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Abstract
Ramsey’s theorem, in the version of Erdős and Szekeres, states that every 2-coloring
of the edges of the complete graph on ¹1; 2; : : : ; nº contains a monochromatic clique
of order .1=2/ logn. In this article, we consider two well-studied extensions of Ram-
sey’s theorem. Improving a result of Rödl, we show that there is a constant c > 0
such that every 2-coloring of the edges of the complete graph on ¹2; 3; : : : ; nº con-
tains a monochromatic clique S for which the sum of 1= log i over all vertices i 2 S
is at least c log log logn. This is tight up to the constant factor c and answers a ques-
tion of Erdős from 1981. Motivated by a problem in model theory, Väänänen asked
whether for every k there is an n such that the following holds: for every permutation
� of 1; : : : ; k� 1, every 2-coloring of the edges of the complete graph on ¹1; 2; : : : ; nº
contains a monochromatic clique a1 < � � �< ak with

a�.1/C1 � a�.1/ > a�.2/C1 � a�.2/ > � � �> a�.k�1/C1 � a�.k�1/:

That is, not only do we want a monochromatic clique, but the differences between
consecutive vertices must satisfy a prescribed order. Alon and, independently, Erdős,
Hajnal, and Pach answered this question affirmatively. Alon further conjectured that
the true growth rate should be exponential in k. We make progress towards this con-
jecture, obtaining an upper bound on n which is exponential in a power of k. This
improves a result of Shelah, who showed that n is at most double-exponential in k.

1. Introduction
Ramsey theory refers to a large body of deep results in mathematics whose underlying
philosophy is captured succinctly by the statement that “Every large system contains
a large well-organized subsystem.” This subject is currently one of the most active
areas of research within combinatorics, overlapping substantially with number theory,
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geometry, analysis, logic, and computer science (see [13] for details). The cornerstone
of this area is Ramsey’s theorem, which guarantees the existence of Ramsey numbers.

The Ramsey number r.k/ is the minimum n such that in every 2-coloring of the
edges of the complete graph Kn there is a monochromatic Kk . Ramsey’s theorem
[17] states that r.k/ exists for all k. Classical results of Erdős [5] and Erdős and
Szekeres [10] give the quantitative bounds 2k=2 � r.k/ � 22k for k � 2. Over the
last sixty years, there have been several improvements on these bounds (see, e.g.,
[2]). However, despite efforts by various researchers, the constant factors in the above
exponents remain the same.

Given these difficulties, it is natural that the field has stretched in different direc-
tions. One such direction is to try to strengthen Ramsey’s theorem, asking that the
monochromatic clique have some additional structure. This allows us to test the lim-
its of current methods and may also lead to the development of new techniques which
could be relevant to the original problem of estimating classical Ramsey numbers.
Furthermore, for some applications such additional structure is needed. One famous
example of a theorem that strengthens Ramsey’s theorem is the Paris–Harrington the-
orem [14]. In the following, we consider two further strengthenings, both of which
have already been studied in some detail.

1.1. Ramsey’s theorem with skewed vertex distribution
In the early 1980s, Erdős, interested in the distribution of monochromatic cliques in
edge-colorings, considered the following variant of Ramsey’s theorem. For a finite set
S of integers greater than 1, define its weight w.S/ by

w.S/D
X
s2S

1

log s
:

For a red-blue edge-coloring c of the edges of the complete graph on Œ2; n� D ¹2;
: : : ; nº, let f .c/ be the maximum weight w.S/ over all sets S � Œ2; n� which form a
monochromatic clique in coloring c. For each integer n� 2, let f .n/ be the minimum
of f .c/ over all red-blue edge-colorings c of the edges of the complete graph on
¹2; : : : ; nº. Note that a simple application of r.k/� 22k only gives f .n/� .logn=2/ �
.1=logn/D 1=2.

In his article [6], Erdős conjectured that f .n/ tends to infinity and asked for an
accurate estimate of f .n/. Soon after, Rödl [18] verified this conjecture, showing that
f .n/D �. log log log logn

log log log log logn /. In the other direction, by considering a uniform random
coloring of the edges, one can easily obtain f .n/DO.log logn/. Rödl [18] improved
this upper bound further to f .n/DO.log log logn/. Nevertheless, there was still an
exponential gap between the bounds for f .n/.

We will now discuss Rödl’s coloring that gives the estimate f .n/ D

O.log log logn/. Cover the interval Œ2; n� by t D dlog logne intervals, where the i th
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interval is Œ22
i�1
; 22

i
/. We first describe the coloring of the edges within each of these

t intervals, and then the coloring of the edges between these intervals. Using the fact
that the Ramsey number r.k/� 2k=2, we can edge-color the complete graph in the i th
interval so that the maximum monochromatic clique in this interval has order 2iC1.
Also note that the logarithm of any element in the i th interval is at least 2i�1. There-
fore, the maximum weight of any monochromatic clique in this interval is at most 4. It
follows again from the lower bound on r.k/ that there is a red-blue edge-coloring of
the complete graph on t D dlog logne vertices whose largest monochromatic clique
is of order O.log t /. Color the edges of the complete bipartite graph between the i th
and j th interval by the color of edge .i; j / in this coloring. We get a red-blue edge-
coloring of the complete graph on Œ2; n� such that any monochromatic clique in this
coloring has a nonempty intersection with at most O.log t / intervals. Since, as we
have already explained, every interval can contribute at most 4 to the weight of this
clique, the total weight of any monochromatic clique is O.log t /DO.log log logn/.

The key idea behind Rödl’s lower bound for f .n/ is to try and force the type
of situation that arises in this upper bound construction. We follow the basic line
of his argument but add two extra ideas, dependent random choice and a weighted
variant of Ramsey’s theorem, to achieve a tight result. That is, we prove that f .n/D
�.log log logn/, which, by the above construction of Rödl, is tight up to a constant
factor. This determines the growth rate of f .n/ and answers Erdős’s question.

THEOREM 1.1
For n sufficiently large, every 2-coloring of the edges of the complete graph on the
interval ¹2; : : : ; nº contains a monochromatic clique with vertex set S such thatX

s2S

1

log s
� 2�8 log log logn:

Hence, f .n/D‚.log log logn/.

Ramsey’s theorem continues to hold if we use more than 2 colors. We define
the Ramsey number r.kIq/ to be the minimum n such that in every q-coloring of
the edges of the complete graph Kn there is a monochromatic Kk . The upper bound
proof of Erdős and Szekeres [10] implies that r.kIq/ � qqk . On the other hand, a
simple product coloring shows that, for q even, r.kIq/� r.kI2/q=2 � 2kq=4. Phrased
differently, we see that any q-coloring ofKn contains a monochromatic clique of size
cq logn and that this is, up to the constant, the best possible.

It therefore makes sense to consider the function fq.n/, defined now as the min-
imum over all q-colorings of the edges of the complete graph on ¹2; 3; : : : ; nº of the
maximum weight of a monochromatic clique. However, as observed by Rödl, the
analogue of Erdős’s conjecture for three colors instead of two does not hold. Indeed,
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again cover the interval Œ2; n� by t D dlog logne intervals, where the i th interval is
Œ22

i�1
; 22

i
/. The edges inside the intervals are colored red-blue as in the above con-

struction and the edges between the intervals are colored green. Then the maximum
weight of any red or blue clique is at most 4, since any such clique must lie com-
pletely within one of the intervals, and the maximum weight of the green clique is at
most

P
i�1 2

�iC1 � 2.

