
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{D}\mathrm{I}\mathrm{S}\mathrm{C}\mathrm{R}\mathrm{E}\mathrm{T}\mathrm{E} \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 38, \mathrm{N}\mathrm{o}. 1, \mathrm{p}\mathrm{p}. 225--242

ON RAMSEY SIZE-LINEAR GRAPHS AND RELATED QUESTIONS\ast 

DOMAGOJ BRADA\v C\dagger , LIOR GISHBOLINER\dagger , AND BENNY SUDAKOV\dagger 

Abstract. In this paper we prove several results on Ramsey numbers R(H,F ) for a fixed graph
H and a large graph F , in particular for F = Kn. These results extend earlier work of Erd\H os,
Faudree, Rousseau, and Schelp and of Balister, Schelp, and Simonovits on so-called Ramsey size-
linear graphs. Among other results, we show that if H is a subdivision of K4 with at least six vertices,
then R(H,F ) =O(v(F )+e(F )) for every graph F . We also conjecture that if H is a connected graph
with e(H)  - v(H) \leq 

\bigl( k+1
2

\bigr) 
 - 2, then R(H,Kn) = O(nk). The case k = 2 was proved by Erd\H os,

Faudree, Rousseau, and Schelp. We prove the case k= 3.

Key words. graph Ramsey theory, Ramsey size-linear graph, dependent random choice
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1. Introduction. For two graphs H and F , the Ramsey number R(H,F ) is the
smallest N such that for every graph G on N vertices, either G contains a copy of H or
its complement G contains a copy of F . One of the central problems in graph Ramsey
theory is the estimation of Ramsey numbers of complete graphs R(Ks,Kn) for s fixed
and large n. The classical Erd\H os--Szekeres [9] theorem implies that R(Ks,Kn) =
O(ns - 1), and this was improved to R(Ks,Kn) = O(ns - 1/ logs - 2 n) by a celebrated
result of Ajtai, Koml\'os, and Szemer\'edi [1]. As for lower bounds, Spencer [15] showed
that R(H,Kn) = \~\Omega (nm2(H))1 for every graph H, where m2(H) is the 2-density2 of
H. This in particular implies that R(Ks,Kn) = \~\Omega (n(s+1)/2). Kim [13] improved the
implied logarithmic term in the case s = 3, obtaining the tight result R(K3,Kn) =
\Theta (n2/ logn). This was later generalized by Bohman and Keevash [5], who improved
the logarithmic term for every s. On the other hand, no improvement to the exponent
of n has been obtained for any s\geq 4. Very recently, Mubayi and Verstra\"ete [14] showed
that the existence of optimally dense pseudorandom Ks-free graphs would imply that
R(Ks,Kn) = \~\Omega (ns - 1), matching the upper bound. This gives some evidence to the
conjecture that R(Ks,Kn) = \~\Theta (ns - 1) for every s.

A more general problem is to estimate R(H,Kn) for an arbitrary graph H. It is
well known that R(H,Kn) = O(n) if and only if H is a forest. In fact, when H is
a tree, a classical result of Chv\'atal [7] gives the exact value of R(H,Kn). It is thus
natural to ask which graphs satisfy R(H,Kn) =O(nk) for k\geq 2. Erd\H os et al. [8] were
the first to study this problem, proving several results for the case k= 2. They proved
that R(H,Kn) = O(n2) for every connected graph H with e(H)  - v(H) \leq 1. This
result is tight, as e(K4) - v(K4) = 2 and R(K4,Kn) = \~\Omega (n5/2) (by the aforementioned
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1As customary, for two functions f, g, we write g(n) = \~\Omega (f(n)) to mean that g(n) \geq 
f(n)/polylog(n), g(n) = \~O(f(n)) to mean that g(n) \leq f(n) \cdot polylog(n), and g(n) = \~\Theta (f(n)) to
mean that f(n)/polylog(n)\leq g(n)\leq f(n) \cdot polylog(n).

2The 2-density m2(H) is defined as the maximum of
e(H\prime ) - 1
v(H\prime ) - 2

over all subgraphs H\prime of H with

at least three vertices.
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226 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

result of Spencer [15]). We propose the following conjecture which generalizes the
result of Erd\H os et al.

Conjecture 1. Let k \geq 1. For every connected graph H with e(H)  - v(H) \leq \bigl( 
k+1
2

\bigr) 
 - 2, it holds that R(H,Kn) =O(nk).

Note that e(Kk+2) - v(Kk+2) =
\bigl( 
k+1
2

\bigr) 
 - 1. Hence, if the aforementioned conjecture

that R(Ks,Kn) = \~\Omega (ns - 1) is true, then the constant
\bigl( 
k+1
2

\bigr) 
 - 2 in Conjecture 1 would

be best possible. In this paper we prove the first open case of Conjecture 1, namely
the case k= 3.

Theorem 2. Let H be a connected graph with e(H) - v(H)\leq 4. Then R(H,Kn) =
O(n3).

In the proof of Theorem 2, we make use of the following claim, which bounds
the Ramsey number R(H,Kn) in terms of the treewidth of H. This might be of
independent interest. Recall that a graph is called a k-tree if it is Kk+1 or if it is
obtained from a smaller k-tree by adding a new vertex and connecting it to k vertices
which form a clique. The treewidth of H, denoted by tw(H), is the minimal k for
which H is a subgraph of a k-tree.

Proposition 1.1. For every fixed graph H, we have R(H,Kn) =O(ntw(H)).

In addition to proving Conjecture 1 in the case k = 3, we show that the full
conjecture holds if Kn is replaced with Kn,n (see Proposition 5.6). Along the way we
also obtain bounds for R(H,Kn,n) for graphs H with bounded maximum degree or
bounded degeneracy; see Corollaries 6 and 7.

Note that if R(H,Kn) =O(n2), then this can be written as R(H,Kn) =O(e(Kn)).
This motivated Erd\H os et al. [8] to define the so-called Ramsey size-linear graphs. A
graph H is called Ramsey size-linear if

(1) R(H,F ) =O(e(F ))

holds for every graph F with no isolated vertices. This notion was introduced in
[8], where the authors established some basic results and raised several intriguing
questions. In particular, Erd\H os et al. asked whether it is true that every graph H
with m2(H) \leq 2 is Ramsey size-linear. This would imply that every 2-degenerate
graph is Ramsey size-linear. These questions seem to be still out of reach at the
moment. Perhaps in light of this, Erd\H os et al. also asked about specific graphs H.
In particular, they asked whether K\ast 

4 , the graph obtained from K4 by subdividing
one edge (see Figure 1), is Ramsey size-linear. This question was later reiterated by
Balister, Schelp, and Simonovits [3]. While we cannot supply an affirmative answer,
we can show that (1) at the very least holds for every bipartite graph F .

Theorem 3. For every bipartite graph F with no isolated vertices, it holds that
R(K\ast 

4 , F ) =O(e(F )).

Fig. 1. K\ast 
4 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RAMSEY SIZE-LINEAR GRAPHS AND RELATED QUESTIONS 227

The above question of Erd\H os et al. forK\ast 
4 motivates the study of Ramsey numbers

for subdivisions of K4. Balister, Schelp, and Simonovits [3] showed (as part of a more
general result) that the graph obtained from K4 by subdividing an edge four times
is Ramsey size-linear. Here we extend this further, showing that every subdivision of
K4 other than K\ast 

4 is Ramsey size-linear.

Theorem 4. Every subdivision of K4 on at least six vertices is Ramsey size-
linear.

Theorem 4 is used in the proof of Theorem 2. Indeed, it is well known that a graph
G has treewidth larger than 2 if and only if G contains a K4-subdivision. Combining
Theorem 4 with Proposition 1.1 and some additional arguments gives Theorem 2.

The proofs of Theorems 3 and 4 heavily rely on the use of averaging arguments.
Theorem 4 additionally uses dependent random choice (see, e.g., [10] for a description
of this method and a brief history), which can be viewed as a more sophisticated use
of averaging and convexity arguments.

The rest of this short paper is organized as follows. Section 2 contains some
lemmas used in the proofs of Theorems 3 and 4. We then prove Theorem 3 in section 3
and Theorem 4 in section 4. Section 5 contains all results related to Conjecture 1.
Finally, the last section includes some comments and related open questions. We use
logn to denote the natural logarithm of n. We omit floor and ceiling signs whenever
these are not crucial. We use \delta (G),\Delta (G), d(G) to denote the minimum, maximum,
and average degree of G, respectively. We will frequently use the fact that a graph
with n vertices and average degree d contains an independent set of size at least
n/(d+ 1). This is a well-known consequence of Tur\'an's theorem.

