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Abstract

Let H be a fixed forbidden graph and let f be a function of n: Denote by RTðn;H; f ðnÞÞ the
maximum number of edges a graph G on n vertices can have without containing H as a

subgraph and also without having at least f ðnÞ independent vertices. The problem of

estimating RTðn;H; f ðnÞÞ is one of the central questions of so-called Ramsey–Turán theory.
In their recent paper (Discrete Math. 229 (2001) 293–340), Simonovits and Sós gave an

excellent survey of this theory and mentioned some old and new interesting open questions. In

this short paper we obtain some new bounds for Ramsey–Turán-type problems. These results

give partial answers for some of the questions.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let H be a fixed so-called forbidden graph and let f be a function of n: Denote by
RTðn;H; f ðnÞÞ the maximum number of edges a graph G on n vertices can have
without containing H as a subgraph and also without having at least f ðnÞ
independent vertices. This problem was motivated by the classical Ramsey and
Turán theorems and attracted a lot of attention during the last 30 years, see e.g., the
recent survey [10] of Simonovits and Sós. First, we want to recall some open
questions which were mentioned in [10].
An early and probably one of the most celebrated results in Ramsey–Turán theory

claims that

RTðn;K4; oðnÞÞ ¼ ð1þ oð1ÞÞ n2
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where K4 is a complete graph on four vertices. The upper bound was obtained by
Szemerédi [11] and the lower bound was proved by Bollobás and Erd +os [2]. This
result is quite surprising, since it seems to be more plausible to suspect that there are
no K4-free graphs on n vertices with a quadratic number of edges and with maximum
independent set of size oðnÞ: Roughly speaking, the graph of Bollobás and Erd +os
consists of two disjoint copies of order n=2 of the Borsuk graph with a dense
bipartite graph in between. The fact that this graph has independence number oðnÞ
was proved by applying an isoperimetric theorem for the high dimensional sphere.
On the other hand, one can easily see that the independence number of the Borsuk
graph is rather large. So replacing oðnÞ by slightly smaller functions perhaps one
could get smaller upper bounds on the number of edges. This natural question was
posed in [4] and also repeated in [10], more precisely they asked the following:

Problem 1.1. Is it true that for some c > 0;

RT n;K4;
n

ln n

� �
o

1

8
� c

� �
n2?

Similarly, what happens if oðnÞ is replaced by Oðn1�eÞ for some fixed but small constant

e > 0?

Another more general question asked by Simonovits and Sós [10] is to characterize

forbidden graphs H for which replacing the oðnÞ condition by Oðn1�eÞ can change
significantly the corresponding Ramsey–Turán numbers.

Problem 1.2. Under which conditions on the forbidden graph H do there exist two

positive constants c; c1 for which

RTðn;H; oðnÞÞ � RTðn;H; f ðnÞÞ > c1n
2 for every f ðnÞ ¼ Oðn1�cÞ?

Denote by Ksðt1;y; tsÞ a complete s-partite graph with parts of size t1;y; ts: In [6]
Erd +os, Hajnal, Sós and Szemerédi developed an interesting method, based on a
modified version of arboricity, which allows one to determine
RTðn;Ksðt1;y; tsÞ; oðnÞÞ for a large family of complete multi-partite graphs. One
of the first graphs which cannot be handled by this technique is K3ð2; 2; 2Þ: Finding
the Ramsey–Turán number of this graph remains an intriguing open problem. Even
the following simpler question is unsolved (see, e.g., [4,6,10]).

Problem 1.3. Decide if RTðn;K3ð2; 2; 2Þ; oðnÞÞ ¼ oðn2Þ or not.

Finally, we want to mention an additional open question which appeared in [5]. In
this paper the authors studied the variant of Ramsey–Turán-type problems where
instead of imposing a bound on the size of the maximum independent set they
considered what happens if one forbids large Kp-free sets. Let the Kp-independence

number apðGÞ be the maximum order of an induced subgraph in G which contains

no copy of Kp:
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Problem 1.4. Is it true that if G is a K5-free graph on n vertices and a3ðGÞ ¼ oðnÞ; then

the number of edges in G is oðn2Þ?