1.2. Ramsey’s theorem with fixed-order type
We also consider another extension of Ramsey’s theorem. For a positive integer n,
let Œn� D ¹1; : : : ; nº. Motivated by an application in model theory, Väänänen asked
(see [16] and [19]) whether, for any positive integers k and q and any permutation
� of Œk � 1�, there is a positive integer R such that, for any q-coloring of the edges
of the complete graph on vertex set ŒR�, there is a monochromatic Kk with vertices
a1 < � � �< ak satisfying

a�.1/C1 � a�.1/ > a�.2/C1 � a�.2/ > � � �> a�.k�1/C1 � a�.k�1/:

That is, we not only want a monochromatic Kk , but the differences between con-
secutive vertices must satisfy a prescribed order. The least such positive integer R
is denoted by R�.kIq/, and we let R.kIq/Dmax� R�.kIq/; that is, R.kIq/ is the
maximum of R�.kIq/ over all permutations � of Œk � 1�.

Väänänen’s question was popularized by Spencer, and it was positively answered
by Alon and, independently, by Erdős, Hajnal, and Pach [7]. Alon’s proof (see [16])
uses the Gallai–Witt theorem and gives a weak bound onR.kIq/. The proof by Erdős,
Hajnal, and Pach uses a compactness argument and gives no bound on R.kIq/. Later,
Alon, Shelah, and Stacey all independently found proofs giving tower-type bounds
for R.kIq/, though these were never published (see [19]).

A natural conjecture, made by Alon (see [19]), is that R.kIq/ should grow expo-
nentially in k. For monotone sequences, this was confirmed by Alon and Spencer.
A breakthrough on this problem was obtained by Shelah in [19], who proved the
double-exponential upper bound R.kIq/ � 2.q.kC1/

3/qk . Here, we make further
progress, showing that, for fixed q, R.kIq/ grows as a single exponential in a power
of k.

THEOREM 1.2
For any positive integers k and q and any permutation � of Œk � 1�, every q-coloring
of the edges of the complete graph on vertex set ŒR� with R D 2k

20q
contains a

monochromatic Kk with vertices a1 < � � �< ak satisfying

a�.1/C1 � a�.1/ > a�.2/C1 � a�.2/ > � � �> a�.k�1/C1 � a�.k�1/:

That is, R.kIq/� 2k
20q

.
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Common to the proofs of both Theorems 1.1 and 1.2 is a simple yet power-
ful lemma whose proof, which we present in the next section, uses a probabilistic
argument known as dependent random choice. Early versions of this technique were
developed in [12], [15], and [20]. Several variants have since been discovered and
applied to various problems in Ramsey theory and extremal graph theory (see the
survey [11] for more details).

Organization of the paper. We prove Theorem 1.1 in Section 3 and Theorem 1.2
in Section 4. In Section 3, we make use of a weighted variant of Ramsey’s theorem,
Lemma 3.2, which may be of independent interest. In Section 5, we make several
additional related remarks. These include discussing the asymptotic behavior of f .n/,
considering what happens for other weight functions, showing that some natural vari-
ants of both problems have simple counterexamples, and presenting a simple coloring
that gives a lower bound on Ramsey numbers for cliques with increasing consecutive
differences. All logarithms are base 2 unless otherwise indicated. For the sake of clar-
ity of presentation, we systematically omit floor and ceiling signs whenever they are
not crucial. We also do not make any serious attempt to optimize absolute constants
in our statements and proofs.

2. Dependent random choice
The following lemma shows that every dense graph contains a large vertex subset U
such that every small subset S � U has many common neighbors. For a vertex v in
a graph, let N.v/ denote the set of neighbors of v. For a set T of vertices, let N.T /
denote the set of common neighbors of T .

LEMMA 2.1
Suppose that p > 0 and that s, t , N1, N2 are positive integers satisfying

�
N1
s

�
.m=

N2/
t � ptN1=2. If G D .V1; V2;E/ is a bipartite graph with jVi j D Ni for i D 1; 2

and at least pN1N2 edges, then G has a vertex subset U � V1 such that jU j �
ptN1=2 and all s vertices in U have at least m common neighbors.

Proof
Consider a set T of t vertices in V2 picked uniformly at random with repetition. Let
W DN.T / and let X denote the cardinality of W . We have

EŒX�D
X
v2V1

� jN.v/j
N2

�t
DN�t2

X
v2V1

ˇ̌
N.v/

ˇ̌t
�N1N

�t
2

�P
v2V1
jN.v/j

N1

�t
� ptN1;

where the second-to-last inequality is by Jensen’s inequality applied to the convex
function f .z/D zt .
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Let Y be the random variable which counts the number of subsets S �W of size
s with fewer than m common neighbors. For a given S � V1, the probability that it is
a subset ofW equals .jN.S/j=N2/t . Since there are at most

�
N1
s

�
such sets, it follows

that

EŒY ��

 
N1

s

!� m
N2

�t
:

By linearity of expectation,

EŒX � Y �D EŒX��EŒY �� ptN1 �

 
N1

s

!� m
N2

�t
� ptN1=2;

where the last inequality uses the assumption of the lemma. Hence, there is a choice
of T such that the corresponding set W satisfies X �Y � ptN1=2. Delete one vertex
from each subset S of W of size s with fewer than m common neighbors. We let U
be the remaining subset of W . We have jU j � X � Y � ptN1=2 and all subsets of
size s have at least m common neighbors.

3. Monochromatic cliques of large weight
The off-diagonal Ramsey number is the smallest natural number n such that any red-
blue edge-coloring of Kn contains either a red copy of Ks or a blue copy of Kt . The
Erdős–Szekeres bound for Ramsey numbers says that, for any s; t � 2,

r.s; t/�

 
sC t � 2

s � 1

!
:

Note that this implies r.s; t/� 2sCt and hence that every 2-coloring of Kn contains a
monochromatic clique of order .1=2/ logn. The following lemma is a further simple
consequence of this formula. Note that here and throughout the rest of this section we
will use the natural logarithm ln as well as the log base 2.

LEMMA 3.1
Suppose that 0 < a � 1=4. Then, every 2-coloring of the edges of Kn contains either
a red clique of order a lnn or a blue clique of order e1=4a lnn.

Proof
From the Erdős–Szekeres bound, we have

r.s; t/�

 
sC t

s

!
�
�e.sC t /

s

�s
:
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Applying this with s D a lnn and t D a.e.1=a/�1 � 1/ lnn tells us that, since

�e.a lnnC a.e.1=a/�1 � 1/ lnn/

a lnn

�a lnn
D elnn D n;

there is either a red clique of order s or a blue clique of order t . For 0 < a � 1=4, we
have

a.e.1=a/�1 � 1/� e1=4a:

The result follows.

We would now like to prove a weighted version of Ramsey’s theorem. The set-up
is that each vertex v is given two weights rv and bv which are balanced in a certain
sense. We would then like to show that it is possible to find a red clique K or a blue
clique L for which either the sum of rv over the vertices of K , or the sum of bv over
the vertices of L, is large.

LEMMA 3.2
Suppose that the edges of Kn have been two-colored in red and blue and that each
vertex v has been given positive weights rv and bv satisfying bv � ln.4=rv/ if rv � bv
and satisfying rv � ln.4=bv/ if bv � rv . Then there exists either a red clique K for
which

P
v2K rv � .1=2/ lnn or a blue clique L for which

P
v2L bv � .1=2/ lnn.

Proof
Let w.n/ be the infimum, over all red-blue edge-colorings of Kn, for the sum of the
maximum of

P
v2K rv over all red cliques K and the maximum of

P
v2L bv over all

blue cliques L. We will show by induction on n that w.n/� lnn. This clearly implies
the desired bound.

The base cases n D 1; 2 clearly hold. Suppose, therefore, that n � 3 and that
w.n0/� lnn0 for all positive integers n0 < n.

Consider a red-blue edge-coloring of Kn, and let w be the sum of the maxi-
mum of

P
v2K rv over all red cliques K and the maximum of

P
v2L bv over all blue

cliques L. It suffices to show that w � lnn.
Let v be a vertex inKn. By symmetry, we may suppose without loss of generality

that rv � bv . Since rv � ln.4=bv/ and rv � bv , we have rv � 1. We may assume
rv � lnn as otherwise we could pick the red clique K to consist of just the vertex v.
Hence, bv � 4=n.

