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Abstract

We consider the bipartite cut and the judicious partition problems in graphs of girth at least

4. For the bipartite cut problem we show that every graph G with m edges, whose shortest

cycle has length at least rX4; has a bipartite subgraph with at least m
2
þ cðrÞm

r
rþ1 edges. The

order of the error term in this result is shown to be optimal for r ¼ 5 thus settling a special case
of a conjecture of Erd +os. (The result and its optimality for another special case, r ¼ 4; were
already known.) For judicious partitions, we prove a general result as follows: if a

graph G ¼ ðV ;EÞ with m edges has a bipartite cut of size m
2
þ d; then there exists a partition

V ¼ V1,V2 such that both parts V1;V2 span at most
m
4 � ð1� oð1ÞÞd2þ Oð

ffiffiffiffi
m

p
Þ edges for the

case d ¼ oðmÞ; and at most ð1
4
� Oð1ÞÞm edges for d ¼ OðmÞ: This enables one to extend results

for the bipartite cut problem to the corresponding ones for judicious partitioning.
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1. Introduction

Many problems in Extremal Graph Theory are instances of the following general
setting: given a fixed graph H or a family of fixed graphs H ¼ fH1;y;Hkg and a
large graph G ¼ ðV ;EÞ on jV j ¼ n vertices, estimate the extremal values of various
graph theoretic parameters of G as functions of n; assuming G is H-free or more
generally ðH1;y;HkÞ-free. Central questions such as those of studying the Turán
number exðn;HÞ or the Ramsey number RðH;KnÞ fall into this category.
In some extremal problems, the size of the large graph G ¼ ðV ;EÞ is naturally

measured by its number of edges m ¼ jEj rather than by its number of vertices
n ¼ jV j: Two such problems are the maximal bipartite cut (or Max-Cut) problem,
where one seeks to partition the vertex set V into two disjoint parts V1 and V2 so that
the number of edges of G crossing between V1 and V2 is maximal, and the so-called
judicious partition problem, where the task is to find a partition V ¼ V1,V2 such
that both parts V1 and V2 span the smallest possible number of edges. Formally, for
a graph G ¼ ðV ;EÞ we define

f ðGÞ ¼ maxfeðV1;V2Þ: V ¼ V1,V2;V1-V2 ¼ |g;

gðGÞ ¼ min
V¼V1,V2

maxfeðV1Þ; eðV2Þg;

where, as usual, eðU ;WÞ is the number of edges of G between the (disjoint) subsets
U ;WCV ; and eðUÞ is the number of edges of G spanned by U : Thus, the bipartite
cut problem is that of computing the value of f ðGÞ; and the judicious partition
problem asks to compute gðGÞ: The above two functions are closely connected;
moreover, bounding gðGÞ from above supplies immediately a lower bound for f ðGÞ:
f ðGÞXm � 2gðGÞ: We provide more extensive background information about both
these problems later in the paper.
Consider a random partition V ¼ V1,V2; obtained by assigning each vertex vAV

to V1 or to V2 with probability
1
2
independently. It is easy to see that each edge of G

has probability 1
2
to cross between V1 and V2; probability

1
4
to fall inside V1; and the

same probability 1
4
to fall inside V2: It follows that the expected number of edges in

the cut ðV1;V2Þ is m=2; and the expected number of edges in each part Vi is m=4:
While for the bipartite cut problem the above simple argument shows that every
graph G with m edges has a cut of size at least m=2; implying f ðGÞXm=2; for the
judicious partitioning it is insufficient to derive gðGÞpm=4: Still, it indicates that the
right answer should be about m=2 for the bipartite cut problem, and about m=4 for
the judicious partition problem. Therefore, in many cases it is the error term after
m=2 or m=4; respectively, we will be interested in.
In this paper we consider the above two extremal problems when the forbidden

graphs Hi are short cycles, or in other words, the graph G is assumed to have girth
bounded from below by a parameter r: (Given a graph G; the girth of G is the length
of the shortest cycle in G; in case G is a forest we set girthðGÞ ¼ N). We prove the
following results about the bipartite cut problem.
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Theorem 1.1. Let rX4 be a fixed integer. Then there exists a constant c40 such that

every graph G with m edges and girth at least r satisfies

f ðGÞXm

2
þ cm

r
rþ1:

Theorem 1.2. There exists an absolute constant c040 such that for infinitely many m

there exists a graph G with m edges and girth at least 5 for which

f ðGÞpm

2
þ c0m

5
6:

Thus, the estimate on the error term of Theorem 1.1 is tight up to a constant
factor for the case r ¼ 5: This settles (in a strong form) a special case of a conjecture
of Erd +os discussed in more detail in the next section. The assertion of Theorem 1.1
for r ¼ 4 and its tightness in this case have been established by the first author
in [2].
As for judicious partitions, we prove a very general result, connecting the size of

an optimal bipartite cut with the best value of a judicious partition.

Theorem 1.3. Let G ¼ ðV ;EÞ be a graph with m edges whose maximal bipartite cut

has cardinality f ðGÞ ¼ m
2
þ d: If dpm=30; then there exists a partition V ¼ V1,V2 of

the vertex set of G such that

eðViÞp
m

4
� d
2
þ 10d

2

m
þ 3

ffiffiffiffi
m

p
; i ¼ 1; 2:

Therefore, if d ¼ oðmÞ but db
ffiffiffiffi
m

p
; it follows that gðGÞ ¼ m=4� ð1� oð1ÞÞd=2:

The case of large d is covered by the following complementary theorem.

