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PROOF OF A CONJECTURE ON INDUCED SUBGRAPHS

OF RAMSEY GRAPHS

MATTHEW KWAN AND BENNY SUDAKOV

Abstract. An n-vertex graph is called C-Ramsey if it has no clique or inde-
pendent set of size C logn. All known constructions of Ramsey graphs involve
randomness in an essential way, and there is an ongoing line of research to-
ward showing that in fact all Ramsey graphs must obey certain “richness”
properties characteristic of random graphs. More than 25 years ago, Erdős,
Faudree, and Sós conjectured that in any C-Ramsey graph there are Ω(n5/2)
induced subgraphs, no pair of which have the same numbers of vertices and
edges. Improving on earlier results of Alon, Balogh, Kostochka, and Samotij,

in this paper we prove this conjecture.

1. Introduction

An induced subgraph of a graph is said to be homogeneous if it is a clique
or independent set. A classical result in Ramsey theory, proved in 1935 by Erdős
and Szekeres [18], is that every n-vertex graph has a homogeneous subgraph with at
least 1

2 log2 n vertices. On the other hand, Erdős [14] famously used the probabilistic
method to prove that, for all n, there exists an n-vertex graph with no homogeneous
subgraph on 2 log2 n vertices. Despite significant effort (see for example [8, 11, 12,
24]), there are no nonprobabilistic constructions of graphs with comparably small
homogeneous sets.

For some fixed C, say an n-vertex graph is C-Ramsey if it has no homogeneous
subgraph of size C log2 n. It is widely believed that C-Ramsey graphs must in some
sense resemble random graphs, and this belief has been supported by a number of
theorems showing that certain “richness” properties characteristic of random graphs
hold for all C-Ramsey graphs. The first result of this type was due to Erdős and
Szemerédi [19], who showed that C-Ramsey graphs have density bounded away
from 0 and 1. This basic result was the foundation for a large amount of further
research; over the years many conjectures have been proposed and resolved as our
understanding of Ramsey graphs has improved. Improving a result of Erdős and
Hajnal [16], Prömel and Rödl [32] proved that for every constant C there is c > 0
such that every n-vertex C-Ramsey graph contains every possible graph on c log2 n
vertices as an induced subgraph. Shelah [33] proved that every n-vertex C-Ramsey
graph contains 2Ω(n) nonisomorphic induced subgraphs. Answering a question of
Erdős, Faudree, and Sós [20,21], Bukh and Sudakov [10] showed that every n-vertex
C-Ramsey graph has an induced subgraph with Ω(

√
n) different degrees.
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Despite this progress, there are several problems that have remained open for
quite some time. Two of them deal with the variation in the numbers of edges and
vertices of induced subgraphs of Ramsey graphs. For a graph G, let

Φ(G) = {e(H) : H is an induced subgraph of G}.
Erdős and McKay [20, 21] conjectured that for any C there is δ > 0 such that for
every n-vertex C-Ramsey graph G, the set Φ(G) contains the interval

{
0, . . . , δn2

}
.

Progress on this conjecture has come from two directions. First, Alon, Krivelevich,
and Sudakov [5] proved a weaker result with nδ in place of δn2. Second, recently
Narayanan, Sahasrabudhe, and Tomon [30] proposed a natural relaxation of the
Erdős–McKay conjecture that Φ(G) contains at least Ω

(
n2

)
values (not necessarily

forming an interval). They showed that |Φ(G)| = n2−o(1), and in [27] we proved
their conjecture that Ramsey graphs induce subgraphs of quadratically many sizes.

Next, for a graph G let

Ψ(G) = {(v(H), e(H)) : H is an induced subgraph of G}.
Strengthening a conjecture of Alon and Bollobás, it was conjectured by Erdős,
Faudree, and Sós that for any fixed C and any n-vertex C-Ramsey graph G, we have
|Ψ(G)| = Ω

(
n5/2

)
. This problem appeared in several of Erdős’ problem papers [15,

20, 21]. Of course, since |Ψ(G)| ≥ |Φ(G)|, our result in [27] implies that |Ψ(G)| =
Ω

(
n2

)
, which was also proved much earlier by Alon and Kostochka [4]. Until now,

the best progress on the Erdős–Faudree–Sós conjecture was due to Alon, Balogh,
Kostochka, and Samotij [1], who proved it with the exponent 2.369 in place of 5/2.

In this paper we establish the Erdős–Faudree–Sós conjecture, combining ideas
from many of the aforementioned papers.

Theorem 1.1. For any fixed C > 0, there is γ > 0 such that every n-vertex
C-Ramsey graph G has |Ψ(G)| = γn5/2.

As mentioned in [15], we remark that the order of magnitude n5/2 is best possible.
This can be seen by considering a random graph G(n, 1/2), where each edge is
present independently with probability 1/2 (it is well known that this is an O(1)-
Ramsey graph with probability 1 − o(1)). Briefly, one can use a concentration
inequality to show that with probability 1−o(2n), the number of edges in any fixed
vertex subset of G(n, 1/2) lies in an interval of length O

(
n3/2

)
, and by the union

bound it follows that with probability 1−o(1), for each 0 ≤ � ≤ n there are at most
O

(
n3/2

)
different numbers of edges among �-vertex induced subgraphs. This proves

that |Ψ(G(n, 1/2))| = O
(
n5/2

)
with probability 1− o(1). See also [4, Section 4] for

further discussion of Ψ(G(n, 1/2)).
The rest of the paper is organised as follows. In Section 2 we give a very high-

level outline of the basic ideas of our proof and briefly compare it to previous work.
In Section 3 we collect a number of basic tools which will be useful for our proof
(some of which are standard, and some of which are new), and in Section 4 we
present the technical details of our proof. Finally, in Section 5 we discuss some
potential directions for further research.

1.1. Notation and basic definitions. We use standard asymptotic notation
throughout. For functions f = f(n) and g = g(n) we write f = O(g) to mean
that there is a constant C such that |f | ≤ C|g|; we write f = Ω(g) to mean there
is a constant c > 0 such that f ≥ c|g| for sufficiently large n; we write f = Θ(g) to
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mean that f = O(g) and f = Ω(g); and we write f = o(g) or g = ω(f) to mean that
f/g → 0 as n → ∞. All asymptotics are as n → ∞ unless stated otherwise. Floor
and ceiling symbols will be systematically omitted where they are not crucial.

For two multisets A and B, let A�B be the set of elements which have different
multiplicities in A and B (so if A and B are ordinary sets, then A�B is the ordinary

symmetric difference (A \B) ∪ (B \A)). For a set A, we denote by
(
A
k

)
the set of

all k-subsets of elements of A.
We also use standard graph theoretic notation throughout. In particular, in a

graph, e(A) is the number of edges which are contained inside a vertex subset A,
and e(A,B) is the number of edges between two disjoint vertex subsets A and B.
For a vertex v and a set of vertices A, we denote the set of neighbours of v in A by
NA(v) = N(v) ∩ A, and we denote the degree of v into A by dA(v) = |NA(v)|.

We also make some less standard graph theoretic definitions that will be con-
venient for the proof. For a set of vertices v = {v1, . . . , vk}, let N(v) (resp.,
NU (v)) be the multiset union of N(v1), . . . , N(vk) (resp., of NU (v1), . . . , NU (vk)).
Let d(v) = d(v1) + · · ·+ d(vk) (resp., dU (v) = dU (v1) + · · ·+ dU (vk)) be the size of
N(v) (resp., of NU (v)), accounting for multiplicity.

Finally, we remark that we will often use variable names of the form nA to denote
the size of a set A. (This is really only a convention, not a definition; we will often
introduce nA before the set A has actually been defined.)

2. Discussion and main ideas of the proof

According to Erdős [20], at the time the problem was proposed, he and Sós had
already proved the weaker bound that |Ψ(G)| = Ω

(
n3/2

)
for O(1)-Ramsey graphs.

In fact, there are at least two reasonably simple ways to prove this weak bound,
and both are instructive for our proof. To describe these, we define

Ψ(�,G) = {e(H) : H is an �-vertex induced subgraph of G}.

To prove that |Ψ(G)| = Ω
(
n3/2

)
, it suffices to prove that |Ψ(�,G)| = Ω(

√
n) for

each of Ω(n) different choices of �.
One way to do this, as described by Alon and Kostochka [4], is to use a discrep-

ancy theorem and a switching argument. Erdős, Goldberg, Pach, and Spencer [22]
proved that in any n-vertex graph G with density bounded away from 0 and 1, and
any α ∈ (0, 1) bounded away from 0 and 1, there are two induced subgraphs G[W−]
and G[W+], with |W−| = |W+| = αn, such that e(W+) − e(W−) = Ω

(
n3/2

)
.

Recalling the Erdős–Szemerédi theorem that O(1)-Ramsey graphs have density
bounded away from 0 and 1, we can find such W− and W+ in any n-vertex
O(1)-Ramsey graph G. One can then obtain a sequence of induced subgraphs
G[W0], . . . , G[Wαn] by starting with W0 = W− and switching vertices one by one
from W− into W+. Formally, fix an ordering w−

1 , . . . , w
−
αn of W− and an ordering

w+
1 , . . . , w

+
αn of W+, and let

Wi =
{
w−

1 , . . . , w
−
αn−i

}
∪

{
w+

1 , . . . , w
+
i

}
.

Then, we have |e(G[Wi])− e(G[Wi−1])| =
∣∣dWi

(
w+

i

)
− dWi−1

(
w−

αn−i+1

)∣∣ ≤ αn,

so as e(G[Wi]) varies over an interval of length Ω
(
n3/2

)
, it must attain Ω(

√
n)

different values. This proves |Ψ(αn,G)| = Ω(
√
n), and we can apply this fact for

Ω(n) different choices of α = �/n, proving that |Ψ(G)| = Ω
(
n3/2

)
. We remark that
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5574 MATTHEW KWAN AND BENNY SUDAKOV

this basic approach was refined by Alon and Kostochka [4] and by Alon, Balogh,
Kostochka, and Samotij [1], to prove stronger bounds.

