vertices in Uy
are adjacent in H' if and only if they have a neighbor in common in H.
Since |Us|+|Uy|=n, then the number of edges of H' is at most n. Consider
an auxiliary graph G* with vertex set V] such that two vertices of V] are
adjacent if their common neighborhood in G’ has cardinality at least n.
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Note that given an embedding f:U; — Vi of H' in G*, we can extend it to
an embedding of H in G’ as follows. Use f to embed vertices in U;. Embed
vertices in U, one by one. Suppose that the current vertex to embed is u € Uy
and let D be the set of neighbors of u in Uy, so |D|=2. Then D is an edge
in H" and so f(D) is an edge of G*. Therefore, f(D) has at least n common
neighbors in G’. As the total number of vertices of H embedded so far is
less than n, one of the common neighbors of f(D) is still unoccupied and
can be used to embed u. Thus it is enough to find a copy of H' in G*.

To do this, we construct a family of nested subsets V/ = Ay D A; D
-+ D -+ such that for all i >1, |4;] > £]A; 1| and the maximum degree in
the complement of the induced subgraph G*[A;] is at most (¢/8)|A;|. Set
c; = (¢/8)" and let E; be the set of edges of G*[4;], i.e., E; is the set of
unordered pairs in A; that are not adjacent in G*. Then |E;| <c¢;|A4;]?/2.

Having already picked Aq,...,A; 1 satisfying the above two desired prop-
erties, we show how to pick A;. Let w be a vertex from V5 chosen uniformly
at random. Let A denote the intersection of A; 1 with the neighborhood
of w, and X be the random variable denoting the cardinality of A. Since
every vertex in V] has degree at least eN/2,

[N (v)] _ €
EX]= Y T > i,
vEA; 1

Let Y be the random variable counting the number of pairs in A with
fewer than n common neighbors in V5, i.e., Y counts the number of pairs in A
that are not edges of G*. Notice that the probability that a pair R of vertices

of A;_11isin A is at most ‘Nﬁ’/z('R” . Recall that E;_1 is the set of all pairs R in

A;_1 with [Ngr(R)| <n (these are edges of G*) and |E;_1|<c¢;_1]A;_1]?/2.
Therefore, we have

n c—1

A 2.
N o 1Al

n
ElY E_q] <
Y] < P 1E <

By convexity, E[X?]>E[X]2. Thus, using linearity of expectation, we obtain

E[X]2

2_
I Y

Y —E[X]?/2] > 0.

Therefore, there is a choice of w such that this expression is nonnegative.
Then
21 s € 2
X > 2IEE[X] > 3 | A1
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and X2
_ n
E[XPE{Y] < 4e 261',1 X% < Ci—1

From the first inequality, we have [A| = X > {|A;_1| and the second in-
equality implies that the average degree in the induced subgraph G*[A] is
at most ec;_1]A|/16. If A contains a vertex of degree more than ec;_1|A|/16,
then delete it, and continue this process until the remaining induced sub-
graph of G*[A] has maximum degree at most ec;_1|A|/16. Let A; denote
the vertex set of this remaining induced subgraph. Clearly, the number of
deleted edges is at least (|A|—|A4;|)eci—1]|A|/16. As explained above, the num-
ber of edges of G*[A] is at most ec; 1]|A|?/32, so we arrive at the inequality
|A|—|A;| <[A|/2. Hence, |A;|>|A[|/2> {]A;—1] and the maximum degree in
G*[A;] is at most |¢;1|A| < geim1|Ai| = il As|. Therefore, we have shown
how to find the nested family of subsets with the desired properties.

Label the vertices {v1,...,v)y,|} of H' in decreasing order of their degree.
Since H' has at most n edges, the degree of v; is at most 2n/i. We will find
an embedding f of H' in G* which embeds vertices in the order of their
index 7. The vertex v; will be embedded in A; where j is the least positive
integer such that ¢; <,/ . Since ¢;=(§), then

N , eN
ijyzcij0|zcj62 C e

Y <2

Zgan 2 "

Assume we have already embedded the vertices {vg;k < i} and we want
to embed v;. Let N~ (v;) be the set of vertices v,k < i that are adjacent
to v; in H'. The maximum degree in the induced subgraph G*[A;] is at
most ¢j|Aj| </ |A;|. Since v; has degree at most 2" in H’, at least |A;|—
2. L1Aj| > |Aj|/2 vertices of A; are adjacent in G* to all the vertices
in f(N~(v;)). Since also |A;|/2>1, there is a vertex in A;\ f({v1,...,vi—1})
that is adjacent in G* to all the vertices of f(N~(v;)). Use this vertex to
embed v; and continue. This gives a copy of H' in G*, completing the proof.

6. Embedding induced subgraphs

To prove the results stated in Sections 1.4-1.6, we need the following em-
bedding lemma for induced subgraphs.

Lemma 6.1. Let G and F' be two edge-disjoint graphs on the same vertex
set U and let A1 D --- D A, be vertex subsets of U with |A,| >m > 2n for
some positive integers m and n. Suppose that for every i <n, all but less than
(2n)=2" (m)2 pairs (S1,52) of disjoint subsets of A;y1 with |Si| = |S2] =n

n



DENSITY THEOREMS AND RELATED RAMSEY-TYPE RESULTS 177

have at least m vertices in A; that are adjacent to Sy in G and are adjacent
to Sy in F. Then, for each graph H with n vertices V ={vy,...,v,}, there
is an embedding f:V — U such that for every pair i < j, (f(v;), f(v;)) is
an edge of G if (v;,v;) is an edge of H, and (f(v;), f(vj)) is an edge of F if
(vi,v5) is not an edge of H.