Let R be the set of red neighbors of v, and let B be the set of blue neighbors of
v, so jRj C jBj D n � 1. Let ˛ D jRj=n. We can add v to the largest red clique in
R in terms of weight, and thus w � rv C w.˛n/ � rv C ln.˛n/ � rv C ln˛ C lnn.
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We may assume that rv C ln˛ < 0, as otherwise we are done. So ˛ < e�rv � bv=4.
From rv � 1, we have ˛ < 1=e. From the above lower bounds on bv , we have bv �
4max.˛; 1

n
/� 2ˇ, where ˇD ˛C 1

n
< 1=eC 1=3 < 3=4. We can add v to the largest

blue clique in B in terms of weight, and thus

w � bv Cw
�
jBj
�
� bv C ln

�
1� ˛ �

1

n

�
C lnn� 2ˇC ln.1� ˇ/C lnn� lnn;

where we used 0 < ˇ < 3=4, which completes the proof.

Scaling all weights by a factor c > 0, we have the following equivalent version.

LEMMA 3.3
Let c > 0. Suppose that the edges of Kn have been two-colored in red and blue
and that each vertex v has been given positive weights rv and bv satisfying bv �
c ln.4c=rv/ if rv � bv and satisfying rv � c ln.4c=bv/ if bv � rv . Then there exists
either a red clique K for which

P
v2K rv � .c=2/ lnn or a blue clique L for whichP

v2L bv � .c=2/ lnn.

Before proving Theorem 1.1, we sketch the proof. We begin with a collection
of d D O.

p
log logn/ disjoint subsets S1;0; S2;0; : : : ; Sd;0 of Œ2; n�. We then find a

sequence T1;2 � T1;3 � � � � � T1;d of subsets of S1;0, where T1;k has the property that
there exists a color �.1; k/, either red or blue, such that all small subsets of T1;k have
many common neighbors in Sk;0 in that color.

We now find maximum-sized red and blue cliques in T1;d . If either of these
cliques is sufficiently large, then that clique will be the desired clique for the whole
theorem. We may therefore assume that they are both small. We let S1;1 � T1;d � S1;0
be their union. The fundamental property of T1;d now implies that, for 2� k � d , the
set S1;1 has many common neighbors in color �.1; k/ in Sk;0. We call this set of
neighbors Sk;1.

We now repeat the entire process, first within S2;1 to find sets Sk;2 for 2� k � d ,
then in S3;2 to find sets Sk;3 for 3 � k � d , and so on. In the end, we find subsets
Si;i such that each Si;i is the union of a red and blue clique and the color of the edges
between Si;i and Sj;j only depends on i and j . If we consider the reduced graph on d
vertices whose edges have color �.i; j / and whose vertices have blue and red weights
representing the sizes of the red and blue cliques in Si;i , an application of Lemma 3.3
allows us to complete the proof.

We are now ready to prove Theorem 1.1, which we restate for convenience.

THEOREM 3.1
For sufficiently large n, in every red-blue edge-coloring of the complete graph on the
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interval ¹2; : : : ; nº there is a monochromatic clique with vertex set I such that

X
i2I

1

log i
� 2�8 log log logn:

Proof
Let d D .1=2/

p
log logn � 1 and c D 1=4. For i D 1; : : : ; d , let Si D ¹ni ; ni C

1; : : : ; 2ni�1º be the interval of size ni beginning at the integer ni , where log logni D
i
p

log lognC .1=2/ log logn. For each j D 0; 1; : : : ; d , we will find, by induction, a
collection of sets Si;j for i � j such that Si;j � Si;j�1 � � � � � Si;0 D Si and such
that
� the set Sj;j is the union of two monochromatic cliques, one in red of order

.1=4/rj lognj and the other in blue of order .1=4/bj lognj , where rj �
c ln.4c=bj / if bj � rj and bj � c ln.4c=rj / if rj � bj ;

� for each i > j , the set Si;j satisfies jSi;j j � n
1�.j=2i/
i ;

� for each i > j , there exists a color �.j; i/ such that every vertex in Sj;j is
connected to every vertex in Si;j by an edge with color �.j; i/.

To begin the induction, we let Si;0 D Si for each i . The required conclusion then
holds trivially for j D 0. Suppose therefore that the result holds for j . We will prove
it also holds for j C 1.

For each i � j C 1, we will find a subset Si;jC1 of Si;j satisfying the conditions.
To do this we apply another induction, finding for each j C 1 � k � d , a subset
TjC1;k of SjC1;j such that TjC1;d � TjC1;d�1 � � � � � TjC1;jC1 D SjC1;j and such
that
� jTjC1;kj � n

1
2
� k
4d

jC1 ;
� for every j C 1 < i � k, there is a color �.j C 1; i/ such that every collec-

tion of lognjC1 log log logn vertices in TjC1;k have at least n
1� jC1

2i

i common
neighbors in color �.j C 1; i/ in the set Si;j .

Once this induction is complete, we consider TjC1;d . Let 1
4
rjC1 lnnjC1 and

1
4
bjC1 lnnjC1 denote the orders of the largest red clique and the largest blue clique,

respectively, in TjC1;d . Since jTjC1;d j � n
1=4
jC1, the remark before Lemma 3.1 implies

that if rjC1 � bjC1 then TjC1;d contains a red clique of order 1
2

log jTjC1;d j �
1
8

lognjC1. That is, rjC1 � 1
2

. Using Lemma 3.1, we see that if rjC1 � bjC1, then
either bjC1 � 1=4 and rjC1 � 1=2 � c ln.4c=bjC1/ or bjC1 < 1=4 and rjC1 �
e1=.4bjC1/ � c ln.4c=bjC1/. Similarly, if bjC1 � rjC1, then bjC1 � c ln.4c=rjC1/.

Note that we may assume that rjC1 and bjC1 are each less than .1=2/ log log logn.
Suppose otherwise and that rjC1 � .1=2/ log log logn. Let RjC1 be the red clique of
order .1=4/rjC1 lognjC1. Then
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X
i2RjC1

1

log i
�
1

4
rjC1 lnnjC1

1

log2njC1
�
1

16
log log logn;

so we would be done.
Let SjC1;jC1 be the union of the largest red and blue cliques in TjC1;d . Note that

rjC1 C bjC1 � log log logn. Hence, jSjC1;jC1j � lognjC1 log log logn and there-
fore, for every j C 1 < i � d , the collection of vertices in SjC1;jC1 has at least

n
1� jC1

2i

i common neighbors, in color �.j C 1; i/, in Si;j . We let this set of common
neighbors be Si;jC1. It is now elementary to verify that the Si;jC1 satisfy the condi-
tions of the first induction. Hence, it only remains to show that the second induction
holds good.

To begin the induction, we let TjC1;jC1 be SjC1;j . This clearly satisfies the
required conditions. Suppose, therefore, that TjC1;k has been defined and we now
wish to find a subset TjC1;kC1 of TjC1;k satisfying the conditions of the induction.
Consider the graph between TjC1;k and SkC1;j . Either red or blue will have density
at least 1=2 in this graph. We let �.j C 1; k C 1/ be such a color, breaking a tie
arbitrarily.

