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is H-free, that is, it does not contain an induced copy of a given
graph H , then it must contain either a clique or an independent
set of size nδ(H), where δ(H) > 0 depends only on the graph H .
Except for a few special cases, this conjecture remains wide
open. However, it is known that an H-free graph must contain
a complete or empty bipartite graph with parts of polynomial
size.
We prove an analogue of this result for 3-uniform hypergraphs,
showing that if a 3-uniform hypergraph on n vertices is H-free, for
any given H, then it must contain a complete or empty tripartite

subgraph with parts of order c(log n)
1
2 +δ(H), where δ(H) > 0

depends only on H. This improves on the bound of c(log n)
1
2 ,

which holds in all 3-uniform hypergraphs, and, up to the value of
the constant δ(H), is best possible.
We also prove that, for k � 4, no analogue of the standard Erdős–
Hajnal conjecture can hold in k-uniform hypergraphs. That is,
there are k-uniform hypergraphs H and sequences of H-free
hypergraphs which do not contain cliques or independent sets of
size appreciably larger than one would normally expect.
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1. Introduction

One version of Ramsey’s theorem states that, for any s and t , there is a natural number n such
that, in any 2-colouring of the edges of the complete graph Kn , there is either a red Ks or a blue Kt .
The smallest number n for which this holds is the Ramsey number r(s, t). A classical result of Erdős
and Szekeres [14] implies that, for s � t , we have

r(s, t) �
(

s + t − 2

t − 1

)
� st−1.

Phrasing this differently, we see that every graph on n vertices which contains no copy of Kt must
have an independent set of size n1/(t−1) .

We call a graph H-free if it contains no induced copy of a given graph H . The famous conjecture of
Erdős and Hajnal [11] states that if a graph on n vertices is H-free then it must contain either a clique
or an independent set of size nδ(H) , where δ(H) > 0 depends only on the graph H . The observations
of the last paragraph imply that this conjecture is true when H is a complete graph. Suppose now
that we know the conjecture to be true for two graphs H1 and H2. Erdős and Hajnal showed that
the conjecture will then also hold for a graph H formed by connecting the vertices of H1 and H2 by
either a complete or an empty bipartite graph. This easily allows one to prove the conjecture for all
graphs with at most 4 vertices except P4, the path with 3 edges.

A more general result, due to Alon, Pach and Solymosi [2], says that if H1 and H2 have the Erdős–
Hajnal property then so does the graph H formed by blowing up a vertex of H1 and replacing it
with a copy of H2. The conjecture is also known for some graphs which do not fall naturally into
these inductively defined classes (but which may be added as base cases to widen the range of these
classes). For example, Erdős and Hajnal noted that since graphs with no induced P4 are perfect the
conjecture is true for P4. More recently, Chudnovsky and Safra [3] have shown that the conjecture
holds for the bull, a self-complementary graph on 5 vertices consisting of a triangle with two pendant
edges. The smallest cases that now remain open are the cycle C5 and the path P5.

For general H , Erdős and Hajnal proved that if a graph on n vertices is H-free then it must contain

a clique or an independent set of size ec(H)
√

logn . This is a significant improvement over the bound
of c logn which, by Ramsey’s theorem, holds in all graphs, but it is still quite far from the conjec-
ture. However, as observed in [12], their method does allow one to find complete or empty bipartite
subgraphs each side of which are of polynomial size. Recently, Fox and Sudakov [17] went one step
further by proving that there is either a complete bipartite graph or an independent set of polynomial
size. For further related results, see [1,4,15,16,27,29].

For 3-uniform hypergraphs, Erdős and Rado [13] proved that, in any 2-colouring of the edges of
the complete graph K (3)

n on n vertices, there is a monochromatic clique of size c log logn. Phrased
differently, this says that any 3-uniform hypergraph on n vertices contains either a clique or an in-
dependent set of size c log log n. Given the situation for graphs, it is tempting to conjecture that if a
3-uniform hypergraph on n vertices is H-free, for some given H, then there should be a clique or an
independent set of size much larger than log log n. We feel, but have been unable to prove, that for
general H this may be too much to expect.

However, at least for some excluded hypergraphs, an Erdős–Hajnal-type estimate does appear to
hold. Let r3(s, t) be the smallest number n such that, in any 2-colouring of the edges of K (3)

n , there
is a red K (3)

s or a blue K (3)
t . A recent result of the authors [6], improving on the work of Erdős and

Rado, implies that, for t fixed,

r3(s, t) � 2ct st−2 log s.

It follows that any 3-uniform hypergraph with n vertices which does not contain a copy of K (3)
t must

contain an independent set of size roughly (log n/ log log n)1/(t−2) .
Even this is only progress in a weak sense. It is not yet known whether log logn is the correct or-

der of magnitude for Ramsey’s theorem in 3-uniform hypergraphs. Indeed, this question has become
rather notorious, Erdős offering $500 dollars for its resolution. The best construction, given by a ran-
dom hypergraph, only tells us that there are hypergraphs on n vertices with no clique or independent



1144 D. Conlon et al. / Journal of Combinatorial Theory, Series B 102 (2012) 1142–1154
set of size c(log n)
1
2 . So we cannot say with certainty whether the estimate for K (3)

t -free graphs really
does improve on the general bound.

