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ABSTRACT: For a pair of integers 1Fg- r, the g-chromatic number of an r-uniform
Ž .hypergraph Hs V, E is the minimal k, for which there exists a partition of V into subsets

< <T , . . . , T such that elT Fg for every egE. In this paper we determine the asymptotic1 k i

Ž .behavior of the g-chromatic number of the random r-uniform hypergraph H n, p for allr

Ž yrq1.possible values of g and for all values of p down to psQ n . Q 1998 John Wiley & Sons,

Inc. Random Struct. Alg., 12, 381]403, 1998
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1. INTRODUCTION

Ž . ŽA hypergraph H is an ordered pair Hs V, E , where V is a finite set the ¨ertex
. Ž .set , and E is a family of distinct subsets of V the edge set . A hypergraph
Ž .Hs V, E is r-uniform if all edges of H are of size r. In this paper we consider

w xonly r-uniform hypergraphs. Our terminology follows that of 3 .
Ž .A random r-uniform hypergraph H n, p is an r-uniform hypergraph on nr

w x � 4 < <labeled vertices Vs n s 1, . . . , n , in which every subset e;V of size e s r is
chosen to be an edge of H randomly and independently with probability p, where
p may depend on n. Thus, for rs2 this model reduces to the well known and
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Ž .thoroughly studied model G n, p of random graphs. The reader is referred to the
w xpaper of Karonski and Łuczak 6 for additional information and survey of the state´

of the art in random hypergraphs. In this paper we study some asymptotic
Ž .properties of H n, p , that is, we think of n as tending to infinity while r is keptr

fixed.
One of the most interesting parameters of a random hypergraph is its chromatic

number. Actually, a family of chromatic numbers can be defined as the reader will
immediately see from the definitions below. For an integer 1FgF ry1, a g-inde-

Ž . < <pendent set in a hypergraph Hs V, E is a subset V :V such that elV Fg0 0

Ž .for every egE. The g-independence number a H of H is the maximal size of ag

g-independent set. A g-coloring of H is a partition of the vertex set of H into
Ž . Ž .g-independent sets colors . The g-chromatic number x H of H is the minimalg

number of colors in a g-coloring of H. In particular, for gs ry1 we require that
every edge of H is not monochromatic, the corresponding chromatic number is
usually called the weak chromatic number of H. In another extreme case gs1 the
vertices of every edge of H should be colored by distinct colors, the corresponding
chromatic number is called the strong chromatic number of H. The notions of weak

w xand strong chromatic numbers have been used in particular in 11 .
This paper is devoted to the investigation of the asymptotic behavior of the

chromatic numbers of a random hypergraph. For the case of random graphs
Ž .rs2 , this problem has been studied intensively during the last 20 years and

w xfinally has been completely solved by Bollobas 4 for the case of dense graphs and´
w xby Łuczak 7 for all remaining values of probability. The key ingredient of both

proofs was the use of martingales. However, for every rG3 and for every value of
g the situation was far from being clear. Only partial results have been known so

w xfar. Schmidt, Shamir, and Upfal in 11 considered the weak chromatic number and
w xobtained lower and upper bounds which differ by a factor of 2. Schmidt 10 treated

the case of a general g and got lower and upper bounds whose ratio is bounded by
an absolute constant, thus establishing the asymptotic order of magnitude of the

w xg-chromatic number. Finally, Shamir 12 , again using martingale techniques, found
wthe asymptotic value of the g-chromatic number for the dense case that is, when

Ž ry1 .1rg 1ye xn p Gn for some fixed e)0 . For other values of p the problem remains
unsolved. Moreover, even the asymptotic behavior of the g-independence number

w xwas not known for these values of p. More details can be found in 6 .
The main result of this paper is the following theorem.

Theorem 1. For e¨ery 1FgF ry1 there exists a constant d such that if0

ny1ry1Žg . Žg .d sd n , p sg pGdŽ . 0gž / ž /ry1

Žg . Ž g . 1and d so n , then almost surely

1rg 1rgŽg . Žg .d d 1
Fx H n , p F 1q .Ž .Ž .g rŽg . Žg . 0.1 Žg .ž /ž / ž /gq1 log d gq1 log d log dŽ . Ž .

1 Ž . Ž .An event EE holds almost surely a.s. in H n, p if the probability of EE tends to 1 as n tends ton r n

infinity.
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This statement combined with the result of Shamir solves the problem completely.
Note that for rs2 the above theorem essentially coincides with the theorem of

w xŁuczak 7 . It is worth mentioning here that we do not make any attempt to
Ž Ž ..optimize an error term in the upper bound for x H n, p .g r

Ž .Theorem 1 implies immediately the difficult half of the following corollary
Ž .about the asymptotic value of the g-independence number of H n, p .r

Corollary 1. For e¨ery 1FgF ry1 there exists a constant d such that if0

ny1ry1Žg . Žg .d sd n , p sg pGdŽ . 0gž / ž /ry1

Žg . Ž g .and d so n , then a.s.

Ž .y 1rgŽg .d 1
n 1q Fa H n , pŽ .Ž .g rŽg . 0.1 Žg .ž /ž /gq1 log d log dŽ .

Ž .y 1rgŽg .d
Fn .

Žg .ž /gq1 log dŽ .

The rest of the paper is organized as follows. The main idea of the proof is
described briefly in Section 2. This section presents most of the crucial ingredients
of the proof, whereas the somewhat complicated details are postponed to the
subsequent sections. In Section 3 we state an upper bound for the g-independence

Ž .number of H n, p . In Section 4 we prove a technical lemma bounding ther

Ž .g-chromatic number of the subhypergraphs of H n, p spanned by relatively smallr

subsets of V. It turns out that establishing the asymptotic value of the weak
Ž .chromatic number gs ry1 plays a key role in dealing with the other values of g .

We treat the weak chromatic number in Section 5, following mainly the proof of
Łuczak. Finally, in Section 6 we prove Theorem 1 for g- ry1.

w x w xBased on the results of Shamir 12 and Łuczak 7 , we may assume that rG3
Ž ry1 .1rg 1yeand that n p Fn for some e)0. Throughout the paper, we omit occa-

sionally the floor and ceiling signs for the sake of convenience. All logarithms are
natural.

We use the following notation,

i < <H s elU: egE H , elU s i ,� 4Ž .U

H G i s H i ,DU U

jGi

ny1ry1Žg .d sg p ,gž / ž /ry1

ny1
dsd n , p , r s ry1 p ,Ž . Ž . ž /ry1

dU
snry1p.
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2. THE MAIN IDEA

In this section we describe briefly the core idea of the proof. We omit all
technicalities and calculations, postponing them to the next sections.

