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Abstract

For a hypergraphH and a setS, the traceof H onS is the set of all intersections of edges ofH
with S. We will consider forbidden trace problems, in which we want to find the largest hypergraph
H that does not contain some list of forbidden configurations as traces, possibly with some restriction
on the number of vertices or the size of the edges inH. In this paper we will focus on combinations
of three forbidden configurations: thek-singleton[k](1), thek-co-singleton[k](k−1) and thek-chain
Ck={∅, {1}, [1,2], . . . , [1, k−1]}, where we write[k](�) for the set of all�-subsets of[k]={1, . . . , k}.
Our main topic is hypergraphs with nok-singleton ork-co-singleton trace. We obtain an exact result
in the casek=3, both for uniform and non-uniform hypergraphs, and classify the extremal examples.
In the general case, we show that the number of edges in the largestr-uniform hypergraph with no
k-singleton ork-co-singleton trace is of orderrk−2. By contrast, Frankl and Pach showed that the
number of edges in the largestr-uniform hypergraph with nok-singleton trace is of orderrk−1. We
also give a very short proof of the recent result of Balogh and Bollobás that there is a finite bound on the
number of sets in any hypergraph without ak-singleton,k-co-singleton ork-chain trace, independently
of the number of vertices or the size of the edges.
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1. Introduction

Many problems in combinatorics ask for the largest structure satisfying some local con-
dition. Frequently, the local condition is that we have some list of forbidden configurations
{Fi : i ∈ I } and the problem is to find the largest set system that does not contain any
forbidden configuration. Perhaps the most famous is the Turán problem, which, in full gen-
erality, asks for the largestr-uniform hypergraphH onnvertices that does not contain some
fixed r-uniform hypergraphF as a subhypergraph.

A natural variation on these problems arises when we modify the notion of containment
to allow restrictions, in the following sense. For a hypergraphH and a subset of its vertex
setS ⊂ V (H), thetraceof H onS is the hypergraphH|S = {E ∩ S : E ∈ E(H)}. Given
a fixed hypergraphF , we say thatH hasF as a trace if there is a setS ⊂ V (H) so that
H|S has a subhypergraph isomorphic toF . Thus we arise at the forbidden trace problem of
finding the largest hypergraphH which does not haveF as a trace. For a survey of these
problems and their applications see[6].

There is a variety of notation used for these problems, so we offer the following attempt
at standardisation. Given a list of forbidden traces{F1, . . . ,Fm} we writeTr(F1, . . . ,Fm)

for the maximum number of edges in a hypergraphH which does not have anyFi as a
trace. For some forbidden traces this will be infinite, and in those cases we impose other
restrictions onH, such as fixing the vertex set or the sizes of the edges. Our notation
reflects this by including the number of vertices in the brackets and the uniformity as a
superscript. For the restriction that|V (H)| = n we use the notationTr(n,F1, . . . ,Fm), for
the restriction thatH is r-uniform we useTr(r)(F1, . . . ,Fm) and for both restrictions we
useTr(r)(n,F1, . . . ,Fm).

One of the earliest results on forbidden traces concerns the case whenF = 2[k] consists
of all subsets of the set[k] = {1, . . . , k}. A result of Sauer [9], Perles and Shelah [10],
Vapnik and Chervonenkis [12] (frequently referred to as the Sauer–Shelah theorem) states
thatTr(n,2[k]) = ∑k−1

i=0

(
n
i

)
. Equality can be achieved, for example, whenH = [n](�k−1)

consists of all subsets of[n] of size at mostk − 1.
A uniform version of this question was considered by Frankl and Pach [5], who showed

in particular that
(
n−1
k−1

)
�Tr(k)(n,2[k])�

(
n

k−1

)
. They conjectured that the lower bound

was tight (which would give a generalisation of the Erd˝os–Ko–Rado theorem) but a coun-
terexample was constructed by Ahlswede and Khachatrian [1]. The main topic of [5] was
the notion of disjointly representable sets, which were introduced by Frankl and Pach as a
strengthening of the classical Hall condition. Here one says that the setsA = {A1, . . . , Ak}
have a system of distinct representatives{x1, . . . , xk} if all thexi ’s are different andxi ∈ Ai

for eachi. If we can also arrange thatxi /∈ Aj if i = j then we call the setsdisjointly
representable. This can be rephrased as saying that no set is contained in the union of the
others. In terms of traces we say thatA has ak-singleton trace, where ak-singleton is
[k](1) = {{1}, {2}, . . . , {k}}.

More generally, one can consider forbidding any[k](�) as a trace, where the�th level
[k](�) consists all subsets of[k] of size�. (We exclude the trivial cases� = 0 andk.) Here
Füredi and Quinn [7] gave an example to show that no improvement on the Sauer–Shelah
bound is possible, i.e.Tr(n, [k](�)) = ∑k−1

i=0

(
n
i

)
for anyfixed�. Moreover, we will give an
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example in the next section of a hypergraphH whereE(H) = �(nk−1) has the same order
of magnitude yetH does not haveanynon-trivial level[k](�) as a trace.

In the uniform setting Frankl and Pach considered the functionTr(r)([k](1)), which they
showed has order of magnituderk−1. More precisely, they obtained an upper bound of(
r+k−1
k−1

)
and a lower bound equal to the maximum number of edges in a(k − 1)-uniform

hypergraph onr + k − 1 vertices not containing a copy of the complete(k − 1)-uniform
hypergraph onkvertices (a hypergraph Turán number). In this paper we consider the general
problem of forbidding a number of levels as traces.

The first obvious point is that one must forbid ak-singleton trace to get a finite bound,
as one can take any number of mutually disjoint sets without having any trace of the form
[k](�) with � > 1. With thek-singleton forbidden, we show that the order of magnitude
depends only on whether thek-co-singleton[k](k−1) is forbidden. The following theorem
shows that if thek-singleton andk-co-singleton are forbidden traces then the number of
edges is at most of orderrk−2, and this is the correct order of magnitude. On the other hand,
if we permit ak-co-singleton trace, then forbidding any other levels as traces does not give
any improvement in the order of magnitude from the Frankl–Pach bound.

Theorem 1.1. (i) Tr(r)([k](1), [k](k−1)) < krk−2, i.e. an r-uniformhypergraphwith at least
krk−2 edges has a k-singleton or k-co-singleton trace.

(ii) Tr(r)([k](1), [k](2), . . . , [k](k−1))�
(
r+k−2
k−2

)
, i.e. there is an r-uniform hypergraph

containing no non-trivial level as a trace, with at least
(
r+k−2
k−2

)
edges.

(iii) Tr(r)([k](1), [k](2), . . . , [k](k−2))��(rk−1), i.e. there is an r-uniform hypergraph
with at least�(rk−1) edges containing no level[k](i) with 1� i�k − 2 as a trace.