Proof. Call a pair (51,S52) of disjoint subsets of A;11 with |S1|=1]S2|=n
good with respect to i if there are at least m vertices in A; that are adjacent
to S7 in G and adjacent to Ss in F, otherwise it is bad with respect to 1.
Also, call a pair (Uy,Us) of disjoint subsets of A;11 each of cardinality at
most 1 good with respect to i if less than (2n)/V1[+U2[=2n (n—T\nUﬂ) (n_TU2‘) pairs
(S1,952) of disjoint subsets of A; 1 with |S1|=|S2|=n, Uy C Sy, and Uy C S,
are bad with respect to ¢, otherwise it is bad with respect to i. Note that if
(U1,Us) is good with respect to i, then there is a pair (S7,S52) of disjoint
subsets of A;11 with |S1|=]|S2|=n, Uy C S and Uy C Sy that is good with
respect to 7, so

’Ng(Ul) N NF(UQ) N Az’ > |Ng(51) N NF(SQ) N Az’ > m.

For be{1,2} and a pair (Uy,Us) of subsets of A;; that is good with re-
spect to ¢ with |Up| <n, call a vertex w € A; 11 bad with respect to (Uy,Us,b,i)
if b=1 and (U;U{w},Us) is bad with respect to i, or if b=2 and (U, Uy {w})
is bad with respect to i. For b€ {1,2} and a pair (Uy,Us) of subsets of A; 41
that is good with respect to 7, there are less than ' vertices we€ A; 41 that
are bad with respect to (Uy,Us,b,i). Indeed, otherwise the number of pairs
(51,S52) of subsets of A;;1 each of size n with Uy C S7 and Uy C Sy that are
bad with respect to 7 is at least

m/(2n) <2n)|U3b|+Ub+1—2n< m ) < m )
n—|Ub| n—|Ub]—1 n—]Ug,b]

> (9p)|U1+1U2]—2n m m
> (2n) n— o)) \n = (0n])

which contradicts the fact that (Uy,Us) is good with respect to i.

We next show how to find a copy of H in G such that vertex pairs in this
copy corresponding to nonedges of H are edges of F'. We embed the vertices
of H one by one in the increasing order of their index. Let L, ={v1,...,v,}.
For a vertex vj, let N~ (v;) denote the vertices v; adjacent to v; with i< j
and N (v;) denote the vertices v; adjacent to v; with 7> j. We use induction
on h to construct the embedding f of H such that f(v;)€ A,—;41 for all j,
and for every v; and h < j, the pair (f(Ly,NN"(v;)), f(Lr\ N~ (v;))) is good
with respect to n—j+1.
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The induction hypothesis is that we have already embedded Lj,_; and for
every vj, the pair (f(L,—1 NN (v;)), f(Lp—1 \ N~ (v;))) is good with respect
to n—j+1. In the base case h=1, the induction hypothesis holds since our
definition implies that the pair ((),0) is good with respect to j for every j.
Since the sets are nested, we have f(Lj_1) C Ay for any k<n—h+2. We
need to show how to pick f(vy) € V,,_p+1 that is not already occupied and
satisfies

o f(vp) is adjacent to f(N~(vg)) in G and adjacent to f(Lp—1\ N~ (vy))
in F,
e for each vertex v; € Nt (vp,), f(vs) is not bad with respect to

(F(N"(vj) N Lyp—1), f (L1 \ N~ (v5)),L,n = j + 1), and
e for each vertex vj € N (vy,) with j>h, f(vs) is not bad with respect to
(N7 (vj) N L), f (L1 \ N7 (v5)),2,m = j + 1) .

Since (Lp—1Nf(N~(vp)), f(Lh—1\N"(vz))) is good with respect to n—
h + 1, then there are at least m vertices in A,_py1 that are adjacent
to every vertex of f(N~(vn)) = f(Lp—1 NN~ (vy)) in G and are adja-
cent to every vertex of f(Lp—1\ N~ (vs)) in F. For each v; € Nt (uvp),
there are less than [ vertices of A, py1 that are bad with respect to
(f(N~(v;)NLp-1), f(Lh—1\ N~ (vj)),1,n—7j+1). Also, for each v; € N (vy,)
with j > h, there are less than [ vertices of A, 11 that are bad with re-
spect to (f(N~(vj)NLp—1), f(Lh—1\N"(v;)),2,n—j+1). Since the number
of v; with j>h is n—h and the number of already occupied vertices is h—1,
then there are at least

m—(n—h)m

2n—(h—1)>m/2—(n—1)21

unoccupied vertices to choose for f(vy)€ A, _j11 satisfying the above three
desired properties, which, by induction on A, completes the proof.

A graph is n-universal if it contains all graphs on n vertices as induced
subgraphs. For the proofs of Theorems 1.8-1.10 and Corollary 1.11, we need
the special case F'=G of the above lemma, which is stated below.

Corollary 6.2. Let m and n be positive integers and let Ay D--- D A, be
vertex subsets of a graph G with |A,|>m>2n. If for all i <n, all but less
than (2n)~2" (”;)2 pairs (S1,52) of disjoint subsets of A; 1 with |S1|=|S2|=n
have at least m vertices in A; that are adjacent to all vertices in S1 and no
vertices in So, then graph G is n-universal.
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7. Ramsey-type results for H-free graphs

The purpose of this section is to prove Theorems 1.8 and 1.9 which are
related to the Erdés—Hajnal conjecture. We first give an overview of the
proofs before jumping into the details.

Lemma 7.1 below demonstrates that for a (large enough) graph G that is
not too sparse and does not contain a pair of large subsets with edge density
almost 1 between them, there is a large vertex subset A with the property
that almost all pairs (S1,52) of disjoint subsets of A of size n satisfy that
|ING(S1) N Na(S2)] is large. The first step in the proof of Lemma 7.1 uses
Lemma 2.1 to get a large subset A for which almost all vertex subsets Sy
of size n have large common neighborhood. Using the fact that G does not
contain a pair of large subsets with edge density almost 1 between them, we
show that for almost all pairs (S7,S52) of subsets of A of size n, |[Ng(S1)N
N (S2)] is large.

By repeated application of Lemma 7.1 and an application of Corol-
lary 6.2, we arrive at Lemma 7.2, which says that every graph is n-universal,
or contains a large independent set, or has two large subsets with edge den-
sity almost 1 between them. The deductions of Theorems 1.8 and 1.9 from
Lemma 7.2 are relatively straightforward.

