Oblivious Collaboration

Yehuda Afek!, Yakov Babichenko?, Uriel Feige?,
Eli Gafni*, Nati Linial®, and Benny Sudakov®

! The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
2 Department of Mathematics, Hebrew University, Jerusalem, Israel
3 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel
4 Computer Science Department, Univ. of California, Los Angeles, California
5 School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
6 Department of Mathematics, UCLA, Los Angeles, California

Abstract. We introduce oblivious protocols, a new framework for dis-
tributed computation with limited communication. Within this model we
consider the musical chairs task MC(n,m), involving n players (proces-
sors) and m chairs. Initially, players occupy arbitrary chairs. Two players
are in conflict if they both occupy the same chair. The task terminates
when there are no conflicts and each player occupies a different chair.
Our oblivious protocols use only limited communication, and do so in an
asynchronous fashion. Essentially, a player can only observe whether the
player itself is in conflict or not, and nothing else. A player observing no
conflict halts and never changes its chair, whereas a player observing a
conflict changes its chair according to its deterministic program. Known
results imply that even with more general communication primitives, no
strategy of the players can guarantee termination if m < 2n—1. We show
that even with this minimal communication termination can be guaran-
teed with only m = 2n—1 chairs. Our oblivious protocol can be extended
to the well-known Adaptive Renaming problem, using a name-space that
is as small as that of the optimal nonoblivious protocol.

We also make substantial progress in optimizing other parameters
(such as program length) for our protocols, though many interesting
questions remain open.

1 Introduction

In every distributed algorithm each processor must occasionally observe the
activities of other processors. This can be realized by explicit communication
primitives (such as by reading the messages that other processors send, or by
inspecting some publicly accessible memory cell into which they write), or by
sensing an effect on the environment due to the actions of other processors. Ex-
amples for the latter case are collision detection based algorithms for sharing
Multi-Access broadcast media [19]. In our work, in analogy to the collision de-
tection setting, we consider two severe limitations on the processors’ behavior
and ask how this affects the system’s computational power: (i) A processor can

D. Peleg (Ed.): DISC 2011, LNCS 6950, pp. 489-p04, 2011.
© Springer-Verlag Berlin Heidelberg 2011

490 Y. Afek et al.

only post a proposal for its own output, (ii) Each processor is “blindfolded”
and is only occasionally provided with the least possible amount of information,
namely a single bit that indicates whether its current state is “good” or “bad”.
Here “bad/good” stands for whether or not this state conflicts with the global-
state desired by the processor. Moreover, we also impose the requirement that
algorithms are deterministic (use no randomization). This new minimalist model,
properly defined, is called the oblivious model. This model might appear to be
significantly weaker than other (deterministic) models studied in distributed
computing. Yet, we show that two variants of the renaming problem, adaptive
renaming (AR) (defined in [2]) and musical chairs (MC) (introduced in here)
can be solved optimally within the oblivious model. Furthermore, we discuss the
efficiency of oblivious solutions to these problems and the relations between the
oblivious model and the wait-free asynchronous shared memory model with only
reads and writes.

The current paper defines the oblivious model in general, but presents results
only for the tasks MC and AR, and only with the collision predicate (which is
natural for these tasks). We believe that the study of other tasks within the
oblivious model can lead to additional interesting insights about the role of
communication in distributed computing, though this is left to future work.

The oblivious model limits the operations available to individual processors.
We find it convenient to model these limitations via a fictitious oracle. Associated
with every state of a participating processor is a proposed output, though there
could be several different states with the same proposed output. The state at
which a processor halts thus defines its final output. The only way a processor
can sense its environment is by querying the oracle about a single predicate on
the current vector of outputs of the processors. Based on the single bit answer
the processor needs to either halt with its current output, or proceed with its
computation and propose a new output. But how can a processor’s computation
proceed? It has no information about the state of other processors (beyond the
one bit that tells it that it must proceed), and we are forbidding randomization.
Consequently, a processor’s proposed output can depend only on its current
state, and therefore the sequence of states that processor p; traverses is simply an
infinite word m; over the alphabet of possible outputs. Upon receiving a negative
answer from the oracle, processor p; in state m;[k] moves to state ;[k+1]. Given
the definition of a computational task, it is up to the programmer to design the
words 7; and the query that each processor poses to the oracle under which that
task is always realized properly. Our only assumption is that the oracle correctly
answers the queries, and a processor eventually halts/proceeds to the next state
in his word upon a bad/good response from the oracle.

The Musical Chairs, MC(n,m) task involves n processors pi,...,p, and, m
chairs numbered 1, ..., m. Each processor p; starts in an arbitrary chair, dictated
by the input. If the input chairs are all different, all processors are good and the
input is the output. Otherwise, the task calls for each processor to capture a
chair that differs from the chair captured by any other processor.

Oblivious Collaboration 491

The Adaptive Renaming(n, m) (AR(n,m)) task is a close relative of M C(n, m).
There are m slots (chairs) numbered 1,...,m and each participant has to cap-
ture a different slot. The processors have no input. If only & < n processors
participate, then each has to capture (output) a different slot from the first
min (2k — 1,m) slots. If all the n processors participate then each captures a
different slot from the m slots.

