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1. Introduction

A celebrated theorem by Dirac [3] asserts the existence of a Hamilton cycle whenever 
the minimum degree of a graph G, denoted δ(G), is at least n2 . Moreover, this is best 
possible as can be seen from the complete bipartite graph K�n−1

2 �,�n+1
2 �. Dirac’s theorem 

is one of the most influential results in the study of Hamiltonicity of graphs and has seen 
generalisations in many directions over the years (for some examples consider surveys 
[6,8,11] and references therein). In this paper we discuss one such direction by considering 
what conditions ensure that we can find various 2-factors in G. Here, a 2-factor is a 
spanning 2-regular subgraph of G or equivalently, a union of vertex-disjoint cycles that 
contains every vertex of G and hence, 2-factors can be seen as a natural generalisation of 
Hamilton cycles. Brandt, Chen, Faudree, Gould and Lesniak [1] proved that for a large 
enough graph the same degree condition as in Dirac’s theorem, δ(G) ≥ n/2, allows one 
to find a 2-factor with exactly k cycles.

Theorem 1.1. If k ≥ 1 is an integer and G is a graph of order n ≥ 4k such that δ(G) ≥ n
2 , 

then G has a 2-factor consisting of exactly k cycles.

Once again, this theorem gives the best possible bound on the minimum degree, 
using the same example as for the tightness of Dirac’s theorem above. This indicates 
that perhaps if we restrict our attention to Hamiltonian graphs, thereby excluding this 
example, a smaller minimum degree might be enough. That this is in fact the case was 
conjectured by Faudree, Gould, Jacobson, Lesniak and Saito [5].

Conjecture 1.2. For any k ∈ N there are constants ck < 1/2, nk and ak such that any 
Hamiltonian graph G of order n ≥ nk with δ(G) ≥ ckn +ak contains a 2-factor consisting 
of k cycles.

Faudree et al. prove their conjecture for k = 2 with c2 = 5/12.
The conjecture was shown to be true for all k by Sárközy [10] with ck = 1/2 −ε for an 

uncomputed small value of ε > 0. Györi and Li [7] announced that they can show that 
ck = 5/11 + ε suffices. The best known bound was due to DeBiasio, Ferrara and Morris 
[2] who show that ck = 2

5 + ε suffices.
On the other hand no constructions of very high degree Hamiltonian graphs without 

2-factors of k cycles are known. Faudree et al. [5] say “we do not know whether a linear 
bound of minimum degree in Conjecture 1.2 is appropriate”. Sarközy [10] says “the 
obtained bound on the minimum degree is probably far from best possible; in fact, the 
“right” bound might not even be linear”. DeBiasio et al. [2] say “one vexing aspect of 
Conjecture 1.2 and the related work described here is that it is possible that a sublinear, 
or even constant, minimum degree would suffice to ensure a Hamiltonian graph has a 
2-factor of the desired type”. In particular, in [2,5,10] they all ask the question of whether 
the minimum degree needs to be linear in order to guarantee a 2-factor consisting of k



152 M. Bucić et al. / Journal of Combinatorial Theory, Series B 144 (2020) 150–166
cycles. We answer this question by showing that the minimum degree required to find 
2-factors consisting of k cycles in Hamiltonian graphs is indeed sublinear in n.

Theorem 1.3. For every k ∈ N and ε > 0, there exists N = N(k, ε) such that if G is a 
Hamiltonian graph on n ≥ N vertices with δ(G) ≥ εn, then G has a 2-factor consisting 
of k cycles.

1.1. An overview of the proof

We now give an overview of the proof to help the reader navigate the rest of the paper.
In the next section we will show that any 2-edge-coloured graph G on n vertices 

with minimum degree being linear in both colours contains a blow-up of a short colour-
alternating cycle. This is an auxiliary result which we need for our main proof. There, we 
also introduce ordered graphs and show a result which, given an ordering of the vertices 
of G allows us to find a blow-up as above that is also consistent with the ordering, 
meaning that given two parts of the blow-up, vertices of one part all come before the 
other.

The main part of the proof appears in Section 3. The key idea is given a graph G with 
a Hamilton cycle H = v1 . . . vnv1, to build an auxiliary 2-edge-coloured graph A whose 
vertex set is the set of edges ei = vivi+1 of H and for any edge vivj ∈ G \H we have a 
red edge between ei and ej and a blue edge between ei−1 and ej−1 in A.2 The crucial 
property of A is that given any vertex disjoint union of colour-alternating cycles S in A
one can find a 2-factor F (S) in G, consisting of the edges of H which are not vertices of 
S and the edges of G not in H which gave rise to the edges of S in A.

However, we can not control the number of cycles in F (S) (except knowing that F (S)
has at most |S| cycles), since it depends on the structure of S and also on how S is 
embedded within A. To circumvent this issue we will find instead a large blow-up of S. 
Then within this blow-up we show how to find a modification of S denoted S+ which 
has the property that F (S+) has precisely one cycle more than F (S). Similarly, we find 
another modification S− such that the corresponding 2-factor F (S−) has precisely one 
cycle less than F (S). Since the number of cycles in F (S) is bounded, if our blow-up of S
is sufficiently large we can perform these operations multiple times and therefore obtain 
a 2-factor with the target number of cycles.