Given this state of affairs, we follow a different route, suggested by Rödl and Schacht [30], at-
tempting to extend the bipartite counterpart of the Erdős–Hajnal theorem to tripartite 3-uniform
hypergraphs. In any given 3-uniform hypergraph on n vertices, one may always find a complete or

empty tripartite subgraph with parts of order at least c(log n)
1
2 . This follows from a standard extremal

result due to Erdős [10]. We improve this result for H-free graphs.

Theorem 1.1. Let H be a 3-uniform hypergraph. Then there exists a constant δ(H) > 0 such that, for n suffi-
ciently large, any H-free 3-uniform hypergraph on n vertices contains a complete or empty tripartite subgraph

each part of which has order at least (log n)
1
2 +δ(H) .

This improves upon a result of Rödl and Schacht [30]. They used the regularity method for hyper-
graphs to show that the size of the largest complete or empty tripartite subgraph grows faster than

the function (log n)
1
2 by a factor tending to infinity. However, because their result depends upon the

regularity lemma, it does not provide good bounds on this factor.
Our result, on the other hand, is not far from best possible, since, for many H, one cannot do

better than c logn. To see this, consider the random graph on the vertex set {1,2, . . . ,n} where each
edge is chosen with probability 1

2 . For c sufficiently large, with high probability, this graph contains
no complete or empty bipartite graph with parts of order c logn. Fix such a graph and call it Gn . Let
Gn be the 3-uniform hypergraph on the same vertex set whose edge set consists of all those triples
(i1, i2, i3) with i1 < i2 < i3 such that (i1, i2) is an edge in Gn .

It is easy to see that Gn contains no complete or empty tripartite subgraph with sets of size c logn.
Suppose otherwise and let U , V and W be subsets of size c logn which define such a tripartite
graph. Without loss of generality, assume that the largest vertex w , in the ordering inherited from
the integers, lies in W . Then, by construction, there must be a complete or empty bipartite subgraph
in Gn between U and V , a contradiction. Now, for any subset X of the vertices of Gn , let x1 and
x2 be the two smallest vertices in X . Then, again by construction, for every x ∈ X\{x1, x2}, either all
edges of the form (x1, x2, x) are in Gn or none of them are. Choose a small hypergraph H containing
no vertex pair (x1, x2) with this property. For example, one may take H to be a tight cycle on five
vertices, that is, with vertices {1,2,3,4,5} and edge set {123,234,345,451,512}. Then Gn is H-free.
Since it also contains no tripartite subgraph of size c logn, this completes our claim.

The proof of Theorem 1.1 relies upon a new embedding lemma which says that if the edges of
G are fairly well-distributed, in the sense that in any graph containing many triangles a positive
proportion of these triangles form edges both of G and of its complement G , then one may embed an
induced copy of any particular small hypergraph H. If the hypergraph is not well-distributed in the
sense described above, then it turns out that it must contain a complete or empty tripartite subgraph
which is much larger than one would normally expect.

Despite this description being a reasonable one for any uniformity, the proof does not extend to
the k-uniform case for any k � 4. We will say more about this in the concluding remarks. For now,
we will return to considering the analogue of the usual Erdős–Hajnal problem in hypergraphs. That
is, given an H-free k-uniform hypergraph, how large of a clique or independent set must it contain?

Let rk(�) be the diagonal Ramsey function, that is, the minimum n such that in any 2-colouring
of the edges of K (k)

n there is a monochromatic copy of K (k)
� . The tower function tk(x) is defined by

t1(x) = x and ti+1(x) = 2ti(x) . A result of Erdős and Rado [13] states that rk(�) � 2(
rk−1(�−1)

k−1 )+1. For
k � 4, this implies that

rk(�) � tk−2
((

r3(ck�)
)3)

.

On the other hand, a result of Erdős and Hajnal (see [9,23]), referred to as the stepping-up lemma,
allows one, for k � 4, to take a colouring of the (k − 1)-uniform hypergraph on n vertices containing
no monochromatic cliques of size � and to show that there is a colouring of the k-uniform hypergraph
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on 2n vertices containing no monochromatic clique of size 2� + k − 5. In particular, this can be used
to show that, for � sufficiently large,

rk(�) � tk−2
(
r3

(
c′

k�
))

.

Therefore, once the asymptotic behaviour of r3(�) is understood, so is that of rk(�). To be more precise,
let r−1

k be the inverse function of rk . Restating the results quoted above and using the fact that r3(�)

is at least exponential in � tells us that, for k � 3 and n sufficiently large depending on k, r−1
k (n) has

upper and lower bounds of the form

a′
kr−1

3 (log(k−3) n) � r−1
k (n) � akr−1

3 (log(k−3) n),

where log(0)(x) = x and, for i � 1, log(i)(x) = log(log(i−1)(x)) is the iterated logarithm.
For an Erdős–Hajnal-type theorem to hold, we would therefore need that whenever a hypergraph

on n vertices is H-free there is a clique or independent set of size much larger than r−1
3 (log(k−3) n).

We will disprove this by showing that there are already simple examples of hypergraphs H which
are not contained in step-up colourings. This implies the following theorem.

Theorem 1.2. For k � 4, there exists a constant ck, a k-uniform hypergraph H and a sequence Gn of H-free
k-uniform hypergraphs with n vertices such that the size of the largest clique or independent set in Gn is at
most ckr−1

k (n).

