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Abstract

The Ramsey number r(G) of a graph G is the smallest integer n such that any 2 colouring of the

edges of a clique on n vertices contains a monochromatic copy of G. Determining the Ramsey number

of G is a central problem of Ramsey theory with long and illustrious history. Despite this there

are precious few classes of graphs G for which the value of r(G) is known exactly. One such family

consists of large vertex disjoint unions of a fixed graph H, we denote such a graph, consisting of n

copies of H by nH. This classical result was proved by Burr, Erdős and Spencer in 1975, who showed

r(nH) = (2|H| − α(H))n + c, for some c = c(H), provided n is large enough. Since it did not follow

from their arguments, Burr, Erdős and Spencer further asked to determine the number of copies we

need to take in order to see this long term behaviour and the value of c. More than 30 years ago Burr

gave a way of determining c(H), which only applies when the number of copies n is triple exponential

in |H|. In this paper we give an essentially tight answer to this very old problem of Burr, Erdős and

Spencer by showing that the long term behaviour occurs already when the number of copies is single

exponential.

1 Introduction

Ramsey theory refers to a large body of mathematical results, which all roughly speaking say that any

sufficiently large structure is guaranteed to have a large well–organised substructure. For example, the

celebrated theorem of Ramsey [20] from 1929 says that for any fixed graph G, every 2-edge-colouring

of a sufficiently large complete graph contains a monochromatic copy of H. The Ramsey number of H,

denoted r(H), is defined to be the smallest order of a complete graph satisfying this property.

Determining r(H) is one of the central problems of Ramsey theory with long and illustrious history. Per-

haps the most famous instance of the problem is when H is a complete graph, where despite considerable

attention over the years [7, 10, 13, 23, 24] the best known bounds, up to improvements of the lower order

terms in the exponents, remain 2n/2 ≤ r(Kn) ≤ 22n first obtained by Erdős in 1947 [8] and Erdős and

Szekeres in 1935 [10] respectively. This situation is indicative of the situation in general, there are precious

few families of graphs for which the Ramsey numbers are known precisely, see [11, 12, 22] for some notable

exceptions and [19] for a dynamic survey on what is known about Ramsey numbers for various classical

families of graphs.

A particular family where r(G) is, at least in some sense known, is when G consists of a vertex disjoint

union of many copies of some small graph H, we will denote such a graph consisting of n vertex disjoint

copies of H by nH. Ramsey numbers of nH were first considered by Burr, Erdős and Spencer in 1975 [5]

when they showed the following result. Here α(H) stands for the largest size of an independent set in H.
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Theorem 1 ([5]). For any graph H without isolated vertices there is a constant c = c(H) and n0 such

that if n ≥ n0
r(nH) = (2|H| − α(H))n+ c.

While this result on one hand offers quite a precise understanding on how the answer behaves, on the

other hand already Burr, Erdős and Spencer pointed out two major deficiencies of their result. The first

one is that their argument provides no way of actually computing the constant c(H) and only provides

them with a double exponential upper bound in k = |H| on c(H). The second one is that apart from

knowing it is finite they obtain no bound on n0, whatsoever. They naturally asked for the situation here

to be remedied.

This led to a slew of results which determined or estimated both c and n0 for a number of natural but

specific families of graphs, see Section 5.13 of [19] for a survey of what is known. Perhaps the most

well-known of these special cases is the problem of determining r(nK3), in which case the answer is 5n

provided n ≥ 3 so c(K3) = 0 and one may already take n0 = 3.

We will be interested in the original, general problem of Burr, Erdős and Spencer. Here, the state of

the art was due to Burr [2] who, more than 30 years ago, gave an indirect, but finite, way of computing

c(H) settling in a sense the first of the above mentioned deficiencies of Theorem 1. He also obtained a

bound on when the transition to the long term behaviour occurs, namely he showed one may take n0
to be only triple exponential in k = |H|. Taking into account the fact that in most known special cases

this transition occurs very quickly he mentioned it would be very desirable to show something of the sort

happens in general as well. Our main result establishes precisely such a result, giving an essentially tight

answer to the second problem of Burr, Erdős and Spencer from their 1975 paper.

Theorem 2. For any k-vertex graph H without isolated vertices there is a constant c = c(H) and

n0 = 2O(k) such that if n ≥ n0 then

r(nH) = (2|H| − α(H))n+ c.

Our approach allows for a similar, slightly cumbersome, way of determining c(H) as that of Burr. Due to

this we postpone further discussion of this to Section 4.2 and will only illustrate here with a particularly

nice example.

Theorem 3. For n ≥ 2O(k) we have

r(nKk) = (2k − 1)n+ r(Kk−1)− 2.

This example also serves to illustrate that our Theorem 2 is essentially tight, namely if n is subexponential

the standard bounds, mentioned above, on Ramsey numbers r(Kk) tells us that there are infinitely many

values of k for which the RHS of the above expression is smaller than r(Kk) so we might not be able to

find even a singe copy of Kk let alone n of them. It is quite likely that this should hold for all k but

estimating the difference between r(Kk−1) and r(Kk) and showing one is at least a constant factor larger

than the other for all k is an old open problem in Ramsey theory [4].

Our second result concerns an asymmetric Ramsey problem of an arbitrary graph G against nH. In more

generality r(G,H) is defined to be the smallest order of a complete graph with the property that in any

2-colouring of its edges we can find a copy of G in the first colour or a copy of H in the second colour.

The fairly natural question of determining r(G,nH) was raised by Burr who observed that it played a

key role in the proof of Theorem 1 due to Burr, Erdős and Spencer. It also plays a key intermediate role

in his further work on determining r(nH). Burr managed to determine r(G,nH) (as a function of G,H)

if n is at least double exponential in k = max(|G|, |H|) and naturally asked if this can be improved. We
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once again obtain an essentially tight result answering this question. Here there is a nice explicit formula

which requires a further extension of the definition of Ramsey numbers. Given two families of graphs

G,H we define r(G,H) to be the smallest order of the complete graph such that in any 2-colouring of its

edges we can find a copy of a graph from G in the first colour or a copy of a graph from H in the other

colour.

Theorem 4. Let G be a non-empty and H a connected graph with k = max(|G|, |H|) and let n ≥ 2O(k).

Then

r(G,nH) = n|H|+ r(D(G), H)− 1,

where, D(G) stands for the family of graphs obtained by removing a maximal independent set from G.

The requirement for H to be connected is easily seen to be necessary and our methods do allow for a

similar result even if H is disconnected. We discuss this point further in Section 4.1.

2 Preliminaries.

In this section we give a few easy lemmas which will come in handy. The first one is an adaptation of one

of the standard proofs of Ramsey’s theorem and allows us to say that graphs with small independent set

have still fairly large subgraphs with extremely high degree.

Lemma 5. Given an n-vertex graph G with α(G) < k and d ≥ 2, provided n ≥ 3 · dk−1 we can find a

subgraph of order m ≥ n/dk−1 with degree at least (1− 1/d)m.

Proof. If we can find a vertex in G which has non-degree at least n/d− 1 we select this vertex, delete all

its neighbours and repeat within the remainder. This process needs to stop after less than k−1 iterations

as otherwise the k − 1 vertices we selected together with any of the remaining n/dk−1 − 1
dk−1 − . . .− 1 ≥

n/dk−1 − 2 ≥ 1 vertices span an independent set of size k. When the process stops the remaining graph

has m ≥ n/dk−2− 1
dk−2−. . .−1 ≥ n/dk−2−2 ≥ n/dk−1 vertices and every vertex has more than (1−1/d)m

neighbours, as desired.

