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Abstract
We consider supercritical bond percolation on a family of

high-girth 𝑑-regular expanders. The previous study of Alon,

Benjamini and Stacey established that its critical probability

for the appearance of a linear-sized (“giant”) component is

pc = 1∕(𝑑 − 1). Our main result recovers the sharp asymp-

totics of the size and degree distribution of the vertices in the

giant and its 2-core at any p > pc. It was further shown in

the previous study that the second largest component, at any

0 < p < 1, has size at most n𝜔 for some 𝜔 < 1. We show

that, unlike the situation in the classical Erdős-Rényi random

graph, the second largest component in bond percolation on a

regular expander, even with an arbitrarily large girth, can have

size n𝜔′
for 𝜔′ arbitrarily close to 1. Moreover, as a by-product

of that construction, we answer negatively a question of Ben-

jamini on the relation between the diameter of a component in

percolation on expanders and the existence of a giant compo-

nent. Finally, we establish other typical features of the giant

component, for example, the existence of a linear path.
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1 INTRODUCTION

A graph  is called a (b, 𝑑)-expander if its maximum degree is 𝑑, and for every subset S ⊂ V() of at

most |V()|∕2 vertices there are at least b|S| edges in the cut between S and V()⧵S. For 0 < p < 1 and

a given graph , let p denote the corresponding bond percolation on , that is, the distribution over

spanning subgraphs of  where each edge is present, independently, with probability p. Our primary

focus will be p for a (𝑑-)regular (b, 𝑑)-expander  whose girth (length of the shortest cycle) is large.
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The pioneering paper of Alon, Benjamini and Stacey [1] showed that if  is an expander and p > 0

is fixed, there is at most a single linear component in p with high probability (w.h.p.). Moreover, when

 is 𝑑-regular and its girth tends to∞, the authors of [1] identified the critical percolation probability to

be pc = 1∕(𝑑−1), showing that, for every fixed p > pc, w.h.p. there exists a linear (“giant”) component

in p (see the formal statement below). The latter result was thereafter extended by Peres et al. [4] to

any family of sparse graphs that converge as n → ∞ in the Benjamini-Schramm sense.

More formally, write i(G) (for i = 1, 2,…) for the connected components of G in decreasing order

of their sizes. (By a slight abuse of notation, we also let v(G) (for v ∈ V(G)) denote the connected

component of v in G.) It was shown in [1] that if  is a regular (b, 𝑑)-expander on n vertices (more

precisely, a sequence of such graphs) with girth tending to ∞ with n, then for every fixed p > 1∕(𝑑−1),

for some fixed c = c(p, 𝑑) > 0 : lim
n→∞

P
(|1(p)| > cn

)
= 1,

whereas for every fixed p < 1∕(𝑑 − 1),
for every fixed c > 0 : lim

n→∞
P
(|1(p)| > cn

)
= 0.

That the lack of a linear component w.h.p. at p < 1∕(𝑑 − 1) extends also to p = 1∕(𝑑 − 1) follows

from the work of Nachmias and Peres [13] (who proved, more generally, that P(|1| ≤ An2∕3) → 0 as

A → ∞ in percolation with parameter p = 1∕(Δ−1) on any family of graphs with maximal degree Δ).

Pittel [14] refined the results of Alon et al. in the special case where  is a random (uniformly

chosen) 𝑑-regular graph on n vertices for 𝑑 ≥ 3 fixed—well-known to be a expander w.h.p.—showing

that the phase transition of |1| mirrors that in the Erdős-Rényi graph (n, p): w.h.p., |1| ≤ C(p) log n
at p < pc = 1

𝑑−1
vs. |1| ∼ 𝜃1n at p > pc for an explicit 𝜃1(p), whereas |1| = n2∕3+o(1) at the critical pc

(the precise order of n2∕3 and correct scaling of the critical window were subsequently found in [13]).

In this work we obtain the asymptotic size (lower bounded by c(p, 𝑑)n above) and degree distribu-

tion of the giant component 1(G) for any high-girth expander G ∼ p at p > 1∕(𝑑 − 1), as well as its

2-core.

For 𝑑 ≥ 3 and 1 < 𝜆 < 𝑑 − 1, let

p = 𝜆∕(𝑑 − 1),

and let q = q(𝜆, 𝑑) be the unique solution in [0, 1) of the equation

q = (1 − p + pq)𝑑−1, (1.1)

well known (cf. [2]) to coincide with the extinction probability of a Bin(𝑑 − 1, p)-Galton-Watson tree.

Recall that the 2-core of a connected component , denoted here (2), is its maximum induced

subgraph with minimum degree at least 2, and the (tree) excess of  is the minimum number of edges

that need to be removed from  to turn it into a tree (note that the excess of  equals that of (2)).

Our first main result establishes the asymptotic number of vertices and edges in the largest (giant)

component in supercritical bond percolation on a high girth 𝑑-regular expander, as well as its 2-core,

and consequently their asymptotic excess.

Theorem 1 (The giant). Fix 𝑑 ≥ 3 and 1

𝑑−1
< p < 1, and letting q be as in (1.1), define

𝜃1 ∶= 1 − q(1 − p) − pq2, 𝜂1 ∶= 1

2
p𝑑(1 − q2), (1.2)

𝜃2 ∶= 1 − q − (𝑑 − 1)pq(1 − q), 𝜂2 ∶= 1

2
p𝑑(1 − q)2. (1.3)
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FIGURE 1 Asymptotic degree distributions of the giant component (∼𝛼kn degree-k vertices; blue) and its 2-core (∼𝛽kn
degree-k vertices; red) in supercritical percolation on a high girth 3-regular expander [Colour figure can be viewed at

wileyonlinelibrary.com]

For every 𝜀 > 0 and b > 0 there exist some c,C,R > 0 such that, if  is a regular (b, 𝑑)-expander on
n vertices with girth at least R, then with probability at least 1−Ce−cn, the random graph G ∼ p has

|| 1

n
|V(1)| − 𝜃1

|| < 𝜀, || 1

n
|E(1)| − 𝜂1

|| < 𝜀, (1.4)|| 1

n
|V((2)

1
)| − 𝜃2

|| < 𝜀, || 1

n
|E((2)

1
)| − 𝜂2

|| < 𝜀. (1.5)

In particular, with probability at least 1−C exp(−cn), the excess of 1 is within 2𝜀n of (𝜂1 − 𝜃1)n, and
the excess of (2)

1
is within 2𝜀n of (𝜂2 − 𝜃2)n.

Remark 1.1 (Degree distributions of the giant and the 2-core). In the setting of Theorem 1, we in fact

asymptotically obtain the entire degree distributions of the giant component and 2-core (Theorem 2.1).

For instance, for a fixed b > 0, consider a sequence (n) of regular (b, 3)-expanders on n vertices whose

girth tends to ∞ (arbitrarily slowly) with n. For
1

2
< p < 1, let

𝛼1 = 3

p
(1 − p)2(2p − 1), 𝛼2 = 3

p2
(1 − p)(1 − 4p + 6p2 − 4p3), 𝛼3 = p3

(
1 −

(
1−p

p

)6 )
,

𝛽2 = 3

p3
(1 − 2p)2(1 − p), 𝛽3 =

(2p − 1

p

)3

.

Then w.h.p., the giant component 1 of G ∼ 
(n)
p has (𝛼k + o(1))n vertices of degree k for each k ∈

{1, 2, 3}, and its 2-core 
(2)
1

has (𝛽k + o(1))n vertices of degree k for each k ∈ {2, 3} (see Figure 1).

Remark 1.2 (Limits for large 𝑑). For p = (1 + 𝜉)∕(𝑑 − 1) with 𝜉 > 0 and 𝑑 → ∞ with n, one has

q → 1 − 2𝜉 + 8

3
𝜉2 − 28

9
𝜉3 + O(𝜉4)

and

𝜃1 → 2𝜉 − 8

3
𝜉2 + 28

9
𝜉3 + O(𝜉4), 𝜂1 → 2𝜉 − 8

3
𝜉2 + 34

9
𝜉3 + O(𝜉4), 𝜂1 − 𝜃1 → 2

3
𝜉3 + O(𝜉4),

http://wileyonlinelibrary.com
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𝜃2 → 2𝜉2 − 4𝜉3 + O(𝜉4), 𝜂2 → 2𝜉2 − 10

3
𝜉3 + O(𝜉4), 𝜂2 − 𝜃2 → 2

3
𝜉3 + O(𝜉4).