In the next two sections, we will prove Theorem 1.1. In Section 4, we will study properties of
stepping-up lemmas in order to prove Theorem 1.2. We conclude with several remarks in Section 5.
Throughout the paper, we systematically omit floor and ceiling signs whenever they are not crucial for
the sake of clarity of presentation. We also do not make any serious attempt to optimise absolute con-
stants in our statements and proofs. All logarithms, unless otherwise stated, are taken to the base e.
As is quite customary in Ramsey theory, our approach to the problems in this paper is asymptotic in
nature. We thus assume that the underlying parameter (normally the order of the graph/hypergraph)
is sufficiently large whenever necessary.

2. The embedding lemma

The edge density d(X, Y ) between two disjoint vertex subsets X , Y of a graph G is the fraction of
pairs (x, y) ∈ X × Y that are edges of G . That is, d(X, Y ) = e(X,Y )

|X ||Y | , where e(X, Y ) is the number of
edges with one endpoint in X and the other in Y .

Definition. A graph G on n vertices is said to be bi-(ε,ρ)-dense if, for all X and Y with X ∩ Y = ∅
and |X |, |Y | � εn, the density of edges d(X, Y ) between X and Y satisfies d(X, Y ) � ρ .

This definition, introduced by Graham, Rödl and Ruciński [21], has proved very useful in Ramsey
theory (see, for example, [5,7,18,22,32]). The reason for this is that there is an embedding lemma
which says that for any given H and ρ there exists an ε such that if G is a sufficiently large bi-
(ε,ρ)-dense graph then G contains a copy of H . More generally, if both G and its complement G
are bi-(ε,ρ)-dense, for ε sufficiently small, then G will contain an induced copy of H . Moreover, the
dependency of ε on ρ is polynomial, that is, ε = ρc(H) (up to a constant factor, which we ignore for
convenience). To see why this is helpful, by taking ρ = n−1/2c(H) , we have that if G and G are both
bi-(n−1/2,ρ)-dense, then there is an induced copy of H in G . Suppose, on the other hand, that either
G or G is not bi-(n−1/2,ρ)-dense. Without loss of generality, we may assume that G is the bad graph.
This implies that there are two disjoint subsets X and Y with |X |, |Y | � n1/2 and density less than
ρ in G . In the complement G , this says that the density between X and Y is at least 1 − ρ . By the
choice of ρ , this in turn implies that there is an empty bipartite graph with parts each of polynomial
size.
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We would like to imitate this argument for 3-uniform hypergraphs. There are several steps. Firstly,
we need to find the correct notion of tri-density. We then need to show that this yields an appropriate
embedding lemma. Finally, we need to show that if a hypergraph is not tri-dense, then it contains a
large empty tripartite subgraph. We will deal with the first two of these in this section.

Roughly speaking, a graph is bi-dense if, between any two large vertex sets, there are many edges.
It is tempting to define tri-density in a similar fashion, by saying that between any three large vertex
sets there should be many edges. Unfortunately, there are examples of 3-uniform hypergraphs which
are tri-dense in this sense but do not contain any copies of K (3)

4 or even K (3)
4 with one edge removed

(see, for example, [25]). Instead, it is necessary to define tri-density with respect to edge sets. This is
similar to the sort of quasirandomness which arises in the study of hypergraph regularity [19,20,26,
28,31]. Formally, we have the following definition.

Definition. A 3-uniform hypergraph G on n vertices is said to be tri-(ε,ρ)-dense if for any three
disjoint vertex subsets V 1, V 2 and V 3 and any triple of bipartite graphs G12, G23 and G31, with Gij

between V i and V j , for which there are at least εn3 triangles with one edge in each of the Gij , a
ρ-proportion of these triangles form edges in G .

We now prove an embedding lemma to complement this definition. We will need a notion of
bi-density defined for bipartite graphs.

Definition. A bipartite graph G between sets U and V is said to be bi-(ε,ρ)-dense if, for all X and
Y with X ⊆ U , Y ⊆ V and |X | � ε|U |, |Y | � ε|V |, the density of edges d(X, Y ) between X and Y
satisfies d(X, Y ) � ρ .

Lemma 2.1. Let H be a complete 3-uniform hypergraph on t � 3 vertices v1, . . . , vt , where each edge has been
assigned a colour from the set {1,2, . . . , �}, and let ρ > 0 be a positive constant. Let ε = (2t)−10ρ3t2

. Then, if

G is an �-coloured 3-uniform hypergraph on n � (2t)10ρ−3t2
vertices which is tri-(ε,ρ)-dense in each of the

� colours, G contains a copy of H.

Proof. Let the vertices of H be v1, v2, . . . , vt and let χ :
(V (H)

3

) → {1,2, . . . , �} be the colouring of the
edges of H. Split the vertex set V (G) into t vertex sets U1, . . . , Ut each of size n/t . We will embed
the graph H one vertex at a time, embedding vi into f (vi) ∈ Ui . We will prove by induction on i
that when vertices v1, v2, . . . , vi have been embedded, there are vertex sets U i

j , for j > i, and graphs

Gi
jk , for i < j < k � t , such that the following conditions hold.

