
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/107/$6.00 c©2007 János Bolyai Mathematical Society and Springer-Verlag

Combinatorica 27 (4) (2007) 509–518

DOI: 10.1007/s00493-007-2238-0

NOTE

MAKING A K4-FREE GRAPH BIPARTITE

BENNY SUDAKOV*

Received July 26, 2005

We show that every K4-free graph G with n vertices can be made bipartite by deleting at
most n2/9 edges. Moreover, the only extremal graph which requires deletion of that many
edges is a complete 3-partite graph with parts of size n/3. This proves an old conjecture
of P. Erdős.

1. Introduction

The well-known Max Cut problem asks for the largest bipartite subgraph
of a graph G. This problem has been the subject of extensive research,
both from the algorithmic perspective in computer science and the extremal
perspective in combinatorics. Let n be the number of vertices and e be the
number edges of G and let b(G) denote the size of the largest bipartite
subgraph of G. The extremal part of Max Cut problem asks to estimate
b(G) as a function of n and e. This question was first raised almost forty
years ago by P. Erdős [8] and attracted a lot of attention since then (see,
e.g., [3,2,4,1,16,11,10,5,7]).

It is well known that every graph G with e edges can be made bipartite by
deleting at most e/2 edges, i.e., b(G)≥e/2. To see this just consider a random
partition of vertices of G into two parts V1,V2 and estimate the expected
number of edges in the cut (V1,V2). A complete graph Kn on n vertices shows
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that the constant 1/2 in the above bound is asymptotically tight. Moreover,
this constant can not be improved even if we consider restricted families of
graphs, e.g., graphs that contain no copy of a fixed forbidden subgraph H.
We call such graphs H-free. Indeed, using sparse random graphs one can
easily construct a graph G with e edges such that it has no short cycles but
can not be made bipartite by deleting less than e/2− o(e) edges. Such G
is clearly H-free for every forbidden graph H which is not a forest. It is a
natural question to estimate the error term b(G)−e/2 as G ranges over all
H-free graph with e edges. We refer interested reader to [3,2,1,16], where
such results were obtained for various forbidden subgraphs H.

In this paper we restrict our attention to dense (e=Ω(n2)) H-free graphs
for which it is possible to prove stronger bounds for Max Cut. According to a
long-standing conjecture of Erdős [9], every triangle-free graph on n vertices
can be made bipartite by deleting at most n2/25 edges. This bound, if true, is
best possible (consider an appropriate blow-up of a 5-cycle). Erdős, Faudree,
Pach and Spencer proved that for triangle-free G of order n it is enough to
delete (1/18−ε)n2 edges to make it bipartite. They also verify the conjecture
for all graphs with at least n2/5 edges. Some extensions of their results were
further obtained in [11]. Nevertheless this intriguing problem remains open.
Erdős also asked similar question for K4-free graphs. His old conjecture (see
e.g., [10]) asserts that it is enough to delete at most (1+o(1))n2/9 edges to
make bipartite any K4-free graph on n vertices. Here we confirm this in the
following strong form.

Theorem 1.1. Every K4-free graph G with n vertices can be made bi-
partite by deleting at most n2/9 edges. Moreover, the only extremal graph
which requires deletion of that many edges is a complete 3-partite graph
with parts of size n/3.

This result can be used to prove the following asymptotic generalization.

Corollary 1.2. Let H be a fixed graph with chromatic number χ(H)=4.
If G is a graph on n vertices not containing H as a subgraph, then we can
delete at most (1+o(1))n2/9 edges from G to make it bipartite.

Another old problem of Erdős, that is similar in spirit, is to determine
the best local density in Kr-free graphs for r≥3 (for more information see,
e.g., [12,13] and their references). One of Erdős’ favorite conjectures was
that any triangle-free graph G on n vertices should contain a set of n/2
vertices that spans at most n2/50 edges. The blow-up of a 5-cycle in which
we replace each vertex by an independent set of size n/5 and each edge by
a complete bipartite graph shows that this estimate can not be improved.
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On the other hand, for r>3 Chung and Graham [6] conjectured that Turán
graph has the best local density for subsets of size n/2. In particular, their
conjecture implies that every K4-free graph on n vertices should contain a
set of n/2 vertices that spans at most n2/18 edges.

