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ABSTRACT: For a pair of integers 1<y <r, the y-chromatic number of an r-uniform
hypergraph H = (V, E) is the minimal k, for which there exists a partition of V" into subsets
Ty,..., T, such that e N T;| < y for every e € E. In this paper we determine the asymptotic
behavior of the y-chromatic number of the random r-uniform hypergraph H,(n, p) for all
possible values of y and for all values of p down to p = ®(n~"*1). © 1998 John Wiley & Sons,
Inc. Random Struct. Alg., 12, 381-403, 1998
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1. INTRODUCTION

A hypergraph H is an ordered pair H = (V, E), where V is a finite set (the vertex
set), and E is a family of distinct subsets of V' (the edge set). A hypergraph
H=(V,E) is r-uniform if all edges of H are of size r. In this paper we consider
only r-uniform hypergraphs. Our terminology follows that of [3].

A random r-uniform hypergraph H(n,p) is an r-uniform hypergraph on n
labeled vertices V' =[n]=1{1,...,n}, in which every subset e CV of size |e|=r is
chosen to be an edge of H randomly and independently with probability p, where
p may depend on n. Thus, for r =2 this model reduces to the well known and
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thoroughly studied model G(n, p) of random graphs. The reader is referred to the
paper of Karofiski and Fuczak [6] for additional information and survey of the state
of the art in random hypergraphs. In this paper we study some asymptotic
properties of H,(n, p), that is, we think of n as tending to infinity while r is kept
fixed.

One of the most interesting parameters of a random hypergraph is its chromatic
number. Actually, a family of chromatic numbers can be defined as the reader will
immediately see from the definitions below. For an integer 1 <y <r—1, a y-inde-
pendent set in a hypergraph H = (V, E) is a subset V, CV such that [enV,|<y
for every e € E. The y-independence number «.(H) of H is the maximal size of a
y-independent set. A y-coloring of H is a partition of the vertex set of H into
y-independent sets (colors). The y-chromatic number x,(H) of H is the minimal
number of colors in a y-coloring of H. In particular, for y=r — 1 we require that
every edge of H is not monochromatic, the corresponding chromatic number is
usually called the weak chromatic number of H. In another extreme case y =1 the
vertices of every edge of H should be colored by distinct colors, the corresponding
chromatic number is called the strong chromatic number of H. The notions of weak
and strong chromatic numbers have been used in particular in [11].

This paper is devoted to the investigation of the asymptotic behavior of the
chromatic numbers of a random hypergraph. For the case of random graphs
(r=2), this problem has been studied intensively during the last 20 years and
finally has been completely solved by Bollobas [4] for the case of dense graphs and
by Luczak [7] for all remaining values of probability. The key ingredient of both
proofs was the use of martingales. However, for every r > 3 and for every value of
v the situation was far from being clear. Only partial results have been known so
far. Schmidt, Shamir, and Upfal in [11] considered the weak chromatic number and
obtained lower and upper bounds which differ by a factor of 2. Schmidt [10] treated
the case of a general y and got lower and upper bounds whose ratio is bounded by
an absolute constant, thus establishing the asymptotic order of magnitude of the
y-chromatic number. Finally, Shamir [12], again using martingale techniques, found
the asymptotic value of the y-chromatic number for the dense case [that is, when
(n"~'p)V/7 = n'~ ¢ for some fixed € > 0]. For other values of p the problem remains
unsolved. Moreover, even the asymptotic behavior of the y-independence number
was not known for these values of p. More details can be found in [6].

The main result of this paper is the following theorem.

Theorem 1. For every 1 <y <r — 1 there exists a constant d, such that if

dD =d(n, p) =7(r;1)(’::11)p2d0

and d) = o(n”), then almost surely’

7is2
(y+ Dlogd™

(€2) 1 1y
1+ .
(y+ 1log d”)( log®! d™ ))

/v
) S)(y(l_lr(n’p))S

'An event &, holds almost surely (a.s.) in H,(n, p) if the probability of &, tends to 1 as n tends to
infinity.



THE CHROMATIC NUMBERS OF RANDOM HYPERGRAPHS 383

This statement combined with the result of Shamir solves the problem completely.
Note that for r=2 the above theorem essentially coincides with the theorem of
Fuczak [7]. Tt is worth mentioning here that we do not make any attempt to
optimize an error term in the upper bound for x.,(H,(n, p)).

Theorem 1 implies immediately (the difficult half of) the following corollary
about the asymptotic value of the y-independence number of H,(n, p).

Corollary 1. For every 1 < y<r—1 there exists a constant d, such that if
AP =dD(n,p)y =" Hp=a
’ Y r—1)7=70
and d = o(n?), then a.s.

7iS2 -(1/vy)
1+ H
(’}/+ 1)10g daw ( logo-l am )) = ay( r(nvp))

4™ A2
=" (y+ Dlog d™ )

n

The rest of the paper is organized as follows. The main idea of the proof is
described briefly in Section 2. This section presents most of the crucial ingredients
of the proof, whereas the somewhat complicated details are postponed to the
subsequent sections. In Section 3 we state an upper bound for the y-independence
number of H.(n,p). In Section 4 we prove a technical lemma bounding the
y-chromatic number of the subhypergraphs of H,(n, p) spanned by relatively small
subsets of V. It turns out that establishing the asymptotic value of the weak
chromatic number (y =r — 1) plays a key role in dealing with the other values of y.
We treat the weak chromatic number in Section 5, following mainly the proof of
Yuczak. Finally, in Section 6 we prove Theorem 1 for y<r— 1.

Based on the results of Shamir [12] and fuczak [7], we may assume that r >3
and that (n"~'p)1/Y <n'~ < for some e > 0. Throughout the paper, we omit occa-
sionally the floor and ceiling signs for the sake of convenience. All logarithms are
natural.

