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Maximizing the number of q-colorings

Po-Shen Loh, Oleg Pikhurko and Benny Sudakov

Abstract

Let PG(q) denote the number of proper q-colorings of a graph G. This function, called the
chromatic polynomial of G, was introduced by Birkhoff in 1912, who sought to attack the famous
four-color problem by minimizing PG(4) over all planar graphs G. Since then, motivated by
a variety of applications, much research was done on minimizing or maximizing PG(q) over
various families of graphs. In this paper, we study an old problem of Linial and Wilf, to find the
graphs with n vertices and m edges which maximize the number of q-colorings. We provide the
first approach that enables one to solve this problem for many nontrivial ranges of parameters.
Using our machinery, we show that for each q � 4 and sufficiently large m < κqn

2, where κq ≈
1/(q log q), the extremal graphs are complete bipartite graphs minus the edges of a star, plus
isolated vertices. Moreover, for q = 3, we establish the structure of optimal graphs for all large
m � n2/4, confirming (in a stronger form) a conjecture of Lazebnik from 1989.

1. Introduction

The fundamental combinatorial problem of graph coloring is as ancient as the cartographer’s
task of coloring a map without using the same color on neighboring regions. In the context of
general graphs, we say that an assignment of a color to every vertex is a proper coloring if no
two adjacent vertices receive the same color, and we say that a graph is q-colorable if it has a
proper coloring using only at most q different colors.

The problem of counting the number PG(q) of q-colorings of a given graph G has been the
focus of much research over the past century. Although it is already NP-hard even to determine
whether this number is nonzero, the function PG(q) itself has very interesting properties. It
was first introduced by Birkhoff [6], who proved that PG(q) is always a polynomial in q.
It is now called the chromatic polynomial of G. Although PG(q) has been studied for its
own sake (for example, Whitney [34] expressed its coefficients in terms of graph theoretic
parameters), perhaps more interestingly there is a long history of diverse applications which
has led researchers to minimize or maximize PG(q) over various families of graphs. In fact,
Birkhoff’s original motivation for investigating the chromatic polynomial was to use it to attack
the famous four-color theorem. Indeed, one way to show that every planar graph is four-
colorable is to minimize PG(4) over all planar G, and show that the minimum is nonzero. In
this direction Birkhoff [7] proved the tight lower bound PG(q) � q(q − 1)(q − 2)(q − 3)n−3 for
all n-vertex planar graphs G when q � 5, later conjecturing with Lewis in [8] that it extended
to q = 4 as well.

Linial [22] arrived at the problem of minimizing the chromatic polynomial from a completely
different motivation. The worst-case computational complexity of determining whether a
particular function f : V (G) → R is a proper coloring (that is, satisfies f(x) �= f(y) for every
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pair of adjacent vertices x and y) is closely related to the number of acyclic orientations of a
graph, which equals |PG(−1)|, obtained by substituting q = −1 into the formal polynomial
expression of PG(q). Lower bounding the worst-case complexity, therefore, corresponds to
minimizing |PG(−1)| over the family Fn,m of graphs with n vertices and m edges. Linial
showed that surprisingly, for any n,m there is a graph which simultaneously minimizes each
|PG(q)| over Fn,m, for every integer q. This graph is simply a clique Kk with an additional
vertex adjacent to l vertices of the Kk, plus n− k − 1 isolated vertices, where k, l are the
unique integers satisfying m =

(
k
2

)
+ l with k > l � 0. At the end of his paper, Linial posed the

problem of maximizing PG(q) over all graphs in Fn,m.
Around the same time, Wilf arrived at exactly that maximization problem while analyzing

the backtrack algorithm for finding a proper q-coloring of a graph (see [5, 35]). Although
this generated much interest in the problem, it was only solved in sporadic cases. The special
case q = 2 was completely solved for all m,n, by Lazebnik [18]. For q � 3, the only nontrivial
pairs m,n for which extremal graphs were known corresponded to the number of vertices and
edges in the Turán graph Tr(n), which is the complete r-partite graph on n vertices with all
parts of size either �n/r� or �n/r�. In this vein, Lazebnik [20] proved that Tr(n) is optimal for
very large q = Ω(n6), and proved with Pikhurko and Woldar [21] that T2(2k) is optimal when
q = 3 and asymptotically optimal when q = 4.

Outside these isolated cases, very little was known for general m,n. Although many upper
and lower bounds for PG(q) were proved by various researchers [10, 18, 19, 23], these bounds
were widely separated. Even the q = 3 case resisted solution: twenty years ago, Lazebnik [18]
conjectured that when m � n2/4, the n-vertex graphs with m edges which maximized the
number of three-colorings were complete bipartite graphs minus the edges of a star, plus isolated
vertices. Only very recently, Simonelli [24] managed to make some progress on this conjecture,
verifying it under the additional very strong assumption that all optimal graphs are already
bipartite.

Perhaps part of the difficulty for general m,n, q stems from the fact that the maximal graphs
are substantially more complicated than the minimal graphs that Linial found. For number-
theoretic reasons, it is essentially impossible to explicitly construct maximal graphs for general
m,n. Furthermore, even their coarse structure depends on the density m/n2. For example,
when m/n2 is small, the maximal graphs are roughly complete bipartite graphs, but after
m/n2 > 1

4 , the maximal graphs become tripartite. At the most extreme density, when m,n
correspond to the Turán graph Tq(n), the unique maximal graph is obviously the complete
q-partite graph. Therefore, in order to tackle the general case of this problem, one must devise
a unified approach that can handle all of the outcomes.

In this paper, we propose such an approach, developing the machinery that one might be able
to use to determine the maximal graphs in many nontrivial ranges ofm,n. Our methodology can
be roughly outlined as follows. We show, via Szemerédi’s regularity lemma, that the asymptotic
solution to the problem reduces to a certain quadratically constrained linear program in 2q − 1
variables. For any given q, this task can, in principle, be automated by a computer code that
symbolically solves the optimization problem, although a more sophisticated approach was
required to solve this for all q. Our solutions to the optimization problem then give us the
approximate structure of the maximal graphs. Finally, we use various local arguments, such as
the so-called ‘stability’ approach introduced by Simonovits [25], to refine their structure into
precise results.

We successfully applied our machinery to solve the Linial–Wilf problem for many nontrivial
ranges of m,n, and q � 3. In particular, for q = 3, our results confirm a stronger form
of Lazebnik’s conjecture when m is large. In addition, for each q � 4 we show that for
all densities m/n2 up to approximately 1/(q log q), the extremal graphs are also complete
bipartite graphs minus a star. In order to state our results precisely, we need the following
definition.
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Definition 1.1. Let a � b be positive integers. We say that G is a semi-complete subgraph
of Ka,b if the number of missing edges E(Ka,b) \ E(G) is less than a, and they form a star
(that is, they share a common endpoint v which we call the center). If v belongs to the larger
side of Ka,b, then we also say that G is correctly oriented.

Define the constant

κq =

(√
log(q/(q − 1))

log q
+

√
log q

log(q/(q − 1))

)−2

≈ 1
q log q

.

All logarithms here and in the rest of the paper are in base e ≈ 2.718. In the following theorems,
we write o(1) to represent a quantity that tends to zero as m,n→ ∞.

Theorem 1.2. For every fixed integer q � 3, and any κ < κq, the following holds for
all sufficiently large m with m � κn2. Every n-vertex graph with m edges which maxi-
mizes the number of q-colorings is a semi-complete subgraph (correctly oriented if q � 4)

of some Ka,b, plus isolated vertices, where a = (1 + o(1))
√
m · log q

q−1/ log q and b = (1 +

o(1))
√
m · log q/ log q

q−1 . The corresponding number of q-colorings is qne(−c+o(1))
√

m, where

c = 2
√

log q
q−1 · log q.

Remark. The part sizes of the maximal graphs above all have the ratio roughly
log q/ log q

q−1 . The constant κq corresponds to the densitym/n2 at which the number of isolated
vertices becomes o(n) in the optimal construction.

For three colors, we can push our argument further, beyond the density κ3. Now, due to the
absence of isolated vertices, a rare exception occurs, which requires us to include an additional
possibility. Here, a ‘pendant edge’ means that a new vertex is added, along with a single edge
between it and any other vertex in the graph. Proposition B.1 shows that this outcome is in
fact necessary.

Theorem 1.3. The following holds for all sufficiently large m � n2/4. Every n-vertex
graph with m edges and the maximum number of three-colorings is either (i) a semi-complete
subgraph of some Ka,b, plus isolated vertices if necessary, or (ii) a complete bipartite graph
Ka,b plus a pendant edge. Furthermore,

(i) If m � κ3n
2, then a = (1 + o(1))

√
m · log 3

2/ log 3 and b = (1 + o(1))√
m · log 3/ log 3

2 . The corresponding number of colorings is 3ne−(c+o(1))
√

m, where c =

2
√

log 3
2 · log 3.

(ii) If κ3n
2 � m � 1

4n
2, then a = (1

2 + o(1))(n−√
n2 − 4m) and b = (1

2 + o(1))
(n+

√
n2 − 4m). The corresponding number of colorings is 2b+o(n).

We also considered another conjecture of Lazebnik (see, for example, [21]) that the Turán
graphs Tr(n) are always extremal when r � q. Building upon the techniques in [21] that
answered the r = 2, q = 3 case, we confirmed this conjecture for large n and r = q − 1.

Theorem 1.4. Fix an integer q � 4. For all sufficiently large n, the Turán graph Tq−1(n)
has more q-colorings than any other graph with the same number of vertices and edges.



658 PO-SHEN LOH, OLEG PIKHURKO AND BENNY SUDAKOV

We close by mentioning some related work. Tomescu [26–33] and Dohmen [11, 12] considered
the problem of maximizing or minimizing the number of q-colorings of G given some other
parameters, such as chromatic number, connectedness, planarity, and girth. Wright [36]
asymptotically determined the total number of q-colored labeled n-vertex graphs with m edges,
for the entire range of m; this immediately gives an asymptotic approximation for the average
value of PG(q) over all labeled n-vertex graphs with m edges.

Graph coloring is also a special case of a homomorphism problem, and as we discuss in
our concluding remarks, our approach easily extends to that more general setting. Recall that
a graph homomorphism φ : G→ H is a map from the vertices of G to those of H, such that
adjacent vertices in G are mapped to adjacent vertices in H. Thus, the number of q-colorings of
G is precisely the number of homomorphisms from G to Kq. Another interesting target graph
H is the two-vertex graph consisting of a single edge, plus a loop at one vertex. Then, the
number of homomorphisms is precisely the number of independent sets in G, and the problem
of estimating that number given some partial information about G is motivated by various
questions in statistical physics and the theory of partially ordered sets. Alon [1] studied the
maximum number of independent sets that a k-regular graph of order n can have, and Kahn
[16, 17] considered this problem under the additional assumption that the k-regular graph is
bipartite. This was recently resolved for non-bipartite graphs by Zhao [38]. Galvin and Tetali
[15] generalized the main result from [16] to arbitrary target graphs H.

Another direction of related research was initiated by the question of Erdős and Rothschild
(see Erdős [13, 14], Yuster [37], Alon, Balogh, Keevash, and Sudakov [2], Balogh [4], and
others), about the maximum over all n-vertex graphs of the number of q-edge-colorings
(not necessarily proper) that do not contain a monochromatic Kr-subgraph. Our method is
somewhat similar to that in [2], and these two problems may be more deeply related than just
a similarity in their formulations.

The rest of this paper is organized as follows. The next section contains some definitions, and
a formulation of the Szemerédi regularity lemma. In Section 3, we prove Theorems 3.2 and 3.3,
which (asymptotically) reduce the general case of the problem to a quadratically constrained
linear program. Then, in the next section we solve the relevant instances of the optimization
problem to give approximate versions of our main theorems. Sections 5 and 6 refine these into
the precise forms of Theorems 1.2 and 1.3. We prove Theorem 1.4 in Section 7. The final section
contains some concluding remarks and open problems.

2. Preliminaries

The following (standard) asymptotic notation will be utilized extensively. For two functions
f(n) and g(n), we write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) or
g(n) = Ω(f(n)) if there exists a constant M such that |f(n)| � M |g(n)| for all sufficiently large
n. We also write f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) are satisfied.

We use [q] to denote the set {1, 2, . . . , q}, and 2[q] to denote the collection of all of its subsets.
As mentioned in Section 1, the Turán graph Tq(n) is the complete r-partite graph on n vertices
with all parts of size either �n/r� or �n/r�.

Given two graphs with the same number of vertices, their edit distance is the minimum
number of edges that need to be added or deleted from one graph to make it isomorphic to
the other. We say that two graphs are d-close if their edit distance is at most d.

The rest of this section is devoted to formulating the celebrated Szemerédi regularity lemma.
This theorem roughly states that every graph, no matter how large, can be approximated by an
object of bounded complexity, which corresponds to a union of a bounded number of random-
looking graphs. To measure the randomness of edge distribution, we use the following definition.
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Let the edge density d(A,B) be the fraction e(A,B)/(|A||B|), where e(A,B) is the number of
edges between A and B.

Definition 2.1. A pair (X,Y ) of disjoint subsets of a graph is ε-regular if every pair of
subsets X ′ ⊂ X and Y ′ ⊂ Y with |X ′| � ε|X| and |Y ′| � ε|Y | has |d(X ′, Y ′) − d(X,Y )| < ε.

In this paper, we use the following convenient form of the regularity lemma, which is
essentially Theorem IV.5.29′ in the textbook [9].

Theorem 2.2. For every ε > 0, there is a natural number M ′ = M ′(ε) such that every
graph G = (V,E) has a partition V =

⋃M
i=1 Vi with the following properties. The sizes of the

vertex clusters Vi are as equal as possible (differing by at most 1), their number is between
1/ε � M � M ′, and all but at most εM2 of the pairs (Vi, Vj) are ε-regular.

3. Reduction to an optimization problem

In this section, we show that the solution of the following quadratically constrained linear
program answers our main problem asymptotically. (Observe that the logarithms are merely
constant multipliers for the variables αA.)

Optimization Problem 1. Fix an integer q � 2 and a real parameter γ. Consider the
following objective and constraint functions:

obj(α) :=
∑
A �=∅

αA log |A|; v(α) :=
∑
A �=∅

αA, e(α) :=
∑

A∩B=∅
αAαB .

The vector α has 2q − 1 coordinates αA ∈ R indexed by the nonempty subsets A ⊂ [q], and
the sum in e(α) runs over unordered pairs of disjoint nonempty sets {A,B}. Let Feas(γ)
be the feasible set of vectors defined by the constraints α � 0, v(α) = 1, and e(α) � γ. We
seek to maximize obj(α) over the set Feas(γ), and we define opt(γ) to be this maximum
value, which exists by compactness. We will write that the vector α solves opt(γ) when both
α ∈ Feas(γ) and obj(α) = opt(γ).

Note. In the remainder of this paper, we will write
∑

A instead of
∑

A �=∅ because it is
clear from the definition of α that the empty set is excluded.

Construction 1: Gα(n). Let n and m be the desired numbers of vertices and edges, and
let α ∈ Feas(m/n2) be a feasible vector. Consider the following n-vertex graph, which we call
Gα(n). Partition the vertices into (possibly empty) clusters VA such that each |VA| differs from
nαA by less than 1. For every pair of clusters (VA, VB) which is indexed by disjoint subsets,
place a complete bipartite graph between the clusters.

Observe that any coloring that for each cluster VA uses only colors from A is a proper coloring.
Therefore, if all nαA happened to be integers, then Gα(n) would have at least

∏
A |A|nαA =

eobj(α)n colorings, and also precisely e(α)n2 edges. But we cannot simply apply Construction
1 to the α that solves opt(m/n2), because it may happen that Gα(n) has fewer than m
edges if the entries of α are not integer multiples of 1/n. Fortunately, the shortfall cannot be
substantial.
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Proposition 3.1. The number of edges in any Gα(n) differs from e(α)n2 by less than
2qn. Also, for any other vector ν, the edit distance between Gα(n) and Gν(n) is at most
‖α − ν‖1n

2 + 2q+1n, where ‖ · ‖1 is the L1-norm.

The proof is elementary and routine, so we will defer it to Section 3.4 so as not to interrupt
this exposition. To recover from the O(n) edge deficit, we extend the construction in the
following way.

Construction 2: G′
α(n). Let n and m be the desired number of vertices and edges, and

let α ∈ Feas(m/n2) be a feasible vector. If Gα(n) from Construction 1 already has at least m
edges, then set G′

α(n) = Gα(n).
Otherwise, Gα(n) is short by, say, k edges, and k = O(n) by Proposition 3.1. Let VA be its

largest cluster whose index A is not a singleton. Suppose first that |VA| � 2�√k�. So far VA

does not span any edges, so we can add k edges to Gα(n) by selecting two disjoint subsets
U1, U2 ⊂ VA of size �√k�, and setting a k-edge bipartite graph between them. Call the result
G′

α(n).
The last case is |VA| < 2�√k�. We later show that this only arises when the maximum number

of colorings is only 2o(n), and this is already achieved by the Turán graph Tq(n). Therefore, to
clean up the statements of our theorems, we just define G′

α(n) = Tq(n) here.

3.1. Structure of asymptotic argument

We are now ready to state our theorem, which shows that solutions to Optimization Problem 1
produce graphs which asymptotically maximize the number of q-colorings.

Theorem 3.2. For any ε > 0, the following holds for any sufficiently large n, and any m
less than or equal to the number of edges in the Turán graph Tq(n).

(i) Every n-vertex graph with m edges has fewer than e(opt(m/n2)+ε)n proper q-colorings.
(ii) Any α which solves opt(m/n2) yields a graph G′

α(n) via Construction 2 which has at
least m edges and more than e(opt(m/n2)−ε)n proper q-colorings.

Remark. The number of colorings can only increase when edges are deleted, so one may
take an arbitrary m-edge subgraph of G′

α(n) if one requires a graph with exactly m edges.

The key ingredient in the proof of Theorem 3.2 is Szemerédi’s regularity lemma. Part (ii) is
routine, and full details are given in Section 3.4. On the other hand, the argument for part (i)
is more involved, so we highlight its structure here so that the reader does not get lost in the
details. The proof breaks into the following claims.

Claim 1. For any δ > 0, there exists n0 such that the following holds for any graph G =
(V,E) with n > n0 vertices and m edges. The regularity lemma gives a special partition of the
vertex set into sets V1, . . . , VM of almost equal size, where M is upper bounded by a constant
depending only on δ. Then, we may delete at most δn2 edges of G in such a way that the
resulting graph G′ has the following properties.