Define the hypergraph of complementsC(H) to have edges{V (H)\A : A ∈ H}. Note
thatH has ak-co-singleton trace if and only ifC(H) has ak-singleton trace. It follows that
H has thek-singleton andk-co-singleton forbidden as traces exactly when it is impossible
to disjointly represent any set ofkedges or their complements; hence the title of this paper.

Next, we consider the problem of excluding singletons and co-singletons in more detail.
The smallest non-trivial case isk = 3. Here we are able to obtain exact results and classify
the extremal examples. We will use the notation[x, y] for the set of integersi such that
x� i�y. Define

Ar = {[1, r], [2, r + 1], . . . , [r + 1,2r]},
C4 = {{1,2}, {2,3}, {3,4}, {1,4}},
D1 = {{1,2,5}, {2,3,5}, {3,4,5}, {1,4,5}},
D2 = {{1,3,4}, {1,5,6}, {2,3,4}, {2,5,6}}.

Theorem 1.2. Definef (r) =
{
r + 1 r = 2

4 r = 2
. Then the size of the largest r-uniform hy-

pergraph without a3-singleton or3-co-singleton trace is Tr(r)([3](1), [3](2)) = f (r). Up
to isomorphism, the only extremal examples are as follows. Ar is extremal for any r except
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r = 2,whenC4 is extremal, andA2 is the only example with3 edges. D1 andD2 are also
extremal forr = 3.Furthermore, if we include the restriction that the ground set has n ver-
tices, then we have Tr(r)(n, [3](1), [3](2)) = min{f (r), f (n − r)}. The extremal examples
are obtained from those above, possibly adding some vertices to all sets.

We use this theorem to deduce its non-uniform version, for which we obtain an exact
result and find the extremal example. LetBn be the hypergraph consisting of all intervals
I ⊂ [n] which contain at least one of�n/2� and�n/2� + 1, and also the empty set.

Theorem 1.3. The size of the largest hypergraph on n vertices without a3-singleton or
3-co-singleton trace is Tr(n, [3](1), [3](2)) = �n2/4� + n+ 1.Equality is achieved only by
a hypergraph isomorphic toBn.

We remark that the first part of this theorem also follows from a result that was proved
independently byAlon[2] and Frankl [4]. They showed that ifH is a set system onnvertices
with |H| > �n2/4� + n+ 1, then there is a set systemF on 3 vertices with at least 7 edges
for which H hasF as a trace. Such anF clearly contains a 3-singleton or 3-co-singleton.
The significance of our theorem is that we are able to characterise the extremal structures
(which does not follow from the work of Alon and Frankl). This is rather unusual for a trace
problem. Exact results and characterization of the extremal constructions have always been
of interest in extremal combinatorics, and there have been many recent results in which
characterization of extremal or approximately extremal structures has played an important
role.

We also consider some variations on the above problems. First, we consider the asym-
metric generalisationTr(r)([k](1), [�](�−1)). We focus on the casesk = 3 or � = 3, for
which we can obtain the following bounds.

Theorem 1.4. (i) For ��4, the size of the largest r-uniform hypergraph without a3-
singleton or�-co-singleton trace satisfies

r�

4
− �2

2
+ 2��Tr(r)([3](1), [�](�−1))� r�

4
+

(
3

4
+ 1

�+ 3

)
r + 1.

(ii) For k�4, the size of the largest r-uniform hypergraph without a3-co-singleton or
k-singleton trace satisfies

(k2 − 2k)(r − 1)

4
�Tr(r)([k](1), [3](2))� k(k + 1)r

4
.

Note that both parts of the above theorem are asymptotically tight as� → ∞ or k → ∞,
with r � � or r � k. Next, we give a very short proof of the following recent result of
Balogh and Bollobás[3]. They define thek-chainasCk = {∅, {1}, [1,2], . . . , [1, k − 1]}
and show that there is a finite bound on the number of sets in any hypergraph without a
k-singleton,k-co-singleton ork-chain trace, independently of the number of vertices or the
size of the edges. They give a recursion which provides a doubly exponential bound. We
obtain a similar bound with the following theorem.
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Theorem 1.5. A set system of size at least222k
has at least one of a k-singleton, k-co-

singleton or k-chain as a trace, i.e. Tr([k](1), [k](k−1), Ck)�222k
.

One can ask a number of other natural forbidden trace questions involving chains. The
most interesting seems to be that of determining the maximum size of ar-uniform hyper-
graph with nok-singleton ork-chain trace. Concerning this, we have the following results.

Theorem 1.6. (i) The size of the largest r-uniform hypergraph without a k-singleton or
3-chain trace is Tr(r)([k](1), C3) = max{k − 1, r + 1}, for k�3.

(ii) The size of the largest r-uniform hypergraph without a k-singleton or k-chain trace
(wherer�k − 2) satisfies(

r + k − 2
k − 2

)
�Tr(r)([k](1), Ck)�

(
(k − 1)r
k − 2

)
.

The rest of this paper is organised as follows. Section 2 contains the proofs of our first
three theorems on singleton and co-singleton traces. In Section 3 we study the forementioned
variations, starting with the asymmetric singleton and co-singleton problem, where we prove
Theorem1.4. Then we introduce chains and prove Theorems 1.5 and 1.6. The final section
is devoted to some concluding remarks and open problems.

Notation. For the convenience of the reader we collect here some notation that we use in
this paper. We write[x, y] for the set of integersi such thatx� i�y, wherex, y can be
any reals, but will usually be integers. Note that ify < x then[x, y] = ∅. We also write
[n] = [1, n]. For any setX the ith level ofX is the set of all subsets ofX of size i, which
we denoteX(i). We also write 2X for the set of all subsets ofX andX(� i) = ⋃i

j=0X
(j).

Given two setsA andB we writeA\B for the set of points inA that are not inB, and
A�B for the symmetric difference(A\B)∪ (B\A). For a hypergraphH the hypergraph of
complementsC(H) has edges{V (H)\A : A ∈ H}. For a graphGwe letNG(x) denote the
neighbourhood of a vertexx, i.e. the set of vertices adjacent tox. We writedG(x) = |NG(x)|
for the degree ofx.

2. Singleton and co-singleton traces

We start with an observation from [5]. Suppose thatH = {A1, . . . , Am} is r-uniform
and has nok-singleton trace. SinceH is r-uniformAi\Aj = ∅ for everyi = j . For each

i, let Bi be a minimal subset of
(⋃m

j=1Aj

)
\Ai for which Bi ∩ Aj = ∅ for all j = i.

Note thatBi = Bj for i = j . For eachx ∈ Bi there is someAj for whichAj ∩ Bi = {x},
by minimality. Thus the trace ofH onBi contains all of its singletons, and we must have
|Bi |�k − 1.

Proof of Theorem 1.1. (i) SupposeH = {A1, . . . , Am} is anr-uniform hypergraph with
no k-singleton trace andm�krk−2. We will show that there is ak-co-singleton trace. For
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eachi, letBi be a minimal subset of
(⋃m

j=1Aj

)
\Ai for whichBi ∩ Aj = ∅ for all j = i.