We use the following notation,

Hi={enU:e€E(H),lenUl=i},
Hp'= U B,

j=i

=5
a=d(n.p.r)=(r=1) ("2 1)p.

d* =n""p.
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2. THE MAIN IDEA

In this section we describe briefly the core idea of the proof. We omit all
technicalities and calculations, postponing them to the next sections.

First, it is quite easy to get a lower bound for the y-chromatic number by upper
bounding the y-independence number. This in turn can be done by a straightfor-
ward first moment argument. Therefore, most of our efforts will be devoted to
proving an upper bound.

It turns out that the weak chromatic number, that is, the case yv=r — 1 is much
more tractable than the y-chromatic number for other values of y. The main
reason of this phenomenon originates from the fact, that the weak chromatic
number is vertex Lipschitz (see, e.g., [2], Chap. 7, for relevant definitions and
discussion). This means that if two hypergraphs H, H' with the same vertex set
differ only in the edges containing some particular vertex v, then their weak
chromatic numbers differ by at most one. This makes the situation in this case very
similar to that in the random graph G(n, p), thus enabling the use of martingales
and the application of the main ideas of the proof of Luczak [7].

However, for every y <r — 1 the corresponding chromatic number ceases to be
vertex Lipschitz. Therefore, we need to develop a different approach to tackle this
case. Fortunately, one can use the upper bound for the weak chromatic number to
cope with this task. We illustrate this by presenting an outline of the proof for the
case r =3, y= 1, that is, for the strong chromatic number of a 3-uniform random
hypergraph. For this case d = d(n, p,3) = n*p and we need to show that the strong
chromatic number of H,(n, p)is (1 + o(1))d /2log d.

Let s = log*(n*p). We fix a partition of the vertex set V' into s parts V,,...,V, of
equal size |V)|=n/s=n,. Let H,=H; > For every 1 <i<s we find a strong
coloring of H,, using pairwise disjoint sets of colors for different values of i.

Consider the hypergraph H; for some i. It is important to note that most of the
edges of H, will be of size 2. These edges determine the asymptotic behavior of
xi(H,). A

For j=2,3 we denote H, ;= Hj,. A crucial observation in the whole proof is
that for every subset e CV; of size |e| = the probability of the event “e is an edge
of H; ;” is exactly

o n—n
p/=1—(1—p)( )zp( 3_].0)-

Moreover, all these events are completely independent. Therefore, each of the
subhypergraphs H, ; can be treated as a random hypergraph H(n,, p,).

Consider first the hypergraph H,,. However, as explained above, this hyper-
graph is actually a random graph G(n,, p,). Therefore it can be colored a.s. by
(1 +o()nyp,/2log(n, p,) colors. [For a general vy, at this stage we find a
y-coloring of H; .., which is by definition a weak coloring of this (y + 1)-uniform
subhypergraph.] Fix one such coloring, by Lemma 3.1 all color classes are of size at
most, say, 4log(n,p,)/p,. Now we expose the edges of H; ;. We call an edge
e €H, ; bad if it has at least two vertices of the same color. Denote by X; the
number of bad edges. A calculation of the expectation of X, gives that EX <
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cny/log*(n, p,) for some absolute constant ¢ > 0. Since X; is distributed binomi-
ally, we get that with high probability X; <2cn,/log*(n,p,). Now we delete from
H; the union of all bad edges. Combining the colorings of all hypergraphs H,
without the bad edges, we obtain a strong coloring of all but at most s(6cn,/
log*(n,p,)) = (1 + 0(1))6¢n /log*(n*p) vertices in (1 + o(1)s(n, p,/2log(n,p,))
= (1 + o(1))n*p /210og(n’p) colors. The remaining (1 + 0(1))6¢n /log*(n*p) vertices
can be colored by a much smaller number of additional colors using a simple
greedy-type algorithm based on the degrees. Thus the total number of colors is

n’p d
(1 +0(1))W = (1 +0(1))m .

This finishes our argument.

3. BOUNDING THE +vy-INDEPENDENCE NUMBER

In this section we state an upper bound on the 7y-independence number of
H (n, p). This bound is easily obtained by computing the first moment of an
appropriate random variable. We cite it from Lemma 6.3 of [10].

Lemma 3.1. With probability 1 — O(1/n*) the y-independence number of H(n, p)
satisfies the following inequality

d™ /v
ozy(H,(n,p))sn )

(y+ 1)logd™

It is obvious that x,(H)=>|V(H)|/a,(H) for every hypergraph H =(V, E).
Hence we get immediately the following lower bound on x, (H,(n, p)).

Corollary 3.2. With probability 1 — O(1 /n*) the y-chromatic number of H (n, p) is
bounded from below as follows,

dm 1y
)('y(l_]r(n’p))Z )

(y+ 1)logd™

4. COLORING SMALL SUBSETS

In this technical section we bound from above the y-chromatic number of all
subhypergraphs of H.(n, p), spanned by subsets of 1V of relatively small size.

Lemma 4.1. Let d*=n""'p and let 1<y<r—1. For every fixed ¢>0
with probability 1 —o(1/n) in H.n, p) the following holds: for every subset UCV
of size |U| < cn/log® d* the subhypergraph H;7 %' is vy-colorable by at most (d* /
log?*= %7 d*)V/7 colors.

The lemma will follow easily from a sequence of claims.
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Claim 4.2. For every fixed ¢ >0 with probability 1—o0(/n*) in H(n,p) the
following holds: for every integer s < cn /log®> d* and every subset U CV of size |U|=s
the subhypergraph H;z "' has less than rsd* /log®~*° d* edges.