First, it is quite easy to get a lower bound for the g-chromatic number by upper
bounding the g-independence number. This in turn can be done by a straightfor-
ward first moment argument. Therefore, most of our efforts will be devoted to
proving an upper bound.

It turns out that the weak chromatic number, that is, the case gs ry1 is much
more tractable than the g-chromatic number for other values of g . The main
reason of this phenomenon originates from the fact, that the weak chromatic

Ž w xnumber is vertex Lipschitz see, e.g., 2 , Chap. 7, for relevant definitions and
. X

discussion . This means that if two hypergraphs H, H with the same vertex set
differ only in the edges containing some particular vertex ¨ , then their weak
chromatic numbers differ by at most one. This makes the situation in this case very

Ž .similar to that in the random graph G n, p , thus enabling the use of martingales
w xand the application of the main ideas of the proof of Łuczak 7 .

However, for every g- ry1 the corresponding chromatic number ceases to be
vertex Lipschitz. Therefore, we need to develop a different approach to tackle this
case. Fortunately, one can use the upper bound for the weak chromatic number to
cope with this task. We illustrate this by presenting an outline of the proof for the
case rs3, gs1, that is, for the strong chromatic number of a 3-uniform random

Ž . 2hypergraph. For this case dsd n, p, 3 fn p and we need to show that the strong
Ž . Ž Ž ..chromatic number of H n, p is 1qo 1 dr2 log d.3

4Ž 2 .Let ss log n p . We fix a partition of the vertex set V into s parts V , . . . , V of1 s

< < G 2equal size V snrssn . Let H sH . For every 1F iFs we find a strongi 0 i V i

coloring of H , using pairwise disjoint sets of colors for different values of i.i

Consider the hypergraph H for some i. It is important to note that most of thei

edges of H will be of size 2. These edges determine the asymptotic behavior ofi

Ž .x H .1 i

For js2, 3 we denote H sH j . A crucial observation in the whole proof isi, j V i

< <that for every subset e;V of size e s j the probability of the event ‘‘e is an edgei

of H ’’ is exactlyi, j

nyn0Ž . nyn3y j 0
p s1y 1yp fp .Ž .j ž /3y j

Moreover, all these events are completely independent. Therefore, each of the
Ž .subhypergraphs H can be treated as a random hypergraph H n , p .i, j j 0 j

Consider first the hypergraph H . However, as explained above, this hyper-i, 2

Ž .graph is actually a random graph G n , p . Therefore it can be colored a.s. by0 2

Ž Ž .. Ž . w1qo 1 n p r2 log n p colors. For a general g , at this stage we find a0 2 0 2

Ž .g-coloring of H which is by definition a weak coloring of this gq1 -uniformi, gq1

xsubhypergraph. Fix one such coloring, by Lemma 3.1 all color classes are of size at
Ž .most, say, 4 log n p rp . Now we expose the edges of H . We call an edge0 2 2 i, 3

egH bad if it has at least two vertices of the same color. Denote by X thei, 3 i

number of bad edges. A calculation of the expectation of X gives that EX Fi i
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3Ž .cn rlog n p for some absolute constant c)0. Since X is distributed binomi-0 0 2 i
3Ž .ally, we get that with high probability X F2cn rlog n p . Now we delete fromi 0 0 2

H the union of all bad edges. Combining the colorings of all hypergraphs Hi i

Žwithout the bad edges, we obtain a strong coloring of all but at most s 6cn r0
3Ž .. Ž Ž .. 3Ž 2 . Ž Ž .. Ž Ž ..log n p s 1qo 1 6cnrlog n p vertices in 1qo 1 s n p r2 log n p0 2 0 2 0 2

Ž Ž .. 2 Ž 2 . Ž Ž .. 3Ž 2 .s 1qo 1 n pr2 log n p colors. The remaining 1qo 1 6cnr log n p vertices
can be colored by a much smaller number of additional colors using a simple
greedy-type algorithm based on the degrees. Thus the total number of colors is

n2 p d
1qo 1 s 1qo 1 .Ž . Ž .Ž . Ž .2 2 log d2 log n pŽ .

This finishes our argument.

3. BOUNDING THE g-INDEPENDENCE NUMBER

In this section we state an upper bound on the g-independence number of
Ž .H n, p . This bound is easily obtained by computing the first moment of anr

w xappropriate random variable. We cite it from Lemma 6.3 of 10 .

Ž 4. Ž .Lemma 3.1. With probability 1yO 1rn the g-independence number of H n, pr

satisfies the following inequality

Ž .y 1rgŽg .d
a H n , p Fn .Ž .Ž .g r Žg .ž /gq1 log dŽ .

Ž . < Ž . < Ž . Ž .It is obvious that x H G V H ra H for every hypergraph Hs V, E .g g

Ž Ž ..Hence we get immediately the following lower bound on x H n, p .g r

Ž 4. Ž .Corollary 3.2. With probability 1yO 1rn the g-chromatic number of H n, p isr

bounded from below as follows,

1rgŽg .d
x H n , p G .Ž .Ž .g r Žg .ž /gq1 log dŽ .

4. COLORING SMALL SUBSETS

In this technical section we bound from above the g-chromatic number of all
Ž .subhypergraphs of H n, p , spanned by subsets of V of relatively small size.r

Lemma 4.1. Let dU
s nry1p and let 1 F g F r y 1. For e¨ery fixed c ) 0

Ž . Ž .with probability 1yo 1rn in H n, p the following holds: for e¨ery subset U;Vr

< < 3 U Ggq1 Ž Uof size U Fcnrlog d the subhypergraph H is g-colorable by at most d rU
2gy0.7 U .1rglog d colors.

The lemma will follow easily from a sequence of claims.
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Ž 2 . Ž .Claim 4.2. For e¨ery fixed c)0 with probability 1yo 1rn in H n, p ther
3 U < <following holds: for e¨ery integer sFcnrlog d and e¨ery subset U;V of size U ss

the subhypergraph H Ggq1 has less than rsdU
rlog 3gy0.5 dU edges.U

< < < <Proof. For every fixed set U of size U ss and every subset e:U of size e s i,
where gq1F iF r, the probability that e is an edge of H Ggq1 isU

ny sŽ .ry i ry i1y 1yp Fn p.Ž .