1. |U i
j | � cin with ci = 1

t ρ
i2/2;

2. Gi
jk is a bipartite graph between U i

j and U i
k which is bi-(εi,ρ

i)-dense with εi = 1
2t2 ρt2−i2/2;

3. for every h � i, every edge in Gi
jk forms an edge of G of colour χ(h, j,k) with f (vh) and, for all

h1 < h2 � i, every vertex in U i
j forms an edge of G of colour χ(h1,h2, j) with f (vh1 ) and f (vh2 ).

For i = 0, we let U 0
j = U j and G0

jk be the complete graph between U j and Uk . The three conditions
then hold trivially. Suppose, therefore, that we have embedded vertices v1, v2, . . . , vi while maintain-
ing conditions 1, 2 and 3 and that we now wish to embed vi+1.

Let W i+1 be the set of vertices in U i
i+1 such that the neighbourhood U i

j(w) of w in the graph

Gi
i+1, j , for each i + 2 � j � t , has size at least ρ i |U i

j |. By the bi-(εi,ρ
i)-density condition on Gi

i+1, j ,

there are at most εi |U i
i+1| � εin vertices in U i

i+1 with fewer than ρ i |U i
j | neighbours in U i

j . Adding
over all i + 2 � j � t , we have, since ci � 2tεi , that

|W i+1| �
∣∣U i

i+1

∣∣ − tεin � ci n.

2
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Given a vertex w ∈ W i+1 and i + 2 � j < k � t , let H jk(w) be the subgraph of Gi
jk between

U i
j(w) and U i

k(w) consisting of those edges xy with χ(w, x, y) = χ(i + 1, j,k). Let W i+1
jk be the

set of vertices w ∈ W i+1 such that the graph H jk(w) is not bi-(εi+1,ρ
i+1)-dense between U i

j(w) and

U i
k(w). Note that for any w ∈ W i+1

jk there exist subsets Y j(w) ⊆ U i
j(w) and Yk(w) ⊆ U i

k(w) such that

|Y j(w)| � εi+1|U i
j(w)|, |Yk(w)| � εi+1|U i

k(w)| and the density of H jk(w) between them is less than

ρ i+1.
Let J i+1, j be the graph between W i+1

jk and U i
j connecting w to Y j(w) and let J i+1,k be defined

similarly. Note that

∣∣Y j(w)
∣∣ � εi+1

∣∣U i
j(w)

∣∣ � εi+1ρ
i
∣∣U i

j

∣∣ � εi
∣∣U i

j

∣∣ (1)

and, similarly, |Yk(w)| � εi |U i
k|. Since the graph Gi

jk is bi-(εi,ρ
i)-dense between U i

j and U i
k , the

tripartite graph between W i+1
jk , U i

j and U i
k where the subgraphs are J i+1, j , J i+1,k and Gi

jk has at

least ρ i ∑
w∈W i+1

jk
|Y j(w)||Yk(w)| triangles. If |W i+1

jk | � |W i+1|
2t2 � ci

4t2 n, by (1), this is at least

ρ iε2
i

∣∣W i+1
jk

∣∣∣∣U i
j

∣∣∣∣U i
k

∣∣ � ρ iε2
i c2

i

∣∣W i+1
jk

∣∣n2 �
ρ iε2

i c3
i

4t2
n3 � εn3

triangles. Therefore, by the definition of tri-density, at least a ρ-proportion of these triangles, that is,
at least ρ i+1 ∑

w∈W i+1
jk

|Y j(w)||Yk(w)| triangles will be in the colour χ(i + 1, j,k).

On the other hand, the number of 3-uniform edges in colour χ(i + 1, j,k) which contain w
and have one edge in each of J i+1, j , J i+1,k and Gi

jk is the number of edges in H jk(w) between

Y j(w) and Yk(w). By definition of Y j(w) and Yk(w), this is less than ρ i+1|Y j(w)||Yk(w)|. Therefore,
the total number of 3-uniform edges with colour χ(i + 1, j,k) in the tripartite graph is less than
ρ i+1 ∑

w∈W i+1
jk

|Y j(w)||Yk(w)|. This is a contradiction. We must therefore have that |W i+1
jk | < |W i+1|

2t2 .

Note therefore that the number of vertices w in W i+1 which are not in W i+1
jk for any i + 2 �

j < k � t is at least |W i+1| −
(t−i−1

2

) |W i+1|
2t2 � |W i+1|

2 � ci
4 n. Let f (vi+1) = wi+1 be any vertex from this

set. For i + 2 � j � t , let U i+1
j = U i

j(wi+1) and, for i + 2 � j < k � t , let Gi+1
jk = H jk(wi+1). Note that

|U i+1
j | � ρ i |U i

j | � ρ icin � ci+1n and Gi+1
jk is bi-(εi+1,ρ

i+1)-dense between U i+1
j and U i+1

k .

Finally, by definition, for every edge xy in Gi+1
jk = H jk(wi+1), χ(wi+1, x, y) = χ(i + 1, j,k) and,

for every h � i and every x ∈ U i+1
j , χ( f (vh), wi+1, x) = χ(h, i + 1, j). Therefore, all 3 conditions are

satisfied and the result follows by induction. �
The particular case where � = 2 implies that for any given H and ρ there is a constant ε , polyno-

mial in ρ , such that if G and its complement G are tri-(ε,ρ)-dense then G contains an induced copy
of H. This is all we will require to prove Theorem 1.1.

