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For a directed graph G without loops or parallel edges, let β(G) denote the size of the

smallest feedback arc set, i.e., the smallest subset X ⊂ E(G) such that G \ X has no directed

cycles. Let γ(G) be the number of unordered pairs of vertices of G which are not adjacent.

We prove that every directed graph whose shortest directed cycle has length at least r � 4

satisfies β(G) � cγ(G)/r2, where c is an absolute constant. This is tight up to the constant

factor and extends a result of Chudnovsky, Seymour and Sullivan.

This result can also be used to answer a question of Yuster concerning almost given

length cycles in digraphs. We show that for any fixed 0 < θ < 1/2 and sufficiently large n, if

G is a digraph with n vertices and β(G) � θn2, then for any 0 � m � θn − o(n) it contains

a directed cycle whose length is between m and m + 6θ−1/2. Moreover, there is a constant

C such that either G contains directed cycles of every length between C and θn − o(n) or it

is close to a digraph G′ with a simple structure: every strong component of G′ is periodic.

These results are also tight up to the constant factors.

1. Introduction

A digraph (directed graph) G is a pair (VG, EG) where VG is a finite set of vertices and

EG is a set of ordered pairs (u, v) of vertices called edges. All digraphs we consider in this

paper are simple, i.e., they do not have loops or parallel edges. A path of length r in G

is a collection of distinct vertices v1, . . . , vr together with edges (vi, vi+1) for 1 � i � r − 1.

Moreover, if (vr, v1) is also an edge, then it is an r-cycle.
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The concept of cycles plays a fundamental role in graph theory, and there are numerous

papers which study cycles in graphs. In contrast, the literature on cycles in directed graphs

is not so extensive. It seems the main reason for this is that questions concerning cycles

in directed graphs are often much more challenging than the corresponding questions

in graphs. An excellent example of this difficulty is the well-known Caccetta–Häggkvist

conjecture [4]. For r � 2, we say that a digraph is r-free if it does not contain a directed

cycle of length at most r. The Caccetta–Häggkvist conjecture states that every r-free

digraph on n vertices has a vertex of outdegree less than n/r. This notorious conjecture is

still open even for r = 3, and we refer the interested reader to the recent surveys [11, 14],

which discuss known results on this problem and other related open questions.

In approaching the Caccetta–Häggkvist conjecture it is natural to see what properties

of an r-free digraph one can prove. A feedback arc set in a digraph is a collection of

edges whose removal makes the digraph acyclic. For a digraph G, let β(G) denote the size

of the smallest feedback arc set. This parameter appears naturally in testing of electronic

circuits and in efficient deadlock resolution (see, e.g., [10, 12]). It is also known that it

is NP-hard to compute the minimum size of a feedback arc set even for tournaments

[1, 5] (a tournament is an oriented complete graph). Let γ(G) be the number of unordered

pairs of vertices of G which are not adjacent. Chudnovsky, Seymour and Sullivan [7]

conjectured that if G is a 3-free digraph then β(G) is bounded from above by γ(G)/2.

They proved this conjecture in two special cases, when the digraph is the union of two

cliques or is a circular interval digraph. Moreover, for general 3-free digraphs G, they

showed that β(G) � γ(G).

Generalizing this conjecture, Sullivan [13] suggested that every r-free digraph G satisfies

β(G) � 2γ(G)/(r + 1)(r − 2), and gave an example showing that this would be best possible.

She posed an open problem to prove that β(G) � f(r)γ(G) for every r-free digraph G, for

some function f(r) tending to 0 as r → ∞. Here we establish a stronger bound which

shows that Sullivan’s conjecture is true up to a constant factor. This extends the result of

Chudnovsky, Seymour and Sullivan to general r.

Theorem 1.1. For r � 3, every r-free digraph G satisfies β(G) � 800γ(G)/r2.

The above result is tight up to a constant factor. Indeed, consider a blow-up of an

(r + 1)-cycle, obtained by taking disjoint sets V1, . . . , Vr+1 of size n/(r + 1) and all edges

from Vi to Vi+1, 1 � i � r + 1 (where Vr+2 = V1). This digraph on n vertices is clearly

r-free, has

γ(G) =

(
n

2

)
− n2

r + 1
� n(n − 2)

4
, and β(G) � n2

(r + 1)2
.

Indeed, G contains n2

(r+1)2
edge-disjoint cycles of length r + 1, and one needs to delete at

least one edge from each cycle to make G acyclic.

In order to prove Theorem 1.1, we obtain a bound on the edge expansion of r-free

digraphs which may be of independent interest. For vertex subsets S, T ⊂ VG, let eG(S, T )

be the number of edges in G that go from S to T . The edge expansion μ(S) of a vertex
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subset S ⊂ VG with cardinality |S | � |VG|/2 is defined to be

1

|S | min {eG(S, VG \ S), eG(VG \ S, S)}.

The edge expansion μ = μ(G) of G is the minimum of μ(S) over all vertex subsets S of G

with |S | � |VG|/2. We show that r-free digraphs cannot have large edge expansion.

Theorem 1.2. Suppose G is a digraph on n vertices, r � 9 and μ = μ(G) � 25n/r2. Then

every vertex of G is contained in a directed cycle of length at most r.

Using this result, it is easy to deduce the following corollary, which implies Theorem 1.1

in the case when G is not too dense.

Corollary 1.3. Every r-free digraph G on n vertices satisfies β(G) � 25n2/r2.

Corollary 1.3 will also enable us to answer the following question posed by Yuster [15].

Suppose that a digraph G on n vertices is far from being acyclic, in that β(G) � θn2.

What lengths of directed cycles can we find in G? Yuster [15] showed that for any θ > 0

there exist constants K and η such that for any m ∈ (0, ηn) there is a directed cycle whose

length is between m and m + K . He gave examples showing that one must have K � θ−1/2

and η � 4θ, and posed the problem of determining the correct order of magnitude of

these parameters as a function of θ. The following theorem, which is tight up to constant

factors for both K and η, answers Yuster’s question.

Theorem 1.4. For any 0 < δ, θ < 1, the following holds for n sufficiently large. Suppose G

is a digraph on n vertices with β(G) � θn2. Then, for any 0 � m � (1 − δ)θn there exists

m � � � m + (5 + δ)θ−1/2 such that G contains a directed cycle of length �.

Moreover, we can show that G either contains directed cycles of all lengths between

some constant C and θn − o(n) or is highly structured in the following sense. Say that G is

periodic if the length of every directed cycle in G is divisible by some number p � 2, and

pseudoperiodic if every strong component C is periodic (possibly with differing periods).

