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Abstract

Erdős posed the problem of finding conditions on a graph G that imply t (G) = b(G), where t (G) is the
largest number of edges in a triangle-free subgraph and b(G) is the largest number of edges in a bipartite
subgraph. Let δc be the least number so that any graph G on n vertices with minimum degree δcn has t (G) =
b(G). Extending results of Bondy, Shen, Thomassé and Thomassen we show that 0.75 � δc < 0.791.
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1. Introduction

For which graphs do the largest bipartite subgraph and largest triangle-free subgraph have the
same number of edges? This question was raised by Erdős [4], who noted that there is equality
for the complete graph Kn (by Turán’s theorem). Babai, Simonovits and Spencer [2] showed that
equality holds almost surely for the random graph where edges are chosen with probability 1/2.
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A general condition implying equality was given by Bondy, Shen, Thomassé and Thomassen [3],
who showed that a minimum degree condition is sufficient.

For a graph G we write b(G) for the number of edges in its largest bipartite subgraph,
and t (G) for the number of edges in its largest triangle-free subgraph. Clearly t (G) � b(G).
Write δc for the least number so that, for n sufficiently large, any graph G on n vertices
with minimum degree δ(G) � (δc + o(1))n has t (G) = b(G). Bondy et al. [3] showed that
0.675 � δc � 0.85. We will strengthen this as follows.

Theorem 1.1. 0.75 � δc < 0.791.

Moreover, we believe that the lower bound is tight and propose the following conjecture.

Conjecture 1.2. In any graph on n vertices with minimum degree at least (3/4 + o(1))n the
largest triangle-free and largest bipartite subgraphs have equal size.

This paper is organised as follows. In the next section we will describe some properties of
triangle-free graphs under certain minimum degree conditions. Section 3 contains a proof of
a slightly weaker form of Theorem 1.1, in which we relax the upper bound to δc � 0.8. This
contains the main ideas of the proof, but the bound of 0.791 is more involved, so we defer it
to Section 4. In Section 5 we prove a technical lemma needed in Section 4. The final section
contains some concluding remarks.

Notation. We usually write G = (V ,E) for a graph G with vertex set V = V (G) and edge set
E = E(G), setting n = |V | and e = e(G) = |E(G)|. If X ⊂ V is a subset of the vertex set then
G[X] denotes the restriction of G to X, i.e. the graph on X whose edges are those edges of G

with both endpoints in X. We will also write eG(X) = e(G[X]). Similarly, we write eG(X,Y )

for the number of edges with one endpoint in X and the other in Y . We will usually omit the
subscript G unless there is possibility for confusion. The neighbourhood of a vertex v is N(v),
and adjacency of u and v is denoted by u ∼ v.

We will assume throughout the paper that n is sufficiently large. To improve readability we
will omit ‘floor’ and ‘ceiling’ signs, and all inequalities will be understood to hold up to an
additive error of o(1), i.e. a quantity that tends to zero as n tends to infinity.

2. Preliminaries

We start by describing the structure of triangle-free graphs with high minimal degrees. For
d � 1 we define a graph Fd as follows. The vertex set V (Fd) consists of the integers modulo
3d − 1, which we denote by Z3d−1. The vertex v ∈ Z3d−1 is adjacent to the vertices v + 1,

v + 4, v + 7, . . . , v − 1. Thus Fd is a d-regular graph on 3d − 1 vertices. For example, F1 = K2
consists of a single edge, and F2 = C5 is a 5-cycle. Figure 1 shows F3 and F4.

Given a graph H we say that a graph G has H -type if there is a homomorphism from G to H ,
i.e. a function f :V (G) → V (H) so that if uv is an edge of G then f (u)f (v) is an edge of H .
Equivalently, G is a subgraph of a blow-up of H , with parts {f −1(x): x ∈ V (H)}. For example,
G has F1-type if and only if it is bipartite. The following result was proved by Jin [5].

Theorem 2.1. Let 1 � d � 9 and suppose G is a triangle-free graph with minimum degree
δ(G) > d+1 n. Then G has Fd -type.
3d+2
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Fig. 1. Triangle-free graphs with high minimal degree.

Next we will need a lemma which describes the behaviour of these graphs under certain
minimum degree assumptions.

Lemma 2.2. Suppose G is a graph on m vertices with minimum degree δ(G) � γm. Suppose
also that G has Fd -type, with parts Vi , i ∈ Z3d−1, but not Fi -type for any i < d .

(i) If d = 2 then γ � 2/5, m−2e(G) � 5γ 2 − 4γ + 1 and m−2 ∑
i |Vi |2 � 30γ 2 − 24γ + 5.

(ii) If d = 3 then γ � 3/8 and m−2e(G) � 36γ 2 − 27γ + 21/4.