(i) Each G′[Vi] spans no edges.
(ii) If G′ has any edges at all between two parts Vi and Vj , then in fact it has an edge

between every pair of subsets U ⊂ Vi, W ⊂ Vj with |U | � δ|Vi| and W � δ|Vj |.
Note that since G′ is a subgraph of G, the number of q-colorings can only increase.
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Claim 2. Let C1 be the set of colorings of G′. Then, if we keep only those colorings C2 ⊂ C1

with the property that in each Vi, any color is used either zero times or at least δ|Vi| times,
we will still have |C2| � e−cδn|C1|. Here, cδ is a constant that tends to zero with δ. Now each
coloring in C2 has the special property that whenever the same color appears on two parts Vi

and Vj , then there cannot be any edges between those entire parts.

Claim 3. By looking at which colors appear on each part Vi, we may associate each coloring
with a map [M ] → 2[q]. Let φ : [M ] → 2[q] be a map which is associated with the maximum
number of colorings in C2. Then, if we keep only those colorings C3 ⊂ C2 which give φ, we still
have |C3| � 2−qM |C2|.

Claim 4. For every nonempty A ⊂ [q], let VA be the union of those parts Vi for which
φ(i) = A. (These are the parts that in all colorings in C3 are colored using exactly colors from
A.) Define the vector α by setting each αA = |VA|/n. Then G′ ⊂ Gα(n), and since G′ only
differs from our original G by at most δn2 edges, we also have α ∈ Feas(m/n2 − δ). Thus

|C3| �
∏
A

|A||VA| = eobj(α)n � eopt(m/n2−δ)n.

Claim 5. The function opt is uniformly continuous. Thus, for an appropriate (sufficiently
small) choice of δ > 0, we have for all sufficiently large n that

PG(q) � PG′(q) � ecδn · 2qM · eopt(m/n2−δ)n < e(opt(m/n2)+ε)n,

as desired. (Recall that PG(q) is the number of q-colorings of G.)

By combining these five claims with an elementary analysis argument, we also obtain a
stability result, which roughly states that if a graph has ‘close’ to the optimal number of
colorings, then it must resemble a graph from Construction 1. A stability result is very useful,
because the approximate structure later allows us to apply combinatorial arguments to refine
our asymptotic results into exact results. We quantify this in terms of the edit distance, which
we defined in Section 2. Recall that we say that two graphs are d-close when their edit distance
is at most d. We prove the following theorem in Section 3.5.

Theorem 3.3. For any ε, κ > 0, the following holds for all sufficiently large n. Let G be
an n-vertex graph with m � κn2 edges, which maximizes the number of q-colorings. Then
G is εn2-close to some Gα(n) from Construction 1, for an α which solves opt(γ) for some
|γ −m/n2| � ε with γ � κ.

Remark. This theorem is only useful if the resulting γ falls within the range of densities
for which the solution of opt is known. The technical parameter κ is used to keep γ within
this range.

3.2. Finer resolution in the sparse case

The regularity lemma is nontrivial only for graphs with positive edge density (that is, a
quadratic number of edges). This typically presents a serious and often insurmountable obstacle
when trying to extend regularity-based results to situations involving sparse graphs. Although
much work has been done to develop sparse variants of the regularity lemma, the resulting
analogs are weaker and much more difficult to apply.
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Let us illustrate the issue by attempting to apply Theorem 3.2 whenm = o(n2). Then, we find
that the maximum number of q-colorings of any n-vertex graph with m edges is ecn+o(n), where
c = opt(0) = log q is a constant entirely determined by q. Note that the final asymptotic is
independent of m, even if m grows extremely slowly compared with n2. This is because the key
parameter was the density m/n2, which already vanished once m = o(n2). Thus, the interesting
question in the sparse case is to distinguish between sparse graphs and very sparse graphs, by
looking inside the o(n) error term in the exponent.

We are able to circumvent these difficulties by making the following key observation which
allows us to pass to a dense subgraph. As it turns out, every sparse graph which maximizes
the number of q-colorings has a nice structure: most of the vertices are isolated, and all of the
edges are contained in a subgraph which is dense, but not too dense. Section 3.6 contains the
following lemma’s short proof, which basically boils down to a comparison against the smallest
Turán graph with at least m edges.

Lemma 3.4. Fix an integer q � 2 and a threshold κ > 0. Given any positive integer m,
there exists an n0 = Θ(

√
m) with m/n2

0 � κ such that the following holds for any n � n0. In
every n-vertex graph G with m edges, which maximizes the number of q-colorings, there is a
set of n0 vertices which spans all of the edges.

The fact that our graph is sparse becomes a benefit rather than a drawback, because it
allows us to limit the edge density from above by any fixed threshold. This is useful, because
we can completely solve the optimization problem for all densities below

κq =

(√
log(q/(q − 1))

log q
+

√
log q

log(q/(q − 1))

)−2

.

We will prove the following proposition in Section 4.1.

Proposition 3.5. Fix an integer q � 3. For any 0 � γ � κq, the unique solution (up to a
permutation of the ground set [q]) to opt(γ) has the following form.

α{1} =
√
γ · log

q

q − 1
/ log q, α{2,...,q} =

γ

α{1}
, α[q] = 1 − α{1} − α{2,...,q}, (1)

with all other αA = 0. This gives opt(γ) = log q − 2
√
γ · log q

q−1 · log q.

Since we have the complete solution of the relevant instance of the optimization problem, we
can give explicit bounds when we transfer our asymptotic results from the previous section to
the sparse case. We can also explicitly describe the graph that approximates any optimal graph,
as follows. Let t1 and t2 be real numbers that satisfy t1/t2 = log q

q−1/ log q and t1t2 = m. Take
a complete bipartite graph between two vertex clusters V1 and V2 with sizes |Vi| = �ti�, and
add enough isolated vertices to make the total number of vertices exactly n. Call the result
Gn,m.

Proposition 3.6. Fix an integer q � 3. The following hold for all sufficiently large
m � κqn

2.

(i) The maximum number of q-colorings of an n-vertex graph with m edges is

qne(−c+o(1))
√

m, where c = 2
√

log q
q−1 · log q. Here, the o(1) term tends to zero as m→ ∞.
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(ii) For any ε > 0, as long as m is sufficiently large, every n-vertex graph G with m edges,
which maximizes the number of q-colorings, is εm-close to the graph Gn,m which we described
above.

We prove this proposition in Section 3.6. Note that part (i) is precisely the final claim of
Theorem 1.2.

3.3. Proof of Theorem 3.2(i)

This section contains the proofs of the claims in Section 3.1, except for Claim 3, which is
obvious. Together, these establish part (i) of Theorem 3.2, which gives the asymptotic upper
bound for the number of q-colorings of an n-vertex graph with m edges.

Proof of Claim 1. Apply Szemerédi’s regularity lemma (Theorem 2.2) with parameter
ε = δ/3 to partition V into nearly equal parts V1, . . . , VM . Then, all but εM2 of the pairs
(Vi, Vj) are ε-regular, and M � 1/ε. Importantly, M is also upper bounded by a constant
independent of n. We clean up the graph in a way typical of many applications of the regularity
lemma. Delete all edges in each induced subgraph G[Vi], all edges between pairs (Vi, Vj) which
are not ε-regular, and all edges between pairs (Vi, Vj) whose edge density is at most ε. Since
all |Vi| = (1 + o(1))n/M , the number of deleted edges is at most

(1 + o(1))
[
M

(
n/M

2

)
+ εM2

( n
M

)2

+ ε

(
n
2

)]
� (1 + o(1))

[
εn2

2
+ εn2 +

εn2

2

]
,

which is indeed less than δn2 when n is sufficiently large.
It remains to show property (ii). The only edges remaining in G′ are those between ε-regular

pairs (Vi, Vj) with edge density greater than ε. By the definition of ε-regularity (and since
δ > ε), the edge density between every pair of sets |U | � δ|Vi|, |W | � δ|Vj | must be positive.
In particular, there must be at least one edge, which establishes property (ii).

Proof of Claim 2. We aim to establish |C2| � e−cδn|C1|, with cδ = qδ log(e2/δ). It is a simple
calculus exercise to verify that cδ → 0 as δ → 0. Let us show that we can obtain any coloring
ψ ∈ C1 by starting with an appropriate coloring ψ′ ∈ C2, and changing only a few color choices.
Since we may assume δ < 1/q, every part Vi has some color c∗i which appears on at least
δ-fraction of its vertices. Now consider each Vi. For every color c which appears less than δ|Vi|
times in Vi, use color c∗i to re-color all vertices of Vi that had color c under ψ. Now all colors
appear either 0 or at least δ|Vi| times, so once we verify that the coloring is still proper, we
will have our desired ψ′ ∈ C2. But the only way to make a monochromatic edge is to have two
distinct parts Vi, Vj , with c∗i = c∗j , joined by at least one edge. Then part (ii) of Claim 1 implies
that there is also some edge between the δ|Vi| vertices in Vi originally colored c∗i under ψ, and
the δ|Vj | vertices in Vj originally colored c∗j . This contradicts the fact that ψ was a proper
coloring.

Reversing the process, it is clear that ψ can be recovered by taking ψ′ ∈ C2 and changing
the colors of at most δ|Vi| vertices for every color c ∈ [q] and every 1 � i � M . Note that for
each c ∈ [q], we recolor a subset of G of total size at most

∑
i δ|Vi| = δn. Using the bounds(

n
r

)
� (en/r)r and (1 + x) � ex, we see that the total number of distinct ways in which we can

modify any given ψ′ ∈ C2 is at most[
δn∑

r=0

(
n
r

)]q

�
[
(1 + δn)

(
n
δn

)]q

�
[
eδn
(en
δn

)δn
]q

= ecδn,

which provides the desired upper bound on |C1|/|C2|.
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The final part of this claim is a simple consequence of property (ii) of Claim 1. Indeed, suppose
that some coloring in C2 assigns the same color c to some vertices Ui ⊂ Vi and Uj ⊂ Vj . Since
this is a proper coloring, there cannot be any edges between Ui and Uj . Yet |Ui| � δ|Vi| and
|Uj | � δ|Vj | by definition of C2. Therefore, by property (ii) of Claim 1, there are no edges at
all between Vi and Vj , as claimed.

Proof of Claim 4. Recall that Gα(n) was obtained in Construction 1 by setting a complete
bipartite graph between every pair (VA, VB) indexed by disjoint subsets. The last part of
Claim 2 implies that G′ has no edges at all between parts Vi and Vj which receive overlapping
color sets under C3. Furthermore, each G′[Vi] is empty by part (i) of Claim 1. Therefore, G′

has no edges in each VA, and also has no edges between any VA and VB that are indexed by
overlapping sets. Hence G′ is indeed a subgraph of Gα(n).

Furthermore, Gα(n) has at least m− δn2 edges, because G′ differs from G by at most
δn2 edges. Yet all nαA are integers by construction, so Gα(n) has precisely e(α)n2 edges.
Therefore, α ∈ Feas(m/n2 − δ), as claimed. The final inequality in Claim 4 follows from the
fact that C3 only uses colors from A to color each VA, and the definitions of αA = |VA|/n and
obj(α) =

∑
A αA log |A|.

Proof of Claim 5. The only nontrivial part of this claim is the continuity of opt on its
domain, which is the set of γ for which Feas(γ) �= ∅. This is easily recognized as the interval
(−∞, q−1

2q ], where the upper endpoint, which corresponds to the q-partite Turán graph, equals
e(α) for the vector α with αA = 1/q for all singletons A. Note that the constraint α � 0
already guarantees that e(α) � 0, so opt is constant on (−∞, 0].

Fix an ε > 0. Since opt is monotonically decreasing by definition, and constant on (−∞, 0], it
suffices to show that any 0 � γ < γ′ � (q − 1)/(2q) with |γ′ − γ| < ε2 has opt(γ′) > opt(γ) −
2q+1ε log q. Select any α which solves opt(γ). We will adjust α to find an α′ ∈ Feas(γ′) with
obj(α′) > obj(α) − 2q+1ε log q, using essentially the same perturbation as in Construction 2.

If there is an αA � 2ε with |A| � 2, shift ε of αA’s value to each of α{i} and α{j} for some
pair of distinct i, j ∈ A (formally, αA falls by 2ε, and each of α{i} and α{j} increase by ε).
This clearly keeps v(α) invariant, and it increases e(α) by at least ε2 because α{i}α{j} is a
summand of e(α). Yet it only reduces obj(α) by at most 2ε log |A| � 2ε log q, so obj(α′) �
obj(α) − 2ε log q, finishing this case.

On the other hand, if all nonsingletons A have αA < 2ε, then obj(α) is already less than 2q ·
2ε log q. Since opt is always nonnegative, we trivially have opt(γ′) � 0 > opt(γ) − 2q+1ε log q,
as desired.

3.4. Proof of Theorem 3.2(ii)

In this section, we establish the asymptotic tightness of our upper bound, by showing that
Construction 2 produces graphs that asymptotically maximize the number of q-colorings. We
will need Proposition 3.1, so we prove it first.

Proof of Proposition 3.1. Define the variables nA = nαA (not necessarily integers), and call
the expressions

∑
A nA and

∑
A∩B=∅ nAnB , the number of fractional vertices and fractional

edges, respectively. Initially, there are exactly n fractional vertices and e(α)n2 fractional edges.
Recall that the construction rounds each nA either up or down to the next integer. Let us

perform these individual roundings sequentially, finishing all of the downward roundings before
the upward roundings. This ensures that the number of fractional vertices is kept at most n
throughout the process. But each iteration changes the number of fractional edges by at most∑

A nA � n, and there are at most 2q iterations, so our final number of edges is indeed within
2qn of m.
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The second part of the proposition is proved similarly. We can apply the same iterative
process to change each part size from αAn to νAn, in such a way that all downward adjustments
are performed first. When updating the coordinate indexed by A ⊂ [q], we affect at most
(|αAn− νAn| + 2)n edges, where the extra 2 comes from the fact that the part sizes were
rounded off. Therefore, after at most 2q total iterations, the total number of edges we edit is
indeed at most ‖α − ν‖1n

2 + 2q+1n.

Proof of Theorem 3.2(ii). Let n and m be given, with m less than the number of edges in
the Turán graph Tq(n). Suppose that we have a vector α ∈ Feas(m/n2) which achieves the
maximum obj(α) = opt(m/n2). Construction 2 produces a graph G′

α(n) with n vertices and
at least m edges, which we will show has more than e(opt(m/n2)−ε)n proper q-colorings, as long
as n is sufficiently large.

If Gα(n) already has at least m edges, then we defined G′
α(n) = Gα(n), which has

at least
∏

A |A|
nαA� �
∏

A |A|nαA−1 = eobj(α)n/
∏

A |A| = eobj(α)n−O(1) colorings, because all
colorings that use only colors from A for each VA are proper.

Otherwise, Gα(n) is short by, say, k edges, which is at most 2qn by Proposition 3.1. If the
largest |VA| indexed by a nonsingleton is at least 2�√k�, then our construction places a k-edge
bipartite graph between U1, U2 ⊂ VA. Let c1 and c2 be two distinct colors in A. Even if we
force every vertex in each Ui to take the color ci, we only lose at most a factor of q2�

√
k = eo(n)

compared with the bound in the previous paragraph. This is because each of the 2�√k� vertices
in U1 ∪ U2 had its number of color choices reduced from |A| � q to 1. Therefore, G′

α(n) still
has at least eobj(α)n−o(n) colorings.

The final case is when all parts of VA indexed by nonsingletons are smaller than 2�√k�.
Here, the construction simply defines G′

α(n) to be the Turán graph Tq(n). Since log |A| = 0
for singletons A, the upper bound on |VA| implies that obj(α) � 2q · 2�√k�/n · log q. This is
less than ε for sufficiently large n, because we had k � 2qn. Then, e(opt(m/n2)−ε)n < 1, which
is of course less than the number of q-colorings of the Turán graph Tq(n). This completes our
proof.

3.5. Proof of Theorem 3.3

In this section, we prove that any n-vertex graph with m edges, which maximizes the number
of q-colorings, is in fact close (in edit-distance) to a graph Gα(n) from Construction 1. In
fact, we prove something slightly stronger: if a graph has ‘close’ to the maximum number of
q-colorings, then it must be ‘close’ (in edit-distance) to an asymptotically optimal graph from
Construction 1.

Lemma 3.7. For any ε, κ > 0, there exists δ > 0 such that the following holds for all
sufficiently large n. Let G be an n-vertex graph with m � κn2 edges and at least e(opt(m/n2)−δ)n

proper q-colorings. Then G is εn2-close to some Gα(n) from Construction 1, for an α which
solves opt(γ) for some |γ −m/n2| � ε with γ � κ.

Note that this lemma immediately implies Theorem 3.3, because Theorem 3.2 estab-
lished that the maximum number of colorings of an n-vertex graph with m edges was
e(opt(m/n2)+o(1))n. Its proof is an elementary analysis exercise in compactness, which only
requires the continuity of obj, opt, v, and e, the fact that α and the edge densities m/n2

reside in compact spaces, and the following consequence of Claims 1–4 of Section 3.1 (whose
simple proof we omit):
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Corollary 3.8. For every δ > 0, the following holds for all sufficiently large n. Every
q-colorable, n-vertex graph G with m edges is δn2-close to a subgraph of some Gα(n) with
α ∈ Feas(m/n2 − δ). Also, G has at most e(obj(α)+δ)n proper q-colorings.

Proof of Lemma 3.7. We proceed by contradiction. Then, there is some fixed ε > 0, a
sequence δi → 0, and a sequence of graphs Gi with the following properties:

(i) Gi has at least as many vertices as required to apply Corollary 3.8 with parameter δi;
(ii) Gi has at least e(opt(mi/n2

i )−δi)ni colorings, where ni and mi are its number of vertices
and edges, and mi � κn2

i ;
(iii) Gi is at least εn2

i -far from Gα(ni) for every α that solves opt(γ) with |γ −mi/n
2
i | � ε.

Applying Corollary 3.8 to each Gi with parameter δi, we find vectors αi ∈ Feas(mi/n
2
i −

δi) such that Gi is δin2
i -close to some subgraph G′

i of Gαi(ni), and each Gi has at most
e(obj(αi)+δi)ni proper q-colorings. Combining this with property (ii) above, we find that each
obj(αi) � opt(mi/n

2
i ) − 2δi. The densities mi/n

2
i and the vectors αi live in bounded (hence

compact) spaces. Therefore, by passing to a subsequence, we may assume that mi/n
2
i → γ � κ

and αi → α for some limit points γ and α.
Observe that by continuity, both α ∈ Feas(γ) and obj(α) � opt(γ). Therefore α solves

opt(γ), that is, obj(α) = opt(γ). Furthermore, although a priori we only knew that e(α) �
γ, maximality implies that in fact e(α) = γ. Indeed, if not then one could shift more mass
to α[q] to increase obj(α) while staying within the feasible set. This would contradict that
obj(α) = opt(γ).