Theorem 1.4. Let G ¼ ðV ;EÞ be a graph with m edges whose maximal bipartite cut

has cardinality f ðGÞ ¼ m
2
þ d: If dXm=30 and m is large enough, then there exists a

partition V ¼ V1,V2 of the vertex set of G such that

eðViÞp
m

4
� m

100
; i ¼ 1; 2:

Combining the above two theorems with Theorem 1.1 we immediately get the
following estimate on the judicious partition problem for graphs with given girth:

Corollary 1.5. Let rX4 be a fixed integer. Then there exists a constant c40 such that

every graph G with m edges and girth at least r satisfies

gðGÞpm

4
� cm

r
rþ1:

Obviously, the above-mentioned tightness results for Theorem 1.1 for r ¼ 4; 5
carry over to tightness results for Corollary 1.5.
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The rest of the paper is organized as follows. In Section 2, we discuss the bipartite
cut problem, first surveying necessary background and then proving Theorems 1.1
and 1.2. Section 3 is devoted to the judicious partition problem. There we first cover
relevant previous developments and then prove Theorems 1.3 and 1.4. Section 4, the
last section of the paper, contains some concluding remarks and a discussion of
related open problems.
In the course of the paper, we will make no serious attempt to optimize the

absolute constants involved. For the sake of simplicity of presentation we will drop
occasionally floor and ceiling signs whenever these are not crucial.

2. Bipartite cuts

2.1. Background

As we indicated in the introduction, it is quite easy to show that every graph
G ¼ ðV ;EÞ with m edges contains a bipartite cut ðV1;V2Þ spanning at least m=2
edges. This elementary result can be improved by providing a more accurate estimate
for the error term after the main term m=2: Edwards [10,11] proved the essentially
best possible result that every graph G with m edges satisfies

f ðGÞXm

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

8
þ 1
64

r
� 1
8
:

This result is easily seen to be tight in case G is a complete graph on an odd number

of vertices, that is, whenever m ¼ ðk
2
Þ for some odd integer k: Estimates on the second

error term for other values of m can be found in [2,3,8].
The problem of estimating the minimum possible size of the maximum cut in

graphs without short cycles has been raised by Paul Erd +os in one of his numerous
problem papers [12]. There he introduced the function

frðmÞ ¼ minf f ðGÞ: jEðGÞj ¼ m; girthðGÞXrg

and conjectured that for every rX4 there exists a constant cr40 such that for
every e40

m

2
þ mcr�eofrðmÞom

2
þ mcrþe

provided m4mðeÞ: He also mentioned that together with Lovász they proved that
m

2
þ c2m

c00r ofrðmÞom

2
þ c1m

c0r ;

where c0r and c00r are greater than
1
2
and less than one for all r43 and tend to one as r

tends to infinity. (In this statement, we have corrected an apparent typo in Erd +os’
paper.)
The case r ¼ 4; i.e., the case of triangle-free graphs has attracted most of the

attention so far. After a series of papers by various researchers [12,14,16] the first
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author proved in [2] that if G is a triangle-free graph with m edges, then

f ðGÞXm

2
þ cm4=5

for some absolute positive constant c: In the same paper [2], the error term of the
above estimate is shown to be tight by showing that for every m40 there exists a
triangle-free graph G with m edges for which f ðGÞpm

2 þ c0m
4=5; for an absolute

constant c040: This upper bound is based on a construction of regular triangle-free
graphs with extremal spectral properties, given in [1].
Here we generalize the above-stated bounds for the case of graphs of higher

girth. The proof of the lower bound of Theorem 1.1, given in the next subsection,
utilizes techniques from several previous papers on the subject. We are able to
provide a matching upper bound for the case of r ¼ 5; i.e., for graphs without 3- and
4-cycles, thus settling the above-mentioned problem of Erd +os for this case as
well. This result (Theorem 1.2) is proven in Subsection 2.3, where, following the
method in [2], we use spectral properties to estimate from above the size of a
maximal bipartite cut.

2.2. Lower bound

In this subsection, we obtain a lower bound on the size of the maximum
bipartite subgraphs of graphs with girth at least r: We need the following
simple lemma from [12], whose short proof is included here for the sake of
completeness.

Lemma 2.1. Let G be a graph with m edges and chromatic number t: Then G contains a

bipartite subgraph with at least tþ1
2t

m ¼ m
2
þ m
2t

edges.

Proof. Since the chromatic number of G is t we can decompose its vertex set into t

independent subsets V1;y;Vt: Partition these subsets randomly into two parts,
containing It

2
m and Jt

2
n sets Vi; respectively. Let H be a bipartite subgraph of G

whose color classes are the above two parts. Note that for every fixed edge e of G the
probability that its ends lie in distinct classes of H is

PrðeAEðHÞÞ ¼
It
2
mJt
2
n

t

2

 ! X

t2�1
4

tðt�1Þ
2

¼ tþ1
2t
:

By linearity of expectation, the expected number of edges in H is at least tþ1
2t

m: This

completes the proof. &

Next we need a result of Shearer [16], which provides a very useful lower bound on
the size of a maximum bipartite subgraph in a triangle-free graph.
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Proposition 2.2. Let G be a triangle-free graph with m edges, and let d1;y; dn be the

degrees of the vertices in G: Then

f ðGÞXm

2
þ 1

8
ffiffiffi
2

p
Xn

i¼1

ffiffiffiffi
di

p
:

Finally, we shall also use the following upper bound, proved by Bondy and
Simonovits [9], on the maximum number of edges in graphs without cycles of a given
even length. (We note that in fact we need here only the simpler, similar estimate, for
the maximum number of edges in graphs with no short cycles at all, but we include
this result as it may be helpful in dealing with the related problem of estimating the
maximum cut in graphs without a cycle of a fixed, given length.)