Moreover, all such events ‘‘e is an edge of H Ggq1’’ are mutually independent.U

Also, if H Ggq1 has at least rsdU
rlog 3gy0.5 dU edges, then some of the subhyper-U

graphs H i , gq1F iF r, has at least sdU
rlog 3gy0.5 dU edges. Therefore, theU

probability of the existence of a set U violating the claim can be bounded from
above by,

s
r ž /i U U3gy0 .5sd rlog dn ry i

U n pŽ .Ý Ýž / sds
U3 isgq1sFcnrlog d � 0U3gy0.5log d

U U3gy0 .5sd rlog dUiy1 3gy0.5r O 1 s log dŽ .n ry iF n pÝ Ý Už /s dU3 isgq1sFcnrlog d

sU U3gy0 .5d rlog dUg rygy1 3gy0.5n O 1 s n p log dŽ .
F O 1Ž .Ý Už /s dU3sFcnrlog d

U U3gy0 .5sd rlog dU U3gy0 .5Ž .gy log d rds
U3gy0.5F O 1 log d .Ž .Ý ž /nU3sFcnrlog d

'Denote the sth summand of the above sum by a . Then, if sG n , we haves

n'U U3gy0 .5Ž .gy log d rdc 1
U3gy0.5a F O 1 log d so ,Ž .s U3 3ž / ž /log d n

'while if sF n , we have

dU
rl og 3gy0 .5 dU

U3gy0.5log d 1
a F so ,s 1r3 3ž /ž /n n

thus establishing the claim. B

Ž . Ž .Claim 4.3. With probability 1yo 1rn in H n, p the following holds: for e¨eryr
U < < Ggq1integer sFnrd and e¨ery subset W;V of size W ss the subhypergraph H hasW

less than rs log dU edges.
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Proof. Using arguments similar to those of the proof of Claim 4.2, we can
estimate from above the probability of the existence of a set W violating the claim
by,

sr Us log dn ry iž /i n pŽ .Ý Ýž /sU U� 0sFnrd isgq1 s log d

s log dU

iy1 ryir O 1 s n pŽ .nF Ý Ý Už /s ž /U log dsFnrd isgq1

s log dU
U UŽ .gy 1rlog ds d

F O 1 .Ž .Ý Už /ž /U n log dsFnrd

Denote the sth summand of the above sum by b . Then, if sGner2, where e)0s

Ž U .1rg 1yeis a fixed constant defined in the introduction and satisfying d Fn , we can
estimate b from above as follows,s

U s log dU
sUygq1qŽ1rlog d .d O 1 1Ž .

b F O 1 F so ,Ž .s U U 2ž /ž /ž /log d log d n

and if sFner2, relying on our assumption that dU
FnŽ1ye .g , we get

U log dU log dU
UŽy1qŽe r2..ŽgyŽ1rlog d .. ygqŽ2 e r3.gqŽ1ye .gO 1 n d O 1 nŽ . Ž .

b F Fs U Už / ž /log d log d

1
so . B

2ž /n

Ž 2 . Ž .Claim 4.4. For any fixed c)0 with probability 1yo 1rn in H n, p the followingr

< < 3 Uholds. For e¨ery subset U;V of size U ssFcnrlog d consider the subhypergraph
H Ggq1. Then there exists a g-coloring of all but at most srlog0.1 dU

¨ertices of H Ggq1
U U

uŽ 3 U 3gy0.6 U .1rg vin at most 4 r d rlog d colors.

Proof. This claim follows deterministically from the assertion of Claim 4.2.
< < 3 UFix a subset U;V of size U ssGcnrlog d and consider the subhypergraph

Ž . Ggq1H U sH . DenoteU

1rgU34 r d
Ms .U3gy0.6ž /log d

Ž 2 .According to Claim 4.2, with probability 1yo 1rn the number of vertices of
2 U 3gy0.6 U Ž . Ž U 3gy0.5 U . .degree more than r d rlog d in H U is at most rsd r log d r r

Ž 2 U 3gy0.6 U . 0.1 Ur d r log d ssrlog d . Let U be the set of all vertices of degree at0
2 U 3gy0.6 U Ž . < < 0.1 U Ž . Ggq1most r d rlog d in H U . Then U _U Fsrlog d . Let H U sH .0 0 U0

Ž .We will prove that the H U is g-colorable by at most M colors. Every edge of0

Ž . 2 U 3gy0.6 U 3 U 3gy0.6 U gH U intersects at most r ? r d rlog d s r d rlog d FM r4 other0
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Ž .edges of H U . Now consider a random coloring of the vertices of U in colors0 0

1, . . . , M, obtained by assigning to each vertex ¨ gU color i independently and0

Ž Ž ..with probability 1rM, where 1F iFM. For egE H U denote by A the event0 e

Ž . < e <y1 Ž .g‘‘e is monochromatic.’’ Then the probability of A is 1rM F 1rM . Also,e

the event A is mutually independent of all other events A X , but those for whiche e

ele
X
/B. The number of such events is at most Mgr4. Then, applying the

Ž w x .symmetric version of the Lovasz local lemma see, e.g., 2 , Chap. 5 , we get:´
w xP H A )0, thus ensuring the existence of a desired coloring. Beg EŽH ŽU .. e0

Ž . Ž .Claim 4.5. With probability 1yo 1rn in H n, p the following holds: for e¨eryr
U < < Ggq1integer sFnrd and e¨ery subset W;V of size W ss the subhypergraph H isW

g-colorable by at most 2 r log dU colors.

Proof. This claim follows deterministically from the assertion of Claim 4.3. Recall
that a graph G is called d-degenerate if every subgraph of it contains a vertex of

Ž .degree at most d. It is very easy to see that a d-degenerate graph G is dq1 -
colorable.

< < UFix a subset W;V of size W ssFnrd . Clearly it is enough to prove that the
strong chromatic number of H Ggq1 is at most 2 r log dU. Define an auxiliary graphW

G with vertex set W and two vertices u, ¨ gW being connected by an edge if and
Ž .only if there exists an edge egE H such that u, ¨ ge. Then it is easy to see that

the chromatic number of G is equal to the strong chromatic number of H Ggq1. ByW

< <Claim 4.3 with gs1, every subset W :W of size W ss Fs spans less than0 0 0
U w xrs log d edges in G, and therefore the induced subgraph G W has a vertex of0 0

U Ž U .degree less than 2 r log d . This implies that G is 2 r log d y1 -degenerate and
thus can be colored by 2 r log dU colors, yielding the desired result. B

Proof of Lemma 4.1. For a fixed subset U, first apply Claim 4.4 recursively,
uŽ 3 U 3gy0.6 U .1rg vstarting with U, each time using at most 4 r d rlog d fresh colors and

decreasing the size of the current subset by a factor of log0.1 dU. Then, after at
Ž U . Umost log sd rn iterations, we get a subset W of U of size at most nrd , to which

we apply Claim 4.5. The total number of colors used is at most

1rg 1rgU U U34 r d sd d
Ulog q2 r log d F . BU U3gy0.6 2gy0.7ž / ž /ž / nlog d log d

5. THE WEAK CHROMATIC NUMBER

In this section we establish the asymptotic behavior of the weak chromatic number
Ž . w xof H n, p . Our argument is essentially an adaptation of the proof of Łuczak 7 ,r

with some changes incorporated.

ny 1Ž . Ž .Theorem 5.1. There exists a constant d such that if dsd n, p, r s ry1 pž /0 ry 1

Ž ry1. Ž .)d and dso n then, with probability 1yo 1rn ,0

Ž .Ž . 1r ry11r ry1d d 28 r log log d
Fx H n , p F 1q .Ž .Ž .ry1 rž / ž /ž /r log d r log d log d
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The lower bound follows immediately from Corollary 3.2. Thus it is enough to
show only the second inequality.