Now apply Lemma 2.1 to the bipartite graph of color �.j C 1; k C 1/ between

TjC1;k and SkC1;j . We take N1 D jTjC1;kj, N2 D jSkC1;j j, m D N
1�1=2

p
log logn

2 ,

s D lognjC1 log log logn, and t D lognjC1
4
p

log logn
. We need to verify that

�
N1
s

�
. m
N2
/t �

ptN1
2

with pD 1=2. It will be enough to show that N s
1 .

m
pN2

/t � 1. But this is easy to
check, since

N s
1

� m

pN2

�t
� .2N1/

sN
�t=2

p
log logn

2

D
� .2N1/log log logn

N
1=8 log logn
2

�lognjC1
�
� .2njC1/log log logn

n
1=16 log logn
kC1

�lognjC1
< 1:

Here we used the fact that N1 D jTjC1;kj � njC1, N2 D jSkC1;j j � n
1=2

kC1
and, when-

ever k > j and n is sufficiently large, the fact that

nkC1 � n
2
p

log logn

jC1 � .2njC1/
16 log logn log log logn:

Therefore, there exists a subset MkC1 of TjC1;k of order p
tN1
2

such that every vertex
subset of order s has at least m common neighbors in SkC1;j . We let TjC1;kC1 D
MkC1. Note that

jTjC1;kC1j �
pt jTjC1;kj

2
�
1

2
2
�

lognjC1
4
p

log lognn
1
2�

k
4d

jC1 D
1

2
n
� 1
8.dC1/

jC1 n
1
2�

k
4d

jC1 � n
1
2�

kC1
4d

jC1 ;

as required. Moreover, since k � d � .1=2/
p

log logn, every subset of TjC1;kC1 of
order lognjC1 log log logn has at least



TWO EXTENSIONS OF RAMSEY’S THEOREM 2913

m� jSkC1;j j
1�1=2

p
log logn � .n

1� j
2.kC1/

kC1
/1�1=2

p
log logn � n

1� jC1
2.kC1/

kC1

common neighbors in SkC1;j , so the second requirement of the induction scheme also
holds.

To complete the proof, note that for each i D 1; : : : ; d , we have found a red clique
Ri and a blue clique Bi of orders .1=4/ri lnni and .1=4/bi lnni , respectively, such
that every vertex in Ri [Bi is connected to every vertex in Rj [Bj by color �.i; j /.
Consider the 2-colored complete graph on the vertex set ¹1; 2; : : : ; dº, where i and
j are joined in color �.i; j /. We give each vertex the two weights ri and bi . Since
bi � c ln.4c=ri / if ri � bi and ri � c ln.4c=bi / if bi � ri , we may apply Lemma 3.3
to find a red clique R such thatX

i2R

ri �
c

2
lnd �

1

32
log log logn

or a blue clique B such that
P
i2B bi � .1=32/ log log logn. Suppose, without loss of

generality, that there is a red clique R such that
P
i2R ri � .1=32/ log log logn.

Consider now the set R D
S
i2RRi . Since R is a red clique by coloring �, the

edges between different Ri are red. Therefore, since also each Ri is a red clique, we
see that R is a red clique in the original graph. Moreover,X
j2R

1

logj
�
X
i2R

X
j2Ri

1

logj
�
X
i2R

ri

4
logni

1

log2ni
�
X
i2R

ri

8
� 2�8 log log logn;

as required.

4. Monochromatic sets with differences satisfying a prescribed order
In this section, we prove Theorem 1.2, which gives an improved bound for Ramsey
numbers with fixed-order type. We begin with several simple definitions and lemmas.

An interval I of integers is a set of consecutive integers. Let S be a nonempty set
of integers, and let min.S/ and max.S/ denote the minimum and maximum integers
in S . The density dI .S/ of S with respect to an interval I of integers with S � I is
jS j=jI j.

The following definition is useful for finding cliques of a certain order type.

Definition
An ordered pair .T1; T2/ of sets of integers are separated if, for j D 1; 2, we have

min.T2/�max.T1/ >max.Tj /�min.Tj /:

The next lemma shows that any dense subset S contains a pair of large dense
subsets which are separated.
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LEMMA 4.1
Let S be a finite set of integers with jS j � 6, and let I D Œa; b� be an interval with
S � I . Then, for j D 1; 2, there are Tj � S and an interval Ij with Tj � Ij , .T1; T2/
separated, dIj .Tj /� dI .S/=2, and jIj j � jS j=12.

Proof
Let i1 2 I be the maximum integer (if it exists) such that the restriction of S to
the interval Œa; i1� has density at most dI .S/=2. If no such i1 exists, let i1 D a � 1.
Similarly, let i2 2 I be the minimum integer greater than i1 (if it exists) such that the
restriction of S to the interval Œi2; b� has density at most dI .S/=2. If no such i2 exists,
let i2 D b C 1. Let S 0 be the restriction of S to the interval .i1; i2/, that is, the set of
s 2 S with i1 < s < i2. Since at most 1=2 of the elements of S are deleted to obtain
S 0, we have jS 0j � jS j=2.

Let I 0 denote the interval Œmin.S 0/;max.S 0/� of integers. Partition the interval I 0

into three intervals each of size as equal as possible, and let I1 be the first interval
and I2 be the last interval. This guarantees that if T1 � I1 and T2 � I2, then .T1; T2/
is separated. It follows from the definition of i1 and i2 that the restrictions of S to
each of the two end intervals have density at least dI .S/=2. Let Tj D jS \ Ij j for
j D 1; 2. Since S 0 � I 0, we have jI 0j � jS 0j � jS j=2. The end intervals have size at
least bjI 0j=3c. Hence, for j D 1; 2,

jIj j �
�
jI 0j=3

˘
�
�
jS j=6

˘
� jS j=12:

The result follows.

We also need the following simple lemma which allows us to pass to a subinterval
of a given size without the density decreasing significantly.

LEMMA 4.2
Suppose that S is a set of positive integers, that J is an interval containing S , and
that r � jJ j is a positive integer. Then there is a subset S 0 � S and an interval I of
size r containing S 0 such that dI .S 0/� dJ .S/=2.

Proof
We can cover the interval J with djJ j=re intervals of size r , some of which may be
overlapping. If S restricted to any of these intervals has density at least dJ .S/=2, then
we can pick S 0 to be this subset of S . Otherwise, since djJ j=re � 2jJ j=r , the total
number of elements of S is less than˙

jJ j=r
�
rdJ .S/=2� jS j;

a contradiction, which completes the proof.
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For a permutation � of Œk � 1�, an increasing sequence a1; : : : ; ak of k integers
has type � if

a�.1/C1 � a�.1/ > a�.2/C1 � a�.2/ > � � �> a�.k�1/C1 � a�.k�1/:

Let G be a graph on a subset of the integers, let J be an interval, and let S � J \
V.G/. For 0 < ˛;ˇ; �; ı;p < 1, we say that G is .˛;ˇ; �; ı;p/-heavy with respect
to S if, for all subsets S 0 � S with jS 0j � � jS j for which there is an interval J 0

with S 0 � J 0 and dJ 0.S 0/� ıdJ .S/, there are subsets T1; T2 � S 0 and, for j D 1; 2,
intervals Ij with Tj � Ij such that .T1; T2/ is a separated pair, dIj .Tj /� ˛dJ 0.S

0/,
jIj j � ˇjS

0j, and the edge density of G across T1; T2 is at least p. That is, G is
heavy with respect to S if every large subset S 0 of S which is dense in an interval
J 0 contains a separated pair of subsets T1 and T2, dense in large intervals I1 and I2,
such that there is a certain positive density of edges of G between them.

Let � W Œh� 1�! Œk � 1� be an injective function, 0 < � < 1, and r 2N. A clique
in G of type .�; �; r/ consists of h pairwise adjacent vertices a1; : : : ; ah such that
aiC1 � ai 2 Œ�

�.i/r; ��.i/�1r/ for i 2 Œh� 1�. Note that if hD k and � is the inverse
permutation of � , then a clique of type .�; �; r/ is also a clique of type � .