3. A tripartite Erdős–Hajnal theorem

The problem of Zarankiewicz [33] asks for the maximum number z(m,n; s, t) of edges in a bipar-
tite graph G which has m vertices in the first class, n vertices in the second and does not contain a
complete bipartite subgraph Ks,t with s vertices in the first class and t in the second. In their cele-
brated paper, Kővári, Sós and Turán [24] used double counting together with the pigeonhole principle
to give a general upper bound on z(m,n; s, t). Using this technique, we obtain the following simple
lemmas which we will need to analyse 3-uniform hypergraphs which are not tri-dense. The degree
d(v) of a vertex v is the number of vertices adjacent to v .
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Lemma 3.1. Let G be a bipartite graph with parts A and B and at least ε|A||B| edges and suppose that s3/2 �
ε
2 |A|. Then G contains a complete bipartite subgraph Ks,t with s vertices from A and t = e−s1/2

εs|B| vertices
from B.

Proof. The number of pairs (U , v) with U being a subset of A of size s and v being a vertex in B
adjacent to every vertex of U is at least

∑
v∈B

(
d(v)

s

)
� |B|

(
ε|A|

s

)
� |B| (ε|A|)s

s! e−s1/2
,

where the inequalities follow from the convexity of f (x) = (x
s

)
and the fact that, for s3/2 � ε

2 |A| and
x = ε|A|,

x(x − 1) · · · (x − s + 1) � xs
s−1∏
i=1

(
1 − i

x

)
� xse−2

∑s−1
i=1

i
x � xse−s2/x � xse−s1/2

.

Here we used that 1 − z � e−2z for 0 � z � 1
2 . If G does not contain Ks,t then we know that every

subset of A of size s has at most t − 1 common neighbours. Therefore,

e−s1/2 |B| (ε|A|)s

s! � (t − 1)

(|A|
s

)
< t

|A|s

s! = e−s1/2 |B| (ε|A|)s

s! ,

a contradiction. �
Lemma 3.2. Let G be a bipartite graph with parts A and B and at least ε|A||B| edges. Then G contains a
complete bipartite subgraph Ks,t with s = ε|A| vertices from A and t = 2−|A||B| vertices from B.

Proof. By the convexity of the function f (x) = (x
s

)
and the fact that the average degree of A is at

least s, we conclude that the number of pairs (U , v) with U a subset of A of size s and v a vertex in
B connected to every element of U is at least

∑
v∈B

(
d(v)

s

)
� |B|

( 1
|B|

∑
v∈B d(v)

s

)
� |B|.

Since A has at most 2|A| subsets, the pigeonhole principle implies that for some U ⊂ A of size s there
are at least t = 2−|A||B| elements of B which are connected to every element of U . This yields the
required copy of Ks,t . �

The following lemma, which we believe to be of independent interest, says that if a graph G
contains many triangles, a 3-uniform hypergraph G whose edges form a dense subset of the set
of triangles in G contains a larger copy of K (3)

s,s,s than one could normally expect in a 3-uniform
hypergraph of the same density. We note that a similar result was obtained independently in [30].

Lemma 3.3. Suppose that V 1, V 2 and V 3 are disjoint vertex sets of size at most n and, for 1 � i < j � 3, there
is a bipartite graph Gij between V i and V j . Suppose that there are at least δn3 triangles in this tripartite graph.
Suppose further that G is a 3-uniform hypergraph which contains a (1 − η)-proportion of the triangles in the
tripartite graph, where 0 < η � 1

8 . Then G contains a copy of K (3)
s,s,s , provided that

e210δ−2s3/2
(1 − 4η)−4s2

(
16

δ

)4s

� n.

Proof. We suppose without loss of generality that |V 1| = |V 2| = |V 3| = n. Indeed, we can otherwise
add isolated vertices to make each part have size n, and the hypothesis and conclusion of the lemma
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are not affected. For every edge e in G12, let �e be the number of triangles containing e. We will say
a particular edge e is good if the number of edges of G containing e is at least a (1 − 2η)-proportion
of the total number of triangles containing e. Otherwise, we say an edge is bad. Note that∑

e good

�e +
∑
e bad

(1 − 2η)�e � (1 − η)�,

where � is the total number of triangles in the graph. Therefore, since
∑

e �e = �,

∑
e bad

�e � 1

2
�,

that is, at least half the triangles in the tripartite graph contain a good edge. Since there are at least
δn3 triangles in the tripartite graph, this tells us that there are at least δ

2 n3 triangles containing good
edges. Calling the set of good edges G ′

12, we see that G ′
12 has at least δ

2 n2 edges.
Let H12 be the subgraph of G ′

12 consisting of edges which are contained in at least δ
4 n triangles

from the tripartite graph. Then H12 has at least δ
4 n2 edges. Otherwise, there would be fewer than

δ
4 n · n2 + δ

4 n2 · n = δ
2 n3 triangles containing good edges, which would be a contradiction. Let s1 =

δ
16 log n and t2 = n

1
4 . Then, since s3/2

1 � δ
8 n and

e−s1/2
1

(
δ

4

)s1

n � e− 1
4 log nn− δ

16 log(4/δ)n � n− 1
4 n− 1

4 n � n
1
4 = t2,

we may apply Lemma 3.1 to the graph H12 to find a set S1 of size s1 in V 1 the elements of which
have at least t2 common neighbours in V 2. Call this set of neighbours T2.

