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Abstract

Finding general conditions which ensure that a graph is Hamiltonian is a central topic in graph
theory. An old and well known conjecture in the area states that any d-regular n-vertex graph G whose
second largest eigenvalue in absolute value λ(G) is at most d/C, for some universal constant C > 0, has
a Hamilton cycle. In this paper, we obtain two main results which make substantial progress towards
this problem. Firstly, we settle this conjecture in full when the degree d is at least a small power of n.
Secondly, in the general case we show that λ(G) ≤ d/C(log n)1/3 implies the existence of a Hamilton

cycle, improving the 20-year old bound of d/ log1−o(1) n of Krivelevich and Sudakov. We use in a novel
way a variety of methods, such as a robust Pósa rotation-extension technique, the Friedman-Pippenger
tree embedding with rollbacks and the absorbing method, combined with additional tools and ideas.

Our results have several interesting applications, giving best bounds on the number of generators
which guarantee the Hamiltonicity of random Cayley graphs, which is an important partial case of the
well known Hamiltonicity conjecture of Lovász. They can also be used to improve a result of Alon and
Bourgain on additive patterns in multiplicative subgroups.

1 Introduction

A Hamilton cycle in a graph G is a cycle passing through all the vertices of G. If it exists, then G is called
Hamiltonian. Being one of the most central notions in Graph Theory, it has been extensively studied
by numerous researchers, see e.g., [1, 13, 17, 19, 20, 25, 29, 34, 37, 38, 40, 44], and the surveys [28, 39].
In particular, the problem of deciding Hamiltonicity of a graph is known to be NP-complete and thus,
finding general conditions which ensure that G has a Hamilton cycle is one of the most popular topics
in Graph Theory. For instance, two famous theorems of this nature are the celebrated result of Dirac
[23], which states that if the minimum degree of an n-vertex graph G is at least n/2, then G contains a
Hamilton cycle, and the criterion of Chvátal and Erdős [17] that a graph is Hamiltonian if its connectivity
number is at least as large as its independence number.

In fact, most of the classical criteria for Hamiltonicity focus on rather dense graphs. A prime example
of this is clearly Dirac’s theorem stated above, but also the Chvátal-Erdős condition requires the graph to
be relatively dense, of average degree Ω(

√
n). In contrast, sufficient conditions that ensure Hamiltonicity

of sparse graphs seem much more difficult to obtain. A natural starting point towards this topic is
to consider sparse random graphs, to which a lot of research has been dedicated in the last 50 years.
In a breakthrough paper in 1976, Pósa [44] proved that the binomial random graph model G(n, p) with
p ≥ C log n/n for some large constant C almost surely contains a Hamilton cycle. In doing so, he invented
the influential rotation-extension technique for finding long cycles and paths, which has found numerous
further applications since then. Pósa’s result was later refined by Korshunov [32] and in 1983, a more
precise threshold for Hamiltonicity was obtained by Bollobás [12] and Komlós and Szemerédi [31], who
independently showed that if p = (log n+ log log n+ ω(1))/n, then G(n, p) is almost surely Hamiltonian.
It is a standard exercise to note that this is essentially tight - indeed, if p = (log n+ log log n− ω(1))/n,
then G(n, p) almost surely has a vertex with degree at most 1, and hence is not Hamiltonian. In parallel,
significant attention has also been given to the Hamiltonicity of the random d-regular graph model Gn,d
- it is known that Gn,d almost surely contains a Hamilton cycle for all values of 3 ≤ d ≤ n − 1. For

∗Fakultät für Informatik und Mathematik, Universität Passau, Germany. Email : stefan.glock@uni-passau.de.
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this result, the reader is referred to Cooper, Frieze and Reed [18] and Krivelevich, Sudakov, Vu and
Wormald [36] and their references.

Given the success of the study of Hamilton cycles in sparse random graphs, it became natural to then
consider pseudorandom graphs, which are deterministic graphs that resemble random graphs in various
important properties. A convenient way to express pseudorandomness is via spectral techniques and was
introduced by Alon. An (n, d, λ)-graph is an n-vertex d-regular graph G whose second largest eigenvalue
in absolute value, λ(G), is such that λ(G) ≤ λ. Roughly speaking, λ(G) is a measure of how “smooth”
the edge-distribution of G is, and the smaller its value, the closer to “random” G behaves. The reader is
referred to [35] for a detailed survey concerning pseudorandom graphs.

In a rather influential paper, Krivelevich and Sudakov [33] employed Pósa’s rotation-extension tech-
nique to prove the very general result that (n, d, λ)-graphs are Hamiltonian, provided λ is significantly
smaller than d. Precisely, they showed that if n is sufficiently large, then

d/λ ≥ 1000 log n(log log log n)

(log log n)2
(1)

guarantees that any (n, d, λ)-graph contains a Hamilton cycle. It is worth mentioning that Hefetz, Kriv-
elevich and Szabó [29] provided a more general sufficient condition for Hamiltonicity in terms of expansion
and some variant of high connectivity, yet for (n, d, λ)-graphs their condition essentially reduces to (1).

The above result on Hamiltonicity of (n, d, λ)-graphs has found numerous applications in the last 20
years towards some well-known problems, some of which we will discuss later. Given its significance and
generality, it leads to the very natural and fundamental question of whether a smaller ratio of d/λ is
already sufficient to imply Hamiltonicity. Krivelevich and Sudakov [33] conjectured that it should suffice
that d/λ is only a large enough constant.

Conjecture 1.1. There exists an absolute constant C > 0 such that any (n, d, λ)-graph with d/λ ≥ C
contains a Hamilton cycle.

Despite the plethora of incentives, there has been no improvement until now on the Krivelevich and
Sudakov bound stated in (1). In this paper, we make significant progress towards Conjecture 1.1 in two
ways. First, we improve on the Krivelevich and Sudakov bound in general by showing that a spectral
ratio of order (log n)1/3 already guarantees Hamiltonicity.

Theorem 1.2. There exists a constant C > 0 such that any (n, d, λ)-graph with d/λ ≥ C(log n)1/3

contains a Hamilton cycle.

The proof of the above result will rely on the Pósa rotation-extension method with various new ideas.
Namely, we will need to develop some techniques in order to use this method in a robust manner. The
reader is referred to Section 2 for an outline of the proof.

Secondly, we confirm Conjecture 1.1 in full when the degree is polynomial in the order of the graph.

Theorem 1.3. For every constant α > 0, there exists a constant C > 0 such that any (n, d, λ)-graph with
d ≥ nα and d/λ ≥ C contains a Hamilton cycle.

In fact, Theorem 1.3 is a corollary of a more general statement that we will prove (Theorem 7.3). This
in particular states that (n, d, λ)-graphs with linearly many vertex-disjoint cycles are Hamiltonian.

Before discussing the applications of both of our main results, we refer the reader to Section 2 for an
outline of the proof of these, as well as, of the structure of the paper.

1.1 Applications and related problems

Both Theorem 1.2 and Theorem 1.3 immediately yield improvements in several applications which made
use of the result of Krivelevich and Sudakov. These will be discussed in a detailed manner in Section 8. One
application is an important special case of a famous open question of Lovász [41] from 1969 concerning
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the Hamiltonicity of a certain class of well-behaved graphs (see e.g., [21] and its references for more
background on the problem).

Conjecture 1.4. Every connected vertex-transitive graph contains a Hamilton path, and, except for five
known examples, a Hamilton cycle.

Since Cayley graphs are vertex-transitive and none of the five known exceptions in Lovász’s conjecture is
a Cayley graph, the conjecture in particular includes the following, which was asked much earlier in 1959
by Rapaport Strasser [45].

Conjecture 1.5. Every connected Cayley graph is Hamiltonian.

For these conjectures, a proof is currently out of sight. Indeed, notable progress towards them in their full
generality are a result of Babai [8] that every vertex-transitive n-vertex graph contains a cycle of length
Ω(
√
n) (see [22] for a recent improvement) and a result of Christofides, Hladký and Máthé [16] that every

vertex-transitive graph of linear minimum degree contains a Hamilton cycle.
Given this, it is natural to consider the “random” version of Conjecture 1.5. Indeed, Alon and Roich-

man [6] showed that in any group G, a random set S of O(log |G|) elements is such that the Cayley graph
generated by them, Γ(G,S), is almost surely connected. Therefore, a particular instance of Conjecture 1.5
is to show that Γ(G,S) is almost surely Hamiltonian, which is itself a conjecture of Pak and Radoičić [43].
In fact, this relates directly to Conjecture 1.1 since it can be shown, generalizing the result of Alon and
Roichman, that if |S| ≥ C log |G| for some large constant C, then Γ(G,S) is almost surely an (n, d, λ)-
graph with d/λ ≥ K for some large constant K. Hence, Conjecture 1.1 would imply the Hamiltonicity of
Γ(G,S). In Section 8.1, improving on several earlier results [15, 33, 42] we will show how Theorem 1.2
can be used to prove that if |S| is of order log5/3 n, then Γ(G,S) is almost surely Hamiltonian (see The-
orem 8.2). In the same section, we will also give an improved bound on a related problem of Akbari,
Etesami, Mahini, and Mahmoody [4] concerning Hamilton cycles in coloured complete graphs which use
only few colours.

Another application of our results concerns one of the central themes in Additive Combinatorics,
the interplay between the two operations sum and product. A well-known fact in this area is that
any multiplicative subgroup A of the finite field Fq of size at least q3/4 must contain two elements x, y
such that x + y also belongs to A. Motivated by this, Alon and Bourgain [4] studied more complex
additive structures in multiplicative subgroups. In particular, they proved that when a subgroup has size
|A| ≥ q3/4(log q)1/2−o(1), then there is a cyclic ordering of the elements of A such that the sum of any two
consecutive elements is also in A. Using Theorem 1.3, we can improve on Alon and Bourgain’s result,
showing that the additional polylog-factor can be avoided. This shows that when |A| is of order q3/4, not
only does it contain x, y, x+ y ∈ A but also much more complex structures.

Finally, in Section 8.3, we give an application of our techniques to another problem related to Con-
jecture 1.5. Motivated by this conjecture, Pak and Radoičić [43] showed that every group G has a set of
generators S of size at most log2 |G| such that the Cayley graph Γ(G,S) is Hamiltonian, which is optimal
since there are groups that do not have generating sets of size smaller than log2 |G|. Since their proof
relies on the classification of finite simple groups, they asked to find a classification-free proof of this
result. Using the methods developed for the proof of Theorem 1.3 we give a classification-free proof that
there is always such a set S with |S| = O(log n).

2 Outline

The proofs of Theorems 1.2 and 1.3 are quite different and in this section we give an outline of the main
ideas in these proofs.
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2.1 Robust Pósa rotation and Theorem 1.2

As mentioned in the introduction, the proof of Theorem 1.2 relies on Pósa’s rotation-extension technique.
This is a method used for finding Hamilton cycles in connected graphs. The general argument takes a
longest path P in an expanding graph G and uses the rotation-extension technique to close the path P
into a cycle, that is, it finds a cycle C on the same vertex set V (P ). If |P | = |G|, then C is a Hamilton
cycle, as desired. Otherwise, since G is connected there is a vertex v ∈ V (G)\C and an edge from v to C;
this would give a longer path P ′ than P , contradicting the maximality of P . Clearly the crucial step of
the argument above is in closing the path P into a cycle which is where the rotation-extension technique
comes into play. Let us then briefly describe this beautiful method introduced by Pósa (a much more
detailed take on it is made in Section 4.1).

Informally, given a path P = (v1, v2, . . . , vl), an edge vivl allows one to construct a new path P ′ =
(v1, v2, . . . , vi, vl, vl−1, . . . , vi+1) which also has v1 as an endpoint. This is called a rotation of P with fixed
endpoint v1 and note that it “creates a new endpoint vi+1” in that P ′ is a v1vi+1-path also with vertex
set V (P ). We can then continue this procedure, rotating P ′ also with fixed endpoint v1 to create a new
path P ′′ which has a new endpoint vj , and so on. If a path Q is the result of t consecutive such rotations,
we will refer to it as a t-rotation of P with fixed endpoint v1. Notice also that if P is a longest path in
G, then each one of these new endpoints must have all their neighbours in V (P ) - otherwise, a neighbour
outside of V (P ) would create a path longer than P . Using this fact we can then create many new paths
and endpoints. Indeed, since our graph G has nice expansion properties we can, from starting at a longest
path P and fixing one of its endpoints v1, find Ω(n) vertices vj such that there is a v1vj-path also on
the vertex set V (P ) which is a t-rotation of P for some t = O(log n) (for a precise statement of this, see
Lemma 4.6 and Corollary 4.7).

Our goal is now to close P into a cycle, that is, find a spanning cycle on the vertex set V (P ). A
reasonable first approach is as follows. By the previous paragraph, the rotation technique allows to find
a set X of size Ω(n) such that every vertex vj ∈ X is such that there is a v1vj-path Pj with vertex set
V (P ). Similarly, for each vj ∈ X, we can find a set Yj of size Ω(n) such that every vertex vk ∈ Yj is such
that there is a vkvj-path Pk,j with vertex set V (P ). Clearly, the set Yj is dependent on the vertex vj ∈ X
which is chosen. Nevertheless, it might be that there exists a large set X ′ ⊆ X such that the intersection
of all sets Yj with vj ∈ X ′ is also large. Then, denoting this intersection by Y ′, it will be the case that
for each a ∈ X ′, b ∈ Y ′ there is an ab-path with vertex set V (P ). Using that G is a pseudorandom graph,
we can then find an edge ab with a ∈ X ′ and b ∈ Y ′ - this creates a cycle as desired. For example,
one can observe that such X ′, Y ′ can be found if we can: rotate consecutively with fixed endpoint v1

and only using endpoints in {vl/2+1, . . . , vl−1, vl}, that is, only using edges induced by these vertices; and
then rotate consecutively with fixed endpoint vl (or any endpoint in {vl/2+1, . . . , vl−1, vl}) and only using
endpoints in {v1, . . . , vl/2}. Indeed, then since the two sets of rotations do not interfere with each other,
we will get two large sets X ′ ⊆ {vl/2+1, . . . , vl−1, vl}, Y ′ ⊆ {v1, . . . , vl/2} such that for each a ∈ X ′, b ∈ Y ′
there is a desired ab-path. However, it is clearly not the case in general that such a situation will hold.
This is the main issue that we have to resolve. Nevertheless, the objective is to, using rotations, find
disjoint sets X,Y which are large enough, such that for every a ∈ X, b ∈ Y , there is an ab-path with
vertex set V (P ). Then, by pseudorandomness there is an edge between X,Y which will create the desired
cycle.

As we saw with the example in the previous paragraph, in order to do this, it will be convenient to
control the way we rotate. With this in mind, we will first clean the path P (this is done in Lemma
5.2). Informally, if G is an (n, d, λ)-graph and P is large, we can find a collection of disjoint intervals
in the path which cover almost all the vertices of P such that almost every vertex v in each of these
intervals has many neighbours in several other intervals. Clearly, this will allow us to rotate in various
different manners, avoiding certain situations. Indeed, let us informally describe how the proof goes after
this cleaning is done. Suppose for simplicity that P is fully partitioned into k intervals of size |P |/k and
that all the vertices have many neighbours in at least εk intervals, for some appropriate ε. We now fix a
large sub-path A at the start of the path containing the vertex v1 which contains roughly εk/2 intervals.
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Observe already that since A has that size, every vertex has lots of neighbours outside of A (it has many
neighbours in at least εk/2 intervals which are disjoint to A). This implies that we can always rotate
from any vertex while avoiding A - let us denote this property by P. Also, using the pseudorandomness
of G we can find a subset A′ ⊆ A of size 0.99|A| which has large minimum degree and has the property
that every vertex in A′ has lots of neighbours such that both of their neighbours in P also belong to A′.
Note that this implies that if we are doing rotations and our current endpoint belongs to A′, then we can
continue rotating while “staying” in A′ ⊆ A, that is, only creating new endpoints which belong to A′ -
let us call this property Q.