Proof. For every fixed set U of size |U|=s and every subset e C U of size |e| =1,
where y+ 1 <i <r, the probability that e is an edge of H;7 "' is

1-(1 —p)(m) <n""'p.
Moreover, all such events “e is an edge of H;7?"!'” are mutually independent.
Also, if H7""! has at least rsd* /log®*~*° d* edges, then some of the subhyper-
graphs H/, y+1<i<r, has at least sd*/log®*~*° d* edges. Therefore, the

probability of the existence of a set U violating the claim can be bounded from
above by,

(s)
y n i ‘ r—i,\$d* /log® 03 a*
s & sd* (fl P)
s<cn/log”d 1=y _
10g3'yf0.5 d*

. sd* /log>r =03 g*

o) f

s<cn/log® d* i=y+1

O(1)s'~'og* =03 g* L
a* wop

o B * /10g37=05 g ¢
n O(l)synr b% 1p lOgSy 0.5 d* d* /log
= Z 0(1);( d*

s<cn/log®d* |

logsy—o.s d*

s )'y—(log370'5d*/d*) :|sd*/10g3v—0.5d*

< Y -0(1)(

s<cn/logdd* L n

Denote the sth summand of the above sum by a,. Then, if s > Vn , we have

c y—(log3= 03 a* /a*) a 1
3y-05 -
0(1)( ) log® =0 g* —O(F),

< S
s = log® d*

while if s <Vn, we have

10g37*0.5 d* d*/10g3y—ﬂ.5d* |
L4

ni/3 3

thus establishing the claim. ]

Claim 4.3. With probability 1 —o(1/n) in H/(n, p) the following holds: for every
integer s <n/d* and every subset W CV of size |W | = s the subhypergraph H;z **' has
less than rs log d* edges.
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Proof. Using arguments similar to those of the proof of Claim 4.2, we can
estimate from above the probability of the existence of a set W violating the claim

by,

L (1) x (i) oty

s<n/d* i=y+1 SlOgd*
r O(1)s~'nip ) 8"
< Y (’;)Z(—() ” p)
s<n/d* i=y+1 log d

s \y—Q/logd*) g% s log d*
fl)

log d*

< Y (0(1)(

s<n/d*

Denote the sth summand of the above sum by b,. Then, if s > n</ 2 where >0
is a fixed constant defined in the introduction and satisfying (d*)"/Y <n'~ ¢, we can
estimate b, from above as follows,

%Y1/ logd*) s log d* o(1) s 1
< _— = JR—
log d* = | log d* )y

b, < (0(1) o| -

and if s <n®/?, relying on our assumption that d* <n~ 97, we get

O(1)n(~ 1+ (/M= logd g \ P8 (1) = v+ e/dmra-ay et
<
( log d* ) ( log d* )

1
=o|l—|. ]
o3
Claim 4.4. For any fixed ¢ > 0 with probability 1 — o(1 /n*) in H (n, p) the following
holds. For every subset U CV of size |U| =s < cn/log® d* consider the subhypergraph
H; Y"1, Then there exists a y-coloring of all but at most s /log"! d* vertices of H;i **!
in at most [(4r*d* /log®> % d*)'/7] colors.

Proof. This claim follows deterministically from the assertion of Claim 4.2.
Fix a subset U C V of size |U|=s > cn/log® d* and consider the subhypergraph

H(U)=Hz""". Denote
ariax "7
M= (logsy—as " ) :

According to Claim 4.2, with probability 1 —o(1/n*) the number of vertices of
degree more than r?d* /log®*~ " d* in H(U) is at most (rsd* /log®~ % d*)r)/
(r’d* /log®~ %6 d*) =5 /log"! d*. Let U, be the set of all vertices of degree at
most r’d* /log®~"° d* in H(U). Then [U\U,| <s/log"" d*. Let H(Uy)) = H;; " .
We will prove that the H(U,) is y-colorable by at most M colors. Every edge of
H(U,) intersects at most r-r’d*/log®’~*° d* =r’d* /log®*~"® d* < M"” /4 other
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edges of H(U,). Now consider a random coloring of the vertices of U, in colors
1,..., M, obtained by assigning to each vertex v € U, color i independently and
with probability 1/M, where 1 <i <M. For e € E(H(U,)) denote by A, the event
“e is monochromatic.” Then the probability of A, is (1/M)“~! <(1/M)". Also,
the event A4, is mutually independent of all other events A, but those for which
eNe' #J. The number of such events is at most M?/4. Then, applying the
symmetric version of the Lovéasz local lemma (see, e.g., [2], Chap. 5), we get:
PLA . c 5wy A,]> 0, thus ensuring the existence of a desired coloring. [ ]

Claim 4.5. With probability 1 —o(1/n) in H/(n, p) the following holds: for every
integer s <n/d* and every subset W CV of size |W|=s the subhypergraph H;z "' is
v-colorable by at most 2r log d* colors.

Proof. This claim follows deterministically from the assertion of Claim 4.3. Recall
that a graph G is called d-degenerate if every subgraph of it contains a vertex of
degree at most d. It is very easy to see that a d-degenerate graph G is (d + 1)-
colorable.