Ž Ž . .1rŽ ry1.Lemma 5.2. Let ksn r log dy3 log log d rd . There exists a constant d0

Ž ry1. y3such that whene¨er d)d and dso n , then with probability at lest 1yn ,0

Ž . y5H n, p contains a subset with at least n log d ¨ertices which can be properlyr

colored using at most n logy5 drk colors.

Proof. To prove the lemma we use Talagrand’s inequality as suggested by the
referee. First we will describe an adaptation of Talagrand’s inequality, convenient

w x nfor combinatorial applications, as presented by Spencer in 14 . Let VsŁ V beis1 i

a product probability space and let h: VªR be a real-valued random variable. We
< Ž . Ž . <call h Lipschitz if h x yh y F1 for all x, ygV which differ in only one

coordinate. For a fixed function f : NªN we say that h is f-certifiable if whenever
Ž . Ž . � 4h x Gs for some xgV there is a set of at most f s indices I: 1, . . . , n that

Ž . Ž .certify h x Gs in the sense that h y Gs for all ygV that agree with x on I. Let
Ž . w xm be a median of the random variable h x . Then as shown in 14 , Talagrand’s

inequality implies

yt 2

< <Pr h x ym G t F2 exp . 1Ž . Ž .Ž . ž /4 f mŽ .

Ž .Now consider the probability space H n, p as a product space, where each Vr i

� 4corresponds to the r-tuples of 1, . . . , n containing vertex i and contained in
� 4 y5 Ž .1, . . . , i . Let X be the size of the largest n log drk-colorable subset of H n, pr

U U Ž y5 .and let X be a random variable defined by X smin 5n log d, X . Then by the
definition X U is Lipschitz and always bounded from above by 5n logy5 d. There-
fore it is also 5n logy5 d-certifiable, since it is enough to expose the edges from at

y5 U Ž U .most 5n log d vertices to certify the value of X . Denote by m X the median
U Ž U . y5 Ž . 6.1of X , obviously m X F5n log d. Then inequality 1 with tsnr2 log d will

imply that

n n
U U< <Pr X ym X ) F2 exp y . 2Ž . Ž .6.1 7.2ž / ž /2 log d 80 log d

Ž .Thus to prove Lemma 5.2, it is enough to show that the probability that H n, pr
y5 Ž y5 y6.1 .contains a n log drk-colorable subset with more than n log dq log d

Ž 7.2 .elements is greater than 2 exp ynr80 log d . Indeed, in this case, by inequality
Ž . Ž U . Ž y5 y6.1 .2 we obtain that the median m X should be at least n log dq log d y

nr2 log6.1 dsn logy5 dqnr2 log6.1 d. Therefore,

n n
U U UPr X - FPr X ym X -yŽ .5 6.1ž / ž /log d 2 log d

n
y3F2 exp y -n .

7.2ž /80 log d

Let Y be the number of subsets of mk elements, where msn logy5 drk and0

Ž .1r ry1y5 y6.1log dq log d r log dy2 log log dŽ .
k Fk sn ,0y5 ž /dlog d
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which can be split into exactly m independent sets, each of size k . Then the event0
U Ž y5 y6.1 .‘‘Y)0’’ implies that X Gmk Gn log dq log d . On the other hand, to0

bound from below the probability that Y is positive we can use the following
Ž w x .inequality see, e.g., 5 , p. 3 ,

2
EYŽ .

Pr Y)0 G .Ž . 2EY

Then

k k ny iy1 kŽ .0 0 0
???

2 m ž / ž / ž /k k kEY 1 m mq1
F Ł Ý2

kny iy1 kŽ . m jEY is1Ž . 0k , . . . , k Ý1 mq1 js 1Ž .r1ypŽ .mq1Ý k skjs1 j 0 ž /k0

m

nymk0
alk0 ž /k y l0

F Ý
nymk0ls0 ž /k0

m
k0 a k !l 0

F ,Ý l k y l !Ž .ny mq1 kŽ . 0Ž .ls0 0

where

k k km j0 0 yÝ js 1Ž .ra s ??? 1yp .Ž .Ýl ž / ž /k k1 mk , . . . , kl m
mÝ k sljs1 j

ŽLet k , . . . , k be those from k , . . . , k which are greater than n r log log dri i 1 m1 t

.1rŽ ry1. m ŽŽ . .1rŽ ry1. 1rŽ ry1.d . Since Ý k s lFk -n r log d rd , so t- log d. Thus thejs1 j 0

number of terms with different sequences k , . . . , k is less thani i1 t

log1r Ž ry1. d 1r Ž ry1.log dmk -n . 3Ž . Ž .0

X Y X Y Ž .1rŽ ry1. X Y
Moreover, for every k , k such that k Gk Gn r log log drd and k qk F l
Fk we have0

k
X

k
Yk k y y0 0 Ž . Ž .r r1ypŽ .X Yž / ž /k k

-1.
X Y

k qkk y0 Ž .r1ypŽ .X Yž /k qk
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ŽŽ . .1rŽ ry1. X Y
Indeed, when n r log log d rd Fk qk F0.7k then0

k
X

k
Yk k y y0 0 Ž . Ž .r r1ypŽ .X Y X YYž / ž / kŽ .k k 0 k k qk

F YX ž /X Y kYk qk k ykk Ž .y 00 kŽ .r1ypŽ .X Yž /k qk

k
X
qk

Y
k

X
k

Y

=exp yp y y½ 5ž / ž / ž /ž /r r r

k
Y

Y X Y
Xk yk e k qkŽ .0 k

F exp ypX Y Y ½ 5ž /ž /ry1k yk yk k0

k
Y

100
F -1.ž /log log d

whereas for k
X
qk

Y
G0.7k we have0

k
X

k
Yk k y y0 0 Ž . Ž .r r1ypŽ .X Y Xž / ž /k k kYk k0 0F2 2 exp ypk -1.½ 5ž /X Y ry1k qkk y0 Ž .r1ypŽ .X Yž /k qk