2. Preliminary lemmas.
Lemma 2.1. Let r > 0. Consider a bipartite graph with sides X,Y with e(X,Y )\leq 

r| Y | . Then there are X \prime \subseteq X,Y \prime \subseteq Y such that | X \prime | \geq \lfloor | X| /(r+1)\rfloor , | Y \prime | \geq \lfloor | Y | /(r+1)\rfloor 
and there are no edges between X \prime and Y \prime .

Proof. By averaging, there is X \prime \subseteq X with | X \prime | = \lfloor | X| /(r + 1)\rfloor such that
e(X \prime , Y ) \leq e(X,Y )/(r + 1) \leq r| Y | /(r + 1). Hence, there are at least \lfloor | Y | /(r + 1)\rfloor 
vertices y \in Y which have no edge to X \prime . Take Y \prime to be the set of these vertices.

In the proof of Theorem 3, it is convenient to assume that the host graph is
(almost) regular. The following lemma allows us to assume that the maximum degree
is larger than the average degree by no more than a logarithmic factor.

Lemma 2.2. Let G be a graph on N \geq 12 vertices. Then there is an induced
subgraph G\prime of G with average degree d(G\prime ) such that | V (G\prime )| \geq N/6 and \Delta (G\prime ) \leq 
d(G\prime ) \cdot log | V (G\prime )| .

Proof. We run the following process for 2N/3 steps. If the current graph G
satisfies \Delta (G)\leq d(G) \cdot log | V (G)| , then stop. Otherwise, take v \in V (G) with dG(v)>
d(G) \cdot log | V (G)| , and replace G with G - v. Letting d denote the old average degree
and dnew the new average degree, we have

dnew =
d| V (G)|  - 2dG(v)

| V (G)|  - 1
<

d| V (G)|  - 2d log | V (G)| 
| V (G)|  - 1

= d \cdot 
\biggl( 
1 - 2 log | V (G)|  - 1

| V (G)|  - 1

\biggr) 
\leq d \cdot 

\biggl( 
1 - 2 logN  - 1

N  - 1

\biggr) 
,
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228 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

where the last inequality holds because the function x \mapsto \rightarrow 2 logx - 1
x - 1 is decreasing for

x \geq 4, say, and | V (G)| \geq N/3 \geq 4 (as we only run the process for 2N/3 steps and in
each step remove one vertex). So we see that if the process did not stop, then the
average degree of the final graph G is at most

(N  - 1) \cdot 
\biggl( 
1 - 2 logN  - 1

N  - 1

\biggr) 2N/3

\leq (N  - 1) \cdot exp
\biggl( 
 - 2N/3 \cdot (2 logN  - 1)

N  - 1

\biggr) 
\leq (N  - 1) \cdot e - logN < 1.

Therefore, the final graph G contains an empty subgraph on at least | V (G)| /2 =N/6
vertices. This subgraph satisfies the assertion of the lemma.

The following lemma shows that if some number of highest-degree vertices of a
graph F has already been embedded into the complement G of a graph G, and if
N = | V (G)| is large enough compared to the average degree of G and the degrees of
the vertices already used in the embedding, then one can complete the embedding of
F into G. The proof uses a basic greedy embedding argument.

Lemma 2.3. Let F be a graph with m edges. Let 0 \leq k \leq | V (F )| , and let A be
the set of the k highest-degree vertices in F . Let G be a graph with N vertices and
average degree d. Let \sigma \prime :A\rightarrow V (G) be an embedding of F [A] into G. Suppose that

(2) N \geq 4m

k+ 1
\cdot max

\biggl( 
max

v\in \sigma \prime (A)
dG(v), 2d

\biggr) 
+ 2| V (F )| .

Then there is an embedding \sigma of F into G which extends \sigma \prime (i.e., \sigma (x) = \sigma \prime (x) for
every x\in A).

Proof. Let W be the set of v \in V (G) with dG(v) \leq 2d. Then | W | \geq N/2. We
embed the vertices of V (F ) \setminus A one-by-one into W . Let x \in V (F ) \setminus A. We want
to choose \sigma (x) \in W which is different from all previously embedded vertices, such
that if y \in V (F ) has already been embedded and is adjacent in F to x, then \sigma (x) is
not adjacent in G to \sigma (y). If y \in A, then the degree of \sigma (y) in G is of course not
larger than maxv\in \sigma \prime (A) dG(v). And if y /\in A, then \sigma (y) \in W and hence its degree
in G is at most 2d. The total number of vertices y which we need to consider is
dF (x) \leq 2m/(k + 1), where the inequality holds by the choice of A, as | A| = k and
e(F ) =m. So in total, the number of vertices which cannot play the role of \sigma (x) is at
most 2m

k+1 \cdot max
\bigl( 
maxv\in \sigma \prime (A) dG(v), 2d

\bigr) 
+ | V (F )|  - 1 < N/2 \leq | W | . Hence, there is a

suitable choice for \sigma (x)\in W .

Lemma 2.4. Let F be a graph with m edges, and let G be a graph with N vertices

and average degree d\leq 
\sqrt{} 

N2 - 2N \cdot | V (F )| 
48m . Then G contains a copy of F .

Proof. Let W be the set of v \in V (G) with dG(v)\leq 2d. Then \Delta (G[W ])\leq 2d and

| W | \geq N/2. Hence, G[W ] contains an independent set I of size k\geq N/2
2d+1 \geq N

6d . Let A
be the set of min\{ k, | V (F )| \} highest-degree vertices of F . Mapping F [A] arbitrarily
into I gives an embedding of F [A] into G, since I is independent in G. If A= V (F ),
then we are done. Else, we apply Lemma 2.3 to complete the embedding of F into G.
We only need to verify the condition (2). Since I \subseteq W , all vertices in I have degree
at most 2d in G. So for (2) to hold, it suffices that N \geq 4m

N/6d \cdot 2d+ 2| V (F )| , which
holds by the assumption of the lemma.

Next, we need a bipartite version of Lemma 2.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RAMSEY SIZE-LINEAR GRAPHS AND RELATED QUESTIONS 229

Lemma 2.5. Let F be a bipartite graph with sides A,B and m edges. Let k, \ell \geq 0,
let A\prime be the set of the k highest-degree vertices in A, and let B\prime be the set of the \ell 
highest-degree vertices in B. Let G be a graph with N vertices and average degree d.
Let \sigma \prime :A\prime \cup B\prime \rightarrow V (G) be an embedding of F [A\prime \cup B\prime ] into G. Suppose that

1. B\prime =B or N \geq 2m
\ell +1 \cdot maxv\in \sigma \prime (A\prime ) dG(v) + 2| V (F )| .

2. A\prime =A or N \geq m
k+1 \cdot max

\bigl( 
maxv\in \sigma \prime (B\prime ) dG(v), 2d

\bigr) 
+ | V (F )| .

Then there is an embedding \sigma of F into G which extends \sigma \prime .

Proof. Let W be the set of v \in V (G) with dG(v)\leq 2d. Then | W | \geq N/2. We will
embed the vertices of V (F )\setminus (A\prime \cup B\prime ) one-by-one. We first embed the vertices of B\setminus B\prime 

into W . Let b\in B \setminus B\prime . We want to choose \sigma (b)\in W such that \sigma (b) is not adjacent in
G to \sigma \prime (a) for any a \in A\prime with (a, b) \in E(F ), and such that \sigma (b) is different from all
previously embedded vertices. We have dF (b)\leq m/(\ell + 1), because b /\in B\prime and B\prime is
the set of the \ell highest-degree vertices in B. So the number of vertices which cannot
play the role of \sigma (b) is at most m

\ell +1 \cdot maxv\in \sigma \prime (A\prime ) dG(v)+| V (F )|  - 1<N/2\leq | W | , where
the first inequality uses item 1. Therefore, there is a suitable choice for \sigma (b)\in W .

Suppose now that we have embedded B \setminus B\prime , and let us embed the vertices of
A \setminus A\prime (here we no longer insist that vertices are embedded into W ). Let a \in A \setminus A\prime .
We need to show that there is \sigma (a)\in V (G) such that \sigma (a) is not adjacent in G to \sigma (b)
for any b \in B with (a, b) \in E(F ), and such that \sigma (a) is different from all previously
embedded vertices. As above, we have dF (a) \leq m/(k + 1). For each b \in B \setminus B\prime , we
have dG(\sigma (b))\leq 2d because \sigma (b)\in W . Therefore, the number of vertices which cannot
play the role of \sigma (a) is at most m

k+1 \cdot max
\bigl( 
maxv\in \sigma \prime (B\prime ) dG(v), 2d

\bigr) 
+ | V (F )|  - 1 <N,

using item 2. So there is a valid choice for \sigma (a)\in V (G).

Finally, we will need the following well-known result on the independence number
of graphs with few triangles; see, e.g., [6, Lemma 12.16].