Fix a subset WV of size [W|=s <n/d*. Clearly it is enough to prove that the
strong chromatic number of H,;”*! is at most 2r log d*. Define an auxiliary graph
G with vertex set W and two vertices u,v € W being connected by an edge if and
only if there exists an edge e € E(H) such that u,v €e. Then it is easy to see that
the chromatic number of G is equal to the strong chromatic number of H,;**!. By
Claim 4.3 with y=1, every subset W, C W of size |W;|=s,<s spans less than
rs, log d* edges in G, and therefore the induced subgraph G[W,] has a vertex of
degree less than 2r log d*. This implies that G is (2r log d* — 1)-degenerate and
thus can be colored by 2r log d* colors, yielding the desired result. [ ]

Proof of Lemma 4.1. For a fixed subset U, first apply Claim 4.4 recursively,
starting with U, each time using at most [(4r°d* /log®*~*® d*)'/7] fresh colors and
decreasing the size of the current subset by a factor of log®! d*. Then, after at
most log(sd™ /n) iterations, we get a subset W of U of size at most n /d*, to which
we apply Claim 4.5. The total number of colors used is at most

ar3gx 7| [ sa* d* 1y
(—10g37_0'6 pT log( 7) +2rlogd* < (—logzy_m 7 ) . [ ]

5. THE WEAK CHROMATIC NUMBER

In this section we establish the asymptotic behavior of the weak chromatic number
of H,(n, p). Our argument is essentially an adaptation of the proof of Luczak [7],
with some changes incorporated.

Theorem 5.1. There exists a constant d,, such that if d =d(n, p,r) = — 1)(';:11)p
>d, and d = o(n"" ") then, with probability 1 — o(1 /n),

28r loglog d ))1/('_1)

d 1/ —1)
H. +
( ) S)(r*l( l(n’p))g(rlogd( lOgd

rlogd



THE CHROMATIC NUMBERS OF RANDOM HYPERGRAPHS 389

The lower bound follows immediately from Corollary 3.2. Thus it is enough to
show only the second inequality.

Lemma 5.2. Let k=n(r(logd — 3loglog d)/d)"/ "~ V. There exists a constant d,
such that whenever d >d, and d =o0(n"""), then with probability at lest 1 —n"3,
H.(n,p) contains a subset with at least nlog > d vertices which can be properly
colored using at most nlog™> d /k colors.

Proof. To prove the lemma we use Talagrand’s inequality as suggested by the
referee. First we will describe an adaptation of Talagrand’s inequality, convenient
for combinatorial applications, as presented by Spencer in [14]. Let QO =T17_,Q, be
a product probability space and let 4: ) — R be a real-valued random variable. We
call h Lipschitz if |h(x) —h(y)l<1 for all x,y e Q which differ in only one
coordinate. For a fixed function f: N — N we say that 4 is f-certifiable if whenever
h(x)=s for some x € Q) there is a set of at most f(s) indices I <{1,...,n} that
certify A(x) > s in the sense that i(y) > s for all y € Q that agree with x on I. Let
m be a median of the random variable A(x). Then as shown in [14], Talagrand’s
inequality implies

4f(m)

Now consider the probability space H,(n, p) as a product space, where each (),
corresponds to the r-tuples of {1,...,n} containing vertex i and contained in
{1,...,i}. Let X be the size of the largest nlog™> d /k-colorable subset of H (n, p)
and let X* be a random variable defined by X* = min(5n log™> d, X). Then by the
definition X* is Lipschitz and always bounded from above by 5nlog™> d. There-
fore it is also 5nlog ™~ d-certifiable, since it is enough to expose the edges from at
most 5nlog > d vertices to certify the value of X*. Denote by m(X*) the median
of X*, obviously m(X*) < 5nlog™> d. Then inequality (1) with ¢ =n /2log®' d will
imply that

Pr(Ih(x)—mIzt)SZexp( ! ) (1)

. . n n
Pr(lX m(X*)|> 2Tog" d) < Zexp( S0Tog"? d)' (2)
Thus to prove Lemma 5.2, it is enough to show that the probability that H, (n, p)
contains a nlog > d/k-colorable subset with more than n(log™> d + log= %' d)
elements is greater than 2exp(—n/80log’? d). Indeed, in this case, by inequality
(2) we obtain that the median m(X*) should be at least n(log™> d + log~ %' d) —
n/2log®'d =nlog™> d + n/2log*! d. Therefore,

n n
Pr| X* < <Pr| X* —m(X*)< - —
r( log® d) - r( m(X") 2log®! d)
2 ( . <n7?
< - )
= <% 80log’* d "

Let Y be the number of subsets of mk, elements, where m =nlog™ d /k and

log~>d+1log %'d r(log d — 2loglog d) /=1
— <k,=n ,
log™>d d
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which can be split into exactly m independent sets, each of size k. Then the event
“Y>0” implies that X* >mk,>n(log™> d +log ®' d). On the other hand, to
bound from below the probability that Y is positive we can use the following
inequality (see, e.g., [5], p. 3),

(EY)’
Pr(Y>0)> ———.
EY

ko) (ko \(n—(i—1)k,
EY?  m (kl)m(km) Kpnsn

(EY)2 I T (" —(i- 1)k0)(1 _p)z;’;l(’j/)

Then

IA

IA

a4 ky!
/=0 (n—(m+1)k0)l (ko_l)!] ’

where

a,= ko) (Kol —(Y)
S R

m

.....

E;n:]kj=

Let k;,...,k; be those from k..., k, which are greater than n(rloglogd/

)/, Since XL k; =1 <k, <n((rlogd)/d)"/"~ Y, so t <log"/"~" d. Thus the
number of terms with different sequences k,»], ..., k; is less than

L

(mk0)10g1/<r71)d < nlogl/(”])d. (3)

Moreover, for every k', k" such that k' > k" > n(r loglogd /d)"/" =V and k' + k" <1
k”

<k, we have
( 0)
k'
kg

K+ K

ko)(l_p)—m—(ks)

<1.

