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Given a graph G on n vertices with average degree d, form a random subgraph Gp by

choosing each edge of G independently with probability p. Strengthening a classical result

of Margulis we prove that, if the edge connectivity k(G) satisfies k(G)� d/ log n, then the

connectivity threshold in Gp is sharp. This result is asymptotically tight.

1. Introduction

Reliability problems become more and more important as our modern systems of telecom-

munications, information transmission, and transportation become more and more com-

plex (the Internet might be a good example to keep in mind). This motivates the theoretical

study of network reliability, a topic which has been extensively studied in the past few

decades.
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One of the most popular abstract models in network reliability problems is the following.

Our network can be thought of as a large connected graph where each edge has a certain

probability q of failing. We are interested in the probability that the network is still

connected. This problem can be formulated in a form which is perhaps more convenient

to a graph theorist, as follows. Given a graph G with n vertices and m edges, and a real

p between 0 and 1, where p = 1 − q may depend on G, a random subgraph Gp of G is

obtained by keeping each edge of G with probability p, independently. The probability

that Gp is connected is obviously then a function of the probability p, which will be

denoted by f(G, p), or simply by f(p) when the definition of a graph G is clear from the

context. We will sometimes refer to f(p) as to the reliability function of the graph G.

Estimating f(G, p) seems to be very hard, and there is a vast literature on this issue. The

interested reader may check [2, Chapter 7] or [8] for a partial list of references. Several

special cases of this problem have been considered in different areas. For instance, if G

is the complete graph on n vertices, then Gp is the classical random graph G(n, p), and

the connectivity problem is discussed in great detail in Bollobás’s book [2]. Another case

is when G is the d-dimensional lattice restricted to a compact domain: in this case the

problem has been studied in percolation theory, and we refer the interested reader to [4].

In this paper, we investigate the following aspect of network reliability. For a fixed

positive constant x 6 1 and a graph G, let px denote the (unique) value of p where

f(G, px) = x. We say that a family (Gi)
∞
i=1 of graphs satisfies the sharp threshold property

if, for any fixed positive ε 6 1/2,

lim
i→∞

pε(Gi)

p1−ε(Gi)
→ 1.

The sharp threshold property is very useful from the practical point of view. It implies

that the performance of the network is easy to improve. For instance, the fact that
pε(Gi)
p1−ε(Gi) → 1 implies that, when i is sufficiently large, to increase the reliability of Gi from

0.01 (a very poor network) to 0.99 (a rather reliable network), we need only increase edge

reliability by a tiny fraction, a nominal cost for a remarkable improvement! In percolation

theory, a sharp threshold is more commonly known as a phase transition, and there is an

extensive literature on this phenomenon, motivated by questions from statistical physics

(see [4] and its references).

We would like to address the following central question:

Which families of graphs possess the sharp threshold property?

A different motivation for our study comes from a paper of Pak and the third author

[7]. There the above question was considered from a different aspect in relation to phase

transitions of random walks. The problems posed in that paper (see Section 13 of [7])

formed the starting point of our study.

In [7] several partial answers to the above question are given in special cases when

the graphs in question are highly symmetric. For general graphs, the earliest, and most

well-known, result is probably a result of Margulis. For a graph G, let k(G) denote the

minimum number of edges one needs to remove in order to disconnect G; if k(G) = k we
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say that G is k-edge-connected. In [6], as a corollary of a more general theorem, Margulis

derived the following result.

Theorem 1.1. Consider a family (Gi)
∞
i=1 of graphs. If k(Gi)→∞, then, for any fixed positive

ε 6 1/2, we have

lim
i→∞(p1−ε(Gi)− pε(Gi)) = 0.

Margulis’s theorem implies that a family (Gi)
∞
i=1 possesses the sharp threshold property

if the connectivity k(Gi) of Gi tends to infinity, and p1−ε(Gi) is bounded below by a

positive constant. However, this theorem does not provide any information in the case

p1−ε(Gi)→ 0.

Our main result in this paper is as follows.