Proposition 2.3. Let lX2 be an integer and let G be a graph of order n: If G contains no

cycle of length 2l; then the number of edges in G is at most 100ln1þ1=l :

Having finished all the necessary preparations we are ready to prove our first
theorem.

Proof of Theorem 1.1. To prove the theorem we use the argument from [2] with some
additional ideas. We will assume throughout the proof that m is sufficiently large.
Let rX4 be a fixed integer and let G be a graph with n vertices, m edges and with

girth at least r: Define d ¼ I100rm
2

rþ1m: First, we consider the case when G has no
subgraph with minimum degree greater than d:
In this case, it is easy to see that there exists a labeling v1;y; vn of the vertices of G

so that for every i; the number of neighbors vj of vi with joi is at most d: Indeed, let

vn be the vertex of minimal degree in G: Clearly, the degree of vn is at most d; delete it
from G and repeat this procedure. Let di denote the degree of vi in G and let d 0

i be the

number of neighbors vj of vi with joi: Obviously,
Pn

i¼1 d 0
i ¼ m: Since G is triangle-

free, by Proposition 2.2 we obtain

f ðGÞXm

2
þ 1

8
ffiffiffi
2

p
Xn

i¼1

ffiffiffiffi
di

p
X

m

2
þ 1

8
ffiffiffi
2

p
Xn

i¼1

ffiffiffiffi
d 0

i

q

X
m

2
þ 1

8
ffiffiffi
2

p
Pn

i¼1 d 0
iffiffiffi

d
p ¼ m

2
þ 1

8
ffiffiffi
2

p mffiffiffi
d

p ¼ m

2
þ Oðm

r
rþ1Þ;

as needed.
Now suppose that there exists a subset of vertices U of G of order u such that the

induced subgraph G½U � of G has minimum degree greater than d:We first prove that
in this case r should be even. Suppose not, i.e., r ¼ 2l þ 1 for some integer lX2:
Note that the number of edges in G½U � is at least ud=2 and at most the number of
edges in G; which is m: This implies that up2m=d: In addition, we have that G½U �

contains no cycle of length 2l: Then using the fact that d ¼ I100ð2l þ 1Þm
1

lþ1m
together with Proposition 2.2, we conclude that the number of edges in this
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graph is at most

100lu1þ1=lp100lu
2m

d

	 
1=l

p100luðm
l

lþ1Þ1=lo
ud

2
;

a contradiction. Therefore, in the rest of the proof we will assume that r is even and
set r ¼ 2q þ 2 for some integer qX1:
Next we prove that U contains a subset U 0 such that the induced subgraph G½U 0�

spans at least ud=4 edges and is t-colorable for t ¼ J2u
dqn: Indeed, let T be a random

subset of U obtained by picking uniformly at random, with repetitions allowed, t

vertices from U : Let x be a fixed vertex of U : Denote by SðxÞ the set of vertices in U

which are at distance exactly q from x and denote by sx the size of SðxÞ: Since the
minimal degree of G½U � is greater than d and G½U � contains no cycle of length at
most 2q þ 1; it is easy to see that sx4dq for every xAU : This, together with the
definition of t; implies that the probability that SðxÞ-T is empty is at most

1� sx

u

� �t

o 1� dq

u

	 
t

pe�tdq=u ¼ e�2o
1

4
:

It follows that for every fixed edge ðx; yÞ of G½U �; the probability that both SðxÞ and
SðyÞ have non-empty intersection with T is at least 1

2
: Let U 0 be the set of all vertices

x in U such that SðxÞ-Ta| and let G½U 0� be the graph induced by U 0: By linearity
of expectation, the expected number of edges in G½U 0� is at least eðUÞ=2Xud=4:
Hence, there exists a particular set T of size at most t such that the corresponding
graph G½U 0� spans at least eðU 0ÞXud=4 edges.
Fix such sets T and U 0 and define a coloring of G½U 0� in t colors by coloring each

vertex xAU 0 by the smallest index of a vertex from T which belongs to SðxÞ: Since
G½U � has no cycles of length at most 2q þ 1; it clearly follows that no edge can have
both its endpoints at distance exactly q from the same vertex in T : This proves that
the coloring defined above is a proper coloring and the set U 0 with the required
properties indeed exists.
Now by Lemma 2.1, there exists a partition of U 0 into two disjoint subsets U1 and

U2 so that

eðU1;U2ÞX
eðU 0Þ
2

þ eðU 0Þ
2t

X
eðU 0Þ
2

þ ud

8

2u

dq

 ��1
¼ eðU 0Þ
2

þ Oðdqþ1Þ

¼ eðU 0Þ
2

þ Oðdr=2Þ ¼ eðU 0Þ
2

þ Oðm
r

rþ1Þ:

Now we can assign the remaining vertices in VðGÞ � U 0 one by one either to U1 or to
U2; each time adding a vertex to the subset in which it has more neighbors and
breaking ties arbitrarily. This ensures that at least half of the edges which are not in
G½U 0� will lie in the bipartite graph which we obtain in the end of this process.
Therefore,

f ðGÞXeðGÞ � eðU 0Þ
2

þ eðU 0Þ
2

þ Oðm
r

rþ1Þ ¼ m

2
þ Oðm

r
rþ1Þ;

completing the proof of the theorem. &
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2.3. Graphs with girth 5

In this subsection, we show that the lower bound of Theorem 1.1 is tight, up to a
constant factor, for graphs with girth at least 5. To do so we will need the following
folklore result, which provides an upper bound for f ðGÞ; for a regular graph G; in
terms of the smallest eigenvalue of its adjacency matrix. For completeness, we
include the short proof.

