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ABSTRACT 

In th i s  paper  we s t u d y  non-interactive correlation distillation (NICD), 

a general izat ion of noise sens i t iv i ty  previously  considered in [5, 31, 39]. 

We ex tend  t he  mode l  to NICD on trees. In  th is  model  there  is a fixed 

undi rec ted  tree wi th  players  at  some  of the  nodes.  One  node is given 

a uni formly  r a n d o m  s t r ing  and  th is  s t r ing  is d i s t r ibu ted  t h r o u g h o u t  the  

network,  wi th  t he  edges of t he  t ree  ac t ing  as independen t  b inary  sym-  

met r ic  channels .  T h e  goal  of  t he  players is to agree on a shared  r andom 

bit wi thou t  communica t ing .  

Our  new cont r ibu t ions  include t he  following: 

�9 In  t he  case of a k-leaf s t a r  g raph  (the model  considered in [31]), 

we resolve t he  open ques t ion  of  whe t he r  the  success  probabi l i ty  m u s t  go 

to  zero as k ~ c~. We show t h a t  th is  is indeed t he  case and  provide 

m a t c h i n g  uppe r  and  lower b o u n d s  on t he  asympto t ica l ly  op t imal  ra te  (a 

s lowly-decaying polynomial) .  

�9 In t he  case of t he  k-ver tex  p a t h  graph,  we show t h a t  it is always 

op t ima l  for all players  to  use  t h e  s ame  1-bit funct ion.  

�9 In t he  general  case we show t h a t  all players should  use  mono tone  

functions.  We also show, s o m e w h a t  surprisingly,  t ha t  for cer ta in  t rees  it 

is be t t e r  if not  all players use  t he  s ame  function.  

Our  techniques  include the  use  of t he  reverse B o n a m i - B e c k n e r  inequality. 

A l t h o u g h  the  usua l  B o n a m i - B e c k n e r  has  been f requent ly  used  before, 

i ts  reverse coun te rpa r t  seems  not  to be  well known.  To d e m o n s t r a t e  

its s t r eng th ,  we use it to prove a new isoperimetr ic  inequal i ty  for the  

discrete  cube  and  a new resul t  on t he  mix ing  of shor t  r a n d o m  walks on 

t he  cube.  Ano t he r  tool t h a t  we need is a t igh t  b o u n d  on t he  probabi l i ty  

t h a t  a Markov chain  s tays  inside cer ta in  sets; we prove a new theo rem 

general iz ing and  s t r e n g t h e n i n g  previous such  b o u n d s  [2, 3, 6]. O n  t he  

probabil is t ic  side, we use the  "reflection principle" and  the  F K G  and  

related inequali t ies  in order to s t u d y  the  p rob lem on general  trees. 

w R e s e a r c h  s u p p o r t e d  in  p a r t  b y  N S F  g r a n t  D M S - 0 1 0 6 5 8 9 ,  D M S - 0 3 5 5 4 9 7 ,  a n d  b y  
a n  A l f r ed  P. S l oan  fe l lowship .  
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1.1 NON-INTERACTIVE CORRELATION - -  THE PROBLEM AND PREVIOUS WORK. 

Our main topic in this paper is the problem of non-interactive correlation dis- 
tillation (NICD), previously considered in [5, 31, 39]. In its most general form 

the problem involves k players who receive noisy copies of a uniformly random 

bit string of length n. The players wish to agree on a single random bit but 

are not allowed to communicate. The problem is to understand the extent to 

which the players can successfully distil the correlations in their strings into a 

shared random bit. This problem is relevant for cryptographic information rec- 

onciliation, random beacons in cryptography and security, and coding theory; 

see [39]. 

In its most basic form, the problem involves only two players; the first gets a 

uniformly random string x and the second gets a copy y in which each bit of x is 

flipped independently with probability E. If the players t ry  to agree on a shared 

bit by applying the same Boolean function f to their strings, they will fail with 

probability P [ f (x )  ~ f(y)].  This quantity is known as the noise sensitivity 
of f at r and the study of noise sensitivity has played an important role in 

several areas of mathematics and computer science (e.g., inapproximability [26], 

learning theory [17, 30], hardness amplification [33], mixing of short random 

walks [27], percolation [10]; see also [34]). In [5], Alon, Maurer, and Wigderson 

showed that  if the players want to use a balanced function f ,  no improvement 

over the naive strategy of letting f(x)  = Xl can be achieved. 

The paper [31] generalized from the two-player problem NICD to a k-player 

problem, in which a uniformly random string x of length n is chosen, k play- 

ers receive independent e-corrupted copies, and they apply (possibly different) 

balanced Boolean functions to their strings, hoping that  all output bits agree. 

This generalization is equivalent to studying high norms of the Bonami-Beckner 

operator applied to Boolean functions (i.e., ltTpf[[k); see Section 3 for defini- 

tions. The results in [31] include: optimal protocols involve all players using the 

same function; optimal functions are always monotone; for k = 3 the first-bit 

( 'dictator') is best; for fixed E and fixed n and k --* c~, all players should use 

the majority function; and, for fixed n and k and r --* 0 or a --~ 1/2 dictator is 

best. 

Later, Yang [39] considered a different generalization of NICD, in which there 

are only two players but the corruption model is different from the "binary sym- 

metric channel" noise considered previously. Yang showed that  for certain more 

general noise models, it is still the case that  the dictator function is optimal; he 
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also showed an upper bound on the players' success rate in the erasure model. 

1.2 N I C D  ON TREES; OUR RESULTS. In this paper  we propose a natural  

generalization of the NICD models of [5, 31], extending to a tree topology. In 

our generalization we have a network in the form of a tree; k of the nodes have a 

'player '  located on them. One node broadcasts a truly random string of length 

n. The string follows the edges of the trees and eventually reaches all the nodes. 

Each edge of the tree independently introduces some noise, acting as a binary 

symmetric  channel with some fixed crossover probabili ty e. Upon receiving their 

strings, each player applies a balanced Boolean function, producing one output  

bit. As usual, the goal of the players is to agree on a shared random bit without 

any further communication; the protocol is successful if all k parties output  

the same bit. (For formal definitions, see Section 2.) Note that  the problem 

considered in [31] is just NICD on the star graph of k +  1 nodes with the players 

at the k leaves. 

We now describe our new results: 

T h e  k - l ea f  s t a r  g r a p h :  We first s tudy the same k-player star problem con- 

sidered in [31]. Although this paper  found maximizing protocols in certain 

asymptot ic  scenarios for the parameters  k, n, and ~, the authors left open what 

is arguably the most interesting setting: E fixed, k growing arbitrarily large, 

and n unbounded in terms of ~ and k. Although it is natural to guess that  the 

success rate of the players must go to zero exponentially fast in terms of k, this 

turns out not to be the case; [31] notes that  if all players apply the majority 

function (with n large enough) then they succeed with probability f~(k -C(~)) for 

some finite constant C(~) (the estimate [31] provides is not sharp). [31] left as a 

major  open problem to prove that  the success probability goes to 0 as k --~ oc. 

In this paper we solve this problem. In Theorem 4.1 we show that  the suc- 

cess probability must indeed go to zero as k ~ c~. Our upper bound is a 

slowly-decaying polynomial. Moreover, we provide a matching lower bound: 

this follows from a tight analysis of the majori ty protocol. The proof of our 

upper bound depends crucially on the reverse Bonami-Beckner inequality, an 

important  tool that  will be described later. 

T h e  k - v e r t e x  p a t h  g r a p h :  In the case of NICD on the pa th  graph, we prove 

in Theorem 5.1 that  in the optimal protocol all players should use the same 1-bit 

function. In order to prove this, we prove in Theorem 5.4, a new tight bound 

on the probability that  a Markov chain stays inside certain sets. Our theorem 
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A r b i t r a r y  t r ee s :  In this general case, we show in Theorem 6.3 tha t  there 

always exists an optimal protocol in which all players use monotone functions. 

Our analysis uses methods of discrete symmetrizat ion together with the FKG 

correlation inequality. 

In Proposition 6.2 we show that  for certain trees it is bet ter  if not all players 

use the same function. This might be somewhat surprising: after all, if all 

players wish to obtain tile same result, won' t  they be bet ter  off using the same 

function? The intuitive reason is that  given two trees with different optimal 

protocols, that  are connected via a long path,  one may expect that  there is 

virtually no shared information between the subtrees, and then the best s trategy 

would be for each set to use its own optimal algorithm. Some care should be 

taken in formalizing this argument as the agreement-disagreements on the long 

path  should also be taken into account. However, this can be proved for the 

case illustrated by Figure 1: players on the pa th  and players on the star each 

'wish' to use a different function. Those on the star wish to use the majori ty 

function and those on the pa th  wish to use a dictator function. 

Indeed, we will show that  this strategy yields bet ter  success probability than 

any strategy in which all players use the same function. 

Figure 1. The graph T with kl = 5 and k2 = 3 

1.3 THE REVERSE BONAMt-BECKNER INEQUALITY. Let us start  by describ- 

ing the original inequality (see Theorem 3.1), which considers an operator known 

as the Bonami-Beckner operator (see Section 3). It  is easy to prove that  this 

operator is contractive with respect to any norm. However, the strength in the 

Bonami-Beckner inequality is that  it shows that  this operator remains contrac- 

tive from Lp to Lq for certain values o fp  and q with q > p. This is the reason it is 

often referred to as a hypercontractive inequality. The inequality was originally 

proved by Bonami in 1970 [12] and then independently by Beckner in 1973 [8]. 

It  was first used to analyze discrete problenls in a remarkable paper  by Kahn, 

Kalai and Linial [27] where they considered the influence of variables on Boolean 
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functions. The inequality has proved to be of great importance in the study of 

combinatorics of (0, 1} n [15, 16, 22], percolation and random graphs [38, 23, 10, 

14] and many other applications [9, 4, 36, 7, 35, 18, 19, 28, 33]. 

Far less well-known is the fact that  the Bonami-Beckner inequality admits a 

reversed form. This reversed form was first proved by Christer Borell [13] in 

1982. Unlike the original inequality, the reverse inequality says that  some low 

norm of the Bonami-Beckner operator applied to a non-negative function can 

be bounded below by some higher norm of the original function. Moreover, the 

norms involved in the reverse inequality are all at most 1 while the norms in 

the original inequality are all at least 1. Technically these should not be called 

norms since they do not satisfy the triangle inequality; nevertheless, we use this 

terminology. 