Compare this to (n, p) for p = 1+𝜉
n

with 𝜉 = o(1): there |V(1)| ∼ 2𝜉n, |E(1)| ∼ 2𝜉n, |V((2)
1
)| ∼

2𝜉2n and the excess is (1 + o(1)) 2

3
𝜉3n (see, e.g., [6, 10, 15] and the structure theorems in [7, 8]).

In the context of the second largest component of p, it was shown by Alon, Benjamini and

Stacey [1] that, if  is a (b, 𝑑)-expander (not necessarily regular) on n vertices then there exists

𝜔 = 𝜔(b, 𝑑) < 1 such that, w.h.p., for every sequence 0 < pn < 1,

lim
n→∞

P(|2(pn )| < n𝜔) = 1.

Indeed, it is well-known (cf., e.g., [6]) that in the Erdős-Rényi random graph (n, p) (where  is the

complete graph) such is the case, as the supercritical regime p > 1∕n admits a single giant component

w.h.p., and all other components are logarithmic in size (see, e.g., [6, 10]). Such is also the case in

percolation on random regular graphs (cf. [13]). In light of this—and in line with results of Pittel [14]

on |2| in random regular graphs—one may believe that the same holds for percolation on expanders,

whereby the n𝜔 above could be replaced by some C(b, 𝑑) log n with probability arbitrarily close to 1.

Perhaps surprisingly, it turns out that even on a family of regular expanders with arbitrarily large

girth, the above polynomial bound of n𝜔 is essentially best possible, as the second largest component

can have size n𝜔′
with 𝜔′ arbitrarily close to 1.

Theorem 2 (Second component). For every 𝑑 ≥ 3, R ≥ 1, p ∈ ( 1

𝑑−1
, 1) and 𝛼 ∈ (0, 1) there

exist b > 0 and a regular (b, 𝑑)-expander  on n vertices with girth at least R where G ∼ p has|V(2)| ≳ n𝛼 w.h.p.

Remark 1.3. Using essentially the same construction, for any sequence 0 < 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼k < 1

with k fixed, one can construct an expander  such that w.h.p. G ∼ p has components whose sizes

have orders n𝛼1 ,… , n𝛼k , respectively (in addition to the linearly sized component).

Towards a construction of an infinite graph that disproves the existence of “expanders at all scales,”

Benjamini asked the following question (a positive answer to which would be a step in said construc-

tion), on the relation between the diameter of the connected component of v in p to the existence of

a giant.

Question (Benjamini [3, Q. 5.5]). Let  be a bounded degree expander. Further assume that there

is a fixed vertex v ∈ , so that G ∼ 1∕2 satisfies

P
(
diam(v(G)) > 1

2
diam()

)
> 1

2
.

Is there a giant component w.h.p.?

A variant of the construction in Theorem 2 gives a negative answer to this question.

Theorem 3. For every 𝜀 > 0 and 0 < p < 1 there exist b, 𝑑, 𝛿 > 0 and, for infinitely many values
of n, a (b, 𝑑)-expander  on n vertices with a prescribed vertex v, such that the graph G ∼ p satisfies

P
(
diam(v(G)) ≥ (1 − 𝜀) diam()

)
≥ 1 − 𝜀,

and yet there are no components of size larger than n1−𝛿 in G w.h.p.
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Finally, in Section 4, we explore additional typical properties of percolation on high-girth

expanders (where we find the typical order of those random variables but not their precise asymp-

totics): the existence of linear simple paths (Corollary 4.2), the fact that linearly many vertices must

be removed in order to disconnect the giant component (Theorem 4.1), and the existence of complete

minors (Corollary 4.4).

1.1 Main techniques
The starting point in proving Theorem 1, and furthermore its more detailed version Theorem 2.1 which

gives the typical degree profile in the giant and 2-core of p, is a refinement of the elegant sprinkling

argument of Alon, Benjamini and Stacey [1]. While that argument was used in [1] and later also in [4]

to show that w.h.p. a fixed proportion of the vertices whose local neighborhoods in p−𝜀 are “large”

will belong to the giant after adding 𝜀, in fact all but a negligible proportion of such vertices will be

in the giant. Namely, the local property of whether the connected component of a vertex x has size at

least R turns out to be a predictor, for all but 𝜀(R)n vertices, as to whether x ∈ 1(p) (similarly for

edges)—see Proposition 2.2. One can then readily use this local predictor to read off the degree profile,

and more generally, the entire local geometry in 1(p) for a high girth expander , as demonstrated

next.

Example 1.4. [Density of local neighborhoods in 1]. Let G ∼ p for
1

𝑑−1
< p < 1 and a 𝑑-regular

expander  on n vertices whose girth tends to ∞ with n. Set q as in (1.1), let T be a rooted tree with k
levels and 𝓁 leaves (for some fixed k,𝓁), and let 𝛼T = P(p ≃ T), where  is the tree on k levels that

is 𝑑-regular except at its leaves (and ≃ denotes graph isomorphism). The number of vertices in 1(G)
whose k-radius neighborhood is isomorphic to T is then w.h.p. asymptotically

(
1 − q𝓁

)
𝛼T n.

Example 1.5. [Asymptotic density of paths in 1]. For G as in Example 1.5 and for any fixed 𝓁 ≥ 1,

the number of paths with 𝓁 edges in 1 is w.h.p. asymptotically
1

2
𝑑(𝑑 − 1)𝓁−1p𝓁

(
1 − q𝓁+1(1 − p +

pq)1−𝓁
)
n.

The analysis of cycles in G (and its 2-core) is substantially more delicate. Naively, one might expect

our results to suggest that, if a certain edge xy in G ∼ p is such that in the graph Hxy ∶= G ⧵ {xy}
the components of x and y are both “large,” then both should typically belong to the giant in H (which

is a subset of the giant of G), hence the edge xy should lie on a cycle in 1(G). However, turning this

intuition into a rigorous argument is problematic in light of the fact that we cannot actually delete xy
(as we aim to carry this analysis simultaneously for all edges xy), and our mechanism of securing that

the components of x and y would belong to the giant was nonconstructive (arguing that there are small

cuts whence sprinkling would patch most such components together); in particular, that argument gave

no control over whether or not the edge xy itself is a bridge as opposed to a cycle edge in 
(2)
1
(G).

To remedy this, we introduce the notion of a k-thick set—roughly put, a set that can be covered by

disjoint connected components of size at least k each (see Definition 2.7)—and show, in what may be

of independent interest, that if G is an expander and H is a slightly percolated subgraph of G (that is,

H ∼ G1−𝛿 for some small 𝛿 > 0), then every linearly-sized k-thick set expands in H (cf. Claim 2.8).

Since we seek to analyze the effect of sprinkling on components that are “large,” such expansion

suffices, and does in fact hold in H, supporting the above framework of the proof.

Finally, our constructions in Theorems 2 and 3 exploit the source of some of the obstacles described

above: while we have full understanding of the geometry of G in the microscopic scale (locally the

graph is a regular tree up to an arbitrarily large radius), and some control over it in the macroscopic
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scale (the expansion implies bounds on the number of edges between every two linearly-sized sets), we

have limited control over it in the intermediate scales. For instance, if the k-radius ball around a vertex

x grows as (𝑑 − 1)k then percolation is supercritical, as opposed to growing only as bk whence it might

be subcritical (yet still satisfying the expansion property). Our constructions combine both these types

of expansion in the mesoscopic scales to create components of size Θ(n𝛼) (0 < 𝛼 < 1) in p.

2 ASYMPTOTICS OF THE GIANT COMPONENT AND ITS 2-CORE

The goal in this section is to prove the following result (from which Theorem 1 follows) describing the

typical degree distribution of the giant component and its 2-core in p up to an error of o(n).