We finish by showing that eventually Gi is εn2
i -close to Gα(ni), contradicting (iii). To do

this, we show that all three of the edit-distances between Gi ↔ G′
i ↔ Gαi(ni) ↔ Gα(ni) are

o(n2
i ). The closeness of the first pair follows by construction since δi → 0, and the closeness of

the last pair follows from Proposition 3.1 because αi → α.
For the central pair, recall that G′

i is actually contained in Gαi(ni), so we only need to
compare their number of edges. In fact, since we already established o(n2

i )-closeness of the first
and last pairs, it suffices to show that the difference between the number of edges in Gi and
Gα(ni) is o(n2

i ). Recall from above that e(α) = γ, and therefore by Proposition 3.1, Gα(ni) has
e(α)n2

i + o(n2
i ) = (γ + o(1))n2

i edges. Yet Gi also has (γ + o(1))n2
i edges, because mi/n

2
i → γ.

This completes the proof.

3.6. Proofs for the sparse case

In this section, we prove the statements which refine our results in the case when the graph
is sparse, that is, when m = o(n2). We begin with the lemma which shows that every sparse
graph with the maximum number of colorings has a dense core which spans all of the edges.

Proof of Lemma 3.4. Let n1 be the number of nonisolated vertices in G, and let r be the
number of connected components in the subgraph induced by the nonisolated vertices. Since
all such vertices there have degree at least 1, we have r � n1/2.

Any connected graph on t vertices has at most q(q − 1)t−1 proper q-colorings, because we
may iteratively color the vertices along a depth-first-search tree rooted at an arbitrary vertex;
when we visit any vertex other than the root, there will only be at most q − 1 colors left to
choose from. Therefore, G has at most qn−n1 · qr · (q − 1)n1−r colorings, where the first factor
comes from the fact that isolated vertices have a free choice over all q colors. Using r � n1/2,
this bound is at most qn−n1/2(q − 1)n1/2.

But since G is optimal, it must have at least as many colorings as the Turán graph Tq(n2) plus
n− n2 isolated vertices, where n2 = Θ(

√
m) is the minimum number of vertices in a q-partite

Turán graph with at least m edges. The isolated vertices already give the latter graph at least
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qn−n2 colorings, so we must have qn−n2 � qn−n1/2(q − 1)n1/2, which implies that

n1 � n2 · (2 log q)/
(

log
q

q − 1

)
. (2)

The expression on the right-hand side is Θ(n2) = Θ(
√
m), so if we define the integer n0 to

be the maximum of right-hand side in (2) and
√
m/κ (rounding up to the next integer if

necessary) then we indeed have n1 � n0 = Θ(n2) = Θ(
√
m).

Next, we prove the first part of Proposition 3.6, which claims that the maximum number of
q-colorings of an n-vertex graph with m � κqn

2 edges is asymptotically qne(−c+o(1))
√

m, where

κq =
(√

log(q/(q−1))
log q +

√
log q

log(q/(q−1))

)−2

and c = 2
√

log q
q−1 · log q.

Proof of Proposition 3.6(i). Let G be an n-vertex graph with m edges, which maximizes the
number of q-colorings. Let n0 be the integer obtained by applying Lemma 3.4 with threshold
κq. If n � n0, then the lemma gives a dense n0-vertex subgraph G′ ⊂ G which contains all
of the edges. Otherwise, set G′ = G. In either case, we obtain a graph G′ whose number of
vertices n′ is Θ(

√
m), and m/(n′)2 � κq.

Since the vertices in G \G′ (if any) are isolated, the number of q-colorings of G is precisely
qn−n′

times the number of q-colorings of G′. Therefore, G′ must also have the maximum
number of q-colorings over all n′-vertex graphs with m edges. Applying Theorem 3.2 to G′,
we find that G′ has e(opt(m/(n′)2)+o(1))n′

colorings. Proposition 3.5 gives us the precise answer
opt(m/(n′)2) = log q − 2

√
m

(n′)2 · log q
q−1 · log q, so substituting that gives us that the number

of q-colorings of G is:

qn−n′ · e(opt(m/(n′)2)+o(1))n′
= qn−n′ · qn′

e(−c+o(1))
√

m = qne(−c+o(1))
√

m,

where c is indeed the same constant as claimed in the statement of this proposition.

We finish this section by proving the stability result which shows that any optimal sparse
graph is εm-close (in edit-distance) to the graph Gn,m defined in Section 3.2.

Proof of Proposition 3.6(ii). Let G be an n-vertex graph with m edges, which maximizes
the number of q-colorings. We will actually show the equivalent statement that G is O((ε+√
ε)m)-close to Gn,m.
As in the proof of part (i) above, we find a dense n′-vertex subgraph G′ ⊂ G that spans all

of the edges, which itself must maximize the number of q-colorings. Using the same parameters
as above, we have n′ = Θ(

√
m) and m � κq(n′)2. By Theorem 3.3, G′ must be ε(n′)2-close

to a graph Gα(n′) from Construction 1, for some α that solves opt(γ) with γ � κq. Since
n′ = Θ(

√
m), the graphs are O(εm)-close. The γ is within the range in which Proposition 3.5

solved Optimization Problem 1, so Gα(n′) is a complete bipartite graph plus isolated vertices,
which indeed resembles Gn,m.

Moreover, the ratio between the sizes of the sides of the complete bipartite graph in Gα(n′)
is correct, because it tends to the constant log q

q−1/ log q regardless of the value of γ. Also, their
product, which equals the number of edges in Gα(n′), is within O(εm) of m because Gα(n′)
is O(εm)-close to the m-edge graph G′. Therefore, each of the sides of the complete bipartite
graph in Gα(n′) differs in size from its corresponding side in Gn,m by at most O(

√
εm). Since

each side of the bipartite graph in Gn,m has size Θ(
√
m), we can transform Gα(n′) into Gn,m

by adding isolated vertices and editing at most O(
√
ε ·m) edges. Yet by the construction of α,

the graphs G′ and Gα(n′) were O(εm)-close, modulo isolated vertices. Therefore, G and Gn,m

are indeed O((ε+
√
ε)m)-close, as claimed.
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4. Solving the optimization problem

In this section, we solve the optimization problem for low densities, for all values of q. We also
solve it for all densities in the case when q = 3.

4.1. Sparse case

The key observation is that when the edge density is low, we can reduce the optimization
problem to one with no edge density parameter and no vertex constraint. This turns out to be
substantially easier to solve.

Optimization Problem 2. Fix an integer q, and consider the following objective and
constraint functions:

obj
∗(α) :=

∑
A

αA log
|A|
q

; e(α) :=
∑

A∩B=∅
αAαB .

The vector α has 2q − 2 coordinates αA ∈ R indexed by the nonempty proper subsets A ⊂ [q],
and the sum in e(α) runs over unordered pairs of disjoint sets {A,B}. Let Feas

∗ be the
feasible set of vectors defined by the constraints α � 0 and e(α) � 1. We seek to maximize
obj

∗(α) over the set Feas
∗, and we define opt

∗ to be this maximum value, which we will
show to exist in Section 4.1.1. We write that the vector α solves opt

∗ when both α ∈ Feas
∗

and obj
∗(α) = opt

∗.

Proposition 4.1. For any given q � 3, the unique solution (up to a permutation of the
base set [q]) to Optimization Problem 2 is the vector α∗ with

α∗
{1} =

√
log

q

q − 1
/ log q, α∗

{2,...q} =
1

α∗
{1}

, and all other α∗
A = 0.

This gives obj
∗(α∗) = −2

√
log q

q−1 · log q.

Let us show how Proposition 4.1 implies Proposition 3.5, which gave the solution to
Optimization Problem 1 for sufficiently low edge densities γ.

Proof of Proposition 3.5. Let α∗ be the unique maximizer for Optimization Problem 2, and
consider any number t � v(α∗). Then α∗ is still the unique maximizer of obj

∗(α) when α is
required to satisfy the vacuous condition v(α) � t as well. Let α be the vector obtained by
dividing every entry of α∗ by t, and adding a new entry α[q] so that v(α) = 1.

Then, α is the unique maximizer of obj
∗(α) when α is constrained by v(α) = 1 and e(α) �

t−2. But when v(α) = 1 is one of the constraints, then obj
∗(α) = obj(α) − log q, so this

implies that α is the unique solution to opt(t−2). Using the substitution γ = t−2, we see that
α is precisely the vector described in (1). Since t � v(α∗) was arbitrary, we conclude that this
holds for all γ below

v(α∗)−2 =

(√
log(q/(q − 1))

log q
+

√
log q

log(q/(q − 1))

)−2

= κq.

4.1.1. Observations for Optimization Problem 2. We begin by showing that obj
∗ attains

its maximum on the feasible set Feas
∗. Since Feas

∗ is clearly nonempty, there is some finite
c ∈ R for which opt

∗ � c. In the formula for obj
∗, all coefficients log (|A|/q) of the αA are
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negative, so we only need to consider the compact region bounded by 0 � αA � c/(log (|A|/q))
for each A. Therefore, by compactness, obj

∗ indeed attains its maximum on Feas
∗.

Now that we know the maximum is attained, we can use perturbation arguments to determine
its location. The following definition will be convenient for our analysis.

Definition 4.2. Let the support of a vector α be the collection of A for which
αA �= 0.

The following lemma will allow us to reduce to the case of considering optimal vectors whose
supports are a partition of [q].

Lemma 4.3. One of the vectors α which solves opt
∗ has support that is a partition of

[q] (a collection of disjoint sets whose union is [q]). Furthermore, if the only partitions that
support optimal vectors consist of a singleton plus a (q − 1)-set, then in fact every vector which
solves opt

∗ is supported by such a partition.

Proof. We begin with the first statement. Let α be a vector which solves opt
∗, and suppose

that its support contains two intersecting sets A and B. We will perturb αA and αB while
keeping all the other α fixed. Since A and B intersect, the polynomial e(α) has no products
αAαB , that is, it is of the form xαA + yαB + z, for some constants x, y, z � 0.

Furthermore, x �= 0, or else we could reduce αA to zero without affecting e(α), but this would
strictly increase obj

∗(α) because all coefficients log |A|/q in obj
∗ are negative. Similarly, y �= 0.

Therefore, we may perturb αA by +ty and αB by −tx, while keeping e(α) fixed. Since we may
use both positive and negative t and obj

∗ itself is linear in αA and αB , optimality implies that
obj

∗ does not depend on t. Hence we may choose a t which drives one of αA or αB to zero (we
are free to pick which one), and obj

∗ will remain unchanged.
Repeating this process, we eventually obtain a vector α which is supported by disjoint sets.

Their union must be the entire [q], because otherwise we could simply grow one of the sets in
the support by adding the unused elements of [q]. This would not affect e(α), but it would
strictly increase obj

∗.
It remains to prove the second part of our lemma. Let α be an optimal vector, and apply the

above reduction process to simplify its support. At the end, we will have a vector supported by
|A| = 1 and |B| = q − 1, by assumption. Each iteration of the reduction removes exactly one
set from the support, so the second to last stage will have some α′ supported by three distinct
sets, two of which are the final A and B, and the third which we call C.

In the reduction, when we consider two overlapping sets, we are free to select which one
is removed. Therefore, we could choose to keep the third set C and remove one of A and B,
and then continue reducing until the support is disjoint, while keeping obj

∗ unchanged. Yet
no matter what C was, it is impossible for this alternative reduction route to terminate in a
partition of [q], contradicting the above observation that any reduction must terminate in a
partition.

Definition 4.4. Let α be a fixed vector whose support is a partition of [q]. For each
A ⊂ [q], define the expressions:

IA = αA

∑
B �=A

αB , JA =
1

obj
∗(α)

· αA log
|A|
q
.
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Lemma 4.5. Let α be a vector which solves opt
∗, whose support is a partition of [q].

Then:

(i) For every A ⊂ [q], we have IA = 2JA. In particular, for each A in the support, IA/αA =
2JA/αA.

(ii) Suppose that A and B are both in the support, and |A| = |B|. Then αA = αB as well.

Proof. We begin with part (i). Fix any A ⊂ [q]. Consider the following operation for small
ε > 0. First, replace αA by (1 + ε)αA. Observe that IA = αA

∑
B:B∩A=∅ αB because the support

of α is a partition of [q]. Therefore we increase e(α) =
∑

A∩B=∅ αAαB by εIA. Next, multiply
all the α (including the one we just increased) by (1 + εIA)−1/2. Then e(α) is still at least 1 and
our perturbed vector is in Feas

∗. Its new objective equals obj
∗(α) · (1 + εJA)/

√
1 + εIA. Since

α maximized the objective (which is always negative), we must have (1 + εJA)/
√

1 + εIA � 1.
Rearranging, this implies that IA � 2JA + εJ2

A. Sending ε→ 0, we see that IA � 2JA. The
opposite inequality follows from considering the replacement of αA by (1 − ε)αA, and then
multiplying α all the by (1 − εIA)−1/2. This establishes part (i).

For part (ii), let S =
∑

C αC . Since the support of α is a partition of [q], S − αA = IA/αA.
By part (i), this equals 2JA/αA = log(|A|/q)/obj

∗(α), which is determined by the cardinality
of A. Therefore, S − αA = S − αB , which implies (ii).

4.1.2. Solution to Optimization Problem 2 for q < 9. In its original form, Optimization
Problem 2 involves exponentially many variables, but Lemma 4.3 dramatically reduces their
number by allowing us to consider only supports that are partitions of [q]. Therefore, we
need to make one computation per partition of [q], which can actually be done symbolically
(hence exactly) by Mathematica. The running time of Mathematica’s symbolic maximization
is double-exponential in the number of variables, so it was particularly helpful to reduce the
number of variables.†

Let us illustrate this process by showing what needs to be done for the partition 7 = 2 + 2 +
3. This corresponds to maximizing αA log 2

7 + αB log 2
7 + αC log 3

7 subject to the constraints
αAαB + αBαC + αCαA � 1 and α � 0. By Lemma 4.5(ii), we may assume αA = αB , so it
suffices to maximize 2x log 2

7 + y log 3
7 subject to x2 + 2xy � 1 and x, y � 0. This is achieved

by Mathematica’s Maximize function:

Maximize[{2 x Log[2/7] + y Log[3/7], x^2 + 2 x y >= 1 && x >= 0
&& y >= 0}, {x, y}]

Mathematica answers that the maximum value is −
√
−(log 7

3 )2 + 4 log 7
3 log 7

2 ≈ −1.9, which

is indeed less than the claimed value −2
√

log 7
7−1 · log 7 ≈ −1.1.

We performed one such computation per partition of each q ∈ {3, . . . , 8}. In every case except
for the partition q = 1 + (q − 1), the maximum indeed fell short of the claimed value. That
final partition is completely solved analytically (that is, including the uniqueness result) by
Lemma 4.6 in the next section. This completes the analysis for all q < 9.

4.1.3. Solution to Optimization Problem 2 for q � 9. We begin by ruling out several
extreme partitions that our general argument below will not handle. As one may expect, each
of these special cases has a fairly pedestrian proof, so we postpone the proofs of the following
two lemmas to the appendix.

†The entire computation for q ∈ {3, . . . , 8} took less than an hour. The complete Mathematica program and
output accompany the arXiv version of this paper.
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Lemma 4.6. Fix any integer q � 3, and let α be a vector which solves opt
∗. If the support

of α is a partition of [q] into exactly two sets, then (up to permutation of the ground set [q])
α must be equal to the claimed unique optimal vector α∗ in Proposition 4.1.

Lemma 4.7. Fix any integer q � 4, and let α be a vector which solves opt
∗, whose support

is a partition of [q]. Then that partition cannot have any of the following forms:
(i) all singletons;
(ii) all singletons, except for one 2-set;
(iii) have a (q − 2)-set as one of the parts.

The heart of the solution to the optimization problem is the following general case, which
we will prove momentarily.

Lemma 4.8. Fix any integer q � 9, and let α be a vector which solves opt
∗, whose support

is a partition of [q]. Then that partition must have a set of size at least q − 2.

These collected results show that opt
∗ has the unique solution that we claimed at the

beginning of this section.

Proof of Proposition 4.1 for q � 9. Let α be a vector which solves opt
∗. By Lemma 4.3,

we may assume that its support is a partition of [q]. It cannot be a single set (of cardinality q),
because indices are proper subsets of [q], and by Lemmas 4.7(iii) and 4.8, the support cannot
contain a set of size � q − 2.

Thus, the support must contain a set of size q − 1, and since it is a partition, the only other
set is a singleton. Then Lemma 4.6 gives us that α equals the claimed unique optimal vector
α∗, up to a permutation of the ground set [q]. This completes the proof.

In the remainder of this section, we prove the general case (Lemma 4.8). The following
definition and fact are convenient, but the proof is a routine calculus exercise, so we postpone
it to the appendix.

Lemma 4.9. Define the function Fq(x) = log q
q−x · log q

x .
(i) For q > 0, Fq(x) strictly increases on 0 < x < q/2 and strictly decreases on q/2 < x < q.
(ii) For q � 9, we have the inequality Fq(3) > 2Fq(1) · (q − 3)/(q − 2).

Proof of Lemma 4.8. Assume for the sake of contradiction that all sets in the support of
the optimal α have size at most q − 3. In terms of the expressions I and J from Definition 4.4,
we have the following equality, where the sums should be interpreted as only over sets in the
support of α:

2 log(|A|/q)
obj

∗(α)
=

2JA

αA
=
IA
αA

=
∑
B �=A

αB =
∑
B �=A

JB · obj
∗(α)

log(|B|/q) .

(The second equality is Lemma 4.5(i), and the other three equalities come from the definitions
of I and J .) Note that the above logarithms are always negative. It is cleaner to work with
positive quantities, so we rewrite the above equality in the equivalent form:

2 log(q/|A|)
obj

∗(α)
=
∑
B �=A

JB · obj
∗(α)

log(q/|B|) .
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Since every B in the above sum is disjoint from A and we assumed all sets in the support have
size at most q − 3, we have that every B above has size |B| � q − max{|A|, 3}. This gives the
upper bound:

2 log(q/|A|)
obj

∗(α)
�
∑
B �=A

JB · obj
∗(α)

log(q/(q − max{|A|, 3}))
2 · log(q/|A|) · log(q/(q − max{|A|, 3}))

obj
∗(α)2

�
∑
B �=A

JB .