We will now restrict our attention to the tripartite graph between the vertex sets S1, T2 and V 3.
By the choice of H12, there are at least δ

4 |S1||T2||V 3| triangles in this graph. Moreover, since each of
the edges between S1 and T2 is good, at least a (1 − 2η)-proportion of these triangles are triples in
the hypergraph G .

We may now repeat the same process within this new tripartite graph. We say that an edge of
the graph between S1 and V 3 is good if, within the new graph, the number of triples in G containing
e is a (1 − 4η)-proportion of the total number of triangles containing e. Then, by the same argument
as before, at least half the triangles in the new tripartite graph contain good edges. If we let G ′

13
be the set of good edges, we see that this set has at least δ

8 |S1||V 3| edges. Moreover, letting H13 be
the subgraph of G ′

13 consisting of edges which are contained in at least δ
16 |T2| triangles from the

tripartite graph, we see that H13 contains at least δ
16 |S1||V 3| edges. Let s2 = ( δ

16 )2 logn and t3 = n
1
4 .

Since s2 = δ
16 s1 and 2−s1n � t3, we may apply Lemma 3.2 to the graph H13 to find a set S2 of size s2

in S1 the elements of which have at least t3 common neighbours in V 3. Call this set of neighbours
T3.

We now have a tripartite graph between sets S2, T2 and T3 such that the graphs between S2
and T2 and S2 and T3 are complete. Moreover, the graph contains at least δ

16 |S2||T2||T3| triangles, a
(1 − 4η)-proportion of which are triples in the hypergraph G .

Consider the induced subgraph of G23 between T2 and T3. Let the set of edges in this graph be
E23. Note that this graph has density at least δ

16 . We consider the bipartite graph K between S2 and
E23, where v and e are connected if together they span a triple in G . Since a (1 − 4η)-proportion
of the triangles between S2, T2 and T3 are triples, the graph K must have at least (1 − 4η)|S2||E23|
edges. Note that, since

e210δ−2s3/2 � n,

we have s3/2 � 1
4 ( δ

16 )2 log n � 1
2 (1 − 4η)s2. Therefore, an application of Lemma 3.1 implies that there

is a set S of s vertices in S2 which are connected to e−s1/2
(1 − 4η)s|E23| edges in E23. This yields a

subgraph H23 of G23 between T2 and T3 of density at least ε0 = e−s1/2
(1 − 4η)s δ

16 such that every
vertex in S is connected to every edge in H23.
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Note that

s3/2es1/2
ε−s

0 � e3s3/2
(1 − 4η)−s2

(
16

δ

)s

� n
1
4 .

Therefore, s3/2 � ε0
2 t2 and e−s1/2

εs
0t3 � s. Applying Lemma 3.1 to the graph H23 yields a complete

subgraph between two subsets S ′ and S ′′ , each of size s, of V 2 and V 3. The 3-uniform hypergraph
between S , S ′ and S ′′ is the required K (3)

s,s,s . �
We are now ready to put Lemmas 2.1 and 3.3 together to prove Theorem 1.1 in the following

precise form.

Theorem 3.1. Let H be a fixed 3-uniform hypergraph with t vertices. Then any H-free 3-uniform hypergraph
on n vertices with n sufficiently large contains a complete or empty tripartite subgraph each part of which has

order at least (log n)
1
2 +δ(H) , where δ(H) = 1/(55t2).

Proof. Let G be a 3-uniform hypergraph on n vertices. Let ρ = (log n)−1/(27t2) and ε = (2t)−10ρ3t2 =
Ω((log n)− 1

9 ). If both the hypergraph G and its complement G are tri-(ε,ρ)-dense, then we may
apply Lemma 2.1 to conclude that G contains an induced copy of H.

We may therefore assume that either G or its complement is not tri-(ε,ρ)-dense. Without loss of
generality, we will assume that G is not tri-(ε,ρ)-dense, that is, that there exist three disjoint vertex
sets V 1, V 2 and V 3 and bipartite graphs G12, G23 and G31, with Gij between V i and V j , such that
the number of triangles with one edge in each of the Gij is at least εn3 but the number of triples
of G contained within these triangles is less than a ρ-fraction of the number of triangles. Taking the
complement, we see that at least a (1 − ρ)-fraction of the triangles are edges of G .

Let s = (log n)
1
2 +δ(H) , where δ(H) = 1/(55t2). Note that, since ρ � 1

8 and 1 − z � e−2z for 0 �
z � 1

2 ,

e210ε−2s3/2
(1 − 4ρ)−4s2

(
16

ε

)4s

� e210ε−2s3/2
e32ρs2

e64s/ε . (2)

This expression has three terms, which we consider in turn. The exponent of the first is

210ε−2s3/2 = O
(
(logn)2· 1

9 + 3
2 ·( 1

2 +1/(55t2))
) = o(log n).

The exponent of the second term is

32ρs2 = O
(
(logn)

− 1
27t2 +2( 1

2 +1/(55t2))) = o(logn).

The exponent of the third term is

64s

ε
= O

(
(logn)

1
2 +1/(55t2)+ 1

9
) = o(logn).