Theorem 1.2. Let 0 < ε < 1/2. Then, for every γ > 0, there exist K(γ) and n0(γ) such

that the following holds. If G is a graph on n > n0(γ) vertices, with average degree d and

edge-connectivity k(G) > K(γ) d
ln n

+ 1, then

pε(G)

p1−ε(G)
> 1− γ.

The above theorem immediately implies the following corollary.

Corollary 1.3. Let (Gi)
∞
i=1 be a family of distinct graphs, where Gi has ni vertices, maximum

degree di, and it is ki-edge-connected. If

lim
i→∞

ki ln ni
di

= ∞,
then the family (Gi)

∞
i=1 has a sharp connectivity threshold.

We believe that this result is of interest for a number of reasons. First, it gives a fairly

general sufficient condition for a family of graphs to satisfy the sharp threshold property.

Second, it strengthens Margulis’s result in the case p1−ε(Gi) → 0. It also answers a

question posed in [7]. Next, our proof makes use of new and powerful results of Bourgain

and Friedgut [3], and it is very different from Margulis’s proof and the approaches in

percolation theory. Finally, the statement of our theorem is in some sense asymptotically

tight, as shown by the following proposition.

Proposition 1.4. For any constant a > 1, there is a constant 0 < ε(a) < 1/2 such that

the following holds. For all sufficiently large n, there exists a graph G on 2n vertices, with

maximal degree d = n and with edge-connectivity k(G) = a d
ln n

, for which

pε(G)

p1−ε(G)
6 1

2
.

The rest of the paper is organized as follows. In the next section we prove Theorem 1.2

and Proposition 1.4. In Section 3, we show how our main result can be extended to the

case of the random matroid process. Finally, the last section contains some concluding

remarks.
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2. Main result

In this section we prove our main result. We may, and shall, assume, whenever this

is needed, that the number of vertices in our graphs is sufficiently large. To prove

Theorem 1.2 it is enough to show that, for all ε 6 α 6 1− ε, the derivative of f(p) satisfies

pαf
′(pα) > 1/γ. Indeed, in this case

1 > f(p1−ε)− f(pε) = f′(pα)
(
p1−ε − pε) > 1

γpα

(
p1−ε − pε)

> 1

γp1−ε
(
p1−ε − pε) =

1

γ

(
1− pε

p1−ε

)
.

This implies that γ > 1− pε/p1−ε, which is the assertion of the theorem.

Let us recall some terminology. Consider a discrete cube {0, 1}m with the probability

measure defined by Prp(x) = p|x|(1 − p)m−|x| for all x ∈ {0, 1}m, where |x| = |{1 6
i 6 n : xi = 1}|. We say that a vector x = (x1, . . . , xm) ∈ {0, 1}m contains a vector

y = (y1, . . . , ym) ∈ {0, 1}m if xi > yi for all 1 6 i 6 m, and denote this by y ⊂ x. A subset

A ⊂ {0, 1}m is monotone if whenever x ∈ A and x ⊂ y, then also y ∈ A. Our proof relies

heavily on the following result of Bourgain [3], which provides a sharp-threshold criterion

for general monotone properties.

Theorem 2.1. Let A ⊂ {0, 1}m be a monotone property, α be a positive constant, and

p = o(1) satisfy Prp(A) = α. If there exists a constant c > 0 with the property p · dPrp(A)

dp
< c,

then there exists a δ = δ(c) such that, either

Prp(x ∈ {0, 1}m|x contains x′ ∈ A of size |x′| 6 10c) > δ,

or there exists an x′ 6∈ A of size |x′| 6 10c so that

Prp(x ∈ A|x′ ⊂ x) > α+ δ.

The idea of the proof is as follows. Assuming that a threshold for connectivity is not

sharp, we know, from Theorem 2.1, that there exists a fixed set of edges whose addition

to the random graph Gp changes the probability of connectivity by some constant. On

the other hand, the fact that a threshold is not sharp implies that the addition of a large

number of random edges to Gp has almost no effect on the connectivity. We show that

these two conclusions contradict each other. To do so, we first need to establish a lower

bound on the threshold probability for the graph connectivity property.