We will in most cases use the above lemma on 2-coloured graphs in which we know that there is no

monochromatic copy of some graph on k vertices in some colour and then apply the lemma to the

subgraph consisting of the edges of the other colour.

The following lemma will be used several times in our proofs. Before stating it let us define a (k, `)-join

to be a 2 coloured graph whose vertices are split into sets R and B of sizes k and ` resp. such that all

edges inside R are red, all edges inside B are blue and edges in between R and B are of the same colour.

We refer to R as the red part and B as the blue part of the join. We say the join is red if the edges

between R and B are red and we say it is blue otherwise.

Lemma 6. Given a 2-coloured complete graph and a partition of its vertices into sets R and B both of

size at least 25k such that R has no blue Kk and B has no red Kk we can find a (k, k)-join with red part

in R and blue part in B.

Proof. Since there is no red Kk inside B, by the standard Ramsey estimate we can find a blue K4k inside

B, which we call B′. Now consider the majority colour between R and B′, w.l.o.g. say red. Let d(v)
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denote the red degree for v ∈ R towards B′. Then
∑

v∈R d(v) ≥ |R||B′|/2 = 2|R|k. On the other hand

the number of stars with k leaves in B′ and centre in R is∑
v∈R

(
d(v)

k

)
≥ |R|

(
2k

k

)
,

using Jensen’s inequality. In particular, since there are
(
4k
k

)
choices for the leaf set this means there is a

set R′ of at least |R|
(
2k
k

)
/
(
4k
k

)
≥ |R|/3k vertices in R joined in red to some fixed set of k vertices inside

our B′ (which spans a blue clique). Since |R′| ≥ |R|/3k ≥ 22k and there is no blue copy of Kk in R, so

also in R′, the usual Ramsey estimate tells us there is a red copy of Kk in R′. This Kk together with the

blue Kk in their common red neighbourhood make our desired join.

The final preliminary lemma tells us that if we have a graph G with large minimum degree we can find a

large subset with the property that all vertices of G have many neighbours inside this subset.

Lemma 7. Let m′ ≥ m. Any m′-vertex graph G with minimum degree δ has an m-vertex subset S with

the property that every vertex of G has more than d ≥ m
2 neighbours in S, provided mm′ < rb(r−1)dc where

r := m
m′ /

d
δ ≥ 1.

Proof. We note that we may assume that d is an integer since otherwise we may reduce its value to

its floor, as it is easy to see the main condition only relaxes by reducing d and we replace the 2d ≥ m

assumption with 2d ≥ m− 1.

Let us choose an m-vertex subset uniformly at random. For convenience we will denote by d′ = bδm/m′c ≥
d+1 (one should think of this as a lower bound on the expected number of neighbours, of any vertex of G,

which got selected into our random subset), where the inequality follows since d′− d = b(r − 1)dc ≥ 1, as

otherwise b(r − 1)dc = 0 and our main assumption mm′ < rb(r−1)dc fails. Given a fixed vertex, probability

that at most d among some fixed set of size δ of its neighbours got selected in the subset is at most

d∑
t=0

(
δ

t

)(
m′ − δ
m− t

)
/

(
m′

m

)
≤ m ·

(
δ

d

)(
m′ − δ
m− d

)
/

(
m′

m

)
≤ m ·

(
δ

d

)
/

(
δ

d′

)
·
(
m′ − δ
m− d

)
/

(
m′ − δ
m− d′

)

= m ·
d′−d∏
i=1

d+ i

m− d′ + i
·
d′−d∏
i=1

m′ − δ − (m− d) + i

δ − d′ + i

≤ m ·
(

dm′

m(m′ − δ)

)d′−d
·
(
m′ − δ
δ

)d′−d
= m ·

(
dm′

δm

)d′−d
= m · r−b(r−1)dc < 1/m′,

where in the first inequality we used that
(
δ
t

)(
m′−δ
m−t

)
is non-decreasing in t for t + 1 ≤ d′; in the sec-

ond inequality we used that
(
m′

m

)
=
∑δ

t=0

(
δ
t

)(
m′−δ
m−t

)
≥
(
δ
d′

)(
m′−δ
m−d′

)
; the third inequality follows since

d+i
m−d′+i ≤

d
m−d′ ≤

dm′

m(m′−δ) for any i ≥ 1 since m ≤ 2d + 1 ≤ d + d′ and m′−δ−(m−d)+i
δ−d′+i ≤ m′−δ−(m−d′)

δ−δm/m′ ≤
m′−δ−(m−δm/m′)

δ−δm/m′ = m′−δ
δ for any 1 ≤ i ≤ d′ − d. This shows by an immediate union bound over all m′

vertices of G that the desired subset exists.

3 A tiling lemma

Given a graph H we say that there is an H-tiling of a graph G if we can find vertex disjoint copies of H

in G which cover all but at most |G| mod |H| many vertices of G. When |H| | |G| and we want to stress

the point that an H-tiling covers all vertices of G we will refer to it as a perfect H-tiling.
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The goal of this section is to prove the following tiling lemma, which strengthens the classical Hajnal-

Szemerédi Theorem [14] when we know our graph has small independence number.

Lemma 8. Any graph G with at least 4k+9k3 vertices, with α(G) < k and δ(G) ≥ 7
8 |G| admits a Kk-tiling.

It is easy to see that in terms of the requirement on the size of G, one can not do better than exponential

in k, by taking G to be the random graph. It is easy to improve the 7/8 factor in the minimum degree

condition to any 1/2 + ε with ε > 0. This is best possible since one may take G to be a vertex disjoint

union of two cliques of almost the same size. We opt not to prove it in this optimal form for simplicity

and since it is not necessary for our applications.

A result along the same lines was obtained by Nenadov and Pehova [18], in fact they make a much weaker

assumption on the independence number which results in the requirement for the ground graph to be

significantly larger than the tiling graph (they make use of the Szemerédi regularity lemma), which is far

from sufficient for us. Even if one only focuses on the absorption part of their argument, their approach

requires too large a ground set. That said the overall structure of our argument is very similar to theirs, as

well as to many other examples of the use of the absorption method. In fact, since we work with a rather

strong assumption it makes for a great illustrative example for the method since most of the somewhat

technical tools usually accompanying it, such as regularity lemma are not needed here.

Before turning to the proof we state, and prove for the sake of completeness, the following auxiliary

proposition due to Montgomery [17] stating the existence of sparse bipartite graphs, which have certain

“resilience” properties with respect to matchings.

Proposition 9. There exists a bipartite graph, with bipartition (X ∪ Y,Z) where X and Y are disjoint,

|X| = |Y | = 2k and |Z| = 3k such that:

a) Maximum degree is at most 40.

b) Given any subset X ′ ⊂ X with |X ′| = k, there is a perfect matching between X ′ ∪ Y and Z.

Proof. Fix some Z1 ⊆ Z of size 2k and place independently 20 random perfect matchings between Y and

Z1. Let the graph Q0 be the union of these matchings. Given subsets A ⊂ Y and B ⊂ Z1, and a random

matching M , the probability that all vertices of B get matched by M to a vertex in A is
(|A|
|B|
)
/
(
2k
|B|
)
.