Now, using property P, we can first rotate with fixed endpoint vl while avoiding A to find many new
endpoints. Then, the pseudorandomness of G guarantees that we can find an edge between one of these
endpoints and A′, giving a new endpoint z ∈ A′. Moreover, crucially note that since we only “touched”
A at this last step, we now have a zvl-path P ′ such that A is broken into only two disjoint sub-paths of
P ′ (one at the start containing z and one at the middle - see Figure 1 where these paths are depicted in
red) and thus, in particular, A′ still has property Q. Let us denote the interval of P ′ between these two
sub-paths of A as I. Using property Q we can then start rotating P ′ with fixed endpoint vl while staying
in A′ ⊆ A. Let the set of endpoints created as such be denoted as X, so that for each x ∈ X we created
an xvl-path Px. Since P ′ \ A was avoided in these rotations, observe that the only difference between
Px \A and Px′ \A (for two different x, x′ ∈ X) in the paths Px, Px′ is the direction in which the interval
I is traversed in the orientation x, x′ → vl (see Figure 1 for an illustration). Then, by possibly reducing
the size of X by half, we can assume that this direction is the same for all endpoints in X - let us denote
this property by R. Finally, we can now, for some x ∈ X, use property P to rotate with fixed endpoint
x only using P ′ \ A. Then, since these rotations avoid A, property R implies that every endpoint y this
creates is also an endpoint for all other x′ ∈ X, that is, for all x′ ∈ X there is an x′y-path on the vertex
set V (P ). Letting Y denote this set of endpoints y, if X,Y are large enough then the pseudorandomness
of G implies that there is an edge xy with x ∈ X, y ∈ Y , thus creating a cycle as desired.

I ..
x

.z . vl.. . ... .

I..
x′

.z . vl.. . . ...

Figure 1: The zvl-path P ′ is depicted, the set A is pictured in red and the interval
I in green. Two rotations with fixed endpoint vl which “stay” in A (using property
Q) are depicted with the interval I being traversed in different directions in the
resulting paths Px, Px′ which are depicted using arrows in the direction x, x′ → vl.

Clearly, the previous discussion is only informal and lacks a lot of important details that we have to deal
with in order to do the proof. Namely, at the start it will not be the case that we can partition all of P
into intervals so that every vertex has many neighbours in several intervals (and so, in particular, we will
not have property P). In particular, the endpoints of the path P will not necessarily have neighbours in
many intervals. Therefore, we will first have to perform some rotations in order to get endpoints which
do satisfy this. This will however imply that some changes to the path will be made, which requires that
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when we go through the arguments layed out before, we will need to rotate while taking these changes
into account. This is an instance of where Lemma 4.8 comes in handy, which is the main technical lemma
allowing us to rotate in a robust manner. In Section 4 we discuss the standard Pósa rotation technique,
state and prove our technical lemma as well as discuss our method for closing paths into cycles. Then, in
Section 5, we give the cleaning lemma discussed before (Lemma 5.2) and prove Theorem 1.2.

2.2 Graphs with many cycles and Theorem 1.3

We now discuss the proof of Theorem 1.3 along with the more general statement (Theorem 7.3) that every
(n, d, λ)-graph with many disjoint cycles contains a Hamilton cycle. Indeed, if d ≥ nα for some constant
α > 0, then it is not difficult to show that the graph contains a collection of εn many vertex-disjoint
cycles, for some constant ε dependent on α.

For simplicity, let us assume here that all of these cycles are triangles and denote them as aibici for
1 ≤ i ≤ εn. First we will find a path P1 which connects linearly many of the triangles, that is, for each
such triangle it contains the edge aici but not the vertex bi - this can be achieved using rather standard
arguments, namely a directed version of the Depth First Search algorithm (see Lemma 3.17). We have
now build a flexible set B of linear size consisting of all the vertices bi, meaning that we can flexibly use
the vertices of B to build structure in the remainder of the graph, and be assured that afterwards, the
vertices bi which we have not used can be “absorbed” into the path P1 by replacing aici with the path
aibici. Moreover, by discarding a few vertices, we can find a set B′ ⊆ B, still of linear size, such that
G[B′] has large minimum degree, which will imply that it inherits some expansion properties from G, and
also such that the endpoints of P1 have large degree into B′.

Let Y be the set of vertices not contained in P1 and B′. With some additional care, we can ensure
that G[Y ] has large minimum degree and therefore it has nice expansion properties. The goal is now to
partition G[Y ] into few paths, more precisely, at most o(n/ log n) vertex-disjoint paths which cover all
vertices of Y , such that the endpoints of all of these paths have neighbours in the flexible set - this is
all done in Section 6. For simplicity, let us start describing briefly how the first property is achieved and
then explain how these two properties can be used to find a Hamilton cycle. At the end, we discuss the
second property.

One standard argument which has been used in the literature for finding linear forests with few paths
in these well-behaved graphs is to find a 2-factor with few cycles by showing that the total number of
2-factors is larger than the number of 2-factors with many cycles using estimates on the permanent as
well as facts about (pseudo-)random graphs. Unfortunately this is not applicable to very sparse graphs
and instead we need to come up with a different argument. Interestingly, we find a convenient shortcut
to this problem. We will use the expanding properties of G[Y ] to find in it a spanning regular subgraph
and then invoke a result of Alon [3] on the linear arboricity conjecture to find the desired collection of
paths. Now, let P2, . . . , Pr be these paths which cover Y , with r = o(n/ log n), and let ui, vi denote the
endpoints of Pi - assume that each one of these endpoints has neighbours in the flexible set B′. We want
to now weave the paths together with the path P1 into a Hamilton cycle. More precisely, for each i, we
want to find a path which connects vj to uj+1 (indices modulo r), whose inner vertices lie in B′, such that
all these paths are vertex-disjoint. Observe that this would indeed yield the desired Hamilton cycle. Since
B′ enjoys nice expansion properties, we can generally assume to find paths of size log n between any given
pair of vertices. Since we only need to connect o(n/ log n) pairs, in principal there would be enough space
in B′ to find all the connections vertex-disjointly. This vertex-disjoint paths problem has been extensively
studied in the literature. We benefit here tremendously from a recent “roll-back technique” which allows
one to indeed find all these connections in expanding graphs (see [24]). Roughly speaking, this technique
allows us, for a given pair of vertices we want to connect, to build two binary trees rooted at both vertices
in a controlled fashion (using a concept of Friedman and Pippenger [26]); then, when these trees are large
enough, we are guaranteed by the pseudorandomness of G to find an edge between them which then
obviously leads to a path connecting the pair. The astonishing thing is that we can now roll back, which
means that we can demolish the two trees until only the desired path is left, while having a guarantee
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that the resulting embedding is still good in the sense that we can simply start connecting the next pair
disjointly in the same way. In fact, we will have to use this technique with an additional twist. Namely, in
general we cannot find triangles at the start of the proof, but cycles which might be longer. For example,
say that we have cycles ai, bi, ci, di of length four. Now the path P1 will connect some of these in the sense
that P1 contains the edges aidi, but does not contain the vertices bi, ci. We still have a flexible set now,
but we have to use it in such a way that for each i, either both bi, ci are absorbed (and in a particular
way) or neither. In Section 3.5, we deal with this additional complication.

Finally, let us briefly discuss the second property that the endpoints of P2, . . . , Pr have neighbours in
the flexible set B′ - indeed, otherwise, we could not connect them using this set. For this, let X be the
subset of Y consisting of those vertices which do not have enough neighbours in the flexible set - since G
is pseudorandom, we are guaranteed that X is not large. When finding the paths P2, . . . , Pr, we have to
make sure that their endpoints avoid X. In order to achieve this, we will first “absorb” the whole of X
into Y \X. This uses a novel idea (see Lemma 6.4) on how to cover such a bad set X which might be
very useful for future applications (in particular since we do not need the polynomial degree assumption
here). Precisely, we can find a collection of disjoint paths which cover X and whose endpoints are in
Y \ X. Then, we will like before use the result of Alon [3] to extend this collection into a linear forest
with few paths whose endpoints are in Y \X, as desired. Clearly, doing this when X 6= ∅ requires various
new ideas.

The part of the paper devoted to Theorem 1.3 is organized as follows. In Section 3.5, we present
all the connecting tools we require - both to find at the start the path P1 connecting the cycles as well
as to connect the paths P2, . . . , Pr at the end using the flexible set to construct the Hamilton cycle.
Subsequently, in Section 6 we discuss finding the desired linear forest in our context with few paths with
good endpoints. Then, in Section 7 we prove the main theorem.

3 Preliminaries

3.1 Notation

We mostly use standard graph theoretic notation. Let G be a finite graph. Denote by V (G) its vertex
set, and let S1, S2 ⊆ V (G). We denote by G[S1] the subgraph of G induced by S1, and by E[S1, S2] the
set of edges with one endpoint in S1 and the other in S2. For a vertex x in a graph G, we let NG(x)
denote the neighbourhood of x in G. For a set S of vertices in a graph G, we let ΓG(S) (or just Γ(S)
if G is clear from the context) denote the neighbourhood of X, that is ΓG(X) :=

⋃
x∈X NG(x), and we

denote by NG(X) the external neighbourhood of X, that is NG(X) = ΓG(X) \ X. If G is a directed
graph, then we can also define N+

G (S),Γ+
G(S), N−G (S),Γ−G(S) to be the analogous sets considering out- or

in-neighbourhoods. Usually n denotes the number of vertices of a given graph, and we assume in all our
statements that n is sufficiently large. An event holds with high probability if its probability tends to 1
as n → ∞. Given a collection M of vertex disjoint sets S ⊆ V (G) in a graph G, we will use V (M) to
denote the set of all vertices in such sets, that is, V (M) :=

⋃
S∈M S.

3.2 Some definitions and standard tools

We now give two useful definitions concerning pseudorandom graphs.

Definition 3.1. Let G be an (n, d, λ)-graph. A subset S ⊆ V (G) is said to be δ-clean if G[S] has
minimum degree at least δ. In the case that δ ≥ d|S|/4n, we say simply that S is clean.

Definition 3.2. A graph G is said to be an (s,K)-expander (or (s,K)-expanding) if every subset S ⊆
V (G) of size at most s is such that |NG(S)| ≥ K|S|. Similarly, a directed graph G is (s,K)-out-expanding
if for every subset S ⊆ V (G) of size |S| ≤ s we have |N+

G (S)| ≥ K|S|.

Now we will state various well-known results that we will use throughout the paper. The first two are
standard probabilistic tools.
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Lemma 3.3 (Chernoff’s bound - see e.g., [7]). Let X be the sum of independent random variables
X1, . . . , Xn such that 0 ≤ Xi ≤ k for each i. Then, for all 0 < ε < 1,

P (X < (1− ε)E[X]|) ,P (X > (1 + ε)E[X]|) ≤ e−ε2E[X]/3k2 .

Lemma 3.4 (Lovász local lemma - see e.g., [7]). Let A1, . . . , An be events in a probability space and
suppose that each event Ai is mutually independent of a set of all the other events Aj but at most d. If
P(Ai) ≤ p for all i ∈ [n] and ep(d+ 1) ≤ 1, then

P

(⋂
i

Ai

)
>

(
1− 1

d+ 1

)n
.

Next we state the classical result of Hall concerning matchings in bipartite graphs.

Theorem 3.5 (Hall’s theorem). Let G be a bipartite graph with bipartition V (G) = A∪B and such that

|N(S)| ≥ |S| ∀S ⊆ A.

Then G has a matching covering A.

We also state a simple folklore result to find short cycles in sufficiently dense graphs.

Theorem 3.6. Every n-vertex graph with at least n1+1/l edges contains a cycle of length at most 2l.

Finally, we state another folklore result on the spectral gap of (n, d, λ)-graphs.

Theorem 3.7. Every (n, d, λ)-graph must have λ ≥
√
d · n−dn−1 .

We remark that by Dirac’s theorem stated in the introduction, if d ≥ n/2 then the graph is Hamiltonian.
Hence, we can from now on assume that d < n/2 and thus, the above theorem tells us that λ ≥

√
d/2.

3.3 Expansion properties of pseudorandom graphs

Here we state and prove several facts about (n, d, λ)-graphs which relate to their expansion properties. As
it is usual, the starting point is the celebrated expander mixing lemma, introduced by Alon and Chung [5],
which has since then found numerous applications (the interested reader is referred to Chapter 9 of the
book of Alon and Spencer [7]). Below, we state the lemma together with three well-known corollaries.
For a proof of these, the reader can consult Section 2 of Krivelevich and Sudakov [33].

Lemma 3.8 (Expander mixing lemma). Let G be an (n, d, λ)-graph. Then,

(1) For every two subsets A,B ⊆ V (G), the number e(A,B) of edges with one endpoint in A and the
other in B satisfies ∣∣∣∣e(A,B)− d|A||B|

n

∣∣∣∣ ≤ λ√|A||B|.
(2) For every set A ⊆ V (G), ∣∣∣∣e(A)− d|A|2

2n

∣∣∣∣ ≤ λ|A|
2

.

Moreover, the following three properties hold.

(3) Every A ⊆ V (G) of size at most λn/d has e(A) ≤ λ|A|.

(4) For every A,B ⊆ V (G) such that |A||B| > (λn/d)2, there exists an edge with one endpoint in A
and the other in B.
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(5) If d > 2λ, then G is connected.

We now give the two crucial lemmas concerning expansion in pseudorandom graphs. These will be
corollaries of the expander mixing lemma above. The first states, informally, that as long as there is large
enough minimum degree (of order at least λ), we have good vertex-expansion.

Lemma 3.9. Let G be an (n, d, λ)-graph, G′ ⊆ G a subgraph and 10λ ≤ δ ≤ d. Suppose that there are
subsets of vertices A,B with |A| ≤ δn/100d and such that every vertex v ∈ A has |NG′(v)∩B| ≥ δ. Then,

|NG′(A) ∩B| ≥ min
(
δ2|A|/8λ2, δn/10d

)
≥ 10|A|.

Proof. Let T := NG′(A) ∩ B. Firstly, since |A| ≤ δn/100d note that by part (2) of Lemma 3.8 we have
eG(A) ≤ (δ/200 + λ/2)|A| ≤ 0.15δ|A|. In turn, by assumption and since δ ≥ 10λ, this implies that

eG(A, T ) ≥ eG′(A, T ) ≥ δ|A| − 2eG(A) ≥ 0.7δ|A|.

Now, suppose first that |A| ≤ λ2n/δd and for sake of contradiction, also that |T | < δ2|A|/8λ2. Then, part
(1) of Lemma 3.8 implies that

eG(A, T ) ≤ d|A||T |
n

+ λ
√
|A||T | <

(
δ2|A|d
8λ2n

+ λ · δ
2λ

)
|A| ≤

(
δ

8
+
δ

2

)
|A| < 0.7δ|A|,

where the third inequality follows since |A| ≤ λ2n/δd. This is a contradiction to the previous observation
and thus, as desired, |T | ≥ δ2|A|/8λ2. Finally, suppose that |A| > λ2n/δd. By considering a subset
A′ ⊆ A of size λ2n/δd, we have by before that |T | ≥ δ2|A′|/8λ2 − |A| ≥ δn/8d− |A| > δn/10d, where we
are using that |A| ≤ δn/100d.

The following is an immediate corollary of the above.

Corollary 3.10. Let G be an (n, d, λ)-graph and S ⊆ V (G) be a clean subset of size at least 1000λn/d.
Then, G[S] is an (|S|/400, 10)-expander.

Next we give another lemma which is a corollary of Lemma 3.8. This will tell us that every sufficiently
large set contains a large clean subset. This is important since by Corollary 3.10, it implies that it will
have good expansion properties.

Lemma 3.11. Let G be an (n, d, λ)-graph and S ⊆ V (G). Then, there are at most 4λ2n2/d2|S| vertices
u such that |N(u)∩S| < d|S|/2n. Moreover, if |S| ≥ 5λn/d, there is a clean subset S′ ⊆ S of size at least
|S| − λn/d.