Since |A| � max{|A|, 3}, the left-hand side is at least 2Fq(max{|A|, 3})/obj
∗(α)2. Also, Fq(x)

is symmetric about x = q/2 and we assumed that 3 � q/2 and |A| � q − 3, so Lemma 4.9(i)
implies that this is in turn at least 2Fq(3)/obj

∗(α)2. Lemma 4.9(ii) bounds this in terms of
Fq(1), which ultimately gives us the following bound for

∑
B �=A JB :

q − 3
q − 2

� obj
∗(α∗)2

obj
∗(α)2

· q − 3
q − 2

=
4Fq(1)

obj
∗(α)2

· q − 3
q − 2

<
2Fq(3)

obj
∗(α)2

�
∑
B �=A

JB . (3)

Here, α∗ is the claimed optimal vector in Proposition 4.1, and we recognize 4Fq(1) =
obj

∗(α∗)2. The first inequality follows from the maximality of α, and its direction is reversed
because obj

∗ is always negative.
Let t be the number of sets in the support of α. Summing (3) over all sets A in the support:

t · q − 3
q − 2

<
∑
A

∑
B �=A

JB =
∑
B

JB(t− 1).

Yet
∑

B JB = 1 by definition, so this implies t/(t− 1) < (q − 2)/(q − 3), which forces t > q − 2.
Then, the support must be all singletons, except possibly for a single 2-set. This contradicts
Lemma 4.7, and completes our proof.

4.2. Solving the optimization problem for three colors

In this section, we provide the complete analytic solution to Optimization Problem 1, for the
entire range of the edge density parameter γ when the number of colors q is exactly 3. To
simplify notation, we will write α12 instead of α{1,2}, etc.

Recall that κq with q = 3 is

κ3 =

(√
log(3/2)

log 3
+

√
log 3

log(3/2)

)−2

≈ 0.1969.

Proposition 4.10. The unique solution (up to a permutation of the index set {1, 2, 3})
of Optimization Problem 1 with edge density parameter γ is the vector α defined as follows.
(All unspecified αA below are zero.)

(i) If 0 � γ � κ3, then α3 =
√
γ · log 3

2/ log 3, α12 = γ/α3, and α123 = 1 − α12 − α3. This

gives opt(γ) = log 3 − 2
√
γ · log 3 · log 3

2 .

(ii) If κ3 � γ � 1
4 , then α12 = 1+

√
1−4γ
2 and α3 = 1 − α12, which gives opt(γ) = (1 +√

1 − 4γ)/2 · log 2.

(iii) If 1
4 � γ � 1

3 , then α12 = 1−√
12γ−3
2 , α1 = α2 = 1−2α12

3 , and α3 = 1+α12
3 , which gives

opt(γ) = 1−√
12γ−3
2 · log 2.

This covers the entire range of admissible γ, because γ = 1/3 corresponds to the density of
the Turán graph T3(n), which is the densest three-colorable graph.
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4.2.1. Outline of solution. The strategy of the solution is as follows. Suppose that we have
some α that solves opt(γ). Since we may permute the index set, we may assume without loss
of generality that α1 � α2 � α3. We then use perturbation arguments to pinpoint the location
of α. Although the problem initially looks cumbersome (there are seven nontrivially related
variables), the solution cleanly follows from six short steps.

Step 1. By shifting mass (adjusting the values of the αA while conserving their sum
∑

A αA)
between the αA with |A| = 2, we deduce that both α23 and α13 are zero.

Step 2. By smoothing together α1 and α2, we deduce that α1 = α2.

Step 3. By shifting mass between the variables αA with |A| = 1, we reduce to one of the
following two situations. Either α1 = α2 = 0, or 0 < α1 = α2 = α3 − α12.

Step 4. We solve the first case resulting from Step 3, which is vastly simpler than the original
problem. We find that the solution corresponds to outcomes (i) and (ii) of Proposition 4.10.

Step 5. It remains to consider the second case resulting from Step 3. By taking mass away
from both α123 and α1, and giving it to α12, we conclude that α123 = 0.

Step 6. We are left with the situation where the only nonzero variables are α1, α2, α3,
and α12, and they are related by the equation α1 = α2 = α3 − α12. Again, this is vastly
simpler than the original problem, and we find that its solution corresponds to outcome (iii)
of Proposition 4.10.

4.2.2. Details of solution. We begin by recording a simple result that we will use repeatedly
in the solution.

Lemma 4.11. Let α be a vector that solves opt(γ). Then e(α) = γ. Furthermore, if
α′ is obtained from α by shifting mass from some αA to another αB with |A| = |B|,
then e(α′) � e(α).

Proof. Suppose for contradiction that e(α) > γ. The slack in the edge constraint lets
us shift some more mass to α123 while keeping e(α) � γ. But in the definition of obj, the
coefficient (log 3) of α123 is the largest, so this shift strictly increases obj, contradicting
maximality of α.

For the second claim, observe that obj is invariant under the shift since |A| = |B|. Now
suppose for contradiction that e(α′) > e(α). Then, as above, we could shift more mass to
α123, which would strictly increase obj, again contradicting the maximality of α.

Step 1. Consider shifting mass among {α12, α23, α13}. If we hold all other αA constant, then
e(α) = α1α23 + α2α13 + α3α12 + constant, which is linear in the three variables of interest.

Let us postpone the uniqueness claim for a moment. Since we ordered α1 � α2 � α3, shifting
all of the mass from {α13, α23} to α12 will either strictly grow e(α) if α2 < α3, or keep e(α)
unchanged. Also, obj(α) will be invariant. Therefore, if we are only looking for an upper bound
for opt(γ), then we may perform this shift, and reduce to the case when α13 = 0 = α23 without
loss of generality.

We return to the topic of uniqueness. The next five steps of this solution will deduce that,
conditioned on α13 = 0 = α23, the unique optimal α always has either α2 < α3 or α12 = α13 =
α23 = 0. We claim that this implies that our initial shift of mass to α12 never happened. Indeed,
in the case with α2 < α3, the previous paragraph shows that an initial shift would have strictly
increased e(α), violating Lemma 4.11. And in the case with α12 = α13 = α23 = 0, there was
not even any mass at all to shift. Therefore, this will imply the full uniqueness result.
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Step 2. Consider shifting mass between α1 and α2 until they become equal. If we hold all
other αA constant, then e(α) = α1α2 + (α1 + α2)α3 + constant. This ‘smoothing’ operation
strictly increases the first term, while keeping the other terms invariant. But Lemma 4.11
prohibits e(α) from increasing, so we conclude that we must have had α1 = α2.

Step 3. Consider shifting mass among {α1, α2, α3}. That is, fix S = α1 + α2 + α3, and vary
t = α3 in the range 0 � t � S. By Step 2, α1 = α2 = (S − t)/2. Step 1 gave α13 = α23 = 0, so
we have

e(α) = α1α2 + α1α3 + α2α3 + α12α3 =
(S − t)2

4
+ 2 · S − t

2
· t+ α12t

= −3
4
t2 +

(
S

2
+ α12

)
t+

S2

4
.

By Lemma 4.11, α3 = tmust maximize this downward-opening parabola in the range 0 � t � S.
Recall that quadratics f(x) = ax2 + bx+ c reach their extreme value at x = −b/2a, which
corresponds to t = −(S/2 + α12

)
/
(
2 · (− 3/4

))
= (S + 2α12)/3 above. Thus, if (S + 2α12)/3 <

S, then we must have α3 = (S + 2α12)/3 = (α1 + α2 + α3 + 2α12)/3. Step 2 gave us α1 = α2,
which forces 0 < α1 = α2 = α3 − α12. This is the second claimed outcome of this step.

On the other hand, if (S + 2α12)/3 � S, then the quadratic is strictly increasing on the
interval 0 � t � S. Therefore, we must have α3 = S, forcing α1 = α2 = 0. This is the first
claimed outcome of this step.

Step 4. In this case, only α3, α12, and α123 are nonzero. Then the edge constraint is simply
e(α) = α3α12 = γ (Lemma 4.11 forces equality). Note that since α3 + α12 � v(α) = 1, their
product α3α12 is always at most 1/4, so we can only be in this case when γ � 1/4.

Now let x = α3 and y = α12. The vertex constraint forces α123 = 1 − x− y, so we are left with
the routine problem of maximizing obj = y log 2 + (1 − x− y) log 3 = log 3 − x log 3 − y log 3

2
subject to the constraints

x, y � 0, x+ y � 1, xy = γ.

These constraints specify a segment of a hyperbola (a convex function) in the first quadrant
of the xy-plane, and the objective is linear in x and y. Therefore, by convexity, the maximum
would be at the global maximum of obj on the entire first quadrant branch of the hyperbola,
unless that fell outside the segment, in which case it must be at an endpoint, forcing x+ y = 1.

The maximum over the entire branch of xy = γ follows easily from the inequality of
arithmetic and geometric means: obj � log 3 − 2

√
x log 3 · y log 3

2 = log 3 − 2
√
γ · log 3 · log 3

2 ,
with equality when x log 3 = y log 3

2 . Using xy = γ to solve for x and y, we see that the unique

global maximum is at x =
√
γ · log 3

2/ log 3 and y =
√
γ · log 3/ log 3

2 . This lies on our segment
(satisfies x+ y � 1) precisely when γ is below κ3 ≈ 0.1969 and these values of α3 = x and
α12 = y indeed match those claimed in that regime.

On the other hand, when γ > κ3, we are outside the segment, so by the above we must have
x+ y = 1, and we may substitute x = 1 − y. We are left with the single-variable maximization
of obj = y log 2 subject to 0 � y � 1 and (1 − y)y = γ. By the quadratic formula, this is
at α12 = y = (1 +

√
1 − 4γ)/2 � 1, which produces α3 = x = 1 − y = 1 − α12. This indeed

matches outcome (ii) of our proposition.

Step 5. The remaining case is 0 < α1 = α2 = α3 − α12, and we will show that this forces
α123 = 0. Indeed, suppose for the sake of contradiction that α123 > 0. Shift mass to α12 by
taking ε from α123 and ε′ = εα3/α2 from α1. Since many αA are zero, e(α) = α1(α2 + α3) +
α2α3 + α12α3. Our perturbation decreases the first term by ε′(α2 + α3), increases the third
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term by (ε+ ε′)α3, and does not change the second term, so our choice of ε′ keeps e(α)
invariant.

On the other hand, obj increases by (ε+ ε′) log 2 − ε log 3. Since we know α2 = α3 − α12, in
particular we always have α3 � α2, which implies that ε′ � ε because we assume α2, α3 > 0.
Hence the increase in obj is (ε+ ε′) log 2 − ε log 3 � (ε+ ε) log 2 − ε log 3 > 0, contradicting the
maximality of α. Therefore, we must have had α123 = 0.

Step 6. Now only α1, α2, α3, and α12 remain. Let t = α3 and r = α12. Step 3 gives α1 =
α2 = α3 − α12 = t− r. We use the vertex constraint to eliminate t: 1 = v(α) = 2(t− r) + t+ r,
so t = (1 + r)/3. Substituting this for t, we are left with α1 = α2 = (1 − 2r)/3 and α3 = (1 +
r)/3. Since we need all αA � 0, the range for r is 0 � r � 1/2.

The above expressions give

e(α) =
(

1 − 2r
3

)2

+ 2
(

1 − 2r
3

)(
1 + r

3

)
+
(

1 + r

3

)
r =

r2 − r + 1
3

,

and Lemma 4.11 forces e(α) = γ.
The quadratic formula gives the roots r = (1 ±√

12γ − 3)/2. These are only real when 12γ −
3 � 0, so this case only occurs when γ � 1/4. Furthermore, the only root within the interval
0 � r � 1/2 is r = (1 −√

12γ − 3)/2. Plugging this value of r into the expressions for the αA,
we indeed obtain outcome (iii) of Proposition 4.10.

Conclusion. The only steps which proposed possible maxima were Steps 4 and 6. Con-
veniently, Step 4 also required that γ � 1/4, while Step 6 required γ � 1/4, so we do not
need to compare them except at γ = 1/4, which is trivial. Finally, note that all extremal
outcomes indeed have α2 < α3, except at γ = 1/3, in which case α12 = α13 = α23 = 0. This
justifies the uniqueness argument that we used at the end of Step 1, and completes our proof
of Proposition 4.10.

5. Exact result for sparse graphs

In this section, we determine the precise structure of the sparse graphs that maximize the
number of colorings, completing the proof of Theorem 1.2. Proposition 3.6(ii) showed that in
this regime, the optimal graphs were close, in edit distance, to complete bipartite graphs. As
a warm-up for the arguments that will follow in this section, let us begin by showing that the
semi-complete subgraphs of Definition 1.1 are optimal among bipartite graphs. We will use this
in the final stage of our proof of the exact result.

Lemma 5.1. Let q � 3 and r < a � b be positive integers. Among all subgraphs of Ka,b

with r missing edges, the ones which maximize the number of q-colorings are precisely:

(i) both the correctly and incorrectly oriented semi-complete subgraphs, when q = 3, and
(ii) the correctly oriented semi-complete subgraph, when q � 4 and b

a � log q/ log q−2
q−3 and

a is sufficiently large (that is, a > Nq, where Nq depends only on q).

Remark. The above result is not as clean when more than three colors are used, but is
sufficient for our purposes. In the sparse case, we encounter only highly unbalanced bipartite
graphs, all of which have part size ratio approximately log q/ log q

q−1 . Apparently out of sheer
coincidence (and good fortune), this is just barely enough to satisfy the additional condition
of the lemma. Nevertheless, it would be nice to remove that condition.
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Proof Lemma 5.1(ii). Let A ∪B be the vertex partition of Ka,b, with |A| = a and |B| = b.
Let F ∗ be the correctly oriented semi-complete subgraph of Ka,b with exactly r missing edges.
Let F be another non-isomorphic subgraph of Ka,b with the same number of edges. We will
show that F has fewer colorings. Since F and F ∗ are both bipartite, they share every coloring
that uses disjoint sets of colors on the sides of the bipartition. Discrepancies arise when the
same color appears on both sides. Note, however, that whenever this occurs, every edge between
same-colored vertices must be missing from the graph. This set of forced missing edges (in this
lemma, missing edges refer only to those missing from the bipartite Ka,b, not the entire Ka+b),
which we call the coloring’s footprint, is always a union of vertex-disjoint complete bipartite
graphs, one per color that appears on both sides. For each subset H of the missing edges of F ,
let nH be the number of colorings of F with footprint H. Then,

∑
nH is exactly the number

of colorings of F . To give each nH a counterpart from F ∗, fix an arbitrary bijection φ between
the missing edges of F and F ∗, and let n∗H be the number of colorings of F ∗ with footprint
φ(H). Since F ∗ has

∑
n∗H colorings, it suffices to show that nH � n∗H for all H, with strict

inequality for at least one H.
Clearly, when H is empty, or a star centered in B, then nH = n∗H . We observed that all

footprints are unions Γ1 ∪ . . . ∪ Γk of vertex-disjoint complete bipartite graphs, so all H not
of that form automatically have nH = 0 � n∗H . It remains to consider H that have this form,
but are not stars centered in B. Colorings with this footprint are monochromatic on each Γi,
and there are

(
q
k

)
k! ways to choose a distinct color for each Γi. The remaining q − k colors are

partitioned into two sets, one for A \ V (H) and one for B \ V (H). Crucially, |B \ V (H)| � b− 2
because H is not a star centered in B. Thus,

nH �
[(
q

k

)
k!
]
·

q−k−1∑
i=1

(
q − k

i

)
i|A\V (H)|(q − k − i)|B\V (H)|

� qk ·
q−k−1∑

i=1

(
q − k

i

)
ia(q − k − i)b−2.

To see that the sum is dominated by the i = 1 term, note that since we assumed that b
a �

log q/ log q−2
q−3 , for sufficiently large a we have

b− 2
a

� log(q − 1)/ log
q − 2
q − 3

� log(q − k)/ log
q − k − 1
q − k − 2

,

so we may apply Inequality B.2(ii) from the Appendix. This gives nH � qk · 1.1(q − k)(q −
k − 1)b−2. Next, we claim that this bound is greatest when k is smallest. Indeed, when k
increases by one, qk increases by the factor q, but (q − k − 1)b−2 decreases by a factor of at
least ((q − 2)/(q − 3))b−2 � q for large b. Hence we have nH � 1.1q(q − 1)(q − 2)b−2.

On the other hand, φ(H) is always a star centered in B, so we can easily construct q(q −
1)(q − 2)b−1 colorings of F ∗. Indeed, choose one color for the vertices of the graph φ(H), a
different color for the remainder of A \ φ(H), and allow each vertex left in B \ φ(H) to take
any of the other q − 2 colors. Since φ(H) intersects B in exactly one vertex, n∗H � q(q − 1)(q −
2)b−1, as claimed. But q − 2 � 2, so we have the desired strict inequality n∗H � 2q(q − 1)(q −
2)b−2 > nH for all remaining H.

Part (i) is a consequence of the following more precise result, which we will also need later.

Lemma 5.2. Let F be a subgraph of the complete bipartite graphKa,b with vertex partition
A ∪B, and r < max{a, b} missing edges. Suppose that F has x ∈ A and y ∈ B with x complete
to B and y complete to A. Then its number of three-colorings is precisely 3 · 2a + 3 · 2b − 6 + 6s,
where s is the number of nonempty subsets of missing edges which form complete bipartite
graphs. This is at most 3 · 2a + 3 · 2b + 6 · (2r − 2), with equality exactly when the missing
edges form a star.
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Proof. As in the proof of Lemma 5.1(ii), let nH be the number of three-colorings of F with
footprint H. The key observation is that for every nonempty H, nH = 6 when H is a complete
bipartite graph, and nH = 0 otherwise. Indeed, if H is not a complete bipartite graph, then it
cannot be a footprint of a three-coloring, so nH = 0. Otherwise, there are three ways to choose
a color for the vertices of H, and then by definition of footprint, the remaining two colors
must be split between A \H and B \H. Both of these sets are nonempty, because A \H must
contain the given vertex x and B \H must contain y, so the only way to split the two colors
is to use one on all of A \H and the other on all of B \H. There are two ways to decide how
to do this. Therefore, nH = 3 · 2 = 6, as claimed, and this produces the 6s in the formula.

The rest of the formula follows from n∅ = 3 · 2a + 3 · 2b − 6. Indeed, the terms correspond
to the colorings that use a single color (for which there are three choices) on B and allow the
other two on A, those that use one on A and allow the others on B, and those that use only
one on each of A and B (hence were double-counted). The final claim in the statement comes
from the fact that stars are the only r-edge graphs which have all 2r − 1 of their nonempty
subgraphs complete bipartite.