Then|Bi |�k − 1 for all i, as noted above. NowBi ∩ A1 = ∅ for everyi > 1, so there is

somex1 ∈ A1 so that at least� krk−2−1
r

� = krk−3 of theBi containx1. We can iterate this
process as follows. At thet th stage we have pointsx1, . . . , xt and a set of indicesIt of size
at leastkrk−2−t , so that{x1, . . . , xt } ⊂ Bi for all i ∈ It . Now we pick somei ∈ It and note
thatAi intersects allBj with i = j ∈ It yet is disjoint fromBi . Let xt+1 be a point inAi

belonging to as manyBj with j ∈ It as possible, and letIt+1 = {j ∈ It : xt+1 ∈ Bj }. Then
|It+1|�krk−3−t . Also xt+1 /∈ {x1, . . . , xt }, as{x1, . . . , xt } ⊂ Bi , andxt+1 belongs toAi

which is disjoint fromBi .
After stagek − 3 we have points{x1, . . . , xk−2} and an index setIk−2 of size at leastk

such that the setsBj for j ∈ Ik−2 have the formBj = {x1, . . . , xk−2, yj }. (No Bj can be
equal to{x1, . . . , xk−2} by minimality.) LetY = {yj : j ∈ Ik−2}. NowAj is disjoint from
Bj and intersectsBk for eachk ∈ Ik−2\j , soAj ∩Y = Y\yj . Thus we have ak-co-singleton
trace, as required.

(ii) Let H = { ⋃k−2
i=0 [ir , ir + ai − 1] : ai �0,

∑k−2
i=0 ai = r

}
, i.e. each edge ofH is a

union of(k − 1) intervals whose leftmost points are multiples ofr, and whose total length

is r. Then|H| =
(
r+k−2
k−2

)
. Consider any setK ⊂ [0, (k − 1)r − 1] of sizek. Then there is

some 0� i�k−2 for whichK has at least two points in[ir , (i+1)r−1]. Suppose they are
a andb, with a < b. Then any set ofH that containsbmust also containa. Any non-trivial
level ofK separates all pairs of points, so cannot appear as a trace ofH.

(iii) Let X be a set of sizer + k − 1 and letX = X1 ∪ · · · ∪ Xk−1 be a partition
into parts that are as equal in size as possible, i.e.|Xi | = � r+k−2+i

k−1 �. DefineH to be the
r-uniform hypergraph whose edges are the complements of transversals of the partition,
i.e. H = {

X\{x1, . . . , xk−1} : xi ∈ Xi ∀i}. Then |H| = ∏k−1
i=1� r+k−2+i

k−1 � = �(rk−1).
Consider any setK ⊂ X of sizek. There is somei for whichK contains at least two points
of Xi , say they area andb. Then any set ofH contains at least one ofa andb. However,
any levelK(i) with 1� i�k − 2 contains a set not meeting{a, b}, so cannot appear as a
trace ofH. �

We remark that a very similar construction to that in part (ii) of the above proof gives an
example of a non-uniform hypergraph on[n] with �(nk−1) edges and no non-trivial layer
as a trace. We takeH = {⋃k−2

i=0 [in/(k − 1), in/(k − 1) + ai] : 0�ai < n/(k − 1)}. Then
H has(n/(k − 1))k−1 edges and no non-trivial layer as a trace (as explained above).

Next we need the following lemma.

Lemma 2.1. LetH be an r-uniform hypergraph with no k-singleton trace. Choose edges
A1, . . . , Ak−1 to maximise the size of

⋃k−1
i=1 Ai . ThenA ⊂ ⋃k−1

i=1 Ai for every edge A.

Proof. Suppose there is a pointx ∈ A\ ⋃k−1
i=1 Ai . For every 1� i�k−1 we can find a point

xi ∈ Ai\ ⋃
j =i Aj that does not belong toA. Otherwise we would have

⋃k−1
j=1Aj ∪ {x} ⊂⋃

j =i Aj ∪ A, which contradicts the maximum property ofA1, . . . , Ak−1. However, this
gives ak-singleton trace on{x1, . . . , xk−1, x}, which is a contradiction. It follows that⋃k−1

i=1 Ai contains all edges ofH. �
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Now we give the proof of Theorem1.2, which classifies the extremalr-uniform hy-
pergraphs with no 3-singleton or 3-co-singleton as a trace. The general example is the
interval systemAr = {[1, r], [2, r + 1], . . . , [r + 1,2r]}. To see that this contains no
3-singleton or 3-co-singleton as a trace consider any three points{a, b, c} ⊂ [1,2r].
One of the intervals[1, r] and [r + 1,2r] contains at least two of these points. Without
loss of generality supposea, b ∈ [1, r] anda < b. Then any set ofAr that containsa
must also containb, and we are done. Additional examples areC4 for r = 2, andD1 =
{{1,2,5}, {2,3,5}, {3,4,5}, {1,4,5}}andD2 = {{1,3,4}, {1,5,6}, {2,3,4}, {2,5,6}} for
r = 3. The reader can easily check that these do not have a 3-singleton or 3-co-singleton
as a trace.

Proof of Theorem 1.2. Let H be anr-uniform hypergraph with no 3-singleton or 3-co-
singleton as a trace. We argue by induction onr. The caser = 1 is trivial. In the caser = 2,
H is a triangle-free graph of maximum degree 2. Furthermore, ifH contains two disjoint
edgesab, cd then any other edge must meet both of them. It follows that the extremal
example is achieved whenH = C4, and has 4 edges. Note also that the only example with
3 edges is a path of length 3, which is isomorphic toA2.

Now we consider the general case. Suppose first that there is somex which belongs to
every set inH. ThenH′ = {X\x : X ∈ H} is an(r − 1)-uniform hypergraph with no
3-singleton or 3-co-singleton as a trace. Now we have|H| = |H′|�Tr(r−1)([3](1), [3](2))
by induction. This is strictly less thanr + 1 except whenr = 3. Therefore, if|H|�r + 1
thenr = 3, |H| = 4, H′�C4 andH�D1.

Now we can suppose that the sets ofH do not have a common point. ChooseA,B ∈ H
to maximise|A∪B|. Then anyC ∈ H is contained inA∪B by Lemma 2.1. We claim that
A andB are disjoint. For supposex ∈ A ∩ B. Then there is an edgeC of H not containing
x. SinceC ⊂ A ∪ B and|A| = |B| = |C| = r, there area ∈ C ∩ A\B andb ∈ C ∩ B\A.
Then{A,B,C} has a 3-co-singleton trace on{a, b, x}, which is a contradiction.