Lemma 2.6. Let G be a graph with N vertices, average degree d, and at most T tri-
angles. Then G contains an independent set of size at least 0.1N

d \cdot 
\bigl( 
logd - 1

2 log(T/N)
\bigr) 
.

3. Proof of Theorem 3. Let us first sketch the proof of Theorem 3 in the case
F = Kn,n. So let G be a graph on N = Cn2 vertices with no copy of K\ast 

4 . We need
to show that G contains a copy of Kn,n. First, it is easy to see that by deleting some
N/2 (say) vertices, we may assume that the minimum degree of G is \Omega (Cn). (Else, G
contains an independent set of size 2n, so G contains a Kn,n, as required.) Let S be
the set of pairs of vertices (x, y) such that x, y have at most two common neighbors.
Suppose first that there is x \in V (G) such that S(x) := \{ y : (x, y) \in S\} has size at
least 3n. In this case, take disjoint sets A\subseteq NG(x),B \subseteq S(x), each of size 3n (this is
possible because d(x) =\Omega (Cn)\geq 6n). By the definition of S, each vertex in B has at
most two common neighbors with x, hence it has at most two neighbors in A. This
allows us to find greedily an n\times n empty bipartite graph between A,B, as required.

So from now on suppose that | S(x)| \leq 3n for each x \in V (G), implying that
| S| \leq 3nN/2. Now, taking a vertex v \in V (G) at random, we see that the number
of pairs (x, y) \in S contained in N(v) is on average at most 3n (each pair from S is
counted at most twice when averaging over v, by the definition of S). So fix v \in V (G)
with at most 3n pairs (x, y) \in S inside N(v). Recall that | N(v)| = \Omega (Cn). We may
assume that the average degree inside N(v) is at least \Omega (C), because otherwise N(v)
would contain an independent set of size 2n, and we would be done. It follows that
G[N(v)] contains at least

\sum 
u\in N(v)

\bigl( dG[N(v)](u)
2

\bigr) 
=\Omega (C3n) paths of length 2 where we

used that
\bigl( 
x
2

\bigr) 
is convex. Also, each pair x, y can be the endpoints of at most one such

path of length 2, because otherwise we get a C4 inside N(v), and hence a K\ast 
4 together

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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230 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

with v. So in N(v) there are at least \Omega (C3n)> 3n pairs (x, y) which are the endpoints
of a path of length 2. Hence, one of these pairs is not in S. Fix such a pair x, y, and
let x, z, y be a path of length 2 inside N(v). Since (x, y) /\in S, there is an additional
neighbor u /\in \{ v, z\} of x, y. Now v,x, y, z, u form a copy of K\ast 

4 .
Unfortunately, we were not able to adapt the above proof in a clean way to work

for every bipartite graph F . Finding such a concise proof of Theorem 3 would be
interesting. Instead, to make the proof work for an arbitrary bipartite F , we apply
regularization to G via Lemma 2.2, ensuring that the maximum degree is at most
a logarithmic factor away from the average degree. This ``almost-regularity"" of G
will be useful when applying Lemmas 2.3 and 2.5 in certain steps of the proof. To
compensate for the (extra) logarithmic factor, we use Lemma 2.6. The details follow.

Proof of Theorem 3. Let F be a bipartite graph with sides A,B, having m edges
and no isolated vertices. Note that | V (F )| \leq 2m. Let G be a graph on N = Cm
vertices with no copy of K\ast 

4 , where C is a large enough constant. Our goal is to
show that G contains a copy of F . By Lemma 2.2, there is an induced subgraph G\prime 

of G with | V (G\prime )| \geq N/6 and \Delta (G\prime ) \leq d(G\prime ) \cdot log | V (G\prime )| . With a slight abuse of
notation, we will use the notation G for G\prime and N for | V (G\prime )| ; thus | V (G)| =N and
\Delta (G)\leq d(G) \cdot logN . Put d := d(G).

Let S be the set of pairs (x, y) \in 
\bigl( 
V (G)

2

\bigr) 
with dG(x, y) \leq 2. We proceed with

several cases.
Case 1: | S| \geq 2Nd logN . For each x \in V (G), let S(x) be the set of y \in V (G)

with d(y) \leq d(x) and (x, y) \in S. Then
\sum 

x\in V (G) | S(x)| \geq | S| . Hence, there is x with
| S(x)| \geq 2d logN . Since \Delta (G) \leq d logN , we have | S(x) \setminus NG(x)| \geq d logN . Each
y \in S(x) has at most two neighbors in NG(x), by the definition of S. By Lemma 2.1
with r = 2, X = NG(x), and Y = S(x) \setminus NG(x), there exist X \prime \subseteq NG(x) and Y \prime \subseteq 
S(x) \setminus NG(x) such that | X \prime | \geq \lfloor dG(x)/3\rfloor , | Y \prime | \geq \lfloor | S(x) \setminus NG(x)| /3\rfloor \geq \lfloor d log(N)/3\rfloor ,
and there are no edges in G between X \prime and Y \prime .

Let A\prime \subseteq A be the set of the k :=min\{ | Y \prime | , | A| \} highest-degree vertices in A, and
let B\prime \subseteq B be the set of the \ell :=min\{ | X \prime | , | B| \} highest-degree vertices in B. Map A\prime 

into Y \prime and B\prime into X \prime arbitrarily. This mapping \sigma \prime is an embedding of F [A\prime \cup B\prime ]
into G, because there are no edges in G between X \prime and Y \prime . We now verify that items
1 and 2 in Lemma 2.5 hold. All vertices in \sigma \prime (A\prime ) \subseteq Y \prime \subseteq S(x) have degree at most
dG(x) by the definition of S(x). Hence (assuming B\prime \not =B), we have

2m

\ell + 1
\cdot max
v\in \sigma \prime (A\prime )

dG(v)\leq 
2m

| X \prime | + 1
\cdot dG(x)\leq 

2m

dG(x)/3
\cdot dG(x) = 6m.

Also, | V (F )| \leq 2m. Therefore, item 1 in Lemma 2.5 holds provided that N \geq 10m.
Next, (assuming A\prime \not =A), we have

m

k+ 1
\cdot max

\biggl( 
max

v\in \sigma \prime (B\prime )
dG(v), 2d

\biggr) 
\leq m

| Y \prime | + 1
\cdot 2\Delta (G)\leq m

d log(N)/3
\cdot 2d logN \leq 6m.

So item 2 in Lemma 2.5 holds as well, provided that N \geq 8m. Hence, G contains a
copy of F , as required.

Case 2: | S| \leq 2Nd logN and d \geq 576
\surd 
m logN . For each x \in V (G), let N \prime (x)

denote the set of neighbors y of x with d(y) \leq d(x), and let d\prime (x) = | N \prime (x)| . Then\sum 
x\in V (G) d

\prime (x) \geq e(G) = dN/2. Let t(x) be the number of pairs (y, z) \in S such that
y, z \in N \prime (x). We have

\sum 
x\in V (G) t(x)\leq 2| S| , because each pair in S is counted at most

twice in this sum, by the definition of S. Observe that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

2/
24

 to
 1

29
.1

32
.1

59
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



RAMSEY SIZE-LINEAR GRAPHS AND RELATED QUESTIONS 231\sum 
x\in V (G)

\Bigl[ 
16 logN \cdot 

\Bigl( 
d\prime (x) - d(x)/8 - d/8

\Bigr) 
 - t(x)

\Bigr] 
\geq 16 logN \cdot e(G)/2 - 

\sum 
x\in V (G)

t(x)

= 4dN logN  - 
\sum 

x\in V (G)

t(x)\geq 4dN logN  - 2| S| \geq 0.

Hence, there is x\in V (G) with 16 logN \cdot (d\prime (x) - d(x)/8 - d/8) - t(x)\geq 0. In particular,
d\prime (x) \geq d(x)/8, d/8, and the number t(x) of pairs (y, z) \in S with y, z \in N \prime (x) is at
most 16d\prime (x) logN . Fix such x, let G1 :=G[N \prime (x)] and let d1 := d(G1) be the average
degree of G1.

We claim that d1 \leq 6
\surd 
logN . Suppose otherwise. Then, by convexity, the number

of paths of length 2 in G1 is at least | N \prime (x)| \cdot 
\bigl( 
6
\surd 
logN
2

\bigr) 
> 16d\prime (x) logN \geq t(x). A pair

of vertices from N \prime (x) can be the endpoints of at most one path of length 2 in G1,
because otherwise G1 =G[N \prime (x)] would contain a copy of C4, which together with x
would give a copy of K\ast 

4 in G, a contradiction. So we see that there are more than

t(x) pairs (y, z)\in 
\bigl( 
N \prime (x)

2

\bigr) 
which are the endpoints of a path of length 2 in G1. Hence,

there is such a pair (y, z) which does not belong to S. Let w be the middle vertex
of the path of length 2 between y and z in G1. Since (y, z) /\in S, there is a common
neighbor u of y, z with u \not = x,w. Now x, y, z,w,u span a copy of K\ast 

4 , a contradiction.
This proves the claim that d1 \leq 6

\surd 
logN .