(1=p) )
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Indeed, when n((r loglog d)/d)"/"~Y <k’ + k" < 0.7k, then

¥

ko)(l (=)

k" (ko) (k’+k”)
k, ey (kg—K) e\ K
1— (3 0 k

k!+k” ( p)

<el=([47F) = (V)= (V)]

ko—k" e(k'+k") e e

ko— kK —K' K eXp{ p(r—l)}
100 \¥

O <1

loglog d

whereas for k' + k" > 0.7k, we have

<

[](K)a=p )
< 2%02k0exp —pk”( k ) <1.
kO (1 _ )7(I\’tk”) r—1
k) P
Hence,
kO kO _):mzl kj kO _(1)
(kl)”‘(km)(l_p) ()S(Z (1-p)
k, dl’
< 1+p)——————]. 4
—(l)exp( p)r(r_l)nrfl ()
Furthermore, for every choice of k!,...,k,, one can easily get the following
inequality,

k k s Kj
SR (2 I [ ERERE
Ky,... ki, max kj=f, 1<j<s \ "1 s

i k=1

(sko)
< ] exp

Now we divide the sum in the definition of g, into two parts. The first part covers
the case where all k; are at most n((r loglog d)/d)"/"~". For this part we use
estimate (5). The second part covers the case where at least one of k; is greater

than n((r loglog d)/d)"/"~". In this case we denote by i the sum of all such k;

ldf”]
(1 +P)W)- ()
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and use estimate (4) and (5). This way we get the following inequality,

1
mk - k
als( l“)log”/("l)d+n10g‘” Da y ( lf’)
i=n((rloglog d)/d)"/" =V

di’ mk ;
14p)—— — 0 |1l2U=D1/0=1) 4.
( p)r(r—l)n’_l)(l—i)og

For i, =n((rloglog d)/d)"/"~V <i <1, set

bi,l = (k.o )exp
i

X exp

di’ mk .
l4p)— ot 0 | 1ogl20-D1/=1) 4.
( p)r(r—l)n’_l)(l—i)og

Then

r—1 r\-r-2
hors ki[O
r(r—=1)n""!

X log~/C Dy
mkg—1+i+1 °

I+1 ko —i
i+1 | mky—l+i+1

(1 +p)d(ri’1 + (;)irfz 1o +1)
r(r=n!

X exp log=2/"=Yd.  (6)

Let i = ak,. Since the second factor in (6) is at most 2d~'/"~Dlog® d and the
exponential factor is of order dl!+oMrel™ /=D we get that b, /b, <1 for
0<a<04<(d+o00N]/NYD Thus b, is maximal for this interval of values
of a, and an upper bound for b, , is given by

biﬂv I = . eXp
Lo

(m+ 1)k,
l
Now let i = al, 0.4 < a <0.99/~D Then

(el em 5
(_)

[ kod[(l —a)+ (1 +p)a’l/(r—1) logz/(’_ D g ll 3mk0 10g2/(r—1) d !
<
z <[

diy mk, ,
14p)—0 O Nogl2t=il/ (=1 4
( p)r(r_l)n,_l)(l_lo)og

<

3mk, log?/ "~V d )l
]

)10g21/(r1)dS (

mk,

(1-a)l

bii

)log[za —a)l)/ =1 g

IA

a’l""'d )( emk,

n) ey = ay

(1-a) !
) logl2(—a/G=1 g

IA
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Now we are going to bound b, ; from above for 0.99'/¢~1 | <i <I. We consider
two cases. First, let [ <(0.9)"/¢~Yk,. Then

max({b; ,: 0.99"/¢ "Vl <i <1}

3 (27))&( (1+p)dl" )

P r(r—=1)n""!
emko (1-0.991/C=1y
X

(1 —0.991/(~ 1))[ ]0g0.021/(r, Ny

2ek

( 0
<|——exp

dr-! n 00! :
; (1 +p)—,1)(—) log°-°2/<’1>d)

r(r—1)n l

( 6k yd" 92/ =D )1 ( 3mk, log?/ "= d )l
S f S l B

For 1>(0.9)"/""Yk,, in order the maximize b;, it is enough to consider
i>1—1d~°3/"=Y Indeed, for 0.99/ <i <[ —1d~"? the first factor in b, /b, is
at least d~°3/C~D_ the second one is at least d~'3/C~D and the exponent is
greater than d**"/U~Y thus b,,, /b, ,> 1. Furthermore the following inequality

holds

max{b, ;: [ —1d """ D <i <}

k
< 0 exp
[ —1d—03/0=1 r(r— 1)n’_1

(1+p)dl emk, "7
ld—0.3/(r—1)

« logldfn.s(rq)/(r_l) d

ko
< ko —1 exp

a, k!

I:Zo (n—(m+ l)ko)l (ko—1)!

r

1+ d3/(r—1)k0dl*°-3/<'*1”'
(1+p) r(r—l)n’_l)

Hence,

ko

/(=1
SnZlog d Z

& ( 2k, )’( 3mk, log” "~V d )’

=0\ 1 !
1-0.90-D)k j
+ p2log" TV d g3/ (r= Dkod =03/ Z ’ ky! ”_j ( k )
ko 1 i
j=0 (n—(m+1)k0) Jo\J

dk,

(1 +p)W)GXp

X exp (1+p)

d((ko—j)'—k{)))
r(r—1)n""!
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!
1/(r=1) 1/(r=1) _ [-03/(r=1)]
< n210g d Z + nZIOg dd3/(,. Dkyd

=0

kg (6mk(2) logz/(’_l)d

In

(1+p)dky! ))
r(r— 1);1’*1

ko
X
en(1—1log™*"d) P

(1-0.97/0= D), ( Ok,

X =

j=0 J

(1 +P)d(k671 +k6*2(k0 _]) + .- +(k0 _j)r71) ))]
r(r—l)n’*1 .