Let H0 = H\{A}. Suppose that the sets ofH0 do not have a common point. Then we
can repeat the above analysis: if we pickC,D ∈ H0 to maximise|C ∪D| thenCandD are
disjoint. Now we claim thatH = {A,B,C,D}. For suppose thatH contains another setE.
Note thatA ∪ B andC ∪ D are both partitions of the ground set. Now we see thatEmust
intersect bothA ∩ C andB ∩ D or intersect bothA ∩ D andB ∩ C; otherwise it would
be contained in one ofA,B,C,D, which is impossible asH is r-uniform. Without loss of
generalityE intersects the setsA∩C andB ∩D and does not containB ∩C. (If it contains
bothB ∩ C andA ∩ D then it cannot containA ∩ C orB ∩ D, so we can rename the sets
to arrive at the same situation.) Takex ∈ E ∩A ∩C, y ∈ E ∩ B ∩D andz ∈ (B ∩C)\E.
Then{C,B,E} has a 3-co-singleton trace on{x, y, z}, which is a contradiction. We deduce
thatH = {A,B,C,D}. If H is extremal we must haver = 2 or r = 3. Whenr = 2 we
see thatH�C4 and whenr = 3 it is easy to check thatH�D2.

Now we are reduced to the situation when there is somex that belongs to every set in
H0. ThenH′

0 = {X\x : X ∈ H0} is an(r − 1)-uniform hypergraph with no 3-singleton
or 3-co-singleton as a trace. Therefore|H| = |H′

0| + 1�Tr(r−1)([3](1), [3](2)) + 1 by
induction.

Consider the caser�5. If |H|�r + 1 then|H′
0|�r, and then by induction we must

haveH′
0�Ar−1. ThenH0 is isomorphic to a system obtained by addingx to all sets of
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Ar−1. We can choose notation so thatH0 = {[1, r], [2, r + 1], . . . , [r,2r − 1]}. Sincer
belongs to every set inH0 we haver /∈ A. There cannot bei, j ∈ A with 1� i�r − 1 and
r + 1�j�2r − 1, otherwise{A, [1, r], [r,2r − 1]} would have a 3-co-singleton trace on
{i, r, j}, which is a contradiction. By symmetry we can suppose thatA ∩ [r − 1] = ∅. It
follows that there is somey ∈ A\[1,2r − 1]. Note that there cannot ber + 1� i�2r − 1
with i /∈ A, otherwise{[1, r], [r,2r − 1], A} would have a 3-singleton trace on{1, i, y},
which is a contradiction. ThereforeA = {r + 1, . . . ,2r − 1, y}. Renamingy as 2r we see
thatH�Ar , as required.

Next consider the caser = 4. If |H|�5 then |H′
0|�4, and then by induction it is

isomorphic to one ofA3, D1 orD2. If H′
0�A3 then the same argument as in the previous

paragraph shows thatH�A4, and we are done. IfH′
0�D1 then we can choose notation

so thatH0 = {{1,2,5,6}, {2,3,5,6}, {3,4,5,6}, {1,4,5,6}}. Without loss of generality
B = {1,2,5,6}. SinceA andB are disjoint and their union is equal to the ground set
we can writeA = {3,4,7,8}. Now {{1,4,5,6}, {2,3,5,6}, {3,4,7,8}} has a 3-singleton
trace on{1,2,7}, which is a contradiction. IfH′

0�D2 then we can choose notation so that
H0 = {{1,3,4,7}, {1,5,6,7}, {2,3,4,7}, {2,5,6,7}}. Without loss of generalityB =
{1,3,4,7}. SinceA andB are disjoint and their union is equal to the ground set we can
writeA = {2,5,6,8}. Now {{1,5,6,7}, {2,3,4,7}, {2,5,6,8}} has a 3-singleton trace on
{1,3,8}, which is a contradiction.

Finally we consider the caser = 3. If |H|�4 then|H′
0|�3 soH′

0 is eitherA2 orC4, as
noted at the beginning of the proof. IfH′

0�A2 then previous analysis shows thatH�A3.
If H′

0�C4 then we can takeH0 = {{1,2,5}, {2,3,5}, {3,4,5}, {1,4,5}}. Without loss
of generalityB = {1,2,5}. SinceA andB are disjoint and their union is equal to the
ground set we can writeA = {3,4,6}. Now {{1,4,5}, {2,3,5}, {3,4,6}} has a 3-singleton
trace on{1,2,6}, which is a contradiction. This completes the proof of the first part of the
theorem.

Now suppose that we fix the number of verticesn. Whenn�2r we see from the first
part of the theorem that there is no change, i.e.Tr(r)(n, [3](1), [3](2)) = Tr(r)([3](1), [3](2)).
Now suppose thatH is an r-uniform hypergraph onn vertices with no 3-singleton or 3-
co-singleton trace, and thatn < 2r. Now it is no longer possible to have two disjoint
sets, so it follows from the first part of the proof that the sets ofH have a common point
x. ThenH′ = {A\x : A ∈ H} is an (r − 1)-uniform hypergraph on(n − 1) vertices
with no 3-singleton or 3-co-singleton trace. We can repeat this process until the number
of vertices is at least twice the size of the edges. This occurs when we have removed
2r − n vertices, reaching an(n − r)-uniform hypergraphH∗ on 2(n − r) vertices. Now
we have|H∗|�n − r + 1, unlessn − r = 2 when we can have|H∗| = 4. We deduce
thatTr(r)(n, [3](1), [3](2)) = min{f (r), f (n − r)}. The extremal examples are as before,
possibly adding some vertices to all sets.�

Now we can give the proof of Theorem1.3, which states thatTr(n, [3](1), [3](2)) =
�n2/4�+n+1, and the only extremal example isBn = {[a, b] : a��n/2�+1, b��n/2�}.
The argument that this contains no 3-singleton or 3-co-singleton trace is the same as for
Ar . Indeed, if{a, b, c} ⊂ [n] one of[1, �n/2�] and[�n/2� + 1, n] contains at least two
points. We can supposea, b ∈ [1, �n/2�] with a < b. Then any set ofBn that containsa
also containsb, and we are done.
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Proof of Theorem 1.3. Note that the cases 1�n�3 are trivial. SupposeH is a hypergraph
on n�4 vertices with no 3-singleton or 3-co-singleton trace. LetHr be the
edges ofH of sizer. Then by Theorem 1.2 we have|Hr |� min{f (r), f (n − r)}, where

f (r) =
{
r + 1 r = 2

4 r = 2
. It is convenient to consider the hypergraph whose edges are the

complements of the edges ofH, which we denoteC(H) = {[n]\X : X ∈ H}. This also has
no 3-singleton or 3-co-singleton trace. Observe thatC(H)r = C(Hn−r ).