Let A \subseteq V (F ) be the set of k := min\{ d\prime (x)/3, | V (F )| \} highest-degree vertices in
F . Our goal is to embed F [A] into G[N \prime (x)], and then use Lemma 2.3 to extend this
into an embedding of F into G. To embed F [A] into G[N \prime (x)], we use Lemma 2.4
with F [A] in the role of F and G1 =G[N \prime (x)] in the role of G. To apply the lemma,
we need to verify the condition

(3) d1 \leq 

\sqrt{} 
| V (G1)| 2  - 2| V (G1)| \cdot | A| 

48e(F [A])
.

By definition, | A| \leq d\prime (x)/3. Also, | V (G1)| = d\prime (x), d1 \leq 6
\surd 
logN , and e(F [A]) \leq m.

So the right-hand-side (RHS) of (3) is at least d\prime (x)
12

\surd 
m
, and hence (3) holds, provided

that d\prime (x) \geq 72
\surd 
m logN , as d1 \leq 6

\surd 
logN . But d\prime (x) \geq d/8 \geq 72

\surd 
m logN by the

assumption of Case 2, so (3) indeed holds. By Lemma 2.4, there is an embedding \sigma \prime 

of F [A] into G[N \prime (x)].
We now use Lemma 2.3 to embed F into G. Recall that all vertices in \sigma \prime (A) \subseteq 

N \prime (x) have degree at most d(x)\leq 8d\prime (x) in G (by the definition of N \prime (x)), and that
the average degree of G is d\leq 8d\prime (x). Also, k = d\prime (x)/3 assuming A \not = V (F ), by our
choice of k. Therefore, we can bound the first term on the RHS of (2) as follows:
4m
k+1 \cdot 

\bigl( 
maxv\in \sigma \prime (A) dG(v), 2d

\bigr) 
\leq 12m

d\prime (x) \cdot 16d
\prime (x) = 192m. Also, | V (F )| \leq 2m. So (2)

holds for N \geq 196m. We conclude that G contains a copy of F , as required.
Case 3: d\leq 576

\surd 
m logN =O(

\surd 
N logN) (recall that N =Cm so m\leq N). Let W

be the set of vertices of G of degree at most 2d. Then | W | \geq N/2. Let d0 := d(G[W ])
be the average degree of G[W ]. Then d0 \leq \Delta (G[W ]) \leq 2d = O(

\surd 
N logN). We

claim that G[W ] contains an independent set I of size \Omega (d). If d0 \leq 
\sqrt{} 
N/ logN then

this holds because then | W | 
d0+1 = \Omega (

\surd 
N logN) = \Omega (d). So suppose from now on that

d0 \geq 
\sqrt{} 
N/ logN .

Let us bound the number of triangles in G[W ]. We have \Delta (G[W ]) \leq 2d =
O(

\surd 
N logN) = N1/2+o(1). For each vertex x, the neighborhood of x in G contains

no C4, because otherwise G would contain a copy of K\ast 
4 . Hence, x participates in at

most \Delta (G[W ])3/2 \leq N3/4+o(1) \leq d
3/2+o(1)
0 triangles of G[W ]. So the overall number

of triangles in G[W ] is at most T := | W | \cdot d3/2+o(1)
0 . By Lemma 2.6, applied to G[W ],

there is an independent set I in G[W ] of size at least
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232 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

| I| \geq 0.1
| W | 
d0

\cdot 
\biggl( 
logd0  - 

1

2
log

\biggl( 
T

| W | 

\biggr) \biggr) 
= 0.1

| W | 
d0

\cdot 
\biggl( 
1

4
 - o(1)

\biggr) 
logd0

\geq 0.01
N

d0
logd0 \geq \Omega 

\Bigl( \sqrt{} 
N logN

\Bigr) 
\geq \Omega (d).

Here, the penultimate inequality uses that d0 \leq O(
\surd 
N logN) and that the function

x \mapsto \rightarrow logx
x is decreasing (for x\geq e), and the last inequality uses that d\leq O(

\surd 
N logN).

Let A be the set of the k :=min\{ | I| , | V (F )| \} highest-degree vertices in F . We use
Lemma 2.3 to embed F into G, starting with an arbitrary embedding of F [A] into
I. Recall that all vertices in I \subseteq W have degree at most 2d in G. Hence, assuming
A \not = V (F ), the RHS of condition (2) is at most 4m

k+1 \cdot 2d+2| V (F )| \leq 4m
| I| \cdot 2d+4m\leq O(m),

using that | I| = \Omega (d). Therefore, condition (2) holds for N = Cm, provided that C
is large enough compared to the implied constant in the O-notation in the previous
sentence. So G contains a copy of F . This completes the proof.

4. Proof of Theorem 4.
Proof. There are three subdivisions of K4 on six vertices, and we denote these

by H1, H2, H3; see Figure 2. Every subdivision of K4 on more than six vertices is
a subdivision of Hi for some i= 1,2,3. So let H be a subdivision of H1, H2, or H3.
Let h := | V (H)| . Fix constants h\ll C0 \ll C1 \ll C, to be chosen implicitly later. Let
F be a graph with m edges and no isolated vertices. Let G be a graph on N = Cm
vertices. We assume that G has no copy of F and our goal is to show that G has
a copy of H. We begin with some general preparation that will be used in all three
cases of H1,H2,H3. Let d= d(G) be the average degree of G. Under the assumption
that G has no copy of F (and that C is large enough in terms of C1), we now prove
the following.

Claim 4.1. The following hold:
1. d\geq 0.1N/

\surd 
m\geq C1

\surd 
N .

2. There is no independent set I such that | I| \geq d/C1 and all vertices in I have
degree at most C1 \cdot | I| .

Proof. We show that if item 1 or 2 does not hold, then G contains a copy of F .
For item 1, if d\leq 0.1N/

\surd 
m, then G contains a copy of F by Lemma 2.4, using that

| V (F )| \leq 2m. The inequality 0.1N/
\surd 
m \geq C1

\surd 
N in item 1 holds because C \gg C1,

as N = Cm. Suppose now that item 2 fails and let I be as in that item. We apply
Lemma 2.3. Take A to be the set of k = max\{ | I| , | V (F )| \} highest-degree vertices
in F . Map A arbitrarily into I; this is an embedding of F [A] into G because I is
independent in G. Let us verify (2) in Lemma 2.3. All vertices in I have degree at
most C1 \cdot | I| . Also, the average degree d of G satisfies d \leq C1 \cdot | I| . Hence, assuming

Fig. 2. H1, H2, H3 (from left to right).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

2/
24

 to
 1

29
.1

32
.1

59
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



RAMSEY SIZE-LINEAR GRAPHS AND RELATED QUESTIONS 233

A \not = V (F ), the RHS in (2) is at most 4m
| I| +1 \cdot 2C1 \cdot | I| + 2| V (F )| \leq 8C1m+ 4m. So (2)

holds for N =Cm if C \gg C1.

Let \scrT be the set of triangles in G. We run the following process. As long as
there is an edge e which is contained in at least one and at most C0 triangles from
\scrT , we delete from \scrT all triangles containing e (we do not make any changes to the
graph, only to the collection \scrT ). We say that e is eliminated at this step. Note that
at a given step of the process, a triangle (still) belongs to \scrT if and only if none of its
edges has been eliminated. At the end of the process, we are left with a collection of
triangles \scrT 0 with the property that if an edge is contained in a triangle from \scrT 0, then
it is contained in at least C0 such triangles. Let G - be the subgraph of G consisting
of all edges which are eliminated during the process. Let G+ be the subgraph of the
remaining edges, i.e., E(G+) = E(G) \setminus E(G - ). Note that e \in E(G+) if and only if e
is contained in some triangle from \scrT 0. Observe that the following hold:

(a) For every e\in E(G+), there are at least C0 triangles in G+ containing e.
(b) For every set B \subseteq E(G - ), there is e \in B such that there are at most C0

triangles in G which contain e and only use edges from B \cup E(G+). In
particular, the total number of triangles in G containing edges from G - is at
most C0 \cdot e(G).

Property (a) holds by the definition of G+ and the above-mentioned property of \scrT 0.
For property (b), take e to be the earliest eliminated edge among the edges in B.
Before e is eliminated, all triangles in G which only use edges from B \cup E(G+) are
still in \scrT , because none of the edges in B\cup E(G+) has been eliminated yet (the edges
in E(G+) are never eliminated). At the moment that e is eliminated, the number of
triangles in \scrT which contain e must be at most C0.

