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We prove a version of the Ray-Chaudhuri–Wilson and Frankl–Wilson theorems

for k-wise intersections and also generalize a classical code-theoretic result of

Delsarte for k-wise Hamming distances. A set of code-words a1; a2; . . . ; ak of length n
have k-wise Hamming-distance ‘; if there are exactly ‘ such coordinates, where not

all of their coordinates coincide (alternatively, exactly n� ‘ of their coordinates are

the same). We show a Delsarte-like upper bound: codes with few k-wise Hamming-

distances must contain few code-words. # 2002 Elsevier Science (USA)
1. INTRODUCTION

In this paper, we give bounds on the size of set-systems and codes,
satisfying some k-wise intersection-size or Hamming-distance properties.
For k ¼ 2; these theorems were proven by Ray-Chaudhuri and Wilson [13],
Frankl and Wilson [9], and Delsarte [6, 5]. The k > 2 case was asked
(partially) by S !oos [14] and F .uuredi [10] proved, that for uniform set-systems
with small sets, the order of magnitude of the largest set-system satisfying
k-wise or just pair-wise intersection constraints are the same (his constant
was huge). In [15] Vu considered families of sets with restricted k-wise
intersection-size modulo two and obtain tight asymptotic bounds on
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the size of such set-systems. Grolmusz [12] studied restricted k-wise
set-intersections modulo arbitrary prime and proved a k-wise analog of
the Deza–Frankl–Singhi theorem [7]. He also gave direct applications for
explicit coloring of k-uniform hypergraphs without large monochromatic sets.

In this short paper, we first strengthen the result of [12], giving at the same
time a much shorter proof, and then prove a k-wise version of the Delsarte-
bounds [6, 5] for codes. In the last section, we present a construction which
shows that some of our bounds are asymptotically tight.

2. SET SYSTEMS

In this section, we present results on set-systems with restricted k-wise
intersections. We begin with the following extension of results from [13].

Theorem 1. Let L be a subset of nonnegative integers of size s: Let k52
be an integer and let H be a family of subset of n-element set such that

jH1 \ � � � \ Hk j 2 L for any collection of k distinct sets from H: Then

jHj4ðk � 1Þ
Xs
i¼0

n

i

 !
:

If in addition the size of every member of H belongs to the set fk1; . . . ; ktg and

ki > s� t for every i; then

jHj4ðk � 1Þ
Xs

i¼s�tþ1

n

i

 !
:

This theorem has the following modular version, which generalize the
theorem of Frankl and Wilson [9] and strengthen the result from [12]. In
case p ¼ 2 a slightly better bound appears in [15].

Theorem 2. Let p be a prime and L be a subset of f0; 1; . . . ;p � 1g of size

s: Let k52 be an integer and let H be a family of subsets of n-element set such

that jH j ðmod pÞ =2 L for every H 2 H but jH1 \ � � � \ Hk j ðmod pÞ 2 L for any

collection of k distinct sets from H: Then

jHj4ðk � 1Þ
Xs
i¼0

n

i

 !
:

If in addition there exist t4s integers k1; . . . ; kt 2 f0; 1; . . . ;p � 1g so that

ki > s� t for each i and jH j ðmod pÞ 2 fk1; . . . ; ktg for every H 2 H; then

jHj4ðk � 1Þ
Xs

i¼s�tþ1

n

i

 !
:
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We start with the proof of Theorem 2 and then we show how to modify it
to get Theorem 1. Our proof combines an approach introduced in [1] with
some additional ideas.

Proof. Let L ¼ fl1; . . . ; lsg and let H be a set system satisfying assertion
of the theorem. We repeat the following procedure until H is empty.
At round i if H=|; we choose a maximal collection H1; . . . ;Hd from
H such that j

Td 0

j¼1 Hjj ðmod pÞ =2 L for all 14d 04d; but for any additional
set H 0 2 H we have that j

Td
j¼1 Hj \ H 0j ðmod pÞ 2 L: Clearly, by definition

such family always exists and 14d4k � 1: Denote Ai ¼ H1; Bi ¼
Td

j¼1 Hj

and remove all sets H1; . . . ;Hd from H: Note that as the result of this
process, we obtain at least m5jHj=ðk � 1Þ pairs of sets Ai;Bi: By definition,
jAi \ Bij ¼ jBij ðmod pÞ =2 L but jAr \ Bij ðmod pÞ 2 L for any r > i: With each
of the sets Ai;Bi; we associate its characteristic vector which we denote ai; bi;
respectively.