Thus, for any t ≤ k/2, the probability there is some set B ⊂ Z1, of size t with neighbourhood of size less

than 2t in G, is by a simple union bound over possible choices for B and all possible choices for a set of

size 2t containing its neighbourhood at most(
2k

t

)(
2k

2t

)((
2t

t

)
/

(
2k

t

))20

≤

(
2e3
(
k

t

)3( t
k

)20
)t

=

(
2e3
(
t

k

)17
)t
≤ 2−11t.

Taking the sum over all t ≤ k/2 we see that the probability that such a B of arbitrary size smaller than

k/2 exists is at most 2−10. An identical calculation shows that the probability there is an A ⊂ Y with

|A| ≤ k/2 and neighbourhood of size less than 2t is at most 2−10. The probability that there are two

subsets A ⊂ Y and B ⊂ Z1, with |A| = |B| = dk/2e and no edges between A and B is at most(
2k

dk/2e

)2((b3k/2c
dk/2e

)
/

(
2k

dk/2e

))20

≤ (4e)k
(

3

4

)10k

≤ 2−k/2.

Since 2−1/2 + 2−10 + 2−10 < 1 there exists a graph G satisfying all three of these properties. Duplicate

each vertex in Y to get X, and then duplicate k of the vertices in Z1 to get the set Z2 and set Z = Z1∪Z2.

We claim that this new bipartite graph with bipartition (X ∪ Y,Z) has the desired properties. For a),
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since Y ∪ Z1 induces 20 matchings and we duplicated every vertex at most once the maximum degree is

indeed at most 40.

Now, take any set X ′ ⊂ X of size k. To show b) we will verify Hall’s condition between Z and X ′ ∪ Y .

For A ⊂ Z, let A′ be the larger of the sets A ∩ Z1 and A ∩ Z2, so that |A| ≥ |A′| ≥ |A|/2.

If |A′| ≤ k/2. Then by the first property we ensured for G we know A′ has at least 2|A′| ≥ |A| neighbours

inside Y , and hence so does A inside X ′ ∪Y , as desired. Otherwise, |A′| > k/2 so by our second property

of G there can be at most k/2 vertices in Y which are not adjacent to any vertex of A′. Since we obtained

X by duplicating vertices of Y the same holds about non-neighbours of A′ inside X. In particular, all

but at most k vertices of X ′ ∪ Y are adjacent to some vertex in A′ so we are done unless |A| > 2k.

By taking a subset of A of size 2k we can see from the previous paragraph that the set B of vertices

in X ′ ∪ Y , not adjacent to any vertex in A has size at most k. By symmetry (note that X ′ is simply a

set of k duplicates of vertices in Y , same as Z2 is for Z1) we can repeat the above argument with B in

place of A to conclude there are at least |B| vertices in Z adjacent to some vertex in B. In particular,

|A| ≤ 3k − |B|, which is also the number of vertices adjacent to some vertex of A, as desired.

We are now ready to prove Lemma 8.

Proof of Lemma 8. The key part of the proof is establishing the existence of an absorbing subset of

vertices of G. In particular, we want to find an A ⊆ V (G), with the property that for any subset

R ⊆ V (G) \A of size at most 4k there is an Kk-tiling of G[A ∪R].

Before showing how to find such an A let us demonstrate how to conclude the argument once we have it.

Take a maximal vertex disjoint collection of Kk’s in V (G) \ A. Let R be the set of remaining vertices in

V (G) \ A, since it contains no copy of Kk and no independent set of size k we know |R| ≤ r(Kk) ≤ 4k

where we used the classical upper bound on Ramsey numbers due to Erdős and Szekerés. Now by the

assumed absorbing property of A we can Kk-tile G[R ∪ A] which together with our removed family of

disjoint Kk’s gives us the desired Kk-tiling of G.

Now let us turn to finding our absorber A. We first show that for any set S of k vertices {s1, . . . , sk} one

can find a “local absorber”, which we will denote by LS . The key property we require from LS is that we

can perfectly Kk-tile both LS and S ∪ LS . We also want to be able to construct these absorbers to be

disjoint for a collection of sets S, so we will show that we can find one avoiding any given set F ⊇ S of at

most n/2 vertices. Since n/2 ≥ 4k ≥ r(Kk) we can find a copy of Kk among available vertices, we denote

it as KS = {w1, . . . , wk}. Now for each i we know si and wi have at least 3/4 · n common neighbours in

G so there are at least n/4 among the available vertices. Since n/4− k2 ≥ 4k ≥ r(Kk) we can find a copy

Ci of Kk−1 inside their common neighbourhood in such a way that all Ci’s are disjoint and are disjoint

from KS . We now take LS to be the union of KS and C1, . . . , Ck (see Figure 1 for an illustration). Note

that if we wish to H-tile LS we know it consists of k disjoint cliques {wi} ∪Ci of size k (see Figure 3 for

an illustration) and if we wish to tile S ∪ LS it consists of k + 1 disjoint cliques KS , {si} ∪ Ci so this is

indeed possible (see Figure 2 for an illustration).

We now proceed to specify our “global” absorber A. Let ` =
⌊

n
44k2

⌋
≥ 4k+5k. Let X be a subset of V (G)

of size 2` with the property that any vertex of G has at least 3`/2 = 3/4 · |X| neighbours in X. Existence

of such an X follows from Lemma 7 with m′ = n,m = 2`, δ ≥ 7n/8 and d = 3`/2, so that r ≥ 7/6 and its

condition holds since (7/6)b`/4c ≥ 2n/(2·4
6k2) ≥ n2 ≥ 2n`.

We now take another, arbitrary, set of 2` vertices Y and an arbitrary set Z of size 3`(k − 1) such that

X,Y, Z are disjoint. We further split Z into 3` disjoint sets Z1, . . . , Z3` each of size k − 1. We place each

of X,Y and Z into our A.
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S

KS

Figure 1: LS : local absorber for S

S

KS

Figure 2: K5-tiling of LS ∪ S

S

KS

Figure 3: K5-tiling of only LS

We now consider an auxiliary bipartite graph D, provided by Proposition 9 with parts X ∪ Y and

{Z1, . . . , Z3`}, so with the property that every vertex has maximum degree 40 but upon removing any `

vertices from X the remainder has a perfect matching.

For every edge e = (v, Zi) of D we place the local absorber Le := L{v}∪Zi avoiding any previously

used vertices as well as X,Y and Z into A. We can always find it since there are at most 120` edges

in D and each Le we find has size k2 so the total number of used vertices at any point is at most

4`+ 3`(k − 1) + 120`k2 ≤ 127`k2 ≤ n/2.

Finally, let us verify this A has the desired property. Consider an R ⊆ V (G) \A of size at most 4k. Any

v ∈ R, by our choice of X, has at least 3`/2 ≥ 4k neighbours in X, so we can find a copy of Kk using

v and some k − 1 vertices in X. In fact we can do so even if we disallow usage of up to ` vertices of X

since any vertex will still have `/2 ≥ 4k available neighbours left. So since ` ≥ k|R| we can find a vertex

disjoint collection of Kk’s which tiles R and up to ` vertices of X. We then proceed to find disjoint copies

of Kk in the remainder of X until we are left with at least ` and at most ` + k − 1 vertices, which we

can since ` ≥ 4k so by Ramsey estimate we must still be able to find a new copy of Kk. At this point we

discard the at most k − 1 vertices to obtain a subset X ′ of size exactly `. Since we discarded less than

|Kk| vertices, provided we can perfectly Kk-tile the rest of A ∪R this will prove the result. Now, by the

second property of our auxiliary graph D there is a matching between X ′ ∪Y and {Z1, . . . , Z3`}. For any

edge e = (v, Zi) of this matching we can Kk-tile Le ∪ {v} ∪ Zi which all together gives us an Kk-tiling of

X ′ ∪Y ∪Z. What is left to Kk-tile are Le’s for any e which was not a part of our matching which we can

also do by the defining property of our local absorber. This completes the proof.

