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ABSTRACT: An old problem of Erdős, Fajtlowicz, and Staton asks for the order of a largest induced
regular subgraph that can be found in every graph on n vertices. Motivated by this problem, we consider
the order of such a subgraph in a typical graph on n vertices, i.e., in a binomial random graph G(n, 1/2).
We prove that with high probability a largest induced regular subgraph of G(n, 1/2) has about n2/3

vertices. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 38, 235–250, 2011
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1. INTRODUCTION

A rather old and apparently quite difficult problem of Erdős, Fajtlowicz, and Staton (see
Refs. [4] or [3], page 85) asks for the order of a largest induced regular subgraph that can
be found in every graph on n vertices. By the known estimates for graph Ramsey numbers
(c.f., e.g., Ref. [5]), every graph on n vertices contains a clique or an independent set of size
at least c ln n, for some positive constant c > 0, providing a trivial lower bound of c ln n
for the problem. Erdős, Fajtlowicz, and Staton conjectured that the quantity in question is
ω(log n). So far this conjecture has not been settled. Some progress has been achieved in
upper bounding this function of n: Bollobás in an unpublished argument showed (as stated
in Ref. [3]) the existence of a graph on n vertices without an induced regular subgraph on
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at least n1/2+ε vertices, for any fixed ε > 0 and sufficiently large n. A slight improvement
has recently been obtained by Alon and the first two authors [1], who took the upper bound
down to cn1/2 log3/4 n.

Given the simplicity of the problem’s statement, its appealing character and apparent
notorious difficulty, it is quite natural to try and analyze the behavior of this graph theoretic
parameter for a typical graph on n vertices, i.e., a graph drawn from the probability space
G(n, 1/2) of graphs. (Recall that the ground set of the probability space G(n, p) is composed
of all graphs on n labeled vertices, where each unordered pair {i, j} appears as an edge in G,
drawn from G(n, p), independently and with probability p. In the case p = 1/2 all labeled
graphs G on n vertices are equiprobable: Pr[G] = 2−(n

2).) This is the subject of the present
article.

We say that a graph property P holds with high probability, or whp for brevity, if the
probability of a random graph to have P tends to 1 as n tends to infinity. It was shown
by Cheng and Fang [2] that the random graph G(n, 1/2) whp contains no induced regular
subgraph on cn/ log n vertices. We improve the upper bound, and give a nearly matching
lower bound, as follows.

Theorem 1.1. Let G be a random graph G(n, 1/2). Then with high probability every
induced regular subgraph of G has at most 2n2/3 vertices. On the other hand, for k = o(n2/3),
with high probability G contains a set of k vertices that span a (k − 1)/2-regular graph.

It is instructive to compare this result with the above-mentioned result of Ref. [1]. Alon,
Krivelevich, and Sudakov also used a certain probability space of graphs to derive their upper
bound of O(n1/2 log3/4 n). Yet, their model of random graphs is much more heterogeneous
in nature (the expected degrees of vertices vary significantly there, see Ref. [1] for full
details). As expected, the rather homogeneous model G(n, 1/2) produces a sizably weaker
upper bound for the Erdős–Fajtlowicz–Staton problem.

The difficult part of our proof is the lower bound, for which we use the second moment
method. The main difficulty lies in getting an accurate bound on the variance of the number
of d-regular graphs on k vertices, where d = (k − 1)/2. Our main tool for achieving this
goal is an estimate on the number N(k, H) of d-regular graphs on k vertices which contain
a given subgraph H, when H is not too large. Provided H has o(

√
k) vertices, and its degree

sequence satisfies some conditions which are quite typical for random graphs, we obtain an
asymptotic formula for N(k, H) which is of independent interest (see Theorem 5.1).

In Section 2, we introduce some notation and technical tools utilized in our arguments,
and then prove a rather straightforward upper bound of Theorem 1.1. A much more delicate
lower bound is then proven in Section 3. The technical lemma used in this proof relies on the
above-mentioned estimate of N(k, H). The proof of this estimate is relegated to Section 4.
The final section of the article contains some concluding remarks.

2. NOTATION, TOOLS, AND THE UPPER BOUND

In this short section, we describe some notation and basic tools to be used later in our proofs.
Then, we establish the upper bound part of Theorem 1.1.

We will utilize the following (standard) asymptotic notation. For two functions f (n),
g(n) of a natural number n, we write f (n) = o(g(n)), whenever limn→∞ f (n)/g(n) = 0;
f (n) = ω(g(n)) if g(n) = o(f (n)). Also, f (n) = O(g(n)) if there exists a constant C > 0
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such that f (n) ≤ Cg(n) for all n; f (n) = �(g(n)) if g(n) = O(f (n)), and f (n) = �(g(n))

if both f (n) = O(g(n)) and f (n) = �(g(n)). We write f ∼ g if the ratio f /g tends to 1
when the underlying parameter tends to infinity. For a real x and positive integer a, define
[x]a = x(x − 1) · · · (x − a + 1). All logarithms in this article have the natural base. We will
use the bound

(n
k

) ≤ (en/k)k , valid for all positive n and k.
For a positive integer k, let m(k) be the largest even integer not exceeding (k − 1)/2.
Let G(d) denote the number of labeled simple graphs on k vertices with degree sequence

d = (d1, d2, . . . , dk), where the degree of vertex i is di. Also, we denote

pk = P[a random graph G(k, 0.5) is m(k)-regular].

Clearly, pk = G(d)2−(k
2), with all di being set equal to m(k).

We will repeatedly cite the following corollary of a result of McKay and the third author
(see Theorems 2 and 3 of Ref. [6]).