A digraph is strong if, for every pair u, v of vertices, there is a path from u to v and

a path from v to u. A strong component of a digraph G is a maximal strong subgraph

of G. A pseudoperiodic digraph G is highly structured, as Theorem 10.5.1 of [3] shows

that a strongly connected digraph with period p is contained in the blow-up of a p-cycle.

Let λ(G) denote the minimum number of edges of G that need to be deleted from G

to obtain a pseudoperiodic digraph. Note that β(G) � λ(G), as every acyclic digraph is

pseudoperiodic.

Theorem 1.5. For any 0 < δ, θ < 1, there exist numbers C and n0 such that the following

holds for n � n0. If G is a digraph on n vertices with λ(G) � θn2, then G contains a directed

cycle of length � for any C � � � (1 − δ)θn.
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The rest of this paper is organized as follows. In the next section we collect two simple

lemmas concerning nearly complete digraphs. We need these lemmas in Section 3 to

prove Theorems 1.1, 1.2 and Corollary 1.3. In Section 4, we discuss Szemerédi’s Regularity

Lemma for digraphs and some of its consequences. We use these results together with

Corollary 1.3 in Section 5 to prove Theorems 1.4 and 1.5. The final section contains some

concluding remarks.

Notation. An oriented graph is a digraph which can be obtained from a simple undirected

graph by orienting its edges. Note that for r � 2, every r-free digraph is an oriented graph,

as two opposite edges on the same pair of vertices form a 2-cycle. We write xy for an edge

oriented from x to y, and say that the edge xy is incident to the vertices x and y. Suppose

G is an oriented graph and S and T are subsets of its vertex set VG. Let EG(S, T ) be the

set of edges in G that go from S to T , so eG(S, T ) = |EG(S, T )|. We drop the subscript G

if there is no danger of confusion. Let G[S] denote the restriction of G to S , in which the

vertex set is S and the edges are all those edges of G with both endpoints in S , and let

G \ S = G[VG \ S] be the restriction of G to the complement of S . We use the notation

0 < α � β to mean that there is a increasing function f(x) so that the following argument

is valid for 0 < α < f(β). Throughout the paper, we systematically omit floor and ceiling

signs whenever they are not crucial, for the sake of clarity of presentation. We also do not

make any serious attempt to optimize absolute constants in our statements and proofs.

2. Basic facts

We start with two simple lemmas concerning oriented graphs that are nearly complete.

First we prove a lemma which shows that such an oriented graph contains a vertex that

has large indegree and large outdegree. Consider an oriented graph G whose vertex set

is partitioned VG = V1 ∪ V2 with |V1| = |V2| = n/2, such that all edges go from V1 to V2,

and the restriction of G to each Vi is regular with indegree and outdegree of every vertex

equal to (1 − 2ε)n/4. The number of edges in G is (1 − ε)n2/2 and no vertex has indegree

and outdegree both more than (1 − 2ε)n/4. This example demonstrates tightness of the

following lemma.

Lemma 2.1. Let G be an oriented graph with n vertices and (1 − ε)n2/2 edges. Then G

contains a vertex with indegree and outdegree at least (1 − 2ε)n/4.

Proof. Suppose for a contradiction that no vertex of G has indegree and outdegree at

least (1 − 2ε)n/4. Delete vertices one by one whose indegree and outdegree in the current

oriented graph are both less than (1 − 2ε)n/4. Let G′ be the oriented graph that remains

and let αn be the number of deleted vertices. Then G′ has (1 − α)n vertices, at least

(1 − ε)n2/2 − αn · 2(1 − 2ε)n/4 edges, and every vertex has either indegree or outdegree

at least (1 − 2ε)n/4, but not both. Partition VG′ = V1 ∪ V2, where V1 consists of those

vertices of G′ that have indegree at least (1 − 2ε)n/4. Since |V1| + |V2| = (1 − α)n, we have

|V1||V2| � (1 − α)2n2/4, and so

e(V1) + e(V2) � (1 − ε)n2/2 − (1 − 2ε)αn2/2 − |V1||V2| � (1 − 2ε + 4αε − α2)n2/4.



Directed Graphs Without Short Cycles 289

We may assume without loss of generality that e(V1)/e(V2) � |V1|/|V2| (the other case can

be treated similarly). In the first case,

e(V1) � |V1|
|V1| + |V2|

(
e(V1) + e(V2)

)
� |V1|

|V1| + |V2|
(
1 − 2ε + 4αε − α2

)n2

4

= |V1|
(
1 − 2ε + 4αε − α2

) n

4(1 − α)
.

Then the average outdegree of a vertex in V1 is at least (1 − 2ε + 4αε − α2) n
4(1−α)

. It is easy

to check that as a function of α this is increasing for α ∈ [0, 1) and is therefore minimized

when α = 0. Therefore the average outdegree of a vertex in V1 is at least (1 − 2ε)n/4. Now

we can choose a vertex in V1 with outdegree at least the average, and then by definition

of V1 it has both indegree and outdegree at least (1 − 2ε)n/4, a contradiction.

We can use this lemma to find in a nearly complete oriented graph a vertex of very

large total degree and reasonably large indegree and outdegree.

Lemma 2.2. Let G be an oriented graph with n � 20 vertices and γ = αn2 non-adjacent

pairs, with α � 1/16. Then G has a vertex v of total degree at least (1 − 4α)n and indegree

and outdegree at least n/10.

Proof. Let V ′ be those vertices of G with total degree at least (1 − 4α)n. Then there

are at least |V \ V ′|4αn/2 non-adjacent pairs with one or both vertices in V \ V ′, so

(n − |V ′|)2αn � γ = αn2, i.e., |V ′| � n/2. Write |V ′| = ωn. The number of edges in the

restriction G[V ′] of G to V ′ is at least(
|V ′|
2

)
−

(
γ − |V \ V ′|4αn/2

)
=

(
1 − (4ω − 2)α/ω2 − 1/|V ′|

)
|V ′|2/2.

Applying Lemma 2.1 to G[V ′], with ε = (4ω − 2)α/ω2 + 1/|V ′|, we find a vertex with

indegree and outdegree at least

(1 − 2ε)|V ′|/4 =
(
1/4 − (2ω − 1)α/ω2

)
ωn − 1/2 � n/8 − 1/2 � n/10,

where we use the fact that, for fixed α � 1/16, the minimum of f(ω) = ω/4 + (1 − 2ω)α/ω

for ω ∈ [1/2, 1] occurs at ω = 1/2. Indeed, for ω � 1/2, f′(ω) = 1/4 − α/ω2 � 0 and f(ω)

is an increasing function.