Let Q denote the set of rational numbers. For x; y 2 Qn; let x � y denote
their standard scalar product. Clearly, ar � bi ¼ jAr \ Bij: For i ¼ 1; . . . ;m let
us define the multilinear polynomial fi in n variables as

fiðxÞ ¼
Ys
j¼1

ðx � bi � ljÞ;

where for each monomial, we reduce the exponent of each occurring
variable to 1. Clearly,

fiðaiÞ ¼
Ys
j¼1

ðjAi \ Bij � ljÞ ¼
Ys
j¼1

ðjBij � ljÞ=0 ðmod pÞ for all 14i4m;

but

fiðarÞ ¼
Ys
j¼1

ðjAr \ Bij � ljÞ ¼ 0 ðmod pÞ for 14i5r4m:

We claim that the polynomials f1; . . . ; fm are linearly independent as a
functions over Fp; the finite field of order p: Indeed, assume that

P
aifiðxÞ ¼ 0

is a nontrivial linear relation, where ai 2 Fp: Let i0 be the largest index such
that ai0=0: Substitute ai0 for x in this relation. Clearly, all terms but the one
with index i0 vanish, with the consequence ai0 ¼ 0; contradiction. On the
other hand, each fi belongs to the space of multilinear polynomials of
degree at most s: The dimension of this space is

Ps
j¼1ð

n
i Þ; implying the

desired bound on m and thus on jHj:
We now extend the idea above to prove the second part of the theorem.

This extension uses a technique employed by Blokhuis [4] (see also [1]). For
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a subset I  f1; . . . ; ng ¼ ½n� denote by vI its characteristic vector and
by xI ¼

Q
i2I xi: In particular, x| ¼ 1 and it is easy to see that for any

J  ½n�; xI ðvJ Þ ¼ 1 if and only if I  J and zero otherwise. In what follows,
we use the notation introduced in the first part of the proof.

In addition to polynomials fi; we define a new set of multilinear
polynomials

gI ðxÞ ¼ xI �
Yt
j¼1

Xn
i¼1

xi � kj

 !
for I  ½n�:

Here again we reduce the exponent of each occurring variable to 1 to make
gI multilinear. We claim that the functions gI are linearly independent over
Fp for all jI j4s� t: Denote by hðxÞ ¼

Qt
j¼1ð
Pn

i¼1 xi � kjÞ: Since ki > s� t for
all i; note that hðvI Þ=0 for all jI j4s� t: Let us arrange all the subsets of
f1; 2; . . . ; ng in a linear order, denoted by �; such that J � I implies that
jJ j4jI j: Clearly if jI j; jJ j4s� t by definition, gI ðvJ Þ ¼ xI ðvJ ÞhðvJ Þ is equal to
hðvJ Þ=0 if I ¼ J and zero if J � I : Now the linear independence of gI ðxÞ
follows easily. Indeed, if

P
jI j4s�t bIgI ðxÞ ¼ 0 is a nontrivial relation, let I0 to

be a minimal index (with respect to �Þ; such that bI0=0: By substituting
x ¼ vI0 ; we immediately obtain a contradiction.

To complete the argument, we show that the functions fi remain linear
independent even together with all the functions gI for jI j4s� t: For a proof
of this claim assume thatX

i

aifiðxÞ þ
X

jI j4s�t

bIgI ðxÞ ¼ 0

for some ai; bI 2 Fp: Substitute x ¼ ai: All terms in the second sum vanish
since jAij ðmod pÞ 2 fk1; . . . ; ktg and hence hðaiÞ ¼ 0: In this case, we can
deduce that all ai ¼ 0 as previously. But then we get a relation only among
the polynomials gI and it was already proved that such relation should be
trivial.

Therefore, we found mþ
Ps�t

i¼0
n
i

� 	
linearly independent functions, all of

which belong to space of multilinear polynomials of degree at most s: As we
already mentioned, the dimension of this space is

Ps
j¼1

n
i

� 	
: This implies the

desired bound on m and thus on jHj: ]

An easy modification of above proof establishes Theorem 1.