Theorem 2.1. Let dj = dj(k), 1 ≤ j ≤ k be integers such that
∑k

j=1 dj = λk(k − 1) is an
even integer where 1/3 < λ < 2/3, and |λk − dj| = O(k1/2+ε) uniformly over j, for some
sufficiently small fixed ε > 0. Then

G(d) = f (d)
(
λλ(1 − λ)1−λ

)(k
2)

k∏
j=1

(
k − 1

dj

)
(1)

where

• f (d) = O(1), and
• if max{|λk − dj|} = o(

√
k), then f (d) ∼ √

2e1/4, uniformly over the choice of such a
degree sequence d.

It is a routine matter to check that
(
λλ(1 −λ)1−λ

)(k
2) ∏k

j=1

(k−1
dj

) = O(2−(k
2)

(k−1
m(k)

)k
). (One

way to see this is as follows. We can show that the expression increases if the smallest di

is increased, unless they are all at least (k − 1)/2 + O(1). By a symmetrical argument, we
may assume they have an upper bound of the same form. Then, for such a sequence, adding

bounded numbers to all di changes the expression by a bounded factor.) Hence G(d)2−(k
2) is

O(pk) for every degree sequence d covered by Theorem 2.1. Also, using Stirling’s formula
it is straightforward to verify that pk = (

(1 + o(1))
√

πk/2
)−k

and that pk−1/pk = �(
√

k).
To prove the upper bound in Theorem 1.1, we show that, for a given k and r, the probability

that a random graph on k vertices is r-regular is O(pk). (For future use we prove here a
somewhat more general statement.) We then use the above-mentioned estimate for pk and
apply the union bound over all possible values of r.

Lemma 2.2. For every degree sequence d = (d1, . . . , dk),

P[G(k, 0.5) has degree sequence d] = O(pk) .

Proof. Following the remark after Theorem 2.1, assume that G(d)2−(k
2) ≤ Cpk for every

degree sequence d covered by the theorem, where C > 0 is an absolute constant. Let
d be a degree sequence of length k for which G(d) is maximal [which is obviously
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238 KRIVELEVICH, SUDAKOV, AND WORMALD

equivalent to choosing d to be a most probable degree sequence in G(k, 1/2)]. Write
P[G(k, 0.5) has degree sequence d] = akpk . If all degrees in d satisfy |di − k/2| ≤ k1/2+ε ,
then we can apply Theorem 2.1. Otherwise, there is di, say, dk , deviating from k/2 by at least
k1/2+ε , for some fixed ε > 0. To bound the probability that G(k, 1/2) has degree sequence
d, we first expose the edges from vertex k to the rest of the graph. By standard estimates
on the tails of the binomial distribution, the probability that k has the required degree is
exp{−�(k2ε)}. The edges exposed induce a new degree sequence on vertices 1, . . . , k − 1.
The probability that the random graph G(k − 1, 0.5) has this degree sequence is at most
ak−1pk−1 in our notation. We thus obtain: akpk ≤ max(Cpk , ak−1pk−1·O(exp{−k2ε})). Recall-
ing that pk−1/pk = �(

√
k), we obtain that ak ≤ max(C, ak−1·O(exp{−kε})) for large enough

k. The result follows by induction starting from k0 for which the above factor O(exp{−kε})
is < 1; the final bound is ak ≤ max(C, ak0).

To complete the proof of the upper bound of Theorem 1.1, note that by Lemma 2.2 the
probability that a fixed set V0 of k vertices spans a regular subgraph in G(n, 1/2) is O(kpk).
Summing over all k ≥ k0 = 2n2/3 and all vertex subsets of size k, we conclude that the
probability that G(n, 1/2) contains an induced regular subgraph on at least k0 vertices is

∑
k≥k0

(
n

k

)
·O(kpk) ≤

∑
k≥k0

(
en

k

)k

k
(
(1+o(1))

√
πk/2

)−k ≤ n2·
(

(1 + o(1))
√

2en√
πk3/2

0

)k0

= o(1).

3. A LOWER BOUND

In this section, we give a proof of the lower bound in our main result, Theorem 1.1. (To be
more accurate, we give here most of the proof, deferring the proof of a key technical lemma
to the next section.) The proof uses the so-called second moment method and proceeds by
estimating carefully the first two moments of the random variable X = X(k), counting the
number of (k − 1)/2-regular induced subgraphs on k vertices in G(n, 1/2). For convenience
we assume throughout the proof that k ≡ 1 (mod 4). (Since this estimate is used for proving
the lower bound of Theorem 1.1, we can allow ourselves to choose k in such a way without
losing essentially anything in the lower bound.) It is somewhat surprising to be able to apply
successfully the second moment method to sets of such a large size, however two earlier
instances of similar application can be found in Refs. [7] and [9].

So let X be the random variable counting the number of (k − 1)/2-regular induced
subgraphs on k vertices in G(n, 0.5). We write X = ∑

|A|=k XA, where XA is the indicator
random variable for the event that a vertex subset A spans a (k − 1)/2-regular subgraph.
Then

E[X] =
∑
|A|=k

E[XA] =
(

n

k

)
pk .

Plugging in the estimate for pk cited after the statement of Theorem 2.1, it is straightforward
to verify that E[X] tends to infinity for k = o(n2/3); in fact, E[X] = (ω(1))k in this regime. A
corollary of Chebyshev’s inequality is that P[X > 0] ≥ 1− (Var[X]/E

2[X]), and therefore
to prove that whp G(n, 1/2) contains an induced regular subgraph on k vertices, it is enough
to establish that Var[X] = o(E2[X]).