Next we see that|H1| + |H2|�5, with equality only whenH2�A2 and H1�A1.
Otherwise we would have|H1|�1 and|H2| = 4. Then we must haveH2�C4, sayH2 =
{{1,2}, {2,3}, {3,4}, {1,4}}. Consider{i} ∈ H1. If i ∈ [1,4] we can supposei = 1, and
then{{2,3}, {3,4}, {1}} has a 3-singleton trace on{2,4,1}. If i /∈ [1,4] we can suppose
i = 5, and then{{1,2}, {3,4}, {5}} has a 3-singleton trace on{1,3,5}. Either way we get a
contradiction, so|H1| + |H2|�5. Applying the same argument toC(H) gives|C(H1)| +
|C(H2)|�5, i.e.|Hn−1|+|Hn−2|�5.We conclude that|H|� ∑n

r=0 min{r+1, n−r+1} =
�n2/4� + n + 1. (This last equality is easy to see by considering the cases ofn even andn
odd separately.)

Suppose now that|H| = �n2/4� + n + 1. Then|Hr | = min{r + 1, n − r + 1} for
all r. We claim thatHr�Ar for r��n/2� andHr�C(An−r ) for r��n/2� + 1. This
follows from Theorem 1.2 except whenr = 3 or n − r = 3. For r = 3 we need
to show that we cannot haveH3�D1 or H3�D2. First suppose thatH3 = D1 =
{{1,2,5}, {2,3,5}, {3,4,5}, {1,4,5}}. Since|H1| = 2 we have{i} ∈ H1 with i = 5.
The same argument as given forC4 in the previous paragraph now gives a contradiction
here. Similarly ifH3 = D2 = {{1,3,4}, {1,5,6}, {2,3,4}, {2,5,6}}, then any singleton
gives a 3-singleton trace, which is a contradiction. This deals with the caser = 3, and the
casen− r = 3 follows by taking complements.

To complete the proof we need to show that these interval hypergraphs only fit together
by forming a copy ofBn. We need the following claim.

Claim. (i) SupposeA = {[1, r], [2, r + 1], . . . , [r + 1,2r]}, B is an (r − 1)-uniform
hypergraph andA∪B has no3-singleton or3-co-singleton trace. ThenB ⊂ {[2, r], [3, r+
1], . . . , [r + 1,2r − 1]}.

(ii) SupposeA = {[1, r], [2, r+1], . . . , [r,2r−1]}, B is an(r−1)-uniform hypergraph
andA∪B has no3-singleton or3-co-singleton trace. ThenB ⊂ {[1, r−1], [2, r], . . . , [r+
1,2r − 1]}.

Proof. (i) ConsiderB ∈ B. Suppose there is some pointx ∈ B\[1,2r]. Then, since
|B| = r − 1, we can findy ∈ [1, r]\B andz ∈ [r + 1,2r]\B. Now {B, [1, r], [r + 1,2r]}
has a 3-singleton trace on{x, y, z}, which is a contradiction. It follows thatB ⊂ [1,2r].
We cannot have 1∈ B. Otherwise we can takei ∈ [2, r] − B andj ∈ [r + 2,2r] − B,
and then(B, [2, r + 1], [r + 1,2r]) has a 3-singleton trace on(1, i, j). Similarly 2r /∈ B.
Now suppose thatB is not an interval. By symmetry we may assume that there arei < j

such thati ∈ B ∩ [1, r − 1] andj ∈ [1, r]\B. Then{B, [j, j + r − 1], [r + 1,2r]} has a
3-singleton trace on{i, j,2r}. This contradiction shows thatB is an interval.

(ii) ConsiderB ∈ B. There cannot be a pointx ∈ B\[1,2r − 1], or we can takey ∈
[1, r − 1]\B andz ∈ [r + 1,2r − 1]\B, and then{B, [1, r], [r,2r − 1]} has a 3-singleton
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trace on{x, y, z}, which is a contradiction. ThereforeB ⊂ [1,2r − 1]. Let A′ consist of
the intervals of lengthr − 1 in the ordered set{1, . . . , r − 1, r + 1, . . . ,2r − 1}. Then
A = {A ∪ {r} : A ∈ A′}. If r ∈ B then by part (i) of the claim we see thatB\{r} is an
interval of lengthr−2 in {1, . . . , r−1, r+1, . . . ,2r−1} not containing 1 or 2r−1, soB is
an interval of lengthr−1 in [2r−1] not containing 1 or 2r−1. On the other hand, ifr /∈ B

thenB cannot contain pointsi, j with i < r andj > r. Otherwise{B, [1, r], [r,2r − 1]}
would have a 3-co-singleton trace on{i, j, r}. Thus in the caser /∈ B, B must be either
[1, r − 1] or [r + 1,2r − 1], so we are done. �

Now we can complete the proof of the theorem. For simplicity we just consider the
case whenn = 2m is even, the odd case being similar. We can renumber so thatHm =
{[1,m], [2,m + 1], . . . , [m + 1,2m]}. Repeatedly applying part (i) of the claim shows
thatHr = {[m − r + 1,m], [m − r + 2,m + 1], . . . , [m + 1,m + r]} for everyr < m.
NoteC(H)m = C(Hm) is isomorphic toHm: it consists of all intervals of lengthm in the
ordered set{m+1,m+2, . . . ,2m,1,2, . . . , m}. Applying the same argument inC(H) we
see thatC(H)r = {{2m− r + 1, . . . ,2m}, {2m− r + 2, . . . ,2m,1}, . . . , {2m,1, . . . , r −
1}, {1, . . . , r}} for r < m. ThereforeH2m−r = C(C(H)r ) = {[1,2m − r], [2,2m − r +
1], . . . , [r + 1,2m]}, as required. �

3. Related problems

In this section we describe some variations on our main problem. A natural extension
is the asymmetric version, defined by forbiddingk-singleton and�-co-singleton traces,
for any k and �. We will focus on the cases whenk = 3 or � = 3, for which we can
obtain asymptotically tight bounds. Next we describe the effect of introducing a chain
Ck = {∅, {1}, [1,2], . . . , [1, k − 1]} as a forbidden trace. This system is in some sense the
opposite of a level[k](i), as instead of having all sets the same size it has one set of each
possible size.

3.1. The asymmetric version

In this subsection we prove Theorem1.4, which gives bounds for the functions
Tr(r)([3](1), [�](�−1)) andTr(r)([k](1), [3](2)).
Proof of Theorem 1.4. (i) Forr < �−1 we note thatTr(r)([3](1), [�](�−1)) = Tr(r)([3](1)),
which is greater than the desired lower bound. For largerr the lower bound is given by
the following construction. Choose a positive integert so thatr ′ = t (� − 2) satisfies
r − (� − 3)�r ′ �r. We define a hypergraphH on [1, t (� − 1) + r − r ′] = [1, r + t] as
follows. For every 1� i��−1 we let the complement of[(i−1)t +1, it ] be an edge. Also,
for every 1� i�(� − 1)/2 < j�� − 1 and for every 1�s� t − 1 we let the complement
of [(i − 1)t + 1, (i − 1)t + s] ∪ [(j − 1)t + 1, (j − 1)t + t − s] be an edge. ThenH is an
r-uniform hypergraph and since��4 we have