Proof of Theorem 1 (Sketch). We repeat the following procedure. At step
i; if jH \ H 0j 2 L for any two distinct sets in H; then let H1 be the largest set
remaining in H: Denote Ai ¼ Bi ¼ H1 and remove H1 from H: Otherwise
there exist a collection H1; . . . ;Hd from H such that j

Td 0

j¼1 Hjj =2 L for all
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14d 04d; but for any additional set H 0 2 H we have that j
Td

j¼1 Hj \ H 0j 2 L
and 24d4k � 1: Denote Ai ¼ H1; Bi ¼

Td
j¼1 Hj and remove all sets

H1; . . . ;Hd from H: By definition, jAi \ Bij ¼ jBij but jAr \ Bij 2 L and has
size strictly smaller than jBij for all r > i: With each of the sets Ai;Bi; we
associate its characteristic vector which we denote ai; bi; respectively.

We will also need a slightly different definition of polynomials fi: For
i ¼ 1; . . . ;m let us define the multilinear polynomial fi in n variables as

fiðxÞ ¼
Y

lj5jBi j

ðx � bi � ljÞ:

By our construction fiðaiÞ=0 but fiðarÞ ¼ 0 for all r > i: Now the rest of the
proof is identical with that of Theorem 2 and we omit it here. ]

3. CODES

Let A ¼ f0; 1; 2; . . . ; q� 1g: The Hamming-distance of two elements of
An is the number of coordinates in which they differ. A q-ary code of length n
is simply a C � An: The following result is a classical inequality of Delsarte
[6, 5]:

Theorem 3 (Delsarte [5, 6]). Let C be a q-ary code of length n: If the set

of Hamming-distances which occur between distinct codewords of C has

cardinality s; then

jCj4
Xs
i¼0

ðq� 1Þi
n

i

 !
:

Frankl [8] proved the modular generalization of this result, and it was
further strengthened by Babai et al. [3].

Our goal here is to give generalizations of this theorem for k-wise
Hamming-distances.

Definition 4. Let ai 2 An; for i ¼ 1; 2; . . . ; k: Their k-wise Hamming-
distance,

dkða1; a2; . . . ; akÞ

is ‘; if there exist exactly ‘ coordinates, in which they are not all equal
(Equivalently, their coordinates are all equal on n� ‘ positions.)

We prove the following theorems. The first one generalizes Delsarte’s
original bound [6, 5] to k-wise Hamming-distance:
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Theorem 5. Let C be a q-ary code of length n: If the set of k-wise

Hamming-distances which occur between k distinct codewords of C has

cardinality s; then

jCj4ðk � 1Þ
Xs
i¼0

ðq� 1Þi
n

i

 !
: ð1Þ

The second result is the modular version of Theorem 5, it is a k-wise
generalization of the modular upper bound of Frankl [8] and also a result of
Babai et al. [3]:

Theorem 6. Let C be a q-ary code of length n;p be a prime and let L be a

subset of f1; . . . ;p � 1g of size s: If the set of k-wise Hamming-distances which

occur between k distinct codewords of C lie in Lmodp; then

jCj4ðk � 1Þ
Xs
i¼0

ðq� 1Þi
n

i

 !
:

If in addition, there exist t4s integers w1; . . . ;wt 2 f0; 1; . . . ;p � 1g; so that

wi > s� t for each i and the weight of any member of C is congruent to some

element of fw1; . . . ;wtg modulo p; then

jCj4ðk � 1Þ
Xs

i¼s�tþ1

ðq� 1Þi
n

i

 !
:

Two definitions are needed for the proof.

Definition 7. Let a and b be two codewords of length n: Then let a u b
denote a codeword which contains only those coordinates of a and b which
are equal. Let ja u bj denote the length of word a u b:

For example, if a ¼ 01 134 230; b ¼ 12 134 111; then a u b ¼ 134; and
ja u bj ¼ 3:

Definition 8 (Babai et al. [3]). For a fixed integer a 2 A; let eða; xÞ be the
polynomial in one variable with rational coefficients such that for every
b 2 A

eða; bÞ ¼
1 if b ¼ a;

0 if b=a:

(

Since k-wise Hamming-distances which occur between k distinct code-
words are always nonzero, then the proof of Theorem 5 follows from the
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statement of Theorem 6 if we choose a prime p > n: Therefore, we present
only the proof of Theorem 6.

Proof. We start with the proof of the second part of the theorem. Our
approach combines the ideas from [1, 3].