We are not aware of any previous uses of the reverse Bonami-Beckner inequal- 

ity for the study of discrete problems. The inequality seems very promising and 

we hope it will prove useful in the future. To demonstrate its strength, we 

provide two applications: 

Isoperimetric i n e q u a l i t y  on  the discrete cube: As a corollary of the 

reverse Bonami-Beckner inequality, we obtain in Theorem 3.4 an isoperimetric 

inequality on the discrete cube. It differs from the usual isoperimetric inequality 

in that  the "neighborhood" structure is slightly different. Although it is a simple 

corollary, we believe that  the isoperimetric inequality is interesting. It is also 

used later to give a sort of hitting time upper-bound for short random walks. In 

order to illustrate it, let us consider two subsets S, T C_ ( - 1 , 1 }  n each containing 

a constant fraction a of the 2 n elements of the discrete cube. We now perform 

the following experiment: we choose a random element of S and flip each of its 

n coordinates with probability E for some small e. What  is the probability that  

the resulting element is in T? Our isoperimetric inequality implies that it is 

at least some constant independent of n. For example, given any two sets with 

fractional size 1/3, the probability that  flipping each coordinate with probability 

.3 takes a random point chosen from the first set into the second set is at least 

(1/3) 1A/'6 ~ 7.7%. We also show that  our bound is close to tight. Namely, 

we analyze the above probability for diametrically opposed Hamming balls and 

show that  it is close to our lower bound. 

S h o r t  r a n d o m  walks:  Our second application, Proposition 3.6, is to short 

random walks on the discrete cube. We point out however that this does not 

differ substantially from what was done in the previous paragraph. Consider 
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the following scenario. We have two sets S, T C { -1 ,  1} n of size at least a2 n 

each. We start  a walk from a random element of the set S and at each t ime step 

proceed with probability 1/2 to one of its neighbors which we pick randomly. 

Let vn  be the length of the random walk. Wha t  is the probabili ty tha t  the 

random walk terminates in T? If ~- = C log n for a large enough constant C 

then it is known that  the random walk mixes and therefore we are guaranteed 

to be in T with probability roughly a. However, what happens if T is, say, 0.2? 

Notice that  Tn is then less than the diameter of the cube! For certain sets S, the 

random walk might have zero probability to reach certain vertices, but if a is at 

least, say, a constant then there will be some nonzero probability of ending in T. 

We bound from below the probability that  the walk ends in T by a function of 

a and T only. For example, for ~- = 0.2, we obtain a bound of roughly a l~ The 

proof crucially depends on the reverse Bonami-Beckner inequality; to the best 

of our knowledge, known techniques, such as spectral methods, cannot yield a 

similar bound. 

2. Pre l iminar ies  

We now formally define the problem of "non-interactive correlation distillation 

(NICD) on trees with the binary symmetric channel (BSC)." In general we have 

four parameters.  The first is T, an undirected tree giving the geometry of the 

problem. Later the vertices of T will become labeled by binary strings, and 

the edges of T will be thought of as independent binary symmetric channels. 

The second parameter  of the problem is 0 < p < 1 which gives the correlation 

of bits on opposite sides of a channel. By this we mean that  if a bit string 

x c { -1 ,  1} n passes through the channel producing the bit string y C { -1 ,  1} n 

then E[xiyi] = p independently for each i. We say tha t  y is a p-correlated 
1 1 0 1 copy of x. We will also sometimes refer to s --- g - gp E ( , g), which is the 

probability with which a bit gets flipped - -  i.e., the crossover probability of the 

channel. The third parameter  of the problem is n, the number of bits in the 

string at every vertex of T. The fourth parameter  of the problem is a subset 

of the vertex set of T, which we denote by S. We refer to the S as the set of 

players. Frequently S is simply all of V ( T ) ,  the vertices of T. 

To summarize, an instance of the NICD on trees problem is parameterized 

by: 

1. T, an undirected tree; 

2. p C (0, 1), the correlation parameter;  

3. n _> 1, the string length; and, 
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4. S C_ V(T),  the set of players. 

Given an instance, the following process happens. Some vertex u of T is given 

a uniformly random string x (~) C { -1 ,  1} '~. Then this string is passed through 

the BSC edges of T so tha t  every vertex of T becomes labeled by a random 

string in { -1 ,  1} n. I t  is easy to see that  the choice of u does not matter ,  in the 

sense tha t  the resulting joint probability distribution on strings for all vertices 

is the same regardless of u. Formally speaking, we have n independent copies of 

a "tree-indexed Markov chain"; or a "Markov chain on a tree" [24]. The index 

set is V(T) and the probability measure P on a C { -1 ,  1} V(T) is defined by 

1 1 1 ~A(~) 1 1 B(~) 

where A(a)  is the number of pairs of neighbors where a agrees and B(a )  is the 

number of pairs of neighbors where a disagrees. 

Once the strings are distributed on the vertices of T, the player at the vertex 

v E S looks at the string x (') and applies a (pre-selected) Boolean function 

fv: { -1 ,  1} n --* { -1 ,  1}. The goal of the players is to maximize the probability 

that  the bits fv(x (v)) are identical for all v E S. In order to rule out the 

trivial solutions of constant functions and to model the problem of flipping a 

shared random coin, we insist tha t  all functions fv be balanced; i.e., have equal 

probability of being - 1  or 1. As noted in [31], this does not necessarily ensure 

that  when all players agree on a bit it is conditionally equally likely to be - 1  or 

1; however, if the functions are in addition antisymmetric,  this property does 

hold. We call a collection of balanced functions (fv)veS a protocol for the players 

S, and we call this protocol simple if all of the functions are the same. 

To conclude our notation, we write 7~(T, p, n, S, (f~),~s) for the probability 

that  the protocol succeeds - -  i.e., that  all players output  the same bit. When 

the protocol is simple we write merely 7)(T, p, n, S, f). Our goal is to study the 

maximum this probability can be over all choices of protocols. We denote by 

M ( T , p , n , S ) =  sup 7~(T,p,n,S,(fv)vEs), 

and define 

.M (T, p, S) -- sup A4 (T, p, n, S). 
n 

3. R e v e r s e  B o n a m i - B e c k n e r  and a p p l i c a t i o n s  

In this section we recall the reverse Bonami-Beckner inequality and obtain as 

a corollary an isoperimetric inequality on the discrete cube. These results will 
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be useful in analyzing the NICD problem on the star graph and we believe they 

are of independent interest. We also obtain a new result about the mixing of 

relatively short random walks on the discrete cube. 

3.1 THE REVERSE BONAMI-BECKNER INEQUALITY. We begin with a discus- 

sion of the Bonami-Beckner inequality. Recall the Bonami-Beckner operator  

Tp, a linear operator on the space of functions { -1 ,  1} n --~ ]~ defined by 

(Tp f ) ( x )  = E[f(y)] ,  

where y is a p-correlated copy of x. The usual Bonami-Beckner inequality, first 

proved by Bonami [12] and later independently by Beckner [8], is the following: 

THEOREM 3.1: Let  f :  { -1 ,  1} n -~ R and q > p > 1. Then  

IITpfllq <- IlflIp for ~H o <_ p < (p - 1)1/2/(q - 1) 1/2. 

The reverse Bonami-Beckner inequality is the following: 

THEOREM 3.2: Let  f :  { -1 ,  1} n --~ ]~_>0 be a nonnegat ive  function and let 

- o c  < q <_ p <_ l.  Then 

(1) IITpfIIq > [[fIIp for all 0 < p < (1 - p ) 1 / 2 / ( 1  - q)l/2. 

Note that  in this theorem we consider r -norms for r _< 1. The case of r = 0 is 

a removable singularity: by IIfI[0 we mean the geometric mean of f .  Note also 

that  since Tp is a convolution operator, it is positivity-improving for any p < 1; 

i.e., when f is nonnegative so too is Tpf ,  and if f is further not identically zero, 

then T p f  is everywhere positive. 

The reverse Bonami-Beckner theorem is proved in the same way the usual 

Bonami-Beckner theorem is proved; namely, one proves the inequality in the 

case of n = 1 by elementary means, and then observes that  the inequality 

tensors. Since Borell's original proof may be too compact to be read by some, 

we provide an expanded version of it in Appendix A for completeness. 

We will actually need the following "two-function" version of the reverse 

Bonami-Beckner inequality which follows easily from the reverse Bonanfi-  

Beckner inequality using the (reverse) H61der inequality (see Appendix A): 

COROLLARY 3.3: Let  f , g :  {-1 ,1}  n --* ~>o be nonnegative,  let x E { -1 , 1}  '~ 

be chosen uniformly at random, and let y be a p-correlated copy o f  x .  Then  for 

- o c  < p ,q  < l,  

(2) E[f(x)g(y)] >_ ll/llplIgllq for au 0 < p <_ (1 -- p)1/2(1 -- q)1/2. 



308 E. MOSSEL ET AL. Isr. J. Math. 

3.2 A NEW ISOPERIMETRIC INEQUALITY ON THE DISCRETE CUBE. In this 

subsect ion we use the  reverse Bonami -Beckne r  inequali ty to  prove an isoperi- 

metr ic  inequali ty on the  discrete cube. Let  S and T be two subsets  of { - 1 ,  1} n. 

Suppose t ha t  x E { - 1 ,  1} n is chosen uniformly at  r andom and y is a p-correlated 

copy of x. We obta in  the  following theorem,  which gives a lower bound on the 

probabi l i ty  t ha t  x E S and y E T as a function of [S[/2 n and [T[/2 n only. 