4 Ramsey number of copies

In this section we will prove our main two results. We begin with the asymmetric and slightly simpler

case, namely that of Theorem 4.

4.1 Asymmetric problem

We begin with the upper bound, which shall motivate the example for the lower bound as well.

Theorem 10. Let G and H be graphs with k = max(|G|, |H|). Then, provided n ≥ 92k+6, we have

r(G,nH) ≤ n|H|+ r(D(G), H)− 1.

Proof. Let us consider a two coloured complete graph K on N = n|H| + r(D(G), H) − 1 ≥ n vertices.

Let us assume towards a contradiction that K does not contain a red G or a blue nH.

Since there is no red copy of G Lemma 5 with d = 9 applied to the blue graph implies that there exists a

subset of vertices A with m := |A| ≥ N/9k−1 ≥ 9k+7 in which every vertex has blue degree at least 8
9m.
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Now among the remaining vertices V (K) \ A we take a maximal vertex disjoint collection of blue copies

of H and place their vertices in a set B. The set of remaining vertices, so V (K) \ (A∪B) =: C, contains

no red copy of G nor a blue copy of H so |C| < r(G,H) ≤ 4k.

For any vertex v of C which has at least 4k blue neighbours in A, we know that in its neighbourhood we

can find a blue copy of H, so in particular we may replace one of the vertices in the copy by v to obtain a

blue H using v and some k− 1 vertices of A. As long as we can find such a v we take this blue copy of H

and add it to B. When we stop let A1 be the set of the remaining vertices of A, so |A1| ≥ |A|− |C|(k−1);

let B1 denote the new set B, which still has the property that we can perfectly tile its vertices with blue

H; and let C1 be the remaining vertices of C, which now each have less than 4k blue neighbours in A1.

In addition to not having any blue copies of H we claim C1 can not contain any member of D(G) in red.

Indeed since |A1| ≥ k4k ≥ (k − 1)4k + α(G) if we could find a red member of D(G) in C1 all but at most

(k − 1)4k vertices of A1 would be joined to it by only red edges, so we could add up to α(G) of such

vertices from A1 to create a red copy of G. This implies |C1| ≤ r(D(G), H) − 1. In particular, by our

assumption on the size of K we know |A1 ∪ B1| ≥ n|H| so if we can find a blue H-tiling of A1 ∪ B1 we

obtain a contradiction. Since we already can perfectly tile B1 it only remains to show that we can tile

A1 as well. We know that |A1| ≥ |A| − 4k · (k − 1) ≥ 9k+7 − 4k · (k − 1) ≥ 4k+9k3 and every vertex has

minimum blue degree in A1 at least 8
9 ·m− 4k · (k− 1) ≥ 7

8 · |A1| so Lemma 8 applies and allows us to tile

A1 with blue copies of H, completing the proof.

This establishes the upper bound in Theorem 4. To see the lower bound, partition the vertex set of a

complete graph on n|H|+r(D(G), H)−2 vertices into sets A of size n|H|−1 and C of size r(D(G), H)−1.

We colour all edges inside A blue, all edges between A and C red and we take a colouring of C containing

neither a red copy of any member of D(G) nor a blue copy of H. To see this colouring does not contain

a red copy of G note that the portion of G inside A must be an independent set of G, since A spans an

independent set in the red graph, so the remainder of G contains a member of D(G) which would need

to be embedded inside C. In terms of blue copies of H, since H is connected and there are no blue edges

between A and C, each blue copy of H is completely contained either in A or in C. We know there are

no copies in C so the most we can find is n− 1 in A due to size considerations. This completes the proof

of Theorem 4.

Finally, let us briefly discuss the case of disconnected H. The answer becomes n|H|+ r(D(G), C(H))− 1,

where C(H) is the family of connected components of H. The optimal colouring is similar as above noting

that we may take C to not contain any blue connected component of H which allows one to finish the

argument as above. For the upper bound the argument proceeds in the same way with an additional step

once we reach the A2, B2, C2 partition. As long as we can find a connected component of H inside C2 in

blue we can find the rest of H in A2 and put the blue copy of H into B2. Once again since |C2| ≤ 4k

this can not happen many times and when it stops the remaining vertices of C2 do not have any blue

components of H so there are at most r(D(G), C(H))− 1 vertices left in C2 and we can finish in the same

way.

4.2 Symmetric problem

In this subsection we will prove Theorem 2 concerned with determining r(nH). As mentioned in the

introduction the answer here is less explicit. Let us begin with an easy lower bound construction, due to

Burr, Erdős and Spencer [5] which while not being tight is going to be useful, as it allows us to estimate

the size of the underlying graphs we are going to be working with.
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Proposition 11. Let H be a graph with no isolated vertices then for any n

r(nH) ≥ (2|H| − α(H))n− 1.

Proof. Let k = |H| and α = α(H). Our goal is to give a 2-colouring of a complete graph on (2k−α)n−2

vertices without a monochromatic nH. Let us split its vertices into two sets R and B of sizes (k−α)n−1

and kn− 1 resp. We then colour all edges inside R red, all edges inside B blue and all edges in between

red. Since H has no isolated vertices any blue copy of H must be completely inside B which has size

n|H| − 1 so there is no blue nH. On the other hand every red copy of H must use at least k− α vertices

from R as part of it we embed inside B spans an independent set. Since |R| = (k − α)n − 1 there is no

red nH, as desired.

Since the part of the answer here that grows with n is (2|H|−α(H))n just taking vertex disjoint copies of

monochromatic H as we did in the proof of Theorem 10 does not lead us anywhere. Instead we will try to

find a red copy of H and a blue copy of H which intersect in at least α(H) vertices. With this in mind an

H-tie is defined as a set of 2|H|−α(H) vertices of a 2-coloured complete graph which contains both a red

copy of H and a blue copy of H. This object plays a key role in understanding r(nH) since as soon as we

can find such an object if the rest of the graph contains a monochromatic (n− 1)H we can use the copy

from our H-tie to extend it to a monochromatic nH. In particular, if n is large enough to guarantee we

can find an H-tie (provided there is no monochromatic nH) we know r(nH) ≤ 2|H|−α(H)+r((n−1)H).

This in turn shows that f(n) = r(nH)− (2|H| − α(H))n becomes non-increasing when n is large and is

always at least −1 by Proposition 11. Hence, r(nH) = n(2|H| − α(H)) + c(H) when n is large enough.

It is not hard to show that one can find an H-tie even when n is just exponential (provided there is

no monochromatic nH), however determining when the long term behaviour begins, i.e. when f(n)

ultimately stops decreasing and the final value c(H) it settles in is a far more tricky proposition.

We will show that there exists a critical colouring, meaning that it avoids monochromatic nH and has

maximum number of vertices subject to this, with a lot structure. In particular, it will be very close to

the colouring we used in the proof of the above lower bound, but with the additional “exceptional” small

set. We note that we will assume H has no isolated vertices for convenience and since one can easily

deduce r(nH) from r(nH ′) where H ′ is obtained from H by removing all its isolated vertices.