Lemma 2.4. Let G be a d-regular graph of order n (which may have loops each of

which contributes 1 to the degree of its vertex). Let l1Xl2X?Xln be the eigenvalues

of the adjacency matrix of G: Then

f ðGÞpdn

4
� lnn

4
:

Proof. Let V ¼ f1;y; ng and let A ¼ ðaijÞ be the adjacency matrix of G ¼ ðV ;EÞ;
where aii corresponds to the number of loops at vertex i: Let x ¼ ðx1;y; xnÞ
be any vector with coordinates 71: Since the graph G is d-regular we have thatP

i aij ¼
P

j aij ¼ d and therefore

X
ði;jÞAE

ðxi � xjÞ2 ¼ d
Xn

i¼1
x2i �

X
i;j

aijxixj ¼ dn � xtAx:

By the variational definition of the eigenvalues of A; for any vector zARn;

ztAzXlnjjzjj2: Thus,X
ði;jÞAE

ðxi � xjÞ2 ¼ dn � xtAxpdn � lnjjxjj2 ¼ dn � lnn: ð1Þ

Let V ¼ V1,V2 be an arbitrary partition of V into two disjoint subsets
and let eðV1;V2Þ be the number of edges in the bipartite subgraph of G with
bipartition ðV1;V2Þ: For every vertex vAVðGÞ define xv ¼ 1 if vAV1 and xv ¼ �1 if
vAV2: Note that for every edge ði; jÞ of G; ðxi � xjÞ2 ¼ 4 if this edge has its ends in
distinct parts of the above partition and is zero otherwise. Now using (1), we
conclude that

eðV1;V2Þ ¼
1

4

X
ði;jÞAE

ðxi � xjÞ2p
1

4
ðdn � lnnÞ ¼ dn

4
� lnn

4
: &

In order to prove Theorem 1.2 we will use the so-called Erd +os–Rényi graph [13],
arising from the projective plane PG2ðpÞ over a finite field. Let p be a prime power
and let Fp be the finite field with p elements. Consider the three-dimensional vector

space F3p: Two vectors x ¼ ðx1; x2; x3Þ and y ¼ ðy1; y2; y3Þ in this space are called
orthogonal if /x; yS ¼ x1y1 þ x2y2 þ x3y3 ¼ 0; in which case we write x>y:

Similarly, for any two subsets X ;Y of F3p we write X>Y iff /x; yS ¼ 0 for any
two vectors xAX and yAY : Let G be a graph whose vertices are all one-dimensional
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subspaces of F3p: Clearly, the number of vertices of G is n ¼ ðp3 � 1Þ=ðp � 1Þ ¼
p2 þ p þ 1 and we denote them by vi; 1pipp2 þ p þ 1: Two vertices vi and vj are

adjacent in G if vi>vj : Note that G has some vertices with loops and it is easy to see

that all its vertices have degree d ¼ p þ 1: Thus, the sum of the degrees of the vertices
in G is dn ¼ ðp þ 1Þðp2 þ p þ 1Þ ¼ ð1þ oð1ÞÞn3=2: Next, we briefly summarize the
properties of G we will need later in our proof. This is done in the following simple
lemma (which is essentially known).

Lemma 2.5. Let G be the graph defined above. Then it has the following

properties:

(i) For every pair of vertices in G there is exactly one vertex of G adjacent to both of

them.
(ii) The largest eigenvalue of the adjacency matrix of G is p þ 1 and all other

eigenvalues are 7
ffiffiffi
p

p
:

(iii) The set V0 of all vertices of G with loops has size at most 2ðp þ 1Þ:

Proof. (i) Let vi; vj be two distinct vertices of G; then they span a two-

dimensional subspace of F3p: Thus, the set of vectors orthogonal to vi and vj

has dimension one and corresponds to a unique vertex of G adjacent to both
vi and vj:

(ii) Let AG ¼ ðaijÞ be the adjacency matrix of G; where aii corresponds to the

number of loops at vertex i and let l1Xl2X?Xln be its eigenvalues. Since the

graph G is ðp þ 1Þ-regular we have that l1 ¼ p þ 1: Consider now the matrix A2G:

Clearly, this matrix has eigenvalues l21;y; l2n: By definition, every vertex of G has at

most one loop. Therefore, the diagonal entries of A2G are just the degrees of vertices

of G and thus are equal to p þ 1: In addition, for any iaj the ijth entry of this matrix
is simply the number of vertices adjacent to both vi and vj and by (i) is equal to 1.

Using this it is easy to deduce that the eigenvalues of A2G are ðp þ 1Þ2 with
multiplicity one and p with multiplicity n � 1: This implies that all eigenvalues of AG

except the first one are 7
ffiffiffi
p

p
:

(iii) By definition, the size of V0 is the number of one-dimensional subspaces of F
3
p

which are self-orthogonal. Note that any vector ðx; y; zÞ in F3p; which is self-

orthogonal satisfies the equation x2 þ y2 þ z2 ¼ 0 over Fp: Since for every choice of x

and y we can have at most two values for z which will satisfy the equation, we obtain

that the number of non-zero solutions of this equation is at most 2ðp2 � 1Þ: Since
every one-dimensional self-orthogonal subspace contains p � 1 such solutions and
no solution is contained in two different subspaces we conclude that jV0jp2ðp