The following lemma shows that if a large subset S of a graphG is .˛;ˇ; �; ı;p/-
heavy with appropriate choices of parameters ˛, ˇ, � , ı, and p, then it must contain
a clique of type .�; �; r/. We next describe the proof, which is by induction on the
order h of the desired clique. The main intuition is that we find the largest gap first.
Let 	 be the minimum element of the image of �, and let j be such that �.j /D 	 .
We first pass to an interval I of size just smaller than ���1r using Lemma 4.2. Using
the heavy hypothesis, we find a separated pair .T1; T2/ of large subsets of S \ I such
that the edge density of G between T1 and T2 is at least p, and min.T2/�max.T1/�
��r . This implies that, for any choice of aj 2 T1 and ajC1 2 T2, we have ajC1 �
aj 2 Œ�

�r; ���1r/. Applying the dependent random choice lemma, Lemma 2.1, we
find that there is a large subset U � T1 such that all small subsets of U have many
common neighbors in T2. We find from the heavy hypothesis and induction that there
is a clique with vertices a1; : : : ; aj 2 U such that, for 1 � i � j � 1, aiC1 � ai 2
Œ��.i/r; ��.i/�1r/. Since every small subset of U has many common neighbors in T2,
the set W of common neighbors of a1; : : : ; aj in T2 is large. We again find from the
heavy hypothesis and induction that there is a clique with vertices ajC1; : : : ; ah 2W
such that, for j C 1 � i � h � 1, aiC1 � ai 2 Œ��.i/r; ��.i/�1r/. We conclude that
a1; : : : ; ah forms the desired clique in G of type .�; �; r/.

LEMMA 4.3
Suppose the following: G is a graph on a subset of the integers, J is an interval,
S � J \ V.G/, � W Œh� 1�! Œk � 1� is an injective function, 0 < ˛;ˇ; �; ı; �;p < 1,
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and r 2 N. Let t D 2
q
k log1=p jS j, let 
 D pt=2, let � D .
˛=4/2h, and let � D

�ˇdJ .S/
2�kr . Provided that � � h, jJ j � r , � � ˇ�dJ .S/2, ı � �, and � jS j � �,

the following holds. If G is .˛;ˇ; �; ı;p/-heavy with respect to S , then there is a
clique in G of type .�; �; r/.

Proof
The proof is by induction on h. In the base case hD 1, it suffices to show that S is
nonempty, which it clearly is. The induction hypothesis is that the lemma holds for
all positive integers h0 < h, where h� 2.

Let 	 Dmini2Œh�1� �.i/ and j � h� 1 be such that �.j /D 	 . Let �1 W Œj � 1�!
Œk � 	 � 1� and �2 W Œh � j � 1�! Œk � 	 � 1� be the injective functions given by
�1.x/D �.x/� 	 and �2.x/D �.xC j /� 	 .

Let s be the largest integer less than ���1r . Since ���1r � �kr � � � h� 2, then
s � ���1r=2. As jJ j � r � s, we can apply Lemma 4.2 to obtain a subset S 0 � S and
an interval I with jI j D s and S 0 � I such that dI .S 0/� dJ .S/=2.

We have dI .S
0/ � dJ .S/=2 � �dJ .S/ � ıdJ .S/ and jS 0j D dI .S

0/jI j �
dJ .S/
2
jI j � dJ .S/

4
���1r � � � � jS j. Hence, by the heaviness hypothesis, for i D

1; 2, there is an interval Ii and a subset Ti � Ii \ S 0 such that .T1; T2/ is a sepa-
rated pair, dIi .Ti / � ˛dI .S

0/ � .˛=2/dJ .S/, jIi j � ˇjS 0j, and the edge density of
G between T1 and T2 is at least p. Note that jTi j D jIi jdIi .Ti / � dIi .Ti /ˇjS

0j �

.1=2/˛ˇdJ .S/jS
0j.

We apply Lemma 2.1 to the bipartite subgraph of G with parts T1 and T2 and
s D j , with t as defined in the statement of the lemma, N1 D jT1j, N2 D jT2j, and
mD 
jT2j. Since jT1jk � jS jk D p�t

2=4, we can verify that 
jT1j

j

!�
jT2j
jT2j

�t
� jT1j

k
t D jT1j
kpt

2

=2t � p3t
2=4=2t � pt jT1j=2:

Using jT1j � .1=2/˛ˇdJ .S/jS
0j, jS 0j � dJ .S/

4
���1r , and � � ˇ�dJ .S/

2 �

ˇ. �˛
16
/dJ .S/

2, we conclude that there is a subset U � T1 with

jU j � pt jT1j=2D 
jT1j � 
˛ˇ
dJ .S/

2
jS 0j � 
˛ˇ

dJ .S/
2

8
���1r � ��r

such that every j vertices in U have at least 
jT2j common neighbors in T2. Since
.T1; T2/ is separated and jT1j � jU j � ��r , we have, for any a 2 T1 and b 2 T2,

��r � jT1j � b � a � jI j< �
��1r:

We also have

dI1.U /D
jU j

jI1j
�

jT1j

jI1j
D 
dI1.T1/� 
˛dI .S

0/� 

˛

2
dJ .S/:
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Let ı0 D dJ .S/
dI1 .U /

ı and � 0 D jS j
jU j
� . Since G is .˛;ˇ; �; ı;p/-heavy with respect to

S and U � S , then G is also .˛;ˇ; � 0; ı0; p/-heavy with respect to U .

Let t 0 D 2
q
.k � 	/ log1=p jU j, let k0 D k � 	 , let r 0 D ��r , and let 
0 D pt

0
=2,

so 
0 � 
. Let �0 D . �
0˛
4
/2j and let �0 D �0ˇdI1.U /

2�k
0
r 0. Then � � . �˛

4
/2�0, and

therefore

�0 D �0ˇdI1.U /
2�k
0

r 0 � �0ˇ
�


˛

2
dJ .S/

�2
�kr � �ˇdJ .S/

2�kr D � � h� j:

Since jI1j � jU j � ��r D r 0, ı � �D . �˛4 /
2h � . �˛

4
/2�0, 
0 � 
, and dI1.U /� .
˛=

2/dJ .S/, we have

�� ˇdJ .S/
2�� ˇdI1.U /

2�0;

ı0 D
dJ .S/

dI1.U /
ı � 2
�1˛�1ı �

�
˛
4

�2h�1
� �0;

and

� 0jU j D � jS j � � � �0:

Thus, we can apply the induction hypothesis and obtain a clique in G with vertices
a1; : : : ; aj in U which is of type .�1; �; ��r/.

Let W be the set of common neighbors of a1; : : : ; aj in T2, so jW j � 
jT2j. Let
ı00 D dJ .S/

dI2 .W /
ı and � 00 D jS j

jW j
� . As above, since W � S and G is .˛;ˇ; �; ı;p/-heavy

with respect to S , then G is also .˛;ˇ; � 00; ı00; p/-heavy with respect to W . Again, by
the induction hypothesis (exactly as done above, replacing U by W and j by h� j ),
there is a clique b1; : : : ; bh�j in G with vertices from W of type .�2; �; ��r/. Then,
letting ajCi D bi for 1� i � h�j , we conclude that a1; : : : ; ah form a clique of type
.�; �; r/ in G, completing the proof.

The following theorem is a restatement of Theorem 1.2. Recall that if hD k and
if � is the inverse permutation of � , then a clique of type .�; �; r/ is also a clique
of type � . In the proof of Theorem 1.2, we show that a q-colored complete graph
on sufficiently many vertices must contain a subset which is appropriately heavy in
the graph of one of the colors. Lemma 4.3 then implies that the graph of this color
contains the desired monochromatic clique with order type � . To find such a heavy
subset, we suppose for contradiction that none exists. We then find a large interval Iq
and a dense subset Sq of Iq such that for each color i , every separated pair .T1; T2/ of
subsets of Sq such that there are large intervals J1; J2 with Tj a dense subset of Jj has
edge density less than pD 1=q in color i between T1 and T2. But, by Lemma 4.1, Sq
contains a separated pair .T1; T2/ of large dense subsets. By the pigeonhole principle,
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the edge density between T1 and T2 in one of the q colors is at least 1=q, contradicting
the existence of Sq .