Lemma 7.1. Suppose z is a positive integer, (,e >0, and G = (V,E) is a
graph on N vertices and at least (3 (g] ) edges such that for each pair (W1, Ws)
of disjoint subsets of V' each of cardinality at least z, there is a vertex in W
with less than (1—2¢)|Wa| neighbors in Wy. If 2<n <z and m satisfy

2 2n
m<56 N’
- 16n

then there is a subset ACV with |A| > 13" N such that all but less than

(2n)=2" (ZL)2 pairs (S1,S2) of disjoint subsets of A with |S1|=|S2|=n have
at least m vertices of G adjacent to every vertex in Sy and no vertex in Ss.

4n21/2nN171/2n <

Proof. By averaging over all partitions V=V, UV, of G with |Vi|=|Vs|=
N/2, we can find a partition with at least 3(N/2)? edges between V; and V.
By Lemma 2.1 with a =1, t =4n, d =n, and x = ¢ "m, there is a subset
A C V; with cardinality at least é B4 |Vo| = 1 B' N such that for all but at
most

o) R ()

subsets S7 of A of size n, we have |[Ng(S1)|>x.
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If G contains (not necessarily disjoint) subsets Bi, By each of cardinality
at least 2z such that every vertex in Bj is adjacent to at least (1 —¢€)|Bs|
vertices in Ba, then letting W; be any z vertices of By and Wy = By \ Wi,
we have a contradiction with the hypothesis of the lemma. Indeed, |[Ws| >
|B2|/2 > z and every vertex of Wi is adjacent to at least |Ws|—¢€|Bsy| >
(1—2¢)|Wa| vertices in W.

Let Sy be a subset of A of cardinality n with |Ng(S71)| >z. We will show
that almost all subsets Sy of A of cardinality n satisfy |Ng(S1) N Ng(S2)| >
m. The number of vertices u; of A such that

[NG(S1) N Ng(ur)| < €| Na(S1)]

is at most 2z, otherwise each of these at least 2z vertices has at least
(1—¢)|Ng(S1)| neighbors in N¢(Sy), which by the above discussion would
contradict the hypothesis of the lemma. Pick any vertex u; € A such that

[NG(51) N Ng(u1)| = €| Na(51)].
After picking wuq,...,u; such that
[NG(S1) N Ne({ur, ..., ui})| > €[Na(S1)),
again there are at most 2z vertices u;y1 such that
ING(S1) N Neg({ut, . uiy w1 })| < € NG (S1)],

otherwise each of these at least 2z vertices has at least (1 —¢€)|Ng(S1)N
Nea({ug, ..., u;})| neighbors in Ng(S1)NNg({u,...,u;}), which by the
above discussion would contradict the hypothesis of the lemma. Note that
during this process for every index i there are at least |A|—[S1|—(i—1)—2z>
| A|—22—2n choices for u; € A\S; not already chosen. Therefore, given S; with
|IN¢(S1)| > =, we conclude that the number of ordered n-tuples (u1,...,uy,)
of distinct vertices of A\ S with

ING(S1) N Na({ui,...,un})| > "z =m
is at least
(|A] — 2z —2n)" > (JA| — 42)" > |A]" — 4nz]A|”’1.

Hence, the number of (unordered) subsets Sy = {u1,...,u,} of A\S; with
|NG(S1) N Ng(S2)| <m is at most 42n|A|" ! /n!. This implies that the num-
ber of disjoint pairs Si,S2 C A with |Si| = |S2| = n, |[Ng(S1)| > z, and
ING(S1)NNg(S2)| <m is at most ("2‘)-711!4zn]14|"_1. Also, notice that by (1)
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the number of disjoint pairs S, S5 C A with |S7|=|S2|=n and |Ng(S1)| <z
is at most (gﬁ,)%%? . (lﬁ‘).
Therefore, the number of pairs of disjoint subsets 57,5 C A with

|ING(S1)NNg(S2)| <m and |S1|=|S2|=n is at most

22 \*" N™ [|A| A 1 -
(2) <ﬁN> ! <n)+<n)n!4zn|A] L

Using the upper bound on m and |A| < N/2, we have

n n —n 4n n n
2z * N ’A| < 23n € 'm N2 _ 23nﬂ—4n6—4n2 (m>2n m2
BN n'\n /)~ BN n!2 N n!2

2 2n\ 2 o2n 2n
2 13 € m m
< 23”/8 4n6 4dn ( ) -9 5nn 2n

6n ) nt?
(3) < ;<2n)*2n <m>2.

n

Using the lower bound on m and |A| < N/2, we have
AN 1
<| ’) ﬁlzn[AV“1 < n!"24zn| AP < 28720 2 N2
n ) n!

m\ 2n
< 93212 ( )
4n

2n

2
3—4n —2n T 1 —on [T
(4) < n2 (2n) 2 < 5 (2n) <n> :
Combining (2), (3), and (4), we have that there are less than (2n) 2" (ZL)Q
pairs of disjoint subsets S1,S52 C A with |S1| = |[S2| = n and |Ng(S1) N
Ng(S2)| <m, completing the proof.
The next lemma follows from repeated application of Lemma 7.1 and an
application of Corollary 6.2.

Lemma 7.2. Let € >0, H be a graph on n > 3 vertices and G = (V, E)
be an H-free graph with N vertices and no independent set of size t with
N> (4t)8"36_4”2n. Then there is a pair W1, W5 of disjoint subsets of V' such

that |[W|,|Wa| > (4t) 8" €%"* N and every vertex in Wy is adjacent to all but
at most 2e|Ws| vertices of W.