In Section 2] we define the oblivious model in detail. For the MC and the AR
problems we use the collision query — a processor is good iff it is the only one to
propose the current chair. We show that in this case the general oblivious model
simplifies considerably. These simplifications later help us produce an optimal
solution. The infinite words (programs) considered here are an infinite repetition
of a finite word.

Remarkably, for each processor we produce a program which is a single cyclic
word (an infinite repetition of that word) on an alphabet of chairs. Furthermore,
for the MC task the program can be started at any location in the word. This
provides for self stabilization [I1J12]. Namely, consider a system configuration
where each processor occupies a different chair and there are no conflicts. Sup-
pose that the system gets perturbed, and program counters change arbitrarily.
This may create conflicts, but the system will nevertheless resettle obliviously
in finite time into a conflict-free safe configuration.

Here are the main results presented in the current paper:

1. The introduction of the general oblivious model and its specialization to the
problems at hand.

2. A proof that there are tasks that are solvable in a wait-free asynchronous
shared memory model with only reads and writes, but not solvable oblivi-
ously.

3. The characterization of the minimal m for which there is an oblivious
MC(n,m) algorithm:

Theorem 1. There is an oblivious MC(n,m) algorithm if and only if m >
2n —1.

Moreover, for all N > n there exist N words on m chairs such that any n
out of the N words constitute an oblivious M C(n,2n — 1) algorithm.

4. The characterization of the minimal m for which there is an oblivious AR(n,
m) algorithm:

Theorem 2. There is an oblivious AR(n,m) algorithm if and only if m >
2n — 1.

5. The words in Theorem [I] use the least number of chairs, namely m = 2n — 1.
However, the length of these words is doubly exponential in n. Are there
oblivious MC algorithms with much shorter words? Even length O(n)? Per-
haps even length m? How long can the scheduler survive? Here we consider
systems with N > n words (programs) and any n out of the N should con-
stitute a solution of MC. We call these M C(n, m) systems with N words.

492 Y. Afek et al.

Theorem 3. For every N > n, almost every choice of N random words of
length ecnlog N in an alphabet of m = Tn letters is an MC(n,m) system
with N full words (words that contain every letter in 1,...,m). Moreover,
every schedule on these words terminates in O(nlog N) steps. Here ¢ is an
absolute constant.

6. Since we are dealing with full words (words that contain every letter in
1,...,m) and we seek to make them short, we are ultimately led to con-
sider the case where each word is a permutation on [m]. At the moment
the main reason to study this question is its aesthetic appeal. We can de-
sign permutation-based oblivious M C(n,2n — 1) algorithms for very small
n (provably for n = 3, computer assisted proof for n = 4). We suspect that
no such constructions are possible for large values of n, but we are unable
at present to show this. We do know, though that

Theorem 4. For every integer d > 1 there is a collection of N = n® permu-
tations on m = cn symbols such that every n of these permutations constitute
an oblivious MC'(n,m) algorithm. The constant ¢ depends only on d. In fact,
this holds for almost every choice of N random permutations on [m].

We should stress that our proofs of Theorems Bl and H are purely existential.
The explicit construction of such systems of words remains largely open,
though we do have some results in this direction, e.g.,

Theorem 5. For every integer d > 1 there is an explicitly constructed col-
lection of N = n? permutations on m = O(d?*n?) symbols such that every n
of these permutations constitute an oblivious MC(n,m) algorithm.

1.1 Related Work

Two variations of the renaming problem were introduced in [2], Weak Renaming
and Adaptive Renaming (AR). In the former, there is an unbounded universe of
processor ids of which n wake up and have to each select a different name in
the range {1,...M(n)}. In the AR(n, M (n)) problem, which is one of the two
problems solved obliviously in this paper, the universe consists of n processors,
{p1,...,pn} and again they have to each capture a different integer in the range
{1,...M(n)}. Yet in AR, if the size of the participating set is k < n, outputs
are restricted to be in {1,...,2k — 1} (hence the algorithm is adaptive to the
number of processors participating). The renaming algorithm presented in [2]
solves both variants with M (n) = 2n — 1.

Weak renaming is solvable with M (n) = 2n—2 for infinitely many different n’s,
called “exceptional” [10]. For AR(n, M (n)), M(n) =2n — 1 is a lower bound as
shown in [I5]. The proof of this lower bound builds upon previous impossibility
results for set consensus (see [QI8I20]), by showing that given a hypothetical
algorithm for AR(n, 2n — 2) in addition to read-write registers one can solve set
consensus in a wait-free manner.

Oblivious Collaboration 493

Both weak and adaptive renaming algorithms have been extensively studied
over the last two and a half decades, but aside from the above mentioned works
concerning solvability, all the studies are about complexity, which is not the
subject of this paper.

The musical chairs problem is weakly related to the Musical Benches (MB)
[16] problem. In MB there are n benches and n + 1 players. Each bench has
two seats. Every player needs to occupy a seat, and more than one player can
occupy the same seat. An output is legal if in every bench at most one seat is
occupied. Initially, players occupy arbitrary seats. If the initial configuration is
legal, it has to be the output. However, if the initial configuration is not legal,
then players can move and must return a legal output. In [16] it is shown, using
the Bursuk-Ulam Theorem, that the task for n = 2 has no wait-free solution in
an asynchronous shared memory model with only reads and writes. MC shares
with MB the flavor of the game of “jumping” from seat to seat. However, MC is
about separating players from each other, whereas MB is about getting players
on a bench to arrive at consensus.