Hence,

k k km lj k0 0 yÝ y0 Ž .js 1Ž . rr??? 1yp F 1ypŽ . Ž .ž /ž / ž /k k l1 m

dl r
k0F exp 1qp . 4Ž . Ž .ry1ž / ž /r ry1 nŽ .l

Furthermore, for every choice of k
X
, . . . , k

X
, one can easily get the following1 s

inequality,

k k X
ks j0 0 yÝ js 1Ž .r??? 1ypŽ .X XÝ ž / ž /k kX X X 1 sk , . . . , k , max k sf , 1FjFs1 s j

XsÝ k sljs1 j

l df ry1
sk0F exp 1qp . 5Ž . Ž .ry1ž / ž /r ry1 nŽ .l

Now we divide the sum in the definition of a into two parts. The first part coversl

ŽŽ . .1rŽ ry1.the case where all k are at most n r log log d rd . For this part we usej

Ž .estimate 5 . The second part covers the case where at least one of k is greaterj

ŽŽ . .1rŽ ry1.than n r log log d rd . In this case we denote by i the sum of all such k j
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Ž . Ž .and use estimate 4 and 5 . This way we get the following inequality,

l
mk k1r Ž ry1.0 02 l rŽ ry1. log da F log dqn Ýl ž / ž /l i1rŽ ry1.ŽŽ . .isn r log log d rd

di r
mk0 w2Ž lyi.xrŽ ry1.=exp 1qp log d.Ž . ry1 ž /ž /r ry1 nŽ . ly i

ŽŽ . .1rŽ ry1.For i sn r log log d rd F iF l, set0

di r
k mk0 0 w2Ž lyi.xrŽ ry1.b s exp 1qp log d.Ž .i , l ry1ž / ž /ž /r ry1 nŽ .i ly i

Then

rry1 ry21qp d ri q i q ??? q1Ž . ž /ž /b k y i 2iq1, l 0
s exp

ry1b iq1 r ry1 nŽ .� 0i , l

ly i
y2rŽ ry1.= log d

mk y lq iq10

lq1 k y i0
s y1ž /iq1 mk y lq iq10

rry1 ry21qp d ri q i q ??? q1Ž . ž /ž /2
y2rŽ ry1.=exp log d. 6Ž .ry1r ry1 nŽ .� 0

Ž . y1rŽ ry1. 6Let isa k . Since the second factor in 6 is at most 2 d log d and the0

exponential factor is of order dwŽ1qoŽ1.. ra x ry 1 rŽ ry1., we get that b rb -1 foriq1, l i, l

ŽwŽ Ž ..x .1rŽ ry1.0FaF0.4- 1qo 1 rr . Thus b is maximal for this interval of valuesi , l0

of a , and an upper bound for b is given byi , l0

di rk mk00 0 w2Ž lyi .xrŽ ry1.0b s exp 1qp log dŽ .i , l ry10 ž /ž / ž /i ly ir ry1 nŽ .0 0

l2rŽ ry1.3mk log dmq1 k 0Ž . 2 lrŽ ry1.0F log dF .ž / ž /ll

Now let isa l, 0.4FaF0.991rŽ ry1.. Then

r
d a l mkŽ .k 00 w2Ž1ya . l xrŽ ry1.b s exp 1qp log dŽ .i , l ry1ž / ž /ž / 1ya lr ry1 n Ž .Ž .a l

lŽ .a 1yar ry1ek a l d emk0 0 w2Ž1ya .xrŽ ry1.F exp 1qp log dŽ . ry1ž / ž /ž /a l 1ya lr ry1 n Ž .Ž .

lr lwŽ1ya .qŽ1qp.a xrŽ ry1. 2rŽ ry1. 2rŽ ry1.k d log d 3mk log d0 0
F F .ž /l l
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Now we are going to bound b from above for 0.991rŽ ry1. lF iF l. We consideri, l

Ž .1rŽ ry1.two cases. First, let lF 0.9 k . Then0

max b : 0.991rŽ ry1.lF iF l� 4i , l

1qp dl rŽ .2k0F exp
ry1ž / ž /r ry1 nŽ .l

Ž 1r Ž ry1..1y0.99 lemk0 0.02 l rŽ ry1.= log d
1rŽ ry1.ž /1y0.99 lŽ .

lry1 0.012 ek dl n0 0.02rŽ ry1.F exp 1qp log dŽ . ry1 ž /ž /ž /l lr ry1 nŽ .

l l0.92rŽ ry1. 2rŽ ry1.6k d 3mk log d0 0
F F .ž / ž /l l

Ž .1rŽ ry1.For lG 0.9 k , in order the maximize b it is enough to consider0 i, l

iG ly ldy0.3rŽ ry1.. Indeed, for 0.99lF iF ly ldy0.3 the first factor in b rb isiq1, l i, l

at least dy0.3rŽ ry1., the second one is at least dy1.3rŽ ry1. and the exponent is
greater than d0.88 rrŽ ry1., thus b rb )1. Furthermore the following inequalityiq1, l i, l

holds

max b : ly ldy0 .3Ž ry1.F iF l� 4i , l

r l dy0 .3rŽ ry1.

1qp dl emkŽ .k 00
F exp

ry1 y0.3rŽ ry1.y0.3rŽ ry1. ž /ž / ž /r ry1 n ldŽ .ly ld

= log l dy0 .3Ž ry1. rŽ ry1. d

dl rk wy 0 .3rŽ ry1.x0 3rŽ ry1.k d0F exp 1qp d .Ž . ry1ž /ž /k y l r ry1 nŽ .0

Hence,

k0 a k !l 0
Ý l k y l !Ž .ny mq1 kŽ . 0Ž .ls0 0

llk 2rŽ ry1.0 2k 3mk log d1r Ž ry1. 0 02 log dFn Ý ž / ž /n lls0

Ž 1rŽ ry1..1y0.9 k j0 k ! n k1r Ž ry1. y0 .3rŽ ry1. 0 02 log d 3rŽ ry1.k d0qn d Ý k 0 ž /jj!ny mq1 kŽ .Ž .js0 0

rr rdk d k y j ykŽ .Ž .0 0 0
=exp 1qp exp 1qpŽ . Ž .ry1 ry1ž / ž /r ry1 n r ry1 nŽ . Ž .
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lk 2 2rŽ ry1.0 6mk log d1r Ž ry1. 1rŽ ry1. wy0 .3rŽ ry1.x02 log d 2 log d 3rŽ ry1.k d0Fn qn dÝ ž /lnls0

k 0ry1k 1qp dkŽ .0 0
= exp

ry1y4.9 ž /ž /r ry1 nen 1y log d Ž .Ž .

Ž 1rŽ ry1..1y0.9 k0 9k n0
= Ý 2ž jjs0

jry1ry1 ry21qp d k qk k y j q ??? q k y jŽ . Ž . Ž .Ž .0 0 0 0
=exp y .

ry1ž / /r ry1 nŽ .