Proof. Let U denote the set of vertices u such that |N(u) ∩ S| < d|S|/2n. Then, e(U, S) ≤ d|U ||S|/2n.
At the same time, part (1) of Lemma 3.8 implies that e(U, S) ≥ d|U ||S|/n− λ

√
|U ||S|. Therefore,

λ
√
|U ||S| ≥ d|U ||S|/2n,

and so, |U | ≤ 4λ2n2/d2|S| as desired.
For the second part, do the following process. Start with S0 := S; at each step i ≥ 1, consider G[Si−1]:

if it contains some vertex ui with degree less than d|S|/4n, then remove it, that is, define Si = Si−1 \ {ui}
and continue; otherwise, stop the process. Now, it is clear that if the process stops at some step i ≤ λn/d,
then the desired subset S′ := Si ⊆ S is produced. For sake of contradiction, suppose then that it only
stops later. Consider the set Si for i := λn/d+ 1 and define U := {u1, . . . , ui−1}, which is of size at least
λn/d. Note that |Si| = |S| − λn/d ≥ max (|S|/2, 4λn/d) and further, by definition, every vertex in U
must have less than d|S|/4n < d|Si|/2n neighbours in Si. However, this contradicts the first part of the
corollary since

|U | > λn/d ≥ 4λ2n2/d2|Si|

where the second inequality holds since, as noted before, |Si| ≥ 4λn/d.
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We remark that with the same argument one can easily generalize the second part of the above lemma in
the following manner.

Lemma 3.12. Let G be an (n, d, λ)-graph and S a collection of disjoint pairs {xi, yi} ⊆ V (G). If
|S| ≥ 3λn/d, there is a sub-collection S ′ ⊆ S of size at least |S| − λn/d such that V (S ′) is clean.

3.4 Directed graphs and the (directed) Friedman-Pippenger technique

This next section is devoted to stating lemmas concerning finding sparse structures such as paths and
trees more generally, as well as connecting structures, in expanding directed graphs, which will often
appear in our proofs as auxiliary graphs. We start with a well-known result of Ben-Eliezer, Krivelevich
and Sudakov [10] which gives a sufficient condition for the existence of long paths in directed graphs. Its
proof relies on the depth-first-search (DFS) algorithm.

Lemma 3.13 ([10]). Let H be an n-vertex digraph and suppose that for all disjoint sets S, T ⊆ V (H) of
size k there exists an edge directed from S to T . Then, H contains a directed path of length n− 2k + 1.

We now describe an embedding machinery in expanding directed graphs. This is a directed version of
the Friedman-Pippenger technique with roll-backs which is used for embeddings in expander graphs. The
technique of Friedman and Pippenger [26] can be used to embed trees in expanders vertex by vertex,
while maintaining a certain invariant. Then, a simple but powerful observation allows one to remove
leaves from this tree so that this invariant is still maintained. We refer the reader to [24] for more on the
topic. First, we give the definition of this invariant - a good embedding.

Definition 3.14. Let H be a digraph and let s,D ∈ N. Given a digraph F , we say that an embedding
φ : F ↪→ H is (s,D)-good if

|Γ+
H(X) \ φ(F )| ≥

∑
v∈X

[
D − degF (φ−1(v))

]
+ |φ(F ) ∩X| (2)

for every X ⊆ V (H) of size |X| ≤ s. Here we slightly abuse notation by setting degF (∅) := 0, i.e. if a
vertex v ∈ V (H) is not used by φ to embed F , then we set degF (φ−1(v)) = 0.

Then, the argument of Friedman-Pippenger (see e.g., Theorem 2.3 and its proof in [24]) can be adapted
straightforwardly towards directed graphs to give the following.

Theorem 3.15. Let F be a digraph with ∆(F ) ≤ D and v(F ) < s, for some D, s ∈ N. Suppose we are
given a (2s − 2, D+2)-out-expanding digraph H and a (2s − 2, D)-good embedding φ : F ↪→ G. Then for
every digraph F ′ with v(F ′) ≤ s and ∆(F ′) ≤ D which can be obtained from F by successively adding a
new vertex of in-degree 1 and out-degree 0, there exists a (2s − 2, D)-good embedding φ′ : F ′ ↪→ G which
extends φ.

Further, the roll-back technique can also be adapted to directed graphs.

Lemma 3.16. Suppose we are given digraphs G and F with ∆(F ) ≤ D, and an (s,D)-good embedding
φ : F ↪→ G, for some s,D ∈ N. Then for every digraph F ′ obtained from F by successively removing a
vertex of in-degree 1 and out-degree 0, the restriction φ′ of φ to F ′ is also (s,D)-good.

Again, this can be proved by slightly adapting the undirected version - see e.g., Lemma 2.4 in [24].

3.5 Alternating paths in pseudorandom graphs

The purpose of this section is to consider the following setting. We are given a (pseudorandom) graph G
and a collectionM of disjoint pairs {x, y} ⊆ V (G), with the possibility that x = y - we let G∪M denote
the result of adding all possible and non-existing edges xy to G when x 6= y. We say that a path P in
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G ∪M is M-alternating if it is of the form e1f1e2f2 . . . elfl where the ei’s are edges of G and the fi’s
represent either edges xy such that {x, y} is a pair in M or vertices x such that {x, x} ∈ M; informally,
without the appearance of pairs {x, x}, it is just a path in which there is an edge of M among every two
consecutive edges. The goal is now to extend some well-known results concerning paths in pseudorandom
graphs to results about M-alternating paths in such graphs. The first will be the following extension of
Lemma 3.13.

Lemma 3.17. Let G be an n-vertex graph such that for every two disjoint subsets S, T ⊆ V (G) of size k
there is an edge between them. Then, G ∪M contains an M-alternating path which uses all but 2k − 1
pairs in M.

The second result about alternating paths in pseudorandom graphs will be an extension of the vertex-
disjoint paths problem. Roughly speaking, this topic deals with the following situation: we are given a
graph G and pairs of vertices {ai, bi}; then, we have to find vertex disjoint paths Pi for each i connecting ai
to bi. This problem has been extensively studied and for a detailed discussion on it the reader is referred,
e.g., to [24]. In particular, Draganić, Krivelevich and Nenadov [24] recently used the Friedman-Pippenger
technique to show that this problem can be solved in (n, d, λ)-graphs (and with a polynomial time online
algorithm). In the next result, we extend this result to the ‘alternating’ version that we require.

Theorem 3.18. Let G be an (n, d, λ)-graph with d > 500λ and V (M) be 500λ-clean in G with |M| ≥
2000λn/d. Let P be a collection of at most |M|

100 log2 n
disjoint pairs {ai, bi} of vertices in V (G)\V (M) such

that for all v ∈ V (P) we have |N(v) ∩ V (M)| ≥ 500λ. Then there exist vertex-disjoint M-alternating
paths in G ∪M between every pair of vertices {ai, bi}.

Now, before going into the proofs of both of these results, we define a random auxiliary digraph H for
this setting. Indeed, suppose we have a graph G and a collectionM of disjoint pairs {x, y} ⊆ V (G), with
the possibility that x = y. We define the random auxiliary digraph H = H(G,M) as follows. For each
pair {xi, yi} ∈ M, colour uniformly at random one of the vertices red and the other blue - in the case
that xi = yi colour the vertex red and blue. After doing so, re-label these vertices so that xi always refers
to a red vertex and let X denote the set of these; let Y denote the set of blue vertices. Now, the vertex
set of H is V (H) := X ∪

(
V (G) \ V (M)

)
and the edges are defined as follows.

1. For any two vertices xi, xj ∈ X, put an edge directed from xi to xj if xiyj is an edge in G.

2. For v /∈ V (M) and a vertex xi ∈ X, put an edge from v to xi if vyi is an edge of G.

Crucially, constructing H in such a manner gives the following deterministic property.

Observation 3.19. If P = xi1 → xi2 → . . . → xil is a directed path in H, then yi1xi1yi2xi2 . . . yilxil is
an M-alternating path in G ∪M.

We can now prove the results stated above. The first one, Lemma 3.17 will not require the randomness
involved in H and follows by showing that the condition of Lemma 3.13 is satisfied for H[X] and then
applying the observation above.

Proof of Lemma 3.17. Let S, T be two disjoint subsets of X of size k. Consider the set T ′ := {yi : xi ∈
T} which has size k, and note that by construction, −→e H(S, T ) = eG(S, T ′). By the assumption on G, we
then have that −→e H(S, T ) 6= ∅ and therefore, Lemma 3.13 implies that H[X] contains a directed path of
length |X| − 2k + 1. By Observation 3.19 this gives an M -alternating path as desired.

The second result is more technical and will indeed require the randomness of H. Precisely, we will first
show that with positive probability H satisfies strong expansion properties. Because of this, we are then
able to apply the directed Friedman-Pippenger machinery introduced in Section 3.4. Before starting, let
us state another deterministic property that H satisfies.
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Observation 3.20. Let P = v → xi1 → . . .→ xil and Q = u→ xj1 → . . .→ xjt be two disjoint directed
paths in H with u, v /∈ V (M). Then, if xilxjt is an edge of G, we have that vyi1xi1 . . . yilxilxjtyjt . . . xj1yj1u
is an M-alternating path in G ∪M.

Proof of Theorem 3.18. Let us fix δ := 500λ. Let us also re-define H := H[X ∪ V (P)] - note then
that |V (H)| = |M|+ |V (P)| ≤ 2|M|. We will first show that H satisfies good expansion properties.

Claim. With positive probability, H is (|V (H)|/10, 5)-out-expanding.

Proof. We first show that with positive probability, δ+(H) ≥ δ/5 in H. Indeed, by assumption initially
each vertex v ∈ V (P) ∪ V (M) of G has at least δ neighbours in V (M) = X ∪ Y . It is easy to check that
the random procedure defining H implies that the random variable |N+

H (v)| stochastically dominates the
binomial random variable Bin(δ, 1/2). Indeed, note that if v has both elements of some pair {x, y} in
M as neighbours in G, then one of them will be an in/out-neighbour in H, and if only one of these is a
neighbour, then with probability 1/2 it will be an in/out-neighbour in H. Therefore, by Lemma 3.3 we
have that P

(
|N+

H (v)| < δ/5 | v ∈ V (H)
)

= e−Ω(δ). Moreover, we can further apply Lemma 3.4. Indeed,
note that clearly since G is d-regular, the event Ev := {|N+

H (v)| < δ/5 | v ∈ V (H)} will depend on at

most O(d2) other events Ev′ . Therefore, since e−Ω(δ) = o(d−2) (by δ ≥
√
d/2), Lemma 3.4 implies that

with positive probability, no event Ev holds and thus, δ+(H) ≥ δ/5.
We can now verify the expanding condition. Let S ⊆ V (H) be a set of size at most |V (H)|/10 and

consider X ′ := Γ+
H(S) ⊆ X. Recall that for each xi ∈ X ′, there is a corresponding yi ∈ Y - let Y ′ denote

the set of these. By the paragraph above, we have that for all v ∈ S, |N+
H (v)∩X ′| ≥ δ/5. In turn, by the

construction of H, it must be that for every edge v → xi in H with xi ∈ X ′, there is a corresponding edge
vyi of G. Therefore, also |NG(v) ∩ Y ′| ≥ δ/5. By Lemma 3.9, we must then have that if |S| ≤ δn/500d,
then |X ′| = |Y ′| ≥ 10|S|, as desired. When λn/d = δn/500d < |S| ≤ |V (H)|/10, part (4) of Lemma 3.8
applied to G implies that there are at most λn/d vertices of Y which are not adjacent to some vertex of
S - that is, |X ′| = |Y ′| ≥ |Y | − λn/d ≥ |V (H)| − λn/d− |V (P)| ≥ 0.9|V (H)| ≥ 6|S|, as desired.

Now that we have proven that H is out-expanding, we can apply the Friedman-Pippenger machinery to
find the desired M-alternating paths in G ∪ V (M) connecting the pairs in P. Recalling Definition 3.14,
we will from now on refer to a (|V (H)|/10, 3)-good embedding as only a good embedding. Similarly, we
will say that a directed graph is expanding if it is (|V (H)|/10, 5)-out-expanding.

First note that the set V (P) is a good embedding of an independent set in H, since H is expanding
and every vertex v ∈ V (P) has only out-neighbours in X, which is disjoint to V (P). We then start by
linking the first pair {a1, b1} ∈ P. For this, we use Theorem 3.15 in order to find two disjoint out-oriented
binary trees T1, T2 in H of size at least |V (H)|/50 ≥ |M|/50 ≥ λn/d rooted at a1 and b1 respectively.
Furthermore, Theorem 3.15 guarantees that these trees together with the other vertices in V (P) form
a good embedding of an independent set of size 2|P| − 2 together with two disjoint out-oriented binary
trees. Now, since |T1|, |T2| ≥ λn/d, part (4) of Lemma 3.8 implies that there is an edge e = uw in G[X]
connecting a vertex u ∈ V (T1) and a vertex w ∈ V (T2). By Observation 3.20, this implies the existence
of an M-alternating path in G ∪M with endpoints a1, b1, which we denote by P1. Note that P1 uses at
most 2 log2 n vertices of H.

We can now roll back in the following sense. Trivially we can remove vertices from each tree T1, T2 in a
leaf-by-leaf manner so that at the end we are only left with the vertices of H which correspond to the path
P1 (which consist of a directed a1u-path and a directed b1w-path). By Lemma 3.16, we are guaranteed
that the current forest remains a good embedding, now of an independent set of size 2|P | − 2 and two
disjoint directed paths. We then continue with the same procedure to link the second pair {a2, b2} ∈ P
with anM-alternating path P2 disjoint to P1. Again, we first find two complete out-oriented binary trees
in H rooted at a2 and b2 (disjoint from P1), then we find an edge in G[X] which connects them and
creates the M-alternating a2b2-path P2, which uses at most 2 log2 n vertices of H. We then remove all
the vertices from the trees which do not correspond to P2 in a leaf-by-leaf manner. As such, Lemma 3.16
implies that the resulting forest is a good embedding. We continue this operation for every pair in P;
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note that we can indeed do this since every M-alternating path we create uses at most 2 log2 n vertices
of H and so, at any given point of the process the current forest to which we are applying Theorem 3.15
is of size at most |P| · 2 log2 n+ 2 · |V (H)|/50 ≤ |M|/50 + |V (H)|/25 < |V (H)|/10, where the first term is
an upper bound on the total number of vertices of H used in the paths P1, P2, . . . and the second upper
bounds the number of vertices in the current binary out-oriented trees which are being used - and thus,
this theorem can indeed be applied. This completes the proof since the procedure constructs the desired
vertex-disjoint M-alternating paths in G ∪M.

4 Robust Pósa rotation

In this section we will give various tools which allow us to close paths into cycles. More specifically, we
will say that a path P can be closed into a cycle if there exists a cycle on the same vertex set V (P ). Our
approach to do this heavily relies on the so called rotation-extension technique, invented by Pósa in [44],
which has subsequently been applied to several problems related to Hamiltonicity (see e.g., [13, 27, 33]).
We will in turn develop new tools in order to use this technique in a robust manner. First, we need some
definitions and initial lemmas.

4.1 Standard tools

We start with some definitions. Let P = (v1, v2, . . . , vl) be a path in a graph G. For a vertex u = vi ∈
V (P ), we define, as usual, NP (u) := {vi−1, vi+1} to be the set of neighbours of u in P . When necessary
and when such an ordering of the path is defined, we will use u+

P := vi+1 to denote its right neighbour
in P and u−P := vi−1 to denote its left neighbour. Given a subset X ⊆ V (P ), we define intP (X) (or
just int(X) when P is clear from the context) to be the set of vertices vi ∈ X with i /∈ {1, l} such that
vi−1, vi+1 ∈ X.

Definition 4.1. For two paths P, P ′ on the same vertex set V , we define the difference between P and
P ′, denoted as dif(P, P ′), to be the set of vertices u ∈ V such that NP (u) 6= NP ′(u).

It is worth making some remarks about the above definition. First, note that clearly the set V \dif(P, P ′)
spans the same collection of vertex-disjoint paths in both P and P ′ - moreover, there are at most
|dif(P, P ′)|+1 of these paths. Note also that for any subsetX ⊆ V \dif(P, P ′), we have intP (X) = intP ′(X).

We can now start introducing the influential rotation-extension technique of Pósa.

Definition 4.2. If 1 < i < l and vivl is an edge of G, the path

P ′ = (v1, v2, . . . , vi, vl, vl−1, . . . , vi+1)

is said to be a rotation of P with fixed endpoint v1, pivot vi and broken edge vivi+1. More generally, given
a subset X ⊆ V (P ), we will say that a path P ′ is an (X, t)-rotation of P with fixed endpoint v1 if it is
the result of at most t consecutive rotations starting with P , each with fixed endpoint v1, broken edges
in E(P ) and pivots belonging to the set intP (X). Clearly, such a path P ′ has as endpoints the vertex
v1 and a vertex in X. We say that it is just a t-rotation (or respectively, an X-rotation) if there is no
restriction on where the pivots and broken edges belong to (or respectively, on the number of rotations).