There are other contexts in which algorithms of an oblivious nature were
considered. An algorithm in which each process is assigned a permutation which
specifies the order it is to do work is presented in [3]. Algorithms to compute
a maximal independent set with only carrier sensing with or without collision
detection are provided in this volume [6]. Among all work on algorithms with
an oblivious nature, we find it most instructive to compare our work with work
on universal traversal sequences (UTS) for covering graphs. A word over the
alphabet {0,1,...d — 1} can guide a walk on an n-vertex d-regular undirected
graph: in each step the walk selects its next out-going edge according to the
respective symbol of the word. Such a word is a UTS if for every connected n-
vertex d-regular graph, regardless of how each vertex labels its out-going edge,
the corresponding walk visits all vertices of the graph. In [I] it is shown that
a sufficiently long random word (say, of length n%) is almost surely a UTS.
In analogy, our proof of Theorem B shows that sufficiently long random words
almost surely form MC algorithms. However, in our case the proof needs to
overcome an obstacle not present in the UTS case. The difference is that in MC,
as words get longer, the scheduler also gets more choices of how to schedule them,
whereas for UTS the number of graphs is fixed independently of the length of
the words. As a consequence, for some range of parameters (e.g., provably when
m < 2n — 1, as Theorem [I] shows), the statement is simply not true. There are
no analogous forbidden ranges of parameters for universal traversal sequences.

1.2 Discussion

Due to space limitations, large parts (including most proofs) are omitted from
the current version of this paper. The reader interested in more details is referred
to [B].

A number of simple observations follow from the requirement that oblivious
algorithms are deterministic. (i) An oblivious M C(n,m) algorithm cannot in-
clude any two identical words. Otherwise the corresponding players might move

494 Y. Afek et al.

together in lock-step, constantly being in collision. Hence it is essential that no
two processors have the same program. (ii) For every oblivious M C(n,m) algo-
rithm with cyclic words, there is a finite upper bound on the number of moves
a processor can make before termination. This is because there are only finitely
many system configurations (a system configuration is determined by one state
for each processor, and the number of possible states of a processor is equal to
the length of the cycle in its cyclic word, and hence finite), and in a terminating
sequence of moves no system configuration can be visited twice. (iii) In fact,
for every collection of finite words there is a directed graph whose vertices are
all the system configurations. Edges correspond to the possible transitions. The
collection of words constitute an oblivious MC protocol iff this graph is acyclic.

Not all aspects of oblivious protocols are required for the purpose of the lower
bound m > 2n — 1. The two crucial aspects are the asynchrony of the model,
and the fact that our algorithms are deterministic (no randomization). In a
synchronous setting (where in every time step, every processor involved in a
collision moves to its next state), m = n suffices even for oblivious protocols.
(This can be proven using the techniques of Theorem [3 Details are in [5].) Like-
wise, m = n suffice if randomization is allowed — with probability 1 eventually
there are no collisions. However, no specific upper bound on the number of steps
can be guaranteed in this case. Moreover, if the randomized algorithms are run
using pseudorandom generators (rather than true randomness) the argument
breaks. For any fixed seed of a pseudorandom generator, the algorithm becomes
deterministic and the lower bound m > 2n — 1 holds.

The lower bound of m > 2n — 1 uses some benign-looking aspects of the MC
task, so further discussion is called for. Recall that each processor starts in an
arbitrary chair, dictated by the input. In the absence of an external input speci-
fying the starting chair, a trivial oblivious MC algorithm (with m = n) contains
n distinct single-letter words. Another requirement is that if the input chairs are
all different, all processors are good and the input is the output. Without such a
requirement, the processors might simply ignore the initial input and the trivial
oblivious MC algorithm would still apply. Hence the lower bound of m > 2n —1
depends on requirements beyond the need for each processor to capture a dif-
ferent chair. Here this extra requirement is the possibility to dictate an output.
This particular requirement makes it easy to transfer previously existing lower
bounds to our MC problem.

Our present proof for the lower bound of m > 2n — 1 leaves something to be
desired. It relies on previous nontrivial work in distributed computing. What’s
worse is that we prove a lower bound for a simple oblivious model via a reduction
to a lower bound proved in a more complicated model. This roundabout approach
obscures the essential properties that make the lower bound work. Indeed, in a
companion manuscript (in preparation), we present a self contained proof for the
lower bound of m > 2n— 1. That presentation clarifies the minimal requirements
that are needed in order to make the lower bound work. In particular, it is not
necessary that one can dictate an arbitrary starting chair for each processor —
dictating one of two chairs suffices.