A second completely different way to prove that |Ψ(G)| = Ω
(
n3/2

)
, from Bukh

and Sudakov [10, Proposition 3.1], is to make use of the fact that Ramsey graphs
have induced subgraphs with many distinct degrees. Specifically, what Bukh and
Sudakov proved was that in any O(1)-Ramsey graph, there is an induced subgraph
with Ω(n) vertices which is diverse in the sense that most pairs of vertices have
very different neighborhoods (to be precise, the symmetric difference of their neigh-
borhoods has size Ω(n)). In an n′-vertex diverse graph (with n′ = Ω(n)), consider
a random subset U of αn′ vertices (with α ∈ (0, 1) bounded away from 0 and 1).
By the diversity assumption, for most pairs of vertices u, v their degrees dU (u),
dU (v) into U are not too strongly correlated, and the probability they are exactly
equal turns out to be O(1/

√
n). (A simple intuitive reason for this probability

is that dU (u) − dU (v) is approximately normally distributed with standard devi-
ation Θ(

√
n)). A simple linearity-of-expectation argument then shows that there

is an outcome of G[U ] with Ω(
√
n) different degrees. Finally, given an αn′-vertex

graph with Ω(
√
n) different degrees, we can obtain (αn′ − 1)-vertex graphs with

Ω(
√
n) different numbers of edges, simply by choosing different vertices to delete.

This proves that |Ψ(αn′ − 1, G)| = Ω(
√
n), and again applying this fact for Ω(n)

different choices of α = �/n′, it follows that |Ψ(G)| = Ω
(
n3/2

)
.

Observe that both the approaches described above seem to be somewhat com-
plementary. The discrepancy/switching argument, in its most basic form, gives
Ω(

√
n) different values of e(G[U ]) that are distributed fairly evenly over a range

of length Ω
(
n3/2

)
. On the other hand, the diversity/anticoncentration argument

gives Ω(
√
n) values of e(G[U ]) contained in an interval of length O(n). It is natural

to try to combine both types of arguments to obtain better bounds.
In fact, recent developments bounding |Φ(G)| by Narayanan, Sahasrabudhe, and

Tomon [30] and ourselves [27], make this idea seem even more promising. In [30],
the authors made the simple observation (using the pigeonhole principle) that in
any n-vertex graph G, there is a set A of

√
n vertices with degrees lying in an

interval of length
√
n. If G is diverse, and U is a random vertex set of linear size,

then the degrees dU (x), for x ∈ A, are likely to take n1/2−o(1) different values, very
tightly packed in an interval of length O(

√
n). By augmenting U with different

combinations of vertices in A, we can obtain subgraphs of many different sizes, all
lying in a fixed interval of length O(n). Adapting these ideas to our context, and
using the further refinements in [27], one can prove that we can actually obtain
Ω(n) values of e(G[U ∪ Y ]) among subsets Y ⊆ A of a certain fixed size, tightly
packed in an interval of length O(n).

So, as a rough plan to prove Theorem 1.1, one might start with vertex subsets
W−,W+ of fixed size � = Θ(n) such that e(W+) − e(W−) = Ω

(
n3/2

)
, provided

by a discrepancy theorem. One would then switch between W− and W+ to obtain
subsets W1, . . . ,Wt such that among the e(Wi) there are Ω(

√
n) different values

e(Wi1), e(Wi2), . . . each separated by a distance of Ω(n). One might then hope to
somehow use diversity and anticoncentration to show that each such Wij has an

“augmenting set” Aj such that e
(
Wij ∪ Y

)
takes Ω(n) different values as Y varies

over subsets of Aj with some fixed size f(n). One would moreover hope that for
each j, the augmented values e

(
Wij ∪ Y

)
fall in a specific interval of length O(n)

that does not intersect the corresponding interval for any other j. This would prove
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that |Ψ(�+ f(n), G)| = Ω
(
n3/2

)
, and this fact could be applied for Ω(n) different

choices of � to prove that |Ψ(G)| = Ω
(
n5/2

)
.

There are several serious challenges associated with this kind of approach. First,
we need some way to introduce a random set U of linear size in order to use
anticoncentration for our augmenting sets. We have very little control over the
number of edges in such a random set (this number has variance Θ

(
n3

)
), so it

seems we must use the same random set for each Wi, and apply our switching
argument after our random set has been exposed. However, it seems that doing
this would introduce new complications: the anticoncentration probabilities we are
interested in are of order O(1/

√
n), which is not small enough to apply the union

bound over all i, given a single source of randomness. (It does not suffice to prove
things for most i, because the subsequence (ij) arising from the switching argument
comprises a negligible fraction of all i).

Our approach is to first prepare vertex sets U0,W−,W+, each of a certain linear
size, such that(

e
(
W+

)
+ αe

(
W+, U0

))
−

(
e
(
W−)

+ αe
(
W−, U0

))
= Ω

(
n3/2

)
for some α ∈ (0, 1). Then, as above, we switch between W− and W+ to obtain a
sequence of sets Wi, and identify a well-separated subsequence of Ω(

√
n) sets Wij

such that (
e
(
Wij

)
+ αe

(
Wij , U

0
))

−
(
e
(
Wij−1

)
+ αe

(
Wij−1

, U0
))

= Ω(n)

for each j. Only then do we choose a random subset U ⊆ U0 of size α
∣∣U0

∣∣,
which we may use for anticoncentration. By construction, the e

(
Wij ∪ U

)
are well-

separated in expectation, and the added randomness does not too severely disturb
the increments e(Wi ∪ U)− e(Wi−1 ∪ U). Because we do not have any real control
over the spacing of the ij , we must additionally carefully compensate for the buildup
of deviations caused by “large gaps” between the ij .

Of course, before we even expose the random set U we need to decide which
vertices should be in the augmenting sets Aj . Recall that we would like to be able
to use anticoncentration to obtain Ω(n) subgraph sizes of the form e

(
Wij ∪ U ∪ Y

)
for Y ⊆ Aj of a fixed size. Provided that we have been carefully maintaining
appropriate diversity properties through the construction, the only real requirement
for this is that the Aj are sufficiently large (of size at least Ω(

√
n)). However,

ensuring that the different Aj do not “interfere” with each other is a much more
delicate task. With the pigeonhole principle, for each j we can show that there
are

√
n vertices v such that each dWij

(v) + αdU0(v) is contained in an interval Ij

of length
√
n, and we might hope to use such a set of vertices as our augmenting

set Aj . However, the pigeonhole principle gives us no guarantee of “consistency”
between different j, and it might happen that the intervals Ij jump around in such
a way that there is a lot of overlap between the augmented values e

(
U ∪Wij ∪ Y

)
for different j. It seems to be quite difficult to carefully choose the Aj in such a
way that the Ij are well behaved.

Instead, we sidestep this issue, with the insight that it is not actually necessary
for all the vertices in Aj to have similar degrees into Wij ∪ U ; it suffices that Aj

has a large hypergraph matching Mj ⊆
(
Aj

k

)
, such that the sums dWij

∪U (v) =

dWij
∪U (v1)+ · · ·+ dWij

∪U (vk) are similar for each v = {v1, . . . , vk} ∈ Mj . We may

Licensed to ETH-Zentrum. Prepared on Thu Oct  3 06:03:39 EDT 2019 for download from IP 129.132.146.74.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5576 MATTHEW KWAN AND BENNY SUDAKOV

treat the edges of Mj as we would treat single vertices, forming our augmented
values e

(
U ∪Wij ∪

⋃
v∈Z v

)
from subsets Z ⊆ Mj .

Being able to use a hypergraph matching instead of a set of vertices affords us a
lot of flexibility. For fixed K ∈ N, there are Ω

(
nK

)
sets of K vertices, and by the

pigeonhole principle, Ω
(
nK−3

)
of these K-sets v have exactly the same values of

dW−(v), the same values of dW+(v), and the same values of dU0(v). If we obtain
the Wi by switching randomly between W− and W+, then we can show that the
degrees dWi

(v) are concentrated around a certain convex combination of dW−(v)
and dW+(v). In this way we can produce a collection of K-sets v such that the
degrees dWij

∪U (v) are quite well behaved.

Of course, these K-sets are not disjoint, but for large K we may apply a weak
form of the sunflower lemma of Erdős and Rado [17], to produce a hypergraph

matching M ⊆
(
V
k

)
(with k ≤ K) of almost linear size, which has similarly well-

behaved degrees. With this as a starting point, it becomes feasible to use the
pigeonhole principle to obtain appropriate submatchings M ′

j ⊆ M , and modulo a
lot of technical details we are able to more or less implement the plan described
above. To summarize, for each of

√
n choices of j we use anticoncentration and

a generalized notion of diversity to produce Ω(n) values of e
(
U ∪Wij ∪

⋃
v∈Z v

)
among Z ⊆ M ′

j of a certain fixed size in such a way that there is little overlap

between the values for different j. This gives us Ω
(
n3/2

)
subgraphs with the same

number of vertices and different numbers of edges, and varying the size of U allows
us to prove that |Ψ(G)| = Ω

(
n5/2

)
, as desired.

3. Basic tools

3.1. Diverse neighborhoods in Ramsey graphs. In [10], Bukh and Sudakov
introduced the notion of diversity: an n-vertex graph is said to be diverse if
|N(x)�N(y)| = Ω(n) for most pairs of distinct vertices x, y. We will need a slightly
stronger notion than diversity, which we introduced in [27]. Say an n-vertex graph
is (δ, ε)-rich if for any vertex subset W with |W | ≥ δn, at most nδ vertices v have

|N(v) ∩W | < ε|W | or
∣∣∣N(v) ∩W

∣∣∣ < ε|W |. Note that a graph which is (δ, ε)-rich is

also (δ′, ε)-rich if δ′ > δ. The next lemma appears as [27, Lemma 4], showing that
Ramsey graphs contain large rich induced subgraphs.