Krivelevich [15] noticed that for regular graphs a bound in the local den-
sity problem implies a bound for the problem of making the graph bipartite.
Indeed, suppose n is even, G is a d-regular K4-free graph on n vertices and
S is a set of n/2 vertices. Then dn/2 =

∑
s∈S d(s) = 2e(S) + e(S,S̄) and

dn/2=
∑

s/∈S d(s)=2e(S̄)+e(S,S̄), i.e. e(S)=e(S̄). Deleting the 2e(S) edges
within S or S̄ makes the graph bipartite, so if we could find S spanning
at most n2/18 edges we would delete at most n2/9 in making G bipartite.
Unfortunately, the converse reasoning does not work. Nevertheless, we be-
lieve that the result of Theorem 1.1 provides some supporting evidence for
conjecture of Chung and Graham.

The rest of this short paper is organized as follows. The proof of our main
theorem appears in the beginning of next section. Next we show how to ob-
tain Corollary 1.2 using this theorem together with well known Szemerédi’s
Regularity Lemma [17] (see also [14]). The last section of the paper contains
some concluding remarks and open questions.

Notation. We usually write G=(V,E) for a graph G with vertex set V =
V (G) and edge set E=E(G), setting n= |V | and e=e(G)= |E(G)|. If X⊂V
is a subset of the vertex set then G[X] denotes the restriction of G to X,
i.e., the graph on X whose edges are those edges of G with both endpoints
in X. We will write e(X)= e(G[X]) and similarly, we write e(X,Y ) for the
number of edges with one endpoint in X and the other in Y . N(v) is the set
of vertices adjacent to a vertex v and d(v) = |N(v)| is the degree of v. For
any two vertices u,v we denote by N(u,v) the set of common neighbors of
u and v, i.e., all the vertices adjacent to both of them. We will also write
d(u,v)= |N(u,v)|. Finally if three vertices u,v, and w are all adjacent then
they form a triangle in G and we denote this by �={u,v,w}.

2. Proofs

2.1. Main result

In this subsection we present the proof of our main theorem. We start with
the following well known fact (see, e.g., [1]), whose short proof we include
here for the sake of completeness.

Lemma 2.1. Let G be a 4-partite graph with e edges. Then G contains a
bipartite subgraph with at least 2e/3 edges.
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Proof. Let V1, . . . ,V4 be a partition of vertices of G into four independent
sets. Partition these sets randomly into two classes, where each class contains
exactly two of the sets Vi. Consider a bipartite subgraph H of G with these
color classes. For each fixed edge (u,v) of G the probability that u and v will
lie in the different classes is precisely (2·2)/(4

2

)
=2/3. Therefore, by linearity

of expectation, the expected number of edges in H is 2e/3, completing the
proof.

Next we need two simple lemmas.

Lemma 2.2. Let G be a graph with e edges and m triangles. Then it con-
tains a triangle {u,v,w} such that

d(u, v) + d(u,w) + d(v,w) ≥ 9m
e

.

Proof. A simple averaging argument, using that
∑

(x,y)∈E(G) d(x,y) = 3m
and Cauchy–Schwartz inequality, shows that there is a triangle {u,v,w} in
G with

d(u, v) + d(u,w) + d(v,w) ≥ 1
m

∑
{x,y,z}=�

(
d(x, y) + d(x, z) + d(y, z)

)

=
1
m

∑
(x,y)∈E(G)

d2(x, y)

≥ e

m

(∑
(x,y)∈E(G) d(x, y)

e

)2

=
(3m)2

me
=

9m
e

.

Lemma 2.3. Let G be a graph on n vertices with e edges and m triangles.
Then G contains a bipartite subgraph of size at least 4e2/n2−6m/n.