Theorem 12. Let H be a k-vertex graph without isolated vertices. Provided n ≥ 2O(k) there exists a

2-colouring of Kr(nH)−1, without a monochromatic nH with the following structure: we can partition the

vertex set into parts R,B,E such that (see Figure 4 for illustration):

1. All edges inside R are red and all edges inside B are blue.

2. All edges between R and B are of the same colour, all edges between R and E are blue and all edges

between B and E are red.

3. There is no H-tie containing a vertex of E.

Proof. Our strategy is going to be to start with an arbitrary critical colouring, gradually increase our

understanding of its structure up to a point where we understand it well enough so that we can modify

it into a colouring satisfying the desired properties above without creating a monochromatic nH.

Let k = |H| and α = α(H). Let us consider an arbitrary 2-colouring of the complete graph K on

N = r(nH) − 1 vertices not containing a monochromatic copy of nH. Proposition 11 implies that

N ≥ n(2k − α)− 2 ≥ nk + n(k − α)− 2 ≥ nk + n− 2, where we used that H is non-empty (since it has

9



E

R

B

Figure 4: The structure of a crit-
ical colouring. We do not know the
colouring inside E but it is strongly
constrained by property 3.

E5

R5 R

B5 B

T
· · ·

· · ·

Figure 5: Structure of our original colouring. Tiny exceptional
set E5 = E is joined completely in red/blue to B5/R5. R5/B5

are almost completely red/blue. Edges in between them are
mostly red. T is a union of H-ties. R = R5 union k − α
vertices from each tie in T . B = B5 union k vertices from each
tie in T .

no isolated vertices) which implies α < k. In particular, this implies that if we remove a maximal vertex

disjoint collection of red H the remainder has size at least n and has no red copy of H. Remove some

n/2 of the remaining vertices and apply Lemma 5 with d = 27 to the blue graph to find a subset B0 of

size m ≥ n
27k

which has minimum blue degree at least (1− 2−7)m. Similarly taking a maximal collection

of blue H the remainder has at least n vertices, so excluding the at most n/2 vertices already in B0 we

are left with at least n/2 of them which do not contain a blue H. So again Lemma 5 tells us we can find

a subset R0, disjoint from B0, of size m′ ≥ n
27k

with minimum red degree at least (1− 2−7)m′.

For certain technical reasons it is going to be helpful for us to ensure that both red and blue sets are of

the same size. Let us first w.l.o.g. assume that m ≤ m′, set B1 = B0 and let R1 be the subset of R0 of

size m inducing a red subgraph of minimum degree at least (1− 2−6)m. Such an R1 exists by Lemma 7

applied with d = (1− 2−6)m and δ ≥ (1− 2−7)m′ so that r ≥ 127/126 and the requirement of the lemma

mm′ < (127/126)bm/128c is clearly satisfied since n/2 ≥ m′ ≥ m ≥ n/27k. In order to preserve symmetry

we will also relax our slightly stronger condition on minimum blue degree in B1 to say that every vertex

in B1 has blue degree at least (1− 2−6)m.

Now since R1 still contains no blue H and B1 no red H, as well as |B1|, |R1| = m ≥ 25k we can use

Lemma 6 to find a (k, k)-join with red part in R1 and blue part in B1. We then take it out and repeat as

long as we can. When we stop we have a collection of (k, k)-joins which cover the same number of vertices,

namely at least m− 25k in each of R1 and B1. Now keep only the joins of the more common colour, say

w.l.o.g. red. The number of vertices they cover in each of R1 and B1 is hence at least m/2− 25k−1. Let

B2 be the set of vertices of these joins inside B1 so |B2| ≥ m/2 − 25k−1. Finally, we will obtain R2 by

taking the union of k−α vertices taken uniformly at random from each join, from its red part inside R1.

In the following claim we collect all the properties of R2 and B2 that we will require, as well as explain

more formally how R2 is chosen.

Claim 1. There exist disjoint sets of vertices R2 and B2 satisfying:

a) |R2| = (k − α)m0 and |B2| = km0 for some m0 ≥ n/2O(k).

b) R2 contains no blue copy of H and has minimum red degree at least 15
16 |R2|.

c) B2 contains no red copy of H and has minimum blue degree at least 15
16 |B2|

d) We can tile R2 ∪B2 with red (k − α, k)-joins each with red and blue parts inside R2 and B2 resp.
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Proof. We construct B2 as above and will show that if R2 is selected randomly as described above it

satisfies the required red minimum degree condition of b) with positive probability.

Most of the properties are immediate from construction. For example a) follows since we constructed B2

as a disjoint union of m0 sets of size k, where m0 is the number of joins we had; R2 was obtained as union

of m0 sets of size k−α and we ensured km0 = |B2| ≥ m/2− 25k−1 so m0 ≥ m/(2k)− 25k−1/k ≥ n/2O(k).

Part d) follows since removing any α vertices from the red part of a red (k, k)-join creates a red (k−α, k)-

join. First parts of b) and c) follow since R2 ⊆ R0 and B2 ⊆ B0 and we constructed these sets to be blue

and red H-free resp. For the second part of c) note that since we removed exactly m− |B2| vertices from

B1 the minimum blue degree in B2 is at least

(1− 2−6)m− (m− |B2|) = |B2| −m/26 ≥
31

32
|B2| − 25k−6 ≥ 15

16
|B2|

where we used m ≤ 2|B2| + 25k and a). Finally, we need to verify the second part of b). Here, before

we made our random choices we had the same property, namely the set R′ consisting of unions of the

red parts of our (k, k)-joins had size m0 and minimum red degree 31
32 |R

′| − 25k−6 ≥ 15.25
16 |R

′|. Now our

goal is to show that after making our random choices the probability that for a fixed vertex we have

chosen less than 15
16 |R2| of its neighbours is less than 1

|R′| = 1
km0

since then a union bound ensures there

exists an R2 in which this happens for no vertex of R′. Fix a vertex v in R′ and let X1, . . . , Xm0 be

the random variables counting the number of its red neighbours in each of the m0 joins. Observe that

Xi are independent since our choices in different joins were independent, that 0 ≤ Xi ≤ k − α and that∑m0
i=1 EXi ≥ 15.25

16 |R
′| · k−αk = 15.25

16 (k − α)m0, since any vertex individually has probability exactly k−α
k

of being selected. By Azuma–Hoeffding inequality [15, Theorem 2] we now have

P

(
m0∑
i=1

Xi ≤
15

16
(k − α)m0

)
≤ 2e

− 2·2−12(k−α)2m2
0

m0(k−α)2 = 2e−m0/211 <
1

km0
,

as desired.

Armed with these R2 and B2 let T be a maximal collection of vertex disjoint H-ties that we can find

outside of R2 ∪B2 and denote the set of remaining vertices outside of R2 ∪B2 as E2. Our next few steps

will gradually “clean-up” the picture. Namely, we will identify a small (of size at most 2O(k)) problematic

subset then repeatedly find disjoint H-ties within R2 ∪B2 ∪E2 which together cover all the problematic

vertices. Then we move these H-ties to T . In order to help keep track of the sizes, we note that ay any

point we will remove at most 2O(k) vertices from R2 or B2 so the set of vertices remaining there are still

quite large since |R2|, |B2| ≥ m0 ≥ n/2O(k) and in particular n/2O(k)−2O(k) ≥ 2O(k). Furthermore, we will

also know that the minimum degree remains big, e.g. in the remainder of R2 in red 15
16 |R2|−2O(k) ≥ 7

8 |R2|.
We will usually specify the exponent we need in the errors to make it easier to track where it comes from.

The following claim will be behind the fact that we will only ever need to remove at most 2O(k) H-ties.