|H| = (t − 1)�(�− 1)2/4� + �− 1�
(
r − �+ 3

�− 2
− 1

) (
�2 − 2�

4

)
+ �− 1

= r�/4 − �2/2 + 9�/4 − 1�r�/4 − �2/2 + 2�.
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We claim thatH does not have a 3-singleton or�-co-singleton trace. To see this, note first
that we can ignore the points[t (�− 1)+ 1, t (�− 1)+ r − r ′], as they belong to all edges.
Also, if (i−1)t+1�x < y� it for somei then any edge that containsxmust also containy.
It follows that any set on which we have a singleton trace or co-singleton trace can contain
at most one point from each interval[(i − 1)t + 1, it ]. This immediately shows that there is
no�-co-singleton trace. Also, if there is a 3-singleton trace on some set then its points must
belong to 3 different intervals. Say the set is{x1, x2, x3} with xi ∈ [(ai − 1)t + 1, ai t] and
a1, a2, a3 pairwise distinct. By symmetry we can suppose thata1 anda2 are both at most
(� − 1)/2. Now by definition there is no edge that misses bothx1 andx2. This shows that
there is no 3-singleton trace.

For the upper bound we argue by induction onr, the caser = 1 being trivial. Suppose
H = {A1, . . . , Am} is anr-uniform hypergraph with no 3-singleton or�-co-singleton trace.

For eachi, let Bi be a minimal subset of
(⋃m

j=1Aj

)
\Ai for whichBi ∩ Aj = ∅ for all

j = i.As noted at the beginning of Section 2, theBi are distinct and|Bi |�2 for all i. In fact,
we can assume that|Bi | = 2 for all i. For if Bi = {x} for somei then every edge exceptAi

contains{x}, and applying the induction hypothesis hypergraph toH′ = {Aj\{x} : j = i}
gives

|H| � |H′| + 1� (r − 1)�

4
+

(
3

4
+ 1

�+ 3

)
(r − 1)+ 1 + 1

� r�

4
+

(
3

4
+ 1

�+ 3

)
r + 1.

Let G be the graph with edge set{B1, . . . , Bm}. We claim thatG is triangle-free. For
suppose we haveBi = {x, y}, Bj = {y, z} andBk = {z, x}. SinceAi is disjoint fromBi

and meetsBj andBk we haveAi ∩ {x, y, z} = {z}. Similarly Aj ∩ {x, y, z} = {x} and
Ak ∩ {x, y, z} = {y}, so we have a 3-singleton trace on{x, y, z}, which is a contradiction.

Next, we note that we cannot have two edges ofG ‘sticking out’ of the same point of
some edge ofH, i.e. for anyAi andx ∈ Ai there is at most one edge ofG incident tox
with the other endpoint not inAi . For supposeBj = {x, y} andBk = {x, z} with y, z /∈ Ai .
Then, sinceAj ∩ Bj = Ak ∩ Bk = ∅, we see thatAi,Aj ,Ak have a 3-singleton trace on
{x, y, z}, which is impossible.

This implies the following observation concerning any pair of intersecting edges. If we
haveBi = {x, y} andBj = {x, z} then every edge ofH meets{y, z}. Indeed, supposeAk is
disjoint from{y, z}. We may assumek = i, and then sinceAk meetsBi we have must have
x ∈ Ak. However this situation contradicts the previous paragraph. Now ifBi = {x, y}
thenAi ∩ NG(x) = NG(x)\{y}, so there is a co-singleton trace on the neighbourhood of
x. It follows thatdG(x)�� − 1 for everyx. Moreover, for any edgeBi = {x, y} we have
dG(x) + dG(y)�� + 1. For suppose thatdG(x) + dG(y)�� + 2. LetX = NG(x) and
Y = NG(y). SinceG is triangle-free we haveX ∩ Y = ∅. ThereforeZ = X ∪ Y\{x, y}
contains at least� points. By the above observation, any setAj can miss at most one point
from each ofX andY. Consider anyBj = {x, z} with z = y. ThenAj does not contain
z, so containsX\{z}. Therefore{x, y} is an edge ofG sticking out ofAj at y. As noted
before it must be the only such edge, soY\{x} ⊂ Aj . This shows thatAj ∩ Z = Z\{z}.
Arguing similarly for edges ofG incident withy, we see that for everyz ∈ Z there is some
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edgeAj with Aj ∩ Z = Z\{z}. Since|Z|�� we have an�-co-singleton trace, which is a
contradiction. ThereforedG(x)+ dG(y)��+ 1.

Now we bound the number of edges ofG as follows. There is one edgeB1 disjoint from
A1, and at mostr edges that meetA1 in exactly one point (at most one sticking out of each
of ther points ofA1). The remaining edges form a graphG′ onA1. Writee for the number
of edges inG′ and for eachx ∈ A1 let Ix be an indicator function that is 1 if there is an
edge sticking out ofA1 atx, and 0 otherwise. Thenm = e(G) = e + 1 + ∑

x∈A1
Ix .

Letd ′(x) = dG(x)−Ix denote the degree ofx inG′. Recalling thatdG(x)+dG(y)��+1
whenxy is an edge, and applying the Cauchy–Schwartz inequality we have

(�+ 1)e �
∑

{x,y}∈G′

(
dG(x)+ dG(y)

) =
∑

{x,y}∈G′

(
d ′(x)+ d ′(y)+ Ix + Iy

)

=
∑
x∈A1

d ′(x)2 +
∑
x∈A1

d ′(x)Ix

� r


1

r

∑
x∈A1

d ′(x)




2

+
∑
x∈A1

d ′(x)Ix = 4e2/r +
∑
x∈A1

d ′(x)Ix.

Writing S = ∑
x∈A1

d ′(x)Ix we have 4e2 − r(� + 1)e + rS�0, so e� 1
8

(
r(�+ 1)

+√
r2(�+ 1)2 − 16rS

)
. Using the inequality

√
a − b�√

a− b
2
√
a

givese� r(�+1)
4 − S

�+1.

Therefore

m = e + 1 +
∑
x∈A1

Ix � r(�+ 1)

4
+ 1 +

∑
x∈A1

Ix

(
1 − d ′(x)

�+ 1

)
.

Sinced ′(x) < �+ 1 for all xwe haveIx
(
1 − d ′(x)

�+1

)
�1 − d ′(x)

�+1 , so

m � r(�+ 1)

4
+ 1 +

∑
x∈A1

(
1 − d ′(x)

�+ 1

)
= r(�+ 1)

4
+ 1 + r − 2e

�+ 1

� r(�+ 1)

4
+ 1 + r − 2(m− r − 1)

�+ 1
.

This gives(�+3)m
(�+1) � r(�+5)

4 + 2r
�+1 + �+3

�+1, som� �2+6�+13
4(�+3) r + �+3

�+3 = r(�+3)
4 + r

�+3 + 1.
(ii) The construction for the lower bound is essentially the complement of that in part (i).

