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Extremal combinatorics

Typical problem:

Determine or estimate the maximum or minimum possible size of a
collection of finite objects (e.g., graphs, sets, vectors, numbers)
satisfying certain restrictions.

Modern tools:

Combinatorial techniques (e.g. Regularity lemma)

Probabilistic arguments

Algebraic tools

Harmonic Analysis

Topological methods
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Ramsey theory

General philosophy:

Every large system contains a large well organized subsystem.

T. Motzkin: “Complete disorder is impossible!”

Examples and applications:

Combinatorics and graph theory

Functional analysis

Number theory
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Ramsey numbers

Definition:

The Ramsey number rk(s, n) is the minimum N such that every
red-blue coloring of the k-tuples of an N-element set contains a
red set of size s or a blue set of size n.

Example: r2(3, 3) = 6

Theorem: (Ramsey 1930)

For all k , s, n, the Ramsey number rk(s, n) is
finite.
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Graphs (k = 2)

Diagonal Case: s = n

Theorem: ( Erdős 1947, Erdős-Szekeres 1935)

2n/2 ≤ r2(n, n) ≤ 22n.

Upper bound: Induction: r2(s, n) ≤ r2(s − 1, n) + r2(s, n − 1).
Every vertex has less than r2(s − 1, n) red neighbors and less than
r2(s, n − 1) blue neighbors.

Lower bound: Color every edge randomly. Probability that a

given set of n vertices forms a monochromatic clique is 2 · 2−(n
2).

Use the union bound.
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Graphs (k = 2)

Diagonal Case: s = n

Theorem: ( Erdős 1947, Erdős-Szekeres 1935)

2n/2 ≤ r2(n, n) ≤ 22n.

Off-Diagonal Case:

Theorem: (Ajtai-Komlós-Szemerédi 80, Spencer 77, Kim 95)

r2(3, n) = Θ
(

n2

log n

)
.

For s ≥ 4, Ω̃
(
n

s+1
2

)
≤ r2(s, n) ≤ Õ

(
ns−1

)
.



Hypergraphs (k ≥ 3), diagonal case

Theorem: (Erdős-Rado 1952, Erdős-Hajnal 1960s)

2cn2 ≤ r3(n, n) ≤ 22c′n
.

Remarks:

There is a similar gap of one exponential between the upper
and the lower bound for rk(n, n) for k > 3. These bounds are
towers of exponentials of height k and k − 1 respectively.

The k = 3 case is crucial. Determining the behavior of
r3(n, n) will close the gap for all k as well.

Conjecture: (Erdős)

The Ramsey number r3(n, n) ≥ 22cn
, for some constant c > 0.
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Many colors

Erdős-Hajnal: For 4 colors, r3(n, n, n, n) is doubly-exponential.

Question:

What about the 3-color Ramsey number r3(n, n, n)?

Theorem 1 (Conlon-Fox-S. 2010)

r3(n, n, n) ≥ 2nc log n
.
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On-line Ramsey game

Game:

Two players, builder and painter.

At step i a new vertex vi is added. For every existing vertex
vj , j < i , builder decides whether to draw the edge (vj , vi ).

If the edge (vj , vi ) was exposed, painter has to color it red or
blue immediately.

Definition:

The vertex on-line Ramsey number r̃(k , `) is the minimum number
of edges that builder has to draw in order to force painter to create
a red k-clique or a blue `-clique.

Theorem: (Conlon-Fox-S. 2010)

r3(s, n) ≤ 2O(r̃(s−1,n−1)) .
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Off-diagonal case (k = 3)

Theorem: (Conlon-Fox-S. 2010)

For small s and large n

2c ′sn log n ≤ r3(s, n) ≤ 2cns−2 log n .

Remarks:

The upper bound uses the online Ramsey game and improves
by a factor of roughly ns−2 the exponent of the previous best
estimate of Erdős-Rado from 1952.

The lower bound construction combines probabilistic
reasoning with some combinatorial ideas, and answers an open
question of Erdős-Hajnal from 1972.
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Discrepancy

Question: (Erdős-Hajnal 1989)

Given a red-blue coloring of triples of an N-element set, how large
of an “almost monochromatic” subset (i.e., subset with density
1− ε in one color) must it contain?

Remark: The largest “almost monochromatic” subset in the
random red-blue coloring of the edges of the complete graph on N
vertices still has size O(log N).
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Large almost monochromatic sets

Theorem : (Conlon-Fox-S. 2010+)

For any ε there exists a constant c = c(ε) such that every red-blue
coloring of the triples of an N-element set contains a set S of size
n = c

√
log N such that at least (1− ε)

(n
3

)
triples of S have the

same color.