Proof. Let v be a vertex of G and let ev denotes the number of edges
spanned by the neighborhood N(v). Consider the bipartite subgraph of G
whose parts are N(v) and its complement V (G)\N(v). It is easy to see that
number of edges in this subgraph is

∑
u∈N(v) d(u)−2ev . Thus averaging over

all vertices v we have that

b(G) ≥ 1
n

∑
v

( ∑
u∈N(v)

d(u) − 2ev

)
=

1
n

∑
v

d2(v) − 2
n

∑
v

ev(1)

≥
(∑

v d(v)
n

)2

− 6m/n = 4e2/n2 − 6m/n.
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Here we used Cauchy–Schwartz inequality together with identities
∑

v ev =
3m,

∑
v d(v)=2e.

Now we can obtain our first estimate on the Max Cut in K4-free graphs.
This result can be used to prove the conjecture for graphs with ≤n2/4 edges.

Lemma 2.4. Let G be a K4-free graph on n vertices with e edges. Then it
contains a bipartite subgraph of size at least 2e/7+8e2/(7n2).

Proof. Let v be a vertex of G and denote by ev the number of edges
spanned by the neighborhood of v. Consider a subgraph of G induced
by the set N(v). This subgraph G[N(v)] has d(v) vertices, ev edges and
contains no triangles, since G is K4-free. Therefore by previous lemma
(with m = 0) it has a bipartite subgraph H of size at least 4e2

v/d
2(v). Let

(A,B),A∪B=N(v) be the bipartition of H. Consider a bipartite subgraph
H ′ of G with parts (A′,B′), where A⊂A′, B⊂B′ and we place each vertex
v ∈ V (G) \N(v) in A′ or B′ randomly and independently with probabil-
ity 1/2. All edges of H are edges of H ′, and each edge incident to a vertex
in V (G)\N(v) appears in H ′ with probability 1/2. As the number of edges
incident to vertices V (G)\N(v) is e−ev, by linearity of expectation, we have
b(G)≥E

[
e(H ′)

]≥(e−ev)/2+4e2
v/d

2(v). By averaging over all vertices v

(2) b(G) ≥ 1
2
e +

1
n

∑
v

(
4e2

v/d
2(v) − ev/2

)
.

To finish the proof we take a convex combination of inequalities (1)
and (2) with coefficients 3/7 and 4/7 respectively. This gives

b(G) ≥ 3
7

(
1
n

∑
v

d2(v) − 2
n

∑
v

ev

)
+

4
7

(
1
2
e +

1
n

∑
v

(
4e2

v/d
2(v) − ev/2

))

=
2
7
e +

1
7n

∑
v

(
3d2(v) − 8ev + 16e2

v/d
2(v)

)

=
2
7
e +

1
7n

∑
v

d2(v)
(
3 − 8

(
ev/d

2(v)
)

+ 16
(
ev/d

2(v)
)2

)

≥ 2
7
e +

2
7n

∑
v

d2(v) ≥ 2
7
e +

2
7

(∑
v d(v)
n

)2

=
2
7
e +

8
7
e2/n2,

where we used that 3−8t+16t2 =(4t−1)2 +2≥2 for all t,
∑

v d(v)=2e and
Cauchy–Schwartz inequality.
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Remark. The above result is enough for our purposes, but one can get a
slightly better inequality by taking a convex combination of (1) and (2) with
coefficients 1/(1+a) and a/(1+a) with a=1.38.

Lemma 2.5. Let f(t) = t/18 + 2
9

(
5/2− t− 1/t

)2
. Then f(t) ≤ 1/9 for all

t∈ [3/2,2] and equality holds only when t=2.

Proof. Note that f(2)=1/9 and

f(t) − 1/9 =
4t4 − 19t3 + 31t2 − 20t + 4

18t2
=

(t − 2)(4t3 − 11t2 + 9t − 2)
18t2

.

Consider g(t)=4t3−11t2+9t−2 in the interval [3/2,2]. The derivative of this
function g′(t)=12t2−22t+9 is zero when t= 22±√

52
24 , so the largest root of

g′(t) is less than 3/2. Therefore g(t) is strictly increasing function for t≥3/2
and so g(t) > g(3/2) = 1/4 > 0 for all t∈ [3/2,2]. Since 18t2 > 0 and t−2 is
negative for t<2 we conclude that f(t)−1/9<0 for all t∈ [3/2,2).

Having finished all the necessary preparations we are now in a position
to complete the proof of our main result.

