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WHAT MAKES A GRAPH RANDOM?

QUESTIONS:

@ What are the essential properties of random graphs?

@ How can one tell when a given graph behaves like a random
graph?

@ How to create deterministically graphs that look random-like?

A POSSIBLE ANSWER:

Probably the most important characteristic of truly random graph
is its edge distribution. Thus may be a pseudo-random graph is a
graph whose edge distribution resembles the one of a random
graph with the same edge density.




SPECTRA OF GRAPHS

The adjacency matrix Ag of a graph G has
ayy = number of edges from u to v.
It is a symmetric matrix with real eigenvalues Ay > Ao > ... > A,

DEFINITION:

G is an (n, d, \)-graph if it is d-regular, has n vertices, and

max || < A.
i>2

N

REMARK:

o If G is d-regular, then \; = d.

o If d <n/2and Gis (n,d,\), then A > 4/ d(:__ld) = Q(Vd).

v




EDGE DISTRIBUTION

Let G be an (n,d, A)-graph. For B, C C V(G)

e(B,C) =|{(b,c) € E(G) | be B,c€ C}|

e(B) = %e(B, B) = | {(b,¥) € E(G) | b,b € B}|

THEOREM:  (Alon, Alon-Chung 80’s)
e For any B, C C V(G) (not necessarily disjoint)

d
e(8,C) - 218l| < AWIETCI

e For any B C V(G)

d |B|?
‘6(3)‘;%

1 ]B\
< ANB|(1—-——].
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INDEPENDENCE NUMBER AND MAxCuT

COROLLARY:  (Hoffman )

The independence number of an (n, d, \)-graph G is at most

A
d+ A

n

a(G) <

The maximum number of edges in a cut of G

d+ A e(G) An
< = —
MaxCut(G) < 7" >




VERTEX EXPANSION

The vertex boundary of X C V/(G) in a graph G is

OX ={y e V(G)\X |3x € X : {x,y} € E(G)}.

(010):70) AW NS (Alon-Milman 84, Tanner 84)
If G is an (n,d,\)-graph G and X C V/(G) of size at most n/2,
then el 3

10X| > Q|X|.

3d — 2\




CONVERSE RESULTS

THEOREM:  (Alon 1986 )

If G is d-regular graph with eigenvalues A\ =d > Xy > ... > A,
such that |0X| > ¢|X| for every X C V,|X| < n/2, then

c2

A < d-— .
2= 4+2c¢?

THEOREM:  (Bilu and Linial 2004 )

If G =(V,E)is d-regular graph with eigenvalues
A =d> X >...> )\, such that for every B,C C V

d
e(8,C) - 218llcl| < av/IBICl

then  max {|X2|, [An|} < O(arlog(d/cv)).




CHROMATIC NUMBER

Chromatic number x(G) is the minimum number of colors needed
to color V/(G) such that adjacent vertices get different colors.

If G is and (n,d, \)-graph then  x(G) > 1+ ¢.

THEOREM:  (Alon, Krivelevich and S. 99)

If G is (n,d,\) and d < 2n/3 then x(G) < O (m) .

THEOREM:  (Alon, Krivelevich and S. 99 and Vu 00)

The choice number of G satisfies a similar inequality.




HAMILTONICITY

Graph G is hamiltonian if it has Hamilton cycle, i.e., a cycle
containing all vertices of G.

THEOREM:  (Krivelevich and S. 02)

If G is and (n,d, \)-graph with
d
logn’

then G is hamiltonian.

There exist an € > 0 such that if A\ < ed then G is hamiltonian. I




SMALL SUBGRAPHS

@ H = fixed graph with s vertices, r edges and max. degree A.
o G=(V,E)isan (n,d,\)-graph and U C V of size m.

If m> )\(g)A then U contains

v+ Oy (2) (5)

copies of H

If d" > An""! then G contains a complete graph K,11. I




SPECTRAL TURAN’S THEOREM

QUESTION:

How large can be K, i-free subgraph of (n, d, A)-graph?
(Every G has such subgraph with at least “~Le(G) edges.)