2. Preliminaries

Let us first fix some notation and conventions that we use throughout the paper. For 
a graph G = (V, E), let δ(G) denote its minimum degree, Δ(G) its maximum degree 
and d(v) the degree of a vertex v ∈ V . For us, a 2-edge-coloured graph is a triple G =
(V, E1, E2) such that both G1 = (V, E1) and G2 = (V, E2) are simple graphs. We always 

2 For interpretation of the colours, the reader is referred to the web version of this article.
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think of E1 as the set of red edges and of E2 as the set of blue edges of G. Accordingly, we 
define δ1(G) to be the minimum degree of red edges of G (that is δ(G1)), and analogously 
Δ1(G), δ2(G), etc. Note that with our definition the same two vertices may be connected 
by two edges with different colours. In this case, we say that G has a double edge. A blow-
up G(t) of a 2-edge coloured graph G (with no two vertices joined by both a red and a blue 
edge) is constructed by replacing each vertex v with a set of t independent vertices and 
adding a complete bipartite graph between any two such sets corresponding to adjacent 
vertices in the colour of their edge. When working with digraphs we always assume they 
are simple, so without loops and with at most one edge from any vertex to another (but 
we allow edges in both directions between the same two vertices).

2.1. Colour-alternating cycles

In this subsection, our goal is to prove that any 2-edge-coloured graph, which is dense 
in both colours contains a blow-up of a colour-alternating cycle. We begin with the 
following auxiliary lemma that will only be used in the subsequent lemma where we will 
apply it to a suitable auxiliary digraph to give rise to many colour-alternating cycles.

Lemma 2.1. Let k ≥ 2 be a positive integer. A directed graph on n vertices with minimum 
out-degree at least n log(2k)

k−1 has at least n�

2k�+1 cycles of length � for some 2 ≤ � ≤ k.

Proof. Let us sample k vertices v1, . . . , vk from V (G), independently, uniformly at ran-
dom, with repetition. We denote by Xi the event that vertex vi has no out-neighbour in 

S := {v1, . . . , vk}. We know that P (Xi) ≤
(
1 − log(2k)

k−1

)k−1
≤ 1

2k . If no Xi occurs then 
the subgraph induced by S has minimum out-degree at least 1 so contains a directed 
cycle. The probability of this occurring is at least:

P
(
X1 ∩ . . . ∩Xk

)
= 1 − P (X1 ∪ . . . ∪Xk) ≥ 1 − kP (Xi) ≥ 1/2,

where we used the union bound. This means that in at least nk/2 outcomes we can find 
a cycle of length at most k within S. In particular, there is an � ≤ k such that in at least 
nk

2k outcomes the cycle we find has length exactly �. Note that the same cycle might have 
been counted multiple times, but at most k�nk−� times. This implies that C� occurs at 
least n�

2k�+1 times. �
Now, we use this lemma to conclude that there are many copies of some short colour-

alternating cycle in any 2-edge-coloured graph which has big minimum degree in both 
colours.

Lemma 2.2. For every γ ∈ (0, 1) there exist c = c(γ), L = L(γ) and K = K(γ) such that, 
if G is a 2-edge-coloured graph on n ≥ K vertices satisfying δ1(G), δ2(G) ≥ γn, then G
contains at least cn� copies of a colour-alternating cycle of some fixed length 4 ≤ � ≤ L.
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Proof. Let k = 8/γ2 log(8/γ2) so that γ2/4 ≥ log(2k)/(k−1). We set L = 2k, K = 8k/γ2

and c = (γ/2)2k/(4kk+1). We build a digraph D on the same vertex set as G by placing 
an edge from v to u if and only if there are at least γ2n/2 vertices w such that vw is red 
and wu is blue.

Let us first show that every vertex of D has out-degree at least γ2n/4. There are at 
least γn red neighbours of v and each has γn blue neighbours so there are at least γ2n2

red-blue paths of length 2 starting at v. Let us assume that there are less than γ2n/2
vertices u such that there are at least γ2n/2 vertices w such that vw is red and wu is 
blue. In this case there are less than γ2n/2 · n + n · γ2n/2 red-blue paths starting at 
v which is a contradiction. Note that we allowed u = v in the above consideration so 
we deduce that minimum out-degree in D is at least γ2n/2 − 1 ≥ γ2n/4. The previous 
lemma implies that there is some � ≤ k such that D contains at least n�/(2k�+1) copies 
of C�.