3. Finding short cycles

We will prove Theorem 1.1 by proving that an r-free digraph cannot have large edge

expansion. Recall that the edge expansion μ(S) of a set S of vertices of a digraph G with

cardinality |S | � |VG|/2 is defined to be

1

|S | min {e(S, VG \ S), e(VG \ S, S)},
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and the edge expansion μ = μ(G) of G is the minimum of μ(S) over all subsets S ⊂ VG

with |S | � |VG|/2.

Consider a digraph G on n vertices and any vertex v of G. We say that a vertex w

has outdistance i from v if the length of the shortest directed path from v to w is i.

(Indistance is similarly defined.) Let Ni be the vertices at outdistance exactly i from v and

let Mi = ∪j�iNi be the vertices at outdistance at most i from v. It follows from these

definitions that any edge from Mi to VG \ Mi is in fact an edge from Ni to Ni+1. We

deduce that

μ(Mi)|Mi| � e(Mi, VG \ Mi) = e(Ni,Ni+1) � |Ni||Ni+1|.

Then the arithmetic–geometric mean inequality gives

|Ni| + |Ni+1| � 2
√

μ(Mi)|Mi|. (3.1)

The first step of the proof of Theorem 1.1 is Theorem 1.2, which shows that large

edge expansion implies short cycles, and moreover we can find a short cycle through any

specified vertex.

Proof of Theorem 1.2. Let v be any vertex of G. As before, let Ni be the vertices of

outdistance exactly i from v and let Mi be the vertices of outdistance at most i from v. Also,

let ai = (|Ni| + |Ni+1|)/μ and bi =
∑

1�j�i aj . Then bi−1μ = 2|Mi| − |N1| − |Ni| � 2|Mi|, so

dividing both sides of inequality (3.1) by μ and using μ(Mi) � μ gives

ai = (|Ni| + |Ni+1|)/μ � 2

√
μ(Mi)

μ

|Mi|
μ

� 2
√

|Mi|/μ �
√

2bi−1.

Adding bi−1 to both sides, we have bi � bi−1 +
√

2bi−1. Note that b1 = a1 � |N1|/μ � 1,

as otherwise |N1| < μ, and taking S = {v} we have μ(S) � |N1| < μ, contradicting the

definition of μ. Now we prove by induction that bi � 2
5
i2. This is easy to check for i < 6

using a calculator and b1 � 1. For i � 6, the induction step is

bi � bi−1 +
√

2bi−1 � 2

5
(i − 1)2 +

√
4/5(i − 1) � 2

5
i2.

Applying this with i = �r/2�, we have |Mi| � μbi−1/2 � μ(i − 1)2/5 > n/2, since μ �
25n/r2 and r � 9. The same argument shows that there are more than n/2 vertices

at indistance at most i from v. Therefore there is a vertex at indistance and outdistance

at most i from v, which gives a directed cycle through v of length at most r.

Next we deduce Corollary 1.3, which implies our main theorem in the case when G is

not almost complete.

Proof of Corollary 1.3. We suppose that G is r-free and prove that β(G) � 25n2/r2.

First we deal with the case r � 10. In any linear ordering of the vertices of G, deleting

the forward edges or the backwards edges makes the digraph acyclic. Since the number

of edges in G is
(
n
2

)
− γ(G), we have β(G) � 1

2
(
(
n
2

)
− γ(G)) < n2/4. Hence, β(G) < 25n2/r2

if r � 10.
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Next, for r � 11 we use induction on n. Note that if n � r then G is acyclic and β(G) = 0,

so we can assume that n > r. By Theorem 1.2 and definition of μ we can find a set S with

|S | = s � n/2 and μ(S) = μ < 25n/r2. Note that a digraph formed by taking the disjoint

union of two acyclic digraphs and adding some edges from the first acyclic digraph to the

second acyclic digraph is acyclic. Therefore, using the inequality n � 2(n − s), we obtain

β(G) � β(G[S]) + β(G \ S) + μs � 25s2/r2 + 25(n − s)2/r2 + 25n/r2 · s � 25n2/r2.

We need one more lemma before the proof of the main theorem, showing that an r-free

oriented graph has a linear-sized subset S with small edge expansion.

Lemma 3.1. Suppose r � 15, 0 � α � 1/16 and G is an r-free oriented graph on n � 20

vertices with γ = αn2 non-adjacent pairs. Then there exists S ⊂ V (G) with n/10 � |S | � n/2

and μ(S) < 1500α2n/r2.

Proof. By Lemma 2.2 there is a vertex v of total degree at least (1 − 4α)n and indegree

and outdegree at least n/10. As before, let Ni be the vertices of outdistance exactly i

from v and let Mi be the vertices of outdistance at most i from v. Since G is r-free

there is no vertex at indistance and outdistance at most �r/2� from v, so we can assume

without loss of generality that |Mi| � n/2 for all i � �r/2�. Also, by choice of v we have

|Mi| � |N1| � n/10, so we are done if we have μ(Mi) < 1500α2n/r2 for some i � �r/2�.
Suppose for a contradiction that this is not the case. Then equation (3.1) gives

|Ni| + |Ni+1| � 2
√

1500α2n/r2 · n/10 > 24αn/r.

Let s =  r−5
4

� � r/6, so 2s + 1 � r/2. The above inequality gives

|M2s+1| − |N1| = (|N2| + |N3|) + · · · + (|N2s| + |N2s+1|) > s · 24αn/r � 4αn.

Let I1 denote the inneighbourhood of v. By choice of v we have |I1| + |N1| � (1 − 4α)n,

and so |I1| + |M2s+1| > n, and hence there is a vertex in both I1 and M1+2s. This gives a

cycle of length at most 2 + 2s � r, contradiction.

Proof of Theorem 1.1. We use induction on n to prove that every r-free digraph G on n

vertices satisfies

β(G) � 800r−2(γ(G) − γ(G)2/n2). (3.2)

Note that the right-hand side of (3.2) is at least 400γ(G)/r2 and at most 800γ(G)/r2 as

0 � γ(G) �
(
n
2

)
� n2/2. We can assume that γ(G) < n2/16, since otherwise we can apply

Corollary 1.3 to get β(G) � 25n2/r2 � 400γ(G)/r2. We can also assume that r � 21, as

otherwise r � 20, and we can use the result of Chudnovsky, Seymour and Sullivan [7] that

3-free digraphs G satisfy β(G) � γ(G) � 400γ(G)/r2. Then we can assume that n � 22, as

otherwise n � r, G is acyclic, and β(G) = 0.