Lemma 3.1. For any C, δ > 0, there exists ε = ε(C) > 0 and c = c(C, δ) > 0 such
that every n-vertex C-Ramsey graph contains a (δ, ε)-rich induced subgraph on at
least cn vertices.

In [27], we introduced (δ, ε)-richness to derive a type of diversity for pairs of
vertices. Here we will need a type of diversity for larger sets of vertices. (recall from
Section 1.1 the nonstandard multiset definitions of N(x), N(y), and N(x)�N(y)).

Lemma 3.2. Fix k ∈ N, and let G be a (δ, ε)-rich graph on an n-vertex set V .

Then, for each x ∈
(
V
k

)
with

∣∣⋂
v∈x N(v)

∣∣ ≥ δn, one cannot find a collection of nδ

vertex subsets y ∈
(
V
k

)
(disjoint from x and each other) such that |N(x)�N(y)| <

δεn.

Proof. Let W =
⋂

v∈x N(v). Suppose the statement of the lemma were false, and
such a collection Y of vertex subsets existed. Then, for each y ∈ y, for y ∈ Y , we
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would have
∣∣∣N(y) ∩W

∣∣∣ ≤ |N(x)�N(y)| < ε|W |, and the set of all such y would

contradict (δ, ε)-richness. �

Lemma 3.2 only applies to x ∈
(
V
k

)
such that

⋂
v∈x N(v) is large. In order

to apply it, we next show that in a rich graph,
⋂

v∈x N(v) is large for almost all

x ∈
(
V
k

)
.

Lemma 3.3. Fix k ∈ N, and let G be a (δ, ε)-rich graph on an n-vertex set V , for

δ ≤ εk−1. Then there are at most nk−1+δ subsets v ∈
(
V
k

)
such that

∣∣⋂
v∈v N(v)

∣∣ <
εkn.

Proof. We will prove by induction that there are at most qnq−1+δ “bad” ordered
q-tuples v ∈ V q such that

∣∣⋂
v∈v N(v)

∣∣ < εqn for all 1 ≤ q ≤ k. This will prove that

there are at most knk−1+δ/k! ≤ nk−1+δ subsets v ∈
(
V
k

)
such that

∣∣⋂
v∈v N(v)

∣∣ <
εkn.

First note that the base case q = 1 follows directly from (δ, ε)-richness, with
W = V . Then, assume for induction that our desired bound holds for q − 1; we
will prove it for q. First, there are at most (q − 1)nq−1+δ bad q-tuples obtained by
appending a vertex to a bad (q − 1)-tuple. Then, for each (q − 1)-tuple v which
is not bad (meaning

∣∣⋂
v∈v N(v)

∣∣ ≥ εq−1n), by (δ, ε)-richness there are at most nδ

vertices w with
∣∣N(w) ∩

⋂
v∈v N(v)

∣∣ < ε
∣∣⋂

v∈v N(v)
∣∣, meaning that there are at

most nq−1+δ bad-q-tuples that can be obtained by appending a vertex to a not-bad
(q − 1)-tuple, and at most qnq−1+δ bad q-tuples total. �
3.2. Tools from extremal (hyper)graph theory. We will make frequent use
of Turán’s theorem to find large independent sets in various auxiliary graphs. The
following form of the theorem appears, for example, in [6].

Proposition 3.4. Every n-vertex graph G contains an independent set of size at
least ∑

v∈V (G)

1

d(v) + 1
≥ n2∑

v∈V (G)(d(v) + 1)
= Ω

(
min

{
n,

n2

e(G)

})
.

Next, a sunflower in a hypergraph is a subgraph in which every pair of edges has
the same intersection (this common intersection is called the kernel, and removing
the kernel from each edge gives the petals). We will need the following weak form
of the Erdős–Rado sunflower lemma [17], which one can easily prove by induction
on the uniformity of a hypergraph.

Lemma 3.5. Fix k ∈ N, and let H be a k-uniform hypergraph with m edges. Then
H contains an Ω

(
m1/k

)
-edge sunflower.

3.3. Probabilistic tools. We will need concentration and anticoncentration in-
equalities for random variables arising from random subsets of given sizes. Say a
random variable X is of (n, p, b)-hypergeometric type if it can be expressed in the
form X =

∑
i∈I ai, where a1, . . . , an ∈ R are fixed, |ai| ≤ b for each i, and I is

a uniformly random subset of {1, . . . , n} of size pn. The following concentration
lemma follows directly from [25, Corollary 2.2].

Lemma 3.6. Suppose X is of (n, p, b)-hypergeometric type. Then for any t ∈ R,

Pr(|X − EX| ≥ t) = exp

(
−Ω

(
t2

nb2 min{p, 1− p}

))
.
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Next, say that X as above (of (n, p, b)-hypergeometric type) is of (n, p, b, r)∗-
hypergeometric type if |ai| ≥ 1/b for at least r indices i (that is, many ai are
bounded away from zero as well as being bounded in size). The following central
limit theorem directly follows from a classical quantitative central limit theorem
first proved by Bikelis [9] (see also [26]).

Lemma 3.7. Fix b > 0, and suppose X is of (n, p, b, n/b)
∗
-hypergeometric type,

with |EX| ≤ n/(2b2). Let F be the distribution function of (X − EX)/
√
VarX, and

let G be the standard Gaussian distribution function. Then for all z ∈ R,

|F (z)−G(z)| = O

(
1√

p(1− p)n

)
.

We only need Lemma 3.7 for anticoncentration, so we state a simple corollary
for later use.

Lemma 3.8. Suppose X is of (n, p,O(1),Ω(n))
∗
-hypergeometric type. Then, for

any −
√
n < x <

√
n,

Pr(X = x) = O

(
1√

p(1− p)n

)
.

Proof. If |EX| ≤ n2/3, then the desired result follows from Lemma 3.7. Otherwise,

the desired result follows from Lemma 3.6, since with probability 1− e−Ω(n1/3), X
does not even fall in the interval between −

√
n and

√
n. �

We also make the following simple observation, which will be convenient to
show that the various discrepancy properties we are able to establish will persist
with positive probability through certain kinds of random sampling. If a random
variable is of (n, 1/2, b)-hypergeometric type for some n and b, say it is of (1/2)-
hypergeometric type.

Lemma 3.9. Suppose X is of (1/2)-hypergeometric type. Then, X − EX has
the same distribution as EX − X, and in particular, X ≥ EX with probability at
least 1/2.

Proof. Suppose that X =
∑

i∈I ai, and let X =
∑

i/∈I ai. Since I is a random subset
of exactly half the indices {1, . . . , n}, it has the same distribution as its complement
I, so X has the same distribution as X ′. But observe that

(X +X ′)/2 =

n∑
i=1

ai/2 = EX = EX ′,

so EX −X = X ′ − EX ′. �

We remark that Lemma 3.6 (respectively, Lemma 3.9) trivially remains true
when the relevant random variables are translated by a fixed constant. We will
therefore frequently abuse notation and say that translations of random variables
of (n, p, b)-hypergeometric type (respectively, (1/2)-hypergeometric type) are them-
selves of (n, p, b)-hypergeometric type (respectively, (1/2)-hypergeometric type).

Throughout the proof we will also frequently use Markov’s inequality; the state-
ment and proof can be found, for example, in [6].
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3.4. Switching analysis. In this subsection we collect some simple lemmas that
will be useful for tracking how certain parameters change as we gradually switch
from one vertex subset to another. First, we show that if we move between two
distant values, and most of the incremental steps are not too extreme, then there
are many intermediate steps with well-separated values.

Lemma 3.10. Consider a sequence p0, . . . , pτ with pτ−p0 ≥ λ. Let Δi = pi−pi−1,
and suppose that for some ρ we have∑

i:Δi>ρ

Δi ≤ κ.

Then, for any σ ≤ ρ there is an increasing subsequence 0 = i1, . . . , is = τ , with
s ≥ λ/(ρ+ σ)− κ/ρ, such that pij − pij−1

≥ σ for all 1 ≤ j ≤ s.

Proof. We view pi as the position of a “particle” at “time” i. In the interval from
p0 to pτ , consider λ/(ρ+ σ) subintervals of length ρ separated by a distance of at
least σ, with the first subinterval containing p0 and the last containing pτ . We say
a subinterval I is “further” than a subinterval I ′ if I is closer to pτ than I ′.

Let i1 = 0, and let I1 be the subinterval containing p0. For j > 1, let ij > ij−1

be the first time i that pi is in a subinterval further than Ij−1, and let Ij be this
subinterval. This process terminates when there is no subinterval further than Ij
(let s = j for this value of j, and redefine is = τ ). Observe that at most κ/ρ
intervals were skipped, so s ≥ λ/(ρ+ σ)− κ/ρ. �

Next, the following lemma shows that if an ensemble of values move slowly in a
bounded region, then at least one value “follows the crowd” for quite a long time.

Lemma 3.11. Consider an interval I ⊆ Z with |I| = λ, and consider a “time
horizon” τ ∈ N. Consider a set of “particles” R, and for each a ∈ R, let pi(a) ∈ I
represent the “position” of a at time i, in such a way that |pi(a)− pi−1(a)| ≤ ρ for
each 0 < i ≤ τ (that is, the particles move with “speed” at most ρ). For σ, μ > 0,
say a particle a is lonely at time 0 ≤ i ≤ τ if

|{b ∈ R : |pi(b)− pi(a)| ≤ σ}| < μ.

That is, a particle is lonely if there are few other particles close to it. Now if
τ ≤ |R|σ2/(8μρλ), then there is a particle a which is never lonely.

Proof. Say a particle a is crowded if

|{b ∈ R : |pi(b)− pi(a)| ≤ σ/2}| ≥ μ.