THEOREM: (S., Szabs, Vu 2005)

Let r > 2, and let G be an (n, d, \)-graph with d” > An"~1. Then
the size of the largest K, i-free subgraph of G is

Le(G) + o(e(G)).

r

@ The complete graph K, has d =n—1 and A = 1. Thus we
have an asymptotic extension of Turan's theorem.

@ The theorem is tight for r = 2. By a result of Alon, there are
(n, d, \)-graphs with d?> = ©(\n) which contain no triangles.




EXAMPLES OF (n, d, \)-GRAPHS

For every fixed ¢ > 0 and d > 3, a random d-regular graph on n
vertices is, asymptotically almost surely, an (n, d, X)-graph with

A=2Vd—-1+e

PALEY GRAPH:

e V(G) = Zp, where p is a prime p = 1( mod 4).
o (i,j) € E(G) iff i — j = r’(mod p) is a quadratic residue.
G is an (n, d, \)-graph with

-1 1
d:p_, )\:+_\/I_)_

n=p, 5 5




EXAMPLES OF (n,d, \)-GRAPHS

ERDOS-RENYI GRAPH:

G is polarity graph of lines-point incidence graph of finite
projective plane of order q.

o V(G) = lines through the origin in F3, g is a prime power
@ Two lines are adjacent if they orthogonal.

G has no 4-cycles and is an (n, d, \)-graph with
n=q¢>+q+1, d=gqg+1, A=./q.




EXAMPLES OF (n, d, \)-GRAPHS

LUBOTZKY-PHILLIPS-SARNAK 86, MARGULIS 88:

For every d = p + 1 where p is prime p = 1( mod 4), there are
infinitely many (n, d,2+v/d — 1)-graphs.

For every k, 3 [k there is a triangle-free (n, d, \)-graph with

23k

n=2%d=(1/4+0(1))n*3, A= (9+ o(1))n'/3.




APPLICATIONS: MAXCuUT

f(G) = the number of edges in MaxCut, i.e., a maximum bipartite
subgraph of G.

CraM: (Folklore)

Every graph G with m edges contains a cut of size at least m/2.

THEOREM: (Edwards 73,75)

Every graph G with m edges contains a cut (a bipartite subgraph)
of size at least

SlFvem+l - m +Q(vm).

m
>
f(G)_2+ 8 2




MAXCUT IN TRIANGLE-FREE GRAPHS

CONJECTURE:  (Erd8s 70's)

If G contains no short cycles than it has bigger cut.

THEOREM: (Alon 96, improving Erdés-Lovdsz, Poljak-Tuza, Shearer)

If G is triangle-free and has m edges then
f(G) = 5 +Q(m").

The constant 4/5 tight

PROOF OF TIGHTNESS:

Use an (n, d, A)-graph with d ~ %n2/3, A~ 9n!/3, no triangles.




MAXCUT IN GRAPHS OF HIGH GIRTH

THEOREM: (Alon, Bollobds, Krivelevich and S. 02)

If G has girth (length of the shortest cycle) r and m edges, then
f(6) 2 2 +Q(m7).

This is tight for r =5 (and r = 4).

PROOF OF TIGHTNESS:

Uses a random modification of Erdés-Renyi graph, which is Cs-free
(n,d ~ n'/2, X ~ n'/*)-graph. Hence m = Q(n%/?) and

m  An_m 5/4y _ M 5/6
< —_ _— = — = — .
MaxCut < > T2 >t O(n'?) >t o(m>’®)

Exponent 1 is tight also for all r > 5. I




MAXCUT IN H-FREE GRAPHS

For every fixed H there is cy > 3/4 such that if G is an H-free
graph with m edges, then

f(G) = 5 +Q(m™).

THEOREM: (Alon, Krivelevich and S. 05)

o H = cycle of length r = 4,6,10 then cy = 1.

@ H = K, complete bipartite graph with parts of size 2 and
s>2then ¢y =5/6.

@ H = K3 complete bipartite graph with parts of size 3 and
s >3 then ¢y =4/5.




A GEOMETRIC PROBLEM

PrOBLEM:  (Lovdsz 79)

Estimate f(n) = max|| Y7, vi||, where
e v ¢ R" and ||vi|| = 1.