Let S be the set given by Lemma 3.1, G1 = G[S], G2 = G \ S and ni = |V (Gi)|, γ = γ(G),

γi = γ(Gi) for i = 1, 2, so that n1 + n2 = n and γ+ := γ1 + γ2 � γ. By choice of S we have
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μ(S)|S | < 1600γ2n1/n
3r2. By deleting all edges from S to VG \ S or all edges from VG \ S

to S , we get by the induction hypothesis that

β(G) � β(G1) + β(G2) + μ(S)|S | � 800r−2(γ1 − γ2
1/n

2
1 + γ2 − γ2

2/n
2
2 + 2γ2n1/n

3).

Now the Cauchy–Schwarz inequality gives

γ2
+ = (n1 · γ1/n1 + n2 · γ2/n2)

2 � (n2
1 + n2

2)(γ
2
1/n

2
1 + γ2

2/n
2
2),

so we have

β(G) � 800r−2(γ+ − γ2
+/(n

2
1 + n2

2) + 2γ2n1/n
3) � 800r−2(γ − γ2/(n2

1 + n2
2) + 2γ2n1/n

3).

Here we used γ+ � γ < n2/16 and n2
1 + n2

2 � 1
2
(n1 + n2)

2 = n2/2, which give the inequality

γ − γ2

n2
1 + n2

2

− γ+ +
γ2
+

n2
1 + n2

2

= (γ − γ+)

(
1 − γ+ + γ

n2
1 + n2

2

)
� 0.

Now the desired bound on β(G) follows from the inequality γ2/(n2
1 + n2

2) − 2γ2n1/n
3 �

γ2/n2. Set n1 = tn, where 1/10 � t � 1/2 by choice of S . It is required to show that f(t) =
1

1+2t
− t2 − (1 − t)2 � 0. By computing f′(t) = 2 − 4t − 2

(1+2t)2
and f′′(t) = 8

(1+2t)3
− 4, we

see that for t � 0, f′′ is a decreasing function and f′′(0) > 0 > f′′(1/2). Hence f′ increases

from f′(0) = 0 to a maximum and then decreases to f′(1/2) < 0, being first non-negative

until some t0 < 1/2 and then negative afterwards. Therefore, f increases from f(0) = 0

to a maximum f(t0) and then decreases to f(1/2) = 0, staying non-negative in the whole

interval. This completes the proof.

4. Regularity

For our second topic in the paper we will use the machinery of Szemerédi’s Regularity

Lemma, which we will now describe. We will be quite brief, so for more details and

motivation we refer the reader to the survey [9]. First we give some definitions. The density

of a bipartite graph G = (A,B) with vertex classes A and B is defined to be dG(A,B) :=
eG(A,B)
|A||B| . We write d(A,B) if this is unambiguous. We also write dG(x), or simply d(x), for

the degree in G of a vertex x. Given ε > 0, we say that G is ε-regular if, for all subsets

X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|, we have that |d(X,Y ) − d(A,B)| < ε.

Given d ∈ [0, 1], we say that G is (ε, d)-super-regular if it is ε-regular, and furthermore

dG(a) � (d − ε)|B| for all a ∈ A and dG(b) � (d − ε)|A| for all b ∈ B. If A and B are disjoint

vertex subsets of a digraph G, we say that the pair (A,B)G is ε-regular if the bipartite

graph with vertex sets A and B and edge set EG(A,B) is ε-regular. Similarly, we say that

(A,B)G is (ε, d)-super-regular if the bipartite graph with vertex sets A and B and edge set

EG(A,B) is (ε, d)-super-regular.

The Diregularity Lemma is a version of the Regularity Lemma for digraphs due to

Alon and Shapira [2] (with a similar proof to the undirected version of Szemerédi).

Lemma 4.1 (Diregularity Lemma). For every ε ∈ (0, 1) and M ′ > 0 there exist numbers

M and n0 such that, if G is a digraph on n � n0 vertices, then there is a partition of the

vertices of G into V0, V1, . . . , Vk for some M ′ � k � M such that |V0| � εn, |V1| = · · · = |Vk|,
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and for all at but at most εk2 ordered pairs 1 � i < j � k the underlying graph of EG(Vi, Vj)

is ε-regular.

Given 0 � d � 1 we define the reduced digraph R with parameters (ε, d) to have vertex

set [k] = {1, . . . , k} and an edge ij if and only if the underlying graph of EG(Vi, Vj) is

ε-regular with density at least d. Note that if ε and d are small, M ′ is large, and G is

a dense digraph, then most edges of G belong to pairs EG(Vi, Vj) for some edge ij ∈ R.

Indeed, the exceptions are at most εn2 edges incident to V0, at most n2/M ′ edges lying

within some Vi, at most εn2 edges belonging to pairs EG(Vi, Vj) that are not ε-regular,

and at most dn2 edges belonging to EG(Vi, Vj) of density less than d: this gives a total less

than 2dn2 if, say, 1/M ′ < ε � d. We also need the following path lemma.

Lemma 4.2. For every 0 < d < 1 there exists ε0 > 0 such that the following holds for 0 <

ε < ε0. Let p, n be positive integers with p � 4, let U1, . . . , Up be pairwise disjoint sets of size

n, and suppose G is a digraph on U1 ∪ · · · ∪ Up such that each (Ui,Ui+1)G is (ε, d)-super-

regular. (Here, Up+1 := U1.) Take any x ∈ U1 and any y ∈ Up. Then, for any 1 � � � n

there is a path P in G of length p�, starting with x and ending with y, in which, for every

vertex v ∈ Ui, the successor of v on P lies in Ui+1.

This lemma can be easily deduced from the Blow-up Lemma of Komlós, Sarközy and

Szemerédi (despite p being arbitrary), as shown in [6]. For the sake of completeness and

the convenience of the reader we include the proof here. In fact, for our purposes it is

sufficient to apply the result with 1 � � � (1 − ε)n; in that case it is not too hard to prove

it directly with a random embedding procedure, but we omit the details. Note also that

by applying the lemma when yx is an edge we can obtain a directed cycle of length p�

for any 1 � � � n.

The requirement that p � 4 in Lemma 4.2 is necessary. Indeed, if p = 2 or p = 3, there

may not be a path of length p from x to y. It is not difficult to show using Lemma 4.2

that, even in this case, we can find a path from x to y of length p� for all 2 � � � n.