At any time i, fewer than 2μλ/σ particles are not crowded. To see this, divide I
into 2λ/σ subintervals of length σ/2. If a subinterval contains at least μ particles,
then all particles in that subinterval are crowded.

Now if a particle is crowded for every time jσ/(4ρ) (among j ∈ N with j ≤
4ρτ/σ), then it is never lonely. To see this, observe that it takes at least σ/(4ρ)
time steps for a crowded particle to become lonely. This is because the separation
between that particle and the particles within distance σ/2 must increase by σ/2,
and if two particles are moving away from each other, their separation increases
by at most 2ρ per time step. By this fact and the preceding paragraph, there are
fewer than (4ρτ/σ)(2μλ/σ) particles that are ever lonely, and if 8ρτμλ/σ2 ≤ |R|,
then there is a particle that is never lonely. �
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4. Proof of Theorem 1.1

As in Section 2, define

Ψ(�,G) = {e(H) : H is an �-vertex induced subgraph of G}.

As discussed in Section 2, in the previous bounds on |Ψ(G)| in [1,4,10], the approach
was to show that Ψ(�,G) is large for each of Ω(n) specific choices of �. In this paper
it will be convenient to have slightly more flexibility: we show that Ψ(�′, G) is large
for Ω(n) different choices of �′, but we do not specify precisely which choices they
are. We will prove the following lemma, which suffices to prove Theorem 1.1.

Lemma 4.1. For any fixed C, there is c > 0 such that the following holds. For any
n-vertex C-Ramsey graph G, there are f, h ∈ N such that for any cn ≤ � ≤ 2cn,
either |Ψ((�− f) + h,G)| = Ω

(
n3/2

)
or |Ψ(2(�− f) + h,G)| = Ω

(
n3/2

)
.

Proof of Theorem 1.1 given Lemma 4.1. We have

|Ψ(G)| ≥ 1

2

2cn∑
�=cn

(|Ψ((�− f) + h,G)|+ |Ψ(2(�− f) + h,G)|) = Ω
(
n5/2

)
. �

The first ingredient for the proof of Lemma 4.1 will be the following lemma
asserting the existence of a collection of vertex sets with certain discrepancy, regu-
larity, and diversity properties.

Lemma 4.2. For any fixed C, there are K ∈ N and c > 0 such that the following
holds. For any n-vertex C-Ramsey graph G, any α = α(n) ≥ 1/2, and any cn ≤
� ≤ 2cn, there are disjoint vertex sets W−,W+, U0, A, and a k-uniform hypergraph
perfect matching M ⊆

(
A
k

)
of A for some k ≤ K, satisfying the following properties:

(1) |W−| = |W+| = cn, |A| = Ω
(
n3/4

)
, and either

∣∣U0
∣∣ = � or

∣∣U0
∣∣ = 2�;

(2)
(
e(W+) + αe

(
U0,W+

))
−

(
e(W−) + αe

(
U0,W−))

= Ω
(
n3/2

)
;

(3) there are dW− , dW+ , dU0 ∈ N such that dW−(v) = dW− , dW+(v) = dW+ ,
and dU0(v) = dU0 for all v ∈ M ; and

(4) for each {x,y} ∈
(
M
2

)
, we have |NU0(x)�NU0(y)| = Ω(n).

Here, the implied constants in all asymptotic notation depend on C but not α.

We will prove Lemma 4.2 in Section 4.1. We remark that our proof can be easily
modified to give |A| = Ω(n1−η) for any η > 0, and all that we actually need for
the proof of Lemma 4.1 is that |A| = Ω(n1/2+η) for some η > 0. The choice of the
exponent 3/4 is merely for concreteness.

The next ingredient is the following lemma, showing that with positive probabil-
ity we can augment a random set of vertices in many different ways to get induced
subgraphs with many different numbers of edges.

Lemma 4.3. Consider any nD = nD(n) ∈ N with nD = ω(log n), and suppose in a
graph G we have disjoint vertex subsets W,A,U0 and a hypergraph perfect matching
M ⊆

(
A
k

)
for some k = O(1), satisfying the following properties.

(1)
∣∣U0

∣∣ ≥ 3nD, and |M | = Ω
(√

nD

)
;

(2) |NU0(x)�NU0(y)| = Ω
(∣∣U0

∣∣) for each {x,y} ∈
(
M
2

)
; and

(3) there are dW , dU0 ∈ N such that dU0(v) = dU0 and dW (v) = dW + o
(√

nD

)
for all v ∈ M .
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Then, there are B = O(1) and δ = Ω(1) (depending on the implied constants in the
above asymptotic notation, but not depending on nD) such that the following holds.
Consider any nZ ≤ δ

√
nD, let D be a uniformly random subset of nD elements of

U0, let U = U0 \D, and define α to satisfy nD = (1− α)|U0|. With probability at
least 1/4,∣∣∣∣∣

{
e

(
W ∪ U ∪

⋃
z∈Z

z

)
: Z ⊆ M, |Z| = nZ ,

∣∣∣∣∣e
(
U,

⋃
z∈Z

z

)
− αnZdU0

∣∣∣∣∣ ≤ BnD

}∣∣∣∣∣
= Ω(nZ

√
nD).

We will prove Lemma 4.3 in Section 4.2, using some ideas from [27, 30]. Inter-
preting its conclusion in words, we state that one can obtain Ω

(
nZ

√
nD

)
induced

subgraphs with different numbers of edges by augmenting W ∪ U with different
subsets Z ⊆ M of size nZ . Moreover, this is still true if we restrict our attention to
those subsets Z such that there are about the expected number of edges αnZdU0

between U and Z.
Finally, we show how to combine Lemma 4.2 and Lemma 4.3 to prove Lemma 4.1.

Proof of Lemma 4.1. Apply Lemma 4.2 with α = (�− c′n)/�, for some small c′

(depending on c) that will be chosen later to satisfy certain inequalities. Until we
finally determine the value of c′, the constants implied by all asymptotic notation
in this section will be independent of c′ (that is, if say f ≤ c′n, we may write
f = O(c′n), but not f = O(n)). Choose nD to satisfy nD = (1 − α)|U0| (so
nD = c′n or nD = 2c′n, and in particular nD ≤ 2c′n). Let nW = cn, and consider
uniformly random orderings w−

1 , . . . , w
−
nW

of W− and w+
1 , . . . , w

+
nW

of W+. For
0 ≤ i ≤ nW , let

W−
i =

{
w−

1 , . . . , w
−
nW−i

}
, W+

i =
{
w+

1 , . . . , w
+
i

}
, Wi = W−

i ∪W+
i .

This means each individual W−
i (respectively, W+

i ) is a uniformly random subset
of nW − i elements of W− (respectively, i elements of W+). Define

dW−
i

=
nW − i

nW

dW− , dW+
i

=
i

nW

dW+ , dWi
= dW−

i
+ dW+

i
.

Now for each 0 ≤ i ≤ nW and v ∈ M , the random variable dW−
i
(v) (respectively,

dW+
i
(v)) is of (nW , p, O(1))-hypergeometric type for p = (nW − i)/nW (respectively,

for p = i/nW ) and has mean dW−
i

(respectively, mean dW+
i
). By Lemma 3.6

(with t =
√
n log n) and the union bound, we can fix an outcome of the orderings

w−
1 , . . . , w

−
nW

and w+
1 , . . . , w

+
nW

such that |dWi
(v)− dWi

| ≤
√
n log n for each 0 ≤

i ≤ nW and v ∈ M . (Note that if p = o(1), the estimate in Lemma 3.6 only
becomes stronger.)

This concentration would suffice to prove an approximate version of Theorem

1.1 that |Ψ(G)| = n5/2/ logO(1) n (simply using the single matching M to augment
each Wi). However, in order to obtain an exact result we need to eliminate the
logarithmic factor in the estimate for |dWi

(v)− dWi
|. We have the freedom to do

this because M (coming from Lemma 4.2, of size Ω(n3/4)) is much larger than the
necessary size Θ(

√
n) of our “augmenting sets” (as outlined in Section 2). In fact,

we could use the pigeonhole principle to easily show that for each i there is a subset
Mi ⊆ M of size Θ(

√
n) such that the degrees dWi

(v), for v ∈ Mi, are contained in
a tiny interval of length only O(n1/4 log n), centered at some point di. But because

Licensed to ETH-Zentrum. Prepared on Thu Oct  3 06:03:39 EDT 2019 for download from IP 129.132.146.74.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5582 MATTHEW KWAN AND BENNY SUDAKOV

we require consistency between the i (in particular, we do not want the di to vary
too much), things are a bit more delicate, and we will apply Lemma 3.11.

Claim 4.4. There are d0, . . . , dnW
∈ N and M1, . . . ,MnW

⊆ M such that the
following hold.

(i) Each |Mi| ≥
√
n;

(ii) for each 0 ≤ i ≤ nW and each v ∈ Mi, we have |dWi
(v)− di| = o(

√
n); and

(iii) for each 0 < i ≤ nW , we have |di − di−1| = O(
√
n log n), and actually

|di − di−1| = o(
√
n) for all but O

(
n1/4 log3 n

)
indices i.

Proof. The indices i will represent points in time. Let μ =
√
n, let σ =

√
n/ log n =

o(
√
n), let λ = 2

√
n log n, and let I be the interval of integers between −λ/2 and

λ/2. Let R = M (recalling that |M | = Ω
(
n3/4

)
) and for each 0 ≤ i ≤ nW and

v ∈ R, let pi(v) = dWi
(v)− dWi

∈ I.
Note that each v ∈ M has size k, so for each 0 < i ≤ nW , we have∣∣∣dv(

w+
i

)
− dv

(
w−

nW−i+1

)∣∣∣ ≤ k,

and therefore
∣∣dWi

(v)− dWi−1
(v)

∣∣ ≤ k. Also, we can compute

(1)
∣∣dWi

− dWi−1

∣∣ = ∣∣∣∣dW+ − dW−

nW

∣∣∣∣ ≤ k.