Remarks:

Random coloring shows that this result is tight.

For coloring triples in ` > 2 colors we can still find a subset of
size c

√
log N with density 1− ε in a single color.

For hypergraphs (k ≥ 3)
”Discrepancy 6= Ramsey”!
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Sparse graphs

Definition:

r(G ) is the minimum N such that every 2-edge coloring of the
complete graph KN contains a monochromatic copy of graph G .

Question: How large is r(G ) for a “sparse” graph on n vertices?

Definition:

A graph is d-degenerate if each of its subgraphs has a vertex of
degree at most d .

Remarks:

Every s vertices of such a graph span at most d · s edges.

Graphs with maximum degree d are d-degenerate.

Degenerate graphs include planar graphs, sparse random
graphs and might have vertices of very large degree.
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Ramsey numbers of degenerate graphs

Conjecture: (Burr-Erdős 1975)

For every d there exists a constant cd such that

r(G ) ≤ cdn

for every d-degenerate graph on n vertices.

Known for: bounded degree graphs [CRST ’83], planar graphs and
graphs drawn on bounded genus surfaces [CS ’93], graphs with a
fixed forbidden minor [RT 97] and sparse random graphs [FS ’09].

Theorem: (Kostochka-S. 2003)

The Ramsey number of any d-degenerate graph G on n vertices
satisfies r(G ) ≤ n1+ε for any fixed ε > 0.
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Maximizing the Ramsey number

Conjecture: (Erdős-Graham 1973)

Among all the graphs with m =
(n
2

)
edges and no isolated vertices,

the n-vertex complete graph has the largest Ramsey number.

Remark: The complete graph with m edges has O(
√

m) vertices
and a Ramsey number bounded by 2O(

√
m). In the early 80’s Erdős

asked to show that this bound holds for all graphs with m edges.

Theorem: (S. 2010+)

If G is a graph with m edges without isolated vertices, then

r(G ) ≤ 2250
√

m .
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Methods: Dependent random choice

Rough claim:

Every sufficiently dense graph G contains a large subset U in which
every/almost all sets of d vertices have many common neighbors.

Proof:

Let U be the set of vertices adja-
cent to every vertex in a random
subset R of G of an appropriate
size.

R

U

G

If some set of d vertices has only few common neighbors, it is
unlikely that all the members of R will be chosen among these
neighbors. Hence we do not expect U to contain any such d
vertices. �
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Extremal Graph Theory

Forbidden subgraph problem:

Given a fixed graph H, determine ex(n,H), the maximum number
of edges in a graph on n vertices that does not contain a copy of H.

Appears in:

Discrete geometry

Additive number theory

Probability

Harmonic Analysis

Computer Science

Coding Theory

Mantel 1907: Every triangle-free graph on n vertices has
at most bn2/4c edges.
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Turán’s theorem

Kr+1 = complete graph
of order r + 1

Turán graph Tr (n): complete r -partite
graph with equal parts.
tr (n) = e(Tr (n)) = r−1

2r n2 + O(r)

Theorem: (Turán 1941, Mantel 1907 for r = 2)

For all r ≥ 2, the unique largest Kr+1-free graph
on n vertices is Tr (n).
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General graphs

Question:

What is the Turán number ex(n,H)
for a general graph H?

E.g., H =



General graphs

Definition:

The chromatic number χ(H) is the minimum
number of colors needed to color V (H), so
that adjacent vertices have distinct colors.

Theorem: (Erdős-Stone 1946, Erdős-Simonovits 1966)

Let H be a fixed graph with χ(H) = r + 1. Then

ex(n,H) = tr (n) + o(n2) = (1 + o(1))
r − 1

2r
n2.

Remark: Determines the asymptotics of Turán numbers ex(n,H)
for all graphs with chromatic number at least 3.
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Bipartite graphs

Problem:

It is known [KST ’54] that ex(n,H) ≤ O(n2−εH ) for some εH > 0.
What parameter of the bipartite graph H might determine the
growth of ex(n,H)?

Known:

For complete bipartite graphs Kr ,s for s > (r − 1)!.

For cycles of even length C2k for k = 2, 3, 5.

Open:

Complete bipartite graph with equal parts of size 4.

Cycle of length 8.

The 3-cube.
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Bipartite graphs

Recall: A graph is r -degenerate if each of its subgraphs has a
vertex of degree at most r .

Conjecture: (Erdős 1966)

Every r -degenerate bipartite H satisfies ex(n,H) ≤ O(n2−1/r ).