It is even easier to show that we can greedily find such paths for all 2 � � � dn/2, and

since this will be sufficient for our purposes, we do so now. In the following argument, if

i does not satisfy 1 � i � p, then we define Ui := Uj with 1 � j � p and i ≡ j (mod p).

Since each pair (Ui,Ui+1)G is (ε, d)-super-regular, each vertex in Ui has at least (d − ε)n

outneighbours in Ui+1, and we can greedily find a path P ′ = v1 · · · vp�−3 with starting point

v1 = x and with each vi in Ui, as each such path only contains at most � � dn/2 vertices in

each Ui. Let X be the outneighbours of vp�−3 in Up−2 \ P ′ and let Y be the inneighbours

of y in Up−1 \ P ′, so |X| � (d − ε)n − � � ( d
2

− ε)n � εn and similarly |Y | � εn. Since the

pair (Up−2, Up−1)G is (ε, d)-super-regular, then there is at least one edge (vp�−2, vp�−1) from

X to Y and v1 · · · vp� for which vp� = y is the desired path P from x to y of length p�.

We start the proof of Lemma 4.2 by recalling the Blow-up Lemma of Komlós, Sárközy

and Szemerédi [8].

Lemma 4.3. Given a graph R of order k and parameters d,Δ > 0, there exists an η0 =

η0(d,Δ, k) > 0 such that whenever 0 < η � η0, the following holds. Let V1, . . . , Vk be disjoint
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sets and let R∗ be the graph on V1 ∪ · · · ∪ Vk obtained by replacing each edge ij of R by the

complete bipartite graph between Vi and Vj . Let G be a spanning subgraph of R∗ such that,

for each edge ij of R, the bipartite subgraph of G consisting of all edges between Vi and Vj

is (η, d)-super-regular. Then G contains a copy of every subgraph H of R∗ with maximum

degree Δ(H) � Δ. Moreover, this copy of H in G maps the vertices of H to the same sets

Vi as the copy of H in R∗, i.e., if h ∈ V (H) is mapped to Vi by the copy of H in R∗, then it

is also mapped to Vi by the copy of H in G.

From the Blow-up Lemma, we can quickly deduce the following lemma.

Lemma 4.4. For every 0 < d < 1 there exists ε0 > 0 such that the following holds for 0 <

ε < ε0. Suppose p � 4, let U1, . . . , Up be pairwise disjoint sets of size n, for some n, and

suppose G is a graph on U1 ∪ · · · ∪ Up such that each pair (Ui,Ui+1), 1 � i � p − 1 is (ε, d)-

super-regular. Let f : U1 → Up be any bijective map. Then there are n vertex-disjoint paths

from U1 to Up such that, for every x ∈ U1, the path starting from x ends at f(x) ∈ Up.

Proof. Choose a sequence 1 = i1 < i2 < · · · < it = p such that 3 � ij − ij−1 � 5 for 2 �
j � t. Let fj : Uij−1

→ Uij be any bijective maps with f = ft ◦ · · · ◦ f2. Let Gj be the

graph obtained from the restriction of G to Uij−1
∪ Uij−1+1 ∪ · · · ∪ Uij by identifying each

vertex x ∈ Uij−1
with fj(x) ∈ Uij . By Lemma 4.3 we can find n vertex-disjoint cycles

in Gj of length ij − ij−1, provided that ε0 < η(d, 2, ij − ij−1), which only depends on d

as ij − ij−1 � 5. These n cycles correspond to n vertex-disjoint paths in G from Uij−1

to Uij , such that, for every x ∈ Uij−1
, the path starting from x ends at fj(x) ∈ Uij . By

concatenating these paths, we get the desired n vertex-disjoint paths from U1 to Up so

that, for every x ∈ U1, the path starting from x ends at f(x) ∈ Up.

Now we give the proof of Lemma 4.2.

Proof of Lemma 4.2. Suppose G is a digraph on U1 ∪ · · · ∪ Up, where |Ui| = n, 1 � i � p,

such that each (Ui,Ui+1)G is (ε, d)-super-regular, with ε < ε0 given by Lemma 4.4. Suppose

also x ∈ U1, y ∈ Up and 1 � � � n. We need to find a path P of length p� from x to y.

First we apply the Blow-up Lemma to find a perfect matching from Up \ y to U1 \ x. We

label U1 as {x1, . . . , xn} and Up as {y1, . . . , yn} with x1 = x and y1 = y, so that the matching

edges go from yi to xi for 2 � i � n. Then we apply Lemma 4.4 to find n vertex-disjoint

paths from U1 to Up so that the path Pi starting at xi ends at yi+1 for 1 � i � � − 1 and

the path P� starting at x� ends at y1 = y (the other paths can be arbitrary). Now our

required path P is x1P1y2x2P2y3 · · · x�P�y1.

We finish the section with two simple lemmas concerning super-regularity. The first

lemma tells us that large induced subgraphs of super-regular bipartite graphs are also

super-regular.
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Lemma 4.5. Let G be a bipartite graph with parts A and B that is (ε, d)-super-regular,

ε < 1/2 � α < 1, A′ ⊂ A and B′ ⊂ B with |A′|/|A|, |B′|/|B| � α, and let G′ be the induced

subgraph of G with parts A′ and B′. Then G′ is (2ε, d − 1 + α)-super-regular.

Proof. Super-regularity of G implies that each vertex a ∈ A′ ⊂ A satisfies dG(a) � (d −
ε)|B|. Hence,

dG′ (a) � dG(a) − (|B| − |B′|) � (d − ε)|B| − (|B| − |B′|)
� (d − (1 − α) − ε)|B| � (d − (1 − α) − ε)|B′|.

Likewise, each vertex b ∈ B′ satisfies dG′ (b) � (d − (1 − α) − ε)|B′|.
Let X ⊂ A′ and Y ⊂ B′ with |X| > 2ε|A′| and |Y | > 2ε|B′|. Since 1/2 � α � |A′|/|A|,

|B′|/|B| we have |X| > ε|A| and |Y | > ε|B|. Now the pair (A,B)G is ε-regular, so |d(X,Y ) −
d(A,B)| < ε, and the triangle inequality gives

|d(X,Y ) − d(A′, B′)| � |d(X,Y ) − d(A,B)| + |d(A,B) − d(A′, B′)| < 2ε.

Hence, G′ is (2ε, d − 1 + α)-super-regular.