So, with ρ = 2k, we have |pi(v)− pi−1(v)| ≤ ρ. Divide the range of “times” between

0 and nW into nW /τ subranges of lengths τ = |R|σ2/(8ρμλ) = O(n3/4/ log3 n). For
each such subrange T , by Lemma 3.11, there is some vT ∈ R which is never lonely
in that range; fix such a vT and for each i ∈ T , let di = dWi

(vT ). For each
0 ≤ i ≤ nW let Mi ⊆ M be a set of μ elements v ∈ M satisfying |dWi

(v)− di| ≤ σ,
which exists by the definition of loneliness. Recalling (1), observe that |di − di−1| ≤
λ = O(

√
n log n) for all 0 < i ≤ nW . Moreover, for all i except the nW /τ =

O
(
n1/4 log3 n

)
times where there is a “transition” between subranges, there is v

such that |di − di−1| =
∣∣dWi

(v)− dWi−1
(v)

∣∣ ≤ k = o(
√
n). �

Next (more or less) as described in Section 2, we identify a subsequence of
indices i leading to subgraph sizes that are well separated in a certain sense. Let
ei = e(Wi) + αe

(
U0,Wi

)
+ nZdi, where nZ = δ

√
c′n/k ≤ δ

√
nD for some small

δ = δ(C) > 0 (not depending on c′) to be determined. The precise significance
of these quantities ei will become clear later, but the rough idea (as sketched in
Section 2) is that we will eventually want to consider subgraphs consisting of some
Wi, a random α-proportion of the elements of U0, and nZ vertices of Mi. Note that
each di was defined to be equal to some dWi

(v) ≤ kn, so |dnW
− d0| ≤ kn = O(n),

and recall that nZ ≤
√
c′n. So, for small c′, by property 2 of Lemma 4.2, we have

enW
−e0=

(
e
(
W+

)
+αe

(
U0,W+

))
−
(
e
(
W−)

+αe
(
U0,W−))

+nZ(dnW
−d0)=Ω

(
n3/2

)
.

Now for 0 < i ≤ nW , let Δi = ei − ei−1. Observe that∣∣(e(Wi) + αe
(
U0,Wi

))
−

(
e(Wi−1) + αe

(
U0,Wi−1

))∣∣
=

∣∣∣(dWi

(
w+

i

)
+ αdU0

(
w+

i

))
−

(
dWi−1

(
w−

nW−i+1

)
+ αdU0

(
w−

nW−i+1

))∣∣∣
≤ (1 + α)n ≤ 2n,
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so the only way to have Δi > 3n is if |di − di−1| = Ω(
√
n). By (iii) of Claim 4.4,∑

i:|Δi|>3n

|Δi| = O
(
nZ

(
n1/4 log3 n

)(√
n log n

))
= o

(
n3/2

)
.

By Lemma 3.10 (with τ = nW = Θ(n), λ = Ω(n3/2), ρ = 3n, κ = o(n3/2), and
σ = n) there is an increasing subsequence of indices 0 = i1, . . . , it = nW , with
t = Ω(

√
n), such that eij − eij−1

≥ n for each 1 < j ≤ t.

Now, let D be a uniformly random subset of nD elements of U0, and let U =
U0 \ D. For a collection Z of vertex sets we write VZ =

⋃
z∈Z z, and for each

0 ≤ i ≤ nW and some B to be determined, define

Ψi = {e(Wi ∪ U ∪ VZ) : Z ⊆ Mi, |Z| = nZ , |e(U, VZ)− αnZdU0 | ≤ BnD}.

Now the significance of the quantities ei should be more clear: we expect the values
in Ψi to be about e(U) + ei + αnZdU0 , so the idea is that the separation we have
established between the eij should translate to the Ψij not interfering too much
with each other.

Note that we can apply Lemma 4.3 to determine δ = Ω(1) and B = O(1) such
that for each 0 ≤ i ≤ nW , |Ψi| = Ω

(
nZ

√
nD

)
= Ω(nD) with probability at least

1/4. Indeed, the first condition of Lemma 4.3 follows from (i) in Claim 4.4 and
a sufficiently small choice of c′, the second condition follows from property 4 of
Lemma 4.2, and the third condition follows from (ii) in Claim 4.4 and property 3 of
Lemma 4.2. We will next show that there is an outcome of U for which many Ψij

are large, and in addition the cumulative deviations introduced by the randomness
of U do not too severely affect the separation we established so far. To this end,
for each 0 < i ≤ nW define

gi =
(
dU

(
w+

i

)
− dU

(
w−

nW−i+1

))
−

(
αdU0

(
w+

i

)
− αdU0

(
w−

nW−i+1

))
.

Basically, |gi|measures the deviation of the separation e(U,Wi)−e(U,Wi−1) from its
expected value αe(U0,Wi)−αe(U0,Wi−1). We will control the cumulative deviation∑nW

i=1|gi|; the absolute deviations
∣∣e(U,Wi)− αe(U0,Wi)

∣∣ are unfortunately too
large to control directly.

Claim 4.5. The following hold together with positive probability.

(i) There is a subset J of (0.1)t indices j for which
∣∣Ψij

∣∣ = Ω(nD) (that is, a
positive proportion of Ψij are large); and

(ii)
∑nW

i=1|gi| ≤ O
(
n
√
nD

)
.

Proof. First we show that (i) holds with probability at least 1/6. As discussed
above, for each 1 ≤ j ≤ t, by Lemma 4.3 we have

∣∣Ψij

∣∣ = Ω(nD) with probability

at least 1/4. Let J be the set of j for which this fails, so E
∣∣J ∣∣ ≤ 3t/4 and by

Markov’s inequality,
∣∣J ∣∣ ≤ (0.9)t with probability at least 1/6.

Next we show that (ii) holds with probability at least 0.9, meaning that we can
use the union bound to show that (i) and (ii) hold simultaneously with positive
probability. For this, note that for each 0 < i ≤ nW , gi is of

(∣∣U0
∣∣, nD/

∣∣U0
∣∣, O(1)

)
-

hypergeometric type and has mean zero (because EdU (w) = αdU0(w) for any w ∈
W ), so by Lemma 3.6 we have

Pr(|gi| ≥ r) ≤ e−Ω(r2/nD).
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For a sufficiently large constant Q, we have

E|gi| =
∞∑
r=1

Pr(|gi| ≥ r) ≤ Q
√
nD +

∞∑
r=Q

√
nD

e−Ω(r2/nD) ≤ 2Q
√
nD,

E

nW∑
i=1

|gi| ≤ 2QnW

√
nD,

and by Markov’s inequality
∑nW

i=1|gi| ≤ 20QnW
√
nD = O

(
n
√
nD

)
with probability

at least 0.9. �

Fix an outcome of U such that the above properties hold.
We now take a moment to summarize the situation so far. We have c′n ≤

nD ≤ 2c′n and nZ = Θ(
√
nD) for some small constant c′ (and the constants in all

asymptotic notation are independent of c′). With ei = e(Wi)+αe
(
U0,Wi

)
+nZdi,

we have a subsequence of indices 0 = i1, . . . , it = nW , for t = Ω(
√
n), such that

eij − eij−1
≥ n for each 1 < j ≤ t. We also have matchings Mi such that the

degrees dWi
(v) for 0 ≤ i ≤ nW and v ∈ Mi are very tightly controlled (to be

precise, Claim 4.4 (ii) says that |dWi
(v)− di| = o(

√
n)). Moreover, Claim 4.5

shows that many
∣∣Ψij

∣∣ are large (specifically,
∣∣Ψij

∣∣ = Ω(nD) for Ω(
√
n) different

j), and the cumulative deviation
∑nW

i=1|gi| ≤ O
(
n
√
nD

)
caused by dropping to a

random subset U = U0 \D is not too severe. We next show that many of the Ψij

are disjoint, which essentially completes the proof of Theorem 1.1.

Claim 4.6. For sufficiently small c′, there is a subset J ′ ⊆ J of Ω
(
n1/2

)
indices j

among which each Ψij is disjoint.

Proof. For 1 ≤ j < t, let Σj = n(j − 1) −
∑ij

i=1|gi|, so that Σ1 = 0 and Σt ≥(
1−O

(√
c′

))
tn, by (ii) in Claim 4.5. The significance of these quantities is that

we have established the separation eij − eij−1
≥ n, but this may be offset by the

buildup of deviations |gi|. That is, each increment Σj − Σj−1 = n−
∑ij

i=ij−1+1|gi|
is a lower bound on the separation between e

(
Wij−1

)
+ e

(
U,Wij−1

)
+ nZdij−1

and

e
(
Wij

)
+ e

(
U,Wij

)
+nZdij , which approximates the separation between the values

in Ψij−1
and the values in Ψij .

By Lemma 3.10 (with τ = t = Ω(n), λ = Σt = (1−O(c′))tn, σ = (0.01)t,
ρ = n, and κ = 0), for small c′ we can find an increasing sequence j01 , . . . , j

0
s0

for s0 ≥ ((1−O(c′))/1.01)t ≥ (0.95)t, such that Σj0q
− Σj0q−1

≥ (0.01)n for each

1 < q ≤ s0. By (i) in Claim 4.5, deleting the indices not in J gives an increasing
sequence j1, . . . , js, with s ≥ (0.05)t, also satisfying Σjq −Σjq−1

≥ (0.01)n for each
1 < q ≤ s.