For any such cycle by replacing each directed edge by a red-blue path of G between 
its endpoints, ensuring we don’t reuse a vertex, we obtain at least (γ2n/2 − �)(γ2n/2 −
� − 1) · · · (γ2n/2 − 2� + 1) ≥ (γ/2)2�n� colour-alternating C2�’s in G. Noticing that each 
such C2� may arise in at most 2 different ways from a directed C� of D we deduce that 
there are at least n�/(2k�+1) · (γ/2)2�n�/2 ≥ c(γ)n2� colour-alternating C2�’s in G. �

The reason for formulating the above lemma is that we can deduce the existence of the 
blow-up of a cycle from the existence of many copies of this cycle using the hypergraph 
version of the celebrated Kővári-Sós-Turán theorem proved by Erdős in [4]:

Theorem 2.3. Let �, t ∈ N. There exists C = C(�, t) such that any �-graph on n vertices 
with at least Cn�−1/t� edges contains K(�)(t), the complete �-partite hypergraph with parts 
of size t, as a subgraph.

We are now ready to find our desired blow-up.

Lemma 2.4. For every γ ∈ (0, 1) and t ∈ N, there exist positive integers L = L(γ) and 
K = K(γ, t) such that, if G is a 2-edge-coloured graph on n ≥ K vertices satisfying 
δ1(G), δ2(G) ≥ γn, then G contains C(t6L) where C is a colour-alternating cycle with 
|V (C)| ≤ L.

Proof. Let L = L(γ), c = c(γ), K ≥ K(γ) be parameters of Lemma 2.2 so that we can 
find cn� copies of a colour-alternating cycle of length 4 ≤ � ≤ L. Let C = C(L, t6L) ≥
C(�, t6L) be the parameter given by Theorem 2.3. By assigning each vertex of V (G) into 
one of � parts uniformly at random we can find a partition of V (G) into V1, . . . , V� such 
that there are cn�/�� colour-alternating cycles v1 . . . v� with vi ∈ Vi. We also know that at 
least half of these cycles always use edges of the same colour between all Vi, Vi+1. We now 
build an �-graph H on the same vertex set as G whose edges correspond to sets of vertices 
of such colour-alternating cycles. So we know H has at least c

�n
� ≥ Cn�−1/(t�·6�L) many 
2�
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edges, by taking K large enough, depending on t, L. So Theorem 2.3 implies that H
contains K(�)(t6L) as a subgraph, which corresponds to a desired C(t6L). �
2.2. Ordered graphs

In our arguments it will not be enough to just find a blow-up of a colour-alternating 
cycle as in the previous subsection; we will also care about the “order” in which the 
cycles are embedded. In this section we give some notation about ordered graphs and a 
result which we will need later.

An ordered graph is a graph together with a total order of its vertex set. Here, whenever 
G is a graph on an indexed vertex set V (G) = {v1, . . . , vn}, we assume that G is ordered 
by vi < vj ⇐⇒ i < j. An ordered subgraph of an ordered graph G is a subgraph of 
G that is endowed with the order that is induced by G and if not stated otherwise, we 
assume that subgraphs of G are always endowed with that order. For us, two vertices 
u < v of an ordered graph G are called neighbouring, if the set of vertices between u and 
v, that is {x ∈ V (G)|u ≤ x ≤ v}, is either just {u, v} or the whole vertex set V (G).

Given an ordered graph G we say a blow-up H = G(k) of G is ordered consistently if 
for any x, y ∈ V (H) which belong to parts of the blow-up coming from vertices u, v ∈ G

respectively we have x <H y iff u <G v.

Lemma 2.5. Let t, L ∈ N, H be a graph on L vertices and H(t2L) ⊆ G for an ordered 
graph G. There exists an ordering of H for which the consistently ordered H(t) is an 
ordered subgraph of G.

Proof. We prove the result by induction on L, where the L = 1 case is immediate. Let 
{V1, . . . , VL} be the clusters of vertices of H(t2L), so |Vi| = t2L. Let w1, . . . , wp be the 
median vertices of the sets V1, . . . , Vp with respect to the ordering of H(t2L) induced by 
G and assume without loss of generality that w1 is the smallest of them. We now throw 
away all vertices of V1 that are larger than w1 and all vertices of Vi that are smaller 
than wi for i ≥ 2. This leaves us with L sets {W1, . . . , WL} of size 
|Vi|/2� = t2L−1

with the property that v1 ∈ W1, vi ∈ Wi =⇒ v1 <G w1 <G wi <G vi for all i ≥ 2. 
If v ∈ H corresponds to V1 and we denote H ′ = H − v then W = {W2, . . . , WL} spans 
H ′(t2L−1) ⊆ G \ V1. By the induction hypothesis we can find a consistently ordered 
H ′(t) as an ordered subgraph of G \ V1 which together with any subset of size t of W1
gives the desired consistently ordered H(t) in G. �
3. Proof of Theorem 1.3

3.1. Constructing an auxiliary graph

Throughout the whole section, let G be a Hamiltonian graph on n vertices. First of all, 
let us fix a Hamilton cycle H of G and name the vertices of G such that H = v1v2 . . . vnv1. 



156 M. Bucić et al. / Journal of Combinatorial Theory, Series B 144 (2020) 150–166
We assume that G is ordered according to this labelling. Also, let us denote the edges of 
H by e1, e2, . . . , en such that e1 = v1v2, . . . , en = vnv1. In all our following statements, 
we will identify vn+1 and v1, and more generally vi and vj , as well as ei and ej , if i and 
j are congruent modulo n. Furthermore, since we can always picture G as a large cycle 
with some edges inside it, we call all the edges that are not part of H, the inner edges
of G.