Proof of Lemma 5.1(i). Since the number of missing edges r is less than both |A| and |B|,
the vertices x and y of Lemma 5.2 must exist. Therefore, its equality condition implies that
the optimal subgraphs are indeed semi-complete.

5.1. Structure of proof

We will use several small constants with relative order of magnitude ε1 � ε2 � ε3, related by
ε1 = ε22 = ε33. We do not send them to zero; rather, we show that there is an eventual choice of
the εi, determined by q and κ, that makes our argument work. Therefore, to avoid confusion,
the O, Θ, and o notation that we employ in this proof will only mask constants depending on
q, κ alone. For example, we will write X = O(ε2Y ) when there is a constant Cq,κ such that
|X| � Cq,κε2|Y | for sufficiently large m and n. Occasionally, we will use phrases like ‘almost
all colorings have property P ’ when (1 − o(1))-fraction of all colorings have that property.

Proof of Theorem 1.2. Let G = (V,E) be an optimal graph with n vertices and m � κn2

edges. We begin with a convenient technical modification: if G has an isolated edge xy, replace
it with an edge between x and another non-isolated vertex of minimal degree. Do this only
once, even if G had multiple isolated edges. The number of colorings stays the same because
both graphs share the same partial colorings of V \ {x}, and each of those has exactly q − 1
extensions (in each graph) to the degree-1 vertex x.

This adjustment will not compromise the uniqueness claim, because it cannot create one
of the optimal graphs listed in Theorem 1.2. Indeed, if it did, then the degree-1 vertex x
would now have to be the center of the missing star of the semi-complete subgraph H ⊂ Ka,b.
But we made x adjacent to a vertex of minimal degree, so x must be on the smaller side of
H’s bipartition. Then the number of Ka,b-edges missing from the semi-complete H is precisely
b− d(x) = b− 1. This exceeds a for all optimal graphs listed in Theorem 1.2, but our definition
of semi-completeness required that the number of missing edges was strictly less than the size
of the smaller part. This contradiction shows that we may assume without loss of generality
that if G has an isolated edge uv, then it also contains a degree-1 vertex x �∈ {u, v}.

Define u1 =
√
m · log q

q−1/ log q and u2 =
√
m · log q/ log q

q−1 , and note that u1
u2

=
log q

q−1/ log q and u1u2 = m. Therefore, Proposition 3.6(ii) gives disjoint subsets U1, U2 ⊂ V of
size |Ui| = �ui�, such that by editing at most ε1m edges, we can transform G into the complete
bipartite graph between U1 and U2, with all other vertices isolated. Call that graph G∗.

Let (V1, V2) be a max-cut partition of the nonisolated vertices of G, such that V1 contains at
least as many vertices of U1 as V2 does. We would like to show that this partition is very close
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to (U1, U2), so we keep track of the Ui by defining U ′
i = Ui ∩ Vi and U ′′

i = Ui ∩ V3−i for each
i ∈ {1, 2}. To help us recognize vertices that are ‘mostly correct,’ let Xi ⊂ U ′

i be the vertices
that are adjacent to all but at most ε2

√
m vertices of U ′

3−i.
The following series of claims will complete the proof of Theorem 1.2, since Proposition 3.6(i)

already determined the asymptotic maximum number of colorings.

Claim 1. For each i, |U ′
i | is within O(ε1

√
m) of ui, |Xi| is within O(ε2

√
m) of ui, and

|U ′′
i | � O(ε1

√
m).

Claim 2. Almost all colorings of G are (X1,X2)-regular, which means that they only use
one color on X1, and avoid that color on X2.

Claim 3. At most one non-isolated vertex v0 has degree � 2ε3
√
m. We use this to show

that each |Vi| is within O(ε2
√
m) of ui. Let V0 = {v0} if it exists; otherwise, let V0 = ∅. Let

V ∗
i = Vi \ V0.

Claim 4. Almost all colorings are (V ∗
1 , V

∗
2 )-regular, that is, use one color for V ∗

1 , and avoid
it on V ∗

2 .

Claim 5. Each V ∗
i is an independent set, and v0 (if it exists) has neighbors in only one of

the V ∗
i . Hence G is a bipartite graph plus isolated vertices.

Claim 6. G is a semi-complete subgraph of K|V1|,|V2| plus isolated vertices, correctly
oriented if q � 4.

5.2. Details of proof

Proof of Claim 1. We know that by editing at most ε1m edges, G can be transformed into
G∗, the complete bipartite graph between (U1, U2), plus isolated vertices. Since |Ui| = �ui� =
Θ(

√
m), all vertices in the Ui have degree Θ(

√
m) in G∗. Therefore, the number of Ui-vertices

that are isolated in G is at most ε1m/Θ(
√
m) = O(ε1

√
m), implying in particular that the

number of U1-vertices in V1 ∪ V2 is at least |U1| −O(ε1
√
m) � 2

3u1. (Recall that (V1, V2) is a
max-cut partition of the nonisolated vertices of G.) Since more U1-vertices are in V1 than in
V2, and U ′

1 = U1 ∩ V1, we have |U ′
1| � 1

3u1 = Θ(
√
m).

Also, G∗ has at least m edges crossing between (U1, U2), so G has at least m− ε1m edges
crossing between (U1, U2), and at least that many between its max-cut (V1, V2). As G has only
m edges, this shows that each G[Vi] spans at most ε1m edges. But the sets U ′

1, U
′′
2 ⊂ V1 are

complete to each other in G∗, so among the � ε1m edges of G[V1], at least |U ′
1||U ′′

2 | − ε1m of
them must go between U ′

1 and U ′′
2 . Combining this with the above result that |U ′

1| � Θ(
√
m),

we obtain the desired bound |U ′′
2 | � O(ε1

√
m).

Then U ′
2, the set of U2-vertices in V2, has size at least u2 −O(ε1

√
m) � Θ(

√
m), because only

O(ε1
√
m) of the U2-vertices are isolated and |U ′′

2 | � O(ε1
√
m) of them are in V1. Repeating

the previous paragraph’s argument with respect to U ′
2 and U ′′

1 , we find that |U ′′
1 | � O(ε1

√
m),

which then implies that |U ′
1| � u1 −O(ε1

√
m).

It remains to control Xi, which we recall to be the vertices of U ′
i which had at most ε2

√
m

nonneighbors in U ′
3−i. The U ′

i are complete to each other in G∗, so each vertex not in Xi
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contributes at least ε2
√
m to the total edit distance of � ε1m. We set ε22 = ε1, so this implies

that all but at most ε2
√
m vertices of U ′

i belong to Xi. Since |U ′
i | is within O(ε1

√
m) of ui, this

gives the desired result.

Proof of Claim 2. We bound the number of colorings that are not (X1,X2)-regular. For
each partition [q] = C0 ∪ C1 ∪ C2 ∪ C3, we count the colorings which use the colors C1 in X1

but not X2, use C2 in X2 but not X1, use C3 in both X1 and X2, and do not use C0 in either
X1 or X2. Then we sum over all irregular partitions, which are all partitions with |C1| � 2
or |C3| � 1. It suffices to show that the result is of smaller order than the total number of
colorings of G.

For any given partition with |Ci| = ci, we claim that the corresponding number of colorings
is at most (|X1||X2|)c3 · c|X1|−qε2

√
m

1 · c|X2|−qε2
√

m
2 · qn−2c3−(|X1|−qε2

√
m)−(|X2|−qε2

√
m). The first

factor comes from choosing c3 pairs of vertices xi ∈ X1, yi ∈ X2 on which to use each color of
C3. Then, every vertex in the common neighborhood of {yi} must avoid C3 in order to produce
a proper coloring. By definition of X2, the number of vertices of U ′

1 that are not in this common
neighborhood is at most |C3|ε2

√
m � qε2

√
m. Thus all but at most qε2

√
m vertices of X1 ⊂ U ′

1

are adjacent to every {yi}, and therefore restricted to colors in C1. This produces the second
factor in our bound, and the third factor is obtained analogously. Of course every vertex has
at most q color choices, and we use that trivial bound for all remaining vertices, producing our
final factor. Using that each |Xi| is within O(ε2

√
m) of ui = Θ(

√
m), we find that the sum Σ1

of this bound over all � 4q irregular partitions is

Σ1 =
∑

irregular

(|X1||X2|)c3 · c|X1|−qε2
√

m
1 · c|X2|−qε2

√
m

2 · qn−2c3−(|X1|−qε2
√

m)−(|X2|−qε2
√

m)

� eO(ε2
√

m)
∑

irregular

(Θ(
√
m) · Θ(

√
m))c3 · cu1

1 · cu2
2 · qn−u1−u2

� eO(ε2
√

m) · 4q ·O(mq) · max
c1�2 or c3�1

{cu1
1 cu2

2 } · qn−u1−u2 .

For any irregular partition with c1 + c2 < q, it is clear that cu1
1 cu2

2 increases when C1 is
replaced by C1 ∪ C0 ∪ C3, and C0 and C3 are reduced to ∅. It is also clear that this procedure
gives another irregular partition, but this time with c1 + c2 = q. Yet u2

u1
= log q/ log q

q−1 �
log q/ log q−1

q−2 , so we may apply Inequality B.2(i), which gives

max
c1�2 or c3�1

cu1
1 cu2

2 = 2u1(q − 2)u2 � 1.5−u1 · 1u1(q − 1)u2 = e−Θ(
√

m) · (q − 1)u2 .

Thus for small ε2, we have Σ1 � e−Θ(
√

m) · (q − 1)u2 · qn−u1−u2 .
On the other hand, Proposition 3.6(i) shows that the optimal graph has at least Σ0 :=

qne(−c−ε1)
√

m colorings, where c = 2
√

log q
q−1 · log q. Since u1 =

√
m · log q

q−1/ log q and u2 =√
m · log q/ log q

q−1 , routine algebra shows that Σ0 is precisely e−ε1
√

m(q − 1)u2qn−u1−u2 .

Therefore, for small ε1 we have Σ1/Σ0 � e−Θ(
√

m) = o(1), that is, almost all colorings of G
are (X1,X2)-regular.

Before proving the next claim, it is convenient to establish the following lemma, which should
be understood in the context of Claim 3.

Lemma 5.3. Let x, y be a pair of nonisolated vertices of G, such that xy is not an isolated
edge. Then d(x) + d(y) � |X1| − 1.
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Proof. Suppose for contradiction that there is such a pair x, y with d(x) + d(y) � |X1| − 2.
Let G′ be the graph obtained by deleting the � |X1| − 2 edges incident to x or y, and adding
back as many edges between x and X1 \ {x, y}. Define an (X1 \ {x, y},X2 \ {x, y})-regular
partial coloring to be a proper coloring of the vertices V \ {x, y}, which uses only one color on
X1 \ {x, y}, and avoids that color on X2 \ {x, y}. Every such partial coloring of G′ has exactly
q − 1 extensions to x since only one color appears on NG′(x) ⊂ X1 \ {x, y}, and then exactly q
further extensions to the newly-isolated vertex y. On the other hand, in G, x and y both have
degree at least 1 and do not form an isolated edge, so one of them, say x, has a neighbor in the
rest of the graph. Therefore, in G the same partial coloring has at most q − 1 extensions to the
vertex x, and then at most q − 1 further extensions to the nonisolated vertex y. Yet by Claim
2, almost all colorings of G arise in this way, so for sufficiently large m, G has fewer colorings
than G′, contradiction.

Proof of Claim 3. Recall that our initial technical adjustment allows us to assume that if
G contains an isolated edge uv, then it also contains a degree-1 vertex x �∈ {u, v}. This would
give d(x) + d(u) = 2 � |X1| − 1, contradicting Lemma 5.3 because xu cannot be an isolated
edge. Hence G in fact has no isolated edges. But then the same lemma implies that at most
one vertex v0 has degree � 2ε3

√
m, since |X1| = Θ(

√
m) by Claim 1.

It remains to show that each |Vi| is within O(ε2
√
m) of ui. Recall that U ′

1 and U ′′
2 are the

U1- and U2-vertices that are in V1. All other vertices of V1 are isolated in the graph G∗ which is
within edit distance ε1m of G. Therefore by the previous paragraph, each of them (except v0 if
it exists) has degree at least 2ε3

√
m, and thus contributes at least 2ε3

√
m to the edit distance

between G and G∗. Therefore, there are at most 1 + (ε1m)/(2ε3
√
m) � ε2

√
m of them, where

we used ε33 = ε22 = ε1. Claim 1 controls |U ′
i | and |U ′′

i |, so we indeed find that |V1| is within
O(ε2

√
m) of u1. The analogous result for V2 follows by a similar argument.

Proof of Claim 4. Since almost all colorings are (X1,X2)-regular, it suffices to prove this
claim only for those colorings. Therefore, we bound the (X1,X2)-regular colorings that (i) use
a common color on both V ∗

2 and V ∗
1 , or (ii) use at most q − 2 colors on V ∗

2 . Note that every
(X1,X2)-regular coloring which avoids both (i) and (ii) must use exactly q − 1 colors on V ∗

2

and only the remaining color on V ∗
1 , and so is automatically (V ∗

1 , V
∗
2 )-regular. It therefore

suffices to show that these two types of colorings constitute o(1)-fraction of all colorings. The
key observation is that every v ∈ V ∗

2 has a neighbor in X1. Indeed, (V1, V2) is a max-cut, so at
least half of the � 2ε3

√
m neighbors of v must be in V1. These cannot all avoid X1, because

Claims 1 and 3 show that only O(ε2
√
m) vertices of V1 are outside X1, and ε2 � ε3.

To bound the number of colorings of type (i) above, first choose a color c1 for all X1. By the
key observation, c1 cannot appear on V ∗

2 , so the shared color c2 must be different. Hence we
have q − 1 choices for c2, and must pick a pair of vertices x ∈ V ∗

1 \X1 and y ∈ V ∗
2 to use it on.

The � ε3
√
m neighbors of x in V ∗

2 must avoid c2 as well as c1, so they each have at most q − 2
color choices. Every other vertex of V ∗

2 must still avoid c1, so we use the bound of � q − 1 color
choices there. Using the trivial bound � q for all other vertices, and the fact that |Xi| and |V ∗

i |
are within O(ε2

√
m) of ui = Θ(

√
m), we find that the number of type-(i) colorings is at most

Σ2 := q · (q − 1) · |V ∗
1 \X1||V ∗

2 | · (q − 2)ε3
√

m · (q − 1)|V
∗
2 |−ε3

√
m · qn−|X1|−|V ∗

2 |−1

� O(m) ·
(
q − 2
q − 1

)ε3
√

m

· (q − 1)|V
∗
2 | · qn−|X1|−|V ∗

2 |−1

� eO(ε2
√

m) ·
(
q − 2
q − 1

)ε3
√

m

· (q − 1)u2 · qn−u1−u2 .
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On the other hand, we showed at the end of the proof of Claim 2 that G had at least Σ0 =
e−ε1

√
m(q − 1)u2qn−u1−u2 colorings. Since ε1 � ε2 � ε3, we have Σ2/Σ0 � e−Θ(ε3

√
m) = o(1),

as desired.
The number of type-(ii) colorings is easily bounded by Σ3 := q · (q − 1) · (q − 2)|V

∗
2 | ·

qn−|X1|−|V ∗
2 |. The four factors correspond to choosing a color for X1, choosing another

color to avoid on V ∗
2 , coloring V ∗

2 , and coloring all remaining vertices. Using that |Xi| and
|V ∗

i | are within O(ε2
√
m) of ui, we obtain Σ3 � eO(ε2

√
m)(q − 2)u2qn−u1−u2 , so Σ3/Σ0 �

eO(ε2
√

m)
(
(q − 2)/(q − 1)

)u2 . Since u2 = Θ(
√
m), for small enough ε2 we indeed have Σ3/Σ0 �

e−Θ(
√

m) = o(1), as desired.

Proof of Claim 5. Almost all colorings are (V ∗
1 , V

∗
2 )-regular, so G[V ∗

1 ] spans no edges. We
turn our attention to V ∗

2 , and start by showing that all degrees within G[V ∗
2 ] are at most

ε3
√
m. Indeed, suppose for contradiction that some x ∈ V ∗

2 has at least ε3
√
m neighbors in

V ∗
2 . Then the number of (V ∗

1 , V
∗
2 )-regular colorings is at most Σ4 := q · (q − 1) · (q − 2)ε3

√
m ·

(q − 1)|V
∗
2 |−ε3

√
m · qn−|V ∗

1 |−|V ∗
2 |. Here, the factors correspond to choosing a color c1 for |V ∗

1 |,
choosing a color c2 for x, coloring V ∗

2 ∩N(x) without c1 or c2, coloring the rest of V ∗
2 without

c1, and coloring the remaining vertices. Using that each |V ∗
i | is within O(ε2

√
m) of ui, we

find that

Σ4 � eO(ε2
√

m) · q · (q − 1) · (q − 2)ε3
√

m · (q − 1)u2−ε3
√

m · qn−u1−u2

� eO(ε2
√

m) ·
(
q − 2
q − 1

)ε3
√

m

· (q − 1)u2qn−u1−u2 .

Yet we showed at the end of the proof of Claim 2 that G had at least Σ0 = e−ε1
√

m

(q − 1)u2qn−u1−u2 colorings, so using ε1 � ε2 � ε3, we obtain Σ4/Σ0 � e−Θ(ε3
√

m). This
contradicts the fact that Σ4 includes almost all colorings. Therefore, all degrees within G[V ∗

2 ]
are indeed at most ε3

√
m.