Theorem 2.1. Fix 𝑑 ≥ 3 and 1 < 𝜆 < 𝑑 − 1, let p = 𝜆∕(𝑑 − 1), and with q as in (1.1), define

𝛼k =
(
𝑑

k

)
pk(1 − p)𝑑−k(1 − qk) (k = 1,… , 𝑑), (2.1)

𝛽k =
(
𝑑

k

)
pk(1 − q)kq

(1 − p + pq)k−1
(k = 2,… , 𝑑). (2.2)

For a given 𝑑-regular graph , let Dk (1 ≤ k ≤ 𝑑) be the number of degree-k vertices in 1, the largest
component of the graph G ∼ p, and let D∗

k denote the number of degree-k vertices in its 2-core 
(2)
1

.
Then for every 𝜀 > 0 and b > 0 there exist some c,R > 0 so that, if  is a regular (b, 𝑑)-expander on
n vertices with girth at least R, then with probability at least 1 − exp(−cn),

||Dk∕n − 𝛼k|| < 𝜀 for all 1 ≤ k ≤ 𝑑 and ||D∗
k∕n − 𝛽k|| < 𝜀 for all 2 ≤ k ≤ 𝑑.

Indeed, Theorem 1 follows from verifying (recalling (1.1)) that the quantities 𝜃i and 𝜂i (i = 1, 2),

as defined in (1.2) and (1.3), satisfy the following w.r.t. the above defined 𝛼k (1 ≤ k ≤ 𝑑) and 𝛽k
(2 ≤ k ≤ 𝑑):

𝜃1 =
𝑑∑

k=1

𝛼k, 𝜂1 = 1

2

𝑑∑
k=1

k𝛼k, 𝜃2 =
𝑑∑

k=2

𝛽k, 𝜂2 = 1

2

𝑑∑
k=2

k𝛽k.

2.1 The giant component

Fix 𝜀 > 0 small enough so that p′ ∶= p−𝜀 satisfies p′ > 1∕(𝑑−1). There exists R0 so that, for all R ≥ R0,

the probability of survival to depth R in a Galton-Watson (GW) tree with offspring distribution Bin(𝑑−
1, p′) is at least 1 − q′, and the corresponding probability in a GW-tree with offspring distribution

Bin(𝑑 − 1, p) is at most 1 − q + 𝜀. Since 𝜆 → q(𝜆) is continuous, one has q′ ↑ q as 𝜀 ↓ 0. We will

couple G′ ∼ p′ and G ∼ p by letting E(G) = E(G′) ∪ E(F′) for F′ ∼ 𝜀′ , where

𝜀′ ∶=
p − p′

1 − p′ =
𝜀

1 − p′ .

For a graph H and an ordered pair of vertices x, y ∈ V(H), define

R
x,y = R

x,y(H) =
{|y(H ⧵ {xy})| ≥ R

}
(2.3)
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(where H⧵{xy} is obtained by deleting the edge xy if present), and for an unordered pair x, y ∈ V(H) let

R
xy = R

xy(H) =
(
R

x,y ∪R
y,x
)
∩ {xy ∈ E(H)} ; (2.4)

that is, R
x,y says that after removing xy (if present) the component of y has at least R vertices, while

R
xy says that, in addition to this, after removing xy the component of x also has at least R vertices, and

that the edge xy does belong to H. Further define, for every vertex x ∈ V(H),

R
x =

⋃
y

(
R

x,y ∩ {xy ∈ E(H)}
)
. (2.5)

Finally, let

E1(H) = {xy ∈ E(H) ∶ R
xy(H) holds},

V1(H) = {x ∈ V(H) ∶ R
x (H) holds}.

(2.6)

The main result we wish to prove in this subsection is as follows.

Proposition 2.2. For every 𝜀, b > 0 there exist R and c > 0 such that, if  is a regular (b, 𝑑)-expander
on n vertices with girth greater than 2R, and G ∼ p, then

P

(||E1(G)ΔE(1(G))|| > 𝜀n
)
≤ exp(−cn), (2.7)

P

(||V1(G)ΔV(1(G))|| > 𝜀n
)
≤ exp(−cn). (2.8)

Proof. Observe that, for any graph H with maximum degree 𝑑, if |x| > 𝑑R then the vertex x must

be incident to some y such that R
x,y holds; similarly, if an edge xy belongs to a component of size at

least 2R then at least one of the events R
x,y,

R
y,x must hold. That is,⋃

{E() ∶  is a connected component of H with || ≥ 2R} ⊆ E1(H).⋃
{V() ∶  is a connected component of H with || > 𝑑R} ⊆ V1(H).

(2.9)

By the assumptions that R ≥ R0 for a large enough R0 and that the girth is greater than 2R,

1 − q ≤ P(R
x,y(G)) ≤ 1 − q + 𝜀, 1 − q′ ≤ P(R

x,y(G′)) ≤ 1 − q′ + 𝜀.

When H ∼ p or H ∼ p′ , the standard edge-exposure martingale (see, e.g., [10, sec. 2.4])—noting

that adding/deleting an edge influences at most 2(𝑑 − 1)R edges—implies via Hoeffding-Azuma that

P

(||||E1(H)| − E[|E1(H)|]||| ≥ a
)
≤ exp

(
− a2

4𝑑n(𝑑 − 1)2R

)
. (2.10)

and similarly,

P

(||||V1(H)| − E[|V1(H)|]||| ≥ a
)
≤ exp

(
− a2

4𝑑n(𝑑 − 1)2R

)
. (2.11)

Note that, in G ∼ p, since the girth of  is greater than 2R (hence R
x,y and R

y,x are independent),

p(1 − q2) ≤ P(R
xy) ≤ p(1 − (q − 𝜀)2),
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and, using that q = (1 − p + pq)𝑑−1 and the mutual independence of R
x,y for all neighbors y of x in ,

1 − q(1 − p + pq) ≤ P(R
x ) ≤ 1 − (1 − p + p(q − 𝜀))𝑑.

We can therefore deduce that

1

2
p𝑑(1 − q2)n ≤ E[|E1(G)|] ≤ 1

2
p𝑑(1 − (q − 𝜀)2)n, (2.12)(

1 − q(1 − p + pq)
)
n ≤ E[|V1(G)|] ≤ (

1 − (1 − p + p(q − 𝜀))𝑑
)
n. (2.13)

Combining this with (2.9)-(2.10) implies that, in G ∼ p, with probability at least 1 − exp(−cn),

∑
∶|V()|≥2R

|E()| ≤ |E1(G)| ≤ (
1

2
p𝑑(1 − (q − 𝜀)2) + 𝜀

)
n, (2.14)∑

∶|V()|>𝑑R
|V()| ≤ |V1(G)| ≤ (

1 − (1 − p + p(q − 𝜀))𝑑 + 𝜀
)
n. (2.15)

(In particular, this gives upper bounds on |E(1(G))| and on |V(1(G))|.)
Next, we consider G′, and note that using (2.10) and (2.11), together with the analogs of (2.12) and

(2.13) for G′, yields

P

(|E1(G′)| < ( 1

2
p′𝑑(1 − q′2) − 𝜀)n

)
≤ exp(−cn), (2.16)

P
(|V1(G′)| < (1 − q′(1 − p′ + p′q′) − 𝜀)n

)
≤ exp(−cn). (2.17)

Claim 2.3. For every 𝜀, b, 𝑑 > 0 there exist c,R > 0 such that the following holds for large enough n.

If  is a regular (b, 𝑑)-expander with n vertices, and  is a collection of disjoint vertex subsets of ,

each of size at least R, then the probability that there exist two subsets 1,2 ⊂  , with a total of at

least 𝜀n vertices in each, and no path between them in H ∼ 𝜀, is at most exp(−cn).

Proof. By Menger’s Theorem and our hypothesis on the edge expansion of , for every two disjoint

subsets A,B ⊂ V() of size at least 𝜀n each, there are at least b𝜀n edge-disjoint paths between them in

. Since the total number of edges in  is 𝑑n∕2, it follows that for every two such subsets A,B,

there are at least
⌈

b𝜀
2

n
⌉

edge-disjoint paths of length at most
⌊

𝑑

b𝜀

⌋
between A,B in . (2.18)

In particular, this holds for every two subsets 1 and 2 of  each containing at least 𝜀n vertices. The

probability that none of these short paths between 1 and 2 survive in 𝜀 is at most

(
1 − 𝜀𝑑∕(b𝜀)

) 1

2
b𝜀n

≤ exp
[
− 1

2
b𝜀1+𝑑∕b𝜀n

]
.

Altogether, a union bound over at most 22n∕R possible pairs of subsets of  shows that the probability

that there exist 1,2 violating the statement of the claim is at most

exp
[(

R−12 log 2 − 1

2
b𝜀1+𝑑∕b𝜀

)
n
]
.