Our goal is to find a 2-factor with a fixed number of cycles in G. Note that, if G is 
dense, it is not hard to find a large collection of vertex-disjoint cycles in G. The difficulty 
lies in the fact that we want this collection to be spanning while still controlling the 
exact number of cycles. Naturally, we have to rely on the Hamiltonian structure of G to 
give us such a spanning collection of cycles. Indeed, when building these cycles we will 
try to use large parts of the Hamilton cycle H as a whole and connect them correctly 
using some inner edges of G. It is convenient for our approach to construct an auxiliary 
graph A out of G, that captures the information we need about the inner edges of G.

Definition 3.1. Given the setup above, we define the auxiliary graph A = A(G, H) as the 
following ordered, 2-edge-coloured n-vertex graph:

1. Every vertex of A corresponds to exactly one edge of H, thus we have V (A) =
{e1, . . . , en} and we order the vertices of A according to this labelling;

2. two vertices ei = vivi+1 and ej = vjvj+1 of A are connected with a red edge if there 
is an inner edge of G connecting vi+1 and vj+1;

3. similarly, the vertices ei and ej of A are connected with a blue edge if there is an 
inner edge of G connecting vi and vj .

Throughout this section, let A = A(G, H) for our fixed G and H. Note that, by 
the above definition, every edge � ∈ E(A) corresponds to a unique inner edge e of G. 
In the following, we denote this edge by e(�) ∈ E(G). To be precise, if � = eiej , then 
e(�) := vi+1vj+1 if � is a red edge and e(�) := vivj if � is a blue edge. Conversely, every 
inner edge of G corresponds to exactly one red edge and to one blue edge of A. This 
leads to the following observation:

Observation 3.2. For i ∈ {1, . . . , n}, we have dA1 (ei) = dG(vi+1) −2 and dA2 (ei) = dG(vi) −
2. In particular, we have δ1(A) = δ2(A) = δ(G) − 2.

In Fig. 1 we give an example of a Hamiltonian graph and its corresponding auxiliary 
graph.

The motivation for defining A just as above is given by the fact that 2-regular (possibly 
non-spanning!) subgraphs S ⊆ A satisfying some extra conditions naturally correspond 
to a 2-factor in G. Recall that in our setting, two vertices ei and ej of A are neighbouring 
if |i − j| ≡ 1 (modulo n). Let us make the following definition:
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Fig. 1. Let us call the left graph G and fix its Hamilton cycle H = v1 . . . v8v1. Then the graph on the right 
is the auxiliary graph A(G, H).

Definition 3.3. Given the same setup as above and a subgraph S ⊆ A that is a union of 
vertex-disjoint colour-alternating cycles without neighbouring vertices (i.e. if ei ∈ V (S)
then ei−1, ei+1 /∈ V (S)), we define its corresponding subgraph F (S) ⊆ G as follows:

1. V (F (S)) := V (G);
2. the edges of F (S) are all the edges of H except for those that correspond to vertices 

of S. Additionally, for every edge � ∈ E(S), let the corresponding inner edge e(�) be 
an edge of F (S) too. That is, E(F (S)) := ({e1, . . . , en} \ V (S)) ∪ {e(�) | � ∈ E(S)}.

Lemma 3.4. If S ⊆ A is a union of vertex-disjoint colour-alternating cycles without 
neighbouring vertices, then F (S) ⊆ G is a 2-factor.

In order to illustrate the above definitions, consider the Hamiltonian graph given in 
Fig. 1 and the subgraphs S1 and S2 of the corresponding auxiliary graph where S1 is 
just the cycle e2e4e6e8e2 and S2 is the union of the cycles e1e3e1 and e5e7e5. Their 
corresponding 2-factors F (S1) and F (S2) are shown as dashed in Fig. 2. Note that they 
use the same inner edges of G but still have different numbers of cycles.

Proof of Lemma 3.4. Since F := F (S) consists of exactly n edges, it suffices to show 
that δ(F ) ≥ 2. Let vj be an arbitrary vertex of F . We distinguish two cases: If both 
edges ej−1, ej /∈ V (S), then ej−1, ej ∈ E(F ) and vj is incident to ej−1 and ej in F . Else, 
exactly one of the edges ej−1 and ej is a vertex of S since S contains no neighbouring 
vertices. In this case we use the fact that every vertex ei of S is incident to a red edge �i
and to a blue edge �′i. Hence, by Definition 3.3, either ej−1 ∈ S and ej /∈ S in which case 
vj is incident to ej and e(�j−1) in F or ej−1 /∈ S and ej ∈ S in which case vj is incident 
to ej−1 and e(�′j) in F . In both cases these two edges are distinct as one of them is an 
inner edge of G and the other one is not. �
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Fig. 2. 2-factors F (S1) and F (S2) used in the illustration above.

We note that F (S) does not only depend on the structure of S but also on the order 
in which S is embedded within A. However, it is immediate that if S is embedded in 
auxiliary graphs of two Hamiltonian graphs (possibly with different number of vertices) 
in the same order then F (S) has the same number of cycles in both cases.