We now use this intermediate bound to show that all such degrees are in fact zero. Suppose
for contradiction that some x ∈ V ∗

2 has neighbors within V ∗
2 . Let G′ be the graph obtained by

deleting all edges between x and V ∗
2 and all edges incident to v0 (if it exists), and adding back as

many edges between V ∗
1 and some formerly isolated vertex z.† This is possible because d(v0) �

2ε3
√
m and x has at most ε3

√
m neighbors within V ∗

2 , while |V ∗
1 | = Θ(

√
m). Observe that any

(V ∗
1 , V

∗
2 \ {x})-regular partial coloring of V \ {x, z, v0} has exactly (q − 1)2q|V0| extensions to

all of G′, because x and z only need to avoid the single color which appears on V ∗
1 , and v0 is

now isolated, if it exists. On the other hand, we claim that the same partial coloring has at most
(q − 2)q(q − 1)|V0| extensions in G. Indeed, there are at most q − 2 extensions to x because x
must avoid the color of V ∗

1 as well as some (different) color which appears on its neighbor in
V ∗

2 . Then, there are q ways to color the isolated vertex z, and finally at most q − 1 further
extensions to the nonisolated vertex v0 if it exists. Yet by Claim 2, almost all colorings of G
arise in this way, so for sufficiently large m, G has fewer colorings than G′. This is impossible,
so V ∗

2 must indeed be an independent set.
It remains to show that v0, if it exists, has neighbors in only one V ∗

i . Suppose for contradiction
that v0 is adjacent to both V ∗

1 and V ∗
2 , and consider the graph G′ obtained by deleting all

edges incident to v0, and replacing them with edges to V ∗
1 only. This is possible because

d(v0) � 2ε3
√
m and |V ∗

1 | = Θ(
√
m). Any partial (V ∗

1 , V
∗
2 )-regular coloring of G \ {v0} has at

most q − 2 extensions to v0, because neighbors of v0 in V ∗
2 are colored differently from its

neighbors in V ∗
1 . Yet the same partial coloring has exactly q − 1 extensions with respect to G′,

†Isolated vertices exist because Claim 3 shows that each |Vi| is within O(ε2
√

m) of ui, so the number of
nonisolated vertices is |V1 ∪ V2| � u1 + u2 + O(ε2

√
m). This is strictly below n for small ε2, because u1 + u2 =√

m/κq , and we assumed that m � κn2 with κ < κq .
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since it uses the same color on all neighbors of v0 (now in V ∗
1 ). Therefore, for sufficiently large

m, G′ has more colorings than G, giving the required contradiction.

Proof of Claim 6. First, consider the case when V0 is empty. Then all nonisolated vertices
are already in the bipartite graph (V ∗

1 , V
∗
2 ). If that subgraph is less than |V ∗

1 | edges away from
being complete bipartite, then Lemma 5.1 already implies† that G[V ∗

1 ∪ V ∗
2 ] is semi-complete

(and correctly oriented if q � 4), so we are done. On the other hand, if that subgraph has
at least |V ∗

1 | missing edges, then we can construct an n-vertex graph G′ with at least m
edges by taking K|V ∗

1 |,|V ∗
2 |−1 and adding enough isolated vertices. Then, G′ has at least q(q −

1)|V
∗
2 |−1qn−|V ∗

1 |−|V ∗
2 |+1 colorings because there are q choices of a single color for the |V ∗

1 |-side,
q − 1 color choices for each vertex on the other side, and q choices for each remaining (isolated)
vertex. However, the same counting shows that G has exactly q(q − 1)|V

∗
2 |qn−|V ∗

1 |−|V ∗
2 | colorings

that are (V ∗
1 , V

∗
2 )-regular, which includes almost all colorings by Claim 4. Hence for sufficiently

large m, G′ has more colorings, and this contradiction completes the case when V0 is empty.
Now suppose that the vertex v0 with degree at most 2ε3

√
m exists. By counting (V ∗

1 , V
∗
2 )-

regular colorings, we find that G has at most Σ5 := (1 + o(1))q(q − 1)|V
∗
2 |(q − 1)qn−|V ∗

1 |−|V ∗
2 |−1

colorings. Here, the factors correspond to choosing a color for V ∗
1 , coloring V ∗

2 , coloring the
nonisolated vertex v0 which must avoid a neighbor’s color, and coloring the remaining vertices.
Observe that if there were at least d(v0) edges missing between V ∗

1 and V ∗
2 , then we could

isolate v0 by deleting its edges and adding back as many between V ∗
1 and V ∗

2 . The resulting
graph would have at least q(q − 1)|V

∗
2 |qn−|V ∗

1 |−|V ∗
2 | colorings, where the factors correspond

to choosing a color for V ∗
1 , coloring V ∗

2 , and coloring the remaining (isolated) vertices. For
sufficiently large m, this exceeds the number of colorings of G, which is impossible. Therefore,
less than d(v0) edges are missing between (V ∗

1 , V
∗
2 ).

By Claim 5, v0 has neighbors in only one V ∗
i . If it is V ∗

1 , we must have V1 = V ∗
1 and

V2 = V ∗
2 ∪ {v0} because (V1, V2) is a max-cut. The previous paragraph then implies that

less than |V1| edges are missing between (V1, V2), so Lemma 5.1 shows that G is indeed
semi-complete on its nonisolated vertices (and correctly oriented if q � 4).

The only remaining case is when v0 has neighbors only in V ∗
2 , which we will show is

impossible. This time, the max-cut gives V1 = V ∗
1 ∪ {v0} and V2 = V ∗

2 . Since d(v0) � 2ε3
√
m,

there are at least |V2| − 2ε3
√
m missing edges between (V1, V2). Therefore, if we let t = �(|V2| −

2ε3
√
m)/|V1|� = �u2/u1 −O(ε3)� = �log q/ log q

q−1 −O(ε3)�, we can construct an n-vertex
graph G′ with at least m edges by taking K|V1|,|V2|−t and adding enough isolated vertices. This
graph has at least Σ6 := q(q − 1)|V2|−tqn−|V1|−|V2|+t colorings, by the same counting as earlier in
this proof. Let us compare this with the number of colorings Σ5 ofG, which we calculated above.
Since |V ∗

1 | = |V1| − 1 and |V ∗
2 | = |V2|, we have Σ6/Σ5 � (1 − o(1))(q/(q − 1))t · 1/(q − 1).

Crucially, log q/ log q
q−1 is always irrational, because any positive integral solution to

qx = (q/(q − 1))y would require q and q − 1 to have a nontrivial common factor. Therefore,
by choosing our εi sufficiently small in advance (based only on q), we may ensure that
t � log q/ log q

q−1 − 1 + cq for some small positive constant cq.
Yet (

q

q − 1

)log q/ log q
q−1−1

· 1
q − 1

= 1,

so this gives Σ6/Σ5 � (1 − o(1))(q/(q − 1))cq , which exceeds 1 for large m, leaving G′ with
more colorings than G. This contradiction finishes our last case, and our entire proof.

†V ∗
1 is the smaller side of the bipartite graph (V ∗

1 , V ∗
2 ) because Claim 3 shows that |V ∗

1 | is within O(ε2
√

m)

of u1 =
√

m · log q
q−1

/ log q and |V ∗
2 | is within O(ε2

√
m) of u2 =

√
m · log q/ log q

q−1
.
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6. Exact result for three colors

Our arguments can be pushed further when only three colors are used. In this section, we
complete the proof of Theorem 1.3, determining the precise structure of the graphs that
maximize the number of 3-colorings, for edge densities up to m � 1

4n
2 (the density of the

complete bipartite graph). The structure of this proof closely resembles that of the previous
section, so parts that are essentially the same are rewritten briefly.

We would, however, like to draw attention to a new piece of notation. Recall that, as defined
in the previous section, a coloring is (X,Y )-regular if it uses only one color on X but does not
use this color on Y . This time, we will also need a symmetric version of this concept, which we
denote with square brackets. We will say that a coloring is [X,Y ]-regular if one of X or Y is
monochromatic, and the other avoids that color entirely. Note that this is equivalent to having
no colors shared between X and Y , because there are only three colors altogether.

Proof of Theorem 1.3. Theorem 1.2 already established our result for densities up to m �
κn2 for some constant κ, so we may assume that m = Θ(n2). Routine algebra verifies that
Proposition 4.10 and Theorem 3.2 establish the claimed numbers of colorings in this theorem.
This leaves us to concentrate on the optimal graph structure. We use several constants ε1 �
ε2 � ε3, related by ε1 = ε22 = ε33, and show that there is an eventual choice that makes our
argument work. To avoid confusion, our O, Θ, and o notation will only mask absolute constants.

Let G = (V,E) be an optimal graph whose density m/n2 is between κ and 1/4. Let u1 = α3n
and u2 = α12n, where the α are determined by Proposition 4.10 with density parameter γ =
m/n2. Note that since κ � γ � 1

4 , each ui = Θ(n). Theorem 3.3 gives disjoint subsets U1, U2 ⊂
V with |Ui| ∈ {�ui�, �ui�}, such that by editing at most ε1n2 edges, we can transform G into
the complete bipartite graph between U1 and U2, plus isolated vertices. Call that graph G∗.

Let (V1, V2) be a max-cut partition of the nonisolated vertices of G, such that V1 contains
at least as many vertices of U1 as V2 does. Define U ′

i = Ui ∩ Vi and U ′′
i = Ui ∩ V3−i, and let

Xi ⊂ U ′
i be the vertices that are adjacent to all but at most ε2n vertices of U ′

3−i. The following
series of claims will complete the proof of Theorem 1.3.

Claim 1. For each i, |U ′
i | is within O(ε1n) of ui, |Xi| is within O(ε2n) of ui, and

|U ′′
i | � O(ε1n).

Claim 2. Almost all colorings of G are [X1,X2]-regular, meaning that one Xi is
monochromatic, and the other X3−i avoids that color entirely.

Claim 3. All nonzero degrees are at least 2ε3n, except possibly for either (i) only one
isolated edge w1w2, or (ii) only one nonisolated vertex v0. We use this to show that each |Vi|
is within O(ε2n) of ui. Let V0 = {w1, w2} if exception (i) occurs, let V0 = {v0} if (ii) occurs,
and let V0 = ∅ otherwise. Let V ∗

i = Vi \ V0.

Claim 4. Almost all colorings are [V ∗
1 , V

∗
2 ]-regular.

Claim 5. Each V ∗
i is an independent set, and v0 (if it exists) has neighbors in only one of

the V ∗
i . Hence G is a bipartite graph plus isolated vertices.

Claim 6. G is either a semi-complete subgraph of K|V1|,|V2| plus isolated vertices, or a
complete bipartite subgraph K|V ∗

1 |,|V ∗
2 | plus a pendant edge to v0.
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6.1. Supporting claims

Proof of Claim 1. The sets |Ui| = Θ(n) are complete to each other in G∗, so all Ui-vertices
have degree Θ(n) in G∗. As G is at most ε1n2 edges away from G∗, the number of Ui-vertices
that are isolated in G is at most ε1n2/Θ(n) = O(ε1n). Since V1 received more nonisolated
U1-vertices than V2 did, we must have |U ′

1| � 1
3u1 = Θ(n). By Proposition 3.1, G∗ has at least

m−O(n) edges, all of which cross between (U1, U2). Therefore, G has at least m−O(n) − ε1n
2

edges there, and at least that many between its max-cut (V1, V2). As G has only m edges, this
shows that each G[Vi] spans O(ε1n2) edges. But the sets U ′

1, U
′′
2 ⊂ V1 are complete to each

other in G∗, so |U ′
1||U ′′

2 | − ε1n
2 � e(G[Vi]) � O(ε1n2). Using |U ′

1| � Θ(n), we indeed obtain
|U ′′

2 | � O(ε1n).
Then |U ′

2| � u2 −O(ε1n) � Θ(n), because only O(ε1n) of the U2-vertices are isolated and
|U ′′

2 | � O(ε1n) of them are in V1. Therefore, repeating the above with respect to U ′
2 and U ′′

1

instead of U ′
1 and U ′′

2 , we find that |U ′′
1 | � O(ε1n), which then implies that |U ′

1| � u1 −O(ε1n).
To control Xi, observe that since the U ′

i are complete to each other in G∗, each vertex not
in Xi contributes at least ε2n to the total edit distance of at most ε1n2 between G and G∗. We
set ε22 = ε1, so all but at most ε2n vertices of U ′

i belong to Xi. Since |U ′
i | is within O(ε1n) of

ui, this gives the desired result.

Proof of Claim 2. For each partition {1, 2, 3} = C0 ∪ C1 ∪ C2 ∪ C3, we count the colorings
which use the colors C1 in X1 but not X2, use C2 in X2 but not X1, use C3 in both X1 and
X2, and do not use C0 in either X1 or X2. Then we sum over all irregular partitions, which
are all partitions with |C3| � 1. Note that a coloring is [X1,X2]-regular if and only if it does
not use any color on both Xi, so this sum will include all other colorings.

For any given partition with |Ci| = ci, we have that the corresponding number of colorings is
at most (|X1||X2|)c3 · c|X1|−3ε2n

1 · c|X2|−3ε2n
2 · 3n−2c3−(|X1|−3ε2n)−(|X2|−3ε2n), by the calculation

in Claim 2 of Section 5.2 with q replaced by 3 and
√
m replaced by n. Using that each |Xi|

is within O(ε2n) of ui = Θ(n) and all irregular colorings have |C3| � 1 ⇒ c1 + c2 � 2, we find
that the sum Σ1 of this bound over all � 43 irregular partitions is

Σ1 =
∑

irregular

(|X1||X2|)c3 · c|X1|−3ε2n
1 · c|X2|−3ε2n

2 · 3n−2c3−(|X1|−3ε2n)−(|X2|−3ε2n)

� eO(ε2n)
∑

irregular

(Θ(n) · Θ(n))c3 · cu1
1 · cu2

2 · 3n−u1−u2

� eO(ε2n) · 43 ·O(n6) · max
c1+c2�2

{cu1
1 cu2

2 } · 3n−u1−u2 = eO(ε2n) · 3n−u1−u2 .

On the other hand, Proposition 4.10, Theorem 3.2, and routine algebra show that just as in
the sparse case, the optimal graph has at least Σ0 := e−ε1n · 2u2 · 3n−u1−u2 colorings. Using
u2 = Θ(n), we find that Σ1/Σ0 � e−Θ(n) = o(1), that is, almost all colorings of G are [X1,X2]-
regular.

Before proving the next claim, it is convenient to establish the following lemma, which should
be understood in the context of Claim 3.

Lemma 6.1. Let x, y be a pair of nonisolated vertices of G, such that xy is not an isolated
edge. Then d(x) + d(y) � min{|X1|, |X2|} − 1.

Proof. Suppose for contradiction that there is such a pair x, y with d(x) + d(y) �
min{|X1|, |X2|} − 2. Also suppose that among the [X1 \ {x, y},X2 \ {x, y}]-regular partial
colorings of V \ {x, y}, at least half of them have X1 \ {x, y} monochromatic. (The case when



MAXIMIZING THE NUMBER OF q-COLORINGS 685

at least half have X2 \ {x, y} monochromatic follows by a similar argument.) Let G′ be the
graph obtained by deleting the � |X1| − 2 edges incident to x or y, and adding back as many
edges between x and X1 \ {x, y}.

Consider any [X1 \ {x, y},X2 \ {x, y}]-regular partial coloring of V \ {x, y}. If it is monochro-
matic in X1, which happens at least half the time by assumption, then in G′ it has exactly two
extensions to x, followed by three further extensions to the newly isolated vertex y. The rest
of the time, the partial coloring is monochromatic in X2 and uses at most two colors in X1.
Then, in G′ it has at least one extension to x, followed by three further extensions to y.

On the other hand, in G, x and y both have degree at least 1 and do not form an isolated
edge, so one of them, say x, has a neighbor in the rest of the graph. Therefore, in G the same
partial coloring has at most two extensions to the vertex x, and then at most two further
extensions to the nonisolated vertex y. Yet by Claim 2, almost all colorings of G arise in this
way, so the ratio of G′-colorings to G-colorings is at least 1

2 ( 2·3
2·2 + 1·3

2·2 ) − o(1) = 9
8 − o(1) > 1,

contradiction.

Proof of Claim 3. If there is an isolated edge w1w2, then Lemma 6.1 implies that any
other vertex x has d(x) + 1 = d(x) + d(w1) � min{|X1|, |X2|} − 1 = Θ(n), giving exception (i).
Otherwise, the same lemma implies there is at most one vertex v0 of degree at most 2ε3n, giving
exception (ii). The rest of this claim, that each |Vi| is within O(ε2n) of ui, follows by the same
argument as in Claim 3 of Section 5.2, but with

√
m replaced by n throughout.

Proof of Claim 4. Note that a coloring is [V ∗
1 , V

∗
2 ]-regular if and only if it does not use any

color on both V ∗
i . Therefore, we bound the colorings that share a color on both V ∗

i , but (i)
use only one color on X1 and a subset of the other two on X2, or (ii) one on X2 and a subset
of the other two on X1. Since almost all colorings are [X1,X2]-regular, it suffices to show that
these two types of colorings constitute o(1)-fraction of all colorings. The same calculation as
in Claim 4 of Section 5.2, with q replaced by 3 and

√
m replaced by n, shows that the number

of type-(i) colorings is at most

Σ2 := 3 · 2 · |V ∗
1 \X1||V ∗

2 | · 1ε3n · 2|V ∗
2 |−ε3n · 3n−|X1|−|V ∗

2 |−1

� eO(ε2n) ·O(n2) · 2−ε3n · 2u2 · 3n−u1−u2 .

On the other hand, we showed at the end of the proof of Claim 2 thatG had at least Σ0 = e−ε1n ·
2u2 · 3n−u1−u2 colorings. Since ε1 � ε2 � ε3, we have Σ2/Σ0 � e−Θ(ε3n) = o(1), as desired. The
analogous result for type-(ii) colorings follows by a similar argument.

Proof of Claim 5. We first show that v0 cannot have neighbors in both V ∗
i . Suppose for

contradiction that this is not the case. Almost all colorings are [V ∗
1 , V

∗
2 ]-regular by Claim 4, so

there is I ∈ {1, 2} such that V ∗
I is monochromatic in at least

(
1
2 − o(1)

)
-fraction of all colorings.

Let G′ be obtained by deleting all edges incident to v0 (at most 2ε3n), and replacing them
with edges to |V ∗

I | = Θ(n) only. Consider any partial [V ∗
1 , V

∗
2 ]-regular coloring of V \ {v0}. If

it uses only one color on V ∗
I (which happens at least half the time by assumption), in G′ it has

exactly two extensions to v0. The rest of the time, it still uses at most two colors on V ∗
I , so

there is at least one extension. On the other hand, in G the same partial coloring always has
at most one extension to v0, because the neighbors of v0 in V ∗

1 are colored differently from the
neighbors in V ∗

2 . By Claim 2, almost all colorings of G arise in this way, so the ratio of number
of colorings of G′ to G is at least 1

2 · ( 2
1 + 1

1

)− o(1) = 3
2 − o(1), contradiction. Therefore, v0

cannot have neighbors in both V ∗
i , as claimed.

It remains to show that both G[V ∗
i ] are empty. Suppose for contradiction that some x ∈ V ∗

2

has neighbors within V ∗
2 . (The analogous result for V ∗

1 follows by a similar argument.) Almost
every coloring is [V ∗

1 , V
∗
2 ]-regular, but V ∗

2 can never be monochromatic because it contains
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edges. Therefore, almost all colorings are in fact (V ∗
1 , V

∗
2 )-regular. (Recall that round brackets

denote ‘ordered’ regularity, where V ∗
1 is monochromatic, and V ∗

2 avoids that color.) Therefore,
the same argument as in Claim 5 of Section 5.2, with q replaced by 3 and

√
m replaced by n,

shows that x has at most ε3n neighbors within V ∗
2 .