Proof of Theorem 1.1. It is easy to see that complete 3-partite graph
with parts of size n/3 has (n/3)3 = n3/27 triangles and that every edge of
this graph is contained in exactly n/3 of them. To make this graph bipartite
we need to destroy all these triangles. Since deletion of one edge can destroy
at most n/3 of them, altogether we need to delete at least n3/27

n/3 = n2/9
edges. To finish the proof it remains to show that deletion of ≤n2/9 edges
is sufficient to make every K4-free graph bipartite.

Let G be a K4-free graph on n vertices with e edges. Turán’s theorem [18]
says that e≤n2/3, with equality only when G is a complete 3-partite graph
with parts of size n/3. By Lemma 2.4, we need to delete at most e−b(G)≤
5e/7−8e2/(7n2) =

(
5
7(e/n2)− 8

7(e/n2)2
)
n2 edges to make G bipartite. The

function g(t)=5t/7−8t2/7 is increasing in the interval t≤1/4 and so g(t)≤
g(1/4) = 3/28. Therefore if e ≤ n2/4 we can delete at most 3n2/28 < n2/9
edges to make G bipartite.

Next, consider the case when n2/4≤ e≤n2/3 and let m be the number
of triangles in G. By Lemma 2.3, we can delete at most e− b(G) ≤ e−(
4e2/n2 − 6m/n

)
edges to make G bipartite. So we can assume that e−

4e2/n2 +6m/n ≥ n2/9 or we are done. Then the number of triangles in G
satisfies m≥ n

6

(
n2/9+4e2/n2−e

)
and Lemma 2.2 implies that G contains a

triangle �={u,v,w} with

d(u, v) + d(u,w) + d(v,w) ≥ 9m
e

≥ 6e/n + n3/(6e) − 3n/2.
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Let V1 = N(u,v),V2 = N(u,w), V3 = N(v,w) and let X = V (G) \ (∪3
i=1Vi).

Since G is K4-free and (u,v),(u,w),(v,w) are edges of G we have that sets
Vi,1≤ i≤3 are independent and disjoint. Consider a 4-partite subgraph G′
of G with parts V1,V2,V3 and X. This graph has e(G′) = e− e(X) edges
where e(X) is the number of edges spanned by X. By Turán’s theorem
e(X)≤|X|2/3 and we also know that

|X| = n−
∑

i

|Vi| = n−(
d(u, v)+d(u,w)+d(v,w)

) ≤ 5n/2−6e/n−n3/(6e).

Since G′ is 4-partite we can now use Lemma 2.1 to deduce that b(G)≥
b(G′)≥ 2e(G′)/3 = 2

3

(
e− e(X)

)
. Therefore the number of edges we need to

delete to make G bipartite is bounded by

e − b(G) ≤ e − 2
(
e − e(X)

)
/3 = e/3 + 2e(X)/3 ≤ e/3 + 2|X|2/9

≤ e/3 +
2
9

(
5n/2 − 6e/n − n3/(6e)

)2

=
(

1
18

(6e/n2) +
2
9

(
5/2 − 6e/n2 − (6e/n2)−1

)2
)

n2

= f
(
6e/n2

) · n2,

where f(t) = t/18 + 2
9

(
5/2 − t− 1/t

)2. As n2/4 ≤ e ≤ n2/3 we have that
3/2≤ t=6e/n2≤2. Then, by Lemma 2.5, f(6e/n2)≤1/9 with equality only
if e = n2/3. This shows that we can delete at most n2/9 edges to make G
bipartite and we need to delete that many edges only when e(G) = n2/3,
i.e., G is a complete 3-partite graph with parts of size n/3.

2.2. Forbidding fixed 4-chromatic subgraph

In this short subsection we show how to use Theorem 1.1 to deduce a simi-
lar statement about graphs with any fixed forbidden 4-chromatic subgraph.
The proof is a standard application of Szemerédi’s Regularity Lemma and
we refer the interested reader to the excellent survey of Komlós and Si-
monovits [14], which discusses various results proved by this powerful tool.