Let L be the set of k-wise Hamming-distances which occur between the
elements of C and let L0 ¼ fl1; . . . ; lsg ¼ fðn� lÞ ðmod pÞjl 2 Lg: Note that
since 0 =2 L we have n ðmod pÞ =2 L0: Now repeat the following procedure until
C is empty.

At round i if set C is still not empty we choose a maximal subset a1; . . . ; ad

from C such that ja1 u a2 u � � � u ad
0
j ðmod pÞ =2 L0 for all 14d 04d; but for

any additional word a0 2 C we have that ja1 u a2 u � � � u ad u a0j ðmod pÞ 2 L0:
Clearly by definition, such codeword-set always exists and 14d4k � 1:
Next define ci ¼ a1; bi ¼ a1 u a2 u � � � u ad and let Xi  ½n� be the
set of indices of the coordinates in which aj; 14j4d are all equal.
Note that jci u bij ¼ jbij ðmod pÞ =2 L0 but jci u bij ðmod pÞ 2 L0 for any r > i:
Finally, remove a1; . . . ; am from C and proceed to the next round.

Let fiðxÞ be the following polynomial of n variables x1; . . . ; xn:

fiðxÞ ¼
Ys
u¼1

X
j2Xi

eðbij; xjÞ � lu

 !
;

where bij is the value of the coordinate of bi which corresponds to index
j 2 Xi and the summation is restricted only to these indices. Note that by our
construction, the number of such polynomials is at least m ¼ jCj=ðk � 1Þ: By
definition

fiðciÞ ¼
Ys
u¼1

ðjci u bij � luÞ ¼
Ys
u¼1

ðjbij � luÞ=0 ðmod pÞ;

but for all r > i:

fiðcrÞ ¼
Ys
u¼1

ðjcr u bij � luÞ ¼ 0 ðmod pÞ:

Similar to the proof of Theorem 2, we next define an additional set of
polynomials. Let dðxÞ be the polynomial in one variable with rational
coefficients such that dð0Þ ¼ 0 and dðiÞ ¼ 1 for all i ¼ 1; . . . ; q� 1: Note that
for any vector x 2 An; the value of

Pn
l¼1 dðxlÞ is equal to the weight of x:

For all subsets I � ½n�; ½I �4s� t and for all vectors v 2 f1; . . . ; q� 1gI ; we
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define a polynomial

gI ;vðxÞ ¼
Y
i2I

eðxi; viÞ

 !Yt
j¼1

Xn
l¼1

dðxlÞ � wj

 !
;

where vi are the entries of the vector v: Clearly, the number of such
polynomials is equal to

Ps�t
i¼0 ðq� 1Þi n

i

� 	
; and by definition, the value gI ;vðxÞ

is an integer for all x 2 An: In addition for every x 2 An with weight at most
s� t; we have gI ;vðxÞ=0 ðmod pÞ if and only if the vector x; restricted to I ;
equals v:

We claim that the polynomials fi and gI ;v are linearly independent over
the rationals. For a proof of this claim assume that

X
aifiðxÞ þ

X
jI j4s�t

bI ;vgI ;vðxÞ ¼ 0

is a nontrivial relation. Clearly, we can make all ai and bI ;v to be integers
and in addition, since the above relation is nontrivial we can assume that
not all of them are divisible by p: Let i0 be the largest index such that
ai0=0 ðmod pÞ: Then, by substituting x ¼ ci0 we obtain a contradiction.
Indeed, fi0 ðc

i0 Þ=0 ðmod pÞ but fiðci0 Þ ¼ 0 ðmod pÞ for all i5i0 and also
gI ;vðci0 Þ ¼ 0 ðmod pÞ; since the weight of ci0 is equal wj modulo p for some
14j4t: Next suppose that all ai ¼ 0 ðmod pÞ; and let I0 be the smallest set
with the property bI0;v0

=0 ðmod pÞ for some v0 2 f1; . . . ; q� 1gI0 : Let x0 2 An

be a vector which is equal to v0 on the coordinates from I0 and is zero
everywhere else. Since all wj are greater than the weight of x0; by substituting
x ¼ x0 into relation we obtain gI0;v0

ðx0Þ=0 ðmod pÞ; but as we explain above,
gI ;vðx0Þ ¼ 0 ðmod pÞ for all jI j5jI0j and v=v0: This contradiction proves the
linear independence of fi and gI ;v:

Next note that all our computations are over the domain where
xiðxi � 1Þ . . . ðxi � qþ 1Þ ¼ 0 for each variable 14i4n: Thus, we can assume
that in polynomials fi and gI ;v; every variable xi has exponent at most q� 1:
If not, we simply reduce these polynomials modulo xiðxi � 1Þ . . . ðxi � qþ 1Þ
for all i: Also, in addition, every term of fi and gI ;v is the monomial
with at most s variables. The space of such polynomials has dimensionPs

i¼0 ðq� 1Þi n
i

� 	
and we have found mþ

Ps�t
i¼0 ðq� 1Þi n

i

� 	
independent

functions in this space. This immediately implies the desired bound on m
and hence on jCj:

Finally, we remark that the first part of this theorem follows already from
independence of the polynomials fi: This completes the proof. ]
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4. CONCLUDING REMARKS

(1) It is natural to ask how tight are the results of Theorems 1, 2, 5 and
6. In particular, do we need to have a multiplicative factor ðk � 1Þ in all
upper bounds? The following construction shows that in Theorem 2 this
factor is indeed needed when p is fixed and n tends to infinity.

Let p be a fixed prime, s5p and suppose 2t�15k � 142t for some integer
t ¼ oðnÞ: Note that in this example, we do not fix the value of k and it can be
as big as 2oðnÞ: Let X be an n-element set and let Y1; . . . ; Yt be disjoint subsets
of X ; each of size p: Denote by Y ¼ X �

S
i Yi: By definition jY j ¼ n0 ¼

n� dlog2ðk � 1Þep ¼ ð1 þ oð1ÞÞn: Since the number of subsets of f1; . . . ; tg is
2t5k � 1; let I1; . . . ; Ik�1 be any k � 1 of these distinct subsets of f1; . . . ; tg:
Finally, the family H consists of all subsets of X of the form A[ ð

S
i2Ij YiÞ

for all subsets A of Y of size s and all 14j4k � 1: Clearly, the number of
sets in the family H equals to

ðk � 1Þ
n0

s

 !
¼ ð1 þ oð1ÞÞðk � 1Þ

n

s

 !

and it is easy to see that every set H 2 H has size equal to s modulo p and
every collections of k distinct sets from H satisfies that jH1 \ � � � \ Hk j ¼
rðmod pÞ for some integer 04r4s� 1: Note, that the pairwise intersections
of the sets of H do not satisfy the assumptions of the Frankl–Wilson
theorem [9], since their sizes are not separated from the size of the sets
itself; however, the k-wise intersection-sizes are already separated from s
modulo p:

On the other hand, recently the second author together with F .uuredi [11]
proved that the bound of Theorem 1 is not tight and the factor ðk � 1Þ in this
bound can be improved for all values of s and k53:

(2) An interesting open question is extension of the results of Theorems
2 and 6 to composite moduli. In this case, the polynomial upper bound is no
longer valid in general. In particular for any k52; q ¼ 6 and L ¼ f1; . . . ; 5g;
there exist a family of subset of n-element set of superpolynomial size which
satisfies the assertion of Theorem 2, see [12] for details. On the other hand
for the special case of prime power moduli q and s ¼ q� 1; one can still get
a polynomial upper bounds.

It is not difficult to see that our proofs of Theorems 2 and 6 together
with the tools of Babai et al. [3, Theorem 6] and Babai and Frankl
[2, Theorem 5.30] give the following two results, whose proof will be left to
the reader.

Theorem 9. Let k52 and r be integers and pa be a prime power. If H is a

family of subset of n-element set such that jH j ¼ r ðmod paÞ for each H 2 H
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but jH1 \ � � � \ Hk j=r ðmod paÞ for all collections of k distinct sets from H;
then

jHj4ðk � 1Þ
Xpa�1

i¼0

n

i

 !
:

Theorem 10. Let C be a q-ary code of length n and pa be a prime power.

If the set of k-wise Hamming-distances which occur between k distinct

codewords of C are never divisible by pa; then

jCj4ðk � 1Þ
Xpa�1

i¼0

ðq� 1Þi
n

i

 !
:

(3) It is easy to see that when k ¼ 2; one can deduce Theorem 2 from
Theorem 6. But for k53 these two statements do not seem to be related and
need different proofs.
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