To estimate the variance of X we need to estimate the correlation between the following
events: “A spans a (k − 1)/2-regular subgraph” and “B spans a (k − 1)/2-regular subgraph,”
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where A, B are k-element vertex subsets whose intersection is of size i ≥ 2. To this end,
define

pk,i = max
|V(H)|=i

P[G(k, 0.5) is (k − 1)/2-regular | G[i] = H],

where the maximum in the expression above is taken over all graphs H on i vertices, and G[i]
stands for the subgraph of G(k, 1/2) spanned by the first i vertices. Since X = ∑

|A|=k XA,
we have:

Var[X] = E[X2] − E
2[X] =

∑
|A|=k

Var[XA] +
k−1∑
i=2

∑
|A|=|B|=k
|A∩B|=i

(E[XAXB] − E[XA]E[XB])

≤
∑
|A|=k

E[XA] +
k−1∑
i=2

∑
l|A|=|B|=k
|A∩B|=i

(P[XA = 1]P[XB = 1|XA = 1] − P[XA = 1]P[XB = 1])

≤ E[X] +
(

n

k

)
pk ·

k−1∑
i=2

(
k

i

)(
n − k

k − i

)
(pk,i − pk) . (2)

As a warm-up, we first show that a rather crude estimate for Eq. (2) suffices to prove that
Var[X] = o(E2[X]) for k = o(

√
n). We start with the following bound for pk,i.

Lemma 3.1. For 2 ≤ i ≤ k − 1,

pk,i = O

((
k − i

	 k−i
2 


)i

2−(k−i)ipk−i

)
.

Also,
pk,i
pk

≤ Cek log k
k−i , for a sufficiently large constant C > 0.

Proof. First, given H, expose the edges from H to the remaining k − i vertices (denote the
latter set by X). For every v ∈ H, we require d(v, X) = (k − 1)/2 − dH(v). This happens
with probability

(
k − i

(k − 1)/2 − dH(v)

)
2−k+i ≤

(
k − i

	 k−i
2 


)
2−k+i

(the middle binomial coefficient is the largest one). Hence the probability that all i vertices
from V(H) have the required degree of (k − 1)/2 in G is at most the i-th power of the
right-hand side of the above expression.

Now, conditioned on the edges from H to X, we ask what is the probability that the
subgraph spanned by X has the required degree sequence (each v ∈ X should have exactly
(k − 1)/2 − d(v, H) neighbors in X). Observe that by Lemma 2.2 the probability that G[X]
has the required degree sequence is at most C0pk−i for some absolute constant C0 > 0,
providing the first claimed estimate for pk,i.
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240 KRIVELEVICH, SUDAKOV, AND WORMALD

From Theorem 2.1, pt = �(1)2−2( t
2)

( t−1
	(t−1)/2


)t
. Therefore, the ratio pk,i/pk can be

estimated as follows:

pk,i

pk
≤ C0

(
k − i

	 k−i
2 


)i

2−(k−i)i pk−i

pk
≤ C1

(
k − i

	 k−i
2 


)i

2−(k−i)i
2−2(k−i

2 )
( k−i−1
	 k−i−1

2 

)k−i

2−2(k
2)

(k−1
k−1

2

)k

≤ C1




( k−i
	 k−i

2 

)
2−(k−i)

(k−1
k−1

2

)
2−(k−1)




k

≤ C

[
( k−1

2 )2( k−1
2 − 1)2 · · · ( k−i

2 + 1)2

(k − 1)(k − 2) · · · (k − i + 1)
2i−1

]k

= C

[
k − 1

k − 2

k − 3

k − 4
· · · k − i + 2

k − i + 1

]k

≤ C exp

{(
1

k − 2
+ 1

k − 4
+ · · · + 1

k − i + 1

)
k

}
.

In the third inequality above we used that
( k−i−1
	 k−i−1

2 

) ≤ 1

2 (1 + 1
k−i )

( k−i
	 k−i

2 

)
. Observe that∑k−2

j=k−i+1
1
j <

∫ k
k−i

dx
x = log k

k−i . This completes the proof of the second part of the lemma.

Now, we complete a proof of a weaker version of the lower bound of Theorem 1.1, by
showing that whp G(n, 1/2) contains an induced (k − 1)/2-regular subgraph on k = o(

√
n)

vertices. Omitting the term −pk in the sum in Eq. (2) and using E[X] = (n
k

)
pk , we obtain:

Var[X]
E2[X] ≤

∑k−1
i=2

(k
i

)(n−k
k−i

)
pk,i(n

k

)
pk

+ 1

E[X] =
k−1∑
i=2

(k
i

)(n−k
k−i

)
(n

k

) pk,i

pk
+ o(1). (3)

Denote

g(i) =
(k

i

)(n−k
k−i

)
(n

k

) pk,i

pk
.

Let us first estimate the ratio of the binomial coefficients involved in the definition of g(i).(k
i

)(n−k
k−i

)
(n

k

) ≤ ( ek
i )i

( n
k−i

)
(n

k

) =
(

ek

i

)i k(k − 1) · · · (k − i + 1)

(n − k + i)(n − k + i − 1) · · · (n − k + 1)

≤
(

ek

i

)i ( k

n − k + i

)i

≤
(

3k2

in

)i

.

To analyze the asymptotic behavior of g(i), we consider three cases.

Case 1. i ≤ k/2. In this case, by Lemma 3.1 and the inequality log(1 + x) ≤ x for x ≥ 0
we have:

pk,i

pk
≤ Cek log k

k−i = Cek log(1+ i
k−i ) ≤ Cek i

k−i ≤ Ce2i .

We thus get the following estimate for g(i):

g(i) =
(k

i

)(n−k
k−i

)
(n

k

) pk,i

pk
≤

(
3k2

in

)i

· Ce2i ≤ C

(
3e2k2

in

)i

. (4)

The above inequality is valid for all values of k. When k = o(
√

n) it gives that g(i) = (o(1))i.
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Case 2. k/2 ≤ i ≤ k − k
log k . Recalling Lemma 3.1 again, we have pk,i/pk ≤ Cek log k

k−i ≤
Cek log log k . Hence in this case

g(i) ≤
(

3k2

in

)i

Cek log log k ≤
(

6k

n

)k/2

Cek log log k

≤
(

1√
k

)k/2

Cek log log k = Ce− k log k
4 +k log log k ≤ e−k .