Claim 2. |E2| ≤ 27k.

Proof. Towards a contradiction let us assume otherwise, so that |E2| > 27k. Note first that if we can

cover at least k
2k−α |E2| vertices of E2 with copies of H of some fixed colour then we can find n copies of

H in this colour. This follows since we can always cover a proportion of k
2k−α of both R2∪B2 and T with

H’s of either colour, since by Claim 1 d) we can cover R2∪B2 with H-ties and in any H-tie we can find a

copy of H of either colour which has k vertices while the whole tie has 2k − α vertices. This means that

in the whole of K we can find at least N
2k−α ≥ n−

2
2k−α > n− 1 disjoint copies of H in our colour, where

we used Proposition 11 which tells us N ≥ n(2k − α)− 2, as claimed. This allows us to find a subset R′

of E2 of size at least k−α
2k−α |E2| − k ≥ |E2|

2k − k ≥ 2 · 25k which contains no blue copy of H. Similarly there
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is a subset B′ of E2 of size at least 2 · 25k which contains no red copy of H. By splitting vertices between

R′ and B′ if necessary we can make R′ and B′ disjoint by losing at most another factor of 1/2 in their

size. This allows us to use Lemma 6 to find a (k, k)-join which in particular contains an H-tie, this is a

contradiction to how we constructed E2.

Now for as long as we can find an H-tie in R2 ∪B2 ∪ E2 which uses at least 1 vertex from E2 we take it

out and add it to T . We denote by R3, B3 and E3 the sets of remaining vertices in R2, B2 and E2 resp.

Since |E2| ≤ 27k we know that |R3| ≥ |R2| − 2k27k, |B3| ≥ |B2| − 2k27k and |E3| ≤ |E2| ≤ 27k.

The following claim will allow us to impose quite a bit of structure on the colouring between E3 and

R3 ∪B3.

Claim 3. Given a vertex v which has 25k neighbours of colour c1 in R3 and 25k neighbours of colour c2
in B3, unless c1 is blue and c2 is red there exists an H-tie using v and some of these neighbours.

Proof. Let R′ be the set of 25k neighbours of v in colour c1 in R3 and B′ the set of its neighbours in colour

c2 in B3. By Lemma 6 we can find a (k, k)-join with red part in R′ and blue part in B′. W.l.o.g. we may

assume the join is red. Now if c2 is blue we can take v, k− 1 vertices from B′ and k− α vertices from R′

to get our H-tie, since it still contains a blue Kk and since α ≤ k − 1 we can still find a red (k − α, α)

join, which contains a red H. In the remaining case both c1 and c2 are red. Here we can replace a vertex

from the red part with v and take k − α vertices from B′ and they still make a red (k, k − α)-join which

makes an H-tie.

The next claim gets us a step closer to our desired structure.

Claim 4. There are sets R4 ⊆ R3 and B4 ⊆ B3 such that |R4| ≥ |R2|− 214k and |B4| ≥ |B2|− 214k; there

are no red edges between E3 and R4 and no blue edges between E3 and B4 and (R4 \R3) ∪ (B4 \B3) can

be covered by disjoint H-ties.

Proof. The previous claim immediately implies that no vertex v of E3 can have red degree larger than 25k

in R3 or blue degree larger than 25k towards B3, since otherwise taking whichever colour of its neighbours

is most common in the other part we find an H-tie using v, all of which we previously removed. Therefore,

there are at most 25k|E3| ≤ 212k vertices in R3 which send a blue edge towards E3 and at most this many

vertices in B3 which send a red edge towards E3.

Let v be one of these, at most 212k vertices, in B3. We know its blue degree in B3 is at least 15
16 |B2|−2k27k ≥

2k212k + 25k, where we used Claim 1 c), the fact that B3 is obtained from B2 by removing up to 2k27k

vertices and the last inequality follows from Claim 1 a). Since |R3| ≥ |R2| − 2k27k ≥ 2k212k + 2 · 25k
taking the majority colour neighbours of v in R3 and its blue neighbours in B3 using Claim 3 we can find

an H-tie inside R3 ∪ B3 containing v. We move this tie to T and repeat within the remaining sets until

there are no more red edges between the remainder of B3 and E3. We only need to remove at most 212k

vertices so at most this many ties get removed, since we had an excess of 2k212k in our degrees before the

process, at any point during the process we have at least 25k left, as needed by Claim 3. We can similarly

remove any of the at most 212k vertices in R3 which send a red edge towards E. We now take R4 and B4

to be the remaining sets of vertices inside R3 and B3 resp.

Since we removed at most 212k ties in both of our steps above and each has size at most 2k we have

|R4| ≥ |R3| − 2k · 2 · 212k ≥ |R2| − 2k · 27k − 4k212k ≥ |R2| − 214kand similarly |B4| ≥ |B2| − 214k.

The claim provides us with new sets R4 ⊆ R3 and B4 ⊆ B3 and while our set E3 did not change, for

consistency let us set E4 := E3. Let S denote the set of vertices in R4 which have at least k215k blue

neighbours in B4. We first show that if S is big then we can find a blue nH.
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Claim 5. |S| ≤ 215k.

Proof. Towards a contradiction assume |S| > 215k. We will show that we can find at least 215k vertex

disjoint blue copies of H using exactly one vertex from S and having remaining vertices in B4. We will

find these copies one by one, at any point we have used up at most (k− 1)215k vertices from B4. So, any

vertex v ∈ S still has at least 215k available blue neighbours inside B4 and since B4 has no red copy of H

so by Ramsey’s theorem there is a blue copy of H. Replacing some vertex in this copy with v we find our

new copy of H and can continue until we find our collection of 215k blue copies of H. The remainder of

B4 has minimum blue degree at least 15
16 |B2| − 214k − (k − 1)215k ≥ 7

8 |B2| so by Lemma 8 we can tile the

remainder with blue copies of H. In particular, taking into account that the tiling might not be perfect,

we have covered at least |B4| − (k − 1) + 215k ≥ |B2| + |E4| vertices of R4 ∪ B4 ∪ E4 with blue copies

of H. Noting that |B2| = km0 makes a proportion of at least k
2k−α out of R4 ∪ B4 ⊆ R2 ∪ B2 we know

that |B2|+ |E4| makes at least k
2k−α proportion of R4 ∪ B4 ∪ E4. Since, as usual we can cover the same

proportion of T with blue copies of H, this means that as before we get at least N
2k−α > n − 1 vertex

disjoint blue copies of H, which is a contradiction.

Now in a similar manner as before, since we know each member of S has at least 2k · 215k + 25k red

neighbours in R4 we can move at most 215k vertex disjoint H-ties to T which together contained all

vertices of S. Let R5 and B5 be the sets of remaining vertices of R4 and B4 resp. and again we set

E5 := E4. We have |R5| ≥ |R2| − 214k − 2k · 215k ≥ |R2| − 217k and |B5| ≥ |B2| − 217k and the new bit of

structure we obtained is that every vertex of R5 has at most 216k blue neighbours in B5 so that the vast

majority of edges between R5 and B5 is red. See Figure 5 for illustration.

We now obtained enough structure to implement our strategy. Let us define a new colouring c′ of our

complete graph. We will introduce a partition of the vertex set R,B and E, where E = E5 is the

exceptional set we obtained above and we take R to be the union of R5 and k−α vertices from each H-tie

in T while we take B to be a union of B5 and the remaining k vertices from each H-tie in T . In c′ we

keep the same colouring of E = E5 as in our original colouring; we colour R completely red; B completely

blue and all edges in-between R and B red; in-between E and R blue and in-between E and B red. This

means that the colouring has the desired form and it remains to check that there is no H-tie using any

vertices of E in c′ and that if it contains a monochromatic copy of nH then so did our original colouring.