2�1Þ
p�1 ¼

2ðp þ 1Þ: This completes the proof. &

Remark. Actually, one can show that jV0j ¼ p þ 1; but for our purposes it is enough
to have the above weaker bound which is easier to prove.
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Let G be the graph constructed above. From assertion (i) of Lemma 2.5 it follows
immediately that G contains no cycles of length 4. In addition, every edge ðvi; vjÞ of
this graph, for which vi; vjeV0; is contained in some cycle of length 3: Indeed, in this

case vi; vj have a common neighbor which is distinct from both of them. Also, using

Lemma 2.4 we have

f ðGÞpdn

4
� lnn

4
p

dn

4
þ

ffiffiffi
p

p
n

4
¼ dn

4
þ Oðn5=4Þ:

Let H be the graph obtained from G by deleting all edges of G adjacent to vertices
in V0; i.e., edges not contained in any cycle of length 3. By definition, H is a graph of
order n which has at least

eðHÞXdn � 2ðp þ 1ÞjV0j
2

X
dn

2
� 2ðp þ 1Þ2 ¼ dn

2
� OðnÞ ¼ ð1=2þ oð1ÞÞn3=2

edges. Every edge of H is contained in some cycle of length 3 and the maximum
bipartite subgraph of H still has size at most

f ðHÞpf ðGÞpdn

4
þ Oðn5=4Þ ¼ eðHÞ

2
þ OðnÞ þ Oðn5=4Þ ¼ eðHÞ

2
þ Oðn5=4Þ:

Hence, to complete the proof of Theorem 1.2 we need to prove the lemma below.

Lemma 2.6. Let H be a graph of order n with e ¼ ð1=2þ oð1ÞÞn3=2 edges and with the

following properties:

* H has no cycles of length 4;
* every edge of H is contained in some triangle, i.e., cycle of length 3;
* f ðHÞpe

2
þ Oðn5=4Þ:

Then H contains a subgraph H0 with m ¼ 2e=3 ¼ ð1=3þ oð1ÞÞn3=2 edges and girth at

least 5, for which

f ðH0Þp
m

2
þ Oðn5=4Þ ¼ m

2
þ Oðm5=6Þ:

Proof. First note that since H has no cycle of length 4 every two triangles in H

are edge disjoint. Since every edge of this graph is contained in some triangle
we conclude that the set of edges of H is a union of e=3 edge disjoint triangles.
Let H0 be a subgraph of H obtained by deleting uniformly at random one edge
from every triangle in H: Clearly the number of edges in H0 is 2e=3; since
H0 contains precisely two edges from every triangle in H: In addition, H0 is
triangle-free, since we destroyed all triangles in H: This implies that the girth of H0 is
at least 5.
Next we show that with probability 1� oð1Þ; the new graph contains no

large bipartite subgraphs and thus satisfies the assertion of the lemma. Indeed,
let VðHÞ ¼ V1,V2 be an arbitrary partition of V into two disjoint subsets and
let t ¼ eHðV1;V2Þ be the number of edges in the corresponding bipartite subgraph of
H: Note that for every triangle in H either none or two of its edges belong to the cut
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ðV1;V2Þ: It follows that we can find a set C1;y;Ct=2 of edge disjoint triangles such

that every Ci contains precisely two edges from the cut ðV1;V2Þ: Recall that for every
triangle Ci; 1pipt=2 we deleted one of its edges uniformly at random. Let
x0

i; 1pipt=2; be the random variable equal to the number of edges of the triangle Ci

that belong to the cut ðV1;V2Þ and were not deleted and let xi ¼ x0
i � 1: By

definition, we have that xi ¼ 1 with probability 13 (i.e., in case when we delete the edge
of Ci not in the cut) and xi ¼ 0 with probability 23 (i.e., in case when we delete one of
the two edges of Ci that are in the cut). Clearly, the total number of edges of the

graph H0 in the cut ðV1;V2Þ equals eH0ðV1;V2Þ ¼
Pt=2

i¼1 x0
i ¼ t=2þ

Pt=2
i¼1 xi: Since

X ¼
Pt=2

i¼1 xi ¼ eH0ðV1;V2Þ � t=2 is a binomially distributed random variable with

parameters t=2 and 1
3
; it follows by the standard estimates for Binomial distributions

(see, e.g., [5, Appendix A]) that

Pr X � t

6
4a ¼ cn5=4

� �
pe�Oða2=tÞ ¼ e�Oðc2n5=2=tÞ:

Choosing c large enough and using the fact that tpmpOðn3=2Þ we conclude that

Pr eH0ðV1;V2Þ �
2

3
t4cn5=4

	 

¼ Pr X � t

6
4cn5=4

� �
oe�n:

Since the total number of partitions of H is at most 2n; this implies that with
probability 1� oð1Þ for every partition V ¼ V1,V2 we have

eH0ðV1;V2Þp23 eHðV1;V2Þ þ Oðn5=4Þ:

In particular, since the number of edges in H0 is m ¼ 2e=3 ¼ ð1
3
þ oð1ÞÞn3=2 we obtain

that with probability 1� oð1Þ the size of a maximum bipartite subgraph of H0
satisfies

f ðH0Þp
2

3
f ðHÞ þ Oðn5=4Þ ¼ 2

3

e

2
þ Oðn5=4Þ

� �
þ Oðn5=4Þ

¼m

2
þ Oðn5=4Þ ¼ m

2
þ Oðm5=6Þ:

This completes the proof of the lemma. &

In fact, relying on known results on distances between consecutive primes
(see, e.g., [6]), one may prove that the assertion of Theorem 1.2 holds for all m:
To show this, we can take, for a given m; several disjoint copies (of varying sizes)
of the graph H0 ¼ H0ðpÞ constructed in Lemma 2.6 so that their total number
of edges is less than m and is at least m � oðm5=6Þ; and then add, if necessary,
some isolated edges to create a graph G with girth at least 5 and m edges,
satisfying

f ðGÞpm

2
þ c0m

5
6:

This shows that for r ¼ 5 the exponent 5
6
in Theorem 1.1 cannot be improved.
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3. Judicious partitions

3.1. Background

It is easy to prove that a partition ðV1;V2Þ of a graph G ¼ ðV ;EÞ with m edges, for
which every vertex vAVi has at least as many neighbors of the opposite part V3�i as

of its own part, is such that eðV1Þ; eðV2Þp12 eðV1;V2Þ; and therefore

eðV1Þ; eðV2Þpm=3: Since a partition with the maximal number of crossing edges
clearly has the above property, we get that gðGÞpm=3: This bound is optimal as
shown by the example of a complete graph K3: However, for large values of m one
can expect to do much better. The probabilistic reasoning, described in the
introduction, indicates that the right answer for growing m should be around m=4:
Indeed, Porter [15] proved in 1992 that every graph with mX1 edges has a bipartition

in which each class contains at most m=4þ
ffiffiffiffiffiffiffiffiffi
m=8

p
edges. The best possible bound

for a general graph has been obtained by the second author and Scott in [7], where it
was proved that for a graph G with m edges,

gðGÞpm

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

32
þ 1

256

r
� 1
16

;

i.e., exactly one half of the Edwards bound for bipartite cuts. (In fact, it was proven
in [7] that there exists a partition ðV1;V2Þ meeting both the bound of Edwards for
bipartite cuts and the above stated bound for judicious partitions). This bound is
exact for complete graphs of odd order. To the best of our knowledge, the judicious
partitioning problem for graphs with forbidden subgraphs has not been considered
in the literature.
The problems of bounding bipartite cuts and judicious partitions are closely

related. Hence, a rather natural approach to the (probably more complicated)
judicious partitioning problem would be to derive bounds for judicious partitions
from those on bipartite cuts. This approach is carried out in our Theorem 1.3, where
it is proven that if a general graph G with m edges has a bipartite cut with m=2þ d
edges, i.e., with a surplus d ¼ oðmÞ over the trivial m=2 bound, then this surplus can
be divided almost equally between the two parts of the cut, resulting in a partition in

which both parts span about m=4� d=2þ oðdÞ þ Oð
ffiffiffiffi
m

p
Þ edges. (Observe that the

Oð
ffiffiffiffi
m

p
Þ correction term is needed in this estimate due to the optimality of the above-

stated result of [7]). Moreover, as we are about to show, the proof starts with an
optimal bipartite cut and proceeds by moving vertices between the two parts V1 and
V2 so as to balance the number of edges spanned by them, while maintaining the
almost optimality of the bipartite cut between V1 and V2: For the case of d linear in
m; Theorem 1.4 shows that gðGÞ is smaller than m=4 by an additive factor linear in
m: Thus, Theorems 1.3 and 1.4 form a bridge between the two problems considered
in this paper and enable one to derive results on the judicious partition problem by
looking at the corresponding bipartite cut problem. Combining this with Theorem
1.1 results in Corollary 1.5, bounding from above the value of an optimal judicious
partition in graphs without short cycles.
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The proofs of Theorems 1.3 and 1.4 are given in the next subsection.

3.2. Proofs of Theorems 1.3 and 1.4

For a vertex vAV and a subset UDV we denote by dðv;UÞ the number of
neighbors of v in U :

Proof of Theorem 1.3. The main ingredient of the proof is the following
lemma.

Lemma 3.1. Let G ¼ ðV ;EÞ be a graph with m edges and with f ðGÞ ¼ m
2
þ d; where

dpm
30
: Suppose V ¼ V1,V2 is a partition of VðGÞ for which dðv;V1Þpdðv;V2Þ for

every vertex vAV1: If eðV1ÞXm
4
� d
2
; then there exists a vertex vAV1 such that

dðv;V1Þp3
ffiffiffiffi
m

p
and dðv;V2Þpð1þ 10d

m
Þdðv;V1Þ:

Proof. We prove the lemma by showing that the total degree of vertices
of V1 violating any of the required conditions does not reach the total degree of
vertices in V1:

Define T1 ¼ fvAV1: dðv;V1Þ43
ffiffiffiffi
m

p
g: Observe that as dðv;V1Þpdðv;V2Þ for every

vertex vAV1; it follows that

2eðV1Þ ¼
X
vAV1

dðv;V1Þp
X
vAV1

dðv;V2Þ ¼ eðV1;V2Þ;

implying eðV1Þpm=3: Thus, jT1jp2eðV1Þ=ð3
ffiffiffiffi
m

p
Þp2

ffiffiffiffi
m

p
=9: Therefore, the set T1

spans at most 2m=81 edges. As in the summation
P

vAT1
dðv;V1Þ; the edges

spanned by T1 are counted twice and every other edge inside V1 is counted at
most once, we getX

vAT1

dðv;V1ÞpeðV1Þ þ eðT1ÞpeðV1Þ þ
2m

81
: ð2Þ

Define now T2 ¼ fvAV1: dðv;V2Þ4ð1þ 10d
m
Þdðv;V1Þg: Then

eðV1;V2Þ ¼
X
vAT2

dðv;V2Þ þ
X

vAV1\T2

dðv;V2Þ

X 1þ 10d
m

	 
X
vAT2

dðv;V1Þ þ
X

vAV1\T2

dðv;V1Þ

¼
X
vAV1

dðv;V1Þ þ
10d
m

X
vAT2

dðv;V1Þ ¼ 2eðV1Þ þ
10d
m

X
vAT2

dðv;V1Þ;

implyingX
vAT2

dðv;V1Þp
m

10d
ðeðV1;V2Þ � 2eðV1ÞÞ:
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Observe that eðV1;V2Þpf ðGÞ ¼ m
2
þ d and that by the lemma assumption

eðV1ÞXm
4
� d
2
: Hence,

X
vAT2

dðv;V1Þp
m

10d
m

2
þ d� 2 m

4
� d
2

	 
	 