Ž 2 2rŽ ry1. .All terms of the first sum are less than exp 6mk log drn , for d large0

enough, whereas for the second sum we have

k 1qp dk ry1Ž .0 0
exp

ry1y4.9 ž /r ry1 nen 1y log d Ž .Ž .

Ž . Ž . Ž .1qp r ry1 1r ry11 d r log d
-

2y4.9 ž /ž / dlog de 1y log dŽ .

4d prŽ ry1.

- -1,
1rŽ ry1.e log d

and

ry1ry1 ry21qp d k qk k y j q ??? q k y jŽ . Ž . Ž .Ž .0 0 0 0
exp y

ry1ž /r ry1 nŽ .

1qp dk ry1 1q0.91rŽ ry1.q ??? q0.9Ž ry1.rŽ ry1.Ž . Ž .0
-exp y

ry1ž /r ry1 nŽ .

w Ž .x Ž .y 1q0.9 ry1 r ry1d
- .

2ž /log d

Therefore,

1rŽ ry1. jŽ .1y0.9 k w2q1.8Ž ry1.xrŽ ry1.0 9k n log d
y0 .3rŽ ry1. 03rŽ ry1.k d0d Ý 2 w1q0.9Ž ry1.xrŽ ry1.ž /j djs0

-exp 3k dy0 .25rŽ ry1.qndy1 .3rŽ ry1. .Ž .0

Thus

k 2 2rŽ ry1.0 a k ! 6mk log d1r Ž ry1.l 0 02 log dFn expÝ l ž /k y l ! nŽ .ny mq1 kŽ . 0Ž .ls0 0

qn2 log1r Ž ry1. d exp ndy1 .2rŽ ry1. ,Ž .



THE CHROMATIC NUMBERS OF RANDOM HYPERGRAPHS 395

and, finally we arrive at

ym2 2 2rŽ ry1.EY 7mk log dŽ . 0
Pr Y)0 G G expŽ . 2 ž /nEY

2k m02rŽ ry1. y7.5Gexp y7n log d Gexp yn log d .Ž .ž /ž /n

This completes the proof of Lemma 5.2. B

w xThe next lemma and its proof are shaped after Lemma 2 of 7 .

Ž ry1.Lemma 5.3. There is a constant d such that if d)d and dso n , then with0 0

Ž . y1 y3 Ž .probability 1yo 1 y log d, more than ny2n log d ¨ertices of H n, p can ber

properly colored with less than

Ž .1r ry1
d 28 ry23 log log dŽ .

1qž /ž /r log d log d

colors.

Proof. In the proof we shall use the ‘‘expose-and-merge’’ technique introduced by
w x w x w xr � < < < 4D. Matula 9 . For A; n define A s S s r S;A and let

Ž .1r ry1
r log dy 28 ry24 log log dŽ .Ž .

33k sn , l snr k log d .Ž .0 0 0ž /d

Consider the following algorithm:

Algorithm.

E[B

F [B0

W [B0

for is1 to log33 dy log30 d do

begin
w x < < y28choose randomly A ; n _W with A sn log d;i i i

define HH as the hypergraph with the set of vertices A and the set of edges E ,i i i

w xrwhere each eg A belongs to E randomly and independently with proba-i i

bility p;
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� i i 4choose a family RR , . . . , RR of disjoint independent sets from A , such that1 l i0
l0 < i < y33Ý RR sn log d}if it is not possible FAIL;ls0 l

X Ž .E [E _ E lF ;i i i iy1

E[EjE
X
;i

w xrF [F j A ;i iy1 i

W [W jD l0 RR
i,i iy1 ls1 l

end
33 30r log dylog dw xF[ n _D F ;is1 i

form E;F by choosing each egF to belong to E randomly and independently
with probability p;
E[EjE;

� 1 1 log 33 dylog 30 d4output E; RR , RR , . . . , RR ;1 2 l0

end

Let us first observe that the probability that egE is equal to p for each
w xr w xeg n , thus the hypergraph HH with the set of vertices n and the set of edges E

Ž .may be treated as H n, p .r
y28Ž .Obviously, we may consider each HH as H n, p , where nsn log d. Leti r

ny1 y28Ž ry1.dsd n , p s ry1 ps 1qo 1 d log d.Ž . Ž . Ž .Ž .ž /ry1

Then

Ž .1r ry1Ž .1r ry1
r log dy 28 ry24 log log d r log dy3 log log dŽ .Ž . Ž .

k sn -n .0 ž / ž /d d

Thus from Lemma 5.2, the probability that HH contains no subset with n logy33 d-i
y5 y5n log d elements which can be properly colored using n log drk colors is less0

y3 y2than n , so the probability of FAIL in the algorithm is less than n .
Thus, with probability at least 1yny2 , the algorithm finds

Ž .1r ry1y3nyn log d d 28 ry23 log log dŽ .
33 30log dy log d l s - 1q .Ž . 0 ž /ž /k r log d log d0

disjoint sets RR
1, RR

1, . . . , RR
log 33 dylog 30 d such that1 2 l0

< i < 33 30 y33 y3
RR s log dy log d n log dsnyn log d.Ž .ÝÝ l

i l

Note that although RR
i is an independent set in HH it is not necessarily independentl i

as a subset of HH. Let X denote the number of edges of HH contained in RR
i forl

some 1F iF log33 dy log30 d, 1F lF l . We shall estimate X from above.0

w xr iLet eg n be such that egE and also e;RR for some i, l. This can occurl

only if e was chosen as an edge in HH for j- i. Thus we have that e;A and alsoj i

e;A . Since for all i we choose A from the set of vertices of size at leastj i

n logy3 d, the probability that for given i and j the edge e is contained in both A i

Ž y25 .2 rand A is less than log d . Now observe that for any 1F lF l each subset ofj 0
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< j < j ŽA containing a RR elements is equally likely to be chosen as RR this eventj l l

depends only on the structure of HH which is symmetric with respect to the labelingj

. < j < ŽŽ . .1rŽ ry1.of vertices . Due to Lemma 3.1, we may assume that RR -n r log d rdl

< < y28for all i, l. Thus, since A sn log d, the probability that all the vertices of thej

edge e are in the same set RR
j for some l is less thanl

ry1Ž .1r ry1r log d
n Ž28 ry27.ž / r log dd

F .
y28 dn log d� 0

The probability that the edge e appears in the hypergraph HH is equal to p, soj

finally we have the following upper bound on the expectation of X,

33 30 r logŽ28 ry27. dlog dy log dn y50 r y5EXF ? log d?p ? -n log d.ž /r ž / d2

Therefore, from Markov’s inequality,

1
y3 y1Pr X) n log d - log d.ž /r

Now for all i, l delete from RR
i all the vertices of the edges of HH that arel

i icontained in RR and denote the obtained sets by RR . Thenl l

i i y3< < < <RR G RR y rXsnyn log dy rX ,Ý Ýl l

i , l i , l

so

i y3 y2 y1< <Pr RR Gny2n log d )1yn y log d.Ý lž /
i , l

and the assertion of the lemma follows. B

Proof of Theorem 5.1. From Lemmas 5.3 and 4.1 we have the following estimate,

Ž .1r ry1
d 28 ry22 log log dŽ .