Taking R large enough completes the proof. ▪
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Corollary 2.4. For every 𝜀, b, 𝑑 > 0 there exist c,R > 0 so that the following holds for large
enough n. If is a regular (b, 𝑑)-expander on n vertices with girth greater than 2R, then with probability
1−O(e−cn) there exists a connected component  of G′ ∪F′ containing all but at most 2𝜀n vertices of
the set

V1(G′) ∶=
{

y ∈ V(G) ∶ R
x,y(G′) holds for some x ∈ V(G)

}
.

In particular,  contains all but at most 2𝜀n of the vertices V1(G′).

Proof. Let(G′) = {y(G′) ∶ y ∈ V1(G′)}, noting that every component in(G′) is of size at least R
by definition. By Claim 2.3, with probability at least 1−exp(−cn), one cannot partition (G′) into two

subsets 1,2, each of size at least 𝜀n, such that there will be no path connecting them in G = G′ ∪F′.

With this in mind, let U be a set of vertices obtained by collecting (in an arbitrary way) connected

components of (G′) in G, until |U∩V1(G′)| ≥ 𝜀n. Note that |U∩V1(G′)| < 𝜀n+ |∩V1(G′)|, where

 is a connected component in G (the last one that joined U). If | ∩ V1(G′)| ≤ |V1(G′)| − 2𝜀n, then

the sets 1 = U ∩ V1(G′) and 2 = V1(G′) ⧵ U (each of size at least 𝜀n) violate the above property. ▪

Note that, on the event stated in the above corollary, the component  contains all but at most

2𝜀𝑑n edges of E1(G′) (losing at most 𝑑 edges per vertex in V1(G′) ⧵ ). Therefore, using (2.16), with

probability at least 1 − exp(−cn) we have that  is of linear size, and moreover,

|E()| > 1

2
p′𝑑(1 − q′2)n − (2𝑑 + 1)𝜀n.

In particular, the component  belongs to the set of components in the left-hand side of (2.9), so

E() ⊆ E1(G), V() ⊆ V1(G).

By (2.14), the total number of edges in all components ′ ≠  with |′| ≥ 2R is at most

|E1(G) ⧵ E()| ≤ (
1

2
p𝑑(1 − (q − 𝜀)2) − 1

2
p′𝑑(1 − q′2)

)
n + (2𝑑 + 2)𝜀n.

For small enough 𝜀 > 0, the right-hand is at most 𝜀̃n, where 𝜀̃ ↓ 0 as 𝜀 ↓ 0. The proof of (2.7) is

therefore concluded by the fact that, for a small enough 𝜀 > 0, one has 𝜀̃ < 𝜂1∕2, whence the total

number of edges in components ′ ≠  with |′| ≥ 2R is strictly less than that in , thus in fact  = 1.

Finally, to establish (2.8), recall that, by (2.17), with probability at least 1 − exp(−cn) we have

|V()| ≥ |V1(G′)| − 2𝜀n ≥ (1 − q′(1 − p′ + p′q′) − 3𝜀)n.

Comparing this with the upper bound on |V1(G)| in (2.15), and recalling that p′ ↑ p and q′ ↑ q as

𝜀 ↓ 0, thereby concludes the proof of Proposition 2.2. ▪

From the proposition and (2.10) and (2.12), we deduce the required estimate on |E(1)|,
while (2.11) and (2.13) analogously imply the required estimate on |V(1)|.

Furthermore, from (2.7) we see that with probability 1− exp(−cn), at most 2𝜀n vertices in G ∼ p
have a discrepancy between their degree in 1 and that in E1(G). The statement of Theorem 2.1 that|Dk∕n − 𝛼k| < 𝜀 thus follows from the fact that, for every x and 1 ≤ k ≤ 𝑑, the probability that

#{y ∶ xy ∈ E1(G)} = k corresponds to 𝛼k (up to replacing 1−q by 1−q+𝜀 in that expression), as this

event occurs iff x has exactly k neighbors in G, out of which there exists at least one vertex y which

satisfies {|y(1 ⧵ {xy})| ≥ R − 1} (up to replacing R − 1 by R in the case k = 1).



936 KRIVELEVICH ET AL.

2.2 The 2-core of the giant component

Recall the definition of x,y in (2.3), and define

E2(H) = {xy ∈ E(H) ∶ R
x,y(H) ∩R

y,x(H) ∩ {xy ∈ E(H)}},

V2(H) = {x ∈ V(H) ∶ xy ∈ E2(H) for some y ∈ V(H)}.
(2.19)

The main result we wish to prove in this subsection is the following characterization of the 2-core

of a typical random graph G ∼ p. It consists of a local rule for inclusion of vertices and edges in


(2)
1
(G), the 2-core of its largest component, which determines it up to at most 𝜀n vertices. We also

show that all other components contribute a combined total of at most 𝜀n vertices to the 2-core of G.

(It is easy to see that, in both cases, a linear error of some 𝜀′n vertices must be allowed, for example,

when every vertex is part of a cycle of length O(R).)

Proposition 2.5. For every 𝜀, b > 0 and 𝑑 ≥ 3 there exist some R and c > 0 such that, if  is a
regular (b, 𝑑)-expander on n vertices with girth greater than 2R, and G ∼ p, then

P

(||E2(G)ΔE((2)
1
(G))|| > 𝜀n

)
≤ exp(−cn), (2.20)

P

(||V2(G)ΔV((2)
1
(G))|| > 𝜀n

)
≤ exp(−cn), (2.21)

whereas

P

(∑
i≥2

||(2)
i (G)|| > 𝜀n

)
≤ exp(−cn). (2.22)

Proof. First observe that, for any graph H with girth greater than 2R,⋃{
E
(
(2)) ∶  = x(H) for some x ∈ V(H)

}
⊂ E2(H);

indeed, for any such H and edge xy ∈ E(H), if R
x,y does not hold then the component y(H ⧵ {xy})

has size less than R, and hence it is a tree by the girth assumption, so xy cannot belong to the 2-core.

In particular, ⋃
i≥1

E
(

(2)
i (G)

)
⊂ E2(G) and

⋃
i≥1

V
(

(2)
i (G)

)
⊂ V2(G). (2.23)

Establishing the following bound (for some R, c depending on b, 𝑑, 𝜀) will allow us to conclude the

proof:

P

(|E((2)
1
(G))| > (1 − 𝜀) 1

2
𝑑p(1 − q)2n

)
= 1 − O(exp(−cn)). (2.24)

In order to see that this indeed implies the statement of the proposition, note that, as in the argument

preceding (2.10), applying Hoeffding’s inequality to the appropriate edge-exposure martingale (where

the Lipschitz constant is as before) implies that, if G ∼ p then

P (|E2(G)| − E[|E2(G)|]| ≥ a) ≤ exp

(
− a2

4𝑑n(𝑑 − 1)2R

)
, (2.25)



KRIVELEVICH ET AL. 937

where

1

2
𝑑p(1 − q)2n ≤ E[|E2(G)|] ≤ 1

2
𝑑p(1 − q + 𝜀)2n; (2.26)

thus, the combination of (2.23) and (2.24) will indeed imply (2.20), and in particular will also

give (2.21), as well as the upper bound (2.22) on the cumulative size of the 2-cores of 
(2)
i (G) for i > 1.

It remains to prove (2.24). As before, let p′ = p − 𝜀 > 1∕(𝑑 − 1) where 𝜀′ = 𝜀∕(1 − p′) such that,

if we take G′ ∼ p′ and F′ ∼ 𝜀′ then we can produce G ∼ p via E(F′) ∪ E(G′). The key to the

proof would be to randomly partition E() into EB ∪ ER—denoting EB as BLUE edges and ER as RED

edges—and then connect the appropriate proportion of edges (x, y) ∈ E() in the giant component

1(G) via one BLUE edge e and one RED path to establish that e ∈ E((2)
1
(G)). In what follows, if H is

a subgraph of , we let HB denote the (BLUE) subgraph of H whose edges are E(H)∩EB and, similarly,

we let HR denote the (RED) subgraph of H whose edges are E(H) ∩ ER.