We define a hypergraphH on[(k−1)r] as follows. For every 1� i�k−1 we let the interval
[(i − 1)r + 1, ir ] be an edge. Also, for everyi�(k − 1)/2 < j and for every 1�s�r − 1
we let[(i − 1)r + 1, (i − 1)r + s] ∪ [(j − 1)r + 1, (j − 1)r + r − s] be an edge. ThenH is

anr-uniform hypergraph and|H| = (r − 1)�(k− 1)2/4�+ k− 1 >
(k2−2k)(r−1)

4 . Note that
it is the complement of the construction in part (i) with edges of size(k − 2)r. Since that
construction had nok-co-singleton or 3-singleton trace, this construction has nok-singleton
or 3-co-singleton trace.

For the upper bound, supposeH is anr-uniform hypergraph with no 3-co-singleton or
k-singleton trace. Choosek − 1 edges ofH so that their union has maximum possible size.
By Lemma2.1 all edges ofH are contained in this union, which has size at most(k − 1)r.
Consider the hypergraph of complementsC(H), which has edges{V (H)\A : A ∈ H}. Then
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C(H) is ans-uniform hypergraph withs�(k−2)r and has no 3-singleton ork-co-singleton

trace. By the first part of this theorem we have|H| = |C(H)|� k(k−2)r
4 +

(
3
4 + 1

k+3

)
(k −

2)r + 1 <
k(k+1)r

4 . This completes the proof of the theorem.�

Similar arguments can be applied for the general asymmetric functionTr(r)([k](1),
[�](�−1)); we will just summarise the results and leave the details to the reader. Fork > �

we have

(1 − o�(1))

(
k − 1
�− 1

) (
r + �− 2
�− 2

)
�Tr(r)([k](1), [�](�−1)) < k(k − 2)�−2r�−2,

soTr(r)([k](1), [�](�−1)) is of orderk�−1r�−2, and the uncertainty in the constant is approx-
imately(�− 1)!(�− 2)! for largek. Fork < � we have

(1 − ok(1))

(
�− 1
k − 1

) (
r + k − 2
k − 2

)
�Tr(r)([k](1), [�](�−1))��rk−2,

soTr(r)([k](1), [�](�−1)) is of order�rk−2, and the uncertainty in the constant is approxi-
mately(k − 1)!(k − 2)! for large�.

3.2. Chains

Define thek-chainasCk = {∅, {1}, [1,2], . . . , [1, k − 1]}. We start this subsection with
a very short proof of Theorem1.5, which states thatTr([k](1), [k](k−1), Ck)�222k

.
First, we recall that the Ramsey numberR(k, �) is the smallest integert for which any

graph ont vertices must contain a clique of sizek or an independent set of size�. We use

the well-known boundR(k, k)�
(

2k−2
k−1

)
(see, e.g., [8]).

Proof of Theorem 1.5. Let t = R(k, k). SupposeH is a hypergraph with nok-singleton
trace and at least(k−1)t edges. We will show that there is ak-co-singleton or ak-chain trace.
This suffices, as the above bound easily gives(k−1)t �222k

. We will find sequences of sets
A1, . . . , At in H and pointsx1, . . . , xt so that, settingHi = {A ∈ H : {x1, . . . , xi} ⊂ A},
we have|Hi |�(k − 1)t−i , Ai ∈ Hi−1 andxi /∈ Ai for all 1� i� t . Note thatH0 = H.

To do this, suppose we have already foundA1, . . . , Ai andx1, . . . , xi , for some 0� i�
t − 1. Let I be the intersection of all of the sets inHi and letB be a minimal set disjoint
from I that meets every set ofHi (exceptI if I ∈ Hi). Since there is nok-singleton trace,
the observation at the beginning of Section 2 gives|B|�k − 1. Choose a pointxi+1 ∈ B

that belongs to as many sets ofHi as possible. Then|Hi+1|��(|Hi | − 1)/(k − 1)��(k −
1)t−(i+1). NowB is disjoint fromI, soxi+1 does not belong to every set ofHi , and we can
chooseAi+1 ∈ Hi so thatxi+1 /∈ Ai+1.

Thus we haveA1, . . . , At andx1, . . . , xt so thatxi /∈ Ai andxi ∈ Aj for all 1� i < j� t .
Define a graph on{1, . . . , t} by joining i to j if i > j andxi ∈ Aj . Sincet = R(k, k) this
graph contains either a clique or an independent set of sizek. It is easy to verify that ifS is
a clique of sizek then the trace of{As : s ∈ S} on {xs : s ∈ S} is ak-co-singleton, and if
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S is an independent set of sizek then the trace of{As : s ∈ S} on {xs : s ∈ S} is ak-chain.
This proves the theorem.�

One can ask a number of other forbidden trace questions involving chains and levels.
These questions are easy for non-uniform hypergraphs. SinceCk ⊂ 2[k−1] it follows imme-
diately from the Sauer–Shelah theorem thatTr(n, Ck) = ∑k−2

i=0

(
n
i

)
. Note that[n](�k−2)

contains nok-chain ork-co-singleton, and its hypergraph of complements contains nok-
chain ork-singleton. Therefore we see also thatTr(n, Ck, [k](1)) = Tr(n, Ck, [k](k−1)) =∑k−2

i=0

(
n
i

)
.

For uniform hypergraphs the situation is much less clear. Here the interesting question is
to determine the maximum size of anr-uniform hypergraph with nok-singleton ork-chain
trace. (The problem of excluding justk-co-singleton andk-chain traces seems less natural,
as in this case we need to bound the ground set, or we can take as many disjoint edges as we
please.) For this problem, we will prove Theorem1.6, which shows thatTr(r)([k](1), C3) =
max{k − 1, r + 1} and thatTr(r)([k](1), Ck) is of orderrk−1. First we need the following
lemma on hypergraphs without a 3-chain trace.

Lemma 3.1. Let H be an r-uniform hypergraph without a3-chain trace. Choose edges
A,B ∈ H so that their union is as large as possible. Say that another edge C is of type1 if
C ∩ (A ∪ B) = A ∩ B and of type2 if A�B ⊂ C ⊂ A ∪ B. Then any other edge is either
of type1 or of type2,and furthermore all other edges have the same type.

Proof. Choose edgesA,B ∈ H so that their union is as large as possible. First consider
any edgeC that is disjoint fromA�B. Since|A ∪ C| = 2r − |A ∩ C|, by maximality of
|A ∪ B| we must haveA ∩ B ⊂ C, i.e.C ∩ (A ∪ B) = A ∩ B, soC is of type 1. Now
any other edgeC intersectsA�B. By symmetry we can assume it intersectsA\B. Take
x ∈ C ∩A\B. There cannot bey ∈ A\(B ∪C), otherwise{B,C,A} would have a 3-chain
trace on{x, y}, which is impossible. ThereforeA\B ⊂ C. By maximality of |A ∪ B| we
now haveC ⊂ A∪B. SinceC = Awe see thatC intersectsB\A. Then repeating the above
argument givesB\A ⊂ C. ThereforeA�B ⊂ C ⊂ A∪B, i.e.C is of type 2. Furthermore,
there cannot be an edgeCof type 1 and an edgeD of type 2. Then we could pickx ∈ A\B,
y ∈ B\A, and{C,A,D} has a 3-chain trace on{x, y}, which is a contradiction. �

Define asunflowerof sizes to be a system of setsA1, . . . , As for which there is some
setB so thatAi ∩ Aj = B for all i = j . We callB thecentreof the sunflower.