Observation 3.5. Let A1 = A(G1, H1) and A2 = A(G2, H2). Let S1 and S2 be disjoint 
unions of colour-alternating cycles without neighbouring vertices, which are isomorphic 
as coloured subgraphs of A1 and A2 whose corresponding vertices appear in the same 
order along H1 and H2. Then F (S1) and F (S2) consist of the same number of cycles.

We remark that it is not always true that all 2-factors of G arise as F (S) for some 
S ⊆ A.

3.2. Controlling the number of cycles

It is not hard to see that the auxiliary graph A (of a graph with a big enough mini-
mum degree) must contain a colour-alternating cycle C, which corresponds to a 2-factor 
F (C) ⊆ G by Lemma 3.4 (disregarding, for the moment, the issue of C containing 
neighbouring vertices). However, it is not at all obvious how to generally determine the 
number of components of F (C). We begin by giving a rough upper bound.

Observation 3.6. If C ⊆ A is a non-empty colour-alternating cycle of length L without 
neighbouring vertices, then the number of components of the corresponding 2-factor F (C)
is at most L.

Proof. Note that the 2-factor F (C) contains exactly L inner edges and, since F (C) 
= H, 
each cycle of F (C) must contain at least one inner edge (in fact, at least two in our 
setting). �
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However, in order to prove Theorem 1.3, we need to be able to show the existence of a 
2-factor consisting of exactly k cycles, for a fixed predetermined number k. This is where 
we are going to make use of Lemmas 2.4 and 2.5 which allow us to find a consistently 
ordered blow-up of C. This will give us the freedom to find slight modifications of C
with different numbers of cycles in F (C).

3.2.1. Going up
In this subsection we give a modification of a union of colour-alternating cycles which 

will have precisely one more cycle in its corresponding 2-factor.

Definition 3.7. Let S be a disjoint union of colour-alternating cycles with V (S) =
{s1, . . . , sm} and let C be a cycle of S. We construct a 2-edge-coloured ordered graph 
U(S, C) as follows:

1. Start with a copy of S and for every si ∈ V (C), add a vertex si+1/2;
2. For every red or blue edge sisj ∈ E(C), add an edge si+1/2sj+1/2 of the same colour;
3. Order the resulting graph according to the order of the indices of its vertices.

Given a 2-edge-coloured ordered graph U , we say that U is a going-up version of S, if 
there exists a component C of S such that U and U(S, C) are isomorphic 2-edge-coloured 
ordered graphs.

In other words U(S, C) consists of S with an additional copy of C ordered in such 
a way that the vertices of the new copy of C immediately follow their corresponding 
vertices of the original copy of C. In particular, U is also a disjoint union of colour-
alternating cycles and is an ordered subgraph of a consistently ordered S(2). Note if S
contains no double edges, neither does U .

Fig. 3 shows what a going-up version U of S looks like if S is just a colour-alternating 
C4. Fig. 4 shows what the corresponding 2-factors look like (assuming S ⊆ U ⊆ A). Note 
that the dashed cycles of F (U) have the same structure as the dashed cycles in F (S) but 
F (U) additionally has a new bold cycle. We now show that a similar situation occurs in 
general.

Lemma 3.8 (Going up). Let S ⊆ A be a disjoint union of colour-alternating cycles without 
neighbouring vertices and let U be an ordered subgraph of A without neighbouring vertices 
that is a going-up version of S. Then, the 2-factor F (U) ⊆ G has exactly one component 
more than F (S).

Proof of Lemma 3.8. For an edge e = vkvk+1 ∈ H we let v+(e) = vk+1 and v−(e) = vk. 
We denote the vertices of S by s1, . . . , sm according to their order in A. Let C be a 
colour-alternating cycle sj1 . . . sjksj1 in S for which U = U(S, C). Let us denote the 
vertices of U by u1, . . . , um and uj1+1/2, . . . , ujk+1/2 as they appear along H such that 
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Fig. 3. A colour-alternating cycle S and a going-up version of it U .

Fig. 4. 2-factors corresponding to U and S given in Fig. 3.

u1, . . . , um make a copy of S and uj1 , . . . , ujk correspond to C. The vertices v+(uji) and 
v−(uji+1/2) are connected in F (U) by paths Pi ⊆ H for i ∈ {1, . . . , k}. Furthermore, 
since C is a colour-alternating cycle either v+(uji)v+(uji+1) ∈ E(G) for all odd i and 
v−(uji+1/2)v−(uji+1+1/2) ∈ E(G) for all even i or vice versa in terms of parity. This 
means that taking all Pi and these edges we obtain one cycle

Z := v+(uj1)v+(uj2)P2v
−(uj2+1/2)v−(uj3+1/2)P3v

+(uj3) . . .

Pkv
−(ujk+1/2)v−(uj1+1/2)P1v

+(uj1) ∈ F (U),

if C starts with a red edge (which is exactly the bold cycle in the example shown in 
Fig. 4) or

Z := v−(uj1+1/2)v−(uj2+1/2)P2v
+(uj2)v+(uj3)P3v

−(uj3+1/2) . . .