Proof. Since G has no independent set of size t, then by Turdn’s theorem
(see, e.g., [5,14]) every induced subgraph of G with v >t? vertices has at
least 12’)25 edges. Let z=(4t) 8’ ¢4’ N s0 z>n.
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Suppose for contradiction that there are no disjoint subsets Wy, Ws with
|W1]|,|Wa| > z and every vertex in W adjacent to all but at most 2e|WWs|
vertices of Ws. Fix = 21t and

- 5262n(}154n)”_1N
16n ’

and repeatedly apply Lemma 7.1 n—1 times (note that the choice of pa-
rameters allows this). We get a family of nested subsets V=A4;D>---D A,
such that |A,|> (}lﬂ‘l”)n_l N>m>2n and for 1<i<n-—1, all but less than
(2n)~2n (Zb)2 pairs (S1,52) of disjoint subsets of A;11 with |Si|=1[S2| =n
have at least m vertices in A; in the common neighborhood of S7 in G and
the common neighborhood of Sy in G. By Corollary 6.2, G contains H as
an induced subgraph, contradicting the assumption that G is H-free, and
completing the proof.

From Lemma 7.2, we quickly deduce Theorem 1.8, which says that for

every H there is c=c(H) >0 such that any H-free graph of order N contains
a complete bipartite graph with parts of size N¢ or an independent set of
size N€.
Proof of Theorem 1.8. Let H be a graph on n vertices, G be a H-free
graph on N vertices, and t= 110]\7 10n3 . Tf G has no independent set of size t,
then by Lemma 7.2 with e= 41t, G must contain disjoint subsets Wy and W
each of cardinality at least 2t such that every vertex of Wy is adjacent to all
but at most 21t |Ws| vertices in Wy. Picking ¢ vertices in W; and their common
neighborhood in Wa, which has size at least [Wa|—t ., |[Wa|>|Wa|/2>t, shows
that G contains K;; and completes the proof.

We are now ready to prove Theorem 1.9, which says that for every H-
free graph G of order N and ni,ng satisfying lognilogne < ¢(H)log N,
G contains a clique of size n; or an independent set of size no. For a graph G,
the clique number is the order of the largest complete subgraph of G and
the independence number is the order of the largest independent set of G.
Let wy (V) be the minimum clique number over all graphs with N vertices
and independence number less than ¢ that are not n-universal.

Proof of Theorem 1.9. Let t=ns, H be a graph on n vertices, and G be
an H-free graph with N vertices, no independent set of size ny, and clique
number wy,,(N) < nj. Since G is H-free, we may suppose without loss of

generality that ng > ny. By Lemma 7.2 with ¢t =ng and € = 41t’ there are

disjoint subsets Wy and Wy of V, each of size at least (4t) 8" 4’ N >
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(4t)_10"3N , such that every vertex in Wi is adjacent to all but at most
21t|W2] vertices in Wsy. Pick a largest clique X in Wj. The cardinality of
clique X is less than n; < ny =t by assumption. So |X| < ¢ and at least
half of the vertices of Wy are adjacent to X. Pick a largest clique Y in the
vertices of Wy adjacent to X. The clique number of G is at least | X|+|Y].
Hence,

— 3
wen(N) > wipn((Wi]) + wen([Wal/2) > 2w, ((88) 1" N).
Let d be the largest integer such that N > (8t)10n3d’ sod+1> 10%13 {ggé\;‘ We
have w; ,(N) > 2d by repeated application of the inequality above. Hence,
log N 1

logt > 5 log N,
n

log nq logng > logwy ,(IN)logt > dlogt > 20n? log 8t Z 90

completing the proof.

8. Edge distribution of H-free graphs

As we already mentioned in the introduction, there are several results which
show that the edge distribution of H-free graphs is far from being uniform.
One such result, obtained by Rodl, says that for every graph H and € €
(0,1/2), there is a positive constant 0 =d(e, H) such that any H-free graph
on N vertices contains an induced subgraph on at least N vertices with
edge density either at most € or at least 1—e. In [23], we gave an alternative
proof which gives a much better bound on (e, H). Combining our techniques
with the approach of [23], we obtain a generalization of R6dl’s theorem which
shows that a seemingly weak edge density condition is sufficient for an H-free
graph to contain a very dense linear-sized induced subgraph. For § € (0,1]
and a monotone increasing function /3 : (0,1] — (0,1], we call a graph on
N vertices (3,9)-dense if every induced subgraph on oN vertices has edge
density at least (o) for o>0.

Theorem 8.1. For each monotone increasing function 3 : (0,1] — (0,1],
e>0, and graph H, there is 6=06(03,¢e, H) >0 such that every (/3,d)-dense H-
free graph on n vertices contains an induced subgraph on at least én vertices
with edge density at least 1—e.

Notice that Rodl’s theorem is the special case of this statement when
[ is the constant function with value €. An important step in the proof
of Theorem 8.1 is the following lemma which shows how to find two large
vertex subsets with edge density almost 1 between them in a ((3,6)-dense
H-free graph.
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Lemma 8.2. Let 3:(0,1]— (0,1] be a monotone increasing function, e >0,
and H be a graph on n vertices. There is § > 0 such that every H-free
graph G=(V,E) on N vertices that is ((3,0)-dense contains disjoint subsets
V1,Vo C V each of cardinality at least dN such that every vertex in Vi is
adjacent to all but at most 2¢|Va| vertices in V.

Proof. Define the sequence {0;}" ; of real numbers in (0,1] recursively as

follows: 61 =1 and §; = 41154"(51-,1)51-,1. Let 6= (i:j;)%n_l, z=ndN, and

2n
€ 671,
m= Sn N, SO

D eng, o engin(s )5,
4 n Nl_ n — 2 < = nN — " " N
e ’ m/2<m 8n 32n
< /32(5n71)62n : 5n71N
- 16n '

Since G is (3,0)-dense, we have N >¢~! so that z>n and m>2n.