Claim 6. There is no H-tie in c′ which uses at least one vertex of E.

Proof. Observe first that if there were a copy of an H-tie using some vertices of E it would be a subset

of E and a red (2k, 2k)-join with red part in R and blue part in B. So provided we can find in our

original colouring a red (2k, 2k)-join with red part in R5 and blue part in B5 this would imply that we

could find an H-tie using the same subset of vertices from E in our original colouring as well, which is a

contradiction. To see such a join exists note that we can find a red K2k in R5 since it is blue H-free and

has size at least 23k. Since there are at most 2k · 216k blue neighbours of some vertex in this clique the

remaining |B5| − 2k216k ≥ 23k vertices of B5 are joined completely in red to our red K2k. Since they are

red H-free we can find a blue K2k which completes our desired join.

Let us now turn to showing there is no monochromatic nH in c′. Let us assume, towards a contradiction,

that there is a monochromatic nH in c′. Observe that among the n copies of H making this nH there

are at most |E| ≤ 27k copies which intersect E. We claim that we can find the same number of copies

of H in our original colouring, which in addition use the same number of vertices in both R5 and B5 as

they do in R and B in the new colouring. This will be immediate from the following claim.
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Claim 7. We can find 27k disjoint red (k, k)-joins with red part in R5 and blue part inside B5.

Proof. We find our joins one by one, at any point we have used up at most k27k vertices so among the

remaining |R5| − k27k ≥ 22k vertices, since R5 is blue H-free we can find a red Kk. The k vertices of

this clique send at most k216k blue edges towards B5, so they have at least |B5| − k216k − k27k ≥ 22k red

common neighbours among still available vertices of B5, among which we can find a blue Kk, once again

since B5 is red H-free.

Now assign for each of our c′-monochromatic copies of H which intersect E one of the (k, k)-joins we

found above in our original colouring. Looking at any copy of H note that on the union of H ∩ E and

vertices of its assigned join both our original and new colouring are exactly the same, so we can find the

same (in terms of sizes in each part) copy of H in our old colouring, which we refer to as the corresponding

copy.

Let us now remove all copies of H intersecting E in our new colouring and all our corresponding copies

of H in our old colouring. In the old colouring let R6 and B6 be the sets of remaining vertices from R5

and B5 and let t be the number of H-ties making T at this point. Note that |B6| ≥ |B5| − 2k · 27k ≥
|B2| − 217k − 2k · 27k ≥ |B2| − 218k and similarly |R6| ≥ |R2| − 218k. Now, all the remaining copies of H

from our monochromatic nH in c′ belong to R ∪ B and in particular taking into account the number of

vertices used in the removed copies they have only r = |R6| + t(k − α) vertices of R and b = |B6| + tk

vertices of B at their disposal. We know that on these vertices we can find at most
⌊

r
k−α

⌋
red copies

of H since any red copy of H in R ∪ B must use at least k − α vertices of R since its part in B is an

independent set. Since H has no isolated vertices any blue copy of H in R ∪B must be entirely inside B

so we can find at most
⌊
b
k

⌋
disjoint blue copies of H.

If we can show that we can find this many red and blue disjoint copies of H in R6∪B6∪T in our original

colouring we complete the proof since this would imply there was a monochromatic copy of nH in our

original colouring as well. First observe that we can find exactly t copies in either colour in T so the task

reduces to finding
⌊
|R6|
k−α

⌋
disjoint red copies and

⌊
|B6|
k

⌋
disjoint blue copies of H in R6 ∪ B6. Note that

B6 induces a blue graph with minimum degree at least 7
8 |B6|, this is since we obtained it from B2 by

deleting (several times) at most an exponential number of vertices, minimum degree in B2 was 15
16 |B2| and

|B2|/16 ≥ n/2O(k) (using Claim 1) is bigger than any exponential number of deleted vertices. Lemma 8

tells us we can tile it with blue H which gives precisely the desired number of copies. In the red case

similarly R6 still induces a red graph with minimum degree at least 7
8 |R6| and we can tile it with red

copies of Kk−α and our remaining task is to show we can find disjoint sets of α red common neighbours in

B6 for each of our red Kk−α. This is easily achieved since there are at most (k − α)k215k ≤ 216k vertices

sending a blue edge towards a fixed set of vertices of our red Kk−α in R6 and at any point we use up at

most
|R6|
k − α

· α ≤ m0α ≤ m0k − 218k − 216k − α ≤ |B6| − 216k − α,

where in the first inequality we used that R6 ⊆ R2 and |R2| = (k−α)m0, in the second inequality we used

m0(k − α) ≥ m0 which is bigger than any exponential function in k and in the final inequality we used

that |B6| ≥ |B2| − 218k = m0k− 218k so we always have new α vertices of B6 which are joined completely

in red to our current Kk−α. So, indeed we can find our collection of
⌊
|R6|
k−α

⌋
red H’s, completing the

proof.

Observe that our proof gives a lot of additional information on the relations between sizes of R,B and E.

For example, we know that |R|, |B| ≥ m0 − 2O(k) ≥ n/2O(k) − 2O(k) ≥ k27k ≥ k|E|, since they contain R6
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and B6 resp. which we obtain by removing up to 2O(k) vertices from R2, B2 both of which have size at least

m0 and using Claims 1 and 2. We also know1 that |B| ≥ k
2k−αN − 2O(k) ≥ kn− 2O(k) ≥ (k − 1)n ≥ αn,

since B upon removal of 2O(k) vertices covers a proportion of k
2k−α of the graph and using Proposition 11

to lower bound N . It is also not hard to recover these bounds directly from the properties we state.

For example, instead of using Claim 2 we can directly obtain an even stronger bound on |E|. Observe

that E may not contain any monochromatic member of D′(H), defined as the collection of graphs we

can obtain by removing an independent set of H of maximum possible size: α(H)2. To see this note

that if E contained a red H ′ ∈ D′(H) so with k − α vertices then taking this H ′ and k vertices from

B would create an H-tie using vertices of E. Similarly, no such blue H ′ can exist in E. This implies

|E| ≤ r(D′(H)) ≤ r(H) ≤ 4k.

So if we treat H to be of constant size it is fairly easy to check all possible colourings of sets E consisting

of up to 4k vertices and to determine the largest number of monochromatic copies of H we can find. While

technically this strategy allows one to determine r(nH) whenever n is large enough so that Theorem 12

applies, it might seem that in practice it is not of much use. Be that as it may it turns out that in

many interesting cases deducing r(nH) from Theorem 12 is actually fairly straightforward. For example,

this is the case when H is a clique. In addition we have the following estimates which often turn out

to be tight, either in the sense that upper and lower bounds match, or that the argument behind it

is easily strengthened to show either the upper or the lower bound is tight. In order to state it we

will need to define two more families related to D(H). The first one Dc(H) is the family of subgraphs

of H obtained by removing a maximal independent set of H and taking a connected component of

the remainder. Similarly, D′c(H) is the family of subgraphs of H obtained by removing a maximum

independent set of H and taking a connected component of the remainder. For example, if H = C6 we

have D(H) = {2K2, 3K1},D′(H) = {3K1},Dc(H) = {K2,K1} and D′c(H) = {K1}.