Lemma 3.2. LetH be an r-uniform hypergraphwithout a3-chain trace and not containing
any3edges that form a sunflower. Then|H|�r+1,with equality only whenH�[r+1](r).

Proof. We argue by induction onr, the caser = 1 being trivial. Choose edgesA,B ∈ H
so that their union is as large as possible. There cannot be an edgeCwith C ∩ (A ∪ B) =
A ∩B, as then{A,B,C} forms a sunflower of size 3 with centreA ∩B, which is contrary
to assumption.

From Lemma3.1 it follows that for any other edgeC we haveA�B ⊂ C ⊂ A ∪ B. If
|A ∪ B| = r + 1 then we immediately have|H|�r + 1, with equality only whenH =
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(A ∪ B)(r). Otherwise|A�B|�4. Applying the induction hypothesis to the hypergraph
H′ = {C\(A�B) : C ∈ H\{A,B}}, which is s-uniform for somes�r − 4, we get
|H|� |H′| + 2�

(
(r − 4)+ 1

) + 2 < r + 1. This completes the proof.�

Finally, we need the following result of Frankl and Pach[5] which is a uniform version
of the Sauer–Shelah theorem.

Lemma 3.3. For anyk�r�n we have Tr(r)(n,2[k])�
(

n
k−1

)
.

Proof of Theorem 1.6. (i) For the lower bound we either takek − 1 disjoint r-tuples or
[r+1](r), whichever is larger. It is clear that neither construction has ak-singleton or 3-chain
trace. For the upper bound we argue by induction onr, the caser = 1 being trivial. Consider
anr-uniform hypergraphH with nok-singleton or 3-chain trace. Choose edgesA,B ∈ H
so that their union is as large as possible. By Lemma 3.1 the other edges are either all of
type 1 or all of type 2.

In the type 1 caseH forms a sunflower with centreA ∩ B. SinceH does not have a
k-singleton trace we immediately have|H|�k − 1. In the type 2 case we claim that there
is no sunflower of size 3. For suppose thatC,D,E form a sunflower. We cannot haveA or
B in the sunflower, as the other sets differ only insideA∩B. The centre is some setF with
A�B ⊂ F . Pickx ∈ C\F andy ∈ D\F . By definitionx, y /∈ E, and alsox, y ∈ A ∩ B.
Then{E,C,A} has a 3-chain trace on{x, y}, which is a contradiction. Therefore there is
no sunflower of size 3. Now then Lemma 3.2 shows that|H|�r + 1, which completes the
proof of the first part of the theorem.

(ii) The lower bound is given by[r + k− 2](r). Everyk-set is met by any edge in at least
2 points so there is nok-singleton trace, and for every(k − 1)-set there is no edge that is
disjoint from it, so there is nok-chain trace. For the upper bound, consider anr-uniform
hypergraphH with no k-singleton ork-chain trace. Lemma 2.1 shows that the ground set
of H contains at most(k − 1)r points. SinceCk ⊂ 2[k−1] there is no 2[k−1] trace and by

Lemma 3.3 we have|H|�
(
(k−1)r
k−2

)
. This completes the proof of the theorem.�

Our proof shows that in the first part of the above theorem equality can only occur for a
sunflower of sizek − 1 or for [r + 1](r).

4. Concluding remarks

• FromTheorem1.1 we know thatTr(r)([k](1), [k](k−1)) is of orderrk−2, but the uncertainty
in the constant is of order(k−1)!. It would be interesting to determine the asymptotics of
this constant for largek. The construction that we use for the lower bound is also a lower
bound forTr(r)([k](1), [k](2), . . . , [k](k−1)), so it may be that there is a better construction
that works just forTr(r)([k](1), [k](k−1)).

• We remarked after the proof of Theorem1.1 thatTr(n, [k](1), [k](2), . . . , [k](k−1)) is of
ordernk−1. Our construction for the lower bound gives a constant 1/(k−1)k−1, whereas
the upper bound from the Sauer–Shelah theorem gives a constant of 1/(k − 1)!. Füredi
and Quinn showed that for excluding just one layer as a trace the Sauer–Shelah bound is
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tight, i.e.Tr(n, [k](�)) = ∑k−1
i=0

(
n
i

)
for any fixed�. It would be interesting to determine

whether the constant changes when we forbid more layers.
• Theorem1.4 is asymptotically tight forr � � and� → ∞ but it would be interesting

to obtain an asymptotically tight result for fixed� andr → ∞. Note that in the case
� = r + 2 the condition that there is no�-co-singleton trace places no restriction on an
r-uniform hypergraph, so we haveTr(r)([3](1), [r + 2](r+1)) = Tr(r)([3](1)). Frankl and
Pach showed that this is equal to�(r + 2)2/4�, which we can write as�r/4+ �r/2� + 1.
On the basis of this one might think thatTr(r)([3](1), [�](�−1)) = �r/4 + r/2 + o(r) for
fixed� andr → ∞.

• The same proof as in Theorem1.5 gives the boundTr([k](1), [�](�−1), Cm)�(k−1)R(�,m)

when we forbid singleton, co-singleton and chain traces of various sizes. We obtained a
doubly exponential upper bound forTr([k](1), [k](k−1), Ck), but can only find an expo-
nential lower bound. (This is achieved by a naïve random construction, and one can also
give explicit examples, such as[2k − 4](k−2).) It would be interesting to determine the
true behaviour of this function.

• The best known lower bound forTr(r)([k](1)), due to Frankl and Pach, is obtained by
the complement hypergraph of a(k − 1)-uniform hypergraph onr + k − 1 vertices with
as many edges as possible subject to not containing a copy of the complete(k − 1)-
uniform hypergraph onk vertices. This does not have aC� trace for� > k, so it may
be thatTr(r)([k](1), C�) = Tr(r)([k](1)) for � > k. For ��k we can use the proof of

Theorem1.6 to see thatTr(r)([k](1), C�) is bounded above by
(
(k−1)r
�−2

)
and below by(

r+l−2
�−2

)
. This shows thatTr(r)([k](1), C�) is of orderr�−2, although the uncertainty in the

constant is about(k−1)(�−2). It would be interesting to determine the asymptotics of the

constant. In the case� = k it seems that the lower bound
(
r+k−2
k−2

)
may be asymptotically

tight.
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