X exp

All terms of the first sum are less than exp (6mk{ log?/ "~V d/n), for d large
enough, whereas for the second sum we have

kg (1+p)dky!
en(l —log™** d) exp r(r— l)nr—l
1 d A\ g g\ /0D
<
e(1—log™*d) (logzd) ( d )
44P/0=D
< elog/ g <
and
( (1 +p)d(k6_1+k6—2(k0_j)+ "'+(k0 _j)rl))
Pl r—1
r(r—=1)n
(1+p) dky™ " (140900 4 ... 40,90~ D/0=D)
<exp| — _
r(r—=1n
4| -H090=D/G-D
<
log? d)
Therefore,
d3/(r—1)k0d*0.3/(r—1)(170.91/(771))1(0 ( 9k0n log[2+1'8(r71)]/(r71) d )j
i=0 jzd[1+0.9(r71)]/(r71)
< eXp(3k0d*0-25/(’*1) + nd*1.3/(r71))‘
Thus

& a ko!

1§) (n—(m+1)ky)" (ky—1)!

2log/ D d exp( 6mk3 log/ "~V d )

n

/(=1 _ _
+n210g deXp(nd 1.2/(r 1))’
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and, finally we arrive at

Pr(Y>0)> —— >
r( ) EYz n

(EY)’ [exp( Tmk2log? "~V d )l o

kom \*
> exp| —Tnlog® " Vd _) > exp(—nlog™ "3 d).
n

This completes the proof of Lemma 5.2. [ ]
The next lemma and its proof are shaped after Lemma 2 of [7].

Lemma 5.3. There is a constant d, such that if d >d, and d = o(n"""), then with
probability 1 —o(1) —log™" d, more than n — 2nlog™* d vertices of H,(n, p) can be
properly colored with less than

d_(,, (28r=23)loglogd /=D
rlogd log d

colors.

Proof. In the proof we shall use the “expose-and-merge” technique introduced by
D. Matula [9]. For 4 c[n] define [A] ={|S|=r|S €A} and let

r(logd — (28r — 24)loglog d) \ /™"
o—n 5
d

ly=n/(k,log*> d).

Consider the following algorithm:
Algorithm.

E=0
Fy=
W, =0
for i =1 to log® d — log* d do
begin
choose randomly A; c[n\ W, with |4,|=nlog ** d;
define /Z as the hypergraph with the set of vertices A4; and the set of edges E,,
where each e €[ A4,]" belongs to E; randomly and independently with proba-

bility p;
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choose a family {%{,...,%}0} of disjoint independent sets from A;, such that
Yo ol =nlog 3% d—if it is not possible FAIL;
E;=EN(E;NF,_,);
E=EUE];
F=F_UlA]l;
Wo=W_, VU %,
end
Fi=[n)\U s " 4F;
form E CF by choosing each e € F to belong to E randomly and independently
with probability p;
E=EUE;
output E; {,9?11,,9?21,...,%};’fw*low 3.
end

Let us first observe that the probability that e € E is equal to p for each
e €[n]’, thus the hypergraph /# with the set of vertices [n] and the set of edges E
may be treated as H,(n, p).

Obviously, we may consider each % as H (7, p), where 71 =nlog *% d. Let

d=d(n,p)=(r- 1)(7:11);7: (1+0(1))dlog 2~ q.

Then

1/(r—1)

_ (r(logd — (28r —24)loglog d) \ /"™ " r(log d — 3loglog d)

ky=n <n =
d d

Thus from Lemma 5.2, the probability that .7 contains no subset with n log=*¥d <

log ™ d elements which can be properly colored using 7 log > d /k, colors is less

than 73, so the probability of FAIL in the algorithm is less than n~2.
Thus, with probability at least 1 —n 2, the algorithm finds

(log* d —log™ d)l, = =
0

n—nlog3d ( d ( (28r—23)1oglogd))”“”

rlogd log d

. e e 33 g 30
disjoint sets #{, %3,..., %/°¢ 471" ¢ such that

| % = (log¥ d —log* d)nlog=3 d=n—nlog=3d.
I g g g g
il

Note that although &%/ is an independent set in /% it is not necessarily independent
as a subset of Z Let X denote the number of edges of #Z contained in %/ for
some 1 <i<log*d—1log*d, 1 </<I, We shall estimate X from above.

Let e €[n] be such that e € E and also e C%‘f for some i,l. This can occur
only if e was chosen as an edge in 7 for j <i. Thus we have that e C 4, and also
e CA,. Since for all i we choose A; from the set of vertices of size at least
nlog ™ d, the probability that for given i and j the edge e is contained in both 4,
and A, is less than (log™*° d)*’. Now observe that for any 1 </ </, each subset of
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A; containing a |%]| elements is equally likely to be chosen as %/ (this event
depends only on the structure of 7 which is symmetric with respect to the labeling
of vertices). Due to Lemma 3.1, we may assume that |%/| < n((r log d)/d)"/ "~V
for all 7,1 Thus, since |4;|=nlog™*" d, the probability that all the vertices of the
edge e are in the same set %/ for some [ is less than

r—1

@8r-27) 4

rlogd\Y/=V
n( d ) <rlog
nlog 2% d - d

The probability that the edge e appears in the hypergraph 7 is equal to p, so
finally we have the following upper bound on the expectation of X,

r log(28r727) d

- <nlog °d.