For any bounded degree subgraph H of a reduced graph R, the next lemma allows us

to make the pairs (Vi, Vj)G corresponding to edges ij of H super-regular by deleting a few

vertices from each Vi.

Lemma 4.6. Suppose R is the reduced digraph with parameters (ε, d) of a Szemerédi par-

tition VG = V0 ∪ V1 ∪ · · · ∪ Vk of a digraph G and H is a subdigraph of R with maximum

total degree at most Δ, where Δ � 1
2ε

. Then, for each i, 1 � i � k, there exists Ui ⊂ Vi with

|Ui| = (1 − Δε)|Vi| such that, for each edge ij of H , the pair (Ui,Uj)G is (2ε, d − Δε)-super-

regular.

Proof. For each edge ij of H , delete all vertices in Vi with fewer than (d − ε)|Vj |
outneighbours in Vj and all vertices in Vj with fewer than (d − ε)|Vi| inneighbours in

Vi. For each edge ij of H , fewer than ε|Vi| elements are deleted from Vi and fewer than

ε|Vj | elements are deleted from Vj . Indeed, if the subset S ⊂ Vi of vertices with fewer

than (d − ε)|Vj | outneighbours in Vj has cardinality |S | � ε|Vi|, then dG(S, Vj) < d − ε,

in contradiction to ij being an edge of the reduced graph R. Likewise, at most ε|Vj |
elements are deleted from Vj for each edge ij. Hence, in total, at most Δε|Vi| vertices are

deleted from each Vi. Delete further vertices from each Vi until the resulting subset Ui has

cardinality (1 − Δε)|Vi|. For each edge ij of H , each vertex in Ui has at least (d − ε)|Vj |
outneighbours in Vj and hence at least

(d − ε)|Vj | − (|Vj | − |Uj |) = (d − (Δ + 1)ε)|Vj | � (d − (Δ + 1)ε)|Uj |

outneighbours in Uj . Similarly, for each edge ij of H , each vertex in Vj has at least

(d − (Δ + 1)ε)|Ui| inneighbours in Ui. Letting α = |Ui|/|Vi| = 1 − Δε, we have α � 1/2.

For each edge ij of H , since (Vi, Vj)G is ε-regular, Lemma 4.5 implies that (Ui,Uj)G is

2ε-regular and hence is (2ε, d − Δε)-super-regular.
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5. Cycles of almost given length

Now we will apply the Regularity Lemma and Corollary 1.3 to answer the question of

Yuster mentioned in the Introduction.

Proof of Theorem 1.4. Choose parameters 0 < 1/n0 � 1/M � ε � d � δ, θ and M ′ =

ε−1. Suppose G is a digraph on n � n0 vertices with β(G) � θn2. Note that θ < 1/2 as in

any linear ordering of the vertices of G, deleting all the forward edges or all the backward

edges yields an acyclic digraph. Apply Lemma 4.1 to obtain a partition of the vertices

of G into V0, V1, . . . , Vk for some M ′ � k � M and let R be the reduced digraph on [k]

with parameters (ε, d). As noted in the previous section, there are at most 2dn2 edges

of G that do not belong to EG(Vi, Vj) for some edge ij ∈ R. We can make G acyclic by

deleting these edges and at most β(R)(n/k)2 edges corresponding to edges of R, so we

must have β(R) � (θ − 2d)k2. Let S1, . . . , Sg be the strong components of R and suppose

β(Si) = θi|Si|2. Then

g∑
i=1

|Si| = k and

g∑
i=1

θi|Si|2 =

g∑
i=1

β(Si) = β(R) � (θ − 2d)k2.

It follows that we can choose some Sj with θj |Sj | � (θ − 2d)k (otherwise we would have∑g
i=1 θi|Si|2 < (θ − 2d)k

∑
|Si| = (θ − 2d)k2).

Next we restrict our attention to Sj and repeatedly delete any vertex with outdegree less

than θj |Sj | in Sj . We must arrive at some digraph R0 on k0 � |Sj | vertices with minimum

outdegree at least θj |Sj | � (θ − 2d)k and β(R0) � θj |Sj |k0. Indeed, otherwise we could

make Sj acyclic by deleting fewer than θj |Sj |k0 + (|Sj | − k0)θj |Sj | = θj |Sj |2 edges, which is

impossible. Let C = c1 · · · cp be a directed cycle in R0 of length p � (θ − 2d)k. It can be

found by considering a longest directed path and using the fact that the end of the path

has at least (θ − 2d)k outneighbours, which all lie on the path. Recall that

β(Sj) = θj |Sj |2 � (θ − 2d)k|Sj | � (θ − 2d)|Sj |2.

By Corollary 1.3, if Sj is r-free, then (θ − 2d)|Sj |2 � β(Sj) � 25|Sj |2/r2, so

r � 5(θ − 2d)−1/2 < (5 + δ)θ−1/2,

where we use d � δ, θ. Therefore, there is a directed cycle C ′ = c′
1 · · · c′

r in Sj of length r

for some 2 � r � (5 + δ)θ−1/2 (which may intersect C in an arbitrary fashion). Also, by

strong connectivity of Sj we can find a directed path Q1 from cp to c′
r and a directed path

Q2 from c′
r to c1. Suppose that the lengths of these paths are q1 and q2, respectively. We

note that q1, q2 � k.

Let H denote the digraph with vertex set VSj and edge set EC ∪ EC ′ ∪ EQ1
∪ EQ2

. Note

that the maximum total degree of H is at most 8, as each path and cycle has maximum

total degree at most 2. By Lemma 4.6, for each vertex i of Sj there exists Ui ⊂ Vi with

|Ui| = (1 − 8ε)|Vi| such that, for each edge ij of H , the pair (Ui,Uj)G is (2ε, d − 8ε)-super-

regular.

Suppose 0 � m � (1 − δ)θn is given. We give separate arguments depending on whether

the cycles we seek in G are short or long. First consider the case m < 3k. Choose �
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divisible by r with m � � < m + r. Then we can find a cycle of length � within the classes

Ui corresponding to C ′, as noted after Lemma 4.2. (This argument holds as long as r � 4

or � � 2r. If otherwise, then � = r ∈ {2, 3} and we can find a cycle of length 2r in G. This

2r-cycle completes this case as m � � = r � 2r � 6 < 5θ−1/2, where we use θ < 1/2.) Now

suppose m � 3k and write m = q1 + q2 + sp + t, with 0 � t < p and 1 � s < (1 − δ/2)n/k

(since p � (θ − 2d)k). The integer t is indeed non-negative since q1, q2, p � k and m � 3k.