Remark 2.6. In principle, to show that e ∈ E2(G′) is also in E((2)
1
(G)), one would only need to

show that e ∈ 1 and provide a path that connects the two clusters—each of size at least R—that

are at its endpoints without using said edge. However, we must resort to witnesses in the form of

a RED path between the endpoints x, y of the edge e which itself is BLUE due to our mechanism to

guarantee that e ∈ 1: the latter uses sprinkling (new edges in F′) to connect large clusters (ones

of size at least R) to one another, and potentially might use, for instance, the edge e to connect the

clusters of x and y. To remedy this, we independently color each edge of  in BLUE with some

probability 𝜀̂, for a lower bound on the number of BLUE edges in 
(2)
1
(G), which will turn out to

be asymptotically tight, despite insisting on sprinkling only RED edges to connect the large clusters

(see Remark 2.12).

The random partition E() = EB ∪ ER is defined as follows: we let each e ∈ E(), independently,

belong to EB with probability 𝜀̂, given by

𝜀̂ ∶= 3𝑑
√
𝜀, (2.27)

and further suppose that

𝜀̂ < 1

4
(24𝑑)−2∕b, (2.28)

which we may assume w.l.o.g. since the event we wish to estimate in (2.24) is monotone in 𝜀.

Our goal will be to show that the edges in the set

̂ ∶=
{

e ∈ E(G′
B) ∶ R

x,y(G′
R) ∩R

y,x(G′
R) holds

}
represent, up to an arbitrarily small error, an 𝜀̂-proportion of the 2-core 

(2)
1
(G). This would entail

adapting our strategy of connecting small components via sprinkling to be restricted to RED edges (so

we could guarantee e ∈ ̂ would be part of a cycle), towards which we introduce the following notion.

Definition 2.7 (k-Thick subsets). We say a subset S of vertices of a graph H is k-thick if there exists

a collection {Si} of disjoint connected subsets of H, each of size at least k, such that S =
⋃

Si.

The idea behind this definition is that, although R is not an expander—for instance, it contains a

linear proportion of isolated vertices—w.h.p., sets that are k-thick maintain edge expansion in R:
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Claim 2.8. Let  be a regular (b, 𝑑)-expander on n vertices, let 𝜀 > 0 and set EB,ER as above for 𝜀̂

as in (2.27). There exists k(𝜀, b, 𝑑) such that, with probability 1 − O(2−𝜀n),

#{(x, y) ∈ ER ∶ x ∈ S, y ∈ Sc} ≥
1

2
b|S| for every k-thick S ⊂ V() with 𝜀n ≤ |S| ≤ n∕2. (2.29)

Proof. By the edge expansion assumption, the probability that a given k-thick subset S as

above—denoting its size by s—violates the statement of the claim, is at most( ⌈bs⌉⌈bs∕2⌉
)
𝜀̂bs∕2 ≤ [(4 + o(1))𝜀̂]bs∕2 .

On the other hand, if m = ⌈s∕k⌉, then there are at most 22s(n
m

)
(e𝑑)s such subsets, as we may enumerate

over all possible ways to write s = s1 + · · · + sm for the subset sizes (some possibly empty; there are

at most m components since nonempty ones have size at least k), and then for each subset Si we first

root it in some vi ∈ V()—the total number of choices of these roots would be
(n

m

)
—and then specify

its spanning tree out of at most (e𝑑)si options (as all degrees are at most 𝑑; see, e.g., [5, Lem. 2]).

Hence, the probability that there exists some set S violating the statement of the claim is at most

∑
𝜀n≤s≤n∕2

[
(1 + o(1))

(
en
s∕k

)1∕k+o(1)

4e𝑑(4𝜀̂)b∕2

]s

≤
∑
s≥𝜀n

[
12𝑑(4𝜀̂)b∕2

]s
≤

∑
s≥𝜀n

2−s = O(2−𝜀n),

where we used that k is large enough such that 4e(e𝜀−1k)1∕k < 12, as well as (2.28). ▪

Using the above claim, we can produce a version of Claim 2.3 that will only consider ER for

sprinkling.

Claim 2.9. For every b, 𝑑, 𝜀 > 0 there are k, c > 0 such that the following holds. If  is a regular

(b, 𝑑)-expander on n vertices, E() = EB ∪ ER satisfying (2.29),  is a family of disjoint connected

subsets of , each of size at least k, and H ∼ 𝜀 independently, then with probability 1 − exp(−cn),
every two subsets 1,2 of  , with at least 𝜀n vertices in each, are connected by a path in HR.

Proof. Each of the subsets 1 and 2 addressed by the claim is by definition k-thick in  (by the

hypothesis on ) and contains at least 𝜀n vertices. Thus, for any such 1 and 2, if (U,Uc) is a minimal

cut separating these subsets of vertices in R (i.e., 1 ⊂ U and 2 ⊂ Uc for U minimizing the number

of edges between U,Uc in ER) then w.l.o.g. U is also k-thick and |U| ≤ n∕2 (suppose U is the smaller

part of the cut; we proceed by moving vertices that are not connected to 1 from U to Uc, noting that

this would not increase the cut size). Hence, (2.29) implies that there are, with probability 1−O(2−𝜀n),
at least

1

2
𝜀bn edges in this cut. By Menger’s Theorem, as in the proof of Claim 2.3, we thus conclude

that (2.18) holds for A = 1 and B = 2 with b∕2 replacing b, and the rest of the argument in the proof

of Claim 2.3 holds as before (with b replaced by b∕2). ▪

Following the same short proof of Corollary 2.4 with the single modification of using the above

claim instead of Claim 2.3 now yields its following analog w.r.t. sprinkling only RED edges.

Corollary 2.10. For every b, 𝑑, 𝜀 > 0 there are c,R > 0 so that the following holds. If  is a regular
(b, 𝑑)-expander on n vertices with girth greater than 2R, and E() = EB ∪ER satisfies (2.29), then with
probability 1 − O(e−cn), there is a component  of G′

R
∪ F′

R
containing all but at most 2𝜀n vertices of

V1(G′
R) ∶=

{
y ∈ V(G) ∶ R

x,y(G′
R) holds for some x ∈ V(G)

}
.
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Condition on the partition of E() into EB ∪ ER, and suppose that (2.29) holds (which occurs with

probability 1−O(exp(−cn)) as per Claim 2.8). Observe that if e = (x, y) ∈ ̂ then x, y ∈ V1(G′
R
) thanks

to the events R
y,x(G′

R
),R

x,y(G′
R
), respectively. By the last corollary, with probability 1−O(exp(−cn)),

all the edges of ̂ up to at most 2𝑑𝜀n will thus belong to some component  of G′∪F′
R
. Moreover, each

such edge is BLUE, and its endpoints will be connected in  by a RED path (in G′
R
∪ F′

R
). In particular,

with probability 1 − O(exp(−cn)), all but at most 2𝑑𝜀n edges of ̂ are in the 2-core of .

Note that, as argued above (2.12), the girth assumption on  implies that the events R
x,y and R

y,x
are independent, and by their definition these are also independent of the event {(x, y) ∈ EB} (which

occurs with probability 𝜀̂). Therefore, our bounds on P(R
x,y) yield

1

2
𝑑p′(1 − q′)2𝜀̂n ≤ E|̂ | ≤ 1

2
𝑑p′(1 − q′ + 𝜀)2𝜀̂n,

and, as argued before, the standard concentration estimate via the edge-exposure martingale yields

P

(|||̂ | − E|̂ ||| ≥ a
)
≤ exp

(
− a2

4𝑑n(𝑑 − 1)2R

)
,

so that, in particular, for some c(𝜀, 𝑑,R) > 0 and every sufficiently large n,

P

(|̂ | ≥ 1

2
𝑑p′(1 − q′)2𝜀̂n − 𝜀n

)
= 1 − O(exp(−cn)).

In conclusion, the aforementioned single (linear) component  with most of the edges of ̂ must w.h.p.

be the largest component 1 in light of our result in the previous section.

Denoting the number of edges and BLUE edges in the 2-core of 1(G), respectively, by

M ∶= |||E((2)
1
(G))||| and M̂ ∶= |||E((2)

1
(G)) ∩ EB

||| ,
we conclude from the above analysis of ̂ that, for some c(𝜀, 𝑑,R) > 0,

P

(
M̂ ≥

1

2
𝑑p′(1 − q′)2𝜀̂n − (2𝑑 + 1)𝜀n

)
= 1 − O(exp(−cn)).