33 g 30
EXs(’Z)(lOg d210g d)‘logso’d'p

Therefore, from Markov’s inequality,

Pr

1
X> —nlog™? d) <log™'d.
r
Now for all i,/ delete from %/ all the vertices of the edges of 7 that are

contained in %, and denote the obtained sets by %/. Then

Y%= Y% - rX=n—nlog*d—1X,
il il

SO

Pr( Y% >n—2nlog™? d) >1-n"2-log 'd.
il
and the assertion of the lemma follows. [ |

Proof of Theorem 5.1. From Lemmas 5.3 and 4.1 we have the following estimate,

Pr

x(H,(n,p)) <

, (28r=22)loglogd /=D
+
rlogd log d

>1—-o0(1)—log™'d> %
In order to show that essentially the same upper bound on x,(H,(n, p)) holds with
much higher probability we use the argument of Frieze. Define Y(H,(n, p)) to be
the minimal size of a set of vertices S, such that the induced subhypergraph
H[V'\ S]can be colored by w = (d /(r log d)(1 + [(287 — 22)loglog d]/log d))"/ "~V
colors. Then Y is a random variable that satisfies the Lipschitz condition (see [2],
Chap. 7 for more details). Denote E(Y)=pu and apply the vertex exposure
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martingale on H (n, p). Then by Azuma’s inequality,
Pr(Y<spu—-An—-1)< e M2,
Pr(Y=p+An—1)<e /2

Let A satisfy e **/2=pn"2 Since Pr(Y=0)>1/2 we have that u<AVn —1 =
cynlogn for some constant ¢ > 0. Thus Pr(Y > 2AVn — 1) <n 2. Therefore with
probability 1 —n~? there is a w-coloring of all but at most cy/nlogn vertices. By
Lemma 4.1 with probability 1—o0(1/n) these vertices can be colored by
(d /MNog* = bH=0T gP/=1 ¢olors. Combining these two colorings we get that with
probability 1 — o(1/n) the hypergraph H,(n, p) can be colored by at most

d 28rloglogd \\ /"~ "
rlogd log d

colors. This finishes the proof of Theorem 5.1. [ ]

6. THE y-CHROMATIC NUMBERS, v <r—1

In this section we finish the proof of Theorem 1. Due to the results of the previous
section it remains to treat the case y <r — 1. For reader’s convenience, we restate
the formulation of Theorem 1 for this case.

Theorem 6.1. For every 1 <y <r— 2 there exists a constant d,, such that if

oo ) o

but d) = o(n?), then almost surely

d”
(y+ 1)log d™

dm 1 1y
1+ .
(y+ 1log d™ ( log™! d ))

1/
) <x,(H.(n,p)) <

Proof of Theorem 6.1. The lower bound follows immediately from Corollary 3.2, so
it is enough to prove the upper bound. The proof of the upper bound relies on the
upper bound for the weak chromatic number, given by Theorem 5.1.

Throughout the proof, the symbols C,,C,,... denote positive constants depend-
ing only on r. Let

d(nﬂapy+lay+ 1)
(v+ Dlogd(ng, pysr,y+1)

”0=u0(”oapy+1,7+ 1) =

28(y + 1)loglog d(ny, p,, 1,y +1) vy

logd(ngy, p,.i,y+1)

X1+

where

ny—1
d(no’py+1’7+1)=( 0’}’ )ypy+l
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and the exact value of the edge probability p, ., will be defined later. Note that
according to Theorem 5.1 the expression in the definition of i, is an upper bound
on the weak chromatic number of a random vy + 1-uniform hypergraph on n,
vertices with edge probability p, . ;.

Let s=1log*d*. We fix a partition of the vertex set V' into s disjoint parts
Vi,...,V, of sizes |n/s]| or [n/s]. For the sake of simplicity we assume that n /s is
integer and then |V;|=n/s for 1 <i <s. Let n,=n/s.

For 1 <i<s, let H,=Hy Y"1 A key step in the proof of Theorem 6.1 is the
following lemma.

Lemma 6.2. Let

n—ng
r-y-1

py+l:1_(1_p) N

There exists a constant C, such that, for every fixed i, 1 <i <s, with probability
1—o0(s/n) all but at most C,n,/log® d* vertices of the hypergraph H, can be
y-colored by at most uy=uy(ny, p,,,,y+ 1) colors.

Proof. We represent

L

r
H= U H,
J=ry+1

where H, ; =H{}[. It is easy to see that the edges of H, ., constitute a great part

of the edges of H;, so the most important task for us will be to color properly the
subhypergraph H, .. For each y+ 1 <j <r denote

n—ny
r=j

pj=l—(1—p) )

and note that

n Tl n
N PN

Now observe crucially that for every subset e CV; of size |e| =, where y+ 1 <j
<r, the probability of the event “e is an edge of H,” is exactly p;. Moreover, all
such events are mutually independent. This enables us to treat each of the
subhypergraphs H, ; as a random hypergraph from the probability space H(n,, p;).

Let us first expose the edges of H, ., ;. Note that a y-coloring of this subhyper-
graph is a weak coloring, since all edges of H; ., have size y+ 1. Recalling that
H; ., is an element of the probability space H, . (n,, p, ), we can use the result
of Theorem 5.1 in order to claim that with probability 1 — o(s /n) the y-chromatic
number of H, ., is at most u,. Moreover, due to Lemma 3.1 the y-independence
number of H; ., is at most, say 2n,/u, with probability 1 —o(s/n).