For future reference, it is important to note here that in the calculation above we used
6k/n ≤ k−1/2. This inequality stays valid as long as k ≤ (n/6)2/3.

Case 3. i ≥ k − k
log k . In this case it suffices to use the trivial estimate pk,i ≤ 1. We also need

that E[X] = (n
k

)
pk = (ω(1))k . Therefore,

g(i) =
(k

i

)(n−k
k−i

)
pk,i(n

k

)
pk

≤
(k

i

)(n−k
k−i

)
(ω(1))k

≤ 2knk−i

(ω(1))k
≤ 2knk/ log k

(ω(1))k
= eO(k)

(ω(1))k
≤ e−k .

In the above calculation we used the assumption log n = O(log k). In the complementary
case k = no(1) the expression

(n
k

)
pk behaves like

(
cn/k3/2

)k ≥ nk/2, while the numerator in
the expression for g(i) is at most 2knk/ log k = no(k), and the estimate works as well. Note
that, as in Case 2, the inequality here remains valid even for k as large as n2/3.

It thus follows that
∑k−1

i=2 g(i) is negligible, implying in turn that Var[X] = o(E2[X]),
and thus X is with high probability positive by the Chebyshev inequality.

Now, we proceed to the proof of the “real” lower bound of Theorem 1.1, i.e., assume that
k satisfies k = o(n2/3). In this case estimating the variance of the random variable X, defined
as the number of induced (k − 1)/2-regular subgraphs on k vertices, becomes much more
delicate. We can no longer ignore the term −pk in the sum in Eq. (2). Instead, we show that
for small values of i in this sum pk,i is asymptotically equal to pk . In words, this means that
knowing the edges spanned by the first i vertices of a random graph G = G(k, 1/2) does
not affect by much the probability of G being (k − 1)/2-regular. We claim this formally for
i = o(

√
k) in the following key lemma.

Lemma 3.2. For i = o(
√

k),

pk,i = (1 + o(1))pk .

The proof of this lemma is rather involved technically. We thus postpone it to the next
section. We now show how to complete the proof assuming its correctness. We first repeat
estimate (2):

Var[X]
E2[X] ≤ 1

E[X] +
k−1∑
i=2

(k
i

)(n−k
k−i

)
(pk,i − pk)(n
k

)
pk

≤ o(1) +
t∑

i=2

(k
i

)(n−k
k−i

)
(pk,i − pk)(n
k

)
pk

+
k−1∑
i=t

(k
i

)(n−k
k−i

)
(n

k

) pk,i

pk
, (5)
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where t = t(k, n) is chosen so that t = ω(k2/n) but t = o(
√

k). Since k = o(n2/3) such a
function is easily seen to exist. Due to our choice of t we can apply Lemma 3.2 to the first
sum above. It thus follows that

t∑
i=2

(k
i

)(n−k
k−i

)
(pk,i − pk)(n
k

)
pk

=
t∑

i=2

(k
i

)(n−k
k−i

) · o(pk)(n
k

)
pk

≤ o(1) ·
∑k

i=0

(k
i

)(n−k
k−i

)
(n

k

) = o(1) .

As for the second sum in Eq. (5) we can utilize the same case analysis as done before for
k = o(

√
n). The only difference is in Case 1, that now covers all i from t till k/2. Therefore,

for every i in this new interval we can use inequality (4) to conclude

(k
i

)(n−k
k−i

)
(n

k

) pk,i

pk
≤ C

(
3e2k2

in

)i

≤ C

(
3e2k2

tn

)i

= (o(1))i .

This completes the proof of Theorem 1.1.

4. PROOF OF KEY LEMMA

The proof of Lemma 3.2 is overall along the lines of the proof of Lemma 3.1, though
requiring a much more detailed examination of the probabilities involved. Throughout this
section, let k be odd and, for simplicity, denote (k − 1)/2 by d. Let Di be the set of integer
vectors d = (d1, . . . , di) such that 0 ≤ dj ≤ i − 1 for 1 ≤ j ≤ i, and kd − ∑

j dj is even.
Given d ∈ Di, let N(d) denote the number of graphs G on vertex set [k] for which G[i] has
no edges, and dG(j) = d − dj for j ∈ [i], whilst dG(j) = d for i < j ≤ k. Note that if d is the
degree sequence of a graph H on vertex set [i], then N(d) is the number of d-regular graphs
G on vertex set [k] for which G[i] = H. Of course, in this case N(d) is nonzero only if kd
is even, and hence k is congruent to 1 mod 4.

Proposition 4.1. Assume i = o(
√

k). Given d ∈ Di and a nonnegative vector s =
(s1, . . . , si) with

∑
j sj even, put d′ = d − s. Then, uniformly over such d and s with the

additional properties that d′ ∈ Di and
∑i

j=1 sj ≤ k3/4,

N(d)

N(d′)
∼

i∏
j=1

(
d − dj + sj

sj

)

i∏
j=1

(
d + 1 − (i − dj)

sj

) .

Proof. We use a comparison type argument. Since it is quite complicated, we give the idea
of the proof first. For any vector c = (c1, . . . , cj), write c∗ for the vector (d −c1, . . . , d −cj).
Let V1 = {1, . . . , i} and V2 = {i + 1, . . . , k}. For simplicity, suppose that s1 = s2 = 1, and
sj = 0 for j ≥ 3. We can compute N(d) as the number of possible outcomes of two steps.
The first step is to choose a bipartite graph B with bipartition (V1, V2) and degree sequence
d∗ in V1. The second step is to add the remaining edges between vertices in V2 such that
those vertices will have degree d. By comparison, to count N(d′) we choose in the first step
B′ with degree sequence d′∗ in V1, and then do the second step for each such B′. The proof
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hinges around the fact that there is a correspondence between the set of possible B and B′

such that the number of ways of performing the second step is roughly the same, at least
for most of the corresponding pairs (B, B′).