Lemma 2.2. Let G = (V , E) be a connected graph on n vertices, with average degree d,

and let 0 < p < 1 satisfy (1− p)d > 1/
√
n, i.e., pd 6 ln n/2. Then, for any fixed 0 < α < 1,

and sufficiently large n, the probability that a random subgraph Gp is connected is at most α.

Proof. Let V0 = {v ∈ V : d(v) 6 3
2
d}. Then |V0| > n/3, for otherwise

∑
v∈V\V0

d(v) >
|V \ V0|(3d/2) > (2n/3)(3d/2) = nd = 2|E(G)|, a contradiction.

For every vertex v ∈ V0 let Xv be an indicator random variable for the event that v is

an isolated vertex in Gp. Let X be the total number of such vertices in the random graph
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Gp. Clearly X =
∑

v∈V0
Xv , and Gp is connected only if X = 0. It is easy to see that the

expected value of X satisfies

E[X] =
∑
v∈V0

E[Xv] =
∑
v∈V0

(1− p)d(v) > |V0|(1− p) 3d
2 > n

3

(
1√
n

) 3
2

=
n

1
4

3
.

Next we need to obtain an upper bound on the variance of X.

Var[X] =
∑
v∈V0

Var[Xv] +
∑

v 6=u∈V0

Cov[Xv,Xu]

=
∑
v∈V0

Var[Xv] +
∑

v 6=u∈V0

(E[XvXu]− E[Xv]E[Xu]).

Since Xv is an indicator random variable we deduce that Var[Xv] 6 E[Xv]. Note also that,

if the vertices u and v are nonadjacent, then Xu,Xv are independent random variables,

and thus Cov[Xv,Xu] = 0. On the other hand, for adjacent vertices, we have

E[XvXu]− E[Xv]E[Xu] = (1− p)d(v)+d(u)−1 − (1− p)d(v)+d(u) = p(1− p)d(v)+d(u)−1.

Finally the inequality (1 − p)d > 1/
√
n implies that 1 + 3

2
pd < 2 ln n < αE[X]. Therefore

we conclude that

Var[X] =
∑
v∈V0

E[Xv] + 2
∑
v,u∈V0
(v,u)∈E

p(1− p)d(v)+d(u)−1

= E[X] + p
∑
v∈V0

∑
u∈V0

(u,v)∈E

(1− p)d(v)+d(u)−1

6 E[X] + p
∑
v∈V0

d(v)(1− p)d(v) 6 E[X] +
3

2
pd
∑
v∈V0

(1− p)d(v)

= E[X] +
3pd

2
E[X] =

(
1 +

3pd

2

)
E[X] < αE2[X].

Now, by Chebyshev’s inequality, the probability that Gp is connected has the upper bound

Pr(X = 0) 6 Pr(|X − E[X]| > E[X]) 6 Pr

(
|X − E[X]| >

√
Var[X]√
α

)
6 α.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let α be a real number satisfying ε 6 α 6 1 − ε, and let pα
be the probability such that Pr(Gpα is connected) = α. First we consider the case when

there exists an α with 0 < pα < 1 being a constant. Note that, since connectivity is a

monotone property, clearly f(p) = Pr(Gp is connected) is an increasing function of p. Thus

by Lemma 2.2, the threshold probability pα should satisfy (1− pα)d < 1/
√
n. Since pα is a

constant less than 1, the average degree d is at least Ω(ln n). In that case, by choosing an

appropriate constant K(γ), we can make the edge-connectivity k(G) = K(γ) d
ln n

arbitrarily

large. Therefore we can apply the above mentioned result of Margulis [6] (see also [9]) to

derive the assertion of the theorem.
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Next we treat the case when pα = o(1). Let us assume by contradiction that pαf
′(pα) <

1/γ. Since clearly no set of edges of a constant size can contain a connected spanning

subgraph of G, we obtain from Theorem 2.1 that there exists a constant δ(γ) > 0 and a

fixed set of edges e1, . . . , et, t 6 10/γ, satisfying

Pr(Gpα is connected | ei ∈ E(Gpα ), i = 1, . . . , t) > α+ δ. (2.1)