Pr x H n , p - 1qŽ .Ž .r ž /ž /ž /r log d log d

1
y1)1yo 1 y log d) .Ž .

2

Ž Ž ..In order to show that essentially the same upper bound on x H n, p holds withg r

Ž Ž ..much higher probability we use the argument of Frieze. Define Y H n, p to ber

the minimal size of a set of vertices S, such that the induced subhypergraph
w x Ž Ž .Ž wŽ . x ..1rŽ ry1.H V _S can be colored by ws dr r log d 1q 28 ry22 log log d rlog d

Ž w xcolors. Then Y is a random variable that satisfies the Lipschitz condition see 2 ,
. Ž .Chap. 7 for more details . Denote E Y sm and apply the vertex exposure



KRIVELEVICH AND SUDAKOV398

Ž .martingale on H n, p . Then by Azuma’s inequality,r

2yl r2'Pr YFmyl ny1 -e ,Ž .
2yl r2'Pr YGmql ny1 -e .Ž .

2yl r2 y2 'Ž .Let l satisfy e sn . Since Pr Ys0 )1r2 we have that mFl ny1 s
y2'Ž .'c n log n for some constant c)0. Thus Pr YG2l ny1 -n . Therefore with

y2 'probability 1yn there is a w-coloring of all but at most c n log n vertices. By
Ž .Lemma 4.1 with probability 1 yo 1rn these vertices can be colored by

Ž w 2Ž ry1.y0.7 x.1rŽ ry1.dr log d colors. Combining these two colorings we get that with
Ž . Ž .probability 1yo 1rn the hypergraph H n, p can be colored by at mostr

Ž .1r ry1
d 28 r log log d

1qž /ž /r log d log d

colors. This finishes the proof of Theorem 5.1. B

6. THE g-CHROMATIC NUMBERS, g-ry1

In this section we finish the proof of Theorem 1. Due to the results of the previous
section it remains to treat the case g- ry1. For reader’s convenience, we restate
the formulation of Theorem 1 for this case.

Theorem 6.1. For e¨ery 1FgF ry2 there exists a constant d such that if0

ny1ry1Žg . Žg .d sd n , p sg pGdŽ . 0gž / ž /ry1

Žg . Ž g .but d so n , then almost surely

1rg 1rgŽg . Žg .d d 1
Fx H n , p F 1q .Ž .Ž .g rŽg . Žg . 0.1 Žg .ž /ž / ž /gq1 log d gq1 log d log dŽ . Ž .

Proof of Theorem 6.1. The lower bound follows immediately from Corollary 3.2, so
it is enough to prove the upper bound. The proof of the upper bound relies on the
upper bound for the weak chromatic number, given by Theorem 5.1.

Throughout the proof, the symbols C , C , . . . denote positive constants depend-1 2

ing only on r. Let

d n , p , gq1Ž .0 gq1
u su n , p , gq1 sŽ .0 0 0 gq1 ž gq1 log d n , p , gq1Ž . Ž .0 gq1

1rg
28 gq1 log log d n , p , gq1Ž . Ž .0 gq1

= 1q ,ž / /log d n , p , gq1Ž .0 gq1

where

n y10d n , p , gq1 s g pŽ .0 gq1 gq1ž /g
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and the exact value of the edge probability p will be defined later. Note thatgq1

according to Theorem 5.1 the expression in the definition of u is an upper bound0

on the weak chromatic number of a random gq1-uniform hypergraph on n0

vertices with edge probability p .gq1

Let ss log4 dU. We fix a partition of the vertex set V into s disjoint parts
? @ u vV , . . . , V of sizes nrs or nrs . For the sake of simplicity we assume that nrs is1 s

< <integer and then V snrs for 1F iFs. Let n snrs.i 0

For 1F iFs, let H sH Ggq1. A key step in the proof of Theorem 6.1 is thei V i

following lemma.

Lemma 6.2. Let

nyn0Ž .rygy1

p s1y 1yp .Ž .gq1

There exists a constant C such that, for e¨ery fixed i, 1F iFs, with probability1

Ž . 3 U1yo srn all but at most C n rlog d ¨ertices of the hypergraph H can be1 0 i

Ž .g-colored by at most u su n , p , gq1 colors.0 0 0 gq1

Proof. We represent

r

H s H ,Di i , j

jsgq1

where H sH j . It is easy to see that the edges of H constitute a great parti, j V i, gq1i

of the edges of H , so the most important task for us will be to color properly thei

subhypergraph H . For each gq1F jF r denotei, gq1

nyn0Ž .ry j

p s1y 1yp ,Ž .j

and note that

ry jn n
pFp F p. 7Ž .jž / ž /ry j2 ry jŽ .

< <Now observe crucially that for every subset e;V of size e s j, where gq1F ji

F r, the probability of the event ‘‘e is an edge of H ’’ is exactly p . Moreover, alli j

such events are mutually independent. This enables us to treat each of the
Ž .subhypergraphs H as a random hypergraph from the probability space H n , p .i, j j 0 j

Let us first expose the edges of H . Note that a g-coloring of this subhyper-i, gq1

graph is a weak coloring, since all edges of H have size gq1. Recalling thati, gq1

Ž .H is an element of the probability space H n , p , we can use the resulti, gq1 gq1 0 gq1

Ž .of Theorem 5.1 in order to claim that with probability 1yo srn the g-chromatic
number of H is at most u . Moreover, due to Lemma 3.1 the g-independencei, gq1 0

Ž .number of H is at most, say 2n ru with probability 1yo srn .i, gq1 0 0

� 4Fix some g-coloring f : V ª 1, . . . , u of H by u colors with color classesi 0 i, gq1 0