Oblivious Collaboration 495

As noted, we design oblivious M C(n, m) protocols with m = 2n — 1. Part of
our work also concerns analyzing what ratios between m and n one can obtain
using collections of randomly chosen words as in Theorem Bl As explained in
the introduction, this allows us to present more efficient deterministic oblivious
programs — though random words seem to need more chairs, they can reach
conflict free configurations more quickly. Moreover, the use of random words is a
design principle that can be applied to design oblivious algorithms for other tasks
as well. Developing an understanding of what they can achieve and techniques
for their analysis is likely to pay off in the long run. One of the major questions
that remain open in our work is whether randomly chosen words can be used to
design deterministic oblivious MC protocols with m = 2n — 1.

2 The Oblivious Model

The Oblivious model (formally defined in [5]) is an asynchronous distributed
computing model in which each processor, at each point of time, exposes an out-
put value it currently proposes, and may receive at most one bit of information.
This bit indicates whether its proposed output is legal with respect to the other
currently proposed outputs (and hence the processor may halt) or not (and then
the processor should continue the computation). If a processor decides to halt
at the current state, then its proposed output is its final output. We denote the
set of possible output values by O. A system configuration (or configuration for
short) is a vector of n elements, one per processor, whose entries come from the
set OU{L}. Here L represents a processor that has not yet proposed any out-
put, either because it is not participating, or because it was not scheduled yet
to propose an output (these two cases are indistinguishable to other processors).
An entry from O represents the output a corresponding processor proposes in
the configuration. In an oblivious algorithm correctly designed for a given task,
eventually all participating processors must halt, and the final configuration
must be a legal output vector in the task specification.

The defining feature of the oblivious model is that each processor may receive
only one bit of information about the system configuration in each computation
step. Namely, for each processor there is a predicate that maps configurations
to one of two values, one dictating that the processor will change its state, the
other dictating that it should halt in its current state. In the most general setting
the predicate provided for each processor may depend on its input. However,
throughout an execution one predicate is used for each processor. A necessary
(but not sufficient) condition for correct oblivious algorithms is that in every
illegal configuration at least one processor’s predicate dictates a change of state.
Our formal model does not exclude the use of arbitrary complex predicates (as
long as they depend only on the current configuration), but oblivious algorithms
have greater appeal when the predicates involved are simple and natural. For
the two tasks considered in this paper, the same colliston predicate is used by
all the processors.

Initially, and as a function of its input, each processor p; selects a word m;
over O, and a predicate pred; on the set of of all configurations. The first letter

496 Y. Afek et al.

in m; is p;’s input, i.e., m;[1] = input; € O. For tasks such as AR in which a
processor need not have any input, the first letter is set to be an output that is
valid if no other processor participates (hence for AR the first letter is 1).

We describe the system using the notion of an omnipotent know-all sched-
uler called asynchronous (other schedulers with different names are described
in the sequel). Execution under the control of the asynchronous scheduler pro-
ceeds in rounds. The scheduler maintains a set P of participating processors, a
set E C P of enabled processors, and a set DONE (disjoint from P) of pro-
cessors that have already halted. These sets are initially empty. In each round
the scheduler performs the following sequence of operations. It may add some
not yet participating processors to P. It may evaluate the predicate pred; for
some subset of processors in P\ E. If pred; evaluates to true, the scheduler
adds processor p; to the set E. Otherwise, if it evaluates to false, it removes p;
from P and adds it to the set DONE. Finally, the scheduler selects a subset
SE C E, removes it from E, and moves each p; € SE to its next letter in ;.
Le., the current output of p; is replaced by the next one in its program, 7;. This
completes the round.

An oblivious algorithm solves a task if for every input vector, the scheduler
is forced to eventually place all participating processors in the DONE set. At
that point it can no longer continue, and the final configuration is such that
(Vinp, Vout) € A, the relation that defines the task.

The asynchronous scheduler for oblivious algorithms mimics the behavior of
a wait-free algorithm in an asynchronous shared memory model with only reads
and writes, on configurations. Theorem [l below is proved in [5] simply by having
each processor emulate the scheduler through reads (snapshots) and writes of
its newly proposed output in shared memory.

Theorem 6. FEvery task that is solvable obliviously has a wait-free solution in
an asynchronous shared memory model with only reads and writes.

Thus the oblivious model is subsumed by the wait-free asynchronous shared
memory model with only reads and writes. Is this a proper inclusion? To clar-
ify the answer we introduce an intermediate class of tasks that we call Output
Negotiation, or ON. It includes those tasks that have a wait-free solution in
an asynchronous shared memory model with only reads and writes in a sys-
tem where writing is in the oblivious model (processors can only expose their
proposed outputs), whereas reading is as in the general wait-free asynchronous
shared memory model with only reads and writes (a processor can read all
exposed information rather than only a single predicate). By definition, every
obliviously solvable task is ON solvable.

Corollary 7. Every obliviously solvable task is in ON.

Obviously, ON is a subset of the wait-free asynchronous shared memory model
with only reads and writes, and in Theorem 8 below whose proof is in [5] we show
that this inclusion is proper. In the proof we consider the task AntiM C which is
a variation on epsilon agreement [I3] and show that AntiMC is not solvable just

Oblivious Collaboration 497

by communicating outputs. AntiMC is a task with 3 processors whose input and
output are each a number in {1,...,5}. A processor running alone must output
its input. If more than one processor participates, all the outputs must lie within
two consecutive numbers.