Case 1: there is some z0 ∈ V0. Let G′ be obtained by deleting the � ε3n edges between
x and V ∗

2 and the � 2ε3n edges incident to anything in V0, and adding back as many edges
between z0 and |V ∗

1 | = Θ(n). Every (V ∗
1 , V

∗
2 \ {x})-regular partial coloring of V \ (V0 ∪ {x})

has exactly 2 · 2 · 3|V0|−1 extensions to all of G′, because x and z0 only need to avoid the single
color which appears on V ∗

1 , and the rest of V0 (if any) is now isolated. On the other hand, in
G the same partial coloring has at most one extension to x because x must avoid the color of
V ∗

1 as well as some (different) color which appears on its neighbor in V ∗
2 . Then, it has at most

3|V0|−1 further extensions to V0 \ {z0} by the trivial bound, and at most two further extensions
to the non-isolated vertex z0. Note that all (V ∗

1 , V
∗
2 )-regular colorings of G arise in this way,

which is almost all of the total by our remark before we split into cases. Hence for sufficiently
large m, G has fewer colorings than G′, contradiction.

Case 2: V0 = ∅, but there is some isolated vertex z. Define G′ by deleting the � ε3n edges
between x and V ∗

2 , and adding back as many edges between z and |V ∗
1 | = Θ(n). By the same

arguments as in Case 1, all (V ∗
1 , V

∗
2 \ {x})-regular partial colorings of V \ {x, z} have exactly

2 · 2 extensions to G′, but in G they have at most one extension to x, followed by three further
extensions to the isolated z. This produces almost all colorings of G, so G′ has more colorings
for large m, contradiction.

Case 3: V ∗
1 ∪ V ∗

2 = V . We observed that the edges in V ∗
2 force almost all colorings to use

only one color for V ∗
1 and the other two on V ∗

2 (hence G[V ∗
2 ] is bipartite). There are three color

choices for V ∗
1 , so the number of colorings of G is (3 + o(1)) · #{2-colorings of V ∗

2 }. Recall that
the number of two-colorings of any bipartite graph F is precisely 2r, where r is its number of
connected components.

We claim that the bipartite G[V ∗
2 ] has at most |V ∗

2 | − 2
√
t+ 1 components, where t is the

number of edges in G[V ∗
2 ]. Indeed, for fixed t, the optimal configuration is to have all isolated

vertices except for a single nontrivial (bipartite) component C. The sizes a, b of the sides of
that bipartite C should minimize a+ b subject to the constraint ab � t, so by the inequality
of the arithmetic and geometric means, we have a+ b � 2

√
t, as desired. Therefore, G has at

most (3 + o(1)) · 2|V ∗
2 |−2

√
t+1 colorings.

Let G′ be the complete bipartite graph with sides s and n− s, such that s is as large as
possible subject to s(n− s) � m. Note that |V ∗

1 | · |V ∗
2 | � m− t because all but t of the m edges

of G cross between the V ∗
i , so Inequality B.3 routinely shows that s � |V ∗

2 | − �√t�. Since G′

is complete bipartite, it has exactly 3 · 2s + 3 · 2n−s − 6 colorings, and thus our bound on s
implies that G′ has strictly more than 3 · 2s � 3 · 2|V ∗

2 |−�√t colorings. Yet for t � 3, one may
check that −�√t� � (−2

√
t+ 1) + 0.4, giving G′ more colorings than G, which is impossible.

We are left with the cases t ∈ {1, 2}, but for these values there is always a vertex y ∈ V ∗
2

with exactly one neighbor z in G[V ∗
2 ]. This forces all edges to be present between the V ∗

i ,
because otherwise we could increase the number of (V ∗

1 , V
∗
2 )-regular colorings by a factor of

2 by deleting the edge yz and adding one of the missing edges between the V ∗
i . The presence

of the complete bipartite graph forces every coloring of G to use exactly two colors on V ∗
2 ,

and the other on V ∗
1 . Together with the observation that the maximum number of connected

components of G[V ∗
2 ] is |V ∗

2 | − t when t ∈ {1, 2}, we find that G has exactly 3 · 2r � 3 · 2|V ∗
2 |−t

colorings. On the other hand, we showed above that G′ had more than 3 · 2|V ∗
2 |−�√t colorings.

Since t = �√t� for t ∈ {1, 2}, G′ has more colorings than G, contradiction.
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Proof of Claim 6. Let G0 = G[V1 ∪ V2] be the graph formed by the nonisolated vertices
of G, and let n0 = |V1 ∪ V2|. Since the number of colorings of G is precisely 3n−n0 times the
number of colorings of G0, the optimality of G implies that G0 must also be optimal among
n0-vertex graphs with m edges. Furthermore, Claim 4 also implies that almost all colorings of
G0 are [V ∗

1 , V
∗
2 ]-regular.

Case 1: V0 is empty. Let {a, b} be the sizes of the V ∗
i , with a � b. If there are less than

a missing edges between the V ∗
i , then Lemma 5.1 shows that G0 is semi-complete, so we are

done. On the other hand, if there are at least a missing edges, then Ka,b−1 plus one isolated
vertex has n0 vertices and at least m edges, but also exactly (3 · 2a + 3 · 2b−1 − 6) · 3 colorings.
Yet G0 has no vertices outside V ∗

1 ∪ V ∗
2 , and almost all colorings are [V ∗

1 , V
∗
2 ]-regular, so G0

has at most (1 + o(1)) · (3 · 2a + 3 · 2b) colorings, which is smaller, contradiction.

Case 2: V0 is the single edge w1w2. We show that this is impossible. Let {a, b} be the sizes
of the V ∗

i , with a � b. Since there are always exactly six ways to color the endpoints {w1, w2} of
the isolated edge independently of the rest of V , and almost all colorings are [V ∗

1 , V
∗
2 ]-regular,

G0 has (6 + o(1)) · (3 · 2a + 3 · 2b) colorings. Let G′ be the complete bipartite graph Ka−1,b+3,
and let G′′ be the complete bipartite graph Ka−1,b+2 plus one isolated vertex. Both graphs
have the same number of vertices as G0, so it suffices to show that at least one of them has
more edges and more colorings than G0.

Claim 3 gives a/b � u1/u2 −O(ε2), and Proposition 4.10 implies that u1/u2 � log 3
2/ log 3 ≈

0.37. Therefore, for small ε2 and large n, we have that ab+ 3a− b− 3 > ab+ 1, hence G′

has more edges than G0. Also, G′ has 3 · 2b+3 = 24 · 2b colorings that use only one color on
the (a− 1)-side and the other two on the (b+ 3)-side. We claim that this already exceeds
the number of colorings of G0 whenever b � a+ 2. Indeed, then 2a � 1

4 · 2b, so the number of
colorings of G0 is at most:

(6 + o(1)) · (3 · 2a + 3 · 2b) � (6 + o(1)) · 5
4
· 3 · 2b = (22.5 + o(1)) · 2b,

which is indeed less than the number of colorings of G′.
It remains to consider a � b � a+ 1. Here, G′′ has ab+ 2a− b− 2 > ab+ 1 edges, and

exactly (3 · 2a−1 + 3 · 2b+2 − 6) · 3 colorings. Using a � b− 1, this is at least (1 − o(1)) · 17
16 ·

3 · 2b+2 · 3 = (38.25 − o(1)) · 2b. On the other hand, using a � b, the number of colorings of G0

is at most (36 + o(1)) · 2b, which is smaller. Therefore, G′′ is superior on this range, and we
are done.

Case 3: V0 is the single vertex v0. Let I be the index (unique by Claim 5) such that V ∗
I

contains neighbors of v0. Let J = 3 − I be the other index, and let a = |V ∗
I |, b = |V ∗

J |. Note
that G0 is bipartite with partition (V ∗

I , V
∗
J ∪ {v0}). If at least d(v0) edges are missing between

V ∗
I and V ∗

J , then we can isolate v0 while only adding edges between V ∗
I and V ∗

J . This increases
the number of [V ∗

I , V
∗
J ]-regular colorings by a factor of 3

2 + o(1), which is impossible. Therefore,
less than d(v0) edges are missing between V ∗

I and V ∗
J , which implies that less than a edges

are missing between V ∗
I and V ∗

J ∪ {v0}. Hence G0 is a subgraph of Ka,b+1 with less than a
missing edges.

When a � b+ 1, Lemma 5.1 shows that G0 is semi-complete, as desired. It remains to
consider a > b+ 1. Some vertex of the set V ∗

I of size a is complete to V ∗
J ∪ {v0}, because

less than a edges are missing between V ∗
I and V ∗

J ∪ {v0}. But we also showed that less than
d(v0) � 2ε3n� |V ∗

J | edges are missing between V ∗
I and V ∗

J , so some vertex of V ∗
J must be

complete to V ∗
I . Thus, Lemma 5.2 implies that since G0 is an optimal graph, the missing edges

E(Ka,b+1) \ E(G0) form a star, which must have center v0 because d(v0) � 2ε3n� min{a, b}.
In particular, the number of missing edges is then exactly a− d, where d = d(v0), and then the
same lemma shows that G0 has exactly 3 · 2a + 3 · 2b+1 + 6 · (2a−d − 2) colorings.
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Consider the graph G′ obtained by removing a (b− d)-edge star from the complete bipartite
graph Ka+1,b. This has as many vertices and edges as G0, and 3 · 2a+1 + 3 · 2b + 6 · (2b−d − 2)
colorings by Lemma 5.2. The difference between the numbers of colorings of G′ and G0 is

3 · 2a − 3 · 2b + 6 · (2b−d − 2a−d) =
(

3 − 6
2d

)
· (2a − 2b),

which exceeds zero for d � 2 because we are in the case a > b+ 1. Optimality of G0 thus forces
d(v0) = 1.

We showed there were less than d(v0) edges missing between the V ∗
i , so now we know that

the nonisolated vertices of G form a complete bipartite subgraph (V ∗
1 , V

∗
2 ) plus a pendant edge

to v0. Finally, observe that G cannot have any isolated vertex z, or else we could replace the
pendant edge with the (isolated) edge v0z, and this would not change the number of colorings
because every partial coloring of V \ {v0} would still have exactly two extensions to the degree-
1 vertex v0. But the resulting graph is not optimal by the same argument as in Case 2 of this
claim. Therefore, G is only a complete bipartite subgraph plus a pendant edge, with no isolated
vertices. This completes the final case of our final claim, and our entire proof.

7. Exact result for Turán graphs

We now study the extremality of Turán graphs. As we mentioned in the introduction, Lazebnik
conjectured that Turán graphs Tr(n) were the unique graphs that maximized the number of
q-colorings whenever r � q. Note that Theorem 1.3 implies this result for q = 3 and r = 2 when
n is large, because it shows that all optimal graphs are bipartite, and no other bipartite graph
has as many edges as T2(n). In this section, we prove Theorem 1.4, which confirms (for large
n) Lazebnik’s conjecture when r = q − 1, for all remaining q. Our proof relies on the following
special case of a result of Simonovits [25]. Let tr(n) denote the number of edges of the r-partite
Turán graph Tr(n) with n vertices.

Fact 7.1. Let F be a graph with chromatic number r + 1. Suppose that there is an edge
whose deletion makes F r-colorable. Then for all sufficiently large n, the Turán graph Tr(n) is
the unique n-vertex graph with at least tr(n) edges that does not contain a subgraph isomorphic
to F .

We use this fact to prove the following lemma, which we will need later.

Lemma 7.1. Let q � 4 be fixed. The following holds for all sufficiently large n. Let G �=
Tq−1(n) have n vertices, and at least as many edges and q-colorings as Tq−1(n). Let Δ be the
difference between the number of edges of G and Tq−1(n), and let n′ = n− (q − 1). Then there
is an n′-vertex graph H with at least Δ + 1 more edges than Tq−1(n′), and at least half as
many q-colorings as G has.

Proof. We begin with a convenient technical adjustment. If G has k � 2 connectivity
components Ci that are not isolated vertices, then choose vertices vi ∈ Ci and glue the
components together by merging all of the vi into a single vertex v. Add k − 1 isolated
vertices w1, . . . , wk−1 to restore the vertex count, and let G′ be the resulting graph. Clearly,
G′ has as many edges as G, and it also is not Tq−1(n) because G′ has a vertex whose deletion
increases the number of components while Tq−1(n) does not. Furthermore, we claim that G
and G′ have the same number of colorings. Indeed, by symmetry, for an arbitrary color c,
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the total number of colorings of G is precisely qk times the number of colorings of G which
use c for every vi. The obvious correspondence gives a bijection between these colorings and
partial colorings of G′ \ {w1, . . . , wk−1} which use c on the merged vertex v. Yet the wi are
isolated, so each of these partial colorings has exactly qk−1 extensions to all of G′. Again by
symmetry, the total number of colorings of G′ is precisely q times the number that use c on v.
Setting everything together, we find that G and G′ indeed have the same number of colorings.
Therefore, by replacing G with G′, we may assume without loss of generality that G has only
one nontrivial connectivity component.

Fact 7.1 implies that for large n, G has a subgraph F which is the complete (q − 1)-partite
graph on V (F ) = X1 ∪ . . . ∪Xq−1 with each part Xi = {ui, wi} consisting of two vertices, plus
an extra edge u1w1. Let U = {u1, . . . , uq−1} and W = {w1, . . . , wq−1}, and let A = U ∪ {w1}.

Let δ be the difference between the number of edges of Tq−1(n) and Tq−1(n′). We claim that if
there is a set Y of q − 1 vertices of A such that the sum of their degrees is at most δ +

(
q−1
2

)− 1,
then H = G− Y satisfies the lemma’s assertion. Clearly, H has the correct number of vertices,
and it has the correct number of edges because Y ⊂ A induces a complete graph Kq−1, so the
number of deleted edges is at most δ − 1. We now show that every q-coloring of H extends to
at most two q-colorings of G.

If Y = U , since {u1} ∪W induces a Kq-subgraph in G, every coloring of H ⊃W has at most
one extension to u1. Then, every other ui has at most one choice because {u1, ui} ∪ (W \ {wi})
induces a Kq-subgraph in which ui is the only uncolored vertex. Thus when Y = U , every
coloring of H colors W and hence has at most one extension to G. On the other hand, up to
a symmetry of F , the only other case is when Y = {w1} ∪ (U \ {uq−1}). As before, {u1} ∪W
induces a Kq-subgraph in G, but this time H contains neither u1 nor w1 (although it contains
the rest). Any partial coloring of q − 2 vertices of Kq has only two completions, so there are
at most two ways to extend any coloring of H to include u1 and w1. But then every other
ui has at most one choice because {u1, ui} ∪ (W \ {wi}) induces a Kq-subgraph in which ui

is the only uncolored vertex. Therefore, every coloring of H has at most two extensions to G,
as claimed.

It remains to consider the case when every set of q − 1 vertices of A has degrees summing to at
least δ +

(
q−1
2

)
. We will show that then G has fewer colorings than Tq−1(n), which is impossible.

LetB = V (G) \A. By an averaging argument, the sum of degrees ofA is at least q
q−1 [δ +

(
q−1
2

)
].

Since |A| = q, the number of edges between A and B is at least q
q−1 [δ +

(
q−1
2

)
] − 2

(
q
2

)
.

Let B0 be the set of isolated vertices of G, and for 2 � i � q − 1, let Bi be the set of vertices
of B that send i edges to A. Note that no vertex can send q = |A| edges to A because that would
create a Kq+1-subgraph, making G not q-colorable. Therefore, if we let B1 = B \ (B0 ∪B2 ∪
. . . ∪Bq−1), then every vertex of B1 either sends exactly one edge to A, or it is a nonisolated
vertex that sends no edges to A. Let bi = |Bi|. By counting the number of edges between A
and B, we obtain

q−1∑
i=1

ibi � q

q − 1

[
δ +

(
q − 1

2

)]
− 2
(
q

2

)
. (4)

We now bound the number of q-colorings of G in terms of the bi. There are exactly q! ways
to color A because it induces Kq. Then, there are exactly qb0 ways to extend this partial
coloring to B0 because each isolated vertex has a free choice of the q colors. Next, for every
i ∈ {2, . . . , q − 1}, each vertex in Bi has at most q − i color choices left because it is adjacent
to i vertices in A, all of which received different colors since G[A] = Kq. Finally, we color the
vertices of B1 by considering them in an order such that whenever we color a vertex, it always
has a neighbor that we already colored. This is possible because our initial technical adjustment
allows us to assume that G has only one nontrivial connectivity component. Hence each vertex
in B1 will have at most q − 1 choices. Setting this all together, we find that the number of
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q-colorings of G is at most

q! ·
q−1∏
i=0

(q − i)bi � q! ·
q−1∏
i=0

2(q−i−1)bi � q! · 2(q−1)(n−q) · 2− q
q−1 [δ+(q−1

2 )]+2(q
2),

where we used the inequality x+ 1 � 2x for x ∈ Z, the identity
∑
bi = n− q (since ∪Bi =

V (G) \A), and the bound for
∑
ibi from inequality (4). Inequality B.5 routinely verifies that

this final bound is always strictly less than the number of colorings of Tq−1(n), contradicting
our assumption that G had at least that many colorings.

Proof of Theorem 1.4. Let q � 4 be fixed, and let N be the corresponding minimum number
of vertices for which Lemma 7.1 holds (it is valid only for sufficiently large n). We will show that
Theorem 1.4 holds for all n � q

(
N
2

)
. Therefore, suppose for contradiction that G �= Tq−1(n) is

an n-vertex graph with at least as many edges and q-colorings as Tq−1(n).
Define a sequence of graphs as follows. Start with G0 = G. If Gi is the current graph,

stop if Gi has fewer colorings than the (q − 1)-partite Turán graph with n− (q − 1)i vertices.
Otherwise, let Gi+1 be the graph H obtained by applying Lemma 7.1 to Gi. We claim that
this process terminates before the graph Gi has fewer than N vertices, so we will always be
able to apply the lemma. Indeed, each Gi has exactly n− (q − 1)i vertices, so it will take
more than

(
N
2

)
iterations before Gi has fewer than N vertices. Yet if Δ � 0 is the difference

between the number of edges of G and Tq−1(n), then each Gi has at least Δ + i more edges
than the (q − 1)-partite Turán graph with n− (q − 1)i vertices. Therefore, after

(
N
2

)
iterations,

Gi would certainly have more than the maximum number of edges of an N -vertex graph, and
we indeed can never reach a graph with fewer than N vertices.