The correspondence is many-to-many. For a graph B we may add two edges, incident
with vertices 1 and 2, to obtain a graph B′. The number of ways this can be done, without
creating multiple edges, is

∏2
j=1

(
k − i − (d − dj)

) = ∏2
j=1

(
d + 1 − (i − dj)

)
. Conversely,

each B′ comes from
∏2

j=1(d − dj + 1)
)

different B. The ratio of these quantities gives the
asymptotic ratio between N(d) and N(d′) claimed in the theorem, ignoring the number of
ways of performing the second step. Our actual argument gets more complicated because
not only some bipartite graphs must be excluded, but also some sets of edges to be added
to them. So, we will present equations relating to the above argument in a slightly different
form to make exclusion of various terms easier.

Let B denote the set of bipartite graphs with bipartition (V1, V2). For B ∈ B, write
Dj(B) for the degree sequence of B on the vertices in Vj in the natural order, so D1(B) =(
dB(1), . . . , dB(i)

)
and D2(B) = (

dB(i+1), . . . , dB(k)
)
. For d = (d1, . . . , di) with kd−∑

j dj

even, let B(d∗) denote {B ∈ B : D1(B) = d∗}. Let G
(
D2(B)∗) denote the number of graphs

with degree sequence D2(B)∗. Clearly,

N(d) =
∑

B∈B(d∗)

G
(
D2(B)∗). (6)

Suppose that we wish to add to B a set S of edges joining V1 and V2, without creating
any multiple edges, such that the degree of j ∈ V1 (1 ≤ j ≤ i) in the graph induced by
S is sj (as given in the statement of the proposition). The family of all such sets S will be
denoted by S(B, s). Note that necessarily |S| ≤ k3/4 for S ∈ S(B, s). The cardinality of
S(B, s) is

∏i
j=1

(d+1−(i−dj)
sj

)
, because dB(j) = d∗

j = d − dj, so (as in the sketch above) j has

d + 1 − (i − dj) spare vertices in V2 to which it may be joined. Hence, we can somewhat
artificially rewrite Eq. (6) as

N(d) = 1
i∏

j=1

(
d + 1 − (i − dj)

sj

)
∑

B∈B(d∗)

∑
S∈S(B,s)

G
(
D2(B)∗). (7)

Also for B′ ∈ B(d′∗) define S ′(B′, s) to be the family of sets S ⊆ E(B′) such that the degree
of j ∈ V1 in the graph induced by S is sj (1 ≤ j ≤ i). Since dB′(j) = d − d ′

j and d ′
j = dj − sj,

a similar argument gives

N(d′) = 1
i∏

j=1

(
d − dj + sj

sj

)
∑

B′∈B(d′∗)

∑
S∈S′(B′ ,s)

G
(
D2(B

′)∗). (8)

The rest of the proof consists of showing that the significant terms in the last two equations
can be put into 1-1 correspondence such that corresponding terms are asymptotically equal.

We first need to show that for a typical B ∈ B(d∗), the variance of the elements of D2(B)

(as a sequence) is small. Given d, define d̄ = (k − i)−1
∑

j∈V1
(d − dj), and note that this is

equal to (k − i)−1
∑

j∈V2
dB(j) for every B ∈ B(d∗). Since d̄ is determined uniquely by d,

the value of d̄ is the same for all B ∈ B(d∗).
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Lemma 4.2. Let d ∈ Di, and select B uniformly at random from B(d∗). Then

E

( ∑
j∈V2

(
d̄ − dB(j)

)2
)

≤ i(k − i).

Proof. First observe that in B, the neighbors of any vertex t ∈ V1 form a random subset
of V2 of size d∗

t , and these subsets are independent for different t. So for fixed j ∈ V2, dB(j)
is distributed as a sum of i independent 0-1 variables with mean

∑
t∈V1

d∗
t /(k − i) = d̄. It

follows that the variance of dB(j) is < i. Hence E
(
d̄ − dB(j)

)2
< i, and the lemma follows

by linearity of expectation.

Returning to the proof of the proposition, we will apply Theorem 2.1 to estimate
G

(
D2(B)∗). This graph has k − i vertices, degree sequence {d − dB(j), j ∈ V2}, and its

degree sum is e∗ := (k − i)d − e(B), where e(B) = ∑
j∈V2

dB(j) = (k − i)d̄ is the number
of edges in the bipartite graph B. Consider λ from Theorem 2.1. We see that

λ = λ(d) := e∗

(k − i)(k − i − 1)
= d − d̄

k − i − 1
. (9)

The product of binomials in (1) is in this case

∏
j∈V2

(
k − i − 1

d − dB(j)

)
. (10)

For every B ∈ B(d∗), all components of the vector D2(B) are at most |V1| = i. Thus

xj := k − i − 1

2
− (d − dB(j)) = dB(j) − i/2 = O(i) = o(

√
k).

We have (
a

a/2 + x

)
=

(
a

	a/2

)

exp
(−2x2/a + O(x3/a2)

)
(11)

for x = o(
√

a), which may be established for instance by analyzing the ratio of the binomial
coefficients. Hence

k∏
j=i+1

(
k − i − 1

d − dB(j)

)
=

(
k − i − 1

	 k−i−1
2 


)k−i

exp

(−2
∑

x2
j

k − i
+ o(i)

)
. (12)

(Note that here and in the rest of the proof, the asymptotic relations hold uniformly over
d ∈ Di.) Since i = o(

√
k) we can choose a function ω of n such that ω → ∞ and

ω2i = o(
√

k). Define B̂ω(d∗) to be the subset of B(d∗) that contains those B for which
∑
j∈V2

(
d̄ − dB(j)

)2 ≤ ωi(k − i). (13)