To avoid too many layered subscripts, for 1 ≤ q ≤ s, defineW ′
q = Wijq

, d′q = dijq ,

M ′
q = Mijq

, e′q = eijq , and i′q = ijq . Also, for 1 < q ≤ s, define Γq =
∑i′q

i=i′q−1+1|gi|.
Our goal is now to show that quantities of the form e

(
W ′

q ∪ U ∪ VZ

)
arising from

the definition of |Ψijq
| are well separated for different q. This will basically follow

from the fact that Σjq −Σjq−1
= Ω(n), our control over the dWi

(v) for v ∈ Mi, and
the definition of the Ψi′q .
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First, for each 1 < q ≤ s observe that

e
(
W ′

q, U
)
− e

(
W ′

q−1, U
)
=

i′q∑
i=i′q−1+1

(
dU

(
w+

i

)
− dU

(
w−

nW−i+1

))

≥ α

i′q∑
i=i′q−1+1

(
dU0

(
w+

i

)
− dU0

(
w−

nW−i+1

))
− Γq

= αe
(
W ′

q, U
0
)
− αe

(
W ′

q−1, U
0
)
− Γq.

Next, for Z ⊆ M ′
q and Z ′ ⊆ M ′

q−1, satisfying |Z| = |Z ′| = nZ and

|e(U, VZ)− αnZdU0 |, |e(U, VZ′)− αnZdU0 | ≤ BnD = O(nD),

we also have

e
(
W ′

q ∪ U, VZ

)
− e

(
W ′

q−1 ∪ U, VZ′
)
+ e(VZ)− e(VZ′)

=
∑
v∈Z

dW ′
q
(v)−

∑
v∈Z′

dW ′
q−1

(v) +O(nD)

=
∑
v∈Z

(
d′q + o(

√
nD)

)
−

∑
v∈Z′

(
d′q−1 + o(

√
nD)

)
+O(nD)

= nZd
′
q − nZd

′
q−1 +O(nD).

Recall that Σjq − Σjq−1
= Ω(n) and nD ≤ 2c′n. For small c′, it follows that

e
(
W ′

q ∪ U ∪ VZ

)
− e

(
W ′

q−1 ∪ U ∪ VZ′
)

= e
(
W ′

q

)
− e

(
W ′

q−1

)
+ e

(
W ′

q, U
)
− e

(
W ′

q−1, U
)

+ e
(
W ′

q ∪ U, VZ

)
− e

(
W ′

q−1 ∪ U, VZ′
)
+ e(VZ)− e(VZ′)

≥
(
e
(
W ′

q

)
+ αe

(
W ′

q, U
0
)
+ nZd

′
q

)
−

(
e
(
W ′

q−1

)
+αe

(
W ′

q−1, U
0
)
+ nZd

′
q−1

)
− Γq −O(nD)

= e′q − e′q−1 − Γq −O(nD)

≥ (jq − jq−1)n− Γq −O(nD) = Σjq − Σjq−1
−O(nD) = Ω(n) > 0.

We conclude that the minimum value in Ψi′q is greater than the maximum value in
Ψi′q−1

. Since this is true for all 1 < q ≤ s, it follows that each Ψijq
is disjoint, so

we may take J ′ = {j1, . . . , js}. �

Finally, let f = c′n and h = nW + knZ = cn + δ
√
c′n. For 1 ≤ i ≤ nW observe

that if Z ⊆ Mi satisfies |Z| = nZ , then Wi ∪ U ∪ VZ has exactly
∣∣U0

∣∣ − nD + h
vertices, and this number is equal to (� − f) + h or 2(� − f) + h. Therefore, for
�′ = (�− f) + h or �′ = 2(�− f) + h, we have

|Ψ(�′, G)| ≥
∑
j∈J ′

∣∣Ψij

∣∣ = Ω
(
c′n3/2

)
. �

4.1. Proof of Lemma 4.2. As outlined in Section 2, we will first construct
W−, W+, and U0 satisfying properties 1 and 2, and we will then use richness
(Lemma 3.1) and the sunflower lemma (Lemma 3.5) to construct M satisfying prop-
erties 3 and 4. We remark that it would be possible to use an existing discrepancy
theorem (for example, a theorem in [22], as mentioned in Section 2) to construct
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sets W−, W+, and U0 satisfying property 2 using only the fact that G has density
bounded away from 0 and 1. However, since we are already using Lemma 3.1 for
property 4, it is convenient to instead use richness and anticoncentration.

So, consider ε = ε(C) from Lemma 3.1, note that we can assume ε < 1/8, and
let δ = εK for some large absolute constant K which we will determine later. Let
G[V ′] be a (δ, ε)-rich induced subgraph of G, with n′ := |V ′| ≥ 15cn vertices, which
exists for small c > 0 by Lemma 3.1. We will only work inside V ′, so all degrees
and neighborhoods should be interpreted as being restricted to V ′.

First, let U1 be a uniformly random subset of V ′ with size 2� ≤ 4cn. Let H ⊆(
V ′

2

)
be the auxiliary graph with an edge {x, y} ∈

(
V ′

2

)
whenever dU1(x) = dU1(y).

We show that with positive probability, the diversity of neighborhoods in G[V ′] is
maintained for neighborhoods in U1, and simultaneously H is quite sparse, which
implies that there is a lot of variation between degrees into U1 (this will be the
starting point from which we obtain our discrepancy for property 2).

Claim 4.7. The following hold together with positive probability.

(i) For each k ≤ K and x,y ∈
(
V
k

)
with |N(x)�N(y)| ≥ εKn′, we have

|NU1(x)�NU1(y)| ≥ εK�; and
(ii) there is a set W of at least 7cn vertices such that dH(x) = O(

√
n) for each

x ∈ W .

Proof. We will show that (i) and (ii) each hold with probability greater than 1/2.
The proofs will be quite routine, using the concentration and anticoncentration
theorems in Section 3.3.

For (i), observe that for each x,y∈
(
V
k

)
,|NU1(x)�NU1(y)|=

∣∣(N(x)�N(y))∩ U1
∣∣

is of (n′, 2�/n′, 1)-hypergeometric type, and apply Lemma 3.6 and the union bound.
(Recall from Section 1.1 the nonstandard multiset definition of A�B.)

For (ii), note that each dU1(x)−dU1(y) is of (n′, 2�/n′, 1, |N(x)�N(y)|)∗-hyper-
geometric type, so if |N(x)�N(y)| = Ω(n), then by Lemma 3.8,

Pr(dU1(x) = dU1(y)) = O
(
1/
√
n
)
.

By Lemma 3.3 (taking k = 1), there are at most nδ = nεK vertices x ∈ V ′ with
N(x) < εn′, and by Lemma 3.2, for every other vertex x ∈ V ′, there are at most

nδ = nεK ≤ nε vertices y �= x with |N(x)�N(y)| < ε2n′. For each x ∈ V ′ of the
latter type, we have EdH(x) = O(nε +

√
n) = O(

√
n), so by Markov’s inequality,

dH(x) = O(
√
n) (for a sufficiently large constant implied by the big-oh notation)

with probability at least 7/8. Let W be the set of all x ∈ V ′ for which this holds, so
that E|V ′ \W | ≤ n′/8 + nε < n′/4. Therefore, |W | ≥ n′/2 ≥ 7cn with probability
greater than 1/2. �

Fix an outcome of U1 satisfying both the properties in the above claim, and
note that

∣∣W \ U1
∣∣ ≥ 3cn. Order the vertices x ∈ W \U1 by their values of dU1(x)

(breaking ties arbitrarily), let W 1 contain the first cn vertices in this ordering, and
let W 2 contain the last cn. By (ii) in Claim 4.7, for the (at least cn) vertices x
between W 1 and W 2 in this ordering, we have dH(x) = O(

√
n), so there are at

least Ω(
√
n) values of dU1(x), and

min
x∈W 2

dU1(x)− max
x∈W 1

dU1(x) = Ω
(√

n
)
.
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Recalling that α ≥ 1/2, this implies that

αe
(
W 2, U1

)
− αe

(
W 1, U1

)
= Ω

(
n3/2

)
.

Now, if(
e
(
W 2

)
+αe

(
W 2, U1

))
−

(
e
(
W 1

)
+ αe

(
W 1, U1

))
≥

(
αe

(
W 2, U1

)
− αe

(
W 1, U1

))
/4,

then let W− = W 1 and W+ = W 2 and U0 = U1; property 2 is satisfied. Otherwise,
there must be a large discrepancy between e

(
W 1

)
and e

(
W 2

)
. To be specific, we

must have
(2)(
e
(
W 1

)
+αe

(
W 1, U1

)
/2

)
−

(
e
(
W 2

)
+αe

(
W 2, U1

)
/2

)
≥

(
αe

(
W 2,U1

)
−αe

(
W 1,U1

))
/4.

In this case, let U0 be a random subset of � =
∣∣U0

∣∣/2 elements of U1, let W− = W 2,

and let W+ = W 1. Then(
e
(
W+

)
+ αe

(
W+, U0

))
−

(
e
(
W−)

+ αe
(
W−, U0

))
=

(
e
(
W+

)
− e

(
W−))

+ α
∑
u∈U0

(dW+(u)− dW+(u))

is of (1/2)-hypergeometric type and has mean Ω
(
n3/2

)
, given by (2). So, by Lemma

3.9, this random value is Ω
(
n3/2

)
with probability at least 1/2. Also for each k ≤ K

and x,y ∈
(
V
k

)
with |N(x)�N(y)| ≥ εKn′, the random variable |NU0(x)�NU0(y)|

is of (Ω(n), 1/2, 1)-hypergeometric type with mean Ω(n), so by Lemma 3.6 and the
union bound with probability 1 − o(1), we have |NU0(x)�NU0(y)| = Ω(n) for all
such k,x,y. So we can fix an outcome of U0 satisfying both of these properties.

In either of the above two cases, property 2 is satisfied and |NU0(x)�NU0(y)| =
Ω(n) for each x,y ∈

(
V
k

)
with |N(x)�N(y)| ≥ εKn′. We also have |U0| = � or

|U0| = 2�, satisfying property 1. Now, fix some Ω(n)-vertex subset A0 disjoint from

U1 and W , and let M0 ⊆
(
A0

K

)
contain every v ∈

(
A0

K

)
with

∣∣⋂
v∈v N(v)

∣∣ ≥ εKn′.