In what follows, we denote by N+(x) the neighborhood of x in G+, and by
N+(x, y) the common neighborhood of x, y in G+. When writing N(x), we mean the
neighborhood in G.

Claim 4.2. For every edge (x, y) \in E(G+), there are paths P x,y
1 , . . . , P x,y

h in G+

of length h, all starting at x and intersecting only at x, such that every vertex on
these paths is adjacent to y.

Proof. Put N = N+(y), so x \in N . Observe that by property (a), the graph
G+[N ] has minimum degree at least C0. Hence, one can greedily find the above paths
P x,y
1 , . . . , P x,y

h inside N = N+(y) \subseteq N(y), provided that C0 is large enough in terms
of h.

Using Claim 4.2, we can find a copy of H in G by finding copies of H1,H2,H3

in G+. Recall that K
\ast 
4 is the subdivision of K4 where exactly one edge is subdivided

once.

Claim 4.3. Let K \in \{ K4,K
\ast 
4 ,H1,H2,H3\} , and suppose that H is a subdivision

of K. For e\in E(K), let \ell e be the length of the subdivision path in H replacing e, and
let E0 = \{ e \in E(K) : \ell e \geq 2\} . If G contains a copy of K in which all edges from E0

are in G+, then G contains a copy of H.

Proof. To obtain a copy of H, we need to replace the edges e\in E0 with internally
disjoint paths of appropriate lengths. We find these paths one-by-one. Suppose that
the path replacing the edge (x, y) \in E0 needs to have length k \leq h = | V (H)| . We
use the paths P x,y

i given by Claim 4.2. One of the paths P x,y
i , 1 \leq i \leq h, must be

internally disjoint from all vertices embedded so far (because | V (H)| = h). Also, since
all vertices of this path are adjacent to y, we can shorten it to a path that ends in y
and has length exactly k. This gives a copy of H.
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234 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

Note that H1,H2,H3 are subdivisions of K4,K
\ast 
4 , so H is a subdivision of K4,K

\ast 
4

by transitivity. Hence, if K \in \{ K4,K
\ast 
4\} , then the condition ``H is a subdivision of K""

in Claim 4.3 is always satisfied.
For v \in V (G), let b(v) denote the number of edges (x, y)\in E(G - ) with x, y \in N(v).

By property (b),

(4)
\sum 

v\in V (G)

b(v)\leq 3C0 \cdot e(G).

Indeed, the sum
\sum 

v\in V (G) b(v) counts triangles which contain an edge of G - , and each
such triangle is counted at most three times.

Claim 4.4. e(G+)\geq e(G)/2.

Proof. Suppose by contradiction that e(G+) \leq e(G)/2, and hence e(G - ) \geq 
e(G)/2. For v \in V (G), let N \prime (v) be the set of vertices u such that (u, v)\in E(G - ) and
d(u)\leq d(v), and let d\prime (v) = | N \prime (v)| . Then

\sum 
v\in V (G) d

\prime (v)\geq e(G - )\geq e(G)/2. Observe
that

\sum 
v\in V (G)

\biggl( 
d\prime (v) - d(v)/16 - d/16 - 1

12C0
\cdot b(v)

\biggr) 
\geq e(G)/2 - e(G)/8 - e(G)/8

 - 1

12C0
\cdot 

\sum 
v\in V (G)

b(v)\geq 0,

where the last inequality uses (4). So there is v \in V (G) such that d\prime (v)\geq d(v)/16, d/16
and b(v)\leq 12C0 \cdot d\prime (v). In particular, this means that there are at most 12C0 \cdot d\prime (v)
edges of G - inside N \prime (v). So the average degree of G - [N

\prime (v)] is at most 24C0. Hence,
there is A\subseteq N \prime (v) which is independent in G - with | A| \geq d\prime (v)/(24C0+1). Note that
(v,u)\in E(G - ) for every u\in A, by the definition of N \prime (v).

We claim that the graph G[A] is C0-degenerate. Indeed, given any S \subseteq A, apply
property (b) to the set of edges B := \{ (v,u) : u \in S\} \subseteq E(G - ), and let e= (v,u) \in B
be the edge given by property (b). Since all edges in G[S] belong to G+, every
edge of the form (u,w) \in E(G[S]) forms a triangle u, v,w in which (v,u), (v,w) \in B
and (u,w) \in E(G+). By our choice of e, there are at most C0 such triangles, so
dG[S](u)\leq C0, as required. It follows that G[A] contains an independent set I of size

at least | I| \geq | A| 
C0+1 \geq d\prime (v)

(C0+1)(24C0+1) \geq d/C1, as d\prime (v) \geq d/16 (provided C1 \gg C0).

Also, all vertices in I \subseteq N \prime (v) have degree at most d(v) in G, by the definition of
N \prime (v), and d(v)\leq 16d\prime (v)\leq 16(C0 + 1)(24C0 + 1) \cdot | I| \leq C1 \cdot | I| . But this contradicts
item 2 of Claim 4.1.

We now proceed by case analysis over the cases of H1,H2,H3.
Case 1: H is a subdivision of H1. For v \in V (G), denote by N\ast (v) the set of

all u \in V (G) such that (u, v) \in E(G+) and d(u) \leq d(v), and let d\ast (v) = | N\ast (v)| .
Then

\sum 
v\in V (G) d

\ast (v) \geq | e(G+)| \geq e(G)/2, by Claim 4.4. Let P (v) denote the set of

pairs (u,w) \in 
\bigl( 
N\ast (v)

2

\bigr) 
such that | N+(u,w)| \leq C0 (i.e., u,w have at most C0 common

neighbors in G+). Let p(v) = | P (v)| . Observe that

(5)
\sum 

v\in V (G)

p(v)\leq C0

\biggl( 
N

2

\biggr) 
,
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RAMSEY SIZE-LINEAR GRAPHS AND RELATED QUESTIONS 235

because each pair (u,w) is counted at most C0 times in the sum on the LHS of (5),
by the definition of the sets P (v). Now, note that\sum 

v\in V (G)

\biggl( 
d\ast (v) - d(v)/16 - d/16 - 1

24C0
\cdot b(v) - e(G)

4C0N2
\cdot p(v)

\biggr) 
=

\sum 
v\in V (G)

d\ast (v) - e(G)/4 - 1

24C0
\cdot 

\sum 
v\in V (G)

b(v) - e(G)

4C0N2
\cdot 

\sum 
v\in V (G)

p(v)

\geq e(G)/2 - e(G)/4 - e(G)/8 - e(G)/8 = 0.

Here we used (4) and (5). So there is v \in V (G) such that d\ast (v) \geq d(v)/16, d/16,
b(v)\leq 24C0 \cdot d\ast (v), and

(6) p(v)\leq 4C0N
2

e(G)
\cdot d\ast (v) = 8C0N

d
\cdot d\ast (v)\leq d\ast (v) \cdot (d\ast (v) - 3)

8
,

where the last inequality holds if C1 \gg C0 because d\ast (v) \geq d/16 \geq C1

\surd 
N/16, using

item 1 of Claim 4.1.
Let A\subseteq N\ast (v) be the set of all u\in N\ast (v) which participate in at most d\ast (v) - 3

2 of

the pairs in P (v). Then p(v) \geq 1
2 (d

\ast (v) - | A| ) \cdot d\ast (v) - 3
2 , so | A| \geq d\ast (v)/2 by (6). We

claim that e(G[A])> 48C0 \cdot | A| . Indeed, otherwise G[A] would contain an independent

set I of size | I| \geq | A| 
96C0+1 \geq d\ast (v)

2(96C0+1) \geq d
C1

, as d\ast (v) \geq d/16 and C1 \gg C0. Also,

I \subseteq N\ast (v) and all vertices in N\ast (v) have degree at most d(v) \leq 16d\ast (v) \leq C1 \cdot | I| in
G. This would contradict item 2 of Claim 4.1. So indeed e(G[A])> 48C0 \cdot | A| . On the
other hand, G[A] contains at most b(v) edges of G - (by the definition of b(v)). Hence,
G[A] contains at least e(G[A]) - b(v) > 48C0 \cdot | A|  - b(v) \geq 48C0 \cdot d\ast (v)/2 - b(v) \geq 0
edges of G+.

Fix an edge (u1, u2) \in E(G+) with u1, u2 \in A. By the definition of A, each

ui participates in at most d\ast (v) - 3
2 of the pairs in P (v). Hence, there is w \in N\ast (v)

different from u1, u2 such that (u1,w), (u2,w) /\in P (v). By the definition of P (v), this
means that ui,w have at least C0 common neighbors in G+ for i = 1,2. Let zi be a
common neighbor of ui,w in G+, such that v,u1, u2,w, z1, z2 are all distinct. Then
these six vertices form a copy of H1 in G+. Now, by Claim 4.3, G contains a copy of
H. This concludes the proof in Case 1.