Since
∑

j∈V2
dB(j) = e(B) is the same for all bipartite graphs B ∈ B(d∗), by definition

of xj we have that
∑

j x2
j − ∑

j d2
B(j) also does not depend on B. Similarly, the sum in 13

differs from
∑

j d2
B(j) by a constant independent of B. Therefore

∑
j x2

j for all B ∈ B̂ω/2(d∗)
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is smaller than the corresponding sum for B ∈ B(d∗)\B̂ω(d∗) by an additive term of at
least ωi(k − i)/2. This implies that the product of binomials in Eq. (12) is larger, for all
B ∈ B̂ω/2(d∗), than for any B ∈ B(d∗)\B̂ω(d∗). Also, from Lemma 4.2 and Markov’s
inequality, almost all members of B(d∗) are in B̂ω/2(d∗). Moreover, since all degrees in
degree sequence D2(B)∗ deviate from (k − i)/2 by at most O(i) = o(

√
k), the function

f (D2(B)∗) from Theorem 2.1 is ∼√
2e1/4 for all B ∈ B(d∗). Combining these observations,

we conclude that the contribution to Eq. (6) from B /∈ B̂ω(d∗) is o
(
N(d)

)
. Thus, the same

observation holds for Eq. (7). That is,

N(d) ∼ 1
i∏

j=1

(
d + 1 − (i − dj)

sj

)
∑

B∈B̂ω(d∗)

∑
S∈S(B,s)

G
(
D2(B)∗). (14)

We also note for later use, that by Eq. (13) and Cauchy’s inequality, for all B ∈ B̂ω(d∗)
∑
j∈V2

∣∣d̄ − dB(j)
∣∣ ≤ (k − i)

√
ωi. (15)

Fix B ∈ B̂ω(d∗). Consider S chosen uniformly at random from S(B, s), and let rm(S)

denote the number of edges of S incident with a vertex m ∈ V2. Fixing m and using that
|S| ≤ k3/4, we can bound the probability that rm(S) ≥ 5 by

∑
{j1,...,j5}⊆V1

5∏
t=1

sjt

k − i − (d − djt )
≤

( ∑
j∈V1

sj

d − i

)5

=
( |S|

d − i

)5

= O(k−5/4).

Hence by Markov’s inequality, with probability 1 − O(k−1/4), S ∈ S(B, s) satisfies
(i) maxj∈V2 rj(S) ≤ 4.
We would next like to bound

∑
j∈V2

∣∣d̄ − dB(j)
∣∣rj(S). To do this, note that we may

choose the edges in S incident with any given vertex sequentially, each time selecting a
random neighbor from those vertices of V2 still eligible to be joined to. For each such edge
joining to such a random vertex j ∈ V2, by Eq. (13) there are, as a crude bound, at least
(k − i)/3 vertices of V2 to choose from (for k sufficiently large). Amongst the eligible
vertices, the average value of

∣∣d̄ − dB(j)
∣∣ must be at most 3

√
ωi by Eq. (15). Hence, if

Xh denotes the value of
∣∣d̄ − dB(j)

∣∣ for the h-th edge added, we have EXh ≤ 3
√

ωi. Thus
E

∑
h Xh ≤ 3

√
ωi|S| ≤ 3

√
ωik3/4. Noting that

∑
h Xh = ∑

j∈V2

∣∣d̄ − dB(j)
∣∣rj(S) and using

Markov’s inequality, we deduce that almost all S ∈ S(B, s) (more precisely all except the
fraction 3/

√
ω = o(1) of them, at most) satisfy

(ii)
∑
j∈V2

∣∣d̄ − dB(j)
∣∣rj(S) ≤ ω

√
ik3/4.

Define Ŝ(B, s) to be the set of S ∈ S(B, s) satisfying both the properties (i) and (ii).
Then, since each S ∈ S(B, s) contributes equally to Eq. (14),

N(d) ∼ 1
i∏

j=1

(
d + 1 − (i − dj)

sj

)
∑

B∈B̂ω(d∗)

∑
S∈Ŝ(B,s)

G
(
D2(B)∗). (16)
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Let B ∈ B̂ω(d∗) and S ∈ Ŝ(B, s). Then, using Eq. (13) together with (i) and (ii), we get

∑
j∈V2

(
d̄ − dB(j) − rj(S)

)2 ≤ ωi(k − i) + 2
∑
j∈V2

∣∣d̄ − dB(j)
∣∣rj(S) +

∑
j∈V2

rj(S)2

≤ ωi(k − i) + 2ω
√

ik3/4 + 16(k − i) ∼ ωik.

Hence, for k sufficiently large, those S appearing in the range of the summation in Eq. (16)
satisfy B + S ∈ B̂2ω(d′∗), where B + S is the graph obtained by adding the edges in S to B
(and noting that d′∗ = d∗ +s). Since, as we saw, the contribution to Eq. (6) from B /∈ B̂ω(d∗)
is o

(
N(d)

)
, we may also relax the constraint on B in the summation in Eq. (16), to become

B ∈ B̂2ω(d∗). Now redefining 2ω as ω, we obtain

N(d) ∼ 1
i∏

j=1

(
d + 1 − (i − dj)

sj

)
∑

(B,S)∈W
G

(
D2(B)∗), (17)

where W denotes the set of all (B, S) such that B ∈ B̂ω(d∗), S ∈ Ŝ(B, s) and B + S ∈
B̂ω(d′∗).

Define Ŝ ′(B′, s), analogous to Ŝ(B, s), to be the set of S ∈ S ′(B′, s) with maximum
degree in V2 at most five and also obeying property (ii) above, where B = B′ − S. Since B
has density close to 1/2, B and its complement are more or less equivalent, and adding or
deleting edges should have a similar effect. Indeed, the above argument applied to 8, with
suitable small modification, gives

N(d′) ∼ 1
i∏

j=1

(
d − dj + sj

sj

)
∑

(B′ ,S)∈W ′
G

(
D2(B

′)∗) (18)

where W ′ denotes the set of all (B′, S) such that B′ ∈ B̂ω(d′∗), S ∈ Ŝ(B′, s) and B′ − S ∈
B̂ω(d∗).