(iii) If d = 4 then γ � 4/11 and m−2e(G) � 297
4 γ 2 − 54γ + 10.

This is immediate from the following lemma, except in the case d = 2, when a little extra
work is needed to get the bound for e(G).

Lemma 2.3. Suppose d � 2 and the vertices of Fd are weighted by reals, so that vertex i

has weight xi , where 0 � xi � 1 and
∑

i xi = 1. Write c = ∑
i x

2
i , gi = ∑

j :j∼i xj and e =
1
2

∑
i xigi = ∑

i∼j xixj . Suppose gi � γ for each i ∈ Z3d−1. Then

γ � d

3d − 1
,

c � (3d − 1)(3γ − 1)2 + (
d − (3d − 1)γ

)(
(21 − 9d)γ + 3d − 6

)
,

e � 1

2
d(3d − 1)(3γ − 1)2 + 3

4

(
d − (3d − 1)γ

)
(3dγ + 3γ − d).

Proof. Note that every i ∈ Z3d−1 is adjacent to exactly one element of {0,1,2}, apart from 1,
which is adjacent to both 0 and 2. Therefore,

3γ � g0 + g1 + g2 = x1 +
∑

i

xi = x1 + 1,

so x1 � 3γ − 1. Also, we have

(3d − 4)γ � g3 + · · · + g3d−2 =
∑

i

gi − (g0 + g1 + g2) = d
∑

i

xi −
(

x1 +
∑

i

xi

)

= (d − 1) − x1,

so x1 � d − 1 − (3d − 4)γ . Combining these inequalities gives (3d − 1)γ � d . Set

yi = xi − (3γ − 1)
.

d − (3d − 1)γ
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Then 0 � yi � 1 and
∑

i

yi = (
d − (3d − 1)γ

)−1(1 − (3d − 1)(3γ − 1)
) = 3.

We can write

c =
∑

i

x2
i =

∑
i

(
3γ − 1 + (

d − (3d − 1)γ
)
yi

)2

=
∑

i

(3γ − 1)2 + 2(3γ − 1)
(
d − (3d − 1)γ

)∑
i

yi + (
d − (3d − 1)γ

)2 ∑
i

y2
i

= (3d − 1)(3γ − 1)2 + 6(3γ − 1)
(
d − (3d − 1)γ

) + (
d − (3d − 1)γ

)2 ∑
i

y2
i ,

so c is maximised when
∑

i y
2
i is maximised. Since 0 � yi � 1 we have

∑
i y

2
i �

∑
yi = 3.

Substituting gives

c � (3d − 1)(3γ − 1)2 + (
d − (3d − 1)γ

)(
(21 − 9d)γ + 3d − 6

)
.

Also, we can write

e =
∑
i∼j

(
3γ − 1 + (

d − (3d − 1)γ
)
yi

)(
3γ − 1 + (

d − (3d − 1)γ
)
yj

)

=
∑
i∼j

(3γ − 1)2 +
∑

i

yi

∑
j :j∼i

(3γ − 1)
(
d − (3d − 1)γ

) + (
d − (3d − 1)γ

)2 ∑
i∼j

yiyj

= 1

2
d(3d − 1)(3γ − 1)2 + 3d(3γ − 1)

(
d − (3d − 1)γ

) + (
d − (3d − 1)γ

)2 ∑
i∼j

yiyj .

It is well known, and easy to see by a variational argument, that the maximum of
∑

i∼j yiyj

subject only to the conditions
∑

i yi = 3, yi � 0 is achieved when the vertices with yi > 0 form a
clique in the graph. Since Fd is triangle-free this clique is just an edge, so

∑
i∼j yiyj � (3/2)2.

This bound is not best possible, as we have not used the other conditions that the yi must satisfy,
but it suffices for our purposes. Therefore,

e � 1

2
d(3d − 1)(3γ − 1)2 + 3d(3γ − 1)

(
d − (3d − 1)γ

) + 9

4

(
d − (3d − 1)γ

)2

= 1

2
d(3d − 1)(3γ − 1)2 + 3

4

(
d − (3d − 1)γ

)
(3dγ + 3γ − d).

Finally, we observe a little trick that improves the bound to that asserted by Lemma 2.2 when
d = 2, i.e. F2 = C5. Set zi = 1 − yi , so that 0 � zi � 1 and

∑
i zi = 5 − ∑

i yi = 2. Then
∑
i∼j

yiyj =
∑
i∼j

(1 − zi)(1 − zj ) = 5 − 2
∑

i

zi +
∑
i∼j

zizj = 1 +
∑
i∼j

zizj .