By Lemma 3.3, we have
∣∣M0

∣∣ = Ω
(
nK

)
.

Observe that there are only (kn+ 1)3 possible values of the tuples

(dW+(x), dW+(x), dU0(x)),

so by the pigeonhole principle there are d′W− , d′W+ , d′U0 ∈ N, and a collection

M1 ⊆ M0 of size Ω
(
nK−3

)
, such that for each x ∈ M1, we have dW−(x) = d′W− ,

dW+(x) = d′W+ , and dU0(x) = d′U0 . For sufficiently large K, by Lemma 3.5, M1

has a sunflower with Ω
(
n(K−3)/K

)
= Ω

(
n7/8

)
= Ω

(
n3/4+ε

)
petals; take M2 as this

set of petals, and let k be the common size of these petals. Let v be the kernel
of the sunflower, and let dW− = d′W− − dW−(v), dW+ = d′W+ − dW+(v), and
dU0 = d′U0 − dU0(v), so for x ∈ M2, we have dW−(x) = dW− , dW+(x) = dW+ , and
dU0(x) = dU0 .

Finally, consider the auxiliary graph F ⊆
(
M2

2

)
which has an edge {x,y} ∈

(
M2

2

)
whenever |N(x)�N(y)| < εKn′. By Lemma 3.2, the degrees in F are at most

nεK ≤ nε, so by Proposition 3.4 (Turán’s theorem) there is M ⊆ M2 with |M | =
Ω

(
n3/4

)
such that |N(x)�N(y)| ≥ εKn′, and therefore |NU0(x)�NU0(y)| = Ω(n)

for all pairs {x,y} ∈
(
M
2

)
.
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4.2. Proof of Lemma 4.3. As in the deduction of Theorem 1.1 in Section 4, for
a collection Z of vertex sets, let VZ =

⋃
z∈Z z.

Our proof of Lemma 4.3 will be quite similar to the proof of the main theorem
in [27]. Roughly speaking, we will first expose a random superset D1 of D (we may
view this as “partially exposing” the random subset D). Using this randomness for
anticoncentration, we will construct submatchings S−, S+ ⊆ M of size Ω

(√
nD

)
,

such that all the degrees from elements of S+ into D1 are higher by
√
nD than the

degrees from S− into D1. Starting with any S0 ⊆ S+ of some size nZ − 1, we can
therefore obtain nZ subsets S0, . . . , SnZ−1 such that the values e

(
W ∪ U0 ∪ VSi

)
are separated by a distance of Ω

(√
nD

)
, simply by switching elements of M one-

by-one from S+ into S−. Then, we fully expose the random set D (therefore
exposing U = U0 \D), and show that the values e(W ∪ U ∪ VSi

) remain fairly well
separated. We use this further randomness, and anticoncentration, to show that
for most i, there is a set Xi of

√
nD elements of M which have different degrees

into W ∪ U ∪ VSi
, still concentrated in a known interval of length O

(√
nD

)
. This

will prove that there are Ω
(
nZ

√
nD

)
values e(W ∪ U ∪ VSi

∪ z), for x ∈ Xi. (So,
our sets Z in the lemma statement are of the form Si ∪ {x}, for x ∈ Xi.) The
additional requirement about the expected number of edges between U and Z will
follow from our proof basically for free.

We now proceed with this plan to prove Lemma 4.3. Arbitrarily split M into
two subsets S0 and X0 each of size Ω

(√
nD

)
. Let D1 be a uniformly random

subset of U0 of size 2nD, so that we may realize the desired distribution of D as
a uniformly random subset of D1 of size nD. We will first observe some regularity
and discrepancy properties that hold with probability at least 3/4 with respect to

the random choice of D1. Let H ⊆
(
S0

2

)
be the auxiliary random graph (depending

on D1) with an edge {x,y} ∈
(
S0

2

)
if dD1(x) = dD1(y). Also, let dD = (1− α)dU0 ,

recalling from the statement of Lemma 4.3 that 1− α = nD/
∣∣U0

∣∣.
Claim 4.8. The following hold together with probability at least 3/4.

(i) |ND1(x)�ND1(y)| = Ω(nD) for each {x,y} ∈
(
X0

2

)
;

(ii) there areX ⊆ X0 and S1 ⊆ S0, each with size Ω
(√

nD

)
, such that dD1(x) =

2dD +O
(√

nD

)
for each x ∈ X ∪ S1; and

(iii) H has O
(√

nD

)
edges.

Proof. We will prove that each of (i)-(iii) individually hold with high probability,
then apply the union bound. The proofs will be rather routine, using the concen-
tration and anticoncentration theorems in Section 3.3 in a similar way to the proof
of Claim 4.7.

For (i), observe that for each {x,y} ∈
(
X0

2

)
, the random variable

|ND1(x)�ND1(y)| =
∣∣NU0(x)�NU0(y) ∩D1

∣∣
is of

(∣∣U0
∣∣, 2(1− α), 1

)
-hypergeometric type with mean Ω(nD), so by the second

assumption of this lemma, Lemma 3.6, and the union bound, (i) holds with prob-

ability 1−
∣∣X0

∣∣2e−Ω(nD) = 1− o(1).

We next show that (ii) holds with probability at least 7/8. For each x ∈ X0,
the random variable dD1(x) is of

(∣∣U0
∣∣, 2(1− α), k

)
-hypergeometric type, so by

Lemma 3.6 (with t a large multiple of
√
nD), with probability at least 31/32 we have

dD1(x) = EdD1(x) + O
(√

nD

)
= 2dD + O

(√
nD

)
. Therefore the expected number
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of x ∈ X0 failing to satisfy this bound is at most
∣∣X0

∣∣/32, and the probability more

than
∣∣X0

∣∣/2 failing to satisfy this bound is at most 1/16. If this does not occur, we

can find an appropriate subset X ⊆ X0 of size
∣∣X0

∣∣/2. A very similar argument

shows that an appropriate subset S1 ⊆ S0 with size
∣∣S0

∣∣/2 exists with probability

at least 15/16, and by the union bound we can simultaneously find suitable X,S1

with probability at least 7/8.
Finally, we show that (iii) holds with probability at least 15/16. This will suf-

fice to apply the union bound over parts (i)–(iii). Note that the random vari-

able dD1(x)−dD1(y) is of
(
|U0|, 2(1− α), O(1), |NU0(x)�NU0(y)|

)∗
-hypergeometric

type. Recalling the second assumption of this lemma that |NU0(x)�NU0(y)| =
Ω

(∣∣U0
∣∣), we may apply Lemma 3.8 to see that for any {x,y} ∈

(
S0

2

)
, the probabil-

ity {x,y} is an edge in H is O
(
1/

√
(1− α)|U0|

)
= O

(
1/
√
nD

)
, and the expected

number of edges is O
(√

nD

)
. The desired result then follows from Markov’s in-

equality. �

Condition on an outcome of D1 satisfying all the above properties (we will treat
D1 as fixed for the remainder of the proof). By Proposition 3.4, the graph H (which
has |S0| = Ω(

√
nD) vertices) has an independent set S2 of size Ω

(√
nD

)
, meaning

that the values of dD1(x) for x ∈ S2 are all different. Now let nS = nZ − 1, and
note that for small δ we have nS < δ

√
nD ≤

∣∣S2
∣∣/3. Order the vertices x ∈ S2 by

their values of dD1(x), let S− contain the first nS elements of this ordering, and let
S+ contain the last nS elements. By construction, we have

(3) min
x∈S+

dD1(x)− max
x∈S−

dD1(x) = Θ(
√
nD).

Here and from now on, the constants implied by all asymptotic notation are inde-
pendent of δ.

Now fix orderings v−
1 , . . . ,v

−
nS

of S− and v+
1 , . . . ,v

+
nS

of S+. For 0 ≤ i ≤ nS ,
define

Si =
{
v−
1 , . . . ,v

−
i

}
∪

{
v+
1 , . . . ,v

+
nS−i

}
,

let Ui = W ∪U ∪VSi
, and let ei = e(VSi

)+ e(VSi
,W ∪ U) = e(Ui)− e(W ∪ U). For

0 < i ≤ nS define

Δi = ei − ei−1(4)

= e(VSi
,W ∪ U)− e

(
VSi−1

,W ∪ U
)
+ e(VSi

)− e
(
VSi−1

)
= dW∪U

(
v−
i

)
− dW∪U

(
v+
nS−i+1

)
+ e(VSi

)− e
(
VSi−1

)
=

(
dW∪U0

(
v−
i

)
− dD

(
v−
i

))
−

(
dW∪U0

(
v+
nS−i+1

)
− dD

(
v+
nS−i+1

))
+ e(VSi

)− e
(
VSi−1

)
.

Next we observe that with probability at least 1/3, our discrepancy properties are
to some extent maintained, while for many i we can find many vertices in X with
distinct degrees into Ui. Recall that D is a random subset of half the elements of
|D1|.

Claim 4.9. There are γ1, γ3 = Ω(1) and Q2, Q4 = O(1) such that the following hold
together with probability at least 1/3.
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(i) There is a set I1 of (1− γ1/(8Q2))nS indices i such that for each i ∈ I1,
we have e(D,VSi

) = nSdD +O(nD);
(ii) there is a set I2 of (1− γ1/(8Q2))nS indices i, each with a set Xi ⊆ X of

size 2γ3|X|, such that the dUi
(x) for x ∈ Xi are distinct;

(iii) there is a set X∗ of size (1− γ3)|X| such that for each x ∈ X∗ we have
|dD − dD(x)| ≤ Q4

√
nD;

(iv) enS
− e0 ≥ 3γ1nS

√
nD; and

(v)
∑

i:|Δi|≥Q2
√
nD

|Δi| ≤ γ1nS
√
nD.