We start with a few definitions, most of which follow [14]. Let G=(V,E)
be a graph, and let A and B be two disjoint subsets of V (G). If A and B are
non-empty, define the density of edges between A and B by d(A,B)= e(A,B)

|A||B| .
For ε > 0 the pair (A,B) is called ε-regular if for every X ⊂ A and Y ⊂ B
satisfying |X| > ε|A| and |Y | > ε|B| we have |d(X,Y )− d(A,B)| < ε. An
equitable partition of a set V is a partition of V into pairwise disjoint classes
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V1, · · · ,Vk of almost equal size, i.e.,
∣∣|Vi|− |Vj |

∣∣≤ 1 for all i,j. An equitable
partition of the set of vertices V of G into the classes V1, · · · ,Vk is called
ε-regular if |Vi| ≤ ε|V | for every i and all but at most εk2 of the pairs
(Vi,Vj) are ε-regular. The above partition is called totally ε-regular if all the
pairs (Vi,Vj) are ε-regular. The following celebrated lemma was proved by
Szemerédi in [17].

Lemma 2.6. For every ε>0 there is an integer M(ε) such that every graph
of order n>M(ε) has an ε-regular partition into k classes, where k≤M(ε).

In order to apply the Regularity Lemma we need to show the existence of
a complete multipartite subgraph in graphs with a totally ε-regular partition.
This is established in the following lemma which is a special case of a well-
known result, see, e.g., [14].

Lemma 2.7. For every δ >0 and integer t there exist an 0<ε= ε(δ,t) and
n0 = n0(δ,t) with the following property. If G is a graph of order n > n0

and (V1, · · · ,V4) is a totally ε-regular partition of vertices of G such that
d(Vi,Vj) ≥ δ for all i<j, then G contains a complete 4-partite subgraph
K4(t) with parts of size t.

Proof of Corollary 1.2. Let H be a fixed 4-chromatic graph of order t
and let G be a graph on n vertices not containing H as a subgraph. Suppose
δ > 0 and let ε = min

(
δ,ε(δ,t)

)
, where ε(δ,t) is defined in the previous

statement. Then, by Lemma 2.6, for sufficiently large n there exists an ε-
regular partition (V1, · · · ,Vk) of vertices of G.

Consider a new graph G′ on the vertices {1, . . . ,k} in which (i,j) is an
edge iff (Vi,Vj) is an ε-regular pair with density at least δ. We claim that
G′ contains no K4. Indeed, any such clique in G′ corresponds to 4 parts in
the partition of G such that any pair of them is ε-regular and has density
at least δ. This contradicts our assumption on G, since by Lemma 2.7, the
union of these parts will contain a copy of complete 4-partite graph K4(t)
which clearly contains H.

By applying Theorem 1.1 to graph G′, we deduce that there is a set D of
at most k2/9 edges of G′ whose deletion makes it bipartite. Now delete all
the edges of G between the pairs (Vi,Vj) with (i,j)∈D. Delete also the edges
of G that lie within classes of the partition, or that belong to a non-regular
pair, or that join a pair of classes of density less than δ. It is easy to see that
the remaining graph is bipartite and the number of edges we deleted is at
most

(k2/9)(n/k)2 + εn2 + δn2 ≤ (
1/9 + 2δ

)
n2 = (1 + o(1))n2/9.
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3. Concluding remarks

How many edges do we need to delete to make a Kr-free graph G of order n
bipartite? For r=3,4 this was asked long time ago by P. Erdős. For triangle-
free graphs he conjectured that deletion of n2/25 edges is always enough and
that extremal example is a blow-up of a 5-cycle. In this paper we answered
the question for r =4 and proved that the unique extremal construction in
this case is a complete 3-partite graph with equal parts. Our result suggests
that a complete (r− 1)-partite graph of order n with equal parts is worst
example also for all remaining values of r. Therefore we believe that it is
enough to delete at most (r−2)2

4(r−1)2
n2 edges for even r≥5 and at most r−3

4(r−1)n
2

edges for odd r ≥ 5 to make bipartite any Kr-free graph G of order n. It
seems that some of the ideas presented here can be useful to make a progress
on this problem for even r.

Acknowledgment. I would like to thank József Balogh and Peter Keevash
for interesting discussions on the early stages of this project.
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