THEOREM 4.1
Let k; q � 2 be integers and let � be a permutation of Œk� 1�. Every q-coloring of the
complete graph on Œn� with nD 2k

20q
contains a monochromatic clique of type � .

Proof
Suppose for contradiction that there is a q-coloring of the edges of the complete graph
on Œn� without a monochromatic copy ofKk of type � . We label the q colors 1; : : : ; q.
Let S0 D I0 D Œn�, so dI0.S0/D 1 and jS0j D jI0j D n. Let � D ��1, let p D 1=q,

let t D 2
q
k log1=p n, and let 
D pt=2.

For q � i � 1, we define ˛i ; ˇi ; �i ; ıi ; �i recursively as follows, starting with
i D q. We have ˛q D 1=2, ıi D .

�˛i
4
/2k , and ˛i D ıiC1˛iC1. Explicitly, ıq�i D

. �
8
/2k.2kC1/

i
, and for i � 1, ˛q�i D 1

2
. �
8
/.2kC1/

i�1. Let 
0 D 1 and 
i D ıi
2i�1
for 1� i � q. Let 
D
q . We have from the explicit formula for ıq�i that


D ıq

2
q�1 D ıqı

2
q�1


4
q�2 D � � �

D

q�1Y
iD0

ı2
i

q�i D

q�1Y
iD0

�

8

�2k.4kC2/i
�
�

8

�.4kC2/q
�
�

8

�.kC2/2q�2
:

Let ˇq D 1=12. For each i , let �i D ˇi
, and �i D �
kC1
i , and, if i < q, ˇi D

�iC1ˇiC1. Explicitly, ˇq�i D 1
12
. �
12
/.kC2/

i�1, �q�i D . �
12
/.kC2/

i
, and �q�i D

. �
12
/.kC1/.kC2/

i
. Finally, let �0 D 1 and �i D �i�i�1 for 1 � i � q. Let � D �q .

We have

� D

qY
iD1

�i D
�

12

�.kC2/q�1
�
� 1
12

�

8

�.kC2/2q�2�.kC2/q�1

�
��

8

�.kC2/2q�.kC2/q
D
�

8

�.kC2/3q
�
�

8

�k6q
:

We will next define a sequence of subsets S0 	 S1 	 � � � 	 Sq and a sequence of
intervals I0 	 I1 	 � � � 	 Iq such that for each i , 1� i � q, we have
� Si � Ii ,
� dIi .Si /� ıidIi�1.Si�1/�
i ,
� jSi j � �i jSi�1j � �in, and
� there is no separated pair .T1; T2/ with T1; T2 � Si and intervals J1; J2 such

that, for j D 1; 2, Tj � Jj , dJj .Tj /� ˛idIi .Si /, jJj j � ˇi jSi j, and the graph
in color i has edge density at least p between T1 and T2.
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We next show how to pick Si and Ii , having already picked Si�1 and Ii�1. Since
the graph in color i does not contain a clique of type � , it also does not contain a
clique of type .�; �i ; ri / with ri D jIi�1j. We now wish to apply Lemma 4.3 with
S D Si�1 to conclude that the graph in color i is not .˛i ; ˇi ; �i ; ıi ; p/-heavy with
respect to Si�1. To do this, we must verify the assumptions of the lemma.

Let �i D .
˛i=4/2k and �i D �iˇidIi�1.Si�1/
2�ki ri . Note that ıi D �i and

�i D ˇi
� ˇi
i D ˇiıi

2
i�1 � ˇi�idIi�1.Si�1/

2:

We also have

�i jSi�1j D �
kC1
i jSi�1j � ˇi�idIi�1.Si�1/

2�ki jSi�1j � �iˇidIi�1.Si�1/
2�ki ri D �i :

Finally, since �i jSi�1j � �in� �n and nD 2k
20q

, we have

�i � �n� n
�

8

�k6q
D n

�q�2pk logq n

16

�k6q
� n.2�k

12q

/k
6q

D n2�k
18q

� k:

Here we used the fact that q�2
p
k logq n � 2�2k

10qC1
p

logq � 2�k
12qC4.

We may therefore apply Lemma 4.3. Hence, there is a subset Si � Si�1 and an
interval Ii � Ii�1 satisfying the four desired properties itemized above.

However, by Lemma 4.1, Sq contains a separated pair .T1; T2/ and intervals
J1; J2 such that, for j D 1; 2, Tj � Jj , dJj .Tj / � dIq .Sq/=2, and jJj j � jSqj=12.
By the pigeonhole principle, for some i , 1� i � q, the density across T1; T2 in color
i is at least 1=q D p. But

1

2
dIq .Sq/D ˛qdIq .Sq/� ˛qıqdIq�1.Sq�1/

D ˛q�1dIq�1.Sq�1/� ˛q�2dIq�2.Sq�2/� � � � � ˛idIi .Si /

and, similarly, jSqj=12� ˇi jSi j, contradicting that Si contains no such separated pair.

5. Further remarks

5.1. Asymptotics of maximum weight monochromatic cliques
A well-known conjecture of Erdős states that the limit limn!1

logr.n/
n

exists. If this
limit exists, denote it by c0. We will assume the conjecture that c0 exists. The bounds
of Erdős and Erdős–Szekeres on Ramsey numbers imply that 1=2� c0 � 2.

Recall that the weight of a set S of integers greater than 1 is the sum of 1= log s
over all s 2 S and that f .n/ is the maximum real number for which any red-blue edge-
coloring ofKn contains a monochromatic clique of weight at least f .n/. Theorem 1.1
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shows that f .n/ is within a constant factor of log log logn. We further conjecture the
constant factor.

CONJECTURE 5.1
We have

f .n/D
�
c�20 C o.1/

�
log log logn;

where c0 D limn!1
logr.n/
n

.

The construction of Rödl described in the introduction can easily be modified to
obtain

f .n/�
�
c�20 C o.1/

�
log log logn:

Indeed, let a D 1 C 
 with 
 ! 0 slowly as n!1 (picking 
 D 1= log log logn
will do). Cover Œ2; n� by intervals, where the i th interval is Œ2a

i�1
; 2a

i
/ and has

largest element less than ni WD 2a
i
. The number of intervals is d D d 1

loga log logne D

O.
�1 log logn/. Note that the logarithm of any two numbers in the same inter-
val is within a factor a D 1 C 
 of each other. We red-blue edge-color the com-
plete graph on each of these intervals so as to minimize the order of the largest
monochromatic clique in the interval. Then the weight of any monochromatic clique
in the i th interval is at most .1= logni /.c�10 C o.1// logni D c�10 C o.1/, where
the o.1/ term goes to 0 as ni increases. We color between intervals monochromat-
ically so as to minimize the order of the largest monochromatic clique with ver-
tices in distinct intervals. The order of this monochromatic clique with vertices in
distinct intervals is .c�10 C o.1// logd D .c�10 C o.1// log log logn. Hence, f .n/ �
.c�10 C o.1//.c

�1
0 C o.1// log log lognD .c�20 C o.1// log log logn.

In the other direction, a simple modification of the proof of Theorem 1.1 with a
careful analysis gives the lower bound

f .n/�
�1
4
� o.1/

�
log log logn;

which would be sharp if the exponential constant in the upper bound for diagonal
Ramsey numbers is best possible (i.e., if c0 D 2). We next give a rough sketch of how
to achieve this.