THEOREM 3.4: Let S , T  C_ { - 1 , 1 }  n with IS[ = exp( -s2 /2)2  n and [T[ = 

exp( - t2 /2 )2  n. Let x be chosen uniformly at random from { - t ,  I} n and let 

y be a p-correlated copy of  x. Then 

1 s 2 + 2pst + t 2 [ 
(3) P [x  E S ,y  E T] >_ e x p ( -  2 " l ' - -p  2" )" 

Proo~ Take f and g to be  the  0-1 characteris t ic  functions of S and T,  respec- 

tively. Then  by Corol lary 3.3, for any choice of p, q < 1 with (1 - p ) ( 1 -  q) = p2, 

we get 

(4) P [ x  e S , y  C T] = E[ f (x )g (y ) ]  _> ]lfllpIigllq = e x p ( - s 2 / 2 p ) e x p ( - ? / 2 q )  �9 

Write  p = 1 - p r ,  q = 1 - p / r  in (4), wi th  r > 0. Maximizing the r ight -hand side 

as a funct ion of r the  best  choice is r -- (( t /s)  + p) / (1  + p(t/s)) ,  which yields in 

tu rn  
1 - p2  t 1 - p2 

p = l - p r -  l + p ( t / s ) '  q = l - p / r -  s p + ( t / s )  

(Note t ha t  this depends  only on the  ra t io  of t and s.) Subst i tu t ing  this choice 

of r (and hence p and q) into (4) yields ex -~ 1 s2-t-2pst-bt ~ Pk--~ l-p2 }, as claimed. | 

We now obta in  the  following corollary of Theo rem 3.4. 

COROLLARY 3.5: Let  S C_ { - 1 ,  1} n have fractional size a E [0, 1], and let 

T C_ { - 1 , 1 }  n have fractional size a s ,  for a > O. I f x  is chosen uniformly at 

random from S and y is a p-correlated copy of  x, then the probability that y is 

in T is at least 
a( Vr~+p)2 /(1-p2). 

In particular, i f  ISI = ITI then this probability is at least a (I+p)/(1-p). 

Proof: 

obta in  

Choosing s and t so t ha t  a = e x p ( - s 2 / 2 )  and a s = e x p ( - t 2 / 2 )  we 

- -1  (s2 + 2pst + t 2) = l o g a  - p ~ x / - 2 a  log a + a l o g a  
2 

= log a(1 + 2pv/-~ + a) ,  
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and therefore 

( l s2 + 2pst + t 2) 
exp - 2 1 - -  p 2  : a(l+2pv'-d+a)/(1-P~)" 

Theorem 3.4 therefore tells us tha t  condit ioned on s tar t ing in S, the probabil i ty 

of ending in T is at least 

G (lq-2px/'~'ka)/(x-p2)-I = 0 "('v/~+p)2/(l-p2). m 

In Subsection 3.4 below we show tha t  the isoperimetric inequality is almost  

tight. First, we prove a similar bound for r andom walks on the cube. 

3.3 SHORT RANDOM WALKS ON THE DISCRETE CUBE. W e  can also prove a 

result of a similar flavor about  short r andom walks on the discrete cube: 

PROPOSITION 3.6: Let r > 0 be arbitrary and let S and T be two subsets of 

{ - 1 ,  1} n. Let c~ E [0, 1] be the fractional size o r s  and let a be such that the 

fractional size of T is a s. Consider a standard random walk on the discrete 

cube that starts from a uniformly random vertex in S and walks for rn  steps. 

Here by a standard random walk we mean that at each time step we do nothing 

with probability 1/2 and we walk along the ith edge with probability 1/2n. Let  

p(rn) (S, T) denote the probability that the walk ends in T. Then, 

(~+~pI-~, ~ (a(-lr~_~)/2) 
p(rn)(S,T) >_ a ~-~p(-2~) - 0 

In particular, when IS[ = IT[ = a2 n then 

(1) 
p(rn)(s, T) 2 a x-~p(-~) - O ~nn " 

The Laurent  series of ~ is 2/T q - T / 6  -- 0(7-3), SO for 1 / l o g n  << r << 1 our  l _ e - r  
bound is roughly a 2/r. 

For the proof  we will first need a simple lemma: 

LEMMA 3.7: For y > 0 and any 0 < x < y, 

0 < e -x  - (1 - x /y )  y < O(1/y).  

Proof'. The expression above can be wri t ten as 

e - X  _ e y l o g ( 1 - x / y )  

We have log(1 - x /y )  < - x / y  and hence we obtain  the first inequality. For the 

second inequality, notice tha t  if x > 0.1y then  bo th  expressions are of the form 
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e -n(y), which is certainly O(1 /y ) .  On the other hand, if 0 _< x < 0.1y then 

there is a constant c such that  

log(1 - x / y )  > - - x / y  - cx2 /y  2. 

The Mean Value Theorem implies that  for 0 < a < b, e -a  - e -b < e-a(b - a). 

Hence, 

e - x -  e yl~ <_ e - X ( - y l o g ( 1 -  x / y ) - x ) < _  cx2e---~x 
Y 

The lemma now follows because x2e - x  is uniformly bounded for x >_ 0. | 

We now prove Proposition 3.6. The proof uses Fourier analysis; for the 

required definitions see, e.g., [27]. 

Proof." Let x be a uniformly random point in { -1 ,  1} ~ and y a point generated 

by taking a random walk of length Tn starting from x. Let f and g be the 0-1 

indicator functions of S and T, respectively, and say Elf] = a, E[g] = a s.  Then 

by writing f and g in their Fourier decomposition we obtain that  

a .  p(~~)(S, T) = P[x C S, y C T] = E[f (x)g(y)]  = ~ ](U)[~(V)E[xuyv]  
u,v 

where U and V range over all subsets of {1, . . .  ,n}. Note that  E[xvyy]  is zero 

unless U = V. Therefore we may write 

ap ( rn ) (S ,T )  = y ~  f (U)[~(U)E[(xy)u]  = ~ . f(U)[~(V)(1 - ]v]),,~ 
n ! u u 

= ~_, ] ( U ) g ( U ) e x p ( - T [ U I )  
U 

n / U 

[Ut') "n exp(_~-lUI) ] : ( f  , Vexp(- .r )g  ) "Jc E ] : U ) g : U ) [ ( 1 -  --~" -- 

U 

>-(f, Texp( -r )g) -~a]~  (1 - Iul)~"-exp(-rlUI) ~-'~l](u)o(u)l. 
n / u 

By Corollary 3.5, 
(~z+exp(-.~? 

•- i  ( f  , Texp(_r)g ) ~_ (7" 1-exp(-2~) . 

By Cauchy-Schwarz and Parseval's identity, 

I ] ( U ) h ( u ) [  _< [I]ll2[Ihll2 = II/[i2llgll2 = G (x+'~)/2. 
U 
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In addition, from L e m m a  3.7 wi th  x -- T[U[ and y -- Tn we have t ha t  

m a x  ( 1 -  IU[~ rn --exp(--TIUI) = O ( ~ n ) .  
U \ n / 

Hence, 
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p(~n)(S,T) > a 1-ex.(-2~) - O 

3.4 TIGHTNESS OF THE ISOPERIMETRIC INEQUALITY. We now show tha t  

Theo rem 3.4 is a lmost  tight.  Suppose x �9 { - 1 ,  1} n is chosen uniformly a t  

r andom and y is a p-correlated copy of x. Let  us begin by unders tanding  more  

about  how x and y are dis tr ibuted.  Define 

and recall t ha t  the densi ty function of the  bivar ia te  normal  dis t r ibut ion Cr,(p) : 

R 2 ~ IR ->~ with  mean  0 and covariance ma t r ix  E(p)  is given by 

1 x 2 - 2pxy + Y2 
~)~(p) (X, y) : (271")--1(1-- p2)-�89 [ - 2 - 1 - - - p  \ ) 

Here r denotes the s t andard  normal  densi ty funct ion on R, 

r  = 

PROPOSITION 3.8: Let x �9 { - 1 ,  1} n be chosen uniformly at random, and let 
n y be a p-correlated copy o fx .  Let X = n -1/2 ~ = 1  xi and Y = n -1/2 ~-~i=1 Yi. 

Then as n -* oc, the pair of random variables (X,  Y)  approaches the distribution 
Cn(p). As an error bound, we have that for any convex region R C_ R 2, 

�9 R ] -  i i n  r  <_ 0 ( ( 1 -  P [ ( X , Y )  p2)- l /2n-1/2) .  

Proof: This  follows f rom the Central  Limi t  T h e o r e m  (see, e.g., [20]), not ing 

tha t  for each coordinate  i, E[x/2] = E ly  2] = 1, E[xiyi] = p. The  ne r ry -Ess6en-  

type  error bound  is proved in Sazonov [37, p. 10, I t e m  6]. | 

Using this proposi t ion we can obta in  the  following result  for two diametr ica l ly  

opposed H a m m i n g  balls. 
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PROPOSITION 3.9: Fix s , t  > O, and let S , T  C {-1,1} n be diametrically 
opposed Hamming balls, with S = {x: y~ixi  <_ - s n  1/2} and T = 

{x: ~-~i xi >_ tnl/2}. Let x be chosen uniformly at random from {-1,  1} n and 

let y be a p-correlated copy of x. Then we have 

X / ~ -  p 2 { l s2 + 2pst q- t 2)  
limoo P[x e S , y  e T] < 2~--~-(p~ ~_~)exp[,- 2 1 - p2 " 

Prook 

lirnooP[x e S ,y  e T] 

= Cz(_o)(x ,y)dydx (By Lemma 3.8) 

<- s(ps + t) r y)dydx 

( x ( p x + y )  > l o n x >  > t )  since s(ps + t) - _ s,Y _ 

1 oo oo 
-- s - ~ q ) t x J q ) ~ ~ y a y a x  

z___ ~ezex <_ 
s+~ s@s + r 1 6 2  Vi l  - p2 ] 

( ) using z = px + y and noting s(ps + t-----~ -> 1 on x _> s, z _> ps + t 

= 1 ~(x)~x z~ z~_~z~ 

_ v i l - p  2 . . . .  [ p s + t  "~ 

v i i _ p 2  ( _  l s 2 + 2pst + t 2~. 

The result follows. | 

By the Central Limit Theorem, the set S in the above statement satisfies 

(see [1, 26.2.12]) 

lim ISI2 -n  1 fs  ~176 ~-+oo = v r ~  e-x212dx ~ exp(-~2/2)/(~r~)" 

For large s (i.e., small ISI) this is dominated by exp(-s2/2).  A similar statement 

holds for T. This shows that  Theorem 3.4 is nearly tight. 
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4. T h e  bes t  a s y m p t o t i c  success  r a t e  in t h e  k -s ta r  

In this section we consider the NICD problem on the star. Let Stark denote the 

star graph on k + 1 vertices and let Sk denote its k leaf vertices. We shall study 

the same problem considered in [31]; i.e., determining .A4(Stark,p, Sk). Note 

that  it was shown in that  paper that  the best protocol in this case is always 

simple (i.e., all players should use the same function). 