Observe that (B, S) ∈ W if and only if (B + S, S) ∈ W ′. So the summation in Eq. (18)
is equal to

∑
(B,S)∈W

G
(
D2(B + S)∗).

Hence, comparing with Eq. (17), the proposition follows if we show that

G
(
D2(B)∗) ∼ G

(
D2(B + S)∗) (19)

uniformly for all (B, S) ∈ W .

We may apply Eq. (1) to both sides of Eq. (19). Write g(λ, n) = (
λλ(1 − λ)1−λ

)(n
2).

Notice that λ(d), as defined in Eq. (9), satisfies:

λ(d) =
∑

j∈V2
(d − dB(j))

(k − i)(k − i − 1)
,
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which is exactly λ for the degree sequence D2(B)∗ as defined in Theorem 2.1. The same
applies to λ(d′) and the degree sequence D2(B + S)∗. Using

∑
j∈V2

(d −dB(j)) = (k − i)d −
∑
t∈V1

dB(t) = (k − i)d − id +
i∑

t=1

dt = (k − 2i)(k − 1)

2
+�(i2),

it is easy to derive from Eq. (9) that both λ(d) and λ(d′) are 1/2+O(i2/k2) = 1/2+o(k−1)

for all d, d′ ∈ Di. For such λ the derivative of log g(λ, k − i) is
(k−i

2

)
log(λ/(1 − λ)) =

O(k2i2/k2) = o(k). Moreover, |λ(d)− λ(d′)| = O(k−5/4) because the values of d̄ for B and
B+S differ by O(|S|/k). Hence g(λ(d), k−i) ∼ g(λ(d′), k−i). It is now also easy to see that
f (D2(B)∗), f (D2(B+S)∗) from Theorem 2.1 satisfy: f (D2(B)∗) ∼ f (D2(B+S)∗) ∼ √

2e1/4,
since all degrees in these two degree sequences deviate from (k−i)/2 by O(i) = o(

√
k − i).

It only remains to consider the product of binomials in the two sides of Eq. (19) after
the application of Theorem 2.1. Recalling the expression in Eq. (10), the ratio of these two
products is

∏
j∈V2

(
k − i − 1

d − dB(j)

)/(
k − i − 1

d − dB(j) − rj(S)

)
.

Since B ∈ B̂ω(d∗), all rj(S) ≤ 4 and
∑

j rj(S) ≤ k3/4, so using d = (k − 1)/2 and dB(j) ≤ i,
this expression is, up to a multiplicative factor of 1 + O(k−1)

∑
j r2

j (S) = 1 + o(1), equal to

∏
j∈V2

(
k − i − 1 − d + dB(j)

d − dB(j)

)rj(S)

=
∏
j∈V2

(
d − i/2 − (

i/2 − dB(j)
)

d − i/2 + (
i/2 − dB(j)

)
)rj(S)

=
∏
j∈V2

(
1 + O

(
i/2 − dB(j)

k

))rj(S)

.

By its definition, d̄ = (k − i)−1
∑

j∈V1
(d − dj) = i/2 + O(i2/k) = i/2 + o(1), and so

using condition (ii) [the right-hand side of which is ω
√

ik3/4 = o(k)], and not forgetting∑
rj(S) ≤ k3/4, we get

∑
j∈V2

rj(S)
|i/2 − dB(j)|

k
≤

∑
j∈V2

|d̄ − dB(j)|rj(S)

k
+

∑
j∈V2

|d̄ − i/2|rj(S)

k
= o(1).

Hence, the expression above is asymptotic to one. This argument shows that Eq. (19) holds
with the required uniformity.

For a slightly simpler version of the formula in Proposition 4.1, put

d̂ = d − 1

2
(i − 1) = 1

2
(k − i)

(which is in some sense the average degree of vertices of side V1 in the bipartite graph B)
and

δj = dj − 1

2
(i − 1).
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Then the proposition gives

N(d)

N(d′)
∼

i∏
j=1

[d̂ − δj + sj]sj

[d̂ + δj]sj

.

Recalling that δj and sj are at most i = o(
√

k) and using log(1 + x) = x − x2/2 + O(x3),
we have

[d̂ − δj + sj]sj = d̂sj exp
(−δjsj/d̂ + s2

j /2d̂ + o(1/
√

k)
)
,

[d̂ + δj]sj = d̂sj exp
(
δjsj/d̂ − s2

j /2d̂ + o(1/
√

k)
)
.

Thus, we may rewrite the assertion of Proposition 4.1 as

N(d)

N(d′)
∼ exp

{ i∑
j=1

(−2δjsj/d̂ + s2
j /d̂

)} ∼
exp

{ ∑i
j=1(δj − sj)

2/d̂

}

exp

{ ∑i
j=1 δ2

j /d̂

} . (20)

To proceed, we extend this formula so that s is permitted to have negative entries.

Corollary 4.3. Assume i = o(
√

k). Given d ∈ Di and an integer vector s = (s1, . . . , si)

with
∑

j sj even, put d′ = d − s. Then, uniformly over such d and s with the additional

properties that d′ ∈ Di and
∑i

j=1 |sj| ≤ k3/4,

N(d)

N(d′)
∼ exp

{
1

d̂

i∑
j=1

(−2δjsj + s2
j

)}
.

Proof. Define the vector s′ by turning the negative entries of s into zero; that is, the jth
entry of s′ is sj if sj ≥ 0, and zero otherwise. (If this causes the sum of entries to change
parity, leave one of these entries as −1. It is easy to modify the following proof accordingly.)
Let s′′ = s′ − s. The jth entry of s′′ is −sj if sj < 0, and zero otherwise. We can now estimate
the product

N(d)

N(d − s′)
· N(d − s′)

N(d′)
= N(d)

N(d − s′)

/ N(d′)
N(d′ − s′′)

using two applications of Eq. (20), noting that all entries of s′′ = s′ − s are nonnegative and
that the δ′

j defined for degree sequence d′ equals δj − sj.