Pkv
+(ujk)v+(uj1)P1v

−(uj1+1/2) ∈ F (U),

if C starts with a blue edge.
Let us now consider the graph G′ that is obtained from G by deleting Z (including 

all edges incident to vertices of Z) and adding the edges Sji = v−(uji)v+(uji+1/2)
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for i ∈ {1, . . . , k}. Let H ′ be the Hamilton cycle of G′ made of H and Sj ’s ordered 
according to the order of G. We claim that sending the vertices si to Si if si ∈ C and 
to ui otherwise for i ∈ {1, . . . , m} gives an order-preserving isomorphism from S to its 
image S′ ⊆ A(G′, H ′). Indeed, if si, sj /∈ C, then the fact that uiuj is a red or a blue 
edge whenever sisj is a red or a blue edge just follows from Definition 3.7. Furthermore, 
if sjisji+1 is a red edge for i ∈ {1, . . . , k}, then v+(sji+1/2) is adjacent to v+(sji+1+1/2), 
which means that SiSi+1 is a red edge. This works analogously for blue edges of C, 
which shows the claim. Hence, by Observation 3.5, the 2-factor F (S′) in G′ has the same 
number of components as F (S) in G. However, since F (S′) is by definition just F (U) \Z, 
this completes the proof. �
3.2.2. Going down

We now turn to the remaining case when we want to find a 2-factor with less compo-
nents than one that we already found.

Definition 3.9. Let S ⊆ A be a disjoint union of colour-alternating cycles without neigh-
bouring vertices. We say that a vertex ek ∈ V (A) separates components of F (S) if the 
vertices vk and vk+1 lie in different connected components of F (S).

Observation 3.10. If F (S) has more than one connected component, then at least one 
vertex of S separates components.

Proof. Since F (S) is not connected there must exist vertices vk, vk+1 of H belonging to 
different components of F (S). Let ek = vkvk+1 so ek /∈ E(F (S)). Since the only edges 
of H (that is vertices of A) that are not in E(F (S)) are vertices of S, ek is the desired 
separating vertex. �

We are now ready to construct a going-down version of S giving rise to a 2-factor 
with one less cycle.

Definition 3.11. Let S be a disjoint union of colour-alternating cycles with V (S) =
{s1, . . . , sm}. For any sk ∈ V (S) we construct the 2-edge-coloured ordered graph 
D = D(S, sk) as follows:

1. Start with a copy of S and for every vertex si in the cycle C ⊆ S that contains sk, 
add the vertices si+1/3 and si+2/3 to D;

2. if i, j 
= k and if sisj is a red or a blue edge of S, then add the edges si+1/3sj+1/3
and si+2/3sj+2/3 of the same colour to D;

3. if sisk is the blue edge of S incident to sk, then delete it and add the blue edges 
sisk+1/3, si+1/3sk+2/3 and si+2/3sk to D;

4. if sisk is the red edge of S incident to sk, then add the red edges si+1/3sk+2/3 and 
si+2/3sk+1/3 to D;

5. order the resulting graph according to the order of the indices of its vertices.
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Fig. 5. A colour-alternating cycle S and a going-down version of it D(S, s1).

Fig. 6. 2-factors corresponding to U and D(S, s1) given in Fig. 5.

Let S ⊆ A be a disjoint union of colour alternating cycles without neighbouring vertices, 
so that F (S) exists. We say that a 2-edge-coloured ordered graph D is a going-down 
version of S if there exists a vertex sk that separates components of F (S) such that D
and D(S, sk) are isomorphic 2-edge-coloured ordered graphs.

In other words D = D(S, sk) consists of a copy of S with added two copies of the cycle 
containing sk where the edges incident to sk and its copies are rewired in a certain way. 
It is easy to see that every vertex of D is still incident to exactly one edge of each colour 
so is still a disjoint union of colour-alternating cycles. Note also that D is an ordered 
subgraph of consistently ordered S(3). If S contained no double edges neither does D.

Fig. 5 shows a going-down version D = D(S, s1) for S on {s1, . . . , s4} being again 
a colour-alternating C4. Note that F (D), shown in Fig. 6, contains two paths, marked 
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as dotted and bold, that connect the two dashed parts of F (D) that resemble the two 
disjoint cycles of F (S), into a single cycle. We will show that this occurs in general.

Lemma 3.12 (Going down). Let S ⊆ A be a disjoint union of colour-alternating cycles 
without neighbouring vertices and let D be an ordered subgraph of A without neighbouring 
vertices that is a going-down version of S. Then the 2-factor F (D) ⊆ G consists of one 
cycle less than F (S).

Proof. For an edge e = vkvk+1 ∈ H we let v+(e) = vk+1 and v−(e) = vk. We denote the 
vertices of S by s1, . . . , sm where D = D(S, s1) and s1 separates components of F (S). 
We denote the vertices of D by d1, . . . , dm and d4/3, d5/3, dj1+1/3, dj1+2/3, . . . , djk+2/3 as 
they appear along H such that d1, . . . , dm make a copy of S in which d1 corresponds to 
s1 and d1, dj1 , . . . , djk to the cycle C = s1sj1 . . . sjks1 of S.