Again, we make two remarks about the above definition.

Observation 4.3. Let P ′ be a 1-rotation of P as above. Then, only the vertices vi, vi+1, vl change
neighbourhoods, that is, NP (u) 6= NP ′(u)⇒ u ∈ {vi, vi+1, vl}. Moreover,

• For all X ⊆ V (P ) such that vl /∈ X, then either the new endpoint vi+1 of P ′ belongs to X or
intP ′(X) = intP (X).

• If P ′ is a t-rotation of P , then |dif(P, P ′)| ≤ 3t.
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Now, we give two lemmas. The first is an analogue of Lemma 3.11 about finding clean subsets in the
context of paths and Pósa rotation. Let us first define such a subset.

Definition 4.4. Let G be an (n, d, λ)-graph and P a path in G. A subset S ⊆ V (P ) is said to be
(P, δ)-clean if for all v ∈ S we have that |N(v) ∩ intP (S)| ≥ δ. We say only that S is P -clean if it is
(P, d|S|/4n)-clean.

Given this, we now have the following analogous statement to Lemma 3.11.

Lemma 4.5. Let G be an (n, d, λ)-graph, P a path and A a subpath of P . If |A| ≥ 10λn/d, there is a
P -clean subset A′ ⊆ A with |A′| ≥ 0.9|A|.

Proof. Similarly to the proof of Lemma 3.11, we do the following process. Start with A0 := A and at each
step i ≥ 1, remove a vertex ui ∈ Ai−1 such that |N(ui)∩ intP (Ai−1)| < d|A|/4n, setting Ai := Ai−1 \{ui};
if no such vertex exists then stop the process. Clearly, if the process stops at some step i ≤ 0.1|A|, then
the desired subset A′ := Ai is constructed. Suppose then, for sake of contradiction, that the process only
stops after that and consider the set Ai with i := 0.1|A| + 1. Define also the set U := {u1, . . . , ui−1}
which has size 0.1|A| and note that by construction, we must have that every vertex in U has at most
d|A|/4n neighbours in intP (Ai−1). In turn, we claim that this contradicts the first part of Lemma 3.11
with S := intP (Ai−1). Indeed, note that since A is a subpath of P and we have |Ai−1| ≥ 0.9|A|, it must be
that |S| = |intP (Ai−1)| ≥ 0.7|A|. In particular, d|A|/4n < d|S|/2n and so, the first part of Lemma 3.11
gives that

|A| · |U | ≤ |A| ·
(
4λ2n2/d2|S|

)
≤ 8λ2n2/d2

which is a contradiction since |A| · |U | ≥ 0.1|A|2 ≥ 10λ2n2/d2 by assumption.

The next lemma is a standard version of the usual Pósa rotation lemma which has been implicitly used
for several Hamiltonicity problems. Its proof can be found, e.g., in [33].

Lemma 4.6 ([33]). Let G be an (n, d, λ)-graph with d ≥ 10λ, P a maximal path in G with endpoints x, y
and |P | ≥ n/10. Let Z1 ⊆ Z2 ⊆ . . . ⊆ V (P ) be a nested sequence defined as follows: for each i ≥ 1, Zi
is the set of vertices z for which there exists an i-rotation of P with fixed endpoint y which is a zy-path.
Then, Z1 6= ∅ and |Zi+1| ≥ min (2|Zi|, n/100) for all i ≥ 1.

We remark that a proof of this will be implicit in the more general Lemma 4.8 in the next section.
Crucially, the above lemma implies the following.

Corollary 4.7. Let G be an (n, d, λ)-graph with d ≥ 10λ, P a maximal path in G with endpoints x, y and
|P | ≥ n/10. Let R ⊆ V (P ) be a set such that |intP (R)| ≥ 100λ2n/d2. Then, there exists a (log n)-rotation
P ′ of P with y as one endpoint and the other endpoint x′ ∈ R such that |intP (R) \ intP ′(R)| ≤ 3.

Proof. Let us apply Lemma 4.6 and take I to be the minimal i such that |Zi| ≥ n/100 - by the lemma,
we have that I ≤ log n − 1. If R ∩ ZI 6= ∅, then let x′ ∈ R ∩ ZI belong to Zj with j minimal. Then, we
claim that x′ satisfies the desired property. Indeed, it is such that there is a j-rotation P ′ of P with y
as one endpoint and the other endpoint x′. Moreover, since j is minimal note that the endpoints created
by each one of the previous rotations forming P ′ are not in R except for x′. Thus, by the first item of
Observation 4.3, the only change to intP (R) occurs in the last step and so, by the same observation, it
only affects at most three vertices, hence |intP (R) \ intP ′(R)| ≤ 3, as desired.

Suppose now that R ∩ ZI = ∅. Since |ZI ||intP (R)| ≥ λ2n2/d2, part (4) of Lemma 3.8 implies that
there is an edge zv with z ∈ ZI and v ∈ intP (R). Now, consider the zy-path Pz which is an I-rotation of
P with fixed endpoint y. Since R ∩ ZI = ∅, Observation 4.3 implies that intP (R) = intPz(R). Therefore,
v ∈ intPz(R) and so, the edge zv ensures that there is a path P ′ which is a rotation of Pz with fixed
endpoint y and an x′y-path for some x′ ∈ R. We now check that P ′, x′ satisfy the desired conditions.
Indeed, P ′ is an (I + 1)-rotation of P with I + 1 ≤ log n. Further, since intP (R) = intPz(R) and P ′ is a
1-rotation of Pz we have that |intP (R) \ intP ′(R)| ≤ 3.
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4.2 The main technical rotation lemma

We will further need a much more robust extension of the Pósa rotation technique than Lemma 4.6.
Informally, given a path P we will first want to perform rotations only in a certain clean subset of P and
secondly, we want to be able to do this robustly, that is, possibly after some changes to the path have
been done. Clearly, the challenge here is that these changes might alter the clean subset we wish to rotate
in.

Lemma 4.8. Let G be an (n, d, λ)-graph with d ≥ 100λ, P a path in G, X,Y ⊆ V (P ) be non-empty with
X being a (P, δ)-clean subset for some 20λ ≤ δ ≤ d. Let also P ′ be another path with V (P ′) = V (P ) and
let x, y be its endpoints with x ∈ X. Suppose the following holds in the case that P 6= P ′.

• At most δ/2 vertices w ∈ intP (X) \ intP ′(X) are such that distG(w, x) ≤ 2 log |dif(P, P ′)|.

Then there are at least δn/200d vertices z ∈ X for which there exists a zy-path Pz which is an (X, log n)-
rotation of P ′ with fixed endpoint y and such that |dif(Pz, P

′) ∩ Y | ≤ 3 log |Y |.

Proof. Define F := dif(P, P ′), so that we have for all u /∈ F that NP (u) = NP ′(u), and as observed before,
intP (X \F ) = intP ′(X \F ). Moreover, clearly we have |intP (X \F )| ≥ |intP (X)|−3|F | which implies the
following: for every S ⊆ X we have |N(S)∩ intP ′(X)| ≥ |N(S)∩ intP ′(X \F )| ≥ |N(S)∩ intP (X)|−3|F |.
Now, for each i ≥ 0, let us define Zi ⊆ X to be the set of vertices z for which there exists an (X, i)-rotation
Pz of P ′ with fixed endpoint y which is a zy-path and such that |dif(Pz, P

′)∩Y | ≤ 3 log |Y |. Clearly, note
that {Zi}i is a family of nested sets with Zi ⊆ Zi+1 for each i. Further, the following recurrence holds.

Claim. For each i < log |Y |, we have |Zi+1| ≥ 1
2 |N(Zi) ∩ intP ′(X)| − 3

2 |Zi|. For i ≥ log |Y |, we have

|Zi+1| ≥
1

2
|N(Zi) ∩ intP ′(X)| − 3

2
|Zi| −

3

2
|Y |.

Proof. Let us suppose first that i < log |Y |. Fix an initial ordering (v1 := x, v2, . . . , vl−1, vl := y) of the
path P ′ and define the set of indices J := {1 < j < l : vj ∈ N(Zi)∩ intP ′(X), vj−1, vj , vj+1 /∈ Zi}. Clearly
we have that |J | ≥ |N(Zi) ∩ intP ′(X)| − 3|Zi|. Consider a vertex vj with j ∈ J . We claim that one of
vj−1, vj+1 belongs to Zi+1, thus showing that |Zi+1| ≥ |J |/2, which by the previous lower bound on |J |
implies the desired recurrence. Indeed, note that since vj ∈ N(Zi) ∩ intP ′(X), it has a neighbour z ∈ Zi.
By definition, there exists an (X, i)-rotation of P ′ with fixed endpoint y and whose other endpoint is z
- let us denote this path by Q. Note that the subpath vj−1vjvj+1 is still present in Q (albeit in maybe
a different direction). Indeed, during the repeated rotation process of obtaining Q, by definition every
broken edge must be incident to some vertex in Zi and we have vj−1, vj , vj+1 /∈ Zi. Therefore, we can use
the edge zvj to perform a rotation of Q with fixed endpoint y, pivot vj and broken edge either vj−1vj or
vjvj+1. This results in an (X, 1)-rotation of Q and so, an (X, i+ 1)-rotation of P ′ with fixed endpoint y.
The other endpoint of the path will be either vj−1, vj+1 and so one of these two vertices belongs to Zi+1.
Note further that this path, which we denote as Q′, an (X, i+ 1)-rotation of P ′ with fixed endpoint y, by
Observation 4.3 is such that |dif(Q′, P ′) ∩ Y | ≤ |dif(Q′, P ′)| ≤ 3i+ 3 ≤ 3 log |Y |.

For the case that i ≥ log |Y |, the proof is analogous, the only difference being that we define J :=
{1 < j < l : vj ∈ N(Zi) ∩ intP ′(X), vj−1, vj , vj+1 /∈ Zi ∪ Y }, which has size at least |N(Zi) ∩ intP ′(X)| −
3|Zi| − 3|Y |. We can then show similarly as above that for each vj ∈ J , one of vj−1, vj+1 belongs to
Zi+1 - and thus, |Zi+1| ≥ |J |/2. Indeed, there is a z ∈ Zi which is a neighbour of vj , so that there is
an (X, i)-rotation Q of P ′ with fixed endpoint y and whose other endpoint is z. The edge zvj can then
be used to extend this to an (X, i + 1)-rotation of P ′ with fixed endpoint y and one of vj−1, vj+1 as the
other endpoint - without loss of generality, assume that it is vj−1 and let this path be denoted as Q′.
Note that dif(Q′, P ′) \ dif(Q,P ′) ⊆ {vj , vj−1} and so, since vj−1, vj , vj+1 /∈ Y , we have by definition that
|dif(Q′, P ′) ∩ Y | ≤ |dif(Q,P ′) ∩ Y | ≤ 3 log |Y | as desired.

Now, note that by assumption we have |Z1| = |N(x) ∩ intP ′(X)| ≥ δ/2. Indeed, since X is (P, δ)-clean,
we have that |N(x) ∩ intP (X)| ≥ δ - therefore, if P = P ′ this trivially holds and if P 6= P ′, then the
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assumption of the lemma implies that then |N(x)∩intP ′(X)| ≥ δ/2 (since any neighbour w ∈ N(x) clearly
has dist(w, x) ≤ 2 log |F |). Thus, in order to finish the proof of the lemma we only need to show that
while |Zi| ≤ δn/200d, we have that |N(Zi) ∩ intP ′(X)| ≥ 10|Zi|. Indeed, if that is the case, then by the
claim above we have first for each such log |Y | > i ≥ 1 that |Zi+1| ≥ 5|Zi| − 3

2 |Zi| ≥ 2|Zi|. In particular,
this implies that |ZI | ≥ 2I ≥ |Y | for I := log |Y |. Then, again by the claim above we have that for all
i ≥ I, |Zi+1| ≥ 5|Zi| − 3

2 |Zi| −
3
2 |Y | ≥ 5|Zi| − 3|Zi| ≥ 2|Zi|. Therefore, |Zl| ≥ δn/200d will occur for some

l ≤ log n. This in turn gives us the desired vertices z - those contained in Zl.
Now, suppose then that i is such that |Zi| ≤ δn/200d and consider N(Zi) ∩ intP ′(X). Note first that

when P 6= P ′ and i < log |F |, since Pósa rotation implies that N(Zi) is composed of vertices which are at
a distance at most 2i+1 < 2 log |F | of x, we have by assumption of the lemma that every vertex in Zi has
at least δ/2 neighbours in intP ′(X) (recall that every such vertex has at least δ neighbours in intP (X)).
Applying now Lemma 3.9 with G′ := G, A := Zi, B := intP ′(X) we get that |N(Zi)∩ intP ′(X)| ≥ 10|Zi|.
Now, let us consider when i ≥ log |F | or P = P ′ (then clearly F = ∅). Note that the previous observations
imply that |Zi| ≥ 2log |F | ≥ |F | - hence, |N(Zi)∩ intP ′(X)| ≥ |N(Zi)∩ intP (X)|−3|Zi| (note that this also
holds if P = P ′). Since every vertex in Zi has at least δ neighbours in intP (X), Lemma 3.9 then implies also

that |N(Zi)∩ intP (X)| ≥ min
(
δ2

8λ2
, 20
)
|Zi| ≥ 13|Zi|. Hence, |N(Zi)∩ intP ′(X)| ≥ 13|Zi|−3|Zi| ≥ 10|Zi|,

as desired.

Note that as a corollary, we get the following which tells us that we can always rotate inside P -clean
subsets and avoid certain vertices.

Corollary 4.9. Let G be an (n, d, λ)-graph with d ≥ 100λ, P a path in G with endpoints x, y and
X,Y ⊆ V (P ) be such that X is a (P, δ)-clean subset for some 20λ ≤ δ ≤ d and x ∈ X. Then there are at
least δn/200d vertices z ∈ X for which there exists a zy-path Pz which is an (X, log n)-rotation of P with
fixed endpoint y and such that |dif(Pz, P ) ∩ Y | ≤ 3 log |Y |.

4.3 A method for closing paths into cycles

We finish with a general setup which will always allow one to close a given path into a cycle. This was
already alluded to in Section 2. The challenges in achieving this were also discussed there and will be
dealt with in the next section. Before stating the setting, let us give a definition. For a path P and a
subset A ⊆ V (P ), the graph induced by P on A, that is, P [A], is a disjoint union of paths - we will let
cP (A) := c (P [A]) denote the number of such paths, that is, the number of components of P [A].

Lemma 4.10. Let G be an (n, d, λ)-graph, P a path in G with endpoints x, y and A,B ⊆ V (P ) be
disjoint sets such that the following holds. Both A and B contain

(
P, 200λ · 2min(cP (A),cP (B))

)
-clean subsets

A′ ⊆ A,B′ ⊆ B with x ∈ A′ and y ∈ B′. Then, P can be closed into a cycle.

Proof. Let us fix an ordering P = (x, v2, . . . , vl−1, y) and suppose without loss of generality that cP (A) ≥
cP (B). First, we apply Corollary 4.9 with X := A′, Y := ∅ thus finding at least (λn/d) · 2cP (B) vertices
z such that there is a zy-path Pz which is an A′-rotation of P with fixed endpoint y - let Z1 denote the
set of these vertices. Note crucially that for each z ∈ Z1, since Pz is an A′-rotation of P , we have that
Pz[B] = P [B] and so, cPz(B) = cP (B). Moreover, the following holds.

Claim. There exists a subset Z ′1 ⊆ Z1 of size at least |Z1| · 2−cP (B) such that the following holds: for all
v ∈ B and z, z′ ∈ Z ′1 we have v+

Pz
= v+

Pz′
and v−Pz

= v−Pz′
.