Case 2: H is a subdivision of H2. We have
\sum 

v d+(v) = 2e(G+) \geq e(G), where
the inequality is by Claim 4.4. Sample two distinct vertices v1, v2 \in V (G) uniformly
at random and let A=N+(v1, v2) be the common neighborhood of v1, v2 in G+. For
each u\in V (G), the probability that u\in A is

\bigl( 
d+(u)

2

\bigr) 
/
\bigl( 
N
2

\bigr) 
. By Jensen's inequality,

\BbbE [| A| ] = 1\bigl( 
N
2

\bigr) \cdot 
\sum 
u

\biggl( 
d+(u)

2

\biggr) 
\geq N\bigl( 

N
2

\bigr) \cdot 
\biggl( 1

N \cdot 
\sum 

u d+(u)

2

\biggr) 
\geq N\bigl( 

N
2

\bigr) \cdot 
\biggl( 
e(G)/N

2

\biggr) 
\geq 2

N
\cdot (e(G)/N)2

4
=

e(G)2

2N3
\geq C2

0 ,

where the last inequality holds because e(G) = dN/2, d\geq C1

\surd 
N by item 1 of Claim

4.1, and C1 \gg C0.
Let P be the set of pairs of vertices u1, u2 \in A such that | N+(u1, u2)| \leq C0. For

a given pair u1, u2 \in V (G) with | N+(u1, u2)| \leq C0, the probability that u1, u2 \in A is
at most

\bigl( 
C0

2

\bigr) 
/
\bigl( 
N
2

\bigr) 
. Hence, \BbbE [| P | ] \leq 

\bigl( 
C0

2

\bigr) 
. By linearity of expectation, \BbbE [| A|  - | P | ] \geq 

C2
0/2\geq 3. Hence, there is a choice of v1, v2 for which | A|  - | P | \geq 3. By removing one
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236 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

vertex from each pair in P , we obtain a subset A\prime \subseteq A, | A\prime | \geq 3, such that no pair of
vertices in A\prime belongs to P . Fix distinct u1, u2, u3 \in A\prime . Since (u1, u2) /\in P , there are
more than C0 \geq 4 common neighbors of u1, u2 in G+. Hence, there is w /\in \{ v1, v2, u3\} 
which is a common neighbor of u1, u2 in G+. Now, v1, v2, u1, u2, u3,w form a copy of
H2 in G+. So by Claim 4.3, G contains a copy of H. This concludes the proof in
Case 2.

Case 3: H is a subdivision of H3. If H is obtained from K4 by subdividing at least
two edges (some number of times), then H is a subdivision of H1 or H2; so such H
are already covered by Cases 1 and 2. Hence, we may assume that H is obtained from
K4 by subdividing exactly one edge (some number of times). It follows, by Claim 4.3,
that if G contains a copy of K4 in which at least one edge is in G+, then G contains
a copy of H.

Note that H3 is obtained from K4 by subdividing one edge twice. So H3 has
three subdivision edges (i.e., the edges of the path replacing the subdivided edge of
K4). Denote these edges by e1, e2, e3. We can treat H as a subdivision of H3 in which
only one of e1, e2, e3 is subdivided. Indeed, if ei is replaced in H by a path of length
\ell i, then we can replace just one of e1, e2, e3 with a path of length \ell 1 + \ell 2 + \ell 3, and
keep the other two edges. This means that if G contains a copy of H3 in which all
edges except at most two of the edges e1, e2, e3 are in G+, then G contains a copy of
H (again using Claim 4.3).

Recall that a diamond is the graph consisting of two triangles sharing an edge.
A diamond has two vertices of degree 2 and two vertices of degree 3; the vertices
of degree 2 will be called the tips of the diamond, and the edge connecting the two
vertices of degree 3 will be called the middle edge of the diamond.

By Claim 4.4, e(G+) \geq e(G)/2. By property (a) above, for every e \in E(G+)
there are at least C0 triangles in G+ containing e. It follows that G+ contains at
least e(G)/2 \cdot 

\bigl( 
C0

2

\bigr) 
\geq 4e(G) diamonds. For v \in V (G), let t(v) denote the number

of diamonds D in G+ such that v is a tip of D, and the other tip u of D satisfies
d(u)\leq d(v). Then

\sum 
v t(v)\geq 4e(G). It follows that\sum 

v\in V (G)

(t(v) - d(v) - d) =
\sum 

v\in V (G)

t(v) - 4e(G)\geq 0.

Hence, there is a vertex v satisfying t(v)\geq d(v), d. Fix such a vertex v. By definition,
there are diamonds D1, . . . ,Dr in G+, r= t(v), such that v is a tip of Di, and the other
tip ui of Di satisfies d(ui) \leq d(v) (for i = 1, . . . , r). Let ei be the middle edge of Di.
Suppose first that there is 1\leq i\leq r such that (v,ui)\in E(G). Then the vertices of Di

form a K4 in which all edges except possibly (v,ui) are in G+. As we saw above, this
implies that G contains a copy of H, completing the proof. So from now on we may
assume that v is not connected to any ui. It follows that \{ u1, . . . , ur\} \cap 

\bigcup r
i=1 ei = \emptyset ,

since v is connected to all vertices of
\bigcup r

i=1 ei. Next, suppose that there are 1\leq i < j \leq r
such that ui = uj . Since Di \not =Dj , there is xj \in ej such that xj /\in V (Di). Observe that
V (Di) \cup \{ xj\} spans a copy of K\ast 

4 in G+. By Claim 4.3, this implies that G contains
a copy of H, completing the proof. So from now on we may assume that u1, . . . , ur

are pairwise distinct.
We claim that U := \{ u1, . . . , ur\} is not an independent set of G. Indeed, observe

that | U | = r = t(v) \geq d and all vertices in U have degree at most d(v) \leq t(v) = | U | .
So if U were independent, then we would get a contradiction to item 2 of Claim
4.1. Let us then fix 1 \leq i < j \leq r such that (ui, uj) \in E(G). If ei = ej , then
ei \cup \{ ui, uj\} spans a copy of K4 in which all edges except possibly (ui, uj) are in G+.
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Again, this implies that G contains a copy of H. Suppose finally that ei \not = ej . Let
xj \in ej \setminus V (Di). It is easy to check that V (Di) \cup \{ xj , uj\} contains a copy of H3 in
which all edges except possibly (ui, uj) are in G+, and (ui, uj) plays the role of one
of the subdivision edges e1, e2, e3 (the edges playing the roles of e1, e2, e3 in this copy
are (v,xj), (xj , uj), (uj , ui)). As explained above, this implies that G contains a copy
of H. This completes the proof of Case 3 and hence the theorem.

5. On Conjecture 1. This section is broken into several parts. First, we prove
Proposition 1.1, which then allows us to prove Theorem 2. Next, we show that Con-
jecture 1 holds if Kn is replaced by Kn,n (see Proposition 5.6). To that end, we also
study the Ramsey number R(H,Kn,n) for graphs H of bounded maximum degree and
for degenerate graphs (see section 5.3).

5.1. Proof of Proposition 1.1. Here we prove Proposition 1.1, which bounds
the Ramsey number R(H,Kn) in terms of the treewidth of H. We refer to [11] for
the basic definitions related to treewidth. We will need the following lemma. For a
graph G, let \#Kr(G) denote the number of r-cliques in G.

Lemma 5.1. For any r \geq 1 there is Cr > 0 such that the following holds. If G is
a graph on N \geq Crn

r vertices with no independent set of size n, then \#Kr+1(G) \geq 
N

Crnr \cdot \#Kr(G).

Proof. We will show that one can take C1 = 4 and Cr = 8(r+ 1) \cdot Cr - 1 for r\geq 2.
(We make no effort to optimize the value of Cr.) The proof is by induction on r.
Suppose first r= 1. Let d be the average degree of G. We have n>\alpha (G)\geq N

d+1 , and

hence 2e(G)
N = d> N

n  - 1\geq N
2n . It follows that e(G)\geq N

4n \cdot N , as required.
Now let r \geq 2, and let G be as in the statement of the lemma. By the induction

hypothesis, we know that \#Kr(G) \geq N
Cr - 1nr - 1 \cdot \#Kr - 1(G). Let \scrC be the set of all

(r  - 1)-cliques X in G such that the number of r-cliques containing X is at least
r
2 \cdot 

N
Cr - 1nr - 1 . Observe that the number of r-cliques which do not contain any (r - 1)-

clique from \scrC is at most

1

r
\cdot \#Kr - 1(G) \cdot r

2
\cdot N

Cr - 1nr - 1
\leq 1

2
\cdot \#Kr(G).

Hence there are at least 1
2 \cdot \#Kr(G) r-cliques which contain some (r - 1)-clique from \scrC .