¼ m

5
: ð3Þ

From (2) and (3) we deriveX
vAT1,T2

dðv;V1ÞpeðV1Þ þ
2m

81
þ m

5
oeðV1Þ þ 0:23m: ð4Þ

On the other hand, recalling our assumption on d; we can see thatX
vAV1

dðv;V1Þ ¼ 2eðV1ÞXeðV1Þ þ
m

4
� d
2
XeðV1Þ þ

m

4
� m

60
4eðV1Þ þ 0:23m: ð5Þ

Comparing (4) and (5) shows that not all vertices of V1 are in the union of T1 and T2:
It follows from the definitions of T1 and T2 that any vertex in V1\ðT1,T2Þ meets the
requirements of the lemma. &

We now prove Theorem 1.3. Let V ¼ U1,U2 be a partition of V satisfying
eðU1;U2Þ ¼ f ðGÞ ¼ m

2
þ d and eðU1ÞXeðU2Þ: Clearly for every vertex uAU1;

dðu;U1Þpdðu;U2Þ; as otherwise moving u from U1 to U2 would create a bipartite
cut of size larger than eðU1;U2Þ ¼ f ðGÞ:We will achieve a partition with the desired
properties by starting from ðU1;U2Þ and by moving a number of vertices from U1 to
U2 in order to balance the number of edges spanned by those subsets. Lemma 3.1
will help us to maintain the size of the cut almost unchanged. Formally, we start by

assigning V1 ¼ U1; V2 ¼ U2: Then, as long as eðV1ÞXm
4
� d
2
þ 3

ffiffiffiffi
m

p
; we find a vertex

viAV1; for which dðvi;V1Þp3
ffiffiffiffi
m

p
and dðvi;V2Þpð1þ 10d

m
Þdðvi;V1Þ and transfer it to

V2: It is easy to see that the conditions of Lemma 3.1 still apply and therefore such a
vertex indeed can be found. We denote dðvi;V1Þ ¼ ai; dðvi;V2Þ ¼ bi: Note that

bipð1þ 10d
m
Þai:

Let us look at the final partition ðV1;V2Þ after the above-described process has
terminated. Suppose the vertices moved from V1 to V2 are v1;y; vt: Clearly,

eðV1Þo
m

4
� d
2
þ 3

ffiffiffiffi
m

p
: ð6Þ

We now estimate from above the number of edges in V2: To this end, denote eðU1Þ ¼
m1; then eðU2Þ ¼ m � eðU1;U2Þ � eðU1Þ ¼ m

2
� d� m1: As 2eðU1ÞpeðU1;U2Þ ¼ m

2
þ

d; we get m1pm
4
þ d
2
: Notice that while moving a vertex vi from V1 to V2 during the

process, we deleted ai edges from V1 and added bi edges to V2: Therefore, for the
final partition ðV1;V2Þ we get

eðV1Þ ¼ eðU1Þ �
Xt

i¼1
ai ¼ m1 �

Xt

i¼1
ai; ð7Þ
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eðV2Þ ¼ eðU2Þ þ
Xt

i¼1
bi ¼

m

2
� d� m1 þ

Xt

i¼1
bip

m

2
� d� m1

þ 1þ 10d
m

	 
Xt

i¼1
ai: ð8Þ

As each time we moved from V1 to V2 a vertex vi with dðvi;V1Þp3
ffiffiffiffi
m

p
; it follows that

in the final partition ðV1;V2Þ; eðV1ÞXm
4
� d
2
; since (6) was violated just before the last

step. Hence, from (7)

Xt

i¼1
ai ¼ m1 � eðV1Þpm1 �

m

4
þ d
2
:

Therefore, it follows from (8) that

eðV2Þp
m

2
� d� m1 þ 1þ 10d

m

	 

m1 �

m

4
þ d
2

	 


¼m

4
� d
2
þ 10d

m
m1 �

m

4
þ d
2

	 


p
m

4
� d
2
þ 10d

2

m
:

This together with (6) establishes the theorem. &

Proof of Theorem 1.4. The proof here is similar to that of Theorem 1.3, with
parameters tuned so as to guarantee the error term m=100:
We claim that the desired partition can be obtained using the following procedure.