Suppose for contradiction that G does not contain a pair Vi, V5 of disjoint
vertex subsets each of cardinality at least z such that every vertex in Vj is
adjacent to all but at most 2¢|V5| vertices in V5. By repeated application of
Lemma 7.1 n—1 times (note that the choice of parameters allows this), we
find a family of nested subsets V= A4; D .- D A, with all |4;| > §N and
|Ap| >0, N >m>2n which have the following property. For all i <n, all but
less than (2n)~2" (’:)2 pairs (S1,S52) of subsets of A;11 with |S1|=[S2|=n
have at least m vertices in A; adjacent to all vertices in S7 and no vertices
in Sy. By Corollary 6.2, G contains H as an induced subgraph, contradicting
the assumption that G is H-free, and completing the proof.

The final step of the proof of Theorem 8.1 is to show how to go from two
vertex subsets with edge density almost 1 between them as in Lemma 8.2
to one vertex subset with edge density almost 1. To accomplish this, we use
the key lemma in [23]. We first need some definitions. For a graph G=(V, E)
and disjoint subsets Wy,..., W, CV, the density dg(Wi,...,W;) between the
t > 2 vertex subsets W1,...,W; is defined by

Zi<j e(Wi, Wj)
ZK]‘ |WzHWJ’ ’
where e(A, B) is the number of pairs (a,b) € A x B that are edges of G.

dG(Wl,. . 7Wt) ==

Definition 8.3. For «,p,e€[0,1] and positive integer ¢, a graph G=(V, E)
is (a, p,€,t)-dense if, for all subsets U CV with |U|>«a|V|, there are disjoint
subsets W1,...,W, CU with |Wq|=---=|W;|=[p|U|] and dg(W1,...,W;)>
1—e.
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By averaging, if o/ > a, p/ <p, € > t' <t, and G is (a,p,¢€,t)-dense,
then G is also (o/,p,€,t')-dense. The key lemma in [23] (applied to the
complement of the graph) says that if a graph is (5ap,p’ ,e,t)—dense and
(av, p,€/4,2)-dense, then it is also (a, épp’,e,Qt)—dense.

Proof of Theorem 8.1. Fix a graph H on n vertices and a function 3 :
(0,1]—(0,1]. Note that if a graph G of order N is (/3,9)-dense, then, defining
Ba(o) = B(ao) for 0 < a <1, every induced subgraph of G of size at least
aN is (Ba,a 1d)-dense. Therefore, Lemma 8.2 implies that there is § =
d(B,€, H,a) such that every (3,0)-dense H-free graph is (a,0d,€,2)-dense.

We first show by induction on ¢ that for «,e >0 and positive integer t,
there is § >0 such that every (3,d)-dense H-free graph G is (c, 6, €,2")-dense.
We have already established the base case t = 1. In particular, for a,e >0
there is ¢ > 0 such that every (3,0’)-dense H-free graph is («,d,€/4,2)-
dense. Our induction hypothesis is that for o/,e>0 there is §* >0 such that
every (3,0%)-dense H-free graph G is (o, 6*,€,2/"1)-dense. Letting o/ = ; ad’
and § = 360, then by the key lemma in [23] mentioned above, we have
that every (3,6)-dense H-free graph is (a,d,e,2!)-dense, which completes
the induction.

If we use the last statement with ¢t = logi and a=1, then we get that
there are disjoint subsets Wy,...,W; CV with t="1, [Wi|=-- =W =6|V|,
and dg(W1,...,W;) > 1 —e. Since (|I/I2/1\) < ;(t“g/l‘), then even if there are
no edges in each W;, the edge density in the set Wi U---UW, is at least
1 —2¢. Therefore, (using €/2 instead of €¢) we have completed the proof of
Theorem 8.1.

We use Theorem 8.1 in the next section to establish the results on disjoint
edges in simple topological graphs. For the proof of Theorem 1.11, we need
to know the dependence of § on (8 in Theorem 8.1. Fix ¢ >0 and H, and let
B(o)=~0. A careful analysis of the proof of Lemma 8.2 demonstrates that
there is a constant ¢ = ¢/(e, H) such that in Lemma 8.2 we may take § =
2(5¢). Similarly, the above proof shows that there is a constant ¢=c(e, H)
such that in Theorem 8.1 we may take 0 =2(~¢).

Rodl’s theorem was extended by Nikiforov [41], who showed that if a
graph has only few induced copies of H, then it can be partitioned into a
constant number of sets each of which is either very sparse or very dense. We
would like to remark that our proof can be easily modified to give a similar
extension of Theorem 8.1, which shows that a (3,d)-dense graph with few
induced copies of H has a partition into a constant number of very dense
subsets.
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9. Edge intersection patterns in simple topological graphs

We next provide details of the proofs of Theorem 1.10 and Corollary 1.11
on disjoint edge patterns in simple topological graphs. We first need to
establish an analogue of the well-known Crossing Lemma which states that
every simple topological graph with n vertices and m > 4n edges contains
at least 621;2 pairs of crossing edges. Using the proof of this lemma (see,
e.g., [5]) together with the linear upper bound on the number of edges in a
thrackle, it is straightforward to obtain a similar result for disjoint edges in
simple topological graphs. For the sake of completeness, we sketch the proof
here.

Lemma 9.1. Every simple topological graph G = (V, E) with n vertices and
m>2n edges has at least 1?7:2 pairs of disjoint edges.

Sketch of Proof. Let ¢ be the number of disjoint edges in GG. The result
in [9] that every n-vertex simple topological graph without a pair of disjoint
edges has at most g(n—l) edges implies that every n-vertex simple topolog-
ical graph with m edges has at least m — g(n— 1)>m— gn pairs of disjoint
edges. Let G’ be the random induced subgraph of G' obtained by picking
each vertex with probability p=2n/m <1. The expected number of vertices
of G is pn, the expected number of edges of G’ is p?n, and the expected
number of pairs of disjoint edges in the given embedding of G’ is p*t. Hence,
2

m—gp_gn: m° which is the desired

pit>p?m— gpn, or equivalently, t >p~ 16m2

result.