For each X \in \scrC , let N(X) be the set of vertices y such that X\cup \{ y\} is an r-clique.
By definition,

| N(X)| \geq r

2
\cdot N

Cr - 1nr - 1
\geq 4n.

By the case r = 1 of the lemma, applied to the graph G[N(X)], we have e(N(X))\geq 
| N(X)| 2

4n . Summing over all X \in \scrC , we see that\biggl( 
r+ 1

2

\biggr) 
\cdot \#Kr+1(G)\geq 

\sum 
X\in \scrC 

e(N(X))\geq 
\sum 
X\in \scrC 

| N(X)| 2

4n
\geq 1

4n
\cdot r
2
\cdot N

Cr - 1nr - 1
\cdot 
\sum 
X\in \scrC 

| N(X)| 

\geq r

8
\cdot N

Cr - 1nr
\cdot \#Kr(G)

2
=

\biggl( 
r+ 1

2

\biggr) 
\cdot N

Crnr
\cdot \#Kr(G).

A tree-decomposition of a graph H is a tree T with nodes X1, . . . ,Xt, called bags,
where each Xi is a subset of V (H) such that for every v \in V (H), the bags containing
v form a subtree of T and for every edge uv \in E(H), there exists a bag Xi containing
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238 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

both u and v. The treewidth of H is defined as the minimum size of the largest bag
in a tree-decomposition of H minus 1 (see, e.g., [11]).

In the proof of Proposition 1.1, it is convenient to work with a tree-decomposition
of H in which all bags have size tw(H) + 1, and every two adjacent bags intersect in
tw(H) vertices. It is well known that such a tree-decomposition always exists; see,
e.g., [11, Lemma 2].

Lemma 5.2 (see [11]). Let H be a graph with r := tw(H). Then there is a tree-
decomposition of H in which every bag has size r + 1 and every two adjacent bags
intersect in r vertices.

We are now ready to prove Proposition 1.1, which we restate here for convenience.

Proposition 1.1. For every fixed graph H, we have R(H,Kn) =O(ntw(H)).

Proof. Put r := tw(H). Take a tree-decomposition of H with the properties
guaranteed in Lemma 5.2; let T be the corresponding tree, and let B(t) be the bag
corresponding to t \in V (T ). Let H \prime be the graph obtained by making each bag B(t)
a clique; thus V (H \prime ) = V (H), and H \prime contains H as a subgraph. We will show that
R(H \prime ,Kn) =O(nr). Let G be a graph on N =Cnr vertices with no independent set of
size n. By Lemma 5.1, if C is large enough, then \#Kr+1(G)> (v(H) - r - 1)\cdot \#Kr(G).
We now run the following process with sets \scrC r+1,\scrC r. Initialize \scrC r+1 to be the set of
all (r+ 1)-cliques in G, and \scrC r to be the set of all r-cliques in G. As long as there is
X \in \scrC r such that the number of Y \in \scrC r+1 containing X is at most v(H) - r - 1, delete
X from \scrC r and delete all such Y from \scrC r+1. The number of elements of \scrC r+1 deleted
throughout the process is at most \#Kr(G) \cdot (v(H) - r - 1)<\#Kr+1(G). Hence, the
terminal set \scrC r+1 is nonempty. By construction, this set has the property that for
every Y \in \scrC r+1 and every X \subseteq Y , | X| = r, there are at least v(H) - r sets Y \prime \in \scrC r+1

which contain X.
Fix an order t1, . . . , tm of V (T ) such that ti has exactly one neighbor in \{ t1, . . . ,

ti - 1\} . We now embed B(t1), . . . ,B(tm) one-by-one, such that the image of each B(ti)
equals some Yi \in \scrC r+1. Fix an arbitrary Y1 \in \scrC r+1 and embed B(t1) onto Y1. For i\geq 2,
suppose that we already embedded B(t1), . . . ,B(ti - 1). There is a unique 1\leq j \leq i - 1
such that tj is a neighbor of ti. By the definition of tree-decomposition, we have
B(ti)\cap (B(t1)\cup \cdot \cdot \cdot \cup B(ti - 1)) =B(ti)\cap B(tj). By our choice of the tree-decomposition
and of H \prime , the intersection B(ti)\cap B(tj) is an r-clique. Hence, there is a unique vertex
v \in B(ti) \setminus B(tj). Let X \subseteq Yj be the r-clique playing the role of B(ti)\cap B(tj). There
are at least v(H) - r different (r+1)-cliques Y \in \scrC r+1 containing X; hence for one of
these Y , the (unique) vertex in Y \setminus X is ``new,"" i.e., not contained in Y1 \cup \cdot \cdot \cdot \cup Yi - 1.
We can now embed B(ti) onto Yi := Y , mapping v to this new vertex. This completes
the proof.

5.2. Proof of Theorem 2. The following lemma, appearing in [8], allows us to
assume that H is 2-connected. For completeness, we include a proof.

Lemma 5.3 (see [8]). Let H be a graph obtained from graphs H1,H2 by glu-
ing them together along a vertex. Then for every graph F , we have R(H,F ) =
O (R(H1, F ) +R(H2, F )).

Proof. Put M = max\{ R(H1, F ),R(H2, F )\} , and let G be a graph on N =
(| V (H1)| + 1) \cdot M vertices such that G contains no copy of F . We can then find

in G vertex-disjoint copies H
(1)
1 , . . . ,H

(M)
1 of H1. Let v be the unique common vertex

of H1 and H2. For i = 1, . . . ,M , let v(i) be the vertex of H
(i)
1 playing the role of

v. The subgraph of G induced on \{ v(1), . . . , v(M)\} contains a copy H \prime 
2 of H2. Let
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RAMSEY SIZE-LINEAR GRAPHS AND RELATED QUESTIONS 239

1 \leq i \leq M such that v(i) plays the role of v in H \prime 
2. Then H

(i)
1 \cup H \prime 

2 form a copy
of H.

Corollary 5 (see [8]). Let H be a graph with biconnected components H1,
. . . ,Hm. Then for every graph F , R(H,F ) =O(R(H1, F ) + \cdot \cdot \cdot +R(Hm, F )).

Proof of Theorem 2. By Corollary 5, we may assume that H is 2-connected.
Indeed, let H1, . . . ,Hm be the biconnected components of H. By Corollary 5, it is
enough to prove that R(Hi,Kn) =O(n3) for every i= 1, . . . ,m. Also, e(Hi) - v(Hi)\leq 
e(H) - v(H)\leq 4, because H is connected. Hence, from now on we assume that H is
2-connected.

Suppose first that v(H) \leq 5. In this case we show that tw(H) \leq 3, which would
imply thatR(H,Kn) =O(n3) by Proposition 1.1. If v(H) = 4, then tw(H)\leq tw(K4) =
3. If v(H) = 5, then e(H) \leq v(H) + 4 = 9, so H is contained in K5  - e. Note that
K5  - e is obtained by gluing two copies of K4 along a triangle. It is now easy to see
that tw(K5  - e)\leq 3, as required.

For the rest of the proof, suppose that v(H)\geq 6. If \Delta (H)\leq 2, then H is a cycle
or a path, and it is well known that in this case R(H,Kn) =O(n2) (for example, this
follows from the case k= 2 of Conjecture 1, which was proved in [8]). Let v \in V (H) be
a vertex of maximum degree, dH(v)\geq 3. Let H \prime =H  - v. Note that H \prime is connected
because H is 2-connected. Also, e(H \prime )  - v(H \prime ) = (e(H)  - dH(v))  - (v(H)  - 1) =
e(H) - v(H) - dH(v) + 1\leq 5 - dH(v).

We claim that R(H \prime ,Kn) = O(n2). If dH(v) \geq 4, then e(H \prime )  - v(H \prime ) \leq 1, so
R(H \prime ,Kn) = O(n2) follows from the case k = 2 of Conjecture 1, which was proved
in [8]. Suppose now that dH(v) = 3, so e(H \prime )  - v(H \prime ) \leq 2. If tw(H \prime ) \leq 2, then
R(H \prime ,Kn) = O(n2) by Proposition 1.1, so suppose that tw(H \prime ) > 2. It is known
(see, e.g., [4]) that a graph has treewidth larger than 2 if and only if it contains a
subdivision of K4. So H \prime contains a subdivision S of K4. Observe that e(S) - v(S) = 2
(this holds for every subdivision of K4). This implies that e(H \prime )  - v(H \prime ) = 2, and
that every 2-connected component of H \prime other than S is a singleton (this can also
be stated as saying that the 2-core of H \prime is S). It now follows from Corollary 5
that R(H \prime ,Kn) = O(R(S,Kn)). Now, if v(S) \geq 6, then by Theorem 4 we have
R(S,Kn) = O(n2) and hence R(H \prime ,Kn) = O(n2). So suppose that v(S) \leq 5. If
v(S) = 4, namely S \sim =K4, then, since H is connected and has maximum degree 3, it
holds that H \sim = K4, in contradiction to v(H) \geq 6. If v(S) = 5, then S \sim = K\ast 

4 . Note
that K\ast 

4 has four vertices of degree 3 and one vertex of degree 2. Let u be this vertex
of degree 2 in S. We have V (H) \setminus V (S) \not = \emptyset because v(H) \geq 6. Also, there are no
edges in H between V (S) \setminus \{ u\} and V (H) \setminus V (S), because the vertices in V (S) \setminus \{ u\} 
have degree 3 in S and \Delta (H) = 3. So u is a cut vertex of H, in contradiction to the
fact that H is 2-connected. This proves that R(H \prime ,Kn) =O(n2).