Start with an optimal bipartite cut V ¼ U1,U2; for which eðU1;U2Þ ¼ f ðGÞ ¼ m
2
þ d

and eðU1ÞXeðU2Þ: Initialize V1 ¼ U1; V2 ¼ U2; and then, as long as eðV1Þ4
m=4� m=100 and V1 contains a vertex vi for which

dðvi;V1Þpm=400 ð9Þ

and

dðvi;V2Þp 1þ
dþ m

50
23m

100

0
B@

1
CAdðvi;V1Þ; ð10Þ

move vi to V2:
Let us show first that the algorithm terminates successfully, i.e., reaches the

stage where eðV1Þpm
4
� m
100

: To do so we need to show that as long as the

last condition is not fulfilled a required vertex viAV1; satisfying conditions (9)
and (10) exists. Suppose we are at some intermediate stage and the current partition
is ðV1;V2Þ: Define T1 ¼ fvAV1 : dðv;V1ÞXm=400g: Then, as eðV1Þpm=3;

jT1jp2eðV1Þ=ðm=400Þpð2m=3Þ=ðm=400Þ ¼ 800
3
; and therefore T spans at most
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ð800
3
Þ2=2o36 000 edges. Hence, similarly to the proof of Theorem 1.3,X

vAT1

dðv;V1ÞpeðV1Þ þ eðT1ÞoeðV1Þ þ 36 000: ð11Þ

Set now

T2 ¼ vAV1: dðv;V2Þ4 1þ
dþ m

50
23m
100

 !
dðv;V1Þ

( )
:

Then, again as in the proof of Theorem 1.3, we getX
vAT2

dðv;V1Þp
23m
100

dþ m
50

ðeðV1;V2Þ � 2eðV1ÞÞ

p
23m
100

dþ m
50

m

2
þ d� 2 m

4
� m

100

� �� �
¼ 23m
100

: ð12Þ

Therefore, from (11) and (12) we getX
vAT1,T2

dðv;V1ÞoeðV1Þ þ 36 000þ
23m

100
oeðV1Þ þ 0:24mo2eðV1Þ

for sufficiently large m; and hence V1\ðT1,T2Þa|; implying the existence of a vertex
with the required properties.
Let us now estimate the number of edges spanned by the final sets V1 and V2:

Obviously,

eðV1Þp
m

4
� m

100
: ð13Þ

Denote eðU1Þ ¼ m1; then m1peðU1;U2Þ=2 ¼ m
4
þ d
2
: Suppose we transferred from

V1 to V2 vertices v1;y; vt; whose degrees (at the time of movement) were ai ¼
dðvi;V1Þ and bi ¼ dðvi;V2Þ: As in the end eðV1ÞXm

4
� m
100

� m
400

¼ 19m
80
; we get

Xt

i¼1
aipm1 �

19m

80
;

implying

Xt

i¼1
bip 1þ

dþ m
50

23m
100

 !
m1 �

19m

80

	 

:

Therefore,

eðV2Þ ¼
m

2
� d� m1 þ

Xt

i¼1
bio

m

2
� d� m1 þ 1þ

dþ m
50

23m
100

 !
m1 �

19m

80

	 


¼ 21m
80

� dþ
ðdþ m

50
Þðm1 � 19m

80
Þ

23m
100

p 21m
80

� dþ ðdþm
50
Þðd
2
þm
80
Þ

23m
100

:
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We may assume that dp13m50 ; as otherwise the initial partition ðU1;U2Þ satisfies the
theorem requirements. An easy check shows that for every d in the interval ½m

30
; 13m
50
�

the bound on eðV2Þ from the last display, viewed as a quadratic function of the
parameter d; is strictly less than 0:24m: This together with (13) completes the proof
of Theorem 1.4. &

4. Concluding remarks

* The following strengthening of the conjecture of Erd +os seems plausible:

Conjecture 4.1. For every rX4; there exist c1 ¼ c1ðrÞ; c2 ¼ c2ðrÞ40 so that

m

2
þ c1m

r
rþ1ofrðmÞom

2
þ c2m

r
rþ1:

Note that by Theorem 1.1 the lower bound indeed holds, and by the results of [2]
and by our results here, the upper bound also holds for r ¼ 4; 5: Moreover, the
construction in [1] can be generalized to provide, for every even value of r; graphs

with m edges in which the maximum bipartite subgraph is of size at most m
2
þ

c3m
r

rþ1; which contain no odd cycles of length smaller than r: Unfortunately, these
graphs do have short even cycles, and therefore do not prove the upper bound of
the above conjecture as stated, though they do provide further indication that its
assertion holds.

* It is not difficult to use some of the techniques given here and show that for every
fixed graph H there exists a constant e ¼ eðHÞ40 such that for any H-free graph

G with m edges f ðGÞXm
2
þ Oðm1=2þeÞ: (One can for example first show that the

chromatic number of a Kr-free graph G with m edges satisfies wðGÞ ¼ Oðm1=2�dÞ
for some d ¼ dðrÞ40 by applying known bounds on the off-diagonal Ramsey
numbers RðKr;KnÞ; and then invoke Lemma 2.1.) Using the results in [4] we can
obtain some explicit reasonable estimates for certain specific graphs H: However,
we suspect that in fact much more is true, and for any H-free graph G with m

edges, f ðGÞXm
2
þ Oðm3=4þeÞ: It is worth noting that the random graph G ¼

Gðn; pÞ; satisfies, almost surely, f ðGÞXn2p
4
þ Oðn ffiffiffiffiffi

np
p Þ for every p ¼ pðnÞ satisfy-

ing, say, pp1
2
: To see that this is the case fix an ordering v1; v2;y; vn of the set of

vertices V of G; and construct the cut V ¼ V1,V2 greedily, by putting each
vertex vi in its turn in the part which adds more edges to the constructed bipartite
graph. Since we can expose the edges from vi to all previous vertices only after we
have already partitioned these vertices, there is an expected discrepancy of

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði � 1Þp

p
Þ between the number of edges from vi to the two parts constructed

so far, implying the desired estimate. Note that even for p ¼ 1
2
this gives that

almost surely f ðGÞ ¼ n2

4 þ Oðn3=2Þ ¼ m
2 þ Oðm3=4Þ; and it is easy to see that the

order of the error term here (and for all other reasonable values of p) is tight.
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