Hence, as n is sufficiently large, overall the expression in (2) is no(1) � n. Since the number of triangles
with one vertex in each of the parts V 1, V 2, V 3 is at least εn3, and each of the parts has order at
most n, an application of Lemma 3.3 with η = ρ and δ = ε tells us that the graph contains a copy of

K (3)
s,s,s with s = (log n)

1
2 +δ(H) , where δ(H) = 1/(55t2). �

Erdős and Hajnal [11] also considered the case where the edges of a complete graph Kn have been
�-coloured and some fixed coloured subgraph H is banned. It is now too much to hope that there
might be a large clique in one particular colour. Instead, the natural object to look for is a large clique
which avoids one particular colour. In this case, Erdős and Hajnal showed that there is a clique of

size ec
√

logn , where c depends only on H and �. Moreover, their methods also allow one to find a
bipartite graph with polynomial sized parts which avoids a particular colour. The following 3-uniform
analogue has essentially the same proof as Theorem 3.1. We omit the details.
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Theorem 3.2. Let H be a complete 3-uniform hypergraph such that each edge has been assigned a colour from
the set {1,2, . . . , �}. Then there exists a constant δ(H) > 0 such that, for n sufficiently large, any �-coloured
3-uniform hypergraph on n vertices which does not contain a coloured copy of H must contain a complete

tripartite subgraph which avoids a particular colour class such that each part has order at least (log n)
1
2 +δ(H) .

4. Some properties of step-up colourings

In order to show that step-up colourings do not contain certain subgraphs, we must first know
what these colourings look like. Assume, therefore, that the edges of the k-uniform hypergraph K (k)

n
have been red/blue-coloured. Let

T = {
(γ1, . . . , γn): γi = 0 or 1

}
.

If ε = (γ1, . . . , γn), ε′ = (γ ′
1, . . . , γ

′
n) and ε 
= ε′ , define

δ
(
ε, ε′) = max

{
i: γi 
= γ ′

i

}
,

that is, δ(ε, ε′) is the largest coordinate at which they differ. Given this, we can define an ordering
on T , saying that

ε < ε′ if γi = 0, γ ′
i = 1, ε′ < ε if γi = 1, γ ′

i = 0,

where i = δ(ε, ε′). Equivalently, associate to any ε the number b(ε) = ∑n
i=1 γi2i−1. The ordering then

says simply that ε < ε′ if and only if b(ε) < b(ε′).
We colour the complete (k + 1)-uniform hypergraph on the set T as follows. If ε1 < · · · < εk+1, for

1 � i � k, let δi = δ(εi, εi+1). A fundamental property of step-up colourings is that δi is different from
δi+1.

If δ1, . . . , δk form a monotone sequence (increasing or decreasing), then let the colour of
{ε1, . . . , εk+1} be given by the colour of {δ1, . . . , δk}.

If δ1, . . . , δk is not monotone, it must contain a local maximum or local minimum, that is, an i for
which δi−1 < δi > δi+1 or δi−1 > δi < δi+1 respectively. Let δ j be the first such local extremum, that is,
the one with the smallest subscript. We colour {ε1, . . . , εk+1} blue or red, respectively, depending on
whether the sequence δ1, . . . , δk has a local maximum or minimum at δ j .

This colouring is exactly that used by Erdős and Hajnal to prove their stepping-up lemma. We will
refer to such a colouring as a step-up colouring. In order to prove Theorem 1.2, we will show that
there are certain 2-coloured hypergraphs H which do not occur within step-up colourings.

Lemma 4.1. For k � 3, there is a fixed 2-coloured complete (k + 1)-uniform hypergraph H which never occurs
within a step-up colouring T .

Proof. We will in fact show that for every h � k + 5 there is a 2-coloured complete (k + 1)-uniform
hypergraph on h vertices which never occurs within a step-up colouring. We accomplish this by a
simple counting argument which shows that the number of colourings on h vertices which occur
within a step-up colouring is considerably less than the total number of colourings on h vertices. We
first bound the number of colourings on h vertices which occur within a step-up colouring.

A total preorder � is a binary relation that is transitive (i.e., for all x, y, and z, if x � y and y � z,
then x � z) and total (i.e., for all x and y, x � y or y � x). For example, the elements of a sequence
of integers has the total preorder �. In particular, we can associate to each sequence δ1, . . . , δh−1 its
total preorder �. The ordered Bell number Hn is the number of total preorders on a sequence of
n elements, and also counts the number of ordered partitions of the set [n] := {1, . . . ,n}. For each
ordered partition P : [n] = I1 ∪ · · · ∪ It , consider the mapping f P : [n] → [n] defined by, for i ∈ I j ,
f P (i) = j. This gives an injective mapping from the set of ordered partitions of [n] to the set of
mappings from [n] to [n]. Hence, Hn � nn .
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For a sequence ε1 < · · · < εh , a useful property is that, for 1 � i < j � h, we have

δi, j := δ(εi, ε j) = max
i�l� j−1

δl, (3)

where δl = δ(εl, εl+1). In particular, the
(h

2

)
integers δi, j are completely determined by the h − 1

integers δi .
We claim that the colours of the (k + 1)-tuples of ε1, . . . , εh in a step-up colouring are completely

determined by the colours of the k-tuples of δ1, . . . , δh−1 and the total preorder � on these numbers.
In particular, the colouring of the (k + 1)-tuples does not depend on the δs, but only on the colouring
of the edges between them and their order. To verify this claim, consider an edge e = (εi1 , . . . , εik+1 )

with εi1 < · · · < εik+1 . For 1 � i � k, consider the associated k-tuple d = (δit ,it+1)
k
t=1, where the terms of

this sequence are defined in (3). If the sequence d is not monotone, then the colour of e is determined
by whether or not the first local extrema of d is a maxima or minima. This is determined by the order
of the elements of d, and it follows from (3) that this is determined by the total preorder � on the
h−1 numbers δi . Otherwise, d is monotone, and the colour of e is the colour of d, which only depends
on the colouring of the k-tuples.