We can choose � = q1 + q2 + sp + u, where u < p + r is a multiple of r and m � � < m + r.

Say that a path P = v1 · · · ve in G corresponds to a walk W = w1 · · ·we in R if every edge

vivi+1, 1 � i � e − 1 of P goes from Uwi
to Uwi+1

. For ij an edge of H , the pair (Ui,Uj)G
is (2ε, d − 8ε)-super-regular, so any vertex in Ui has at least (d − 10ε)|Uj | outneighbours

in Uj . Therefore, we can greedily find:

(1) a directed path P1 in G corresponding to Q1 in R, starting at some y ∈ Ucp and ending

at some z ∈ Uc′
r
,

(2) a directed path P2 in G corresponding to u/r copies of C ′ in R, starting at z and

ending at some other z′ ∈ Uc′
r
, and avoiding P1,

(3) a directed path P3 in G corresponding to Q2 in R, starting at z′ and ending at some

x ∈ Uc1
, avoiding P1 ∪ P2.

Let P be the path P1P2P3. Note that P has at most u/r + 2 vertices in each Ui. As we

next find a path from x to y disjoint from P \ {x, y}, we delete the vertices of P \ {x, y}
and also at most u/r + 2 vertices from each Ui so that they all still have the same size,

letting U ′
i be the resulting subset of Ui. Now

|U ′
i | � |Ui| − (u/r + 2) � (1 − 8ε)|Vi| − (u/r + 2) > (1 − d/2)|Vi| > (1 − δ/2)(n/k) = s.

This also gives |U ′
i |/|Ui| > 1 − d/2 for each vertex i of Sj . For each edge ij of H ,

(Ui,Uj) is (2ε, d − 8ε)-super-regular. Hence, Lemma 4.5 with α = 1 − d/2 implies that

(U ′
i , U

′
j) is (4ε, d/4) super-regular, as d − 8ε − d/2 = d/2 − 8ε � d/4. Therefore, we can

apply Lemma 4.2 with Ui = U ′
ci
, 1 � i � p to obtain a directed path from x to y of length

sp. Combining this with the path P already found from y to x gives a directed cycle of

length �, as required.

For the proof of Theorem 1.5 we need the following two facts from elementary number

theory.

Chinese Remainder Theorem. Suppose x1, . . . , xt are integers with greatest common factor

1. Then any integer n can be expressed as n = a1x1 + · · · + atxt with integers a1, . . . , at.

Sylvester’s ‘coin problem’. Suppose x and y are coprime positive integers. Then every

integer n � (x − 1)(y − 1) can be represented as n = ax + by with a, b non-negative

integers.

Proof of Theorem 1.5. It is straightforward to see that λ (similarly to β) is additive on

strong components, i.e., if a digraph G has strong components T1, . . . , Tg , then λ(G) =∑g
i=1 λ(Ti). Also, λ(G) � β(G), since every acyclic digraph is pseudoperiodic. Therefore we

start as in the proof of Theorem 1.4 by applying Lemma 4.1 to obtain a partition of the
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vertices of G into V0, V1, . . . , Vk for some M ′ � k � M and letting R be the reduced digraph

on [k] with parameters (ε, d). As before, G has at most 2dn2 edges not corresponding to

edges of the reduced digraph R, so we must have λ(R) � (θ − 2d)k2. Then, as in the proof

of Theorem 1.4, we find a strong component Sj of R with β(Sj) � λ(Sj) = θj |Sj |2 and

θj |Sj | � (θ − 2d)k, directed cycles C = c1 · · · cp and C ′ = c′
1 · · · c′

r in Sj with p � (θ − 2d)k

and 2 � r � (5 + δ)θ−1/2, a directed path Q1 from cp to c′
r of length q1 � k and a directed

path Q2 from c′
r to c1 of length q2 � k.

Next we show how to construct a closed walk W in Sj starting and ending at c′
r with

length l(W ) = w coprime to r. Since Sj is not f-periodic for any f � 2, for each prime

factor f of r there is a directed cycle with length not divisible by f. Therefore we can

choose cycles D1, . . . , Dr so that l(C ′), l(D1), . . . , l(Dr) have greatest common factor 1. Fix

vertices di ∈ Di, 1 � i � r and choose the following directed paths in Sj (which exist by

strong connectivity): Q′
1 from c′

r to d1 and Q′′
1 from d1 to c′

r , Q
′
i from di−1 to di and Q′′

i from

di to di−1 for 2 � i � r. Let W ′ be the walk Q′
1 · · ·Q′

rQ
′′
r · · ·Q′′

1. By the Chinese Remainder

Theorem we can find integers a1, . . . , ar such that l(W ′) + a1l(D1) + · · · + arl(Dr) ≡ 1 mod

r. By reducing mod r we can assume that 0 � ai � r − 1 for 1 � i � r. We let W be the

walk obtained from W ′ by including ai copies of Di when di is first visited. That is, we

obtain W by walking along W ′, and, for 1 � i � r, when we first reach di, before we

continue onto the next vertex, we first walk ai times around the cycle Di. Then l(W ) ≡ 1

mod r is coprime to r. The walk W visits any vertex at most 2r2 times. Indeed, each

of the 2r directed paths Q′
i and Q′′

i visit each vertex at most once, and each time we go

around cycle Di adds at most one new visit to any vertex, so W visits each vertex at

most 2r + a1 + · · · + ar � 2r + r2 � 2r2 times. As Sj has at most k vertices and visits each

vertex at most 2r2 times, w = l(W ) � 2r2k.

Let H be the digraph with vertex set VSj and edge set EC ∪ EC ′ ∪ EW . Since W visits

any vertex at most 2r2 times, each vertex in W is in at most 4r2 edges of H . Therefore,

H has maximum total degree at most 4 + 4r2 � 8r2. By Lemma 4.6, for each vertex i of

Sj there exists Ui ⊂ Vi with |Ui| = (1 − 8r2ε)|Vi| such that, for each edge ij of H , the pair

(Ui,Uj)G is (2ε, d − 8r2ε)-super-regular.

Fix any � with 500θ−3/2M � � � (1 − δ)θn. We will show that G contains a directed

cycle of length �. As 2 � r < 6θ−1/2, p, q1, q2 � k � M and w � 2r2k, we have

� � 500θ−3/2M � 3k + 2r3k � q1 + q2 + p + rw.