Fix some y-coloring f: V; = {1,...,uy} of H; ., by u, colors with color classes
Ty,...,T,,, each of size at most 2n,/u,. Now we expose the edges of the subhyper-

graphs H, ; for j> y+ 1. We call an edge e € U_ ., E(H, ;) bad if it improperly
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v-colored by f, that is, there exists a color class 7, such that e N 7| > y+ 1. Let X;
be the number of bad edges in H,. Note that each bad edge has at least y+2
vertices in common with V,. Therefore the expectation of X, can be estimated as

follows,
& T, n 4 |T;] n
EX,<p Y, ! n( o )+ Y ! ( _.)
=1 v+1 Nr—y-2 jmye2 \ r—j
2n, 2n,
— n — n
Sugp|| Ho ”O(r—y—2)+(r_7_l) Uy (r—y—Z)
y+1 y+2
2n y+1 ,
- r—vy-—
ﬂ n zqu uo non 4nr7'yf2ng+2p
<2uyp| uy |n, Fey—2 < (y+1)! < >
: 0
v+ 1

Substituting the expression from the definition of u, and using estimate (7) for
Py+1, WE get

4p' =77 2p7 2 4(y+ 1D~ 2ny 2 log(n" !
EX, < P B (v )y 3% log( ,_p_)f)
d(ng,pyy>,v+1) (no—l) ( n ) y
Y
(y+ Dlogd(ng, pr1ry+1) Y 2r—y—1) p
ng log d* n,
R - logld*

The random variable X is naturally represented as a sum of independent indicator
random variables and thus standard exponential bounds on the tails of X, can be
applied to show that with probability 1 —o(s/n) we have X,<2C,n,/log’ d*.
Take a union U, of all bad edges, it contains at most 2rC,n,/log®> d* vertices. The
subhypergraph of H, spanned by V;\U, is clearly vy-colorable in u, colors, thus
proving the claim of the lemma with C, = 2rC,. [ ]

Applying Lemma 6.2 to each of the subsets V; for 1 <i <s and using distinct
colors for every i, we get the following intermediate result:

Corollary 6.3. There exists a constant C, such that the probability 1 — o(s*/n) all
but at most C,n/log® d* vertices of H(n, p) can be y-colored in at most su,, colors.

Now we plug in Lemma 4.1 and get the following upper bound on the y-chro-
matic number of H (n, p).

Corollary 6.4. With probability 1 — o(s* /n) the y-chromatic number of H(n, p) is at
most suy + (d* /log>~ %7 d*)/7,
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The proof is almost finished. It remains only to write the bound from Corollary
6.4 in a more “visible” form. This can be done by performing routine (but rather
tedious) arithmetic manipulations. Below we present them in a somewhat sketchy
way. Let A denote the bound of Corollary 6.4. We will use the following trivial
inequalities: 1/(a —b) <(1 +2b/a)/afor0<b <a/2;and (1 +a)1 +b) <1+ 3a
for 0 < b <a < 1. Substituting the definition of u, and denoting for brevity d(n,) =
d(ng, p,.1,y+ 1) we get

d(n,) 28(y + 1)loglog d(n,) \\"” d* 1/y
=G 1)logd(no)( log d(n,) )) (W)
d(ny) vy
= (y+ 1logd(ny) (1 " log"? d(n,) )) '

Now we bound d(n,) as follows,
r—y—1 r—1

d(ny) < ng—1 o <n—g ! = b
D=y =y PE Yy ) T iy e

On the other hand, d(ny) >n}n""?"'p/Cy=d*/C,s”. Then log d(n,) > log d* —
log(C4s7) and thus 1/log d(n,) < (1 + C, loglog d* /log d*)/log d*. We get

Y d* 1 Cs
+
(y+D!(r—y—1)! logd* log®? d*

1/y
A<

Now, we use the following inequalities: n"~! < ('r’:ll)(r — D!(1 + 2r%/n) and also
log d* > log d’ — log C,. Then

~ 1! d* ¢ v
as|r 7D 1+ —5
y+1 y!(r—y-1! (r—1)!logd* log"? d*
. . C /y

o (r 1) n—1 ol1+ 7

y+1\U v JAir-1 log’? d*

d™ 1 1y

< 1+ . |

(y+ Dlog d™ ( log"! d ))

7. CONCLUDING REMARKS

We have established an asymptotic behavior of the y-chromatic number of a
random r-uniform hypergraph H (n, p) for all values of the parameter y and for
all values of the edge probability p = p(n) down to the case p=cn~"*! for some
constant ¢ > 0. However, as in the graph case, it turned out that the y-chromatic
number of the random hypergraph is asymptotically equal to the ratio of the
number of vertices n and its y-independence number. Though this paradigm can
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be carried over from the graph case to that of hypergraphs, the proof is similar only
for the case of the weak chromatic number, corresponding to y=r — 1. The reason
for it is that the standard martingale based techniques, successfully used to
establish the asymptotic value of the chromatic number of the random graph
G(n, p), do not seem to be directly applicable for y <r — 1. This is due to the fact
that the y-chromatic number of a hypergraph H is a vertex Lipschitz function only
for the case of y=r — 1. We succeeded to bypass this difficulty by partitioning the
vertex set V(H) into s=log*(n""'p) parts V,,...,V, and coloring each part
separately. This partition enabled us to use the arguments from the case of the
weak chromatic number to color each subhypergraph H[V;] and thus to reduce a
general case to that of the weak chromatic number.

An interesting related problem, for which the above mentioned difference
between the case y=r — 1 and the other cases may also play an important role, is
that of determining a concentration of the y-chromatic number of H,(n, p). For a
hypergraph theoretic function X(H) and probability space H,(n, p), we say that
X(H,(n, p)) is concentrated in width s = s(n, p) if there exists a function u = u(n, p)
so that

lim Pr(u <X(H,(n,p))<u+s)=1.

n— oo
The question of estimating the width of concentration of the chromatic number of
a random graph G(n, p) is studied in papers [13], [8], [1]. All these papers rely
heavily on the fact that the chromatic number of a graph is vertex Lipschitz. In
contrast, nobody seems to have addressed the corresponding hypergraph question.
Similarly to the problem of determining the asymptotic value of the y-chromatic
number of H,(n,p), the case of the weak chromatic number should be quite
similar to the graph case, and most of the results about the concentration of the
chromatic number of G(n, p) can be transferred to this special hypergraph case.
However, for every y <r — 1 a simple adaptation of the graph arguments does not
seem to be possible. New ideas are required to tackle this case.
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