Theorem 13. Let H be a connected k-vertex graph and n ≥ 2O(k) then

r(Dc(H),D(H))− 2 ≤ r(nH)− (2|H| − α(H))n ≤ r(D′c(H),D(H))− 2.

Proof. Let us begin with the lower bound. We will take a 2-colouring of a complete graph on (2k−α)n+

r(Dc(H),D(H))−3 vertices whose vertex set we partition into sets R,B and E of size (k−α)n−1, kn−1

and r(Dc(H),D(H)) − 1 resp. We colour all edges inside R red and inside B blue, all edges between R

and B red, E and B red and E and R blue, while we colour E in such a way to avoid any red member

of Dc(H) and any blue member of D(H). Observe first that there are no blue copies of H which use any

vertices from E ∪R since H is assumed to be connected and E contains no member of D(H). Since there

are n|H| − 1 vertices in B we can not fit n disjoint blue copies there. In terms of red copies, the portion

of any red copy of H inside E may be obtained by removing an independent set of H (its part inside

B) and is disconnected from its part in R. This means that its part inside E, provided it is non-empty,

contains a member of Dc(H). So any red copy of H must be completely contained in R ∪ B and hence

needs to use at least k−α vertices of R. Since |R| < n(k−α) this means there can be no red copy of nH.

Turning to the upper bound, let us apply Theorem 12 to obtain a partition of the vertex set of the

complete graph on r(nH) − 1 vertices into sets R,B and E and a colouring of its edges satisfying the

properties stated in the theorem. First, as long as we can find a blue copy of H which uses any vertices

from E we take it out, when we stop, the remaining set E′ contains no blue member of D(H) as it

together with some vertices of R would give another blue copy of H and we always have enough vertices

1Under the (w.l.o.g.) assumption the edges in between R and B are red.
2Recall here that D(H) stands for the family of subgraphs of H obtained by removing maximal independent sets so in

particular D′(H) ⊆ D(H).
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of R remaining since |R| ≥ k|E|. The removed vertices together with all vertices from B can span at most

n|H| − 1 vertices or they would contain a blue nH. Observe also that |R| ≤ (k−α)n− 1 or we can find a

red copy of nH this means E′ has size at least r(D(H),D′c(H)) so it must contain a red H ′ ∈ D′c(H). But

then taking k − α− |H ′| vertices of R and k of B we find an H-tie intersecting E, a contradiction.

The bounds in the above result may seem fairly similar and it is indeed not at all trivial to find an

example for which the bounds do not match. For example, the bounds match for any graph H in which

every maximal independent set is of maximum size. As a concrete example when H = Kk we have

D(H) = Dc(H) = D′c(H) = {Kk−1} which means the above theorem gives Theorem 3 as a corollary.

Finally, let us formally conclude Theorem 2 from Theorem 12.

Proof of Theorem 2. Let n0 be the smallest value of n for which Theorem 12 applies. Our goal is to

show that for any n > n0 we have r(nH) = r((n− 1)H) + 2k−α, where as usual k = |H| and α = α(H).

Let cn be the nH critical colouring guaranteed by Theorem 12 with defining sets R,B and E. We may

assume w.l.o.g. that edges between R and B are red. As discussed previously we may also assume

|R|, |B| ≥ k. We now claim that if we remove k − α vertices from R and k vertices from B we obtain

a colouring without a monochromatic (n − 1)H. This is indeed immediate since if we could find a

monochromatic (n − 1)H then we can extend it into a monochromatic copy of nH using the removed

vertices, since they spanned a red (k − α, k)-join which contains both a red and a blue copy of H. This

implies r((n− 1)H) ≥ r(nH)− (2k − α).

Let now cn−1 be the (n− 1)H critical colouring guaranteed by Theorem 12 with defining sets R′, B′ and

E′. We may assume w.l.o.g. that edges between R′ and B′ are red. As discussed previously we may also

assume |E′| ≤ 2O(k), as well as |R′|, |B′| ≥ k|E′| and |B′| ≥ αn + 2O(k). We now claim that if we add

k−α vertices to R′ and k vertices to B′ we obtain a colouring without a monochromatic nH. To see this

suppose otherwise and assume we can find a monochromatic nH. Assume first the colour is blue. Note

that at most |E′| ≤ 2O(k) of the copies can use a vertex of E′ and any other copy must be completely

contained within the blue part. Removing k vertices making such a copy of H implies we had a blue

(n− 1)H in cn−1, which is a contradiction (we are using the fact all the vertices inside the blue part are

joined to all other vertices in the same way). If the colour was red, similarly we must be able to find a

copy disjoint from E′, which hence must use at least k−α vertices from the red part. Again removing the

k vertices making this copy of H gives a red copy of (n−1)H (we are using here the fact this (n−1)H can

use at most 2O(k) + (n− 1)α vertices from the blue part). This shows r(nH) ≥ r((n− 1)H) + 2k−α.

5 Concluding remarks

Answering the question of Burr, Erdős and Spencer [5] from 1975, in this paper we showed that the

Ramsey number of the copy graph nH settles in its long term behaviour, already when n is exponential

in |H|. As we already discussed in the introduction, this is essentially best possible in general. That said

a conditional improvement may still be possible, namely it could be interesting to show that the long

term behaviour occurs already when n ≥ O(r(H)), since for graphs H with smaller r(H) this would be

a significant improvement over our result. Our arguments definitely seem to offer a lot of potential here.

Perhaps a good starting point would be to show something of the sort is true in the somewhat easier

asymmetric case of r(G,nH) where there is only one place in our proof of Theorem 4 which really requires

an exponential number of vertices.

While we decided to focus on the original, classical instance of the problem raised already by Burr, Erdős

and Spencer in order to present our new ideas more clearly our methods are fairly robust. For example,
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a natural generalisation is to consider r(G,H) where G and H are taken to be disjoint unions of n and

m graphs taken from some finite families G and H, respectively. This was considered by Burr in [3],

where he established a result along the lines of our Theorem 12, but with a much stronger requirement

on how large min(n,m) should be. Our methods should allow one to obtain similar, essentially optimal

improvement in this setting as well. This together with only assuming a lower bound on max(n,m) has

the makings of a nice student project.

A final further direction considers an analogous question in other settings. A particularly nice setting

that comes to mind is that of tournaments. Here, a nice starting point may be the natural analogue of

Theorem 3 which asks for how big a tournament you need to take in order to find n vertex disjoint copies of

a transitive tournament on k vertices, denoted Trk. Here the answer is that the vertex set of any sufficiently

large tournament may be decomposed into vertex disjoint Trk. This result is attributed to Erdős (see [21])

and independently to Lonc and Truszcyński [16]. The next question is how big is “sufficiently large”?

Erdős’ argument needs 4k vertices while a more general approach of Lonc and Truszcyński requires a

double exponential number. Erdős’ argument was matched by Caro [6] who strengthened the general

approach of [16]. On the other hand, the best known result, due to Erdős and Moser from 1964 [9],

allowing one to find even a single copy of Trk requires at least about 2k vertices. After the first version

of this paper appeared on Arxiv Zach Hunter observed that one can easily modify Lemma 8 by replacing

cliques with transitive tournaments in order to improve the bounds of Erdős and Caro and show that

kO(1)2k vertices already suffice to tile with Trk. This might be viewed as a single colour analogue of our

Ramsey problem which would be trivial in the undirected case, so perhaps a more fitting analogue would

be to ask what happens if the tournament is 2-coloured and we consider the so called oriented Ramsey

numbers (see [1] for more details and definitions).
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