At the same time, since the partition E() = EB ∪ ER was performed independently of G ∼ p, we

have that, conditional on G, the random variable M̂ is distributed as Bin(M, 𝜀̂). In particular,

P

(
M̂ ≤ M𝜀̂ + 𝜀n ∣ G

)
≥ 1 − exp

[
−(𝜀n)2∕(2M)

]
≥ 1 − exp

[
−(𝜀2∕𝑑)n

]
by Hoeffding’s inequality and the fact that M ≤ 𝑑n∕2 deterministically. Combining the last two

inequalities, it follows that, for some c(𝜀, 𝑑,R) > 0,

P

(
M ≥

1

2
𝑑p′(1 − q′)2n − (2𝑑 + 2)(𝜀∕𝜀̂)n

)
= 1 − O(exp(−cn)),

and the fact that (2𝑑+2)∕(𝜀∕𝜀̂) <
√
𝜀 by our definition of 𝜀̂ in (2.27) (so that, with this probability, M ≥

1

2
𝑑p′(1− q′)2n−

√
𝜀n, whereas before,

1

2
𝑑p′(1− q′)2 → 1

2
𝑑p(1− q)2 as 𝜀 → 0) now establishes (2.24)

and thereby concludes the proof of Proposition (2.5). ▪
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Remark 2.11. Note that our lower bound on |(2)
1
(G)|—which was tight up to at most 𝜀n

vertices—consisted of edges in the 2-core that lie on a cycle; thus, w.h.p. there are at most 𝜀n bridges

in 
(2)
1
(G).

Remark 2.12. A subtler aspect of the lower bound on |(2)
1
(G)| is that counted edges that are BLUE

and lie on cycles that, apart from this edge, are entirely RED; up to an arbitrarily small error, this

matched the correct number of edges in 
(2)
1
(G), where edges may lie on cycles that have mixed colors,

thus the effect of such mixed cycles is negligible! It is important to note that this is not the case for the

number of such cycles (e.g., consider the case when the girth tends to infinity), but rather for the sake

of determining whether a given edge is contained in such a cycle.

From Proposition 2.5, Equations (2.20), and (2.25) and (2.26), we deduce the required estimate

on |E((2)
1
)|. Moreover, with probability 1 − exp(−cn), at most 2𝜀n vertices in G ∼ p have a dis-

crepancy between their degrees in 
(2)
1
(G) and in E2(G). As before, the statement of Theorem 2.1

that |D∗
k∕n − 𝛽k| < 𝜀 follows from the fact that, for every x and k ≥ 2, the probability that

#{y ∶ xy ∈ E2(G)} = k corresponds to 𝛽k, as this occurs iff x has exactly k neighbors y in G such that

{|y((2)
1

⧵ {xy})| ≥ R}. (By (1.1), the expression for 𝛽k in (2.2) equals
(𝑑

k

)
pk(1 − q)k (1 − p + pq)𝑑−k,

that is, P(Bin(𝑑, p(1 − q)) = k).)

3 SECOND LARGEST COMPONENT

3.1 Proof of Theorem 2

Fix 𝑑 ≥ 3 and R ≥ 1, and let
1

𝑑−1
< p < 1 and 0 < 𝛼 < 1. We need the following result, which

(although it may be proved directly) follows immediately from our results in Section 2.

Claim 3.1. For every b > 0, 𝑑 ≥ 3 and
1

𝑑−1
< p < 1 there exist some c, 𝛿, 𝜀,R > 0 such that, if

 = (V ,E) is a regular (b, 𝑑)-expander on n vertices with girth at least R, then there exists a subset M
of at least 𝛿n vertex-disjoint edges of  such that the graph 0 = (V ,E ⧵ M) satisfies that G0 ∼ (0)p
contains a connected component of size at least 𝜀n with probability 1 − O(e−cn).

Proof. Using the notation in Section 2.2, let each edge in  be BLUE independently with probability

𝜀̂, as defined in (2.27) and RED otherwise; denote the RED and BLUE edges by ER and EB, respectively.

Corollary 2.10 guarantees that, with probability 1 − O(e−cn), the red graph R = (V ,ER) satisfies that

GR ∼ (R)p contains a component of size 𝜀n for some 𝜀 > 0. Finally, EB is of size at least (𝜀̂∕2)𝑑n∕2

with probability 1 − O(e−cn), whence, in particular, it contains a matching M of size at least 𝜀̂n∕4. ▪

Our construction of a regular (b, 𝑑)-expander  on n vertices is as follows.

• Fix some arbitrary b1 > 0. Let R1 be the maximum of R and the girth requirement from Theorem 1

w.r.t. 𝜀 = 𝜃1∕2, and construct an expander H1 on n1 ≍ n𝛼 vertices with girth at least R1, where

n̂1 ≍ n𝛼 vertices have degree 2 and the rest have degree 𝑑, in the following way: As per Claim 3.1,

let H1 be obtained from a regular (b1, 𝑑)-expander on n1 = ⌊n𝛼⌋ vertices with girth at least R1 by

subdividing each of the edges of M (given by that claim) into a path of length 2 via a new degree-2

vertex (for a total of n̂1 ≍ n𝛼 new degree-2 vertices). Let V̂1 denote the n̂1 vertices of degree 2 in H1.

• On each vertex v ∈ V̂1 in H1: connect it via new edges to 𝑑−2 new (𝑑−1)-ary trees Tv, each of depth

h =
⌈

1

2
(1 − 𝛼) log𝑑−1 n

⌉
.
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• Let F be a 𝑑-regular graph on m vertices, for some fixed m, with girth at least R—e.g., for

concreteness, the Erdős-Sachs [9] graph—and an arbitrary edge (x, y) removed from it. Take

L =
⌈

2 + 𝛼

(1 − 𝛼) log𝑑−1(1∕p)

⌉
,

and replace every edge (a, b) of each (𝑑 − 1)-tree Tv by a path of L copies of F (with {(xi, yi)}L
i=1

denoting their deleted edges), where adjacent copies have yi connected to xi+1 by a new edge, the

vertex a is connected by a new edge to x1, and b is connected by a new edge to yL.

Note that this did not modify any of the degrees in the original vertices of the (𝑑 − 1)-ary tree

Tv (which are thus 𝑑 everywhere except for the degree-1 leaves).

• Identify each of the n̂2 ≍ n
1

2
(1+𝛼) total leaves in all trees Tv as above, in an arbitrary way, to the

vertices of one final regular b2-expander H2 with n̂2 vertices of degree 𝑑 − 1 and n2 vertices of

degree 𝑑, whose girth is at least R1, where n2 ≍ n is such that altogether there are n vertices.

It is easy to see that the  is a regular (b, 𝑑)-expander for some fixed b > 0, depending only on

b1, b2, 𝑑, as every set of s vertices must have at least s∕3 vertices belong either to H1, or to the interior

vertices of the trees {Tv ∶ v ∈ H1}, or to H2, thus the required expansion can be inferred from the one

within that corresponding expander (out of the three) by itself. It remains to examine p.

By Theorem 1, the size of the largest component 1 in (H1)p is of order n𝛼 (thanks to Claim 3.1)

with probability at least 1 − exp(−cn𝛼). Each vertex v of this component connects to H2 in p (i.e.,

there is a path in (Tv)p from the root to one of the leaves) with probability at most (𝑑 − 1)hphL; thus,

the probability that H1 is connected to H2 in p is at most

n̂2 phL ≍ n(1+𝛼)∕2phL ≤ n−1∕2 = o(1).

Furthermore, the size of this augmented component in p is stochastically dominated by the combined

size of O(n𝛼) i.i.d. GW-trees with offspring distribution Bin(𝑑 − 1, pL) (multiplied by an extra factor

of L|V(F)| = O(1) due to the L copies of the graph F). Since pL < 𝑑−2, in particular these GW-trees

are subcritical, hence the size of this component is of order n𝛼 w.h.p.

On the other hand, the entire graph has girth at least R and is a 𝑑-regular expander, hence contains

a linear component with probability at least 1 − exp(−cn) by Theorem 1. ▪

Remark 3.2. In the above construction, unlike the case of (n, p), some edges can have a polynomi-

ally small probability of belonging to the giant, even though the girth can be made arbitrarily large and

in particular the local neighborhoods (to an arbitrary distance) look all alike.

3.2 Proof of Theorem 3

The basic building block in the construction, which was already used for the construction in the proof

of Theorem 2, is the tree T(k, h, h∗,L∗), for integers k ≥ 2 and h, h∗,L∗ ≥ 1, obtained by

(a) taking a k-ary tree with h levels, and

(b) subdividing all edges between parent nodes in the last h∗ levels (i.e., in every level j ≥ h − h∗)

and their children to a path of length L∗.