Remark: For all r this estimate is best possible.

Theorem: (Alon-Krivelevich-S. 2003)

Conjecture holds for every H in which vertices of one part have
degrees at most r . For general r -degenerate bipartite H

ex(n,H) ≤ O(n2− 1
4r ) .
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Sidorenko’s conjecture

Question: How many copies of a fixed bipartite graph H must
exist in an n-vertex graph with m edges?

Definition:

hH(G ) = the number of homomorphisms from H to G .

tH(G ) = hH(G)

|G ||H| = fraction of mappings from H to G which

are homomorphisms.

Conjecture: (Erdős-Simonovits 84, Sidorenko 93)

For every bipartite H and every n-vertex G with pn2/2 edges,

tH(G ) ≥ pe(H).
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Sidorenko’s conjecture

Conjecture: (Erdős-Simonovits 84, Sidorenko 93)

For every bipartite H and every n-vertex G with pn2/2 edges,
tH(G ) ≥ pe(H).

Remarks:

Random graphs with edge probability p achieve minimum.

Has analytical form and connections to matrix theory [BR],
Markov chains [BP], graph limits [L], and quasi-randomness.

Known for trees, even cycles, complete bipartite graphs, cubes.

Theorem: (Conlon-Fox-S. 2010+)

Conjecture holds for every bipartite H which has a vertex complete
to all vertices in other part. This gives an asymptotic version of
the conjecture for all graphs.
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Turán’s theorem revisited

Observation:

The size of the maximum
bipartite subgraph
of a graph G

≤
The size of the maximum
triangle-free subgraph
of a graph G

Turán’s theorem: Equality if G is a complete graph.

Problem: (Erdős 1983)

Find conditions on a graph G which imply that the largest
Kr+1-free subgraph and the largest r -partite subgraph of G have
the same number of edges.
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Find conditions on a graph G which imply that the largest
Kr+1-free subgraph and the largest r -partite subgraph of G have
the same number of edges.



Turán’s theorem revisited

Observation:

The size of the maximum
bipartite subgraph
of a graph G

≤
The size of the maximum
triangle-free subgraph
of a graph G

Turán’s theorem: Equality if G is a complete graph.

Problem: (Erdős 1983)
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Large minimum degree is enough

Theorem: (Alon, Shapira, S. 2009)

Let H be a fixed graph with chromatic number r + 1 > 3. There
exist constants γ = γ(H) > 0 and µ = µ(H) > 0 such that if G is
a graph on n vertices with minimum degree at least (1− µ)n and Γ
is the largest H-free subgraph of G , then Γ can be made r -partite
by deleting O

(
n2−γ) edges.

Remarks:

If H is a clique Kr+1 then the largest H-free subgraph of such
G is r -partite.

Extends Turán’s and Erdős-Stone-Simonovits theorems to all
graphs with large minimum degree.
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Edge-deletion problems

Definition:

A graph property P is monotone if it is closed under deleting edges
and vertices. It is dense if there are n-vertex graphs with Ω(n2)
edges satisfying it.

Examples:

P =
{

G is 5-colorable
}

.

P =
{

G is triangle-free
}

.

P =
{

G has a 2-edge coloring with no monochromatic K6

}
.

Definition:

Given a graph G and a monotone property P, let

EP(G ) = smallest number of edge deletions needed to turn
G into a graph satisfying P.
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Approximation and hardness

Theorem: (Alon, Shapira, S. 2009)

For every monotone P and ε > 0, there exists a linear-time
deterministic algorithm that, given a graph G on n vertices,
computes a number X such that

∣∣X − EP(G )
∣∣ ≤ εn2.

For every monotone dense P and δ > 0, approximating EP(G )
within an additive error of n2−δ is NP-hard.

Remarks:

Answers in a strong form a question of Yannakakis from 1981.
For many monotone dense P it even wasn’t known before that
computing EP(G ) precisely is NP-hard.

First result uses a strengthening of Szemerédi regularity
lemma to approximate G by a fixed size weighted graph W .

Second result uses generalizations of Turán and Erdős-
Stone-Simonovits theorems together with spectral techniques.
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lemma to approximate G by a fixed size weighted graph W .

Second result uses generalizations of Turán and Erdős-
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Stone-Simonovits theorems together with spectral techniques.



Summary

The open problems which we mentioned, as well as many more
additional ones which we skipped due to the lack of time, will
provide interesting challenges for future research in extremal
combinatorics.

These challenges, the fundamental nature of the area and its
tight connection with other mathematical disciplines will
ensure that in the future extremal combinatorics will continue
to play an essential role in the development of mathematics.
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