The following theorem determines rather accurately the asymptotics of 

A//(Stark, p, Sk ): 

THEOREM 4.1: Fix p e (0,1] and let u = u(p) : 1/p 2 - 1. Then for k -~ c~, 

• (Stark ,p ,  sk) = 

where (~(.) denotes asymptotics to within a subpolynomial (k ~ [actor. The 

lower bound is achieved asymptotically by the majority function MAin with n 

sutticiently large. 

Note that  if the corruption probability is very small (i.e., p is close to 1), we 

obtain that the success rate only drops off as a very mild function of k. We first 

prove the upper bound. 

Proof of upper bound: We know that  all optimal protocols are simple, so 

assume all players use the same balanced function f :  { -1 ,  1} n --~ { -1 ,  1}. Let 

F-1 = f - l ( - 1 )  and F1 -- f - i ( 1 )  be the sets where f obtains the values - 1  

and 1 respectively. The center of the star gets a uniformly random string x, 

and then independent p-correlated copies are given to the k leaf players. Let 

y denote a typical such copy. The probability that  all players output  - 1  is 

thus E~[e[ f (y)  = --l[x]k]. We will show that  this probability is (9(k-~). This 

completes the proof since we can replace f by - f  and get the same bound for 

the probability that  all players output 1. 

Suppose E~[P[f(y)  = - l l x ]  k] > 25 for some 5; we will show 5 must be small. 

Define 

S = {x:  P [ f (y )  = - 1  Ix] k > 5}. 

By Markov's inequality we must have ISI _> 52% Now on one hand, by the 

definition of S, 

(5) P [ y e F 1  ] x � 9  

On the other hand, applying Corollary 3.5 with T = F1 and a < 1/log2(1/5 ) < 
12n~ 1 / log( i /5)  (since IFl l - -  ~ j, we get 

(6) P[y �9 F1 ]x  �9 S] ~ 5 (l~ 
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Combining (5) and (6) yields the desired upper bound on 6 in terms of k, 
6 < k -~+~ by the following calculations. We have 

I - 51/k > 5 (l~ 

We want to show that the above inequality cannot hold if 

(7) 5 > k ] ' 

where c = c(p) is some constant. We will show that if 5 satisfies (7) and c is 

sufficiently large then for all large k 

(~l/k ..}_ (~(log-1/2(1/5)-Fp)2 / (1-p 2) • 1. 

Note first that 

(8) 51/k> \ k /  = e x p  > 1  k 

On the other hand, 

(9) 50~ /(1-p2) = 5- l~ 5/(1--p2) "(~2P log-1/2(1/5)/(1--p2) . 5p2 /(1--p2). 

Note that 

and 

Finally, 

5P2/(1--P 2) = 61/v >__ - -  eCVt~-~ 

52pl~ 1 2_~Pp2 ~ )  

_> exp ( 1 - p2 

( l p~ )  
5-  l~ a/(1-P2) = exp 1 -- " 

Thus if c = c(p) is sufficiently large then the left hand side of (9) is at least 

(v log k)/k. This implies the desired contradiction by (7) and (8). II 

Proof of lower bound: We will analyze the protocol where all players use MAJn, 

similarly to the analysis of [31]. Our analysis here is more careful resulting in a 

tighter bound. 
We begin by showing that the probability with which all players agree if they 

use MAJn, in the case of fixed k and n --* oo, is 

(10) .!irn P(Stark, p, n, Sk, MAJn) = 2uI/2(27F) (~-D/2 tkI(t)V-ldt, 
• o d d  
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where I = r o ~-1  is the so-called Gaussian isoperimetric function, with 

r = (2~r)-i/2exp(-x2/2) and O(x) = f~_~r the density and 

distribution functions of a standard normal random variable respectively. 

Apply Proposition 3.8, with X ~ N(0, 1) representing n -1/2 times the sum of 

the bits in the string at the star's center, and YIX ~ N(pX, 1 -p2) representing 

n -1/2 times the sum of the bits in a typical leaf player's string. Thus as n -+ oc, 

the probability that  all players output +1 when using MAJ~ is precisely 

@[ px ] kr = r162 

Since MAJn is antisymmetric, the probability that  all players agree on +1 is the 

same as the probability they all agree on -1 .  Making the change of variables 
t = @(v-i/2x), z = vi/2@-i(t), dx = vl/2I(t)-idt,  we get 

�9 ~:~tim P(Stark, p, n, Sk, MAJn) = 2u 1/2 __L i tkr dt 

= 2,1/2(27r)(~-1)/2 tkI(t)~-Idt, 

as claimed. 

We now estimate the integral in (10). It is known (see, e.g., [11]) that  I(s)  _> 

J ( s ( 1 - s ) ) ,  where J(s) = s ~ / s ) .  We will forego the marginal improvements 

given by taking the logarithmic term and simply use the estimate I(t) >_ t(1 - t ) .  

We then get 

LltkI(t)~'-ldt >_ Lltk(t(l-t))~-ldt 
_ r ( . ) r ( k  + . )  ([1,6.2.1,6.2.;]) 

r (k  + 2. )  

> r ( . ) ( k  + 2.)  -~ (Stirling approximation). 

Substituting this estimate into (10) we get 

lim P(Stark,  p, n, Sk, MAJ~) :> c(,)k -~, 
n - - + O O  

where c(v) > 0 depends only on p, as desired. | 

We remark that  in the upper bound above we have in effect proved the 

following theorem regarding high norms of the Bonami Beckner operator 

applied to Boolean functions: 
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THEOREM 4.2: Let f:  { -1 ,  1} n --+ {0, 1} and suppose E[f] < 1/2. Then for 

any fixed p e (0,1], as k ~ co, IITpfll~ -< k - '§176 where v = l ip  2 - 1. 

Since we are trying to bound a high norm of Tpf  knowing the norms of f ,  it 

would seem as though the usual Bonami-Beckner inequality would be effective. 

However, this seems not to be the case: a straightforward application yields 

IlTpfllk < ][fllp~(k-1)+x = E [ f ]  1/(p2(k-1)+1) 

IITpflI~ -< (1/2) kl(p2<k-D+D ~ (1/2) Up2, 

only a constant upper bound. 

5. T h e  o p t i m a l  p r o t o c o l  on  t h e  p a t h  

In this section we prove the following theorem which gives a complete solution 

to the NICD problem on a path. In this case, simple dictator protocols are the 

unique optimM protocols, and any other simple protocol is exponentially worse 

as a function of the number of players. 

THEOREM 5.1 :  

�9 Let Pathk = {v0 ,v l , . . .  ,vk} be the path graph of length k, and let S be 

any subset of Pathk of size at least two. Then simple dictator protocols 

are the unique optimal protocols for P(Pa thk ,  p, n, S, ( fv) ). In particular, 

i f  S -- {Vio,... ,vi~} where io < ix < "'" < is then we have 

1 i . - i .  1 ~ A,~(Pathk,p,S) = H ( 1  + 2P~ ~- } 
j = l  

�9 Moreover, for every p and n there ex/sts c = c(p, n) < 1 such that i f  

S = Pathk then for any simple protocol f which is not a dictator, 

7~(Pathk, p, n, S, f )  <_ 7V(Pathk, p, n, S , / ) )c  13]-1 

where 7) denotes the dictator [unction. 

5.1 A BOUND ON INHOMOGENEOUS MARKOV CHAINS. A crucial component of 

the proof of Theorem 5.1 is a bound on the probability that  a reversible Markov 

chain stays inside certain sets. In this subsection, we derive such a bound in a 

fairly general setting. Moreover, we exactly characterize the cases in which the 

bound is tight. This is a generalization of Theorem 9.2.7 in [6] and of results in 

[2, 3]. 
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Let us first recall some basic facts concerning reversible Markov chains. 

Consider an irreducible Markov chain on a finite set S. We denote by M = 

(m(x, Y))x,yes the matr ix  of transition probabilities of this chain, where m(x, y) 
is the probability to move in one step from x to y. We will always assume tha t  

M is ergodic (i.e., irreducible and aperiodic). 

The rule of the chain can be expressed by the simple equation #1 = /toM, 

where #0 is a starting distribution on S and #1 is the distribution obtained after 

one step of the Markov chain (we think of both as row vectors). By definition, 

~ y  m(x, y) = 1. Therefore, the largest eigenvalue of M is 1 and a corresponding 

right eigenvector has all its coordinates equal to 1. Since M is ergodic, it has a 

unique (left and right) eigenvector corresponding to an eigenvalue with absolute 

value 1. We denote the unique right eigenvector ( 1 , . . . ,  1) t by 1. We denote by 

7r the unique left eigenvector corresponding to the eigenvalue 1 whose coordinate 

sum is 1. lr is the stat ionary distribution of the Markov chain. Since we are 

dealing with a Markov chain whose distribution ~r is not necessarily uniform it 

will be convenient to work ill L2(S, ~r). In other words, for any two functions f 

and g on S we define the inner product (f, g) = ~ x e s  ~r(x)f(x)g(x). The norm 

of f equals Ilfl12 = ~ -- V/~xeS 7r(x)f2(x) �9 

Detlnition 5.2: A transition matr ix  M = (m(x, Y))x,yes for a Markov chain 

is reversible with respect to a probability distribution ~r on S if ~r(x)m(x, y) = 
7r(y)m(y, x) holds for all x, y in S. 

It is known that  if M is reversible with respect to 7r, then ~r is the stationary 

distribution of M.  Moreover, tile corresponding operator taking L2(S,~r) to 

itself defined by M f (x) = ~ y  m(x, y) f (y ) is self-adjoint, i.e., (M f, g) = ( f , M g) 
for all f ,  g. Thus, it follows that  M has a complete set of orthonormal (with 

respect to the inner product defined above) eigenvectors with real eigenvalues. 