Another ingredient in the proof of Theorem 1.10 is a separator theorem
for curves proved in [22]. A separator for a graph I' = (V,E) is a subset
Vo CV such that there is a partition V =VpuV UV, with |Vi[,|Va| < g]V! and
no vertex in Vi is adjacent to any vertex in V5. Using the well-known Lipton—
Tarjan separator theorem for planar graphs, Fox and Pach [22] proved that
the intersection graph of any collection of curves in the plane with k crossings
has a separator of size at most C'v/k, where C' is an absolute constant. Recall
that Theorem 1.10 says that for each v >0 there is 6 >0 and ng such that
every simple topological graph G = (V, E) with n>ng vertices and m >~yn?
edges contains two disjoint edge subsets F1, Fs each of cardinality at least
én? such that every edge in F; is disjoint from every edge in Fj.

Proof of Theorem 1.10. Define an auxiliary graph I" with a vertex for
each edge of the simple topological graph G in which a pair of vertices of
I' are adjacent if and only if their corresponding edges in G are disjoint.
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Lemma 9.1 tells us that every induced subgraph of I" with om > oyn?>2n
(om)?

vertices has at least "/, 5 edges and therefore has edge density at least
n

(om)®  [(om om _ o
> > .
16n2 / —8n? T 8

In other words, I is (f3,0)-dense with 3(c) =" and ¢ = fn. Let H be the
15-vertex graph which is the complement of the 1-subdivision of Kj5. As
mentioned in Section 1.5, the intersection graph of curves in the plane does
not contain the 1-subdivision of K5 as an induced subgraph and therefore
the graph I' is H-free. Hence, Theorem 8.1 implies that for each € >0 there
is & >0 and an induced subgraph I of I" with order at least §'m > §"yn?
and edge density at least 1—e. We use this fact with e= 36102’ where C' is the
constant in the separator theorem for curves. Since I has edge density at
least 1—e and each pair of edges in the simple topological graph cross at most
once, then the number k£ of crossings between edges of G corresponding to
vertices of I" is less than ¢[I"[*= , 1., |I"|*. Applying the separator theorem
for curves, we get a partition of the vertex set of I'" into subsets Vg, V7, Vs

with [Vp] < C\/%lCz]F’P < |I'"|/6 and |V4],|Va| <2|I7|/3, and no edges in
I'" between V] and V,. In particular, both V; and V5 have cardinality at
least |I|/6. Therefore, letting § = 15’7, we have two edge subsets Ep, Ea

of G (which correspond to V;,Vs in I') each with cardinality at least dn?
such that every edge in E; is disjoint from every edge in Fs.

As we already mentioned in the discussion right after the proof of Theo-
rem 8.1, the value of & which was used in the above proof of Theorem 1.10
satisfies 0’ >~¢ for some constant ¢. Since § = é5’7 > 17‘3 +1 we have the
following quantitative version of Theorem 1.10. There is a constant ¢ such
that every simple topological graph G = (V, E) with n vertices and at least
yn? edges With ~v>2/n has two disjoint edge subsets E1, Es C E each of size
at least v“n? such that every edge in F; is disjoint from every edge in Fs.

We next prove a strengthening of Corollary 1.11. It says that any simple
topological graph on n vertices and at least yn? edges contains +'(logn)!*®
disjoint edges where 7/ > 0 only depends on v and a > 0 is an absolute
constant.

Proof of Corollary 1.11. Let d be the largest positive integer such that
’yCd > n~Y2 where ¢ is the constant in the quantitative version of Theo-
rem 1.10 stated above. By repeated application of this quantitative version,
we get disjoint subsets E7, ..., Fya each of size at least fycan >n3/2 such that

no edge in Ej; intersects an edge in Ej; for all 7 # j. By definition of d, we
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have v**" <n~1/2, which implies that 2¢ > (20112?11/7) 1/loge =1 (logn)? where
~v1 >0 only depends on v and b=1/logc >0 is an absolute constant. Now
we need to use the result of Pach and Téth [43] mentioned in Section 1.5,

which says that every simple topological graph of order n without k pair-

wise disjoint edges has O (n(log n)4k—8) edges. By choosing k' = SICI)Zgl(?gn’ we
conclude that every simple topological graph with at least n®/2 edges (in

particular, each of the sets E;) contains at least k' pairwise disjoint edges.

Therefore, altogether G' contains 71 (logn)? - Slé(;gl:gn >+'(logn)!*e

pairwise
disjoint edges, where v > 0 only depends on v and a > 0 is any absolute

constant less than b.

10. Monochromatic Induced Copies

The goal of this section is to prove the upper bound on multicolor induced
Ramsey numbers in Theorem 1.12. To accomplish this, we demonstrate that
the graph I'" which gives the bound in this theorem can be taken to be any
pseudo-random graph of appropriate order and edge density. Recall that the
random graph G(n,p) is the probability space of labeled graphs on n vertices,
where every edge appears independently with probability p. An important
property of G(n,p) is that, with high probability, between any two large
subsets of vertices A and B, the edge density d(A, B) is approximately p,
where d(A, B) is the fraction of ordered pairs (a,b) € A x B that are edges.
This observation is one of the motivations for the following useful definition.
A graph I'=(V, E) is (p,\)-pseudo-random if the following inequality holds
for all (not necessarily disjoint) subsets A,BCV:

pl < A
VIA|IB

The survey by Krivelevich and Sudakov [39] contains many examples of
(p, A)-pseudo-random graphs on n vertices with A =O(/pn). One example
is the random graph G(n,p) which with high probability is (p,\)-pseudo-
random with A= O(,/pn) for p <.99. The Paley graph Py is another example
of a pseudo-random graph. For N a prime power, Py has vertex set Fx and
distinct elements x,y €Fy are adjacent if x —y is a square. It is well known
(see, e.g., [39]) that the Paley graph Py is (1/2,v/N)-pseudo-random. We
deduce Theorem 1.12 from the following theorem.

|d(A, B) —

Theorem 10.1. If n,k>2 and I is (p,\)-pseudo-random with N vertices,
0<p<1/2, and A\ < (k:/p)_loonskN, then every graph on n vertices has a
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monochromatic induced copy in every k-edge-coloring of I'. Moreover, all of
these monochromatic induced copies can be found in the same color.