The vertices v+(dji) and v−(dji+1/3) as well as the vertices v+(dji+1/3) and 
v−(dji+2/3) in F (D) are connected by paths Pi ⊆ H and Qi ⊆ H respectively for 
all i ∈ {1, . . . , k}.

If C begins by a red edge then

P := v+(d1)v+(dj1)P1v
−(dj1+1/3)v−(dj2+1/3)P2v

+(dj2) . . .

Pkv
−(djk+1/3)v−(d5/3) ∈ F (D),

where v+(d1)v+(dj1) ∈ F (D) by Definition 3.11 part 4; v−(djk+1/3)v−(d5/3) ∈ F (D) by 
part 3 and edges between paths Pi are in F (D) by part 2 in the same way as in the going 
up case. Similarly,

Q := v+(d5/3)v+(dj1+1/3)Q1v
−(dj1+2/3)v−(dj2+2/3)Q2v

+(dj2+1/3) . . .

Qkv
−(djk+2/3)v−(d1) ∈ F (D)

On the other hand if C begins by a blue edge then we have

P := v−(d5/3)v−(dj1+1/3)P1v
+(dj1)v+(dj2)P2 . . . Pkv

+(djk)v+(d1) ∈ F (D),

Q := v−(d1)v−(dj1+2/3)Q1v
+(dj1+1/3)v+(dj2+1/3)Q2 . . . Qkv

+(djk+1/3)v+(d5/3) ∈ F (D)

So in either case the path P ⊆ F (D) contains P1, . . . , Pk and has endpoints 
v+(d1), v−(d5/3) while Q ⊆ F (D) contains Q1, . . . , Qk and has endpoints v+(d5/3),
v−(d1). For example in Fig. 6, the paths P and Q correspond to the dotted and the bold 
path respectively.

Our goal now is to show that P and Q connect two “originally distinct” components 
that are “inherited” from F (S). Consider the graph G′ that is obtained from G by 
deleting all the vertices of paths Pi and Qi (equivalently all inner vertices of P and 
Q) and adding the edges Sji = v−(dji)v+(dji+2/3) for i ∈ {1, . . . , k}. Let H ′ be the 
Hamilton cycle of G′ made of H and Sj ’s ordered according to the order of G. First, we 
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claim that the map that sends s1 to d4/3 and si to Si if si is part of C \ {s1} and to di
otherwise for i ∈ {2, . . . , m} is an order-preserving isomorphism from S onto its image 
S′ ⊆ A(G′, H ′). Indeed, by Definition 3.11 parts 3 and 4 for i = 1, k if s1sji is red then 
d4/3dji+2/3 is a red edge of A so v+(d4/3)v+(dji+2/3) ∈ F (D) implying that d4/3Sji is 
red in A′. If s1sji is blue then d4/3dji is a blue edge of A so v−(d4/3)v−(dji) ∈ F (D)
implying that d4/3Sji is blue in A′. For i 
= k edge SjiSji+1 is of the same colour as 
sjisji+1 by Definition 3.11 part 2 and for si, sj /∈ C we know didj has the same colour 
by part 1. Therefore, by Observation 3.5, F (S′) has the same number of components 
as F (S). Since s1 separates components in S we know that d4/3 separates components 
in F (S′). This means in particular that d1 and d5/3 lie in two different cycles C1 and 
C2 of F (S′). Now, observe that we obtain F (D) from F (S′) by deleting d1 and d5/3
and adding the paths P and Q. However, since P connects v+(d1) and v−(d5/3) and Q
connects v+(d5/3) and v−(d1), this process joins C1 and C2 into one big cycle and hence, 
F (D) has exactly one component less than F (S). �
3.3. Completing the proof

We are now ready to put all the ingredients together in order to complete our proof of 
Theorem 1.3 in the way that has already been outlined throughout the previous section.

Proof of Theorem 1.3. Let k be a positive integer and ε a positive real number. Let 
L = L(ε/2), K = K(ε/2, 2k) be the parameters coming from Lemma 2.4. Let N ≥
max(4/ε, K).

Now, suppose that G is a Hamiltonian graph on n ≥ N vertices with minimum 
degree δ(G) ≥ εn. Let us fix a Hamilton cycle H ⊆ G, name the vertices of G such 
that H = v1v2 . . . vnv1 and assume that G is ordered according to this labelling. Let 
A = A(G, H) be the ordered, 2-edge-coloured auxiliary graph corresponding to G and H
according to Definition 3.1. We know by Observation 3.2 that δν(A) ≥ δν(G) − 2 ≥ ε

2n.
Lemma 2.4 shows that there is a C(2k6L) ⊆ A where C is a colour-alternating cycle of 

length at most L without double-edges. Lemma 2.5 allows us to find a consistently or-
dered C(2k3L) as an ordered subgraph of A. By removing every second vertex of C(2k3L)
in A we obtain a consistently ordered C′ = C(2k−13L) that is an ordered subgraph of A
without neighbouring vertices. For C ⊆ C′ by Lemma 3.4 we obtain a 2-factor F (C) ⊆ G. 
Let � be the number of cycles of F (C). By Observation 3.6, we know that 1 ≤ � ≤ L.