De~nition 5.3: If  M is reversible with respect to ~r and A1 _< "'" <_ ,~r-1 _< 

"~r = 1 are the eigenvalues of M,  then the s p e c t r a l  g a p  of M is defined to be 

5 = min{I - 1 - A l l , l l -  A t - l i t .  

For transition matrices M1, M2 , . . .  on the same space S, we can consider the 

time-inhomogeneous Markov chain which at t ime 0 starts in some state (perhaps 

randomly) and then jumps using the matrices M1, M2, . .  �9 in this order. In this 

way, Mi will govern the jump from time i - 1 to t ime i. We write IA for the 

indicator function of the set A and 7rA for the function defined by ~rA(x) = 
IA(x)Tr(x) for all x. Similarly, we define 7r(A) = Y]xcA 7r(x). The following 

theorem provides a tight estimate on the probability that  the inhomogeneous 
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Markov chain s tays inside cer tain specified sets. 

THEOREM 5.4: Let M1, M2, . �9 �9 Mk be ergodic transition matr ices  on the s ta te  

space  S, all of  which are reversible with respect to the same probability measure 

~r with full support. Let 5i > 0 be the spectral gap of matrix Mi and let 

Ao, A1,.  .. , Ak be nonempty subsets orS .  
e l f  k {Xi}i=o denotes the time-inhomogeneous Markov chain using the 

matrices M1, M2 , . . .  ,Mk and starting according to distribution zr, then 

P [ X i  C AiVi = 0 . . .  k] is at most 

k 

(11) I I [ 1 - 5 #  - 
i=1 

�9 Suppose we further assume that for all i, 5i < 1 and that fl} > - 1  + 5i 

Oq here is the smallest eigenvalue for the ith chain). Then equality in 

(11) holds i f  and only i f  all the sets Ai are the same  set  A and for all i 

the function IA -- 7r(A)l is an eigenfunction of Mi corresponding to the 

eigenvalue 1 - 5i. 

�9 Finally, suppose even fur ther  that all the chains Mi are the same  chain 

M. Then there exists a constant c = c(M) < 1 such tha t  for all sets A for 

which strict inequality holds in (11) when each Ai is taken to be A, we 

have the stronger inequality 

k 

P[Xi e AVi = 0 , . . . ,  k] < cklr(A) 1-[[1 - fi(1 - 7r(A))] 
i=1 

for every k. 

Remark: Notice t ha t  if all the  sets Ai have 7r-measure at  most  a < 1 and all 

the  Mi's have spectra l  gap  a t  least 5, then  the  upper  bound  in (11) is bounded  

above by  

a[a + (1 - 6)(1 - a)] k. 

Hence, the  above theo rem generalizes Theo rem 9.2.7 in [6] and s t rengthens  the  

es t imate  f rom [3]. 

5.2 PROOF OF THEOREM 5.1. I f  we look at the  NICD process restr ic ted 

to  posit ions Xio ,X i l , . . . , x i , ,  we obta in  a t ime- inhomogeneous  Markov chain 
t {Xj} j=  0 where X0 is uniform on { - 1 ,  1} n and the  e t ransi t ion opera tors  are 

powers of the  Bonami -Beckne r  opera tor ,  

Q - i o  i2 - i l  T; ,T; ,..., ~-pZ-Q-i. 
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Equivalently, these operators a r e  TDI 1-iO, Tpi2--i I , * . . ,  Tpit-is 1 . I t  is easy to see 

that  the eigenvalues of Tp are 1 > p > p2 > . . .  > pn and therefore its spectral 

gap is 1 - p. Now a protocol for the t + 1 players consists simply of g + 1 subsets 

A0 , . . . ,  At of { -1 ,  1} n, where Aj is a set of strings in { -1 ,  1} n on which the 

j t h  player outputs the bit 1. Thus, each A i has size 2 n- l ,  and the success 

probability of this protocol is simply 

P[Xi E AiVi = 0 , . . .  ,g] + P [ X i  �9 7tiVi = 0 , . . . ,g ] .  

But by Theorem 5.4 each summand is bounded by 

1 p,,-,,_l), +--V- 

yielding our desired upper bound. I t  is easy to clmck that  this is precisely the 

success probability of a simple dictator protocol. 

To complete the proof of the first part  it remains to show that  every other 

protocol does strictly worse. By the second statement  of Theorem 5.4 (and the 

fact that  the simple dictator protocol achieves the upper bound in Theorem 5.4), 

we can first conclude that  any optimal protocol is a simple protocol, i.e., all the 

sets Aj are identical. Let A be the set corresponding to any potentially optimal 

simple protocol. By Theorem 5.4 again the function IA -- ( [AI2-n)I  = IA -- �89 

must be an eigenfunction of Tpr for some r corresponding to its second largest 

eigenvalue p r  This implies that  f = 2IA -- 1 must be a balanced linear function, 

f ( x )  = ~ ls l=l  ] ( S ) x s .  I t  is well known (see, e.g., [32]) that  the only such 

Boolean functions are dictators. This completes the proof of the first part.  The 

second part  of the theorem follows immediately from the third part  of Theorem 

5.4 | 

5.3 INHOMOGENEOUS MARKOV CHAINS. In order to prove Theorem 5.4 we 

need a lemma that  provides a bound for one step of the Markov chain. 

LEMMA 5.5: Let M be an ergodic transition matrix for a Markov chain on 

the set S that is reversible with respect to the probability measure ~r and has 

spectral gap 5 > O. Let A1 and A2 be two subsets of  S and let P1 and P2 be 

the corresponding projection operators on L2( S, 7r) (i.e., P f f  (x) -- f (x ) I  A, (X) 

for every function f on S). Then 

IIP~MP211 _< 1 - 5 ( 1  - ~(x/-~(-A~l)v/~(A2)), 
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where the norm on the left is the operator norm for operators from L2(S, Tr) 
into itsels 

Further, suppose we assume that  5 < 1 and that  )~1 > - 1  + 5. Then 

equality holds above i f  and only i f  A1 = A2 and the function IA1 -- 7r(A1)l 

is an eigenfunction of  M corresponding to 1 - 6. 

Proof." Let e l , . . . ,  er-1, er = 1 be an orthonormal basis of right eigenvectors of 

M with corresponding eigenvalues ~ 1  --~ " ' "  --~ )~r--1 ~-- ,~r - -  1 .  For a function f 

on S, denote by supp(f) = {x C S I f ( x )  ~ 0}. It is easy to see that  [[PIMP2[[ 

is given by 

s u p { l < f , , M f 2 ) l :  Iif1112 = 1, Iif2112 = 1, supp(fl) C__ Al,supp(f2) ___ A2}. 

Given such f l  and f2, expand them as 

r r 

:.=Ev, e, 
i = l  i = 1  

and observe that  for j -- 1, 2, 

(12) I(:j, 1)1 = I<:j,Za,)l <_ II:3II2IIIA~II2 = ~ .  

But now by the orthonormality of the ei's we have 

r r 

(13) I<fl,MY2)[ = ~-~,~u,v~ Y~l;~u~v~l 
i : 1  ' i = 1  

(14) < [(fx,1){f2,1)[ + (1 - ( f )  E luivil 
i < r - - 1  

(15) < ](fl, 1)<f2, 1)1 + (1 - 5)(1 - [(fl, 1)(f2, 1)1 ) 

(16) _< + ( 1 - 6 ) ( 1  - 

= 1 - 5(1 - ~ ( X / - ~ - ~ I ) ~ ) .  

For the third inequality, we used that  ~-~i [uivi[ _< 1 which follows from f l  and 

f2 having norm 1. 
As for the second part of the lemma, if equality holds then all the derived 

inequalities must be equalities. In particular, if (12) holds as an equality, it 

follows that  for j = 1, 2, f j  = + ( 1 / ~ ) I A ~ .  Since 5 < 1 is assumed, it 

follows from the third inequality in (13) that we must also have that  ~ i  luivil = 

1 from which we can conclude that  lull -- Ivi[ for all i. Since - 1  + (f is not an 

eigenvalue, for the second inequality in (13) to hold we must have that the only 
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nonzero ui ' s  (or vi 's) correspond to  the  eigenvalues 1 and 1 - 5. Next ,  for the  

first inequali ty in (13) to hold, we must  have t ha t  u = ( u i , . . . , u n )  = :t:v = 

( v l , . . .  ,vn) since )~i can only be 1 or 1 - 5 and l u i ] =  Ivil for each i. This  gives 

us tha t  f l  = •  and therefore A1 = A2. 

Finally, we also get tha t  f l  - ( f l ,  1)1 is an eigenfunction of M corresponding 

to the eigenvalue 1 - 5. To conclude the proof,  note  tha t  if A1 -- A2 and 

IA1 -- 7r(A1)1 is an eigenfunction of M corresponding to 1 - 5, then  it is easy 

to  see t ha t  when we take f l  = f2 = IAI -- 7r(A1)l, all inequalities in our proof  

become equalities. II 

Proof  of  Theorem 5.4: Let Pi denote  the  project ion onto Ai, as in L e m m a  5.5. 

I t  is easy to  see t ha t  

P [Xi  E AiVi = 0 , . . . ,  k] = 7rAoPoM1P1Me.. .  P k - l M k P k I A k .  

Rewri t ing in t e rms  of the  inner product ,  this is equal  to  

(IAo, (PoM1P1M2 " " Pk- - lMkPk)IAk) .  

By Cauchy-Schwarz  it is at  most  

IlI Ao 112 {{IA  112 IIPoMI P1M2 " " P k -  i Mk Pk {{, 

where the third factor is the  norm of P o M 1 P 1 M 2 " "  P k - l M k P k  as an opera to r  

from L2(S,  7r) to  itself. Since p/2 = p~ (being a project ion) ,  this in tu rn  is equal  

to  

~ ( ~  V ~  II ( PoMI P1) ( PI M2 P2 ) " " " ( P k -  l Mk Pk ) ll . 

By L e m m a  5.5 we have t ha t  for all i -- 1 , . . . ,  k 

II -iM P ll _< 1 -5 (1 - 

Hence 

k k 

(17) H(P _IMP,) <_ H I 1  - 5i(1 - ~ ) V / u ( A i ) ) ] ,  
i = l  i = l  

and the  first pa r t  of  the theorem is complete.  