Proof. For the purpose of the argument let us fix c := cP (B). As noted above, we have for each z ∈ Z1

that Pz[B] = P [B]. Indeed, the only difference between B in Pz and in P is the direction in which each
path of Pz[B] = P [B] is traversed. More precisely, let us recall the ordering of P as (x, . . . , y), that is,
from x to y and also consider the ordering of Pz from z to y. Let Q be one of the c sub-paths of P which
form B, let u, v be its endpoints and assume that in the given ordering of P we have that Q is ordered
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from u to v. We know that Q is also a sub-path of Pz, but we are unaware of which direction Q is ordered
in the ordering of Pz from z to y, there being 2 possibilities (u→ v or v → u). Furthermore, this direction
will determine v+

Pz
and v−Pz

for all v ∈ Q. Therefore, by pigeonholing, since there are c sub-paths Q we
can find a fraction of 2−c of the vertices z ∈ Z1 for which all of these are equal, as desired.

Note that the above claim implies that if a vertex w ∈ B is such that for some z ∈ Z ′1 there is a zw-path
which is a B′-rotation of Pz with fixed endpoint w, then this is the case for all other vertices z′ ∈ Z ′1.
Therefore, letting W ⊆ B denote the set of such vertices w we have that for all z ∈ Z ′1, w ∈ W , there is
a zw-path on the vertex set V (P ). Hence, if there exists an edge zw between two such vertices, then P
can be closed into a cycle. In order to find such an edge, we only need to show that |W | ≥ λn/d since
then |W ||Z ′1| ≥ (λn/d)|Z1| · 2−cP (B) ≥ (λn/d)2 and thus, part (4) of Lemma 3.8 guarantees that the edge
exists. To show that |W | ≥ λn/d, fix some z ∈ Z ′1 and note that B′ is a (Pz, 200λ)-clean subset of Pz and
y ∈ B′. So, Corollary 4.9 applied on the path Pz with X := B′ implies that |W | ≥ λn/d.

5 Hamilton cycles with robust Pósa rotation

In this section we will prove Theorem 1.2. In order to do this, we will show that it will always be possible to
close a maximal path into a cycle. Clearly, if a graph G is connected (as are (n, d, λ)-graphs with λ < d/2
by part (5) of Lemma 3.8) and every maximal path can be closed into a cycle, then it is Hamiltonian. As
expected, our arguments here will build on the tools given in the previous section. First, we introduce
the notion of a clean collection of intervals of a path. This will be crucial for then closing this path into
a cycle.

Definition 5.1. Given a path P , a collection Q = {Q1, . . . , Qk} of disjoint sub-paths of P is said to be
(δ, γ, k)-clean for P if it is equipped with a subset S ⊆

⋃
iQi and has the the following properties.

1. |Qi| ≥ 0.99|P |/k and |S ∩Qi| ≥ 0.99|Qi| for each i.

2. Every vertex v ∈ S has at least δ neighbours in intP (S) - that is, S is (P, δ)-clean.

3. For each vertex v ∈ S there are at least γk indices j such that |N(v) ∩ int(S ∩Qj)| ≥ δ/k.

We remark first that the reader should think of the above definition with δ being less than d|S|/20n,
rather than d|S|/4n, where the second condition would tell us that S is P -clean. This then makes the
third condition much more plausible to obtain. We remark also that this notion appeared in [30] in the
context of random graphs in a much more simplified form. We can now show that every sufficiently large
path in a pseudorandom graph contains a clean collection - we remark that in applications, the value of
k in the lemma below will be small, of polylogarithmic order in terms of n.

Lemma 5.2. Let α := 10−8 and G be an (n, d, λ)-graph with λ ≤ αd and P a path in G of size at least

n/3. Then for all k there is a
(
d/100, αd

2

kλ2
, k
)

-clean collection for P .

Proof. Let δ = d/100, β := 10−5 and γ := αd2

kλ2
. Let us first partition P into disjoint subpaths I1, . . . , Ir

each of size |P |/r with r := 1.01k. Initially take S := V (P ) and iteratively do the following procedure
until it is no longer possible: (1 ) If there exists an index j such that |S∩ Ij | < 0.99|Ij |, then remove every
vertex of Ij from S and continue; (2 ) If that is not the case and there is a vertex v ∈ S with degree less
than δ in int(S), remove it from S and continue; (3 ) If that is also not the case and there is a vertex
v ∈ S such that there are less than γr indices j for which |N(v) ∩ int(S ∩ Ij)| ≥ δ/k, remove it from S
and continue.

The goal is then to show that this process must stop while the number of indices j such that |S∩ Ij | ≥
0.99|Ij | is at least k - we then take Q to be the collection of these sub-paths and it will have the desired
properties. Suppose indeed that this is not the case. Then, we can assume that we achieve a stage of
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the process when the number of indices j such that |S ∩ Ij | ≥ 0.99|Ij | is precisely k - let I be the set of
such indices. Define also R ⊆ V (P ) \ S to be the set of vertices which have been previously removed in
the process because one of the options (2 ) or (3 ) described before occurred. Observe first then that the
following must hold.

Claim. |R| ≥ (r − k) · 0.01|P |/r ≥ βn.

Proof. By the definition of the process, it must be that every subpath Ij that has been removed from
S (that is, using step (1)) is such that 0.01|Ij | = 0.01|P |/r of its vertices were previously removed
individually and thus, are contained in R. Since by assumption exactly r − k subpaths Ij have been
removed from S, we have that |R| ≥ (r − k) · 0.01|P |/r ≥ βn.

Moreover, by definition every vertex v ∈ R satisfies one of the following properties.

• v has degree less than δ in int(S).

• There are fewer than γr indices j ∈ I for which |N(v) ∩ int(S ∩ Ij)| ≥ δ/k.

Let R1, R2 ⊆ R respectively denote the sets of vertices of R satisfying these properties. We will now
give upper bounds for both R1, R2 using Lemma 3.8 and thus achieve a contradiction to the above claim.
First, consider R1. Note that since |S| ≥

∑
j∈I |S ∩ Ij | ≥

∑
j∈I 0.99|Ij | ≥ k ·0.99|P |/r ≥ 0.98|P |, we have

that |int(S)| ≥ |S| − 2|P \ S| ≥ 0.9|P | ≥ n/4. Therefore, δ ≤ d|int(S)|/2n and so, by Lemma 3.11, we
must have |R1| ≤ 4λ2n2/d2|int(S)| ≤ βn/3.

Now, consider R2. We claim that it has size at most βn/3, which is a contradiction since then
βn ≤ |R| ≤ |R1| + |R2| ≤ 2βn/3. Indeed, define an auxiliary bipartite graph H with one part A
corresponding to R2 and the other part B corresponding to I - put an edge in H between v ∈ A and
j ∈ B if |N(v) ∩ int(S ∩ Ij)| < δ/k. By definition of R2, every vertex in A has more than k − γr ≥
(1 − 2γ)k = (1 − 2γ)|B| neighbours in B and so, we can greedily find a subset B′ ⊆ B of 1

4γ vertices

with at least |A|/2 common neighbours in A. Let A′ denote this set of common neighbours and let
X :=

⋃
j∈B′ int(S ∩ Ij). Recall that for each j ∈ B′ we have |S ∩ Ij | ≥ 0.99|Ij | and so, int(S ∩ Ij) ≥

|S ∩ Ij | − 2|Ij \ S| ≥ 0.97|Ij | ≥ 0.9|P |/r ≥ n/5r - hence, |X| ≥ |B′|n/5r ≥ n/20γr. Further, by definition
of H we must have that every vertex v ∈ A′ has at most δ|B′|/k = δ/4γk < d|X|/2n neighbours in X.
So, by Lemma 3.11 we must have that |R2| ≤ 2|A′| ≤ 8λ2n2/d2|X| < βn/3.

5.1 Proof of Theorem 1.2

We will now prove the first main theorem of the paper. Let G be an (n, d, λ)-graph with d/λ ≥ C(log n)1/3

where C is some large absolute constant. Fix δ = d/100, γ := C
(logn)1/3

≥ C2λ/d, k := 30 log n and

D = d/(log n)1/3. Let P be a path of maximal length in G - we will show that P can be closed into
a cycle. Since G is connected this clearly implies that G is Hamiltonian. Note also that an undirected
version of Lemma 3.13 along with part (4) of Lemma 3.8 gives that |P | ≥ n− 2λn/d = n− o(n).

Let us also denote P by an ordering v1v2 . . . vl−1vl, with x := v1, y := vl as its endpoints. The first step
is to apply Lemma 5.2. Indeed, we partition P into two subpaths P1, P2 of size |P |/2. By Lemma 5.2,

both paths have (δ, γ, k)-clean collections - indeed note that 10−8d2

kλ2
≥ C2

30·108(logn)1/3
≥ γ if C is large

enough. Let Q1 = {Q1
1, . . . , Q

1
k},Q2 = {Q2

1, . . . , Q
2
k} be the given collection of disjoint sub-paths of

P1, P2 respectively, and S1 ⊆
⋃
iQ

1
i , S2 ⊆

⋃
iQ

2
i be the subsets with the given properties - note that

|intP (S1)|, |intP (S2)| ≥ 0.4|P | and that S1, S2 are disjoint.
First, we note that we can use Lemma 4.6 in order to pass to a path P ′ which has special properties,

one of them being that one of its endpoints belongs to S1 and the other to S2.

Claim 5.3. There exists a path P ′ on the same vertex set as P with endpoints x′, y′ such that the following
hold for some a ∈ {1, 2} (let b ∈ {1, 2} with b 6= a).
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• x′ ∈ Sa, y′ ∈ Sb.

• |dif(P, P ′)| ≤ 10 log n and |intP (Sb) \ intP ′(Sb)| ≤ 9.

• intP (Sa) \ intP ′(Sa) contains at most D/2 vertices z such that dist(z, x′) ≤ 2 log log n.

Proof. Applying Corollary 4.7 directly to P and the set R = S1 ∪ S2, we can find a (log n)-rotation
P 1 of P with fixed endpoint y such that the other endpoint, say x′, belongs to some Sa with a ∈ {1, 2}.
Furthermore, we have that |intP (S1∪S2)\intP 1(S1∪S2)| ≤ 3. Similarly, we can again apply that corollary
to P 1 and the set R = S1 ∪ S2 to find a (log n)-rotation P 2 of P 1 with fixed endpoint x′ such that the
other endpoint, say z, belongs to S1 ∪S2. Furthermore, we have that |intP (S1 ∪S2) \ intP 2(S1 ∪S2)| ≤ 6.
Now, if z ∈ Sb, where b ∈ {1, 2} and b 6= a, then we are done by letting y′ := z and P ′ := P 2. If z ∈ Sa,
we need still to apply Corollary 4.9 to P 2.

Let us firstly consider the case that δ ≥ 100(log n)4/3. Note that since |intP (S1∪S2)\intP 2(S1∪S2)| ≤ 6,
we have that Sa is

(
P 2, δ − 6

)
-clean and so, we can rotate the endpoint z and use Corollary 4.9 to conclude

that there are at least n/10000 vertices w ∈ Sa for which there exists a wx′-path Pw which is an (Sa, log n)-
rotation of P 2 with fixed endpoint x′. Since |intP 2(Sb)| ≥ |P |/3 ≥ n/4, then property (4) of Lemma 3.8
implies that there is an edge between such a w and intP2(Sb) which in turn, implies that there is some
y′ ∈ Sb and a y′x′-path P ′ which is a (log n+1)-rotation of P 2 with x′ as a fixed endpoint. Note that all the
conditions are satisfied: y′ ∈ Sb; because of the assumption on δ we have that |dif(P, P ′)| ≤ 10 log n ≤ D/2
and so, the first part of the second condition and the third condition are satisfied; and since the path Pw
was an Sa-rotation of P 2 and Sa, Sb are disjoint, we have that any change to the interior of Sb only occurred
with the last rotation step resulting in P ′, hence |intP (Sb) \ intP ′(Sb)| ≤ |intP (Sb) \ intP 2(Sb)|+ 3 ≤ 9.

Now, let us consider when δ < 100(log n)4/3 and so, d < 10000(log n)4/3 - recall that we always have
d ≥ C2(log n)2/3/2 (since necessarily d/(log n)1/3 ≥ Cλ ≥ C

√
d/2 by the remark after Theorem 3.7)

and thus, D ≥ (log n)1/3. Since we want to ensure the last property of the statement, consider the set
Y ⊆ Sa consisting of all the vertices in Sa which are at a distance at most 2 log log n from x′ - by the
assumption on d, we have that |Y | ≤ d2 log logn < 210(log logn)2 . We now apply Corollary 4.9 again, this
time with the above set Y . Indeed, as previously, recall that Sa is

(
P 2, δ − 6

)
-clean and so, the corollary

implies that there are at least n/10000 vertices w ∈ Sa for which there exists a wx′-path Pw which is an
(Sa, log n)-rotation of P 2 with fixed endpoint x′ and such that

|dif(Pw, P
2) ∩ Y | ≤ 3 log |Y | ≤ 30(log log n)2 ≤ D/2− 6.

Since |intP2(Sb)| ≥ n/3, then property (4) of Lemma 3.8 implies that there is an edge between such
a w and intP2(Sb). To conclude, this implies that there is some y′ ∈ Sb and a y′x′-path P ′ which is a
(log n+1)-rotation of P 2 with x′ as a fixed endpoint and such that dif(P ′, P 2)∩Y has size at most D/2−6.
Since we have that |intP (Sa) \ intP 2(Sa)| ≤ 6 then it must be that | (intP (Sa) \ intP ′(Sa))∩ Y | ≤ D/2, as
desired. The other conditions can be checked as in the first case.

Let us define F := dif(P, P ′) so that by the second property of the claim above, we have |F | ≤ k/3.
Now, consider the given sub-paths Qaj , Q

b
j of P and note that these might not be sub-paths of P ′. Clearly

however, P ′[Qaj ], P
′[Qbj ] are disjoint unions of paths - we will denote these components of P ′[Qaj ] by

C(Qaj , 1), . . . , C(Qaj , ia,j) and the components of P ′[Qbj ] by C(Qbj , 1), . . . , C(Qbj , ib,j). We will refer to them

as the parts of Qaj , Q
b
j (in P ′), respectively. We will further say that Qaj is a broken sub-path if ia,j > 1 and

unbroken otherwise (and analogously for b). Note that we must have 2k ≤
∑

1≤j≤k ia,j +
∑

1≤j≤k ib,j ≤
2k + |F |+ 1 ≤ 7k/3 + 1 and in particular, there are at most |F |+ 1 parts of broken sub-paths.

The goal will be to achieve the setting of Lemma 4.10. For this, we will first prove the following claim
with a standard averaging argument.

Claim 5.4. There exist two disjoint subpaths A,B ⊆ P ′ such that both contain precisely γk/4 parts of
sub-paths in Q1 ∪Q2 and at least γk/8 unbroken paths.
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Proof. Let us first take all the paths C(Qaj , l), C(Qbj , l) and denote them by C1, . . . , Cr where the order
is given by the order in which they appear in the path P ′ (for this, fix a direction of P ′ as x′ → P ′ → y′).
Recall that r =

∑
1≤j≤k ia,j +

∑
1≤j≤k ib,j ∈ [2k, 7k/3 + 1]. Clearly, we can use this order to define a cover

of
⋃
tCt with disjoint sub-paths of P ′ denoted by P ′1, P

′
2, . . ., such that each P ′i contains ri consecutive

sub-paths Cj for some ri ∈ [γk/4, γk/2] - by construction, there are at least r
maxi ri

≥ 2r
γk paths P ′i .

Now, let us count how many paths P ′j do not satisfy the property in the statement. Note first that
every sub-path P ′i has at least γk/4 parts of sub-paths in Q1 ∪Q2 by construction. Then, if P ′j does not
contain a sub-path P ′′j ⊆ P ′j satisfying the property, it must contain at least γk/8 parts from broken sub-
paths. In turn, recall that we observed that the number of such parts must be at most |F |+ 1 ≤ k/3 + 1

and so, since the sub-paths P ′i cover all parts of sub-paths in Q1 ∪Q2, we have that at most |F |+1
γk/8 ≤ 3/γ

sub-paths P ′i do not satisfy the property. Concluding, since 3/γ < 4
γ − 2 ≤ 2r

γk − 2 and there are at least
2r
γk paths P ′i , we have the existence of the two desired subpaths A,B.

We are now almost in the setting where we can apply Lemmas 4.8 and 4.10 in order to finish the proof.
Indeed, note first the following.