Motivated by all these problems, in this short paper we obtain a few new bounds
for the Ramsey–Turán numbers. These results give partial answers for some of the
questions. The rest of this note is organized as follows. In Section 2 we prove our
main lemma, which we think is of independent interest. We apply this lemma in
Section 3 to obtain various bounds for some Ramsey–Turán-type problems. Section
4 of the paper is devoted to concluding remarks.
We close this section with some conventions and notation. Given a graph G ¼

ðV ;EÞ and a subset WCV ; we denote by NðWÞ the set of vertices of G adjacent to
all the vertices in W : A graph G is d-degenerate if any subgraph of it contains a
vertex of degree at most d: Obviously, such a graph contains an independent set of
size jVðGÞj=ðd þ 1Þ: We denote by ln the natural logarithm. Throughout the paper,
we omit the floor and ceilings signs for the sake of convenience.

2. Key lemma

In this section we prove our main lemma which we think is of independent interest.
When this paper was written we learned that independently and before us a similar
statement was proved by Kostochka and Rödl [9]. The proof we present here is
simpler and gives slightly improved constants. It is based on probabilistic arguments
and was influenced by Gowers [7].

Lemma 2.1. Let 0oco1=2 and let t; k;m and n be positive integers satisfying the

following two inequalities:

ð2cÞt
nX2m and nk m

n

� �t

pk!m: ð1Þ

Then every graph G ¼ ðV ;EÞ on n vertices with jEjXcn2 contains a set UCV of size at

least m with the property that any subset W of U of size k has jNðWÞjXm:

Proof. Let x1;y; xt be a collection of t; not necessarily distinct vertices of G; which
we pick uniformly at random. Denote by A the set of common neighbors of x1;y; xt

in G: Note that the size of A is a random variable and that for any vAA all xi should
belong to NðvÞ: Denote by dðvÞ the degree of vertex v: Then, using Jensen’s
inequality, we can estimate the expected size of A:

EðjAjÞ ¼
X
vAV

PrðvAAÞ ¼
X
vAV

jNðvÞj
n

� �t

¼
P

vAV ðdðvÞÞ
t

nt
X

nð
P

vAV
dðvÞ

n
Þt

nt

¼ nð2jEðGÞj=nÞt

nt
Xð2cÞt

nX2m:
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On the other hand, by definition, the probability that a given subset of vertices W

belongs to A equals ðjNðWÞj=nÞt: Denote by Y the number of subsets W of A of size
k which satisfy jNðWÞjom: Then by (1) the expected value of Y is at most

EðYÞ ¼
X

jW j¼k; jNðW Þjom

PrðWCAÞp
n

k

 !
m

n

� �t

p
nk

k!

m

n

� �t

pm:

Therefore by linearity of expectation there exists a choice of x1;y; xt for which
jAj � YXm: Fix such A and delete an arbitrary vertex from every subset W of A of
size k which has jNðWÞjom: This produces the set U guaranteed by the assertion of
the lemma. &

Using this lemma we immediately obtain the following corollary which we will use
in the next section to derive results on Ramsey–Turán-type problems.

Corollary 2.2. Let c be a positive constant and k be a fixed non-negative integer. Let G

be a graph on n vertices with at least cn2 edges and let oðnÞ be any function which tends

to infinity arbitrarily slowly with n. Then, for sufficiently large n, G contains a subset of

vertices U of size ne�oðnÞ
ffiffiffiffiffiffi
ln n

p
such that any WCU of size k has jNðWÞjXne�oðnÞ

ffiffiffiffiffiffi
ln n

p
:

Proof. Define t ¼
ffiffiffiffiffiffiffiffi
ln n

p
and let m ¼ ne�oðnÞ

ffiffiffiffiffiffi
ln n

p
: Then it is easy to check that

ð2cÞt
n ¼ ne�lnð1=2cÞ

ffiffiffiffiffiffi
ln n

p
b2ne�oðnÞ

ffiffiffiffiffiffi
ln n

p
¼ 2m

and also

nk m

n

� �t

¼ nkðe�oðnÞ
ffiffiffiffiffiffi
ln n

p
Þ
ffiffiffiffiffiffi
ln n

p
¼ nk�oðnÞ ¼ oð1Þ5m:

Now the corollary follows from Lemma 2.1. &

3. Applications

In this section we show how to apply Corollary 2.2 to the Ramsey–Turán-type
problems. Our first two results were motivated by Problems 1.1–1.3. These results

give a precise characterization of the forbidden graphs H for which RTðn;H; n1�eÞ ¼
oðn2Þ; for any fixed e > 0:

Theorem 3.1. Let H ¼ ðV ;EÞ be a fixed graph such that there exists a partition

V ¼ V1,V2 of the vertices of H with the property that the induced subgraph

H½Vi	; i ¼ 1; 2 is acyclic. Then the Ramsey–Turán number of H satisfies

RTðn;H; f ðnÞ ¼ ne�oðnÞ
ffiffiffiffiffiffi
ln n

p
Þ ¼ oðn2Þ;

where oðnÞ-N arbitrarily slowly with n.
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Proof. Let c > 0 be a constant and let G be a graph on n vertices with cn2 edges
which contains no copy of H: Then to prove the theorem it is enough to show that

aðGÞXne�oðnÞ
ffiffiffiffiffiffi
ln n

p
: Denote by k the order of the graph H and set o0ðnÞ ¼ oðnÞ � 1:

Since k is a constant, then by Corollary 2.2 G contains a subset of vertices U of

size ne�o0ðnÞ
ffiffiffiffiffiffi
ln n

p
bkne�oðnÞ

ffiffiffiffiffiffi
ln n

p
such that any WCU of size k has jNðWÞjX

ne�o0ðnÞ
ffiffiffiffiffiffi
ln n

p
bkne�oðnÞ

ffiffiffiffiffiffi
ln n

p
: Consider G½U 	; the subgraph of G induced by the set

U : If G½U 	 is ðk � 1Þ-degenerate then it contains an independent set of size

jU j=k ¼ ne�oðnÞ
ffiffiffiffiffiffi
ln n

p
and we are done. Else it contains a subgraph with minimal

degree k: Then by a well known folklore result such a subgraph contains any forest
on k vertices and in particular a copy of the graph H½V1	: Denote byW1CU a vertex
set of this copy. Clearly the size of W1 is at most k and therefore we have that

jNðW1ÞjXkne�oðnÞ
ffiffiffiffiffiffi
ln n

p
: Next consider a subgraph of G induced by the set NðW1Þ: If

this graph contains a copy of H½V2	; denote by W2CNðW1Þ a vertex set of this copy.
Since every vertex inW1 is adjacent to every vertex inW2 andH½Vi	CG½Wi	; i ¼ 1; 2;
then by definition G contains a copy ofH on the vertex setW1,W2; a contradiction.
Therefore G½NðW1Þ	 has no copy of H½V2	: Then similarly as above we conclude that
this graph is ðk � 1Þ-degenerate and hence it contains an independent set of size
jNðW1Þj=kXne�oðnÞ

ffiffiffiffiffiffi
ln n

p
: This completes the proof of the theorem. &

Note that if we partition K4 into two parts of size two, then each part is just an

edge. Therefore we immediately obtain that RTðn;K4; ne�oðnÞ
ffiffiffiffiffiffi
ln n

p
Þ ¼ oðn2Þ; for any

oðnÞ-N: This answers the second part of Problem 1.1 and shows that it is enough

to reduce oðnÞ condition a little bit (not even to n1�e) in order to reduce significantly
the Ramsey–Turán numbers of K4:
Another interesting corollary of the above theorem deals with case when H ¼

K3ð2; t; tÞ; for any fixed integer tX2: Indeed, it is easy to check that K3ð2; t; tÞ has a
partition into two parts such that each part is a star of size t þ 1: Thus we can
conclude that RTðn;K3ð2; t; tÞ; ne�oðnÞ

ffiffiffiffiffiffi
ln n

p
Þ ¼ oðn2Þ: This result shows that if there is

a construction of a graph G which implies that the answer to Problem 1.3 is no, then
the size of the maximum independent set in such a construction should be almost
linear. Next we present a simple example which shows that the result of Theorem 3.1
is tight in the following sense.