For the  second s t a t emen t  note  tha t  if we have equality, then  we must  also 

have equali ty for each of the norms  IIPi_lMiPill .  This  implies by L e m m a  5.5 

t ha t  all the sets Ai are the  same and tha t  IA~ - ~ r ( A i ) l  is in the  1 - 5 i  eigenspace 
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of Mi for all i. For the converse, suppose on the other  hand tha t  Ai = A for all 

i and IA -- ~r(A)l is in the 1 - gi eigenspace of Mi. Note tha t  

P i - I M i P i l A  -= P i - I M i l A  = P i - I M i ( ~ r ( A ) I  + (IA -- 7r(A)l)) 

= P i - l ( T r ( A ) l  + (1 - 5i)(IA -- I r (A)l ) )  

= ~r(A)IA + (1 -- 6i)IA -- (1 -- 5i)~r(A)IA 

= (1 -- 6i(1 -- ~r(A))IA. 

Since P~ = P~, we can use induct ion to  show tha t  

k 

. A o P o i l P l M 2  . . .  Pk-lMkPkIA  = .A[1-I (P ,_ lU,  Pi)]IA 
i = l  

k 
= 7r(A) 1--[(1 - 5i(1 - lr(A)), 

i = l  

complet ing the proof  of the second statement .  

In  order to  prove the third  s ta tement ,  first note tha t  if strict inequality holds 

in (11) when each Ai is taken to  be A, then,  by the second par t  of this result, the 

function IA --Tr (A)1 is not an eigenfunction of M corresponding to  the eigenvalue 

1 - 5. It  then follows from Lemma 5.5 tha t  [IPMPll  < 1 - 5(1 - ~r(A)) where 

P is the corresponding project ion onto A. The  result now immediately follows 

from (17). | 

6. N I C D  o n  g e n e r a l  t r e e s  

In this section we give some results for the NICD problem on general trees. 

Theorem 1.3 in [31] s ta ted tha t  for the star graph  where S is the set of leaves, 

the  simple dic ta tor  protocols const i tu te  all opt imal  protocols when fS1 = 2 or 

IS] = 3. The  proof  of t ha t  result immediately  leads to  the  following. 

THEOREM 6.1: For any N I C D  instance ( T , p , n , S )  in which [S] = 2 or [SI = 3 

the s imple dictator protocols const i tu te  all opt imal  protocols. 

6.1 EXAMPLE WITH NO SIMPLE OPTIMAL PROTOCOLS. It  appears tha t  the 

problem of NICD in general is quite difficult. In particular,  using Theorem 5.1 

we show tha t  there are instances for which there is no simple opt imal  protocol.  

Note the contrast  with the case of stars, where it is proven in [31] tha t  there is 

always a simple opt imal  protocol.  
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PROPOSITION 6.2: There exists an instance (T, p, n, S) for which there is no 

simple optimal protocol. In fact, given any p and any n > 4, there are integers 

kl and k2, such that if  T is a kl-leaf star together with a path of length k2 

coming out of the center of the star (see Figure 1) and S is the full vertex set 

ofT ,  then this instance has no simple optimal protocol. 

1 1 and let Bin(3, e) Proos Fix p and n > 4. Recall that  we write e - 2 ~P 

be a binomiMly distributed random variable with parameters 3 and E. As was 

observed in [31], 

T~(Stark, p, n, Sk, MA33) _> ~P[Bin(3, r _~ 1] k. 

To see this, note that with probability 1/8 the center of the star gets the string 

(1, 1, 1). Since 

P[Bin(3,E) < 1]---- (1 -g)2(1 + 2E) > 1 --r 

for all ~ < 1/2, we can pick kl large enough so that  

P(Stark, ,  p, n, Ski, MAJ3) > 8(1 - c) k' . 

Next, by the last statement in Theorem 5.4, there exists c2 = c2(p,n) ~> 1 

such that  for all balanced non-dictator functions f on n bits 

P(Pathk,  p, n, Pathk, 19) > P(Pathk,  p, n, Pathk, f)ck2 . 

Choose k2 large enough so that  

(1-e)k'c~ 2 > 1. 

Now let T be the graph consisting of a star with kl leaves and a path of length 

k2 coming out of its center (see Figure 1), and let S = V(T) .  We claim that  the 

NICD instance (T, p, n, S) has no simple optimal protocol. We first observe that  

if it did, this protocol would have to be :D, i.e., ~ (T,  p, n, S, f )  < ~(T ,  p, n, S, l)) 

for all simple protocols f which are not equivalent to dictator. This is because 

the quantity on the right is (1 - g)kl+k2 and the quantity on the left is at 

most 7~(Pathk2,p,n, Pathk=,f), which in turn by definition of c2 is at most 

(1 - E)k2/c k2. This is strictly less than (1 - ~)kl+k~ by the choice of k2. 

To complete the proof it remains to show that  :D is not an optimal protocol. 

Consider the protocol where k2 vertices on the path (including the star's center) 

use the dictator/~ on the first bit and the kl leaves of the star use the protocol 
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MAJ3 on the last three out of n bits. Since n > 4, these vertices use completely 

independent bits from those that  vertices on the pa th  are using. We will show 

that  this protocol, which we call f ,  does bet ter  than 79. 

Let A be the event tha t  all vertices on tile path  have their first bit being 

1. Let B be the event that  each of the kl leaf vertices of the star have 1 as 

the majori ty of their last 3 bits. Note that  P ( A )  = 1 5( 1 _ ~)k2 and that ,  by 

definition of kl ,  P ( B )  >_ 4(1 - e) k~ . Now the protocol f succeeds if both A and 

B occur. Since A and B are independent (as distinct bits are used), f succeeds 

with probability at least 2(1 - e) k2 (1 - E) kt which is twice the probability that  

the dictator protocol succeeds. I 

Remark:  I t  was not necessary to use the last 3 bits for the kl vertices; we could 

have used the first 3 (and had n = 3). Then A and B would not be independent 

but it is easy to show (using the FKG inequality) tha t  A and B would then be 

positively correlated which is all that  is needed. 

6 . 2  OPTIMAL MONOTONE PROTOCOLS ALWAYS EXIST. Next, we present some 

general s tatements about  what optimal protocols must look like. Using discrete 

symmetrizat ion together with the FKG inequality we prove the following the- 

orem, which extends one of the results in [31] from the case of the star to the 

case of general trees. 

THEOREM 6.3: For all N I C D  instances on trees, there is an optimal protocol 

in which all players use a monotone  function. 

One of the tools tha t  we need to prove Theorem 6.3 is the correlation 

inequality obtained by Fortuin et al. [21] which is usually called the FKG 

inequality. We first recall some basic definitions. 

Let D be a finite linearly ordered set. Given two strings x, y in D m we write 

x_< y i f f x i  _< Yi for all indices 1 _< i _< m. We denote b y x V y  and x A y  

two strings whose i th coordinates are max(xi ,  Yi) and min(xi, Yi) respectively. 

A probability measure #: D m -~ ~>_o is called log-supermodular if 

(18) < , ( v  v A 

for all ~?, 5 C Dm.  If  # satisfies (18) we will also say tha t  # satisfies the FKG 

lattice condition. A subset A C D m is increasing if whenever x E A and x N y 

then also y E A. Similarly, A is decreasing if x E A and y _< x imply that  y C A. 

Finally, the measure of A is #(A) = Y~xeA #(x). The following well known fact 

is a special case of the FKG inequality. 
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PROPOSITION 6.4: Let it: { -1 ,  1} m ---+ R ->0 be a log-supermodular probability 

measure on the discrete cube. I r A  and B are two increasing subsets o f { - 1 ,  1} m 

and C is a decreasing subset then 

#(A N B) >_ it(A)- it(B) and it(A n C) < i t(A),  it(C). 

It is known that in order to prove that  it satisfies the FKG lattice condition, 

it suffices to check this for "smallest boxes" in the lattice, i.e., for ~ and 5 that  

agree at all but two locations. Since we don't  know a reference, for completeness 

we prove this here. 

LEMMA 6.5: Let it be a measure with fall support. Then it satisfies the FKG 

lattice condition (18) i f  and only i f  it satisfies (18) for all ~? and 5 that agree at 

all but two locations. 

Proof." We will prove the non-trivial direction by induction on d = d(~, 5), the 

Hamming distance between ~ and 5. The cases where d(~/, 5) < 2 follow from the 

assumption. The proof will proceed by induction on d. Let d = d(~, 5) > 3 and 

assume the claim holds for all smaller d. We can partit ion the set of coordinates 

into 3 subsets I=, I{~>~} and I{~<~}, where ~ and 5 agree, where ~ > 5 and where 

< 5 respectively. Without loss of generality 1I{~>~}[ >_ 2. Let i e I{~>~} and 

let fl~ be obtained from 7/by setting ~ = 5i and letting ~ = ~j otherwise. Then 

since r/~ A 5 = ~ A 5, 

.(,TAs).(.jv5) (.(,7'A,5).(r x (.(r 
= ' ,  it(,f)it(5) " 

The first factor is >_ 1 by the induction hypothesis since d(6, ~') = d(6, ~) - 1. 

Note that  ~' = ~ A (~f V 5), ~ V 5 = ~ V (~' V 6), and d(~', ~ V 5) = 1 + ]I{~<~} I < d. 

Therefore by induction, the second term is also > 1. | 

The above tools together with symmetrization now allow us to prove 

Theorem 6.3. 

Proof of Theorem 6.3: The general strategy of the proof is a shifting technique 

together with using FKG to prove that this shifting improves things. 

Recall that we have a tree T with m vertices, 0 < p < 1, and a probability 

measure P on a E {-1 ,  1} V(T) which is defined by 

1 [ 1  1 hA( a ) / 1  1 ,~B(a) 
P ( a )  + , 
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where A(a) is the number of pairs of neighbors where a agrees and B ( a )  is the 

number of pairs of neighbors where a disagrees. To use Proposition 6.4 we need 

to show that  P is a log-supermodular probability measure. 