Claim 5.5. Sa \ (A ∪B), Sb \ (A ∪B) ⊆ P are (P,D)-clean subsets.

Proof. We only prove this for Sa, since it is analogous for Sb. Let then v ∈ Sa and recall that the third
condition of Definition 5.1 implies that there exist at least γk many sub-paths Qaj such that |N(v) ∩
intP (Sa ∩ Qaj )| ≥ δ/k. Recall also that Claim 5.4 implies that each A and B contain precisely γk/4
parts from sub-paths in Qa and so, there are at least γk/2 sub-paths Qaj disjoint to A ∪ B so that
|N(v) ∩ intP (Sa ∩Qaj )| ≥ δ/k. Clearly, this implies that

|N(v) ∩ intP (Sa \ (A ∪B))| ≥ (γk/2) · (δ/k) ≥ D,

thus showing that Sa \ (A ∪B) is (P,D)-clean.

Note now that by Claim 5.4, the given sub-paths A,B of P ′ contain both at least γk/8 unbroken paths
Qai , each of which have size at least 0.99|P |/k and so, we must have that |A|, |B| ≥ (γk/8) · (0.99|P |/k) >
γ|P |/10 ≥ 10λn/d (since |P | ≥ n− o(n)). Therefore, Lemma 4.5 implies that there exist P ′-clean subsets
A′ ⊆ A,B′ ⊆ B of size at least 0.9|A| and 0.9|B| respectively. Finally, this allows us to get to the following
setting in which we can apply Lemma 4.10.

Claim 5.6. There is a path P ′′ on the same vertex set as P ′ with |dif(P ′, P ′′)| ≤ log n and the following
properties.

(1) The endpoints of P ′′ belong to A′ and B′.

(2) Both A′, B′ ⊆ P ′′ are (P ′′, 800λ)-clean.

(3) cP ′′(A), cP ′′(B) ≤ 2.

Proof. For this, we apply Lemma 4.8. Indeed, let Xa := Sa\(A∪B), Xb := Sb\(A∪B) which are disjoint
and by the previous claim are (P,D)-clean. From Claim 5.3 we also know that |intP (Sb) \ intP ′(Sb)| ≤ 9,
which implies then that Xb is (P ′, D − 9)-clean, and that intP (Xa) \ intP ′(Xa) contains at most D/2
vertices z such that dist(z, x′) ≤ 2 log log n - and note clearly (for a future application of Lemma 4.8) that
2 log |F | ≤ 2 log log n.

Therefore, Lemma 4.8 implies firstly that there exist at least λn/d vertices z ∈ Xa for which there
exists a zy′-path which is an (Xa, log n)-rotation of P ′ with fixed endpoint y′ (note that this lemma can
be applied since D = d/(log n)1/3 ≥ Cλ and C is large enough). Let Za denote the set of such vertices z,
so that |Za| ≥ λn/d. Since A is a sub-path of P ′, then |intP ′(A

′)| ≥ |A| − 3|A \ A′| ≥ 0.7|A| ≥ λn/d and
therefore, there exists an edge between Za and intP ′(A

′). Crucially, by definition of Za this implies that

20



there exists a vertex x′′ ∈ A′ such that there is an (Xa ∪ A, log n+ 1)-rotation of P ′ with fixed endpoint
y′ which is an x′′y′-path, which we shall call P ′a. Moreover, it must be that cP ′a(A) ≤ 2, since the rotation
only touches A at the last step. Finally, note also that dif(P ′, P ′a) ∩ (Xb ∪B) = ∅ and in particular, B is
still the same sub-path in P ′a.

Secondly, Corollary 4.9 applied with Xb implies that there exist at least λn/d vertices z ∈ Xb for
which there exists a x′′z-path which is an (Xb, log n)-rotation of P ′a with fixed endpoint x′′. Let Zb denote
the set of such vertices z, so that |Zb| ≥ λn/d. Much like before, since |intP ′a(B′)| = |intP ′(B

′)| ≥
|B| − 3|B \ B′| ≥ 0.7|B| ≥ λn/d, there exists an edge between Zb and intP ′a(B′). Then, there is a
vertex y′′ ∈ B′ such that there is an (Xb ∪ B, log n+ 1)-rotation of P ′a with fixed endpoint x′′ which is a
x′′y′′-path - this will be our desired path P ′′. Note also that like before, we have cP ′′(B) ≤ 2 and that
dif(P ′a, P

′′) ∩ (Xa ∪ A) = ∅, so that A is still the same in P ′′ as it was in P ′a, in particular, cP ′′(A) ≤ 2
as desired. Note that clearly properties (1),(3) are satisfied. For property (2) observe that since A′, B′

were P ′-clean and cP ′′(A), cP ′′(B) ≤ 2, it must be that every vertex v ∈ A′ (respectively, v ∈ B′) has
at least d|A′|/4n − 2 ≥ γd/100 ≥ C2λ/100 ≥ 800λ (respectively, d|A′|/4n − 2 ≥ 800λ) neighbours in
intP ′′(A

′) (respectively, intP ′′(B
′)), and so, they are (P ′′, 800λ)-clean. Indeed, we used that |A′| ≥ 0.9|A|,

|A| ≥ γ|P |/10, |P | = n− o(n) and γ ≥ C2λ/d.

We can now finish immediately by applying Lemma 4.10 to P ′′.

6 Linear forests with few paths and good endpoints

In this section we will consider the problem of finding (in pseudorandom graphs) spanning linear forests
with two special properties - they have a small number of paths; and all these paths have good endpoints.
As indicated in Section 2, this will be crucial in the proof of Theorem 1.3.

Proposition 6.1. Let G be an (n, d, λ)-graph, X ⊆ Y ⊆ V (G) and δ ≥ 104λ be such that |X| ≤ δn/1000d
and both Y, Y \X are δ-clean. Then, there exists a spanning linear forest F of G[Y ] such that the following
hold.

• The number of paths in F is O
(
n/δ1/5

)
.

• Every path in F has its endpoints in Y \X.

First, let us discuss the above statement in the case that X = ∅ - here we need only to find a spanning
linear forest F of G[Y ] which does not have many components. This can be achieved as follows: Using
the expansion properties of G, one can find a relatively dense regular subgraph of G[Y ]. Invoking known
results concerning the linear arboricity conjecture (see Theorem 6.2 below), there is a decomposition of
this subgraph into an almost optimal number of linear forests, and simply by averaging, one of these must
consist of few paths.

In general, if X is non-empty, we will first have to absorb the vertices of X into Y \ X, that is, we
cover X with a linear forest whose paths have their endpoints outside X. The idea is then to contract the
pairs of endpoints and find a linear forest with few paths in the new graph. By reversing the contractions,
we want to insert the paths covering X into the paths of this linear forest. To make this feasible, we will
have to work in a directed setting. Let us then first recall the following classical result of Alon [3] (see
also [7]) on the linear arboricity of regular digraphs, which will be crucial for us to find a spanning linear
forest with few paths. By a r-regular digraph we mean a digraph in which every vertex has in-degree and
out-degree r.

Theorem 6.2. Every r-regular digraph can be covered by r +O(r4/5) linear forests.

We will now apply this theorem to find a linear forest with few components in digraphs with suitable
expansion properties. (We will later see that a random orientation of G[Y ] satisfies these properties.)
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Lemma 6.3. Let H be an n-vertex digraph and r be such that the following holds. For every subdigraph
H ′ ⊆ H with ∆+(H ′),∆−(H ′) < r, we have that for all subsets S ⊆ V (H),

|Γ+
H\H′ (S) | ≥ |S|.

Then, H contains a spanning linear forest F with O
(
n/r1/5

)
paths.

Proof. In order to construct F , we will only need to show that H contains an r-regular spanning sub-
digraph. Indeed, by Theorem 6.2, such a digraph can be covered by r + O(r4/5) linear forests. One of
the linear forests in such a covering must contain at least rn/(r +O(r4/5)) edges and hence consist of at
most O

(
n/r1/5

)
paths, and therefore, H will contain such a linear forest.

Note we can construct the r-regular spanning subdigraph by finding r edge-disjoint 1-regular sub-
digraphs and therefore it is sufficient to show that for any H ′ ⊆ H with ∆+(H ′),∆−(H ′) < r, the
digraph H \H ′ contains a 1-regular spanning subdigraph. For this, we define an auxiliary bipartite graph
B = (V1, V2) with both parts V1, V2 being copies of V (H); a pair xy with x ∈ V1, y ∈ V2 is an edge in B if
x→ y is an edge of H \H ′. Now note that B contains a perfect matching, since for every S ⊆ V1, we have
that |NB(S)| = |Γ+

H\H′ (S) | ≥ |S| by assumption, and therefore Theorem 3.5 applies. To conclude, note

that a perfect matching in B corresponds precisely to a 1-regular spanning subdigraph of H \H ′.

The next lemma deals with the absorption of the vertices of X. Moreover, its proof contains a novel
covering idea which we believe may have other applications.

Lemma 6.4. There exists a linear forest F ′ in G[Y ] which covers X and such that every path has its
endpoints in Y \X and all its inner vertices in X.

Proof. The main idea is, instead of finding F ′ directly, we observe that it is sufficient to show the
existence of a forest F in G[Y ] consisting of disjoint binary trees which all together cover X and such
that all the leaves are contained in Y \X and all the non-leaves in X. Indeed, we can from F find the
desired linear forest F ′ by doing the following operation. Consider some binary tree T in F and take a
path P in T which contains the root of T and whose endpoints are leaves (observe that P exists since the
root of T has degree two in T ). Note that F − V (P ) is still a disjoint union of binary trees and it covers
X \ V (P ). Thus, we can repeat the same operation until all of X has been covered by these paths, which
altogether form the desired linear forest F ′ (we can in every step discard the vertices of the forest which
become isolated, since those must belong to Y \X).

Now, in order to find the forest F let us note that there exists an ordering x1, x2, . . . , xt of the vertices
of X such that for all i, we have

|NG(xi) ∩ ({x1, . . . , xi−1} ∪ (Y \X))| ≥ δ/2.

Indeed, suppose that we have such a partial sequence x1, . . . , xi−1. If no candidate for the vertex xi exists,
then since G[Y ] has minimum degree at least δ, we have that G[X \ {x1, . . . , xi−1}] has minimum degree
at least δ−δ/2 = δ/2. However, this contradicts part (2) of Lemma 3.8 since |X \{x1, . . . , xi−1}| ≤ |X| ≤
δn/(1000d) and λ ≤ 10−4δ.

Given this ordering we can do the following. Define an auxiliary bipartite graph H with parts A and
B, where A consists of two copies of each vertex in X and B = Y . The edges are defined in the following
manner - each copy of xi ∈ X in A has as neighbours those vertices in {x1, . . . , xi−1}∪ (Y \X) which are
neighbours of xi in G. Crucially, it is easy to see that H has the following property.

Observation. If there is a matching in H covering A, then there is a forest F in G[Y ] which covers X
and whose components are binary trees with leaves in Y \X and non-leaves in X.

Since our objective is to find such an F , we need only to find a matching in H covering A - for this we will
check that the conditions of Theorem 3.5 are satisfied. Consider any S ⊆ A and let S′ be the corresponding
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set in V (G) (not counting possible repetitions of a vertex in S) - note that |S′| ≥ |S|/2. By the properties
of the ordering x1, x2, . . . , xt of X we have that eG(NH(S), S′) ≥ |S′|δ/2 ≥ |S|δ/4. Also, by part (1) of

Lemma 3.8 we have eG(NH(S), S′) ≤ d|NH(S)||S′|
n +λ

√
|S′||NH(S)| ≤ δ|NH(S)|/500+λ

√
|S||NH(S)| since

|S′| ≤ |S| ≤ 2|X| ≤ δn/500d. Putting these together and using that δ ≥ 100λ gives that |NH(S)| ≥ |S|
as desired.

Now that X has been absorbed into Y \X, we can define the auxiliary random directed graph mentioned
before. We define a directed graph H as follows. Denote the paths forming the linear forest F ′ given by
Lemma 6.4 by P1, . . . , Pl and the endpoints of each path Pi by xi, yi ∈ Y \X - let U ⊆ Y \X denote the
set of all these endpoints. For each i, contract the pair {xi, yi} into one vertex zi and choose uniformly
at random between defining z+

i := xi, z
−
i := yi or z+

i := yi, z
−
i := xi. Let Z denote the set of vertices zi -

the vertex set of H is then Z ∪ Y \ (U ∪X). Note also that |Z| ≤ |X|. The edges of H are defined in the
following manner.

1. Every edge of G[Y \ (U ∪X)] is oriented independently and uniformly at random.

2. For two vertices zi, zj , we include the directed edge zi → zj if z+
i z
−
j is an edge of G.

3. For a vertex zi and a vertex v ∈ Y \ (U ∪X) we include the edge zi → v (conversely, v → zi) if z+
i v

(conversely, z−i v) is an edge of G.

Crucially, by replacing each vertex zi with the path Pi, it is easy to observe that H has the following
deterministic property.

Observation 6.5. If there is a spanning linear forest in H, then there is a spanning linear forest F of
G[Y ] with the same number of paths, all of which have their endpoints in Y \X.

Therefore, we will need only to show that with positive probability, H satisfies the conditions of Lemma 6.3
with r := Θ(δ). For convenience, we make first some parallel notation between H and G. For any set S
consisting of vertices in V (H), we let SG denote the set of vertices in Y ⊆ V (G) given by substituting every
zi ∈ S by the vertices xi, yi. Note that trivially |S| ≤ |SG| ≤ 2|S| and that for every sets A,B ⊆ V (H)
we have −→e H(A,B) ≤ eG(AG, BG).

We now want to show that H satisfies the conditions of Lemma 6.3. First, we note the following.

Lemma 6.6. With positive probability, the following all hold.

1. H has minimum out-degree and in-degree at least δ/10.

2. For all A,B ⊆ V (H) with |A|, |B| ≥ δn/100d, there are at least δ|A|/4000 edges directed from A to
B.

Proof. We first deal with the degree conditions. Note that since by assumption, the set Y \X is δ-clean
in G, it is easy to check that the definition of H implies that all vertices v of H are such that their out-
degree and in-degree are random variables which stochastically dominate the binomial random variable
Bin(δ, 1/2). Indeed, note that if v /∈ U has both elements of some pair {xi, yi} as neighbours in G, then zi
will be both an in and out-neighbour of it in H; if only one of xi, yi is a neighbour, then with probability
1/2, zi will be an in/out-neighbour in H; if some other v′ /∈ U is a neighbour, then also with probability
1/2, it will be an in/out-neighbour in H. If v = zi for some i, then the analysis is similar. Therefore,
the event Ev that v has out-degree or in-degree smaller than δ/10 has P(Ev) = e−Ω(δ). Further, since G
is d-regular, the event Ev depends on at most O(d2) other events Ev′ . Indeed it is easy to see that the
events Ev is independent of all events Ev′ when v′ is not a neighbour of v or there is no pair {xi, yi} with
both v, v′ having neighbours in {xi, yi}. On the other hand when v, v′ both have neighbours in the pair
{xi, yi}, then, knowing the event Ev′ affects the choice of z+

i , z
−
i and therefore also the out/in-degree of
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v. Because e−Ω(δ) = o(d−2), Lemma 3.4 now implies that with probability at least
(

1− 1
O(d2)

)n
> e−n,

no event Ev occurs and thus, the first condition holds.
For the second condition, we apply a union bound. Indeed, let A,B ⊆ V (H) be sets of size at least

δn/100d - note that we have at most 4n such pairs. Further, consider the sets A′ := A\Z and B′ := B \Z,
which, since |Z| ≤ |X| ≤ δn/1000d, have size at least δn/200d. The random procedure defining H implies
that −→e H(A′, B′) has the distribution of the binomial random variable Bin (eG(A′, B′), 1/2). By Lemma 3.8
we have that

eG(A′, B′) ≥ d|A′||B′|/n− λ
√
|A′||B′| > d|A′||B′|/2n ≥ δ|A′|/400 > δ|A|/1000 > 500n,

where the second inequality follows since δ ≥ 10000λ and the last inequality since δ ≥ 10000λ ≥
10000

√
d/2 (recalling the remark after Theorem 3.7). So, by Lemma 3.3, with probability at most

e−3n we have that −→e H(A′, B′) < δ|A|/4000. By a union bound, we then have that with probability at
least 1− 4n · e−3n > 1− e−n all such pairs A,B have −→e H(A,B) ≥ δ|A|/4000.