Theorem 8. There exists a task, AntiMC', that has a wait-free solution in an

asynchronous shared memory model with only reads and writes but does not
belong to ON.

2.1 Impossibility of MC(n,2n — 2)

In Sections B and [we show that M C(n,2n — 1) and AR(n,2n — 1) are solvable
obliviously. AR(n,2n — 2) has no wait-free solution in an asynchronous shared
memory model with only reads and writes [I4/T5], and hence not solvable oblivi-
ously either. Theorem[@whose proof is in [5] shows a reduction from AR(n, 2n—2)
to MC(n,2n — 2). This implies that M C(n,2n — 2) has no wait-free solution in
an asynchronous shared memory model with only reads and writes, and hence
also not solvable obliviously.

Theorem 9. AR(n,2n —2) is wait-free reducible to MC(n,2n —2) in an asyn-
chronous shared memory model with only reads and writes.

2.2 Cyclic Finite Programs or Words

For the AR task, processors have no input (or alternatively, are assumed to al-
ways have the input 1), and hence each processor has only one sequence. Our
constructions of oblivious algorithms all have the property that the same se-
quence is used for all inputs. Moreover, we consider finite sequences over which
the processor goes cyclically. In the M C' task one can designate m locations in
the word, each corresponding to a possible output that has been dictated by
the input to the processor and each processor advances cyclically on the word
starting from that designated location.

2.3 Simplified Oblivious Model for MC and AR

The use of the collision predicate can be shown to imply that for the AR and MC
problems it is sufficient to consider a much simpler scheduler, the Pairwise I'm-
mediate scheduler: In each round this scheduler selects two processors that are
currently colliding with each other, and moves either one or both of them, c’est
tout. Suppose that every processor has an associated word. We show that given
an initial configuration (starting positions on the words), the oblivious asyn-
chronous scheduler runs to infinity iff the pairwise immediate scheduler does.
This scheduler is then used in constructions in Sections [3] and @l The construc-
tions in Section [Bluse an even more restrictive scheduler, the Canonical sched-
uler. Like the pairwise immediate scheduler, the canonical scheduler can move
only one or both of two currently colliding processors, but unlike the pairwise
immediate scheduler, the choice of which two colliding processors to consider is
not made by the scheduler, but rather dictated to it. For formal definitions of
these schedulers and the proof of their equivalence, see [5].

498 Y. Afek et al.

3 An Oblivious MC Algorithm with 2n — 1 Chairs

This section is dedicated to the upper bound that is stated in Theorem [Il The
proof of this theorem is inductive and rather technical. For lack of space, the full
text with all proofs is given in [5]. In what follows we attempt to give the reader
a sense of the main ingredients of the construction and how they come together
in the proof.

3.1 Preliminaries

The length of a word w is denoted by |w|. The concatenation of words is denoted
by o. The r-th power of w is denoted by w"™ = wow...ow (r times). Given
a word 7w and a letter ¢, we denote by ¢ ® m the word in which the letters are
alternately ¢ and a letter from 7 in consecutive order. For example if m = 2343
and ¢ = 1 then ¢ ® m = 12131413. A collection of words 71, ms, ..., 7, is called
terminal if no schedule can fully traverse even one of the ;. Note that we can
construct a terminal collection from any M C' algorithm just by raising each word
to a high enough power.

We now introduce some of our basic machinery in this area. A key tool is a
method to extend terminal sets of words.

Proposition 1. Let n,m, N be integers with 1 < n < m. Let IT = {my,... 7N}
be a collection of m-full words such that

every n of these words form an oblivious MC(n, m) algorithm. (1)
Then I can be extended to a set of N +1 m-full words that satisfy condition ().

proof. Suppose that for every choice of n words from II and for every initial
configuration no schedule lasts more than ¢ steps. (By the pigeonhole principle
t < L™ where L is the length of the longest word in IT). For a word 7, let 7’ be
defined as follows: If |7| > ¢, then 7’ = 7. Otherwise it consists of the first ¢ letters
in 7" where r > |r|/t. The new word that we introduce is w41 = 7] omho. . .om),.
It is a full word, since it contains the full word 7 as a sub-word.

We need to show that every set II’ of n — 1 words from II together with
mN+1 constitute an oblivious M C(n,m) algorithm. Observe that in any infinite
schedule involving these words, the word 71 must move infinitely often. Oth-
erwise, if it remains on a letter ¢ from some point on, replace the word mn 11
by an arbitrary word from II — II’ and stay put on the letter ¢ in this word.
This contradicts our assumption concerning IT. (Note that this word contains
the letter ¢ by our fullness assumption.) But 741 moves infinitely often, and it
is a concatenation of n words whereas II’ contains only n — 1 words. Therefore
eventually 71 must reach the beginning of a word m,, for some 7, & II’. From
this point onward, 741 cannot proceed for ¢ additional steps, contrary to our
assumption. O

Note that by repeated application of Proposition [we can construct an arbi-
trarily large collection of m-full words that satisfy condition ().

Oblivious Collaboration 499

We next deal with the following situation: Suppose that my, 7o, ..., 7, is a
terminal collection, and we concatenate an arbitrary word o to one of the words
;. We show that by raising all words to a high enough power we again have a
terminal collection in our hands.