Proposition 3.2. Let H ¼ ðV ;EÞ be a fixed graph such that for any partition V ¼
V1,V2 of the vertices of H at least one of the induced graphs H½Vi	; i ¼ 1; 2 contains

a cycle. Then there exists a constant e ¼ eðHÞ > 0 such that for any large n there exists

a graph G on n vertices with at least n2=4 edges which contains no copy of H and has

independence number at most n1�e:

Proof. Denote by k the order of H: By the celebrated result of Erd +os [3] there exists
a constant e > 0 such that for any large enough n there exists a graph G0 on n=2
vertices with the following properties. G0 contains no cycles of length shorter than

k þ 1 and has independence number at most n1�e: Take two disjoint copies of G0 and
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add the complete bipartite graph between them. Then we obtain a graph G on n

vertices with at least n2=4 edges and with independence number at most n1�e: In
addition G contains no copy of H; since in any partition of H into two parts, one
part will contain a cycle whose length is at most k: This completes the proof. &

Finally, motivated by Problem 1.4 we obtain a bound on the size of the maximum

Kp-free subset in a graph on n vertices which contains no copy of K2p and has Oðn2Þ
edges.

Theorem 3.3. Let pX3 be an integer and let G be a graph on n vertices such that G

contains no copy of K2p: If in addition apðGÞone�oðnÞ
ffiffiffiffiffiffi
ln n

p
; where oðnÞ-N arbitrarily

slowly with n, then the number of edges in G is oðn2Þ:

Proof. Let c > 0 be a constant and let G be a graph on n vertices with cn2 edges
which contains no copy of K2p: Then to prove the theorem it is enough to show that

apðGÞXne�oðnÞ
ffiffiffiffiffiffi
ln n

p
: By Corollary 2.2 G contains a subset of vertices U of size

ne�oðnÞ
ffiffiffiffiffiffi
ln n

p
such that anyWCU of size p has jNðWÞjXne�oðnÞ

ffiffiffiffiffiffi
ln n

p
: Consider G½U 	; a

subgraph of G induced by the set U : If G½U 	 contains no Kp; then U is a Kp-

independent set and we are done. So suppose it contains a copy of Kp and denote by

W 0CU a vertex set of this copy. Clearly the size of W 0 is p and therefore we have

that jNðW 0ÞjXne�oðnÞ
ffiffiffiffiffiffi
ln n

p
: If NðW 0Þ also contains a copy of Kp then together with

the vertices in W 0 we obtain a complete subgraph of G on 2p vertices, a

contradiction. Thus NðW 0Þ is a Kp-independent set of size at least ne�oðnÞ
ffiffiffiffiffiffi
ln n

p
: This

completes the proof of the theorem. &

Since a graph without copy of K5 obviously contains no K6; this theorem implies

that any graph G on n vertices with no K5 subgraph and with Oðn2Þ edges has a
triangle-free subset of size ne�oðnÞ

ffiffiffiffiffiffi
ln n

p
bn1�e for any fixed e > 0: This implies that in

Problem 1.4 if we restrict the size of a3ðGÞ to be slightly smaller than just oðnÞ; then
the number of edges in the graph G will be definitely oðn2Þ: It is also very interesting
to compare Theorem 3.3 with the results of [5], where for every pX3 the authors

constructed graphs on n vertices which contain no K2p; have at least ð1þ oð1ÞÞn2=8
edges and their maximum Kp-free subset is only of order oðnÞ: Our result shows that
the value oðnÞ cannot be reduced significantly in these examples, without a dramatic
drop in the number of edges.