T , . . . , T , each of size at most 2n ru . Now we expose the edges of the subhyper-1 u 0 00
r Ž .graphs H for j)gq1. We call an edge egD E H bad if it improperlyi, j jsgq2 i, j
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< <g-colored by f , that is, there exists a color class T such that elT Ggq1. Let Xl l i

be the number of bad edges in H . Note that each bad edge has at least gq2i

vertices in common with V . Therefore the expectation of X can be estimated asi i

follows,

u r0 < < < <T Tn nl l
EX Fp n qÝ Ýi 0 ž / ž /rygy2 ry jž / ž /ž /gq1 j

ls1 jsgq2

2n 2n0 0
n n

u uFu p n q rygy1Ž .0 00 0 ž / ž /rygy2 rygy2� 0 � 0� 0gq1 gq2

gq1
2n0 rygy22n 2u p n n0 0 0 rygy2 gq2ž / 4n n pun 00

uF2u p n F F .00 0 gž /rygy2 gq1 ! uŽ . 0� 0gq1

Ž .Substituting the expression from the definition of u and using estimate 7 for0

p , we getgq1

4nrygy2 ngq2 p 4 gq1 nrygy2 ngq2 log nry1p pŽ . Ž .0
EX F F gi rygy1d n , p , gq1 n y1 nŽ .0 gq1 0

g pž /ž /gq1 log d n , p , gq1Ž . g 2 rygy1Ž . Ž .0 gq1

n2 log dU n0 0
FC sC .2 2 U3n log d

The random variable X is naturally represented as a sum of independent indicatori

random variables and thus standard exponential bounds on the tails of X can bei

Ž . 3 Uapplied to show that with probability 1yo srn we have X F2C n rlog d .i 2 0

Take a union U of all bad edges, it contains at most 2 rC n rlog3 dU vertices. Thei 2 0

subhypergraph of H spanned by V _U is clearly g-colorable in u colors, thus1 i i 0

proving the claim of the lemma with C s2 rC . B1 2

Applying Lemma 6.2 to each of the subsets V for 1F iFs and using distincti

colors for every i, we get the following intermediate result:

Ž 2 .Corollary 6.3. There exists a constant C such that the probability 1yo s rn all1
3 U Ž .but at most C nrlog d ¨ertices of H n, p can be g-colored in at most su colors.1 r 0

Now we plug in Lemma 4.1 and get the following upper bound on the g-chro-
Ž .matic number of H n, p .r

Ž 2 . Ž .Corollary 6.4. With probability 1yo s rn the g-chromatic number of H n, p is atr

Ž U 2gy0.7 U .1rgmost su q d rlog d .0
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The proof is almost finished. It remains only to write the bound from Corollary
Ž6.4 in a more ‘‘visible’’ form. This can be done by performing routine but rather

.tedious arithmetic manipulations. Below we present them in a somewhat sketchy
way. Let A denote the bound of Corollary 6.4. We will use the following trivial

Ž . Ž . Ž .Ž .inequalities: 1r ayb F 1q2bra ra for 0-bFar2; and 1qa 1qb F1q3a
Ž .for 0-bFaF1. Substituting the definition of u and denoting for brevity d n s0 0

Ž .d n , p , gq1 we get0 gq1

1rg 1rgUd n 28 gq1 log log d n dŽ . Ž . Ž .0 0
AFs 1q q U2gy0.7ž /ž /ž /gq1 log d n log d n log dŽ . Ž . Ž .0 0

1rg
d n 1Ž .0

Fs 1q .
0.2ž /ž /gq1 log d n log d nŽ . Ž . Ž .0 0

Ž .Now we bound d n as follows,0

ng nrygy1 g nry1pnynn y1 000d n F g pF g ps .Ž .0 gž /g ž /rygy1 g ! rygy1 ! g ! rygy1 !sŽ . Ž .

Ž . g rygy1 U g Ž . UOn the other hand, d n Gn n prC sd rC s . Then log d n G log d y0 0 3 3 0

Ž g . Ž . Ž U U . Ulog C s and thus 1rlog d n F 1qC log log d rlog d rlog d . We get3 0 4

1rgUg d C5
AF 1q .U U0.2ž /ž /gq1 ! rygy1 ! log d log dŽ . Ž .

ry1 ny 1 2Ž . Ž .Now, we use the following inequalities: n F ry1 ! 1q2 r rn and alsož /ry 1

log dU
G log dŽg .y log C . Then6

1rgUg ry1 ! d CŽ . 5
AF 1qU U0.2ž /ž /gq1 g ! rygy1 ! ry1 !log d log dŽ . Ž .

1rg
g C7ny1ry1

F p 1q U0.2gž / ž / ž /ž /ry1gq1 log d

1rgŽg .d 1
F 1q . B

Žg . 0.1 Žg .ž /ž /gq1 log d log dŽ .

7. CONCLUDING REMARKS

We have established an asymptotic behavior of the g-chromatic number of a
Ž .random r-uniform hypergraph H n, p for all values of the parameter g and forr

Ž . yrq1all values of the edge probability psp n down to the case pscn for some
constant c)0. However, as in the graph case, it turned out that the g-chromatic
number of the random hypergraph is asymptotically equal to the ratio of the
number of vertices n and its g-independence number. Though this paradigm can
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be carried over from the graph case to that of hypergraphs, the proof is similar only
for the case of the weak chromatic number, corresponding to gs ry1. The reason
for it is that the standard martingale based techniques, successfully used to
establish the asymptotic value of the chromatic number of the random graph
Ž .G n, p , do not seem to be directly applicable for g- ry1. This is due to the fact

that the g-chromatic number of a hypergraph H is a vertex Lipschitz function only
for the case of gs ry1. We succeeded to bypass this difficulty by partitioning the

Ž . 4Ž ry1 .vertex set V H into ss log n p parts V , . . . , V and coloring each part1 s

separately. This partition enabled us to use the arguments from the case of the
w xweak chromatic number to color each subhypergraph H V and thus to reduce ai

general case to that of the weak chromatic number.
An interesting related problem, for which the above mentioned difference

between the case gs ry1 and the other cases may also play an important role, is
Ž .that of determining a concentration of the g-chromatic number of H n, p . For ar

Ž . Ž .hypergraph theoretic function X H and probability space H n, p , we say thatr

Ž Ž .. Ž . Ž .X H n, p is concentrated in width sss n, p if there exists a function usu n, pr

so that

lim Pr uFX H n , p Fuqs s1.Ž .Ž .Ž .r
nª`

The question of estimating the width of concentration of the chromatic number of
Ž . w x w x w xa random graph G n, p is studied in papers 13 , 8 , 1 . All these papers rely

heavily on the fact that the chromatic number of a graph is vertex Lipschitz. In
contrast, nobody seems to have addressed the corresponding hypergraph question.
Similarly to the problem of determining the asymptotic value of the g-chromatic

Ž .number of H n, p , the case of the weak chromatic number should be quiter

similar to the graph case, and most of the results about the concentration of the
Ž .chromatic number of G n, p can be transferred to this special hypergraph case.

However, for every g- ry1 a simple adaptation of the graph arguments does not
seem to be possible. New ideas are required to tackle this case.
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