Lemma 1. Let m,ma,...,m, be a terminal collection of full words over some
alphabet. Let o be an arbitrary full word over the same alphabet. Then the col-
lection

()%, (m2)", ooy (mim1)", (i 0 0)2, (i) *, s ()"
is terminal as well, for every 1 < i <p, and every k > |m;| + |o|.
Lemma [yields immediately:

Corollary 10. Let 71,7, ..., be a terminal collection of full words over some
alphabet, and let Tp1, Tpi2, ..., ™, be arbitrary full words over the same alphabet.
Then the collection

(m1omeo..omy)?, (m1)F, (m)*, .y (mic1)®, (mig1)", ooy (mp)"

is terminal as well. This holds for every 1 <i¢ <p and k > Z?Zl |73].

3.2 The MC(n,2n — 1) Upper Bound

Our proof shows somewhat more than Theorem [says (see Proposition 2]). We
do this, since the scheduler can “trade” a player P for a chair c. Namely, he can
keep P constantly on chair ¢. This allows the scheduler to move any other player
past c-chairs. In other words this effectively means the elimination of chair ¢
from all other words. This suggests the following definition: If 7 is a word over
alphabet C and B C C, we denote by 7(B) the word obtained from 7 by deleting
from it the letters from C'\ B.

Our construction is recursive. An inductive step should add one player (i.e.,
a word) and two chairs. We carry out this step in two installments: In the first
we add a single chair and in the second one we add a chair and a player. Both
steps are accompanied by conditions that counter the above-mentioned trading
option.

Proposition 2. For every integer n > 1

— There exist full words s1, 82, ..., 8, over the alphabet {1,2,...,2n — 1} such
that
51(A), s2(A4), ..., sp(A) is a terminal collection for every p <n and for every
subset
ACH{L,2,...,2n — 1} of cardinality |A| = 2p — 1.

— There exist full words wy,wa, ..., w, over alphabet {1,2...,2n}, such that
wi(B),w2(B), ..., wp(B) is a terminal collection for every p < n and for
every subset
B C{1,2,...,2n} of cardinality |B| = 2p — 1.

The words s, So, ..., S, in Proposition 2] constitute a terminal collection and are
hence an oblivious M C(n,2n — 1) algorithm that proves the upper bound part
of Theorem [Il The proof of Proposition 2 is given in [5].

500 Y. Afek et al.

4 The Oblivious AR(n,2n — 1) Algorithm

The ideas developed to solve the musical chairs problem and prove Theorem [II
turn out to yield as well an answer to the oblivious AR problem and a proof
of Theorem 2l The rules are the same as in the M C problem, except that the
scheduler cannot select the initial positions, and every word is started at its first
letter. In order to prove Theorem [21we should construct a collection of full words
Iy = {s1, 52, ..., 85} over the alphabet [2N — 1] such that for every n < N and
for every set of n words from ITy the following holds: Every schedule that starts
from the first letter in each of these words reaches a safe configuration and all
players only visits chairs from the set {1,...,2n — 1}.

We note that our construction yields very long words - triply exponential in
N. It is an interesting challenge to accomplish this with substantially shorter
words.

proof (Theorem[d). By Proposition [[l and Theorem [I we can construct for each
1 <i,n <N aword 7, that is [2n — 1]-full such that every set of n words in
the set {m; |t =1,..., N} constitute an oblivious M C(n,2n — 1) protocol.

We show that with a proper choice of the exponents Iy, ..., Iy, the Theorem
holds with the words s; = 7r5 10 7r§22 0...0 77515\,

The theorem follows if we can show that for every 1 <n < N and every subset
J C [N] of cardinality |J| = n the following holds: In every possible schedule
that starts each word in {s;|j € J} from its first letter, no player reaches a

position beyond the subword 7’ I Consider any point in such a schedule. Say

that player P; (for some j € J) is leading if it currently resides in the stretch W;-:Ln
of s;. Otherwise, we say that j is trailing. We observe that during a period of
time in which no trailing player changes position, no leading player can traverse
a complete copy of m;,. To see this, consider an arbitrary MC' schedule with
the words {m;|j € J}. We start this schedule as follows: Every leading player
maintains his position from the original AR schedule and every trailing player
stays put on the same chair that he is currently occupying. (Such a chair can be
found in the word =; ,, since it is [2n — 1]-full). The claim follows since the words
{mjn|j € J} constitute an oblivious M C(n,2n — 1) protocol.

I‘F follows th.at no leading Player P; can traverse more thar} EV<7L,iEJ\{j} Ti v
copies of 7, in s;. Our claim follows if we choose [; that is larger than this in-
teger. O

v

5 Oblivious MC Algorithms by the Probabilistic Method

Remark 11. It is important to note that the protocols that are presented in
this section are deterministic. The constructions are, however, inexplicit and
the existence of good protocols is proved by using a probabilistic argument. It is
an intriguing open problem to find equally good explicit constructions.

For lack of space, the full text with all proofs is given in [5]. In what follows we
attempt to sketch the results.