The number of 2-colourings of the k-tuples of a set of size h − 1 is 2(h−1
k ) . Hence, the number of 2-

coloured complete (k + 1)-uniform hypergraphs on h vertices which occur within a step-up colouring

is at most Hh−12(h−1
k ) � (h − 1)h−12(h−1

k ) := A.
The number of 2-edge-coloured complete (k + 1)-uniform hypergraphs on h labelled vertices is

2( h
k+1) , and hence the number of distinct (up to isomorphism) 2-edge-coloured complete (k + 1)-

uniform hypergraphs on h vertices is at least 1
h! 2

( h
k+1) := B . As for h � k + 5, we have

A/B = h!(h − 1)h−12−( h−k−1
k+1 )(h−1

k ) < 1,

there is a 2-coloured complete (k + 1)-uniform hypergraph on h vertices which does not appear in a
step-up colouring. �

One can deduce Theorem 1.2 from Lemma 4.1 as follows. Start with a 2-edge-colouring of the
complete (k − 1)-uniform hypergraph on n vertices whose largest monochromatic clique is of order
O (r−1

k−1(n)). Apply the stepping-up construction described above. By the Erdős–Hajnal result men-
tioned in the introduction, this gives a 2-edge-colouring of the complete k-uniform hypergraph on
N = 2n vertices whose largest monochromatic clique is still of order O (r−1

k−1(n)) = O (r−1
k (N)). On, the

other hand by Lemma 4.1, this colouring does not contain a fixed 2-coloured complete k-uniform
hypergraph H.

5. Concluding remarks

A simple extension of the example given after Theorem 1.1 allows one to show that there are k-
uniform hypergraphs H and H-free hypergraphs G on n vertices within which the largest complete
or empty k-partite subgraph, with all parts of the same order, is of order at most c(log n)1/(k−2) .
Indeed, this can be established by considering a random (k − 1)-uniform hypergraph G0 on the vertex
set {1, . . . ,n}, and forming a k-uniform hypergraph G on the same vertex set whose edges are all
k-tuples (i1, . . . , ik) with i1 < · · · < ik such that (i1, . . . , ik−1) is an edge of G0. On the other hand,
a standard density argument shows that any hypergraph on n vertices must contain a complete or
empty k-partite subgraph with parts of order c(log n)1/(k−1) . We make the following conjecture.

Conjecture 1. Let H be a k-uniform hypergraph, where k � 3. Then any H-free k-uniform hypergraph
on n vertices contains a complete or empty k-partite subgraph each part of which has order at least
(log n)1/(k−2)−o(1) .

It is possible to show that the notion of tri-density and the embedding lemma, Lemma 2.1, both
extend to the k-uniform case. Indeed, if one is not particularly concerned with bounds, an application
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of hypergraph regularity and counting immediately allows one to prove such an embedding lemma.
The real stumbling block in extending our result to the k-uniform case is Lemma 3.3, which does
not seem to generalise easily. Understanding and resolving this difficulty could also be useful in ex-
tending the results of [8], on finding almost monochromatic subsets within colourings of K (3)

n , to the
k-uniform case.

Another direction which one could take would be to consider random H-free hypergraphs. In
a recent paper, Loebl, Reed, Scott, Thomason and Thomassé [27] showed that almost every H-free
graph on n vertices contains a clique or independent set of size nδ(H) . Perhaps this result could be
extended to hypergraphs in some interesting fashion.

Finally, it would be of great interest to show that Theorem 1.2 also holds for 3-uniform hyper-
graphs. It seems likely that in order to do this one must first resolve the central Ramsey problem for
3-uniform hypergraphs. That is, one would need to show that there are 2-colourings of the edges of
K (3)

n which contain no cliques or independent sets of size c log logn. Such a colouring, if it does exist,
is likely to avoid some class of subgraphs.
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[18] J. Fox, B. Sudakov, Two remarks on the Burr–Erdős conjecture, European J. Combin. 30 (2009) 1630–1645.
[19] W.T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006)

143–184.
[20] W.T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. 166 (2007) 897–946.
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Irregular Mind, Szemerédi is 70, Bolyai Soc. Math. Stud. 21 (2010) 405–414.
[28] B. Nagle, V. Rödl, M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms 28

(2006) 113–179.
[29] H. Prömel, V. Rödl, Non-Ramsey graphs are c logn-universal, J. Combin. Theory Ser. A 88 (1999) 379–384.



1154 D. Conlon et al. / Journal of Combinatorial Theory, Series B 102 (2012) 1142–1154
[30] V. Rödl, M. Schacht, Complete partite subgraphs in dense hypergraphs, Random Structures Algorithms, in press.
[31] V. Rödl, J. Skokan, Regularity lemma for uniform hypergraphs, Random Structures Algorithms 25 (2004) 1–42.
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