Now, we can combine both conditions. Indeed, we showed that the first occurs with probability larger
than e−n and the second with probability larger than 1 − e−n. Thus, with positive probability both
occur.

We can now prove Proposition 6.1.

Proof of Proposition 6.1. Assume that H satisfies the conditions 1 and 2 of the lemma above. Let
us then verify the conditions of Lemma 6.3 with r := δ/1010. Take H ′ ⊆ H to be a subdigraph such that
∆+(H ′),∆−(H ′) < r and let S ⊆ V (H), T := Γ+

H\H′(S). Suppose for sake of contradiction that |T | < |S|.
First, note that by condition 1 of the lemma above, we have that −→e H (S, T ) ≥ δ|S|/20 since the

out-degree in H \H ′ is still at least δ/10− r ≥ δ/20. In turn Lemma 3.8 implies that

−→e H (S, T ) ≤ eG (SG, TG) ≤ d|SG||TG|
n

+ λ
√
|SG||TG| < |S|

(
4d|S|
n

+ 2λ

)
,

where we are using that |SG| ≤ 2|S|, |TG| ≤ 2|T | and |S| > |T |. Observe now that the two inequalities
above give a contradiction when |S| ≤ δn/100d since δ > 10000λ. Hence, we can assume that |S| >
δn/100d. Furthermore, note that the above argument also shows that if |S| ≤ δn/100d, then Γ−H\H′(S)

has size at least |S|, since condition 1 of the lemma above also gives that every vertex has in-degree at
least δ/10.

Now, suppose that |S| > δn/100d and note that part 2 of Lemma 6.6 implies that |T | > |V (H)| −
δn/100d. Indeed, we have for all sets B of size at least δn/100d that −→e H(S,B) > r|S| and so,
−→e H\H′(S,B) 6= ∅. Therefore, we can further assume that |S| > |V (H)| − δn/100d, since otherwise
|T | ≥ |S|. In this case since |T | < |S|, we can consider a set T ′ ⊆ V (H) \ T of size |V (H)| − |S| <
|T ′| ≤ δn/100d. By the previous paragraph, we then have that Γ−H\H′(T

′) has size at least |T ′|. Also

note that by definition of T ′, we have Γ−H\H′(T
′) ∩ S = ∅. This implies that |T ′| + |S| ≤ |V (H)| which

is a contradiction since we have |S| > |V (H)| − |T ′| by assumption. Concluding, we must always have
|T | ≥ |S| and so, Lemma 6.3 implies that H contains the desired spanning linear forest with positive
probability. By Observation 6.5, this implies the existence of the desired linear forest F in G[Y ].

7 Hamilton cycles from good collections of paths

In this section, we will prove Theorem 1.3. More generally, we will prove that pseudorandom graphs
which contain a certain spanning structure must also contain a Hamilton cycle. We will now describe this
structure. First, given a path P and a collection of vertex-disjoint cycles C = {C1, . . . , Cl}, we say that
P connects C if there exists a choice of edges ei ∈ Ci for every i so that P contains every edge ei and is
disjoint to the rest. Given such a setting, for each i we let xPi , y

P
i ∈ Ci \ ei denote the vertices of Ci which
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are not incident to ei but are closest to this edge in the cycle - with the possibility that xPi = yPi in the
case that Ci only has three vertices. The set of these vertices is denoted by VP,C := {xPi , yPi : 1 ≤ i ≤ l}
and we shall refer to it as the flexible set. As outlined in Section 2, the path P is able to absorb, for every i
independently, the vertices of V (Ci \e) into the path, by replacing ei with the path Ci−e. This flexibility
allows us to connect partial structures outside of P . Since each connection requires logarithmic length in
general, we are only able to do few connections using the flexible set, so we will assume in addition that
the remaining vertices are already partitioned into few paths. This motivates the following definition.

Definition 7.1. A collection F of vertex-disjoint paths in a graph G is said to be (r, l, δ)-good if it consists
of r paths P1, P2, . . . , Pr with the following properties.

1. The path P1 connects a collection C of l vertex-disjoint cycles, which are disjoint to the paths
P2, . . . , Pr. Furthermore, these paths together with C span the whole vertex set.

2. VP1,C induces a graph with minimum degree at least δ.

3. The endpoints of the paths P1, . . . , Pr have each at least δ neighbours in the flexible set VP1,C .

. .P1

.

.
P2

.

.
P3

.

.
P4

. .
.
C1
. .. .C2

. .. ..
C3

. ...C4

. .. .. .xP1
5 yP1

5

C5

. .
.
C6

Figure 2: An illustration of a good collection of paths and how it can be used to
form a Hamilton cycle. The path P1 connects the cycles C1, C2, . . . , C6 and together
with the paths P2, P3, P4 it spans the whole vertex set. A Hamilton cycle is drawn in
green by connecting the endpoints of the paths P1, P2, P3, P4 using the cycles. Those
cycles which are not used for connecting (in this case C2) are then absorbed into the
path P1.

From the above definition and the lemmas presented in Section 3.5, we can show that pseudorandom
graphs which contain a good collection of paths must also be Hamiltonian. The reader might want to
refer to Figure 2 for an illustration.

Theorem 7.2. Let G be an (n, d, λ)-graph with λ < d/500. Let F be an
(

l
100 logn , l, 500λ

)
-good collection

of paths on V (G) for some l ≥ 2000λn/d. Then G′ := G ∪ F contains a Hamilton cycle.

Proof. Let F consist of the paths P1, . . . , Pr and a cycle collection C = {C1, . . . , Cl}. For each cycle Cj , let
(xj , yj) denote the vertices xP1

j , y
P1
j ∈ Cj \ej as earlier defined andM denote the collection of these pairs.

Further, for each path Pi let ui, vi denote its endpoints and define the collection P of pairs {aj , bj} with
aj := vj , bj := uj+1 (indices modulo r). Notice that we can apply Theorem 3.18. Indeed, V (M) = VP1,C ,
and so, the first and second conditions imply that V (M) is 500λ-clean and |M| = l ≥ 2000λn/d. Further,

we have that |P| ≤ |M|
100 logn . Theorem 3.18 then implies that there exist vertex-disjoint M-alternating

paths between the pairs {aj , bj} in the graph obtained by adding every non-existing edge xiyi to G. In
turn, it is easy to see that this produces a Hamilton cycle in G′.
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7.1 Graphs with many cycles have a good collection of paths

As a corollary of Theorem 7.2, we can show that pseudorandom graphs which contain many cycles are
Hamiltonian. Clearly, this will imply Theorem 1.3.

Theorem 7.3. Let G be an (n, d, λ)-graph with d ≥ (log n)11 and λ < d/1010. Suppose that it contains

20000λn/d many vertex-disjoint cycles. Then it contains an
(

l
100 logn , l, 500λ

)
-good collection of paths for

some l ≥ 2000λn/d. Therefore, it is Hamiltonian.

Proof. Let G be an (n, d, λ)-graph and let C = {C1, . . . , Ct} denote the given collection of t vertex-
disjoint cycles, where t ≥ 20000λn/d. Notice that we can also assume that t ≥ n/(2 log n) since such a
cycle collection will always exist if say, d ≥ 100λ (this is easy to see by greedily finding cycles of size at
most log n). We will now first prove a series of preparatory lemmas in order to make this collection more
suitable to work with. The following ensures that every vertex has many neighbours disjoint to these.

Lemma 7.4. There exists a subcollection C′ ⊆ C of at least 3t/4 cycles such that every vertex in G has
at least d/10 neighbours not in V (C′).

Proof. First, we refine C so that it only contains short cycles. Indeed, at most t/100 of the cycles have
length larger than 100n/t. Let us delete all of these from C. Let now C′ ⊆ C be randomly chosen by
letting every cycle be included in it independently and with probability 4/5. Using Lemma 3.3, we then
have that with high probability, |C′| ≥ 3t/4 as required. Further, every vertex has degree d ≥ (log n)11

and since each cycle is now of length at most 100n/t = O(log n) (since by before, we can assume that
t ≥ n/(2 log n)) we can apply Lemma 3.3 with k := 100n/t, to get that the probability that a vertex has
less than d/10 neighbours not in V (C′) is o(n−1). By a union bound over all vertices, we then have also
that with high probability, every vertex has at least d/10 neighbours not in V (C′). Combining both of
these properties gives the desired outcome for some choice of C′.

Given the above, let us redefine C to be C′. We now need the following claim which deals with finding a
path connecting a decent proportion of the cycles in C.

Lemma 7.5. There exists a subcollection C′ ⊆ C of t/2 cycles and a path P connecting them. Furthermore,
among every two consecutive edges of P there is an edge belonging to some cycle in C′.

Proof. For each cycle Ci ∈ C, pick an arbitrary edge ei = xiyi belonging to it. Let M denote the
collection of pairs {xi, yi}. Now, by part (4) of Lemma 3.8, every two disjoint subsets of G of size λn/d
have an edge between them. Therefore, Lemma 3.17 implies that G∪M contains anM-alternating path
which uses all but at most 2λn/d− 1 of the edges ei. Since |C| − 2λn/d ≥ 3t/4− 2λn/d ≥ t/2, this gives
the desired path P .

Observe now that since among every two consecutive edges of P there is an edge belonging to some cycle
of C′, we have from Lemma 7.4 that every vertex has at least d/10 neighbours not in V (P ) ∪ V (C′). In
order to continue let us again redefine C to be C′.

Now, let us denote C by {C1, . . . , Cr} with r ≥ t/2 and that the edges e1, . . . , er appear in this order
in the path P . We further delete the cycles C1, . . . , Cr/3, C2r/3, . . . , Cr from C so that all the cycles now
in consideration are present in the middle of the path P . More precisely, no cycle in C will intersect the
first r/3 ≥ 2λn/d or last r/3 ≥ 2λn/d vertices of the path P - let us mark this as property (∗). Now,
since r/3 ≥ t/6 ≥ 3000λn/d, Lemma 3.12 directly implies the following.

Lemma 7.6. There exists a subcollection C′ ⊆ C of at least t/7 cycles such that VP,C′ is 500λ-clean.
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Again, let us redefine C to be the new collection C′, which is the final collection of cycles - it has size
now l := |C| ≥ t/7 ≥ 2000λn/d and |VP,C | ≥ l as well. Let us note that by Lemma 3.11, at most
4λ2n2/d2|VP,C | ≤ λn/d vertices have degree less than d|VP,C |/2n ≥ dl/2n ≥ 500λ in VP,C . Therefore,
among the first 2λn/d vertices of P there is a vertex x with degree at least 500λ in VP,C and among the
last vertices of P there is also such a vertex y. By property (∗), we can then make P an xy-path and still
have that P connects C, so that its endpoints have degree at least 500λ in VP,C .

Finally, having constructed P1 := P and the collection C, we are left to find the paths P2, P3, . . . , Pr
and ensure the third condition of Definition 7.1. For this we will apply Proposition 6.1. Note first that
Y := V (G) \ (V (P ) ∪ V (C)) is, by before, such that G[Y ] has minimum degree at least d/10 (which by
Lemma 3.8 clearly implies that |Y | ≥ n/11). Moreover, let X ′ := {v ∈ Y : d(v, VP,C) < 500λ}. As
previously noted, we have that |X ′| ≤ λn/d. Furthermore, the second part of Lemma 3.11 applied to
S := Y \ X ′ implies that there is X ′ ⊆ X ⊆ Y with |X| ≤ |X ′| + λn/d ≤ 2λn/d such that Y \ X is
clean. Since as noted before, |Y | ≥ n/11, then G[Y \X] has minimum degree at least d/100. Applying
Proposition 6.1 to X,Y with δ := d/100 implies the existence of the desired paths P2, . . . , Pr.

To finish, note that this proposition gives us, together with P1 and C, a
(
O
(
n/δ1/5

)
, l, 500λ

)
-good

collection of paths. Since t ≥ n/2 log n, l ≥ t/7 ≥ n/14 log n and d ≥ (log n)11, we have O
(
n/δ1/5

)
≤

l
100 logn , as desired.

As stated before, Theorem 1.3 is an easy corollary of the above.

Proof of Theorem 1.3. Let G be an (n, d, λ)-graph with λ < αd/1010, d ≥ nα and n ≥ 10000. We
claim that G contains at least αn/8 vertex-disjoint cycles of size at most 4/α. Indeed, we can do this in
a greedy manner - suppose that we have vertex-disjoint cycles C1, . . . , Cr of size at most 4/α. Then, if
r < αn/8, the set X of vertices not contained in any of these cycles has size at least n/2. By part (2)

of Lemma 3.8 it must then be that G[X] has at least d|X|2
2n −

λn
2 ≥

nd
10 > n1+α/2 edges. By Theorem 3.6,

G[X] contains a cycle Cr+1 of length at most 4/α and this can be added to the collection of vertex-disjoint
cycles.

We can then apply Theorem 7.3 toG since αn/8 ≥ 20000λn/d, thus showing thatG is Hamiltonian.

We finish this section by noting that clearly Theorem 7.3 has the slightly more general corollary than
Theorem 1.3 concerning different densities of our pseudorandom graph. Its proof is the same as that of
Theorem 1.3.

Corollary 7.7. Let G be an (n, d, λ)-graph with d ≥ (log n)11 and d/λ > 1010 logd n. Then, G is
Hamiltonian.

Indeed, note that in general, it is easy to see that greedily we can always find a collection of n/4 logd n
vertex-disjoint cycles. Therefore, if d/λ > 1010 logd n, then the conditions of Theorem 7.3 are satisfied.

8 Applications

In this section, we discuss in more detail the applications of our new techniques and main results, that
we mentioned briefly in Section 1.1.

8.1 Random Cayley graphs and Hamilton cycles with few colours

Let G be a group and A ⊆ G a subset. The Cayley graph Γ(G,A) is the graph with vertex set G and
all edges of the form {g, ga} for g ∈ G, a ∈ A. Note that we consider here undirected Cayley graphs,
hence, Γ(G,A) is a d-regular graph with |A| ≤ d = |A ∪ A−1| ≤ 2|A|. We will assume here that A does
not contain the neutral element, so that Γ(G,A) has no loops. As discussed in Section 1.1, studying the
Hamiltonicity of Cayley graphs (Conjecture 1.5) is a very important partial case of the Lovász conjecture
mentioned in Section 1. Up to now, only special cases of Conjecture 1.5 have been proven, most notably
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when the ambient group is Abelian or when A is linear in the size of G (see Christofides, Hladký and
Máthé [16]). But the general case is still wide open. In view of this, a lot of research has been invested
into understanding random Cayley graphs, where G is a group of order n and A ⊆ G of size d = d(n) is
chosen uniformly at random, and the question is whether Γ(G,A) is Hamiltonian with high probability
(as n→∞).

Alon and Roichman [6] proved that for d = O(log n), whp Γ(G,A) is connected (in fact, they proved
the much stronger statement that it is an expander). This bound is tight up to a constant factor, for
instance, in G = Zn2 , the smallest size of a set A such that Γ(G,A) is connected is log2 |G|. The analogous
question for Hamiltonicity has turned out to be much more difficult. As a first result, Meng and Huang [42]
showed that almost all Cayley graphs are Hamiltonian. By using the technique of Alon and Roichman
to bound the second eigenvalue of a random Cayley graph, Krivelevich and Sudakov [33] deduced from
their bound on the Hamiltonicity of (n, d, λ)-graphs that already O(log5 n) random generators suffice
for Hamiltonicity. Their technique for applying the Alon and Roichman result was later refined by
Christofides and Markström [15] to show that O(log3 n) random generators suffice. It was also noted that
Conjecture 1.1 would imply that O(log n) generators suffice, which seems reasonable since the random
Cayley graph is then connected as discussed above, and there is no obvious obstacle to Hamiltonicity.
This was also stated as a conjecture by Pak and Radoičić [43].

Conjecture 8.1. Let C be a sufficiently large absolute constant. Let G be a group of order n and
d = C log n. If A ⊆ G is a set of size d chosen uniformly at random, then with high probability, Γ(G,A)
is Hamiltonian.

Using an operator Hoeffding inequality together with our new Theorem 1.2, we can improve the number
of random generators to O(log5/3 n).