Let us first assume that k > �. We find a sequence S0, S1, . . . , Sk−� defined as follows: 
let S0 = C; given Si−1 let Ci−1 be an arbitrary cycle of Si−1 and let Si = U(Si−1, Ci−1). 
By construction, Si is again a disjoint union of colour-alternating cycles, without double 
edges, and is an ordered subgraph of C(2i) ⊆ C′ (since by construction Si ⊆ Si−1(2)). 
Therefore, for all i ≤ k − � there is an order-preserving embedding of Si into A without 
neighbouring vertices. So, by Lemma 3.4 and Lemma 3.8 we deduce that F (Si) has one 
more cycle than F (Si−1). In particular, the 2-factor F (Sk−�) ⊆ G consists of exactly k
components.
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Let us now assume that k < �. Here, we find a sequence S0, S1, . . . , S�−k of disjoint 
unions of colour-alternating cycles that are ordered subgraphs of A without neighbouring 
vertices such that F (Si) consists of � − i cycles. Let S0 = C, and assume we are given 
Si−1 for i ≤ � − k with F (Si−1) having � − i + 1 ≥ k + 1 ≥ 2 cycles. This means that 
Si−1 has a vertex vi−1 that separates components of F (Si−1) by Observation 3.10. We let 
Si = D(Si−1, vi−1), which is a disjoint union of colour-alternating cycles, without double 
edges, and is an ordered subgraph of a consistently ordered C(3i) (since by construction 
Si ⊆ Si−1(3)). Note that � − k ≤ L by Observation 3.6 and hence, C(3i) ⊆ C(3�−k) ⊆ C′

so we can find a copy of Si into A without having neighbouring vertices. By Lemma 3.12, 
F (Si) has one less cycle than F (Si−1), so exactly � − i cycles. In particular, F (S�−k) is 
a 2-factor in G with k cycles, which concludes the proof. �
4. Concluding remarks and open problems

In this paper we show that in a Hamiltonian graph the minimum degree condition 
needed to guarantee any 2-factor with k-cycles is sublinear in the number of vertices. 
The best lower bound is still only a constant. In the case of a 2-factor with two compo-
nents, the best bounds are given by Faudree et al. [5] who construct minimum degree 4
Hamiltonian graphs without a 2-factor with 2 components. In the case of 2-factors with 
k components, no constructions have been given previously, but it is easy to see that a 
minimum degree of at least k + 2 is necessary:

Proposition 4.1. There are arbitrarily large Hamiltonian graphs with minimum degree 
k + 1 which do not have a 2-factor with k components.

Proof. Let G consist of a cycle C of length n − k + 1 and an independent set U of size 
k − 1 with all the edges between C and U added. It’s easy to see that for n ≥ 2k, G is 
Hamiltonian and has minimum degree k + 1. However G does not have a 2-factor with 
k components (e.g. because every cycle in a 2-factor of G must use at least one vertex 
in U). �

For fixed k, we do not know of any Hamiltonian graphs with non-constant minimum 
degree which do not have a 2-factor with k components. This indicates that the necessary 
minimum degree in Conjecture 1.2 may in fact be much smaller, perhaps even a constant 
(depending on k). A step in this direction was made by Pfender [9] who showed that in 
the k = 2 case, a Hamiltonian graph G with minimum degree of 7 contains a 2-factor 
with 2 cycles in a very special case when G is claw-free.

If one takes greater care with various parameters in Section 2 one can show that a 
minimum degree of Cn

4√log logn/(log log logn)2 suffices for finding an ordered blow-up of a 

short cycle so in particular this minimum degree is enough to find 2-factors consisting 
of a fixed number of cycles. We believe that it would be messy but not too hard to 
improve this a little bit further, but to reduce the minimum degree condition to n1−ε



166 M. Bucić et al. / Journal of Combinatorial Theory, Series B 144 (2020) 150–166
would require some new ideas. On the other hand we do believe that our approach of 
finding alternating cycles in the auxiliary graph could still be useful in this case, but 
one needs to either find a better way of finding ordered blow-ups of short cycles or 
obtain a better understanding of how the number of cycles in F (S) depends on the order 
and structure of a disjoint union of colour-alternating cycles S. Another possibility is 
to augment the auxiliary graph in order to include edges that connect the front/back 
to the back/front vertex of two edges of the Hamilton cycle, which would allow us to 
obtain a 1-to-1-correspondence between 2-factors of G and suitable structures in this 
new auxiliary graph.

Another way of saying that a graph is Hamiltonian is that it has a 2-factor consisting 
of a single cycle. A possibly interesting further question which arises is whether knowing 
that G contains a 2-factor consisting of � cycles already allows the minimum degree 
condition needed for having a 2-factor with k > � cycles to be weakened.
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