4. Concluding remarks

As we already pointed out, most results in Ramsey–Turán theory deal with the
case when the independence number of the graph G is bounded by oðnÞ: In the
previous section we see some interesting phenomena when we restrict aðGÞ to be at
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most ne�oðnÞ
ffiffiffiffiffiffi
ln n

p
: So it is a natural question what happens if we go even further when

aðGÞpn1�e for various fixed values of e: Here we will make first a very week attempt
to address this question. Without too much extra effort, only using ideas from the
proof of Theorem 3.1, we can show the following.

Proposition 4.1. Let rX2 be an integer, then the Ramsey–Turán numbers of K4 satisfy

RTðn;K4; n1�1=rÞon2�1=rðrþ1Þ:

Proof. Let G be a graph on n vertices with n2�1=rðrþ1Þ edges which contains no copy

of K4: It is enough to show that aðGÞXn1�1=r:Define t ¼ r þ 1; m ¼ n1�1=r; k ¼ 2 and
c ¼ n�1=rðrþ1Þ: Then it is easy to check that they satisfy the following inequalities

ð2cÞt
nX2m and nk m

n

� �t

pk!m:

Therefore by Lemma 2.1 G contains a subset of vertices U of size n1�1=r such that any

WCU of size 2 has jNðWÞjXn1�1=r: If U is an independent set, then we are done.
Else U contains an edge ðu; vÞ: As we already mentioned the common neighborhood
Nðu; vÞ has size at least n1�1=r: Since every edge in Nðu; vÞ together with vertices u; v

forms a copy of K4 we conclude that Nðu; vÞ is an independent set. This implies that
aðGÞXn1�1=r and completes the proof. &

Using some additional ideas we can slightly improve this result and extend it to
other values of f ðnÞ: We plan to return to this problem in the future.
Using Theorem 3.3 we can obtain an interesting connection between the Ramsey–

Turán numbers of K5 and K6 and the usual Ramsey number of K3: Indeed, let G be a

graph on n vertices with Oðn2Þ edges which contains no copy of K6: Then by

Theorem 3.3 G contains a triangle-free set U of size at least ne�Oð
ffiffiffiffiffiffi
ln n

p
Þ: Using well

known bounds of Ajtai et al. [1], we obtain that U contains an independent set of size

at least Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU j ln jU j

p
Þb

ffiffiffi
n

p
e�oðnÞ

ffiffiffiffiffiffi
ln n

p
¼ n1=2�oð1Þ; where oðnÞ-N arbitrarily slowly

with n: This implies that

RTðn;K5;
ffiffiffi
n

p
e�oðnÞ

ffiffiffiffiffiffi
ln n

p
ÞpRTðn;K6;

ffiffiffi
n

p
e�oðnÞ

ffiffiffiffiffiffi
ln n

p
Þ ¼ oðn2Þ:

On the other hand it is easy to see that this result is nearly tight, since we can take
two copies of the triangle-free graph on n=2 vertices with independence number at

most Oð
ffiffiffiffiffiffiffiffiffiffiffi
n ln n

p
Þ (this graph exists by the result of Kim [8]) and connect these copies

by a complete bipartite graph. Obviously, the new graph is K5-free, has the same

independence number and at least n2=4 edges. Therefore we conclude

RTðn;K5;Oð
ffiffiffiffiffiffiffiffiffiffiffi
n ln n

p
ÞÞXRTðn;K6;Oð

ffiffiffiffiffiffiffiffiffiffiffi
n ln n

p
ÞÞXn2

4
:

We would like to remark that similar results can be obtained for other graphs like
K2p or K3ð3; 3; 3Þ (in any partition of K3ð3; 3; 3Þ into two parts, one part contains
K2ð2; 3Þ). But since the exact asymptotic behavior of the Ramsey numbers of any
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graph other than K3 is not known, the results one can get are less interesting and we
will not discuss them in detail.
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