One first constructs d D .log logn/1�o.1/ intervals Si of the form Œni ; 2ni / with
ni D i.log logn/o.1/C.1=2/ log logn, where the o.1/ term slowly goes to 0 as n tends
to infinity. After going through the proof, we obtain in each Si a red clique Ri and a
blue cliqueBi , such that for each i < j , the complete bipartite graph betweenRi [Bi
and Rj [ Bj is monochromatic. The monochromatic cliques Ri and Bi are chosen
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to be the largest monochromatic cliques of each color in a particular subset Ti;d �
Si with jTi;d j D jSi j1�o.1/. By the Erdős–Szekeres estimate, we have jRi j � .ri �
o.1// logni and jBi j � .bi � o.1// logni , where bi and ri (asymptotically) satisfy
.bi C ri / log biCri

ri
� bi log bi

ri
D 1.

Consider the induced red-blue edge-coloring of the complete graph with one ver-
tex vi from each Ri [ Bi . Assign vertex vi red weight ri and blue weight bi . An
appropriate variant of Lemma 3.2, the weighted version of Ramsey’s theorem, tells
us that there is a monochromatic clique vi1 ; vi2 ; : : : ; vis of large weight. Assuming
without loss of generality that this clique is red, the tailored variant of Lemma 3.2
then tells us that the red weight of the clique is asymptotically at least .1=4/ logd D
.1=4C o.1// log log logn. This is obtained when for each i , bi D ri D 1=2C o.1/
and the clique has size .1=2/ logd . Let S be the union of the Rij with 1 � j � s.
As, for each i < j , the complete bipartite graph between Ri [ Bi and Rj [ Bj is
monochromatic red, the set S forms a monochromatic clique of weight

X
j2S

1

logj
�
�1
4
C o.1/

�
log log logn:

The proof sketched above uses an application of both Ramsey’s theorem and its
weighted variant, so that the asymptotics of the lower bound on f .n/ are dictated
by the bounds in these theorems. We believe that the optimal bounds should always
follow, as above, from the diagonal case, in which case Conjecture 5.1 would follow.

5.2. Weighted cliques with alternative weight functions
One question which arises naturally is whether we can also find cliques of large
weight for other weight functions. Let w.i/ be a weight function defined on all pos-
itive integers n � a, and let f .n;w/ be the minimum over all 2-colorings of Œa; n�
of the maximum weight of a monochromatic clique. In particular, if w1.i/D 1= log i
and aD 2, then f .n;w1/D f .n/.

The next interesting case is when w2.i/ D 1= log i log log log i , since, for any
function u.i/ which tends to infinity with i , Theorem 1.1 implies that f .n;u0/!1,
where u0.i/D u.i/= log i log log log i . We may show also that f .n;w2/!1.

Sketch of the proof
Suppose that we are using the weight function w2. We consider the intervals Ij D
Œnj ; 2nj / for which 2nj � n with log lognj D 10j log log logn. The number d of
such intervals is log logn=10 log log logn. By applying the methods used in the proof
of Theorem 3.1, we may find d sets T1; T2; : : : ; Td , with Tj � Ij , such that the col-
lection of edges between Ti and Tj is monochromatic for every i ¤ j , and each Tj is
the union of a red clique of size roughly rj lognj and a blue clique of size bj lognj .
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Here rj and bj are chosen to satisfy the balancing condition stipulated by Lemma 3.1.
Any vertex in Tj will have weight about 1= lognj log log lognj , the full contribution
of the red clique is�.rj = log log lognj /D�.rj =.logjC log log log logn//D�.rj =
log max.j; log log logn//, and the blue clique is �.bj = log max.j; log log logn//.

We may now treat the Tj as though they were vertices with two weights in a graph
whose edges have been 2-colored. For j � log log logn, the red weight is rj = logj
and the blue weight is bj = logj . For smaller j , the red weight is rj = log log log logn
and the blue weight is bj = log log log logn. However, there are so few such smaller j
that we will be able to safely ignore such vertices. We would like to repeat the argu-
ment above with this new graph on d vertices. To begin, we consider e 
 log logd=
10 log log logd intervals S1; : : : ; Se in Œd �, each of the form Œdi ; 2di /with log logdi D
10i log log logd . For the rest of the argument we only consider vertices j in one of
these intervals, so that j � d1 � log log logn and j has red weight rj = logj and blue
weight bj = logj . We may assume that rj and bj are each less than .logj /2, as oth-
erwise the vertex j , or rather the red or blue subset of Tj , would be a monochromatic
clique of weight �.logj / D �.log log log logn/. By Lemma 3.1, this also implies
that all rj and bj are at least 1=.16 log logj /. Therefore the ratio between any two of
rj and any two of bj is at most 16 log2 j log log logj � .logj /3 and hence we may
split each Si into hi D 6 log logdi subsets, so that the rj and bj are within a factor
2 of each other within each piece. That is, we are decomposing the interval Si into
Si;1; : : : ; Si;hi so that within any Si;` all rj and bj are essentially the same. Within
each Si , we pass to the largest Si;`, which we will call Ui . As jUi j � di=.6 log logdi /,
we have log jUi j 
 log jSi j for each i . We let r 0i and b0i be the minimum over j 2 Ui
of rj and bj , respectively.

If we again apply the method of Theorem 3.1, we will find a collection of sets
T 0i � Si such that the graph is monochromatic between any two sets and T 0i con-
tains a red clique of size Ori log jUi j 
 Ori log jSi j and a blue clique of size roughly
Obi log jSi j. The red clique will have red weight �. Orir 0i / and the blue clique will have
blue weight �. Obib0i /. Treating the T 0i as though they were the vertices in a graph, we
see that the vertex i will have red weight �. Orir 0i / and blue weight �. Obib0i /, where
Ori and Obi as well as r 0i and b0i satisfy, up to a constant factor, the balancing cri-
terion stipulated by Lemma 3.1. It is now easy to verify that the weight functions
Orir
0
i and Obib0i satisfy the requirements of Lemma 3.3 with c > 0 an appropriately

chosen absolute constant. Hence, we will be able to find a monochromatic clique of
weight �.log e/D�.log log logd/D�.log log log log logn/. This yields a clique of
the same weight in the original graph.

It is not hard to show that this bound is tight up to the constant. Color the interval
Ij D Œ2

2j�1 ; 22
j
/ so that the largest clique has size at most 2jC1. Then the contri-
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bution of the j th interval will be O.1= logj /. We now treat Ij as though it were a
vertex of weight O.1= logj / and, blowing up Rödl’s coloring, color monochromati-
cally between the different Ij so that the largest weight of any monochromatic clique
is O.log log logd/DO.log log log log logn/.

On the other hand, by using Rödl’s coloring, we can show that if w01.i/ D
1=.log i/1C� , for any fixed 
 > 0, then f .n;w01/ converges. By using the coloring
from the previous paragraph, we may improve this to show that if w02.i/ D 1=

log i.log log log i/1C� , then f .n;w02/ also converges.
More generally, we have the following theorem. Here log.i/.x/ is the iterated

logarithm given by log.0/.x/D x and, for i � 1, log.i/.x/D log.log.i�1/.x//.

THEOREM 5.1
Let ws.i/D 1=

Qs
jD1 log.2j�1/ i . Then f .n;ws/D‚.log.2sC1/ n/. However, letting

w0s.x/Dws.x/=.log.2s�1/ i/
� for any fixed 
 > 0, then f .n;w0s/ converges.

That is, the sequence of functions ws forms a natural boundary below which
f .n; �/ converges.

5.3. A counterexample to finding skewed cliques in hypergraphs
For 3-uniform hypergraphs, the Ramsey number r3.t/ is defined to be the smallest
natural number n such that in any 2-coloring of the edges ofK.3/n there is a monochro-
matic copy of K.3/t . It is known (see [3], [8], [9]) that

2ct
2

� r3.t/� 2
2c
0t

and the upper bound is widely conjectured to be correct. Phrased differently, we know
that every 2-coloring of the edges of K.3/n contains a monochromatic clique of size at
least �.log logn/ and that there are 2-colorings of K.3/n which contain no monochro-
matic clique of size O.

p
logn/.