Let ε′ be a positive constant, to be specified later, and let p1 = pα + ε′(1− pα)pα. Then, by

the Taylor expansion of f, together with the fact that f′(pα) < 1/(γpα), we obtain

f(p1) = f(pα) + f′(pα)(p1 − pα) + o(p1 − pα)
6 α+

1

γpα
ε′
(
1− pα)pα + o(ε′)

= α+
ε′

γ

(
1− pα)+ o(ε′).

By choosing an appropriate value of ε′ we can ensure that the probability that Gp1
is

connected satisfies f(p1) < α+δ/2. Note also that, by the definition of p1, we can view the

edge set of the random graph Gp1
as a union of two independent copies of the random

graphs Gpα and Gε′pα . Let B denote the set of all subgraphs G′ ⊂ G with the property that

the graph G′ ∪ {e1, . . . , et} is connected. It is easy to see that, by inequality (2.1), we have

Pr(Gpα ∈ B) > α+ δ.

Next we show that, for any graph G′ ∈ B, the union G′ ∪ Gε′pα is connected with

probability close to one. Indeed, G′ becomes connected when adding the edges e1, . . . , et.

Therefore G′ has at most t + 1 connected components, and thus there exist at most 2t

possible edge cuts of G which separate the vertices of G′. Each such cut contains at

least k = k(G) edges. Recall that, by Lemma 2.2, we have pαd = Ω(ln n). Therefore the

probability that at least one of these cuts also separates the vertices of a random graph

Gε′pα is at most

2t(1− ε′pα)k 6 2te−ε′pαk = 2te−Ω
(
ε′ ln n
d

)
k = 2te−Ω(ε′K(γ)).

By choosing an appropriate constant K(γ), we can ensure that this probability is at most

δ/4. Finally we obtain a contradiction, since the probability f(p1) that the random graph

Gp1
= Gpα ∪ Gε′pα is connected is at least

Pr(Gpα ∈ B) Pr(Gpα ∪ Gε′pα is connected | Gpα ∈ B) >
(

1− δ

4

)
Pr(Gpα ∈ B)

=

(
1− δ

4

)(
α+ δ

)
> α+

δ

2
.

The last case is when 1 − pε = o(1). Hence both pε and p1−ε are equal to 1 − o(1), and

thus their ratio is equal to 1− o(1) > 1− γ. This completes the proof of the theorem.

A graph G is called vertex-transitive if, for every pair of vertices v1 and v2, there exists

an automorphism π : V (G)→ V (G) such that π(v1) = v2. By applying our main theorem

we can obtain the following result about the connectivity threshold for vertex-transitive

graphs.
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Corollary 2.3. Let G be a connected vertex-transitive graph and let Gp be obtained by

selecting edges of G randomly and independently with probability p. Then the property ‘Gp
is connected’ has a sharp threshold.

Proof. Clearly G is regular. Let d be its degree. Since G is a vertex-transitive graph, it is

also d-edge-connected (see, e.g., [5], Problem 12.14). Then the result follows immediately

from Theorem 1.2.

An important family of vertex-transitive graphs arises from finite groups. Given a finite

group H and a set of generators S = S−1 of H , the Cayley graph G(H, S) is a graph with

vertex set H , in which there is an edge between a and b if and only if ab−1 ∈ S . The

Cayley graph G(H, S) is easily seen to be connected, because S generates H . The above

corollary then implies that the connectivity property of a random subgraph of any Cayley

graph has a sharp threshold.

Next we show that the result of Theorem 1.2 is nearly tight.