Now let G be a graph on N = Cn3 vertices with no independent set of size n.
There exists x \in V (G) with d(x) \geq Cn2  - 1. By choosing C large enough, we can
make sure that d(x) \geq R(H \prime ,Kn). Then, G[N(x)] contains a copy of H \prime . Together
with x, we get a copy of H, as required.

5.3. On the Ramsey number \bfitR (\bfitH ,\bfitK \bfitn ,\bfitn ). We begin by proving upper bounds
on R(H,Kn,n) for graphs H with \Delta (H) = r and for r-degenerate H. Both of our re-
sults follow from Lemma 5.5. First, we need the following definition.

Definition 5.4. We say that a graph H is r-strongly-degenerate if there exists
an ordering v1, . . . , vh of its vertices such that for all i\in [h] one of the following holds:

(a) | N(vi)\cap \{ v1, . . . , vi - 1\} | \leq r - 1, or
(b) d(vi)\leq r.
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240 D. BRADA\v C, L. GISHBOLINER, AND B. SUDAKOV

Equivalently, a graph H is r-strongly-degenerate if its subgraph induced by the
set of vertices with degree larger than r is (r - 1)-degenerate.

Lemma 5.5. For any r-strongly-degenerate graph H on h vertices, R(H,Kn,n)\leq 
h2nr.

Proof. Let u1, . . . , uh be an ordering of the vertices of H certifying that H is
r-strongly-degenerate. We denote di(j) = | NH(uj) \cap \{ u1, . . . , ui - 1\} | . Consider an
arbitrary graph G on N = h2nr vertices. We show how to find either a copy of H
or a copy of Kn,n. Split the vertex-set into h parts V1, . . . , Vh each of size hnr. We
will try to find an embedding \phi : H \rightarrow V such that \phi (uj) \in Vj for all j \in [h]. For this
purpose, we will maintain sets Ai,j into which we can embed the vertices, starting
with A1,j = Vj , j \in [h]. We will maintain the following. For any 1\leq i\leq j \leq h,

(7) | Ai,j | \geq h \cdot nr - di(j),

which is trivially satisfied for i= 1.
Next we describe how to embedH. Suppose we have embedded u1, . . . , ui - 1 and we

wish to embed ui. First suppose there exists a vertex v \in Ai,i satisfying | N(v)\cap Ai,j | \geq 
hnr - di+1(j) for all j > i such that (ui, uj)\in E(H). Then, we set \phi (ui) = v and update
the sets as follows:

Ai+1,j =

\Biggl\{ 
Ai,j \cap N(v) if (ui, uj)\in E(H),

Ai,j otherwise.

It directly follows that (7) is still satisfied.
If we can embed all h vertices in this manner, we obtain a copy of H. Hence, for

some i, there is no vertex v \in Ai,i satisfying | N(v) \cap Ai,j | \geq nr - di+1(j) for all j > i such
that (ui, uj)\in E(H). Since Ai,i \not = \emptyset (by (7)), ui has a neighbor uj in H with j > i. By
definition of an r-strongly-degenerate graph, it follows that di(i)\leq r - 1 so | Ai,i| \geq hn
by (7). By the pigeonhole principle, there is an index k > i such that for at least n
vertices v \in Ai,i we have | N(v) \cap Ai,k| < hnr - di+1(k). Let S \subseteq Ai,i be a set of n such
vertices, and let R=Ai,k \setminus 

\bigcup 
v\in S N(v). By assumption | N(v)\cap Ai,k| \leq hnr - di+1(k) - 1

for every v \in S. Note that di+1(k) = 1+ di(k) since (ui, uk)\in E(H). Therefore,

| R| \geq | Ai,k|  - n \cdot (hnr - di+1(k)  - 1)\geq hnr - di(k)  - n \cdot (hnr - di+1(k)  - 1) = n.

By construction, G[R,S] is empty, which completes the proof.

Note that every graph with maximum degree r is r-strongly-degenerate, and ev-
ery r-degenerate graph is (r + 1)-strongly-degenerate. Hence, we have the following
corollaries.

Corollary 6. For any graph H, R(H,Kn,n) =O(n\Delta (H)).

Corollary 7. For any r-degenerate graph H, R(H,Kn,n) =O(nr+1).

Finally, we show that Conjecture 1 holds if Kn is replaced with Kn,n.

Proposition 5.6. Let k \geq 1. For every connected graph H with e(H) - v(H)\leq \bigl( 
k+1
2

\bigr) 
 - 2 it holds that R(H,Kn,n) =O(nk).

Proof. The proof is by induction on k. As in the proof of Theorem 2, we may
assume that H is 2-connected due to Corollary 5. If \Delta (H) \leq k, then we are done
by Corollary 6. Else, let v \in V (H) with d(v) \geq k + 1, and let H \prime = H  - v. Then
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e(H \prime ) - v(H \prime )\leq e(H) - (k + 1) - v(H) + 1\leq 
\bigl( 
k
2

\bigr) 
 - 2. Also, H \prime is connected because

H is 2-connected. So by the induction hypothesis, we have R(H \prime ,Kn,n) = O(nk - 1).
Now let G be a graph on N =Cnk vertices with no Kn,n. Then G has no independent
set of size 2n. Hence, there exists x\in V (G) with d(x)\geq 1

2Cnk - 1  - 1. By choosing C
large enough, we can make sure that d(x) \geq R(H \prime ,Kn,n). Then G[N(x)] contains a
copy of H \prime , which gives a copy of H together with x.

6. Concluding remarks and open problems.
\bullet It is worth mentioning an intriguing conjecture of Alon, Krivelevich, and

Sudakov [2], that R(H,Kn) \leq nO(r) for every graph H with \Delta (H) \leq r.
Using the dependent random choice method, [2] showed that R(H,Kn) =
O(n(2r - k+2)\cdot (k - 1)/2), where k = \chi (H). So in the worst case k = r, the
exponent is quadratic in r. The problem for Kn,n (in place of Kn) turned
out to be much easier and is resolved in Corollary 6.

\bullet In Corollary 7 we showed that R(H,Kn,n) = O(nr+1) for an r-degenerate
graph H. Can this be improved to O(nr)? In particular, it would be very
interesting to show that R(H,Kn,n) =O(n2) for every 2-degenerate graph H.

\bullet Balister, Schelp, and Simonovits [3] asked whether it is true that if H is
2-connected and has minimum degree 3, then H is not Ramsey size-linear.
A recent result of Janzer [12] gives a negative answer to this question. In-
deed, [12] constructed 2-connected 3-regular bipartite graphs H which have
Tur\'an number at most O(n3/2) (in fact, at most O(n4/3+\varepsilon )). Erd\H os et al. [8]
observed that a bipartite graph H with Tur\'an number at most O(n3/2) is
Ramsey size-linear. Hence, the graphs of [12] are Ramsey size-linear.

\bullet Theorem 3 implies that R(K\ast 
4 ,Kn,n) = O(n2). For Kn, it is not difficult to

prove that R(K\ast 
4 ,Kn) = O(n5/2). Indeed, suppose that G has N = Cn5/2

vertices and no independent set of size n. We may assume that \delta (G) \geq 
\Omega (N/n), and then the average degree inside each neighborhood is \Omega (N/n2).
Also, each neighborhood is C4-free or else G contains K\ast 

4 and we are done.
It follows that there are at least N \cdot \Omega (N/n) \cdot \Omega (N/n2)2 \geq cN4/n5 4-tuples
x, y, z,w with x\sim y, z,w and y\sim z,w. Here c is some small absolute constant.
On the other hand, the number of such 4-tuples x, y, z,w with d(z,w)\leq 2 is
at most 4

\bigl( 
N
2

\bigr) 
\leq 2N2. For N = Cn5/2 with large enough C (compared to c),

we have cN4/n5 > 2N2, so there is a 4-tuple x, y, z,w with d(z,w)\geq 3. This
gives a K\ast 

4 . It would be interesting to reduce the exponent 5/2, hopefully all
the way to 2.
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reading of the paper and useful suggestions which improved the presentation.
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