Let 0 < p < 1, fix some sufficiently small 𝜀 > 0, and set

𝑑 ∶= ⌈(1∕p)2∕𝜀⌉, (3.1)
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and define

hn ∶= ⌊log𝑑 n⌋, 𝛼 ∶=
⌈
𝜀−1 log1∕p 𝑑

⌉
, 𝛽 ∶=

⌈
2 log1∕p 𝑑

⌉
.

With these notations, our construction is the following graph  on |V()| ≍ n vertices.

(i) Let T1 = T(𝑑, hn, ⌊𝜀hn⌋, 𝛼). Denote its root by v and its leaves by {u′
1
,… , u′

N} (so n∕𝑑 < N ≤ n).

(ii) Let T2 = T(𝑑, hn, ⌊𝜀hn⌋, 𝛽) and denote its leaves by {u′′
1
,… , u′′

N}.

(iii) Let F be the graph formed by taking some (arbitrary) 𝑑-regular expander F0 on the vertex set

{w1,… ,wN}, and then subdividing each edge of F0 into a path of length 𝛽.

(iv) Add the edges (u′
i ,wi) and (u′′

i ,wi) for all i = 1,… ,N.

Claim 3.3. For large enough n, the graph  above satisfies diam() ≤ (1 + 6𝜀) log1∕p n.

Proof. First note that the height of T2 is

𝓁2 ∶= hn + (𝛽 − 1)⌊𝜀hn⌋ ≤ log𝑑 n + 2𝜀 log1∕p n ≤
5

2
𝜀 log1∕p n,

where we used the fact that log𝑑 n < (𝜀∕2) log1∕p n by (3.1). Therefore

dist(x, y) ≤ R ∶= 2𝓁2 + 𝛽 + 2 = 5𝜀 log1∕p n + O(1) for every x, y ∈ V(F) ∪ V(T2),

where the additive 𝛽 + 2 accounts for possibly traversing from the vertex x to the closest vertex wi to

it and then to vi (at total distance at most 𝛽∕2 + 1 from x), and similarly for y.

Next, consider x ∈ V(T1) vs. y ∈ V(F) ∪ V(T2). If u′
i is some descendent of x in the tree T1, then

as established above, dist(y, u′
i) ≤ R, while dist(x, u′

i) is at most the height of T1, given by

𝓁1 ∶= hn + (𝛼 − 1)⌊𝜀hn⌋ ≤ log𝑑 n + log1∕p n ≤ (1 + 𝜀∕2) log1∕p n,

and overall

dist(x, y) ≤ 𝓁1 + R for every x ∈ V(T1) and y ∈ V(F) ∪ V(T2).

Finally, consider x, y ∈ V(T1), let u′
i and u′

j be some descendants of x, y, respectively, and write 𝑑x =
dist(x, u′

i) and 𝑑y = dist(y, u′
j). If 𝑑x + 𝑑y ≤ 𝓁1, then dist(x, y) ≤ 𝑑x + 𝑑y + dist(u′

i , u
′
j) ≤ 𝓁1 + R, and

otherwise dist(x, y) ≤ dist(v, x) + dist(v, y) ≤ (𝓁1 − 𝑑x) + (𝓁2 − 𝑑y) < 𝓁1, thus overall,

dist(x, y) ≤ 𝓁1 + R for every x ∈ V(T1) and y ∈ V().

Plugging in the values of 𝓁1 and R we see that diam() ≤ 𝓁1 +R ≤ (1+6𝜀) log1∕p n for all sufficiently

large n (absorbing the additive O(1)-term in R via the increased pre-factor of 𝜀 log1∕p n), as required. ▪

Claim 3.4. W.h.p., the random graph G ∼ p satisfies |1(G)| ≤ n1−𝜀∕3.

Proof. Let U1 denote the vertices x ∈ V() which are at distance at most (1 − 𝜀∕2 + 𝛼𝜀∕2)hn from

v, the root of T1 (these are the vertices of the subtree of T1 in the first (1 − 𝜀∕2)hn levels of the tree

before the subdivision, as well as the new vertices in the subdivided edges between them). Similarly,

let U2 denote the vertices x ∈ V() whose distance from the root of T2 is at most (1 − 𝜀∕2 + 𝛽𝜀∕2)hn,

and let U3 = V() ⧵ (U1 ∪ U2). By construction, |Ui| = O(𝑑(1−𝜀∕2)hn) = O(n1−𝜀∕2) for i = 1, 2.
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At the same time, if x ∈ U3 then exploring the neighborhood of x in  via Breadth-First-Search

reveals edges that were subdivided (in either F, T1 or T2) into paths of length at least 𝛽, to within depth

(prior to the subdivision) of at least 𝓁 ∶= ⌈(𝜀∕2)hn⌉. In particular, this exploration process in G ∼ p
is stochastically dominated by a Galton-Watson tree with offspring variable Bin(𝑑, p𝛽). Thus, if 𝜁i are

i.i.d. such random variables, and Λ is the total progeny of this Galton-Watson tree, then

P(Λ > k) ≤ P

( k∑
i=1

(𝜁i − 1) ≥ 0

)
≤ P

(
Bin(k𝑑, p𝛽) ≥ k

)
≤

(
k𝑑
k

)
p𝛽k ≤

(
e𝑑p𝛽

)k
,

which, for k = 𝓁 and using p𝛽 < 𝑑−2, is at most (𝑑∕e)−𝓁 = O
(
n− 2

5
𝜀
)

provided that 𝜀 is sufficiently

small. So, if U′
3
= {x ∈ U3 ∶ |x(G)| > 𝓁}, then E|U′

3
| = O(n1− 2

5
𝜀). As |1(G)| ≤ max{𝓁, |U1| +|U2| + |U′

3
|}, we find that E|1(G)| = O(n1− 2

5
𝜀), which implies the statement of the claim. ▪

Claim 3.5. For large enough n, the random graph G ∼ p satisfies

P
(
diam(v(G)) > (1 − 𝜀) log1∕p n

)
≥ 1 − 𝜀.

Proof. Let A denote the vertices of T1 at distance h∗
n = hn − ⌊𝜀hn⌋ from its root v, and let B be the

set of vertices whose distance from v, prior to the subdivision of the edges of the tree T1, was h∗
n + 𝓁,

where 𝓁 = ⌊(𝜀 − 2𝜀2)hn⌋. The probability that percolation on the subtree of T1 rooted at some x ∈ A
survives to intersect B is at least

p𝛼𝓁 ≤ 𝑑−𝜀−1(𝜀−2𝜀2)hn = n−1+2𝜀.

Recall that, if Zt is the size of generation t in a Galton-Watson tree with offspring variableBin(𝑑, p),
such that m = 𝑑p > 1 and its extinction probability is 0 < q < 1, then Ztm−t converges a.s. as

t → ∞ to a random variable W which, except for a mass of 1 − q at W = 0, has an absolutely

continuous distribution on (0,∞) (see, e.g., [2, sec. I.12]). In particular, there exists 𝛿 > 0 such that

P(Zt ≥ 𝛿mt) > 1− q− 𝜀∕3 for every sufficiently large t. Furthermore, since q is monotone decreasing

in 𝑑, our choice of 𝑑 in (3.1) readily implies (recall (1.1)) that q < 𝜀∕3 provided 𝜀 is small enough,

thus overall P(Zt ≥ 𝛿mt) > 1 − 2

3
𝜀 for every large enough t. Specialized to our setting, we take t = h∗

n,

and noting that

mh∗n ≥ 𝑑−1n1−𝜀p(1−𝜀) log𝑑 n ≥ 𝑑−1n1− 3

2
𝜀+ 1

2
𝜀2

(using that log(1∕p) < 1

2
𝜀 log 𝑑 by (3.1)), we infer that the following bound on the size of A′, the set

of all vertices x ∈ A such that there exists a path from v to x in G: for every sufficiently large n,

P

(|A′| ≥ n1− 3

2
𝜀
)
≥ 1 − 2

3
𝜀.