@ Among any three v;'s some two are orthogonal.

THEOREM: (Alon 94)

f(n) > (1/6 — o(1))n*/3.




A GEOMETRIC PROBLEM

G is a triangle-free (n, d, \)-graph with d = Q(n?/3), A = O(n'/3).
A is its adjacency matrix.

%(A + Al) is positive semidefinite, so there is matrix B such that
BTB = }(A+Al).
Let v1,vo,..., v, be the columns of B. Then
e Each ||vj|| = 1.
@ Among any three v;'s some two are orthogonal.

o
: 1
IS ulf = 3 [Fasan],
i=1 ij
= n+ n_;l = Q(n*/?).




UNIVERSAL GRAPHS

Given H a family of graphs (e.g., all trees, planar graphs and etc.),
G is called H-universal if it contains copy of every H € H.

GoaL:  (motivated by VLSI design)

Find sparse universal graph G for H.

(Use limited resources to achieve max. f/exibi/ity)

THEOREM:  (Bhatt, Chung, Leighton, Rosenberg 89)

If H is all trees on n vertices of maximum degree at most D, then
there is universal G of order n with maximum degree < f(D).




NEARLY SPANNING TREES IN (n, d, \)-GRAPHS

THEOREM: (Alon-Krivelevich-S. 06, extending Friedman-Pippenger

%

Let D >2,0<e<1/2andlet G be an (n,d, \)-graph such that
5/2
dZQ<D mqu)

€

Then G contains a copy of every tree with (1 — €)n vertices and
with maximum degree at most D.

Random regular graphs, Lubotzky-Phillips-Sarnak graphs etc. are
universal for almost spanning trees of bounded degree.




EMBEDDING STRATEGY

VERY BRIEF SKETCH:

o Cut tree T into pieces T1,..., Ts,s = f(D,€) of decreasing
size. Embed T piece by piece respecting previous embedding.

@ Use result of Friedman-Pippenger that if every subset X of
graph G of size at least 2k satisfies that |0X| > D|X]|, then G
contains every tree on k vertices with maximum degree D.

@ Use the fact that if induced subgraph of (n, d, \)-graph has
minimal degree at least Q(\v/D), then it is a very good
expander.

There is a constant Cp such that (n, d, A\)-graph with d/A > Cp
contains every spanning tree of maximum degree at most D.




EDGE-DELETION PROBLEMS

A graph property P is monotone if it is closed under deleting edges
and vertices. It is dense if there are n-vertex graphs with Q(n?)
edges satisfying it.

EXAMPLES:
o P= {G is 5—co|orab|e}.
o P= {G is triangle—free}.
o P = {G has a 2-edge coloring with no monochromatic Ks }

DEFINITION:
Given a graph G and a monotone property P, denote by

Ep(G) = smallest number of edge deletions needed to turn
G into a graph satisfying P.

| A\




APPROXIMATION AND HARDNESS

THEOREM: (Alon, Shapira, S. 2005)

@ For every monotone P and € > 0, there exists a linear time,
deterministic algorithm that given graph G on n vertices
computes number X such that |X — Ep(G)| < en?.

@ For every monotone dense P and § > 0 it is NP-hard to

approximate Ep(G) for graph of order n up to an additive
2-5

error of n

Prior to this result, it was not even known that computing Ep(G)
precisely for dense P is NP-hard. We thus answer (in a stronger
form) a question of Yannakakis from 1981.




HARDNESS PROOF: EXAMPLE

P = property of being H-free, x(H) =r + 1.
E, co/(F) = number of edge-deletions needed to make graph F
r-colorable. Computing E,_.o/(F) is NP-hard.

REDUCTION:

@ Given F, let F' = blow-up of F : vertex < large independent
set, edge < complete bipartite graph. Take union of F’ with
an appropriate (n, d, \)-graph to get a graph G with large
minimum degree.

@ E, .o/(F) changes in a controlled way, i.e., knowledge of an
accurate estimate for E,_.o/(G) tells us the value of E,_.o/(F).

Moreover |Er-col(G) — Ep(G)| < 0?77,

o Thus, approximating Ep(G) up to an additive error of n>~% is
as hard as computing E, o/(F).