Proof of Proposition 1.4. Set ε = e−4a. Let G be a graph which consists of two disjoint

copies of a complete graph Kn on n vertices, connected by a matching of size a n
ln n

. The

maximal degree of G is d = n, and its edge-connectivity is k(G) = a n
ln n

. Let Gp be obtained

by selecting edges of G randomly and independently with probability p. It is easy to see

that the probability that Gp is connected is at most 1− (1−p)a n
ln n , since we need to choose

at least one edge connecting two copies of Kn. One can easily check that 1− t > e−t−t2 for

sufficiently small t > 0. Therefore, for p = 3 ln n/n, the probability that Gp is connected is

at most

1− (1− p) a ln n
n 6 1− e(−p−p2) a ln n

n

= 1− e
(
− 3 ln n

n
− 9 ln2 n

n2

)
a ln n
n = 1− e−3a− 9a ln n

n = 1− ε 3
4 + 9 ln n

4n

< 1− ε
for sufficiently large n. This implies p1−ε > 3 ln n

n
.

On the other hand, if p = 3 ln n
2n

, it is well known (see, e.g., [2]) that the random subgraph

of Kn, where each edge is chosen independently and with probability p, is connected with

probability tending to one. Therefore, in this case, the probability that Gp is connected

equals

(1− o(1))
(
1− (1− p)a n

ln n

)
> (1− o(1))

(
1− e− pa ln n

n

)
= (1− o(1))

(
1− e− 3a

2

)
= (1− o(1))

(
1− ε 3

8

)
> ε

as ε 6 e−4. Hence pε 6 3 ln n
2n

, and pε
p1−ε 6

1
2
.

3. Random matroid process

In this section we sketch how our results can be extended to the case of random matroid

processes. Let us first introduce some terminology. We define a matroid M to be a finite
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set X and a collection F of subsets of X, called independent sets, satisfying the following

properties.

(1) ∅ ∈ F, and if A ∈ F and B ⊆ A then B ∈ F.

(2) If U,V are members of F, with |U| = |V | + 1 then there exist an u ∈ U − V such

that V ∪ u ∈ F.

(For the theory of matroids see, e.g., [10]). A base of a matroid M is an independent

set of maximal size, and a subset of X is called spanning if and only if it contains a base.

One of the main examples of matroids, which we have already discussed in the previous

section, is the cycle matroid of a graph M(G). Given a graph G, let X = E(G) and let

A ∈ F if and only if A is an edge set of an acyclic subgraph of G. This defines a matroid

M(G). Clearly, if G is connected, then the bases of M(G) are the spanning trees of G, and

the spanning sets of this matroid are all connected subgraphs of G. The rank function of

a matroid is a function r : 2X → Z, where r(A) is a size of maximal independent subset

of A. The rank of the matroid r(M) is just the rank of the set X. Finally, let η(M) be

the size of the smallest subset Y ⊂ X such that r(X − Y ) < r(M). This parameter is an

extension of the notion of the edge-connectivity number of a graph, since for the case of

the cycle matroid of a graph G it is equal to its edge-connectivity.

Given a matroid M = (X,F), let Xp be obtained by choosing elements of X randomly

and independently with probability p. Consider the property ‘Xp is spanning’. Clearly this

property is monotone, and we let pα denote the value of p such that Pr(Xpα is spanning) = α.

Note that, in the case when M is the cycle matroid of a connected graph, the property

of being spanning corresponds to the property that a random subgraph Gp is connected.

Therefore a natural extension of the result of the previous section is to determine when

the property ‘Xp is spanning’ has a sharp threshold. This is done in the following theorem,

whose proof we merely sketch, since it is rather similar to the proof of Theorem 1.2.

Theorem 3.1. Let M = (X,F) be a matroid and let Xp be obtained by choosing the

elements of X randomly and independently with probability p. If r(M) tends to infinity and

(1 − pα)
η(M) = o(1) for any constant α, then the property ‘Xp is spanning’ has a sharp

threshold.

Sketch of proof. First consider the case when 0 < pα < 1 is a constant. Then η(M)→∞,

and therefore we can apply the result of Margulis [6] to derive the sharpness of the

threshold.

Now, suppose that pα = o(1) and that the property does not have a sharp threshold.