On the event |A′| ≥ n1− 3

2
𝜀, the size of the set B′ of vertices y ∈ B that are connected to v in G

stochastically dominates a random variable Z ∼ Bin(n1− 3

2
𝜀, n−1+2𝜀) by our bound on the event that the

subtree of x ∈ A survives the percolation to intersect B. Since Z > 0 w.h.p. (being concentrated around

n𝜀∕2), it then follows that P(B′ ≠ ∅) ≥ 1− 2

3
𝜀−o(1), whereas every vertex y ∈ B′ ∩v(G) would imply

that

diam(v(G)) ≥ dist(v, y) ≥ h∗
n + 𝛼𝓁 > (1 − 2𝜀) log1∕p n. ▪
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As argued in the proof of Theorem 2, the graph obtained by connecting the expander F to

Ti is clearly also an expander, hence (iterating this) so is the entire graph . The combination of

Claims 3.3, 3.4 and 3.5 thus concludes the proof of Theorem 3. ▪

4 SEPARATORS, LONG PATHS, AND COMPLETE MINORS

In this section we research further typical properties of a random subgraph of a high girth constant

degree expander. The properties are: nonexistence of a small separator, existence of a linearly long

path, and existence of a large complete minor. The results obtained are “soft,” so to say, and lack the

precision of the conclusions of Theorem 1; still, we believe they are of interest and complement nicely

the more accurate results. We start with arguing that a random subgraph of a high girth constant degree

expander typically has all its separators linear in n. Given a graph G = (V ,E) on n vertices, a vertex

set S ⊂ V is called a separator if there is a partition V = A ∪ B ∪ S of the vertex set of G such that

G has no edges between A and B, and |A|, |B| ≤ 2n∕3. Separators serve to measure quantitatively the

connectivity of large vertex sets in graphs; the fact that all separators in G are large indicates that it is

costly to break G into large pieces not connected by any edge.

Theorem 4.1. Fix 𝑑 ≥ 3 and 1

𝑑−1
< p < 1. For every b > 0 there exist some 𝛿, c1,R > 0 such that, if

 is a regular (b, 𝑑)-expander on n vertices with girth exceeding R, then with probability 1−O(e−c1n),
the largest connected component 1 of the random graph G ∼ p has no separator of size at most 𝛿n.

Proof. We first describe the idea of the proof. We will argue that if G ∼ p has a small separator S,

then by deleting all edges touching S we get a graph G′ ∼ p′ without a connected component of size

as large as dictated by Theorem 1, for some
1

𝑑−1
< p′ < p. Since deleting a relatively small number

of edges touching S incurs a relatively small penalty when going from G to G′, we will thus conclude

that the probability of G to have a small separator must be exponentially small to begin with.

Now we provide a full proof, implementing rigorously the above described outline. For
1

𝑑−1
< p′ <

p, to be chosen momentarily, denote

𝜃1 ∶= 𝜃1(p), 𝜃′
1
∶= 𝜃1(p′),

where we apply (1.2) to define 𝜃1, 𝜃
′
1
. Choose p′ so 𝜃′

1
= 5

6
𝜃1 (this is possible by the continuity of

𝜃1(p)), and let

𝜌 =
p′

p
.

Notice that a random graph G′ ∼ p′ can be obtained first by drawing a random graph G ∼ p, and

then by retaining every edge of G with probability 𝜌 independently.

Let  be the following event addressing G ∼ p for some (small enough) 𝛿 > 0 to be set later:

 =
{
∃ S ⊂ [n] : |S| ≤ 𝛿n and |1(G ⧵ S)| ≤ 11

15
𝜃1n

}
,

and let  be the following event addressing G′ ∼ p′ :

 =
{|V(1(G′))| ≤ 11

15
𝜃1n

}
.
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Suppose G satisfies , and choose S as in the definition of . There are at most 𝑑|S| ≤ 𝛿𝑑n edges

touching S in G. The probability to erase all these edges when going from G to G′ is at most (1−𝜌)𝛿𝑑n.

However, if none of these edges belongs in G′, then |1(G′)| ≤ 11

15
𝜃1n = 22

25
𝜃′

1
n. It thus follows that

P() ≥ P() (1 − 𝜌)𝛿𝑑n.

On the other hand, by Theorem 1, the order of 1(G′) is very close to 𝜃′
1
n with probability exponentially

close to 1, making the event  exponentially unlikely. Specifically, applying Theorem 1 in p′ with

𝜀 = 3

25
𝜃′

1
, we have P() ≤ Ce−cn for C, c > 0. Hence,

P() ≤ Ce−cn (1 − 𝜌)−𝛿𝑑n ≤ e−c′n,

for 𝛿 > 0 small enough (as a function of other parameters).

Finally, observe that if G ∼ p does not satisfy , then for every subset S of at most 𝛿n vertices, the

graph G−S has some connected component of size more than
11

15
𝜃1n. Invoking Theorem 1 once again,

this time in p with 𝜀 = 1

10
𝜃1, we derive that with probability exponentially close to 1, the random

graph G ∼ p does not satisfy , and its largest connected component satisfies |1(G)| ≤
11

10
𝜃1n.

Therefore, in this case, recalling the definition of a separator, we derive that no subset S of at most 𝛿n
vertices can be a separator in 1(G). ▪

As we have indicated, nonexistence of small separators is a key fact in deriving other typical prop-

erties of (the giant component) of a percolated high girth expander in the super-critical regime. They

are given in the following two corollaries.

Corollary 4.2. Fix 𝑑 ≥ 3 and 1

𝑑−1
< p < 1. For every b > 0 there exist some 𝛿, c,R > 0 such that,

if  is a regular (b, 𝑑)-expander on n vertices with girth exceeding R, then with probability at least
1 − exp(−cn), the random graph G ∼ p contains a path of length at least 𝛿n.

Proof. We need the following result (see, e.g., [12, Prop. 2.1], including a simple proof).

Lemma 4.3. Let k, l be positive integers. Assume G = (V ,E) is a graph on more than k vertices,
where every A ⊂ V of size |A| = k has at least l neighbors in V ⧵A. Then G contains a path of length l.

According to Theorems 1 and 4.1, with probability exponentially close to 1, the giant component

1 of G ∼ p is of size close to 𝜃1n and has no separator of size at most 𝛿n; we can assume 𝛿 ≪ 𝜃1. Let

A be a subset of 1 of cardinality |A| = |V(1)|∕3. Then by the definition of a separator, A has at least

𝛿n neighbors outside. It thus follows by Lemma 4.3 that 1 contains a path of length at least 𝛿n. ▪

As it frequently happens in random graphs, getting a linearly long cycle from a linearly long path

is pretty easy, here is a brief sketch of the argument. Choose
1

𝑑−1
< p′ < p < 1 and argue that a random

graph G ∼ p′ has w.h.p. a path P of length 𝛿′n, for some constant 𝛿′ > 0. Let P1,P2 be the first and

the last thirds of P, respectively. Then by applying Menger’s Theorem to the base graph , we derive

that it contains linearly many constant length paths between V(P1) and V(P2). With high probability at

least one of these short paths survives sprinkling (taking us from p′ to p); its union with P contains

a linearly long cycle.

We now discuss embedding complete minors in percolated expanders. Let G = (V ,E), and let

t > 0 be an integer. We say that G contains a minor of the complete graph Kt if there is a collection

(V1,… ,Vt) of pairwise disjoint vertex subsets in V such that each Vi spans a connected subgraph in G,
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and in addition G has an edge between every pair of subsets Vi,Vj. Observe trivially that if G contains

a minor of Kt, then |E(G)| ≥ ( t
2

)
; this trivial bound provides an obvious but meaningful benchmark

for minor embedding statements.

Kawarabayshi and Reed proved in [11] that a graph G on n vertices has a minor of the complete

graph Kh or a separator of order O(h
√

n). Since by Theorem 4.1 the random graph G ∼ p has all

separators of size at least 𝛿n in its giant component 1 (whose size is much larger than 𝛿n by Theorem 1)

with probability exponentially close to 1, we conclude:

Corollary 4.4. Fix 𝑑 ≥ 3 and 1

𝑑−1
< p < 1. For every b > 0 there exist some 𝛿, c,R > 0 such that, if

 is a regular (b, 𝑑)-expander on n vertices with girth exceeding R, then with probability 1 − O(e−cn),
the random graph G ∼ p contains a minor of K𝛿

√
n.

The order of magnitude for the maximal h such that G contains a minor of Kh is obviously optimal,

as the base graph  has only linearly many edges to begin with.
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