Oblivious Collaboration 501

Theorem [can be thought of as a (nonconstructive) derandomization of the
randomized MC algorithm in which players choose their next chair at random
(and future random decisions of players are not accessible to the scheduler).
Standard techniques for derandomizing random processes involve taking a union
bound over all possible bad events, which in our case corresponds to a union
bound over all possible schedules. The asynchronous scheduler has too many op-
tions (and so does the immediate scheduler), making a union bound too wasteful.
For this reason, in the analysis of this protocol we consider the canonical sched-
uler, which is as powerful as the asynchronous scheduler (see Section 23)). In
every unsafe configuration, a canonical pair of players in conflict is dictated
to the canonical scheduler, and the canonical scheduler has only three possible
moves to choose from. This makes it viable to use a union bound.

In this construction each of the IV words is chosen independently at random as
a sequence of L chairs, where each chair in the sequence is chosen independently
at random. Our proof shows that with high probability (probability tending to 1
as the value of the constant ¢ grows), this choice satisfies Theorem Bl

A simple union bound shows that in this random construction, with high
probability, all words are full. Proving termination is more of a challenge. We
keep track of all possible schedules. To this end we use “a logbook” that is the
complete ternary tree 7 of depth L rooted at r. Associated with every node v of
7T is a random variable X,,. The values taken by X, are system configurations.
For a given choice of words and an initial system configuration we define the
value of X, to be the chosen initial configuration. Every node v has three chil-
dren corresponding to the three possible next configurations that are available
to the canonical scheduler at configuration X, (and to an “empty” configuration
if the scheduler cannot move). The proof uses a potential function that maps a
configuration with ¢ occupied chairs to 2"~ %, where = > 1 is a constant opti-
mized within the proof. In a nonempty configuration the potential is at least 1.
Associated with every node of 7 is a nonnegative random variable P = P, that
is the potential of the (random) configuration X,. The main step of the proof is
to show that if vq, ve, vs are the three children of v, then 2?21 E(P,,) < rE(P,)
for some constant r < 0.99. This exponential drop implies that

]E(Z (Pv)) = Z E(Pv) = 0(1)

v is a leaf of 7 v is a leaf of T

provided that L is large enough. This implies that with probability 1—o(1) (over
the choice of random words) all leaves of 7 correspond to an empty configuration.
In other words every schedule terminates in fewer than L steps.

5.1 Permutations over O(n) Chairs

The argument that proves Theorem[Blis inappropriate for the proof of Theorem 4l
Theorem @l deals with random permutations, whereas in the proof of Theorem [3]
we use words of length 2(nlogn). (Longer words are crucial there for two main
reasons: To guarantee that words are full and to avoid wrap-around. The latter
property is needed to guarantee independence.) Indeed in proving Theorem [l

502 Y. Afek et al.

our arguments are substantially different. In particular, we work with a pairwise
immediate scheduler, and unlike the proof of Theorem [3 there does not appear
to be any significant benefit (e.g., no significant reduction in the ratio ") if a
canonical scheduler is used instead.

Here are some of the main ingredients of the proof of Theorem [for the special
case N = n (a slight extension of these ideas proves the general case). We show
that with high probability, a set of random permutations 71,..., 7, has the
property that in every possible schedule the players visit at most L = O(mlogm)
chairs. Our analysis uses the approach of deferring random decisions until they
are actually needed. For each of the m™ possible initial configuration, we consider
all possible sequences of L locations. For each such sequence we fill in the chairs
in the locations in the sequence at random, and prove that the probability that
this sequence represents a possible schedule is extremely small — so small that
even if we take a union bound over all initial configurations and over all sequences
of length L, we are left with a probability much smaller than 1.

The main difficulty in the proof is that since L > m some players may com-
pletely traverse their permutation (even more than once) and therefore the chairs
in these locations are no longer random. To address this, we partition the se-
quence of moves into L/t blocks, where in each block players visit a total of
t = dm locations for some sufficiently small constant §. Also n = em, where
€ is a constant much smaller than §. This choice of parameters implies that
within a block, chairs are essentially random and independent. To deal with de-
pendencies among different blocks, we classify players (and their corresponding
permutations) as light or heavy. A player is light if during the whole schedule (of
length L) it visits at most ¢/logm = o(t) locations. A player that visits more
than t/logm locations during the whole sequence is heavy. For light players, the
probability of encountering a particular chair in some given location is at most
m_lo(" < Hf;(l). Hence, the chairs encountered by light players are essentially
random and independent (up to negligible error terms). Thus it is the heavy
players that introduce dependencies among blocks. Every heavy player visits at
least t/logm locations. Hence the number ny of heavy players does not exceed
(Llogm)/t = O(log? m). The fact that the number of heavy players is small is
used in our proof to limit the dependencies among blocks.

6 Open Problems

Our MC algorithms involve very long words. An interesting question is to find
explicit constructions with m = 2n — 1 chairs and substantially shorter words.

In other ranges of the problem we can show, using the probabilistic method,
that oblivious M C(n,m) algorithms exist with m = O(n) and relatively short
full words. We still do not have explicit constructions of such protocols. We
would also like to determine liminf " such that n random words over an m
letter alphabet tend to constitute an oblivious M C(n,m) algorithm.