This implies that, for p = pα, the value of the derivative of f(p) = Pr(Xp is spanning) is

bounded by c/pα for some constant c. Since the size of a base of M tends to infinity, we

obtain, by Theorem 2.1, that there exist a constant δ(c) > 0 and a fixed set of elements

Y ⊂ X, |Y | = y such that Pr(Xpα is spanning |Y ⊂ Xpα ) > α+ δ. On the other hand, the

fact that the derivative is bounded by c/pα implies that there exists a constant β > 0

with the property that, for p1 = (1 + β)pα, we have Pr(Xp1
is spanning) < α + δ/2. Let

S be the family of all subsets X ′ ⊂ X with the property that X ′ ∪ Y is spanning. Then

Pr(Xpα ∈ S) > α+ δ. In addition, we can view Xp1
as a union of Xpα with y independent
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copies of Xε′pα , for some appropriate constant ε′ which depends on β. Denote these copies

by X(1)
ε′pα , . . . , X

(y)
ε′pα .

Now we prove that for any non-spanning subset T ⊂ X, r(T ∪ Xε′pα ) > r(T ) with

probability 1 − o(1). First we show that there exist at least η(M) elements in X whose

addition to T will increase its rank. Indeed, let T0 ⊆ T be an independent set satisfying

r(T0) = r(T ), and let U be the set of all elements of M such that r(T0 ∪ {u}) > r(T0), for

every u ∈ U. Obviously U ∩ T = ∅, and, for every element of U, its addition to T will

increase its rank. As r(T0) < r(M), for every base Bi of M there is an element bi ∈ Bi \T0

such that r(T0 ∪ {bi}) > r(T0). Hence bi ∈ U. This shows that the set U meets every base

of M, and thus has cardinality at least η(M). The probability that Xε′pα misses all the

elements of U is at most (1 − ε′pα)η(M) = (1 − pα)Θ(ε′)η(M) = o(1). Also note that, when

Xpα ∪ Y is spanning, the rank of Xpα is at least r(M) − y. Finally we have obtained a

contradiction, since

Pr(Xp1
is spanning) > Pr(Xpα ∈ S) Pr

(
Xpα ∪

y⋃
i=1

X
(i)
ε′pα is spanning | Xpα ∈ S

)
> (1− o(1))(α+ δ) > α+ δ/2.

Remark. This theorem is less powerful than Theorem 1.2 since its application needs a

lower bound on the threshold probability pα. In the case of the cycle matroid of a graph,

this bound can be derived from Lemma 2.2.

4. Concluding remarks

We have provided a fairly general condition for the sharpness of the threshold connectivity

in random subgraphs of arbitrary graphs. This condition can be applied to many families

of graphs. Combined with known results of the value of the connectivity threshold,

our result can be used to estimate from above the width of the threshold interval for

connectivity. Putting it somewhat informally, we say that the width of the connectivity

threshold interval of a random subgraph Gp is the difference p0.99 − p0.01. Alon proved in

[1] that, if G is a k-connected graph of n vertices, and the edge probability p(n) satisfies

p(n) > c log n/k for a sufficiently large absolute constant c > 0, then a.s. the random

subgraph Gp is connected. It follows therefore, from Theorem 1.2, that the width of the

connectivity threshold interval is o(log n/k). In many instances this conclusion compares

favourably with that of a more general result of Talagrand [9], asserting that the width

of the connectivity threshold interval of a k-connected graph G is at most O(1/
√
k).

It is intuitively clear that Bourgain’s general threshold sharpness criterion can, and

should, be used to establish the sharpness of the threshold of other graph theoretic

functions in random subgraphs of arbitrary graphs. Potential applications include the

appearance of a cycle in Gp, of a perfect matching, of a Hamiltonian cycle, to mention

just a few. While those questions have been studied very extensively for classical random

graphs G(n, p) (see, e.g., [2] for a detailed account), nothing, or almost nothing, appears to

be known for the case when the ground graph G is different from the complete graph Kn.
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The task of obtaining such results for various graphs G seems quite appealing. Also, it

would be interesting to get further threshold sharpness results for the random matroid

process.
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