Theorem 8.2. Let C be a sufficiently large absolute constant. Let G be a group of order n and d =
C log5/3 n. If A ⊆ G is a set of size d chosen uniformly at random, then with high probability, Γ(G,A) is
Hamiltonian.

A closely related problem concerns the quest for finding Hamilton cycles with few colours in optimally
edge-coloured complete graphs. This is a proper edge-colouring of Kn which uses n− 1 colours when n is
even and n colours when n is odd. The following conjecture was proposed by Akbari, Etesami, Mahini,
and Mahmoody [2].

Conjecture 8.3. Every properly edge-coloured Kn with χ′(Kn) colours has a Hamilton cycle with O(log n)
colours.

Akbari et al. proved that one can find a Hamilton cycle with at most 8
√
n colours. The bound on the

number of colours was later improved to O(log3 n) by Balla, Pokrovskiy and Sudakov [9]. Their strategy
was to pick O(log3 n) colours at random and show that the subgraph induced by these colours is already
Hamiltonian with high probability. Here, we obtain a further improvement to O(log5/3 n).

Theorem 8.4. Every properly edge-coloured Kn with χ′(Kn) colours has a Hamilton cycle with O(log5/3 n)
colours.

We prove both Theorems 8.2 and 8.4 in a unified way. Note that when n is even, then an optimal edge-
colouring of Kn is a partition of the edge set into perfect matchings. Moreover, if G is a group and a ∈ G
is not the neutral element, then the edges in the Cayley graph corresponding to a and a−1 form either
a 1-factor (if a = a−1) or a 2-factor (if a 6= a−1). It turns out that whenever Kn is partitioned into
spanning regular graphs and we choose sufficiently many of them randomly, then with high probability,
the obtained graph is pseudorandom and hence Hamiltonian.

Theorem 8.5. For all R > 0 there exists C > 0 such that the following holds: Assume Kn is edge-
partitioned into regular spanning subgraphs H1, . . . ,Ht, with degrees 1 ≤ ri ≤ R for all i ∈ [t]. Let
c1, . . . , ck be a sequence of indices chosen independently from [t] such that i is always chosen with probability
at least 1/Rt. If k ≥ C(log n)5/3, then with high probability, G = ∪j∈[k]Hcj is Hamiltonian.
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Proof. Since we do not require the cj ’s to be uniformly distributed, we first reduce to this case by
introducing a dummy variable ∗ and a straightforward coupling. For each j ∈ [k] independently, we

define c′j to be a random element from [t] ∪ {∗} as follows. If cj = i then c′j = i with probability
1/P[cj=i]

Rt

and c′j = ∗ with probability 1− 1/P[cj=i]
Rt . Clearly this is well defined since P[cj = i] ≥ 1/Rt for all i. Thus

we have that P[c′j = i] = 1/Rt for all i ∈ [t] and P[c′j = ∗] = 1− 1/R. Let A(j) be the adjacency matrix of

Hcj with probability n−1
n and A(j) = rcjI with probability 1/n. Moreover, let Yj be the 0-matrix if c′j = ∗

and Yj = 1
4R(A(j) −

rc′
j

n J) otherwise, where J is the all 1’s matrix. Crucially, we have E[Yj ] = 0. Indeed,
the sum of the adjacency matrices of all Hi is J − I and c′j is uniformly distributed over [t] if we condition
on c′j 6= ∗. On the other hand, if c′j = ∗ then Yj = 0. Moreover, note that Yj is a symmetric matrix with

all eigenvalues in [−1/2, 1/2]. Indeed, note that A(j) has eigenvalues in [−R,R] since Hcj is either the

adjacency matrix of a graph with maximum degree at most R or rcjI; thus, 1
4RA

(j) has eigenvalues in

[−1/4, 1/4]. Also, clearly 1
4R ·

rc′
j

n J has eigenvalues in [−1/4, 1/4].
Using this setup for each individual j ∈ [k], we now let I ⊆ [k] be the set of j for which c′j = cj .

Obviously, G′ = ∪j∈IHcj is a subgraph of G, so it suffices to establish Hamiltonicity of G′. We set further

A =
∑

j∈I A
(j) and d =

∑
j∈I rcj . Observe that Xi = Y1 + · · ·+Yi is a martingale and Xk = 1

4R(A− d
nJ).

Using an operator Hoeffding inequality for Hilbert spaces, developed by Christofides and Markström [14]
(see [9, Theorem 4] for the version we use), one can show that for any 0 < ε < 1/2, it holds that

P[||Xk|| ≥ εk] ≤ 2n exp(−2ε2k). (3)

We may assume that k = dC(log n)5/3e. Plugging ε =
√

logn
k ≤ 1√

C(logn)1/3
into (3), we see that with

high probability,

||A− d

n
J || = 4R||Xk|| ≤ 4εRk.

Moreover, with high probability, the cj ’s with j ∈ I are pairwise distinct and A(j) 6= rcjI. Finally, by a
simple Chernoff bound, we have |I| ≥ k/2R with high probability.

We assume now that all these events hold. Then, crucially, A is the adjacency matrix of the random
graph G′ and λ(G′) = ||A − d

nJ || ≤ 4εRk. So we can conclude that G′ is an (n, d, λ)-graph with
d = |I| ≥ k/2R and d/λ ≥ 1/8εR2. Since ε ≤ 1√

C(logn)1/3
, by choosing C large enough, we can apply our

Theorem 1.2 to establish Hamiltonicity of G′.

We can now easily deduce the two results stated above.

Proof of Theorem 8.2. Let G be a group of order n. Instead of choosing A of order d uniformly at
random, we may choose d elements a1, . . . , ad ∈ G independently and uniformly at random. For each
a ∈ G which is not the neutral element, let Ha be the spanning subgraph of the complete graph on G with
all edges of the form {g, ga} for g ∈ G. As discussed earlier, Ha = Ha−1 is either a 1-factor (if a = a−1)
or a 2-factor (if a 6= a−1). Each such factor is chosen with probability Θ(1/n) when we pick ai, hence
Theorem 8.5 implies the claim.

Proof of Theorem 8.4. Balla, Pokrovskiy and Sudakov [9] found a reduction for odd n to the case
when n is even. Thus, it suffices to consider the case when n is even. Then, an optimal edge-colouring
of Kn is simply a partition into perfect matchings. We choose O(log5/3 n) of these at random. With
high probability, the graph obtained is Hamiltonian, in particular, there is a Hamilton cycle with only
O(log5/3 n) colours.

8.2 Additive patterns in multiplicative subgroups

As we mentioned in Section 1.1, we can also apply our results to a problem of Alon and Bourgain [4] on
additive patterns in multiplicative subgroups. It is well-known that any multiplicative subgroup A of the
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finite field Fq of size at least q3/4 must contain two elements x, y such that x+ y also belongs to A. Alon
and Bourgain [4] studied more complex additive structures in multiplicative subgroups and proved that
when A as above has size even |A| ≥ q3/4(log q)1/2−o(1), then there is a cyclic ordering of the elements of
A such that the sum of any two consecutive elements is also in A. We improve on this result by showing
that the additional polylog-factor can be avoided.

Theorem 8.6. There exists an absolute positive constant c so that for any prime power q and for any
multiplicative subgroup A of the finite field Fq of size |A| ≥ cq3/4 there is a cyclic ordering of the elements
of A such that the sum of any two consecutive elements is also in A.

The proof is essentially the same as that of Alon and Bourgain [4, Theorem 1.2], we only need to apply
our new Theorem 1.3 instead of the previous Krivelevich and Sudakov bound.

Proof. Let c be a sufficiently large constant. Let G be the graph with vertex set Fq where xy ∈ E(G) if
and only if x+y ∈ A (this is the so-called Cayley sum graph). By definition, G has q vertices, is |A|-regular
and it was shown in [4] (see Lemma 2.7) that its second in absolute value eigenvalue is at most q1/2. Now,
let H = G[A]. It is easy to check that H is regular as well. Let d denote the degree of the vertices in
H. Applying Lemma 3.8 to G, we see that eG(A) ≥ |A|3/2q − q1/2|A|, so by choosing c large enough we
have d ≥ |A|2/2q. Moreover, by interlacing of eigenvalues, it follows that H is a (|A|, d, q1/2)-graph. Since
d ≥ 1

2c
2q1/2, we can then apply Theorem 1.3 to obtain a Hamilton cycle in H, which yields the desired

structure.

8.3 Classification-free proof of a result of Pak and Radoicic

As mentioned in Section 1.1, Pak and Radoičić [43] proved that every finite group G of size at least 3
has a generating set S of size |S| ≤ log2 |G| such that the corresponding Cayley graph Γ(G,S) contains a
Hamilton cycle. However, their proof relies on the Classification of Finite Simple Groups, and motivated
by the results discussed in Section 8.1, they asked if there exists a classification-free proof of their result.
We essentially prove this, though our result is not quite as sharp since we can only guarantee a set S of
size O(log |G|). For the proof, we use a combination of a random and a deterministic choice of generators.
As in Section 8.1, we will use the fact that O(log |G|) random generators form with high probability
a pseudorandom graph. The decisive advantage which we have here is to deterministically pick, say,
three generators which will give us linearly many vertex-disjoint triangles. Together with an additional
argument we can then facilitate a direct application of Theorem 7.2.

Theorem 8.7. Every group G of order n has a generating set S of size O(log n) such that Γ(G,S) is
Hamiltonian.

Proof. Let C be a sufficiently large constant. We let S consist of three parts S1, S2, S3. First, let a, b ∈ G
be distinct with b 6= a−1, and set S1 = {a, b, (ab)−1}. We claim that Γ(G,S1) contains n/10 vertex-disjoint
triangles. Indeed, suppose that C1, . . . , Cr are vertex-disjoint triangles and let X ⊆ G be the set of vertices
covered by those. If r < n/10, then there is g ∈ G such that g, ga, gab /∈ X, which gives us an additional
triangle that we can add to the collection. Let from now on t := n/10 denote the number of triangles.

Next, let S2 ⊆ G be a random set of size d = C log n. Proceeding analogously to the proof of
Theorem 8.5, with high probability, Γ(G,S2) contains an (n, d, λ)-graph H with λ ≤ εd for ε := 10−10.
In particular, such a choice exists, which we will fix from now on.

We will now proceed similarly as in the proof of Theorem 7.3. Analogously to Lemmas 7.4–7.6, we
can find a path P which connects a subcollection C of at least t/7 ≥ n/70 many vertex-disjoint triangles
found above with the following properties:

• VP,C is clean in H, has size t/7 ≥ n/70 and thus spans a subgraph with minimum degree at least
d|VP,C |/2n ≥ d/200;

• the endpoints of P have degree at least d/200 into VP,C ;
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• every vertex has at least d/10 neighbours in Y , where Y is the complement of V (P ) ∪ V (C).

It remains to cover Y with a linear forest with few paths all of whose endpoints have many neighbours in
VP,C . We will first deal with the vertices that are not suitable endpoints. Let X be the set of vertices which
have fewer than d/200 ≤ d|VP,C |/2n neighbours in VP,C . By Lemma 3.11, |X| ≤ 4λ2n2/d2|VP,C | ≤ n/1017.
Hence, we can apply Lemma 6.4 with δ := d/200 to obtain a linear forest F0 which covers X such that
all its paths have their endpoints outside X. We let F denote the union of this linear forest together
with the path P and regarding all remaining vertices as trivial paths of length 0. This means we have
almost found the desired good collection of paths. The only problem is that the number of paths in this
linear forest is potentially too big (for example, it can be linear in n). To this end, we will now combine
the paths of F to reduce their number to at most n/10000 log n. By combining, we simply mean that we
can add an edge between the endpoints of two paths to replace them with a longer path. Crucically, this
preserves the property that the endpoints of the paths are “good” in the sense that they still have large
degree into VP,C .

Let F be the current linear forest. We claim that there exists a set S3 of O(log n) generators such that
using the edges of Γ(G,S3), we can combine paths of F to obtain a linear forest with at most n/10000 log n
paths. The idea is to find S3 iteratively by always adding a generator which allows to combine as many
paths as possible. We will show that this strategy performs as desired by analysing it in dyadic steps. To
this end, we claim that if we have found a linear forest with at most n/k paths, for some k, then we can
choose at most 10k additional generators to reduce the number of paths to at most n/2k. Indeed, as long
as the number of paths is at least n/2k, give each path a direction and let A be the set of all starting
vertices and B the set of all terminal vertices (if a path consists only of one vertex, we add a copy of that
vertex to both sets). Now, consider the bipartite graph with classes A,B where two vertices are adjacent
if and only if they are ends of distinct paths. Let m = |A| = |B| ≥ n/2k. This graph has m2 −m edges,
each corresponding to an edge in the complete graph on G. By averaging, there exists a generator a such
that Γ(G, {a}) contains at least (m2 −m)/n edges from this auxiliary graph. We pick such a generator.
Note that in this set of edges, we can pick at least a third of all edges to form a matching of size at
least n/10k2. Adding these matching edges to our collection of paths, we find a new linear forest and the
number of paths has been reduced by at least n/10k2. Repeating this procedure for at most 10k steps
will yield a linear forest with at most n/2k paths, as desired.

Now, we can simply apply the above claim iteratively with k = 1, 2, 4, . . . , 2j to see that a linear forest
with at most n/2j paths has been found when the set S3 has size at most 10

(
1 + 2 + 4 + · · ·+ 2j

)
≤ 20·2j .

Finally, we can apply Theorem 7.2 to conclude that, setting S := S1 ∪ S2 ∪ S3, the Cayley graph
Γ(G,S) is Hamiltonian.

9 Concluding remarks

In this paper we developed several new techniques and results concerning the Hamiltonicity of pseudoran-
dom graphs. The main open problem here is to prove that every (n, d, λ)-graph with d/λ ≥ C, for some
universal constant C > 0, has a Hamilton cycle. We proved this in the case that d is a small polynomial of
n. The key idea was to find linearly many vertex-disjoint cycles that we could arrange into an absorbing
structure. While this proof method does not immediately extend to the sparser setting, we believe that
many of the techniques we developed could play a crucial role in future work concerning Conjecture 1.1. In
particular, the use of the Friedman–Pippenger tree embedding technique with rollbacks and our method
to cover a small set of ‘bad’ vertices with paths having their endpoints outside the bad set seem very
useful for a potential proof of Conjecture 1.1 in full.

In the general case, we were able to reduce the required ratio d/λ to order log1/3 n. In particular,
our results can be applied to pseudo-random graphs with sub-logarithmic degree. One very important
example of such graphs are random graphs. As we discussed in the introduction, the Hamiltonicity of
random graphs is well understood. Particularly, the celebrated result of Pósa [44] states that the random
graph G(n, p) is Hamiltonian with high probability when p ≥ C log n/n. In addition to the rotation-

31



extension technique, his proof relies on so-called ‘booster’ edges, which is where the randomness of the
graph is crucially used. Our arguments in the proof of Theorem 1.2 can in fact be slightly adapted to
prove the following statement, which gives another proof of Pósa’s result.

Theorem 9.1. Let G be an n-vertex graph satisfying part (1) of Lemma 3.8 with λ = d
C(logn)1/3

for some

large constant C and such that every vertex has degree between d/100 and 100d. Then, G is Hamiltonian.

This provides a proof of Pósa’s result which uses no direct randomness. Indeed, it is not difficult to check
that G(n, p) for p ≥ 100 log n/n satisfies the conditions of Theorem 9.1 with high probability.

Finally, we note that the case of presudo-random graphs with constant degree d remains widely open.
In fact, even when G is (n, d, λ)-graph which is almost optimally pseudorandom (i.e., λ = O(

√
d)), it is

not known whether it contains a nearly spanning path, i.e., a path of length n−o(n). It is not too difficult
to show that G contains a path of length (1 − ε)n for some small constant ε = εd. Indeed, one can use
Pósa’s rotation-extension technique to show that (n, d, λ)-graphs always contain paths of length at least(

1− 100λ2

d2

)
n provided that d > 10λ. However, it is not clear how this can be improved and solving this

problem is a natural step towards proving Conjecture 1.1.

Acknowledgments. The authors would like to thank Nemanja Draganić for fruitful discussions regarding
the Friedman-Pippenger technique.
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