Define d0 to be the constant sequence of length i, all of whose entries are 	(i − 1)/2
.
If kd − i	(i − 1)/2
 is odd, adjust the first entry to 	(i − 1)/2
 + 1 to ensure that d0 ∈ Di.
We can use the following result to compare the number of graphs with an arbitrary degree
sequence d on G[i] to the number with d0. Recall, however, that N(d) is defined even if d
is not the degree sequence of any graph on [i].
Corollary 4.4.

(i) If d ∈ Di then N(d) ≤ N(d0)
(
1 + o(1)

)
.

(ii) If, in addition,
∑i

j=1 δ2
j = o(k), then N(d) ∼ N(d0).

Proof. We treat the case that the first entry of d0 was not adjusted for the parity reason
above; in the other case, only trivial modifications are required, for which we omit the details.

Random Structures and Algorithms DOI 10.1002/rsa



REGULAR INDUCED SUBGRAPHS OF A RANDOM GRAPH 249

Part (ii) of the corollary follows immediately from Corollary 4.3 by putting sj = �δj� for
each j, since if

∑i
j=1 δ2

j = o(k) then by Cauchy’s inequality
∑ |δj| = o(

√
ik) = o(k3/4).

(Note also that d̂ ∼ k/2.)
For the first part, let d maximise N(d). If

∑i
j=1 δ2

j < k say, the above argument shows

that N(d) ≤ N(d0)
(
1 + o(1)

)
. So assume that

∑i
j=1 δ2

j > k. Putting sj = �δj� and applying
Corollary 4.3 shows the result, provided

∑ |�δj�| ≤ k3/4. If the latter condition fails, we
can simply define sj = αjδj for some 0 ≤ αj ≤ 1 such that

∑
j |sj| is just below k3/4

and is even. Since |sj| ≤ |δj| and they both have the same sign, we can conclude that∑
j(−2δjsj + s2

j ) ≤ − ∑
j s2

j . By Cauchy’s inequality, the sum of the squares of sj grows
asymptotically faster than k. Let s = (s1, . . . , si) and let d′ = d − s. Then, by Corollary 4.3
we obtain N(d) = o(N(d′)), which contradicts the maximality assumption and proves the
result.

Define d1 to be the constant sequence of length k, all of whose entries are d = (k −1)/2.
We can now determine the asymptotic value of N(d0). Recall that k is odd; we will now
assume that k ≡ 1 (mod 4) to ensure that N(d0) is not 0. If k ≡ 3 (mod 4), we could prove
a similar result by subtracting 1 from the first entry of d1.

Corollary 4.5. For k ≡ 1 (mod 4) we have N(d0) ∼ G(d1)/2( i
2).

Proof. Let H be one of the 2( i
2) graphs on vertex set [i] chosen at random, and let dH =

{d1, . . . , di} be its degree sequence. Then dj is a binomially distributed random variable
with expectation (i − 1)/2 and variance (i − 1)/4. Hence for δj = dj − (i − 1)/2 we have
E[δ2

j ] = Var[dj] = (i − 1)/4. Then

E

∑
j∈[i]

δ2
j ≤ i2 ,

and, by Markov’s inequality, whp
∑

j∈[i] δ
2
j = o(k). Thus, from Corollary 4.4(ii) it follows

that for almost all graphs H, N(dH) ∼ N(d0). Part (i) of the same corollary shows that for all
other graphs, N(dH) ≤ (1+o(1))N(d0). Since N(dH) is the number of d-regular graphs G on
vertex set [k] for which G[i] = H, we have that G(d1) = ∑

H N(dH) = (1+o(1))N(d0)2( i
2),

and the corollary follows.

Proof of Lemma 3.2. From Corollary 4.4,

pk,i ∼ P[G(k, 0.5) is (k − 1)/2-regular | G[i] = H] ,

where H is a chosen to be a graph with degree sequence d0. Note that the number of
random edges outside H to be exposed is

(k
2

)− ( i
2

)
, and each of them appears independently

and with probability 1/2. Therefore, the above probability equals to N(d0)/2(k
2)−( i

2). By

Corollary 4.5, this is asymptotic to G(d1)/2(k
2) = pk .

5. CONCLUDING REMARKS

Our technique for proving Proposition 4.1 is a rather complicated comparison argument
somewhat related to the method of switchings used for graphs of similar densities in Ref. [8].
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One might be tempted to try proving the result for |S| = ∑i
j=1 sj = 2, as sketched in the first

part of the proof, and then applying this repeatedly, as in the proof of Corollary 4.4, to go
from one degree sequence to another. However, this seems to provide insufficient accuracy.
Similarly, attempts to use switchings directly were not successful.

Of independent interest is the following estimate for the probability that a regular graph
with k vertices and degree (k−1)/2 contains a given induced subgraph with degree sequence
(d1, . . . , di) on its first i vertices. This gives an asymptotic formula provided the sum of the
absolute values of δj = dj − (i − 1)/2 is a bounded multiple of k3/4, and otherwise gives
less accurate bounds.

Theorem 5.1. Assume i = o(
√

k), with k ≡ 1 (mod 4). Let H be a graph on vertex set [i]
with degree sequence d = (d1, . . . , di). Then the probability that a random 1

2 (k −1)-regular
graph G on vertex set [k] has the induced subgraph G[i] equal to H is

2−( i
2) exp

(
2

k − i

i∑
j=1

−δ2
j

)
exp

(
o(k−3/4)

i∑
j=1

|δi|
)

where δj = dj − (i − 1)/2.

Proof. We may use the argument in the proof of Corollary 4.4 to jump from d to d0, using
at most k−3/4

∑i
j=1 |δi| applications of Corollary 4.3, and then apply Corollary 4.5.
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