By letting I" be a sufficiently large, pseudo-random graph with p=1/2,
Theorem 1.12 follows from Theorem 10.1. For example, with high proba-
bility, the graph I" can be taken to be the random graph G(N,1/2) with
N = [500m%k, Alternatively, for an explicit construction, we can take I" to be
a Paley graph Py with N > ;500K prime.

The following lemma is the main tool in the proof of Theorem 10.1. In the
setting of Lemma 10.2, we have a graph G that is a subgraph of a pseudo-
random graph I'. We use Lemma 2.1 to show there is a large subset A of
vertices such that |[Ng(S7)] is large for almost all small subsets S; of A. We
use the pseudo-randomness of I" to ensure that for almost all small disjoint
subsets S7 and Sy of A, there are many vertices adjacent to S; in G and
adjacent to Sy in I

Lemma 10.2. Let I' be a (p,\)-pseudo-random graph with p<1/2 and G
be a subgraph with order N and 6(];) edges. Suppose m and n are positive
integers such that
2 1— 2 €2
8n(A/p)2ntt N' " 2nt1 < m < 210Im+4nN.

Then there is a subset ACV with |A|> }164”]\7 such that for all but less than

(2n)=2" (73)2 pairs of disjoint subsets S1,52 C A with |S1| = |S2| =n, there
are at least m vertices adjacent to every vertex of Sy in G and no vertex of
Sy in I'.

Proof. By averaging over all partitions V=V, UV, of G with |Vi|=|Vs|=
N/2, we can find a partition with at least ¢(N/2)? edges between V; and V.
By Lemma 2.1 with a=1, t =4n, d=mn, and x = (1 —3p/2)""m, there is
a subset A C Vi with cardinality at least j€'™|V;| = €N such that the
number of subsets Sy of A of size n with |[Ng(S7)| <z is at most

() (0 )
< et in e (1),

where the last inequality follows from the simple inequality 1—3p/2>275P

for p<1/2. This implies, using the upper bound on m, that the number of
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disjoint pairs S1,S2 of subsets of A with |S7|=|S2|=n and |[Ng(S1)| <z is
at most

2n
—4n620pn2+4n an (N N —4n620pn2+4n 2n M
240P N . < 24P N
€ (m/N) (n) (n) <e (m/N) 2

2 2n  on

—4n620pn3+4n € m
<e 72 10pn+4 2
210pn+dp n!

—4n, —2n an 1 —on (T 2
(5) <27%'n a2 < 2(2n) (n) :
Let S7 be a subset of A of cardinality n with |Ng(S1)| > 2= (1-3p/2) "m.
We will show that almost all subsets So of A\ Sy of cardinality n satisfy
ING(S1) N Np(S2)| > m. To do this, we give a lower bound on the num-
ber of ordered n-tuples (uq,...,u,) of distinct vertices of A\ S; such that
for each i, |[Ng(S1) N Np({uq,...,u;})| > (1 —3p/2)!|Ng(S1)|- Suppose we
have already picked uy,...,u;—1 satisfying |Ng(S1) " Np({ui,...,ui—1})| >
(1—3p/2)""1|Ng(S1)| > m. Let X; denote the set of vertices u; in A with
ING(S1)NNp({ug,...,u;})| < (1-3p/2)!|Ng(S1)|. Then the edge density be-
tween X; and Ng(S1)NNp({u1,...,u;—1}) in I" is more than 3p/2. Since I’
is (p, \)-pseudo-random, we have

A

p/2 < < A .
VIXil - INa(S1) N Np({ur, .. ui )] — /| Xim

Therefore, | X;| < 4(\/p)?>m~!. Hence, during this process for every index i
there are at least

4(\/p)?
A1 1811 = G- 1)— P s A am () > 4] -8 ( )
choices for u; € A\ (S1 U {uq,...,ui—1} U X;). Therefore, given S; with
|ING(S1)| > =, we conclude that the number of ordered n-tuples (uq,...,u,)
of distinct vertices of A\S; with
INa(S1) N Np({ur, .. un})| = (1 = 3p/2)"[Na(S1)] = m
is at least
(1Al = 8n(A/p)*m~")" > |A|" = 8n?(\/p)*m~ | A",

This together with the lower bound on m implies that the number of pairs
51,52 of disjoint (unordered) subsets of A with |Ng(S1)|>2 and |[Ng(S1)N
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Np(S2)|<m is at most

< ) : 8n N/p)Pm YA < 8nPm a2 (0 /p)? N2 L
< 8n?m~1in!7? (m )2n+1
- 8n

(6) = 2_4”n(2n)_2"m2n < Yany 2 <m>2

nl? 2( n

Combining (5) and (6), all but less than (2n)~2" (ZL)2 pairs Sp,S52 of
disjoint subsets of A with |Si| = |S2| = n satisfy |Ng(S1) N Npz(S2)| > m,
which completes the proof.

We are now ready to prove our main result in this section.

Proof of Theorem 10.1. Consider a k-edge-coloring of the (p, \)-pseudo-
random graph I" with colors 1,...,k. Let By denote the set of Vertices of I'.
For j € {1,...,k}, let G; denote the graph of color j. Let e= ) and m =
620n2kN.

We will pick nested subsets By D --- D Bj(,—2)42 such that, for each
i<k(n—2)+1, we have |B;;1| > 64”|B ] and there is a color ¢(i) € {1,...,k}

such that all but less than (2n)~2" (n) pairs of disjoint subsets Sy, Sy C Bi+1
each of size n have at least m vertices in B; adjacent to Sy in G.;) and
adjacent to So in I'. Once we have found such a family of nested subsets, the
proof is easy. By the pigeonhole principle, one of the k colors is represented
at least n —1 times in the sequence ¢(1),...,c(k(n —2)+1). We suppose
without loss of generality that 1 is this popular color. Let (1) =1 and for
1<j<n—1,let i(j) be the 5" smallest integer i > 1 such that ¢(i—1)=1.
Letting A; = By(;), we have, by Lemma 6.1 with G as G and I as F, that
there is an induced copy of every graph on n vertices that is monochromatic
of color 1. So, for the rest of the proof, we only need to show that there are
nested subsets By D -+ D By(,—2)42 and colors ¢(1),...,c(k(n—2)+1) with
the desired properties.