Let �3.n/ be the function which gives the minimum size of the largest monochro-
matic clique taken over every 2-coloring of K.3/n . Note that this function is increasing
and that �3.r3.t// D t . In keeping with Erdős’s conjecture for graphs, we can give
a weight of 1=�3.i/ to vertex i and let the weight of a set S be

P
i2S 1=�3.i/. We

then ask for the minimum over all 2-colorings of the edges of the complete 3-uniform
hypergraph on vertex set Œn� of the maximum weight of a monochromatic clique.

Split Œn� into intervals given by Rj D Œr3.2j�1/; r3.2j //. Within each interval,
we color so that the largest monochromatic clique has size at most 2j . If i < j , we
color edges containing two vertices from Ri and one vertex from Rj red and edges
containing two vertices from Rj and one vertex from Ri blue. We color all other
edges arbitrarily.
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Suppose now that we have a monochromatic clique S . Then S has at most one
vertex in all but one of the sets Rj . Otherwise, if there were two vertices, say u1 and
u2, in Ri and two vertices, v1 and v2, in Rj , the edges u1u2v1 and u1v1v2 would
have opposite color. We may therefore suppose that S D T` [ ¹s1; s2; : : : º, where
T` �R` and si is a single vertex from Ri .

Since, for any i 2 R`, we have �3.i/ � �3.r3.2`�1// D 2`�1 and the largest
monochromatic clique inR` has size at most 2`, the contribution from T` is at most 2.
Similarly, the contribution from si is at most 21�i , so that the total weight of the clique
is at most 2C

P1
iD1 2

1�i � 4. Therefore, unlike the graph case, there are colorings
for which the maximum weight of a monochromatic clique is bounded.

5.4. A simple construction
Here we present a simple explicit construction which beats the random lower bound
for Ramsey numbers for a certain prescribed order on the consecutive differences.
A sequence n1 < n2 < � � �< nk is convex if n2 � n1 < n3 � n2 < � � �< nk � nk�1.

PROPOSITION 5.1
For i < j , let f .i; j /D blog.j � i/c. Consider the 2-edge-coloring of the complete
graph on the first nD 4k�1 positive integers where the color of edge .i; j / with i < j
is the parity of f .i; j /. This coloring has no convex monochromatic clique of order
kC 1.

Proof
Suppose for contradiction that a1 < � � �< akC1 is a convex monochromatic clique of
order k C 1 in this 2-edge-coloring of the complete graph on n. We claim that for
1 � i � k � 1, f .aiC2; aiC1/ � f .aiC1; ai /C 2. Indeed, as the sequence is convex,
aiC1 � ai < aiC2 � aiC1, and hence f .aiC2; aiC1/� f .aiC1; ai /. If the claim does
not hold, then for some i , 1 � i � k � 1, we have f .aiC2; aiC1/ D f .aiC1; ai / or
f .aiC2; aiC1/D f .aiC1; ai /C 1. In the first case, as aiC2 � ai D .aiC2 � aiC1/C
.aiC1� ai /, we have that f .aiC2; ai /D f .aiC1; ai /C 1, so the edges .ai ; aiC2/ and
.ai ; aiC1/ are different colors. In the second case, .aiC2; aiC1/ and .aiC1; ai / are
different colors. As the clique is monochromatic, this cannot happen, and hence the
claim holds. From the claim, we have f .akC1; ak/� f .2; 1/C 2.k � 1/� 2.k � 1/.
It follows that akC1 > akC1 � ak � 22.k�1/, contradicting akC1 � n D 4k�1 and
completing the proof.

We actually proved that not only is there no convex monochromatic complete
graph on kC 1 vertices in the 2-edge-coloring of the complete graph on the first 4k�1

positive integers, but also that a much sparser graph on kC1 vertices is forbidden as a
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monochromatic subgraph in convex position, namely, the square of the monotone path
on kC 1 vertices. That is, for this coloring, there is no convex sequence a1; : : : ; akC1
such that all edges .ai ; aj / with jj � i j � 2 are the same color. This is in strong
contrast to Ramsey numbers without order, where the Ramsey number of the square
of a path or, more generally, any bounded degree graph (see, e.g., [1], [4]) is linear in
the number of vertices.

As with ordinary Ramsey numbers, the lower bound for complete Ramsey num-
bers with order types which comes from considering a random 2-edge-coloring of
the complete graph is of the form 2k=2Co.k/. As the simple constructive coloring in
Proposition 5.1 gives a better bound while forbidding a much sparser structure, it
suggests that Ramsey’s theorem with order types is a substantially different and more
intricate problem than Ramsey’s theorem.

5.5. Counterexamples to variants of Ramsey’s theorem with order types
There are several natural variants of Väänänen’s question which have negative answers.
For example, the natural hypergraph analogue fails. Indeed, there is a coloring of the
complete 3-uniform hypergraph on the positive integers such that every monochro-
matic set a1; : : : ; ak satisfies that the sequence a2 � a1; a3 � a2; : : : ; ak � ak�1 of
consecutive differences is monotone. We color an edge .a1; a2; a3/with a1 < a2 < a3
red if a3 � a2 � a2 � a1 and blue otherwise. Hence, if a1 < a2 < a3 < a4 are pos-
itive integers, .a1; a2; a3/ and .a2; a3; a4/ are both red or both blue if and only if
a2 � a1; a3 � a2; a4 � a3 is a monotone sequence.

Another variant which fails to hold is the case of monochromatic cliques where
the higher differences have a prescribed order. This was first observed by Erdős, Haj-
nal, and Pach in [7]. We give such an example forbidding an ordering of the second
differences aiC2 � ai . Before describing this coloring, we first remark that it is easy
to show that any second difference is realizable. That is, for any permutation � of
Œk � 2�, there are (many) sequences a1 < � � �< ak of positive integers satisfying

a�.1/C2 � a�.1/ > a�.2/C2 � a�.2/ > � � �> a�.k�2/C2 � a�.k�2/:

However, for certain � there exist 2-edge-colorings of the complete graph on the
positive integers in which none of these sequences form a monochromatic clique.
Indeed, consider the 2-edge-coloring of the complete graph on the positive integers,
where the color of .i; j /with i < j is given by the parity of f .i; j /D blog.j � i/c. In
this coloring, no monochromatic clique with vertices a1 < a2 < a3 < a4 < a5 < a6 <
a7 satisfies a5�a3 is the largest of the second differences and a4�a2; a6�a4 are the
two smallest second differences. Suppose that such a monochromatic clique exists. By
symmetry, we may assume without loss of generality that a4�a3 � a5�a4. For ai <
aj < ah, as ah � ai D .ah � aj /C .aj � ai /, we have max.f .ai ; aj /; f .aj ; ah//�
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f .ai ; ah/ � max.f .ai ; aj /; f .aj ; ah//C 1. Since the parity of f .a; b/ is the same
for any two vertices a < b of the monochromatic clique, we must have f .ai ; ah/D
max.f .ai ; aj /; f .aj ; ah//. In particular, this implies that f .a3; a5/D f .a3; a4/ and
that f .a1; a5/ D f .a3; a5/. Since a3 � a1 � a4 � a2 (by minimality of a4 � a2),
we must have a2 � a1 � a4 � a3 and hence f .a3; a5/ � f .a1; a3/ � f .a1; a2/ �
f .a3; a4/D f .a3; a5/, where the first inequality comes from the fact that a5 � a3 is
the largest second difference. But if f .a1; a3/D f .a3; a5/, then f .a1; a5/ > f .a3;
a5/, contradicting the equality deduced earlier.
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