Therefore, we stop at some Gt, which has n′ = n− (q − 1)t vertices and fewer colorings
than Tq−1(n′), but at least 2−t times as many colorings as G. Divide n by q − 1, so that n =
s(q − 1) + r with 0 � r < q − 1, and note that n′ = (s− t)(q − 1) + r. Lemma B.4 calculates
that Tq−1(n′) has exactly q! · [(q − 1 + r)2s−t−1 − q + 2] colorings, so G has at most 2t times
that many, hence fewer than q! · [(q − 1 + r)2s−1 − q + 2

]
. Yet by the same lemma, that final

bound equals the number of colorings of Tq−1(n). Thus G has fewer colorings than Tq−1(n), a
contradiction.

8. Concluding remarks

• We have developed an approach that we hope future researchers can use to determine
the graphs that maximize the number of q-colorings. Theorems 3.2 and 3.3 reduce any instance
of this problem to a quadratically constrained linear program, which can be solved for any case
of interest. Thus, thanks to modern computer algebra packages, these theorems imply that
for any fixed q, approximately determining the extremal graphs amounts to a finite symbolic
computation.
The remaining challenge is to find analytic arguments which solve the optimization problem
for general q, and then refine the approximate structure into precise results. We accomplished
this for low densities m/n2, and the natural next step would be to extend the result to the
range m

n2 � 1
4 . In this range, and for all q, we expect the solution to the optimization problem

to correspond to a bipartite graph plus isolated vertices. This common form gives hope that
perhaps one can find a solution which works across all q.

• For q = 3, we also know the approximate form of the extremal graphs when m/n2 > 1
4 ,

since Proposition 4.10 solved the entire q = 3 case of the optimization problem. However, we did
not pursue the precise structure of the optimal graphs because it appears that their description
is substantially more involved, and this paper was already quite long.
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• Our methods in Section 3 can easily be adapted to maximize the number of graph
homomorphisms to an arbitrary H (not just Kq). The analogs of Theorems 3.2 and 3.3 show
that for any fixed H, the asymptotic maximum number of homomorphisms from an n-vertex,
m-edge graph to H can be determined by solving a certain quadratically constrained linear
program. Although this can in principle be done, it appears that the computations become
rather messy even for graphs H of small order.
However, in the interesting case when H is the two-vertex graph consisting of a single edge
plus a loop, one can easily determine the extremal graphs via a direct argument. As we
mentioned in the introduction, this corresponds to maximizing the number of independent
sets. By considering the complement of the graph, this is equivalent to maximizing the number
of cliques.
We claim that for any n,m, the same graph that Linial found to minimize the number of
colorings also happens to maximize the number of cliques. This graph G∗ was a clique Kk with
an additional vertex adjacent to l vertices of the Kk, plus n− k − 1 isolated vertices, where
k, l are the unique integers satisfying m =

(
k
2

)
+ l with k > l � 0. We will show that for any t,

every n-vertex graph G with m edges has at most as many t-cliques as G∗. The only nontrivial
values of t to check are 2 � t � k.
If l + 2 � t � k, then G∗ has exactly

(
k
t

)
cliques of size t. Suppose for contradiction that

G has more t-cliques. Construct a t-uniform hypergraph with at least
(
k
t

)
+ 1 =

(
k
t

)
+
(
t−1
t−1

)
hyperedges by defining a hyperedge for each t-clique. By the Kruskal-Katona theorem (see,
for example, the book [3]), the number of 2-sets that are contained in some hyperedge is at
least

(
k
2

)
+
(
t−1
1

)
�
(
k
2

)
+ (l + 1), which exceeds the number of edges of G. This contradicts the

definition of the hyperedges, because each of these 2-sets must be an edge of G.
On the other hand, if 2 � t � l + 1, G∗ has exactly

(
k
t

)
+
(

l
t−1

)
cliques of size t. A similar

argument shows that if G has at least
(
k
t

)
+
(

l
t−1

)
+ 1 =

(
k
t

)
+
(

l
t−1

)
+
(
t−2
t−2

)
cliques of size t,

then G must have at least
(
k
2

)
+
(

l
1

)
+
(
t−2
0

)
�
(
k
2

)
+ l + 1 edges, a contradiction.

Therefore, G∗ indeed maximizes the number of cliques. Furthermore, we can classify all
extremal graphs, because our argument shows that any other graph G with as many cliques as
G∗ must also have exactly the same number of t-cliques for all integers t. In particular, using
t = k, we see that G must also contain a Kk. If l �= 1, we can use t = l + 1 to conclude that the
remaining edges form a star with all endpoints in the Kk. Therefore, the maximizer is unique
unless l = 1, in which case the extremal graphs are Kk plus an arbitrary edge (not necessarily
incident to the Kk).

Appendix A. Routine verifications for Optimization Problem 2

In this section, we present the postponed proofs of the results stated in Section 4.1.3. We begin
by disposing of Lemma 4.9, which states some analytical facts about the function Fq(x) =
log q

q−x · log q
x .

Proof of Lemma 4.9. For part (i), observe that if we reparametrize with t = x/q, then
we need to show that the function f(t) = log 1

1−t log 1
t is strictly increasing on 0 < t < 1/2

and strictly decreasing on 1/2 < t < 1. Instead of presenting a tedious analytic proof (which
is routine and not very interesting), we refer the reader to Mathematica’s plot of f(t) in
Figure A1(i).

For part (ii), define the functions g(x) = Fx(3) = log x
x−3 · log x

3 and h(x) = 2Fx(1) · x−3
x−2 =

2 · log x
x−1 log x · x−3

x−2 . We need to show that g(x) > h(x) for all x � 9. Direct substitution yields
g(9) ≈ 0.4454 and h(9) ≈ 0.4437, so it is true at x = 9.
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Figure A1. Plot (i) displays the function f(t) = log 1
1−t

log 1
t
. Plot (ii) displays the ratio

g(x)/h(x), where g and h are as defined above, and the horizontal axis is parametrized by 9/x.

Also, a quick estimate shows that asymptotically, as x→ ∞, g(x) = log
(
1 + 3

x−3

) · log x
3 =

(1 + o(1)) 3
x · log x and h(x) = 2 · log(1 + 1

x−1 ) · log x · x−3
x−2 = (2 + o(1)) 1

x · log x. Therefore, the
ratio g(x)/h(x) tends to 1.5, which is indeed greater than 1.

Again, instead of writing a routine analytic proof to fill in the gap between 9 and infinity, we
refer the reader to Figure A1(ii), which shows that the ratio g/h steadily increases as x grows
from 9. Thus, g(x) > h(x) for all x � 9, as required.

The monotonicity of Fq(x) on 0 < x < q/2, which we just established, is useful for our next
proof. This is Lemma 4.6, which stated that if α solves opt

∗ and is supported by a partition of
[q] consisting of exactly two sets, then α must have the same form as α∗, the claimed optimal
vector in Proposition 4.1.

Proof of Lemma 4.6. Let A and B denote the two sets in the support, with |A| � |B|. Write
a = |A|. Flipping the fractions to make the logarithms positive, we have obj

∗(α) = −αA log q
a −

αB log q
q−a � −2

√
αA log q

a · αB log q
q−a by the inequality of arithmetic and geometric means.

Yet αAαB = e(α) � 1 since α is in the feasible set Feas
∗, so obj

∗(α) � −2
√

log q
a · log q

q−a =

−2
√
Fq(a). Here, Fq is the function which Lemma 4.9(i) claimed was strictly increasing between

0 and q/2. In particular, since 1 � a � q/2, the final bound is at most −2
√
Fq(1), which we

recognize as obj
∗(α∗), where α∗ is the claimed unique optimal vector in Proposition 4.1.

Since α was assumed to be maximal, we must have equality in all of the above inequalities.
Checking the equality conditions, we find that α must indeed have the unique form claimed in
Proposition 4.1.

The remaining lemma from Section 4.1.3 ruled out a handful of partitions as possible supports
for optimal vectors. It turns out that each of those excluded partitions is a special case of the
following result.

Lemma A.1. Fix any integer q � 3, and let α be a vector which solves opt
∗, whose support

is a partition of [q]. Then that partition cannot be {1, . . . , t} ∪ {t+ 1} ∪ {t+ 2} ∪ . . . ∪ {q},
where 1 � t � q − 2.

Proof. Assume for the sake of contradiction that α is supported by the above partition.
Let x = α{t+1} = . . . = α{q}, which are all equal by Lemma 4.5(ii). We assumed that α was
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maximal, so in particular obj
∗(α) � obj

∗(α∗) = −2
√

log q
q−1 log q, where α∗ is the feasible

vector constructed in Proposition 4.1. Therefore,

(q − t)x log
1
q
> α{1,...,t} log

t

q
+ (q − t)x log

1
q

= obj
∗(α) � −2

√
log

q

q − 1
log q,

and we conclude that (q − t)x < 2
√

log q
q−1/ log q. On the other hand, we also know by Lemma

4.5(i) for the set A = {1, . . . , t} that (q − t)x = IA/αA = 2JA/αA = (2 log t
q )/obj

∗(α). Using
the final bound for (q − t)x above, this gives

obj
∗(α) =

(
2 log

t

q

)
/((q − t)x) < log

t

q
·
√

(log q)/ log
q

q − 1
.

(The inequality reversed because log(t/q) is negative.)
To get our contradiction, it remains to show that this is less than obj

∗(α∗) =
−2
√

log q
q−1 log q. Cancelling the common factor of

√
log q and rearranging terms, this reduces

to showing that log q
t > 2 log q

q−1 .
Since t � q − 2 by definition, it suffices to show that log q

q−2 > 2 log q
q−1 . Removing the

logarithms reduces us to showing that q/(q − 2) > q2/(q − 1)2. This is equivalent to (q − 1)2 >
q(q − 2), which is easily seen to be true by multiplying out each side.

Proof of Lemma 4.7. Part (i), the partition of all singletons, is precisely the case of the
previous lemma when t = 1. Similarly, part (ii), the partition of all singletons except for a
2-set, corresponds to the t = 2 case. For part (iii), which concerns partitions that include a
(q − 2)-set, first note that if the partition is a (q − 2)-set plus two singletons, then it is precisely
the t = q − 2 case of the previous lemma. The only other possibility is that the partition is a
(q − 2)-set plus a 2-set, and this is excluded by Lemma 4.6.

Appendix B. Routine verifications for exact results

Proposition B.1. Let r be a sufficiently large positive integer. Then the complete bipartite
graph Kr,2r plus one pendant edge achieves the maximum number of colorings among all
(3r + 1)-vertex graphs with 2r2 + 1 edges.

Proof. Every three-coloring of Kr,2r has exactly two extensions to the pendant vertex, so
Lemma 5.2 shows that the above graph has exactly

(
3 · 2r + 3 · 22r − 6

) · 2 = (1 + o(1)) · 3 ·
22r+1 colorings. Plugging n = 3r + 1 and m = 2r2 + 1 into the dense case of Theorem 1.3,
we see that the only other graphs we need to consider are semi-complete subgraphs of some
Ka,b with a = (1 + o(1))r and b = (2 + o(1))r, plus isolated vertices. Note that we must have
a � r, because when a � r − 1 and a+ b � 3r + 1, convexity implies that ab � (r − 1)(2r +
2) = 2r2 − 2 < 2r2 + 1, and there would not be enough edges.

Let G′ be one of the above graphs with a = r + t for some t � 0. We must have b � 2r − 2t+
1, because (r + t)(2r − 2t) = 2r2 − 2t2 < 2r2 + 1, so any smaller b would not produce enough
edges. This leaves n− a− b � t isolated vertices. Observe that when t = 0, this forces G′ to
be a semi-complete subgraph of Kr,2r+1 with exactly r − 1 missing edges. Lemma 5.2 then
shows that the number of colorings of G′ is 3 · 2r + 3 · 22r+1 + 6 · (2r−1 − 2

)
, which is exactly

the same as G.
It remains to consider t > 0. By definition, any semi-complete subgraph of Ka,b is missing

at most a− 1 edges, so Lemma 5.2 implies that the number of three-colorings of G′ is at
most 3n−a−b · (3 · 2a + 3 · 2b + 6 · (2a−1 − 2

))
. This expression is largest when b is as small as

possible, so using b � 2r − 2t+ 1 and n = 3r + 1, we find that G′ has at most 3t · (3 · 2a + 3 ·
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22r−2t+1 + 6 · (2a−1 − 2
))

colorings. Since a = (1 + o(1))r, this is at most
((

3
4

)t + o(1)
) · 3 ·

22r+1, which is indeed less than the number of colorings of G when r is large.

Remark. A similar argument shows that for any c ∈ {0,±1,±2} and large r, Kr,2r+c plus
a pendant edge is optimal among graphs with 3r + c+ 1 vertices and r(2r + c) + 1 edges.
Interestingly enough, it can also be shown that these values of n,m are the only ones which
produce optimal graphs that are not semi-complete plus isolated vertices, when n,m are large.

Inequality B.2. Let a, b, t be positive integers, with t � 3 and b
a � log t/ log t−1

t−2 . Then

(i) The product ia(t− i)b falls by a factor of at least 1.5a when i increases by 1, for all
i ∈ {1, . . . , t− 2}.

(ii) If we further assume that a is sufficiently large (depending only on t), then
∑t−1

i=1

(
t
i

)
ia

(t− i)b � 1.1 · t(t− 1)b, that is, the first summand dominates.

Proof. When i ∈ {1, . . . , t− 2} increases by 1, i grows by a factor of at most 2, but t− i
falls by at least (t− 1)/(t− 2). Thus, the product ia(t− i)b falls by a factor of at least(

1
2

)a(
t− 1
t− 2

)b

=

(
1
2
·
(
t− 1
t− 2

)b/a
)a

�
(

1
2
· t
)a

.

Since t � 3, this gives (i).
For part (ii), when i increases by 1, the term

(
t
i

)
in the summand grows by a factor of at

most t, but by (i) the rest of the summand falls by a factor of at least 1.5a. Thus for sufficiently
large a, each successive term of the sum falls by a factor of at least 1.4a > 20. The result follows
by bounding the sum by a geometric series, since 1 + 1/20 + 1/202 + . . . < 1.1.

Inequality B.3. Let m, n, t, and v1 be positive integers, with m � n2/4 and v1(n− v1) �
m− t. Let s be the largest integer that satisfies s(n− s) � m. Then s � v1 −

√
t.

Proof. The inequality for s rearranges to s2 − ns+m � 0, so the quadratic formula implies
that s is precisely �(n+

√
n2 − 4m)/2�. Similarly, the inequality for v1 rearranges to v2

1 − nv1 +
(m− t) � 0, so the quadratic formula implies that v1 � �(n+

√
n2 − 4m+ 4t)/2�. Therefore,

v1 − s �
⌊
n+

√
n2 − 4m+ 4t

2

⌋
−
⌊
n+

√
n2 − 4m
2

⌋

�
⌈
n+

√
n2 − 4m+ 4t

2
− n+

√
n2 − 4m
2

⌉
=

⌈√
(n2 − 4m) + 4t−√

n2 − 4m
2

⌉
.

Since the function
√
x is concave and we assumed n2 − 4m � 0, this final bound is largest when

n2 − 4m = 0. Therefore, v1 − s � �√t�, which gives the claimed result.

Lemma B.4. The number of q-colorings of the Turán graph Tq−1(n) is exactly q! · [(q −
1 + r)2s−1 − q + 2

]
, where s and r are defined by n = s(q − 1) + r with 0 � r < q − 1.

Proof. The complete (q − 1)-partite graph Tq−1(n) has r parts of size s+ 1 and q − 1 − r
parts of size s, and any q-coloring must use different colors on each part. The number of
q-colorings that use exactly one color on each part is exactly q · (q − 1) · · · 2 = q!. All other
colorings use two colors on one part, and one color on each of the other parts. There are

(
q
2

)
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ways to choose which two colors are paired. If the pair of colors is used on one of the r parts of
size s+ 1, then there are 2s+1 − 2 ways to color that part with exactly two colors, followed by
(q − 2)! ways to choose which color goes to each of the remaining parts. Otherwise, if the pair
of colors appears on one of the q − 1 − r parts of size s, then there (2s − 2)(q − 2)! colorings
of this form. Therefore, the number of q-colorings of Tq−1(n) is exactly

q! +
(
q

2

)
· [r · (2s+1 − 2)(q − 2)!+ (q− 1− r) · (2s − 2)(q− 2)!

]
= q! · [(q − 1 + r)2s−1 − q + 2

]
,

as claimed.

Inequality B.5. Fix any q � 4. For all sufficiently large n, the number of q-colorings of
the Turán graph Tq−1(n) is strictly greater than

q! · 2(q−1)(n−q) · 2− q
q−1 [δ+(q−1

2 )]+2(q
2), (5)

where δ is the difference between the number of edges of Tq−1(n) and Tq−1(n− q + 1).

Proof. Divide n by q − 1, so that n = s(q − 1) + r with 0 � r < q − 1. Then Tq−1(n) has
exactly r parts of size s+ 1 and q − 1 − r parts of size s, and Tq−1(n− q + 1) is obtained by
deleting one vertex per part. Each deleted vertex in a part of size s+ 1 had degree n− s− 1,
while each deleted vertex in a part of size s had degree n− s. Thus, the number of deleted edges
is δ = r(n− s− 1) + (q − 1 − r)(n− s) − (q−1

2

)
, where we had to subtract the double-counted

edges of the Kq−1 induced by the set of deleted vertices. Substituting this into (5) and using
n = s(q − 1) + r to simplify the expression, we obtain:

q! · 2(q−1)(n−q) · 2− q
q−1 [δ+(q−1

2 )]+2(q
2) = q! · 2(q−1)(n−q) · 2− q

q−1 [r(n−s−1)+(q−1−r)(n−s)]+2(q
2)

= q! · 2s · 2 r
q−1 .

It remains to show that this is strictly less than the number of colorings of Tq−1(n), which
Lemma B.4 calculated to be q! · [(q − 1 + r)2s−1 − q + 2

]
= (1 − o(1)) · q! · 2s · (q − 1 + r)/2.

Here, the o(1) term tends to zero as n grows (and s = �n/(q − 1)� grows). Recall that 0 �
r < q − 1, so when r � 1 and q � 4 we always have 2r/(q−1) < 21 � (q − 1 + r)/2, giving the
desired result. On the other hand, when r = 0, the result follows from 2r/(q−1) = 20 < 3

2 �
(q − 1 + r)/2.
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