Proof. We will prove that each part holds with probability at least 0.99, except
(iv), which holds with probability at least 1/2. The values of γ1, Q2, γ3, Q4 will be
determined in order, and will depend on each other.

For (iv), recalling (4), we observe

EΔi = E[ei − ei−1]

=
(
dW∪U0

(
v−
i

)
−dD1

(
v−
i

)
/2

)
−

(
dW∪U0

(
v+
nS−i+1

)
− dD1

(
v+
nS−i+1

)
/2

)
−O(nS).

Recall from the third assumption of this lemma that dW∪U0(v) = dU0 + dW +
o
(√

nD

)
for all v ∈ M , and recall from (3) that the degrees from S+ into D1 are

larger by Θ
(√

nD

)
than the degrees from S− into D1. Also, recall that nS < δ

√
nD.

For small δ it follows that

E[ei − ei−1] = Θ(
√
nD)− o(

√
nD)−O(nS) = Θ(

√
nD).

So, E[enS
− e0] = Θ

(
nS

√
nD

)
. Since enS

− e0 is of (1/2)-hypergeometric type,
we may apply Lemma 3.9 to show that for small γ1 it is at least as large as its
expectation Ω

(
nS

√
nD

)
≥ 3γ1nS

√
nD, with probability at least 1/2.

For (v), observe that for each 0 < i ≤ nS, the random variable Δi is of
(2nD, 1/2, k)-hypergeometric type, because it is a translation of the random vari-

able dD

(
v+
nS−i+1

)
− dD

(
v−
i

)
. We have just computed that EΔi = O

(√
nD

)
, so

by Lemma 3.6 we therefore have Pr(|Δi| ≥ t) = exp
(
−Ω

(
t2/nD

))
. Now, for any

nonnegative integer random variable ξ, we have Eξ =
∑∞

t=1 Pr(ξ ≥ t), so

E

[
|Δi|�|Δi|≥Q2

√
nD

]
=

∞∑
t=1

Pr
(
|Δi|�|Δi|≥Q2

√
nD

≥ t
)

= Q2
√
nD Pr(|Δi| ≥ Q2

√
nD) +

∞∑
t=Q2

√
nD

Pr(|Δi| ≥ t)

=Q2
√
nDe

−Ω(Q2
2)+

∞∑
t=Q2

√
nD

exp
(
−Ω

(
t2/nD

))
=e−Ω(Q2

2)√nD.

For sufficiently large Q2, this is at most (γ1/100)
√
nD, so

E

∑
i:|Δi|≥Q2

√
nD

|Δi| ≤ (γ1/100)nS

√
nD,

and (v) holds with probability at least 0.99 by Markov’s inequality.
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For (i), recall from (ii) of Claim 4.8 that each x ∈ S1 has degree 2dD +O
(√

nD

)
into D1. Therefore, for each 0 ≤ i ≤ nS , e(D,VSi

) is of
(
2nD, 1/2, O

(√
nD

))
-

hypergeometric type, and has mean nSdD + O
(
nS

√
n
D

)
= nSdD + O(nD). So,

applying Lemma 3.6 with t as a large multiple of nD, we have e(D,VZ) = nSdD +
O(nD) with probability at least 1− γ1/(800Q2). The expected number of indices i
for which this fails is (γ1/(800Q2))nS, so by Markov’s inequality, the probability it
fails for more than (γ1/(8Q2))nS indices i is at most 0.99.

Next we consider (ii). For each i and each {x,y} ∈
(
X
2

)
, let

di=
(
dW (x) + dU0(x) + dVSi

(x)
)
−

(
dW (y) + dU0(y) + dVSi

(y)
)
=o(

√
nD)+O(nZ),

so |di| ≤
√
nD for small δ. Then, observe that the random variable

dUi
(x)− dUi

(y)− di = dD(y)− dD(x)

is of (2nD, 1/2, O(1), |ND1(x)�ND1(y)|)∗-hypergeometric type. So, by part (i) of
Claim 4.8 and Lemma 3.8, Pr(dUi

(x) = dUi
(y)) = O

(
1/
√
nD

)
. Let Hi be the graph

of pairs {x,y} ∈
(
X
2

)
satisfying dUi

(x) = dUi
(y), so we have Ee(Hi) = O

(√
nD

)
.

By Markov’s inequality, with probability at least 1− γ1/(800Q2) we have e(Hi) =
O

(√
nD

)
, in which case by Proposition 3.4, Hi has an independent set Xi of size

2γ3
√
n, for some γ3 > 0. The expected proportion of indices i for which this fails

to occur is γ1/(800Q2), and by Markov’s inequality again, with probability at least
0.99 it fails for only a γ1/(8Q2) proportion.

Finally we consider (iii). For each x ∈ X, dD(x) is of (2nD, 1/2, O(1))-
hypergeometric type, and by (ii) in Claim 4.8, it has mean dD+O(

√
nD). Therefore,

by Lemma 3.6, with large enough Q4, we have |dD − dD(x)| ≤ Q4
√
nD with prob-

ability of at least 1 − γ3/100, and by Markov’s inequality this probability fails for
more than γ3|X| vertices is at most 0.99. �

It is a relatively simple matter to put everything together to prove Lemma 4.3.
Fix γ1, Q2, γ3, Q4, and U such that all parts of the above claim are satisfied. By
(iii), for any 0 ≤ i ≤ nS , any x ∈ X∗, and small δ, we have
(5)
|dUi

(x)−(αdU + dW )|≤dVSi
(x)+Q4

√
nD+o(

√
nD) = O(nS)+Q4

√
nD < 2Q4

√
nD.

By Lemma 3.10 (with λ = 3γ1nS
√
nD, ρ = Q2

√
nD, κ = γ1nS

√
nD, and σ =√

nD), and parts (iv) and (v) of the above claim, for large enough Q2, there is an
increasing subsequence i1, . . . , it, with t ≥ γ1nS/(2Q2), such that ei−1 − ei ≥

√
nD

for each 1 < i ≤ t. Delete all indices not in I1 ∩ I2 (there are at most γ1nS/(4Q2)
such) to obtain a subsubsequence i′1, . . . , i

′
s with s ≥ γ1nS/(4Q2). Let I contain

every 4Q4th element of this subsubsequence, so that |I| = Θ(nS) = Θ(nZ) and

|ei − ei′ | = |e(Ui)− e(Ui′)| ≥ 4Q4
√
nD

for every pair of distinct indices i, i′ ∈ I. Recalling (5), this means that for different
i ∈ I, there is no overlap between the sets of values {e(Ui) + dUi

(x) : x ∈ X∗}. By
the definition of Xi in (ii) of Claim 4.9, this means that for each of the Θ

(
nZ

√
nD

)
choices of i ∈ I and x ∈ Xi ∩X∗, the values e

(
W ∪ U ∪ VSi∪{x}

)
= e(Ui) + dUi

(x)

are in fact distinct. It remains to show that the e
(
U, VSi∪{x}

)
are close to their

expectations αnZdU0 . We have e
(
U0, VSi∪{x}

)
= nZdU0 , dD = (1 − α)dU0 and
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nS = nZ − 1, so by (i) and (iii) in Claim 4.9 for sufficiently large B,∣∣e(U, VSi∪{x}
)
− αnZdU0

∣∣= ∣∣e(U0, VSi∪{x}
)
−e(D,VSi

)−dD(x)−nZdU0 + nSdD+dD
∣∣

≤ O(nD +
√
nD) ≤ BnD.

We have proved that the statements of Claims 4.8 and 4.9 hold together with
probability at least (3/4)(1/3) = 1/4, in which case the desired conclusion holds.

5. Concluding remarks

We have proved the Erdős–Faudree–Sós conjecture that for any fixed C, if G
is an n-vertex graph with no homogeneous subgraph on C log n vertices, then G
contains Ω

(
n5/2

)
induced subgraphs, no pair of which have the same numbers of

vertices and edges. We feel that this area is still a long way from maturity, and
there is much more room for further research toward understanding the structure of
C-Ramsey graphs. We hope that this research will inform future work on explicit
constructions of Ramsey graphs.

Regarding specific open questions, of course the Erdős–McKay conjecture re-
mains an intriguing problem. We would also like to draw attention to the subject of
subgraphs with many different degrees: as mentioned in the introduction, answering
a different conjecture of Erdős, Faudree, and Sós [20, 21], Bukh and Sudakov [10]
proved that C-Ramsey graphs have induced subgraphs with Ω(

√
n) different de-

grees. However, in random graphs one can actually find induced subgraphs with
Ω

(
n2/3

)
distinct degrees (this was proved in an unpublished paper of Conlon, Mor-

ris, Samotij, and Saxton [13]), and it is not clear whether such an improved bound
also holds for C-Ramsey graphs.

Additionally, observe that the main result of this paper can be rephrased as the
fact that in anO(1)-Ramsey graph, for most choices of �, there are many possibilities
for the number of edges in a subset of � vertices. We believe a natural next step
would be to study statistical properties of the number of edges in a random set of �
vertices. For example, is this random variable anticoncentrated? For general graphs
this question was first studied by Alon, Hefetz, Krivelevich and Tyomkyn [3] (see
[23,28,29] for further work). Regarding Ramsey graphs, as we recently proposed in
a paper with Tuan Tran [28], could it be true that in any O(1)-Ramsey graph G, if
A is a uniformly random set of n/2 vertices, then Pr(e(G[A]) = x) = O(1/n) for all
x? In [27] we also formulated a version of this question for random subsets where
the presence of each vertex is chosen independently, which may be more tractable.

Finally, we believe an interesting further direction of research would be to con-
sider regimes where larger homogeneous subgraphs are forbidden (see [2, 5, 7, 31]
for some examples of theorems of this type). In [27] we proposed the conjecture
that |Φ(G)| = Ω(e(G)) for graphs G which have no homogeneous subgraph on n/4
vertices; we do not know a good counterpart of this conjecture for |Ψ(G)|, but it
seems likely that some nontrivial bound should hold.
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