We now show how to pick ¢(i) and Bt having already picked B;. Let
c(i) denote the densest of the k colors in I'[B;]. By pseudo-randomness of I,
it is straightforward to check that the density of I" in B; is at least p/2, so
the edge density of color ¢(i) in G[B;] is at least J, =e. Indeed, if not, then
the density between B; and itself in I' deviates from p by at least p/ 2 and
80, by pseudo-randomness of I,

2 1 An ’ p 4n?k 20n2k
> | > > >
sl (4] vz (5)" N e,
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contradicting the upper bound on A. Since mzeQO”QkN, k>2, p<1/2, and
e= 4. <1/8, we have

2
8n(A/p) 21 |Bi| ' "2t < 8n((k/p) 100 kN /p) 2t N1 an
< 8n(k/p) "k N

€2 1, nk €2
n .
STS H5o0n (46 ) N < 210pn+4n‘B"'

Hence, we may apply Lemma 10.2 to the graph G, ;)[B;], which is a subgraph
of the (p,\)-pseudo-random graph I', and get a subset B;;1 of B; with the
desired properties. This completes the proof of the induction step and the
proof of theorem.

11. Concluding Remarks

e We conjecture that there is an absolute constant ¢ such that r(H) <2¢?n
for every H with n vertices and maximum degree A and our results
confirm it for graphs of bounded chromatic number. This question is
closely related to another old problem on Ramsey numbers. More than
thirty years ago, Erdds conjectured that r(H) <20Vm for every graph H
with m edges and no isolated vertices. The best known bound for this
question is r(H) < 2¢Vmlogm (see [3]) and the solution of our conjecture
might lead to further progress on the problem of Erdés as well.

e The bound r(H) < 2**12 Ap for bipartite d-degenerate n-vertex graphs
with maximum degree A shows that logr(H) < 4d + 2logn + 12. On
the other hand, the standard probabilistic argument gives the lower
bound r(H) > max(2d(H)/2,n), where the degeneracy number d(H) is
the smallest d such that H is d-degenerate. It therefore follows that
logr(H)=0 (d(H)+logn) for every bipartite graph H (this can be also
deduced with slightly weaker constants from the result in [3]). In partic-
ular, since d(H) can be quickly computed by simply deleting the vertex
with minimum degree and repeating this until the graph is empty, we
can efficiently compute logr(H) up to a constant factor for every bipar-
tite graph H. It is plausible that logr(H) = ©(d(H ) +logn) for every
d-degenerate n-vertex graph H. If so, then this would imply the above
mentioned conjecture of Erdés that r(H) < 2V for every graph H
with m edges and no isolated vertices since every such graph satisfies
d(H)=0(y/m).

e The exciting conjecture of Burr and Erdds, which was the driving force
behind most of the research done on Ramsey numbers for sparse graphs, is



DENSITY THEOREMS AND RELATED RAMSEY-TYPE RESULTS 193

still open. Moreover, we even do not know how to deal with the interesting
special case of bipartite graphs in which all vertices in one part have
bounded degree. However, the techniques in this paper can be used to
make modest progress and solve this special case when the bipartite graph
H is bi-regular, i.e., every vertex in one part has degree A; and every
vertex in the other part has degree As. The proof of the following theorem
is a minor variation of the proof of Theorem 1.1 and therefore is omitted.

Theorem 11.1. Let H = (V1,V2) be a bipartite graph without isolated
vertices such that, for i € {1,2}, the number of vertices in V; is n; and
the maximum degree of a vertex in V; is A;. Then r(H) < 2¢41 Agny for
some absolute constant c.

Note that this theorem implies that if H also satisfies Agng = 20(A1)p,
then r(H)=29A1n, where n is the number of vertices of H. In partic-
ular, this bound is valid for graphs whose average degree in each part is
at least a constant fraction of the maximum degree in that part.
Also, it is possible to extend ideas used in the proofs of Theorems 1.4
and 1.5 to show that for every 0 < 6 < 1 the Ramsey number of any
d-degenerate graph H with n vertices and maximum degree A satisfies
r(H)< 2¢/0 A9, where ¢ is a constant depending only on d. By taking 6=
(logn)~1/? we have that r(H) < 2¢(d)Vlogny for every d-degenerate graph
of order n. This result which improves the result in [37] will appear in [24].
e One should be able to extend the bound in Theorem 1.10 to work for
all possible sizes of simple topological graphs. Moreover, it might be true
that every simple topological graph with m=en? edges with € >2/n con-
tains two sets of size 0n? of pairwise disjoint edges with 6 =ce? for some
absolute constant ¢>0. This would give both Theorem 1.10 and, taking
e=2/n, a linear bound on the size of thrackles. For comparison, our proof
of Theorem 1.10 demonstrates that § can be taken to be a polynomial in e.
It would be also interesting to extend Conway’s conjecture by showing
that for every fixed k, the number of edges in a simple topological graph
with n vertices and no k pairwise disjoint edges is still linear in n. This
is open even for k=3, though (see Section 1.5) an almost linear upper
bound was given in [43]. For geometric graphs, such a linear bound was
a longstanding conjecture of Erdés and Perles and was settled in the
affirmative by Pach and To6rdcsik.

Acknowledgment. We’d like to thank Steve Butler for carefully reading
this manuscript. We would also like to thank the referees for helpful com-
ments.
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Note added in proof. After this paper was written we learned that
D. Conlon proved the following variant of Corollary 1.2, independently and
simultaneously with our work. He showed that r(H) <2(2+°(1)4y, for bipar-
tite m-vertex graph H with maximum degree A.
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