Therefore, we can write � = q1 + q2 + sp + u, with rw � u < rw + p and 1 � s < (1 −
δ/2)n/k (the last inequality uses p � (θ − 2d)k). Since r, w are coprime, by the ‘coin

problem’ result of Sylvester we can write u = ar + bw with a, b non-negative integers. We

have a � u/r < w + p � 2r2k + k and b � u/w < r + p � 2k. For ij an edge of H , the pair

(Ui,Uj)G is (2ε, d − 8r2ε)-super-regular, so any vertex in Ui has at least (d − 10r2ε)|Uj |
outneighbours in Uj . Therefore, we can greedily find:

(1) a directed path P1 in G corresponding to Q1 in R, starting at some y ∈ Ucp and ending

at some z ∈ Uc′
r
,

(2) a directed path P2 in G corresponding to a copies of C ′ in R, starting at z and ending

at some other z′ ∈ Uc′
r
, and avoiding P1,
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(3) a directed path P3 in G corresponding to b copies of W in R, starting at z′ and ending

at some other z′′ ∈ Uc′
r
, and avoiding P1 ∪ P2,

(4) a directed path P4 in G corresponding to Q2 in R, starting at z′′ and ending at some

x ∈ Uc1
, avoiding P1 ∪ P2 ∪ P3.

Let P be the path P1P2P3P4. As we walk along path P , for each i, the number of times

Ui is visited is at most once for P1, at most a times for P2, at most b · 2r2 times for P3,

and at most once for P4. Therefore, for each i,

|P ∩ Ui| � 1 + a + b · 2r2 + 1 � 1 + 2r2k + k + 2k · 2r2 + 1 � 10r2k.

We delete the vertices of P \ {x, y} as we next find a directed path from x to y that

is disjoint from P \ {x, y}. We further delete at most 10r2k vertices from each Ui so that

they all still have the same size, and let U ′
i be the resulting subset of Ui. Now

|U ′
i | � |Ui| − 10r2k = (1 − 8r2ε)|Vi| − 10r2k > (1 − d/2)|Vi| > (1 − δ/2)(n/k) = s.

Then |U ′
i |/|Ui| > (1 − d/2), and Lemma 4.5 with α = 1 − d/2 implies that each pair

(U ′
i , U

′
j)G with ij an edge of H is (4ε, d/4)-super-regular, as d − 8r2ε − d/2 � d/4. Therefore

we can apply Lemma 4.2 with Ui = U ′
ci
, 1 � i � p to obtain a directed path from x to y

of length sp. Combining this with the path P already found from y to x gives a directed

cycle of length �, as required.

6. Concluding remarks

(a) We have not presented the best possible constants that come from our methods,

opting to give reasonable constants that can be obtained with relatively clean proofs.

With more work one can replace the constant 25 in Theorem 1.2, and so in Corollary 1.3,

by a constant that approaches 8 as r becomes large. However, Sullivan [13] conjectures

that the correct constant is 2, and it would be interesting to close this gap. The problems

of estimating β and μ are roughly equivalent: we used the bound on μ from Theorem 1.2

to establish the bound on β in Theorem 1.3. Conversely, if we delete β(G) edges from G

to make it acyclic, order the vertices so that all remaining edges point in one direction

and take S to be the first n/2 vertices in the ordering, we see that

μ(G)(n/2) = μ(G)|S | � μ(S)|S | = min(e(S, VG \ S), e(VG \ S, S)) � β(G),

so a bound on β gives a bound on μ. However, these arguments may be too crude to give

the correct constants.

(b) Applying this better constant 8 (mentioned above) in Corollary 1.3, we can replace

the constant 5 by 3 (say) in Theorem 1.4, so that the parameter K in Yuster’s question

(the length of the interval where we look for a cycle length) is determined up to a factor

of 3. The parameter η (the maximum length of a cycle as a proportion of n) is determined

up to a factor of about 4 if the question is posed for oriented graphs, or a factor of 2 if

the question is posed for digraphs. Indeed, Yuster shows that η � 4θ for oriented graphs

by taking 1/4θ copies of a random regular tournament on 4θn vertices; for digraphs one

can show η � 2θ by taking 1/2θ copies of the complete digraph on 2θn vertices. We can
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find longer cycles in a periodic digraph G on n vertices with β(G) � θn2, but θn is still the

correct bound up to a constant of about 2, as may be seen from the blow-up of a 2-cycle

with parts of size (1 + 2θ)θn and (1 − (1 + 2θ)θ)n.

(c) If a digraph G is far from being acyclic but we can obtain a pseudoperiodic digraph

G′ by deleting few edges of G, then some strong component of G′ has small period. More

precisely, if β(G) � θn2 and we can obtain a pseudoperiodic G′ by deleting at most δn2

edges from G, then some strong component of G′ must have period at most (θ − δ)−1/2.

To see this, note that β(G′) � (θ − δ)n2, so some strong component H of G′ satisfies

β(H) � (θ − δ)m2, where m = |VH |. Since G′ is pseudoperiodic, H is p-periodic, for some

p, so is contained in the blow-up of a p-cycle, i.e., the vertex set of H can be partitioned as

V (H) = V1 ∪ · · · ∪ Vp, so that every edge goes from Vi to Vi+1, for some 1 � i � p, writing

Vp+1 = V1. (For a proof see Theorem 10.5.1 in [3].) Write ti = |Vi|/m. Then there is some

1 � i � p for which titi+1 � 1/p2. This can be seen from the arithmetic–geometric mean

inequality: we have

1 =

p∑
i=1

ti � p

p∏
i=1

t
1/p
i = p

p∏
i=1

(titi+1)
1/2p,

so

p∏
i=1

titi+1 � (1/p2)p.

It follows that β(H) � (m/p)2, i.e., p � (θ − δ)−1/2, as required.

(d) The dependence of C on θ which we get in Theorem 1.5 is quite poor, since the proof

uses Szemerédi’s Regularity Lemma and the value of C depends on the number of parts

in the regular partition. It would be interesting to determine the right dependence of C on

θ. One should note that we obtained good constants in the proof of Theorem 1.4 despite

using the Regularity Lemma, so it may not be necessary to avoid its use.

References

[1] Alon, N. (2006) Ranking tournaments. SIAM J. Discrete Math. 20 137–142.

[2] Alon, N. and Shapira, A. (2004) Testing subgraphs in directed graphs. J. Comput. System Sci.

69 354–382.

[3] Bang-Jensen, J. and Gutin, G. (2001) Digraphs: Theory, Algorithms and Applications, Springer.
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