Oblivious Collaboration 503

Computer simulations strongly suggest that for random permutations, a value
of m = 2n — 1 does not suffice. On the other hand, we have constructed (de-
tails omitted from this manuscript) oblivious M C(n,2n — 1) algorithms using
permutations for n = 3 and n = 4 (for the latter the proof of correctness is
computer-assisted). For n > 5 we have neither been able to find such systems
(not even in a fairly extensive computer search) nor to rule out their existence.

A self contained proof of the m > 2n — 1 lower bound will appear in a subse-
quent paper. The following question remains open: What is the smallest m for
which there are collections of N = m + 1 (not necessarily full) words such that
every min[n, N| of them form an oblivious M C algorithm when starting at the
initial chair of each word. Our proof that m > 2n — 1 assumes that the scheduler
is allowed to pick an arbitrary initial state on each word.

We do not know how hard it is to recognize whether a given collection of
words constitute an oblivious M C' algorithm. This can be viewed as the problem
whether some digraph contains a directed cycle or not. The point is that the
digraph is presented in a very compact form. It is not hard to place this problem
in PSPACE, but is it in a lower complexity class, such as co-NP or P?

There are interesting foundational questions related to different models in dis-
tributed computing. We have defined here the Output Negotiation (ON) model,
and showed that it is properly included in the read/write model. It follows by
definition that the oblivious model is included in the ON model. It would be
interesting to know whether this last inclusion is proper.

Acknowledgements. Work of Uriel Feige was supported in part by The Israel
Science Foundation (grant No. 873/08). Work of Benny Sudakov was supported
in part by NSF grant DMS-1101185, NSF CAREER award DMS-0812005 and
by USA-Israeli BSF grant.

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks,
Universal Traversal Sequences, and the Complexity of Maze Problems. In: FOCS,
pp. 218-223 (1979)

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524-548 (1990)

3. Anderson, R.J., Woll, H.: Algorithms for the Certified Write-All Problem. SIAM
J. Comput. 26(5), 1277-1283 (1997)

4. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. Journal of the ACM 40(4), 873-890 (1993)

5. Afek, Y., Babichenko, Y., Feige, U., Gafni, E., Linial, N., Sudakov, B.: Oblivious
Collaboration (ArXiv version of current paper.),
http://arxiv.org/abs/1106.2065

6. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beep-
ing a Maximal Independent Set. In: Proc. 25th Int’l Symposium on Distributed
Computing (DISC 2011), Rome Italy (September 20-22, 2011)

http://arxiv.org/abs/1106.2065

504

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Y. Afek et al.

Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: Simultaneous consensus
tasks: A tighter characterization of set-consensus. In: Chaudhuri, S., Das, S.R.,
Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 331-341.
Springer, Heidelberg (2006)

. Beame, P., Blais, E., Ngoc, D.: Longest common subsequences in sets of permuta-

tions, http://arxiv4.library.cornell.edu/abs/0904.16157context=math

. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient

Asynchronous Computations. In: Proc. 25th ACM Symposium on Theory of Com-
puting (STOC 1993), pp. 91-100 (1993)

Castanieda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds
for renaming. In: PODC, pp. 295-304 (2008)

Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643-644 (1974)

Dolev, S.: Self-Stabilization. MIT Press, Cambridge, ISBN 0-262-04178-2

Dolev, D., Lynch, N.A., Pinter, S., Stark, E.-W., Weihl, W.E.: Reaching Approx-
imate Agreement in the Presence of Faults. In: Symposium on Reliability in Dis-
tributed Software and Database Systems, pp. 145-154 (1983)

Gafni, E.: Read-write reductions. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirtha-
pura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 349-354. Springer, Heidelberg
(2006)

Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From adaptive renaming to set
agreement. Theor. Comput. Sci. 410(14), 1328-1335 (2009)

Gafni, E., Rajsbaum, S.: Musical benches. In: Fraigniaud, P. (ed.) DISC 2005.
LNCS, vol. 3724, pp. 63-77. Springer, Heidelberg (2005)

Gafni, E., Rajsbaum, R., Raynal, M., Travers, C.: The committee decision problem.
In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 502—
514. Springer, Heidelberg (2006)

Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computabil-
ity. Journal of the ACM 46(6), 858-923 (1999)

Metcalfe, R.M., Boggs, D.R.: Ethernet: Distributed packet switching for local com-
puter networks. Commun. Ass. Comput. Mach. 19(7), 395404 (1976)

Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology
of Public Knowledge. STAM Journal on Computing 29(5), 1449-1483 (2000)

http://arxiv4.library.cornell.edu/abs/0904.1615?context=math

	Oblivious Collaboration
	Introduction
	Related Work
	Discussion

	The Oblivious Model
	Impossibility of MC(n,2n-2)
	Cyclic Finite Programs or Words
	Simplified Oblivious Model for MC and AR

	An Oblivious MC Algorithm with 2n-1 Chairs
	Preliminaries
	The MC(n,2n-1) Upper Bound

	The Oblivious AR(n,2n-1) Algorithm
	Oblivious MC Algorithms by the Probabilistic Method
	Permutations over O(n) Chairs

	Open Problems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