Lemma 6.5 tells us tha t  we need only check the FKG lattice condition for 

configurations that  differ in only two sites. Note that  (18) holds trivially if 

a < /3 o r /3  < a.  Thus it suffices to consider the case where there are two 

vertices u, v of T on which a and/3 disagree and that  av =/3u = 1 and au = 

/3v = - 1 .  If these vertices are not neighbors, then by definition of P we have 

that  P(a )P( /3 )  = P ( a  V ~ ) P ( a  A/3). Similarly, if u is a neighbor of v in T, then 

one can easily check that  

P(a)P( /3)  = ( 1 -  p~2 < 1. 

P ( a  V/3)P(a  A/3) \ l + p /  - 

Hence we conclude tha t  measure P is log-supermodular. 

Let f l , . . .  , fk  be the functions used by the parties at nodes S = {Vl, . . .  ,vk}. 

We will shift the functions in the sense of Klei tman's  monotone "down-shifting" 

[29]. Namely, define functions g l , . . .  ,gk as follows: If 

f i ( -1 ,x2 , . . . ,Xn)  = f i(1,x2, . . . ,Xn) 

then we set 

g i ( -1 ,  x 2 , . . . ,  xn) = gi(1, x2, . . . ,  Xn) = f / ( - 1 ,  x 2 , . . . ,  xn) 

= , x n ) .  

Otherwise, we set gi(-1,x2, . . .  ,xn) = - 1  and gi(1,x2,... ,xn) = 1. We claim 

that  the agreement probabili ty for the gi's is at least the agreement probability 

for the fi's. Repeating this argument for all bit locations will prove that  there 

exists an optimal protocol for which all functions are monotone. 

To prove the claim we condition on the value of x 2 , . . . ,  xn at all the nodes vi 

and let a i  be the remaining bit at vi. For simplicity we will denote the functions 

of this bit by fi and gi. 
Let 

S~ = {i :  f~( -1)  = fi(1) = 1}, $2 = {i :  f i ( - 1 )  = fi(1) = -1} ,  

S 3 = { i : f i ( - 1 ) = - 1 ,  f i ( 1 ) = 1 } ,  S 4 = { i : f i ( - 1 ) = 1 ,  f i ( 1 ) = - 1 } .  

If $1 and $2 are both  nonempty, then the agreement probability for both f and 

g is 0. Now without loss of generality, assume that  $2 is empty. Assume first that  

$1 is nonempty. Then the agreement probability for g is P[a i  = 1 Vi E $3 U $4] 
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while the agreement probability for f is P[a i  = 1 Vi E $3, ai  = - 1  Vi C $4]. 

By FKG, the first probability is at least P[a~ = 1 Vi E S3]P[ai = 1 Vi E St] 

while the second probabili ty is at most P[a~ = 1 Vi C S3]P[ai = - 1  Vi E St]. 

By symmetry,  the two second factors are the same, completing the proof when 

$1 is nonempty. An easy modification, left to the reader, takes care of the case 

when $1 is also empty. | 

Remark:  The last step in the proof above may be replaced by a more direct 

calculation showing that  in fact we have strict inequality unless the sets U ~, U" 

are empty. This is similar to the monotonicity proof in [31]. This implies that  

every optimal protocol must consist of monotone functions (in general, it may 

be monotone increasing in some coordinates and monotone decreasing in the 

other coordinates). 

Remark:  The above proof works in a much more general setup than just 

our tree-indexed Markov chain case. One can take any measure on { -1 ,  1} rn 

satisfying the FKG lattice condition with all marginals having mean 0, take 

n independent copies of this and define everything analogously in this more 

general framework. The proof of Theorem 6.3 extends to this context. 

6.3 MONOTONICITY IN THE NUMBER OF PARTIES. Our last theorem yields a 

certain monotonicity when comparing the simple dictator protocol 7) and the 

simple protocol MAJr, which is majori ty on the first r bits. Tile result is not 

very strong - -  it is interesting mainly because it allows to compare protocols 

behavior for different number of parties. It shows that  if MAJr is a bet ter  

protocol than dictatorship for kl parties on the star, then it is also bet ter  than 

dictatorship for ks parties if ks > kl. 

THEOREM 6.6: F i x  p and n and suppose  k 1 and r are such that  

P(Stark~, p, n, Stark1, MAJr) _> (>)P(S ta rk l ,  p, n, Stark~, ~D). 

Then  for all ks > k l ,  

P(Stark2, p, n, Stark2, MAJr) > (>)P(Stark2,  p, n, Stark2, ~D). 

Note that  it suffices to prove the theorem assuming r = n. In order to prove 

the theorem, we first introduce or recall some necessary definitions including 

the notion of stochastic domination. 
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D e f i n i t i o n s  a n d  s e t - u p :  We define an ordering on { 0 , 1 , . . . , n }  l, writing 

~/ _--< 5 if ~h -< 5/ for all i E I .  If  L, and # are two probability measures on 

{ 0 , 1 , . . . , n }  I,  we say # stochastically dominates y, written L, _ #, if there 

exists a probability measure m on {0, 1 , . . . ,  n} t x {0, 1 , . . . ,  n} ~ whose first and 

second marginals are respectively ~ and # and such that  m is supported on 

{(r/, 5) : ~ -< fi}. Fix p, n _> 3, and any tree T. Let our tree-indexed Markov 

chain be {xv}veT, where xv E { -1 ,1}  n for e a c h v  e T. Let A c_ { -1 ,1}  n 

be the strings which have a majori ty of l 's .  Let Xv denote the number of l ' s  

in xv. Given S C_ T,  let # s  be the conditional distribution of {Xv}vE T given 

R,es{Xv �9 A} (= Rves{Xv >_ n/2}).  
The following lemma is key and might be of interest in itself. It  can be used 

to prove (perhaps less natural) results analogous to Theorem 6.6 for general 

trees. I ts  proof will be given later. 

LEMMA 6.7: In the above setup, if $1 C_ $2 C_ T, we have 

/ZS1 -~ /.tS2. 

Before proving the lemma or showing how it implies Theorem 6.6, a few 

remarks are in order. 

�9 Note tha t  if {Xk} is a Markov chain on { -1 ,  1} n with transition matrix Tp, 
then if we let Xk be the number of l ' s  in Xk, then (Xk} is also a Markov 

chain on the state space {0, 1 , . . . ,  n} (although it is certainly not true in 

general that  a function of a Markov chain is a Markov chain). In this 

way, with a slight abuse of notation, we can think of Tp as a transition 

matr ix  for {Xk} as well as for {Xk}. In particular, given a probability 

distribution # on {0, 1 , . . . ,  n} we will write #Tp for the probability measure 

on {0, 1 , . . .  ,n} given by one step of the Markov chain. 

�9 We next recall the easy fact tha t  the Markov chain Tp on { -1 ,1}  n is 

attractive, meaning tha t  if ~, and # are probability measures on ( - 1 , 1 }  n 

with v ~_ #, then it follows that  vTp _-< #Tp. (This is easily verified for one- 

coordinate and the one-coordinate case easily implies the n-dimensional 

case.) The same is true for the Markov chain {Xk} on {0, 1 , . . .  ,n}. 

Along with these observations, Lemma 6.7 is enough to prove Theorem 6.6: 

Proo~ Let vo, v l , . . . ,  Vk be the vertices of Stark, where v0 is the center. Clearly, 
1 k •(Stark, p, Stark, l)) ---- (�89 § ~p) . On the other hand, a little thought reveals 

tha t  
k - 1  

P(Stark,  p, n, Stark, MAJn) ---- H(# {v0  ..... v~} Ivo Tp)(A), 
~=0 
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where by # Iv we mean the xv marginal of a distribution # (recall that  A C 

{-1 ,  1} n is the strings which have a majority of l 's). By Lemnm 6.7 and the 

attractivity of the process, the terms (#{vo ..... vd Ivo Tp)(A) (which do not depend 

on k as long as t _< k) are nondecreasing in t. Therefore if 

1 k 
P(Stark,p,n, Stark, MAJn) >_ ( > ) ( l  + ~p) , 

then (#{vo ..... vk-1} I~o Tp)(A) >>_ (>)�89 + �89 which implies in turn that  for every 

k' _> k, (#{,o ..... -k,-1} Ivo Tp)(A) >_ (>)1 + �89 and thus for all k' > k, 

P(Stark,,p,n, Stark,,MAJn) >_ (>) + ~p) . | 

Before proving Lemma 6.7, we recall the definition of positive associativity. If 

Iz is a probability measure on {0, 1 , . . . ,  n} I, # is said to be positively associated 
if any two monotone functions on {0, 1 , . . . ,  n} I are positively correlated. This is 

equivalent to the fact that  if B C {0, 1 , . . . ,  n} I is an upset, then # conditioned 

on B is stochastically larger than #. (It is immediate to check that this last 

condition is equivalent to monotone events being positively correlated. How- 

ever, it is well known that  monotone events being positively correlated implies 

that  monotone functions are positively correlated; this is done by writing out a 

monotone function as a positive linear combination of indicator functions.) 

Proof of Lemma 6.7: It suffices to prove this when $2 is S 1 plus an extra vertex 

z. We claim that for any set S, #s  is positively associated. Given this claim, 

we form #s2 by first conditioning on ~veSl {Xv E A}, giving us the measure 

Psi, and then further conditioning on Xz C A. By the claim, #sl is positively 

associated and hence the last further conditioning on Xz C A stochastically 

increases the measure, giving #sl _ #s2. 

To prove the claim that  #s  is positively associated, we first claim that  the 

distribution of {Xv}veT, which is just a probability measure on {0, 1 , . . . ,  n} T, 
satisfies the FKG lattice condition (18). 

Assuming the FKG lattice condition holds for {Xv}veT, it is easy to see that  

the same inequality holds when we condition on the sublattice Nvcs{Xv >_ n/2} 
(it is crucial here that  the set ~vcs{Xv > n/2} is a sublattice meaning that  

~, 5 being in this set implies that  7/V ~ and 7I A ~ are also in this set). 

The FKG theorem, which says that  the FKG lattice condition (for any 

distributive lattice) implies positive association, can now be applied to this 

conditioned measure to conclude that  the conditioned measure has positive 

association, as desired. 
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Finally, by Lemma 6.5, in order to prove that  the distribution of {Xv}veT 

satisfies the FKG lattice condition, it is enough to check this for "smallest boxes" 

in the lattice, i.e., for ~ and (f that  agree at all but two locations. If  these two 

locations are not neighbors, it is easy to check that  we have equality. If they 

are neighbors, it easily comes down to checking that  if a > b and c > d, then 

P[X1 = clXo = a ]P[Zl  = dlXo = b] 

is greater than  or equal to 

P [Xl  = dlXo = a]P[X1 = c[Xo = b], 

where {X0, X1) is the distribution of our Markov chain on {0, 1 , . . . ,  n} restricted 

to two consecutive times. It is straightforward to check that  for p C (0, 1), the 

above Markov chain can be embedded into a continuous t ime Markov chain on 

{0, 1 , . . .  ,n} which only takes steps of size 1. The last claim now follows from 

Lemma 6.8 stated and proved below. | 

LEMMA 6.8: I f  {Z t }  is a continuous time Markov chain on {0, 1 , . . .  ,n} which 

only takes steps of size 1, then ira > b and c > d, it follows that 

P[X1 = c[Xo = a]P[Xl  --- d[Xo = b] 

is greater  than or equal to 

P[X1 = dlXo = a]P[X1 = c[Xo = b]. 

(Of  course, by time scaling, X1 can be replaced by any time Xt . )  

Proof: Let Ra,c be the set of all possible realizations of our Markov chain during 

[0, 1] start ing from a and ending in c. Define Ra,d, Rb,c and Rb,d analogously. 

Letting Px  denote the measure on paths start ing from x, we need to show that  

Pa(Ra,c)Pb(Rb,d) >_ Pa(Ra,d)Pb(Rb,c), 

or equivalently that  

Pa • Pb[Ra,c x Rb,d] ~_ Pa • Pb[Ra,d • Rb,c]. 

We do this by giving a measure preserving injection from Ra,d • Rb,c to 

Ra,c • Rb,d. We can ignore pairs of paths where there is a jump in both paths 

at the same t ime since these have Pa  • Pb measure 0. Given a pair of paths in 
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Ra,d • Rb,c, we can switch the paths after their first meeting time. It  is clear 

that  this gives an injection from Ra,d • Rb,c to Ra,c • Rb,d and the Markov 

property guarantees that  this injection is measure preserving, completing the 

proof. | 

7. C o n c l u s i o n s  a n d  o p e n  q u e s t i o n s  

In this paper we have exactly analyzed the NICD problem on the path  and 

asymptotically analyzed the NICD problem on the star. However, we have seen 

that  results on more complicated trees may be hard to come by. Many problems 

are still open. We list a few: 

�9 Is it true that  for every tree NICD instance, there is an optimal protocol 

in which each player uses some majori ty rule? This question was already 

raised in [31] for the special case of the star. 

�9 Our analysis for the star is quite tight. However, one can ask for more. In 

particular, what is the best bound that  can be obtained on 

.A4 (Stark, p, Sk) 

rk = l i m n ~  /)(Stark, p, n, Sk, MAJn ) 
n o d d  

for fixed value of p? Our results show that  rk = k ~ Is it true that  

l i m k ~  rk = 1? 

�9 Finally, we would like to find more applications of the reverse Bonami-  

Beckner inequality in computer science and combinatorics. 
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A p p e n d i x  A. P r o o f  o f  t h e  r e v e r s e  B o n a m i - B e c k n e r  i n e q u a l i t y  

Borell's proof of the reverse Bonami-Beckner inequality [13] follows the same 

lines as the traditional proofs of the usual Bonami-Beckner inequality [12, 8]. 

Namely, he proves the result in the case n = 1 (i.e., the "two-point inequality") 

and then shows that  this can be tensored to produce the full tlmorem. The usual 

proof of the tensoring is easily modified by replacing Minkowski's inequality 

with the reverse Minkowski inequality [25, Theorem 24]. Hence, it is enough to 

consider functions f :  { -1 ,  1} --~ N >~ (i.e., n = 1). By monotonicity of norms, 

it suffices to prove the inequality in the case that  p = (1 - p ) 1 / 2 / ( 1  -q ) l /2 ;  i.e., 
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p2 __ (1 - - p ) / ( 1  -- q). Finally, it turns  out  t ha t  it suffices to  consider the case 

where  0 < q < p < 1 (see L e m m a  A.3). 

LEMMA A . I :  Let  f :  { - 1 ,  1} --* ~>0 be a nonnegative function, 0 < q < p < 1, 
and p2 : (1 - p ) / (1  - q). Then I[Tpfllq >_ []f[]p- 

Proof (Bore11): If  f is identically zero the  l emma  is trivial.  Otherwise,  using 

homogenei ty  we may  assume tha t  f (x)  = 1 + ax for some a E [ -1 ,  1]. We 

shall consider only the  case a E ( - 1 ,  1); the  result  at  the  endpoints  follows by 

continuity.  Note  t ha t  T J ( x )  -- 1 + pax. 
Using the  Taylor  series expansion for (1 + a) q around 1, we get 

(19) [ITJIIq q = 1((1 + ap) q + (1 - ap) q) 

= 1 ( ( 1  ~ ( ) ) ~=~ (qn)(-a)npn))  

(20) = 1 + ~ \2nJ " 
n = l  

(Absolute  convergence for lal < 1 lets us rearrange the  series.) Since p > q, it 

holds for all x > - 1  t ha t  (1 + x) p/q >_ 1 + px/q. In  par t icular ,  f rom (20) we 

obta in  t h a t  

/ q \ \ P/q 

n : l  - -  n=l q \2n] " 

Similarly to  (20) we can wri te  

(22) II/ll~ = 1 + \2n] " 
n = l  

From (21) and (22), we see t ha t  in order  to  prove the  t heo rem it suffices to  show 

tha t  for all n _> 1 

Simplifying (23) we see the  inequali ty 

(q - -  1 ) ' ' "  (q  - -  2 n  -~- 1 ) p  2n __~ (p  --  1 ) ' ' "  ( p  --  2n + 1), 

which is equivalent in tu rn  to  

(24) (1 - q ) - - .  ( 2 n -  1 - q)p2n <_ (1 - p ) . . . ( 2 n -  1 - p ) .  
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Note t ha t  we have (1 - p )  = (1 - q ) p 2 .  Inequal i ty  (23) would follow if we could 

show tha t  for all m > 2 it holds t ha t  p(m - q) < (m - p). Taking the  square 

and recalling t ha t  p2 = (1 - p ) / (1  - q) we ob ta in  the  inequali ty 

( 1 - p ) ( m -  q)2 _< ( m - p ) 2 ( 1  - q), 

which is equivalent to  

m 2 - 2 m - t - p +  q - p q  >_ O. 

The  last inequali ty holds for all m _> 2, thus complet ing the  proof. | 

We also prove the  two-funct ion version promised  in Section 3.1. Recall first 

the reverse HSlder inequali ty [25, T h e o r e m  13] for discrete measure  spaces: 

LEMMA A.2: Let  f and g be nonnegative functions and suppose l / p +  l i p  ~ = 1, 

where p < 1 (pl = 0 i f  p = 0). Then 

E[fg]  = [[fg[[1 _> [[f[[p[[g[[p,, 

where equality holds i f  g = fP/P'. 

Proof  of  Corollary 3.3: By definition, the lef t-hand side of (2) is E[fTpg]. We 

claim it suffices to prove (2) for p = (1 - p)1/2(1 - q)1/2. Indeed,  otherwise,  let 

r satisfy p -- (1 - p ) U 2 ( 1  - r )  1/2 and note  t ha t  r > q. Then,  assuming (2) holds 

for p, r and p we obta in  

E[fTpg] ~_ [[f[]p[[g[[r >-- [[f[[p]]g[[q, 

as needed. 

We now assume p -- (1 - p)1/2(1 - q)1/2. Let  p '  satisfy 1/p + l i p '  = 1. 

Applying the  reverse H61der inequali ty we get t ha t  E[fTpg] >_ [[fl[p[[Tpg[[p,. 

Note tha t ,  since 1/(1 - p ' )  -- 1 - p ,  the  fact t h a t  p = (1 - p ) 1 / 2 ( 1  - q ) 1 / 2  

implies p = (1 - q) 1/2 (1 - p ' ) -  1/2. Therefore,  using t he reverse Bonami -Beckne r  

inequali ty wi th  p~ _< q _< 1, we conclude t ha t  

E[f(x)g(y)]  >_ [IfNp[[Tpg[[;, >_ Hf[[p[[g[[q. | 

LEMMA A.3:  I t  sumces  to prove (1) for 0 < q < p < 1. 

Proof: Note first t ha t  the  case p = 1 follows f rom the case p < 1 by continuity. 

Recall t ha t  1 - p  = p2(1 - q ) .  Thus,  p > q. Suppose (1) holds for 0 < q < p < 1. 
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Then  by continuity we obta in  (1) for 0 _< q < p < 1. From 1 - p  = p2(1 - q), it 

follows tha t  1 - q' = 1/(1 - q) -- p2/(1 - p) -- p2(1 - p').  Therefore,  if p < 0, 

then  p'  -- 1 - 1/(1 - p )  > 0 and q' -- 1 - p2/(1 - p )  > p'  _> 0. We now conclude 

tha t  if f is non-negative, then  

[[TpfHq = inf{[[gTpf[[l : [[gila' = l , g  >_ 0} (by reverse Hhlder) 

= inf{]] fTpg[h:  Hg[]q' = 1,g >_ 0} (by reversibility) 

>_ inf{[If][pllTpg[[p,: [[g[[q, -- l , g  _> 0} (by reverse Hhlder) 

> [[fNvinf{[[g[lq,: [[g[[q, : 1,g _> 0} = Ilf[lp 

(by (1) for 0 < p'  < q' < 1). 

We have thus obtained tha t  (1) holds for p < 0. The  remaining case is p > 0 > q. 

Let  r = 0 and choose pl,P2 such tha t  (1 - p )  = p~(1 - r )  and (1 - r )  = p~(1 - q ) .  

Note tha t  0 < pl,  p2 < 1 and tha t  p ~ piP2. The  lat ter  equality implies tha t  

Tp = T m Tp2 (this is known as the  "semi-group proper ty") .  Now 

[ITJllq = IITplT,~flIq >-IlTp~fll~ >_ Ilfllv, 

where the first inequality follows since q < r < 0 and the second since p > r > 0. 

We have thus completed the proof. | 
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