By the argument above
∑

i∼j zizj � 1
4 (

∑
i zi)

2 = 1, so
∑

i∼j yiyj � 2. Substituting this im-

proved bound above gives e � 5γ 2 − 4γ + 1. This completes the proof of the lemma. �
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Remark. With more careful analysis we can obtain the best possible bound for e in the above
lemma, by showing that

∑
i∼j yiyj � 2 for any d . The argument is rather more involved, so we

will just state the result:

e � 1

2
d(3d − 1)(3γ − 1)2 + (

d − (3d − 1)γ
)(

(3d + 2)γ − d
)
.

3. A slightly weaker bound

Recall that for a graph G, we write b(G) for the number of edges in its largest bipartite
subgraph and t (G) for the number of edges in its largest triangle-free subgraph. We write δc for
the least number so that any graph G on n vertices with minimum degree δ(G) � (δc + o(1))n

has t (G) = b(G). In this section we will show that 0.75 � δc � 0.8. This will serve to illustrate
the ideas involved in the proof, and we will postpone the more involved proof of δc < 0.791 to
the next section.

First we give the lower bound. We remind the reader of the Chernoff large deviations bound
(see, e.g., [1, Appendix A]). Suppose X1, . . . ,Xm are independent identically distributed random
variables with P(Xi = 1) = p and P(Xi = 0) = 1−p, where p is a constant not depending on m.
Then P(|∑Xi − mp| > a) < e−ca2/m, where c is a constant depending only on p.

Theorem 3.1. For any δ < 3/4 there is n and a graph G on n vertices with minimum degree
at least δn in which the largest triangle-free subgraph has more edges than the largest bipartite
subgraph. Therefore δc � 3/4.

Proof. The vertex set V = V (G) of our graph will be divided into parts Vi , i ∈ Z5, each of
size n/5. All pairs uv with u,v ∈ Vi or u ∈ Vi , v ∈ Vi+1 for some i are edges of G. Also, for
every i each pair uv with u ∈ Vi , v ∈ Vi+2 is chosen to be an edge randomly and independently
with probability θ , for some θ < 3/8 which we specify later.

Consider a vertex v ∈ Vi . It is joined to all 3n/5 − 1 vertices of (Vi − v) ∪ Vi+1 ∪ Vi−1. In
addition, |N(v) ∩ (Vi+2 ∪ Vi−2)| is a sum of 2

5n independent indicator random variables each
taking the value 1 with probability θ . By the Chernoff bound, the probability that this sum de-
viates from 2

5θn by more than n3/4 is less than e−Ω(
√

n). Therefore |d(v) − 1
5 (3 + 2θ)n| < n3/4

for every vertex v, with probability at least 1 − ne−Ω(
√

n) = 1 − o(1). Similarly, the probabil-
ity that the number of edges e(Ai,Ai+2) between some subsets Ai ⊂ Vi , Ai+2 ⊂ Vi+2 deviates
from θ |Ai ||Ai+2| by more than n5/3 is at most e−Ω(n4/3). Indeed, if |Ai ||Ai+2| < n5/3 this prob-
ability is zero, otherwise we can use the Chernoff bound again. Therefore, for every i and every
such choice of Ai,Ai+2 we have |e(Ai,Ai+2) − θ |Ai ||Ai+2|| < n5/3, with probability at least
1 − 22n · e−Ω(n4/3) = 1 − o(1).

By the above discussion there exists a choice of G such that all vertices satisfy d(v) =
1
5 (3 + 2θ)n + o(n) and e(Ai,Ai+2) = θ |Ai ||Ai+2| + o(n2) for any two subsets Ai ⊂ Vi ,
Ai+2 ⊂ Vi+2. We choose θ so that δ < 1

5 (3+2θ) < 3/4. Then G has minimum degree at least δn.
Now suppose that Ai , i ∈ Z5, define the largest cut in G, i.e. e(

⋃
Ai,V \ ⋃

Ai) = b(G). Write
|Ai | = xin and x = ∑

xi . Then 0 � xi � 1/5, and by replacing every Ai by its complement if
necessary we can assume x � 1/2. Now

n−2b(G) <
∑

i

xi(1/5 − xi) +
∑

i

xi(1/5 − xi+1) +
∑

i

xi(1/5 − xi−1)

+ θ
∑

xi(1/5 − xi+2) + θ
∑

xi(1/5 − xi−2) + o(1)
i i
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= 1

5
(3 + 2θ)x −

∑
i

x2
i − 2

∑
i

xixi+1 − 2θ
∑

i

xixi+2 + o(1)

= 1

5
(3 + 2θ)x − x2 + 2(1 − θ)

∑
i

xixi+2 + o(1),

using the identity x2 = ∑
i x

2
i + 2

∑
i xixi+1 + 2

∑
i xixi+2. It is not hard to show (see [3]) that

∑
i

xixi+2 �
{

x2/4, 0 � x � 2/5,
1
5 (x − 1/5), 2/5 � x � 1/2.

If 0 � x � 2/5 we have n−2b(G) < 1
5 (3 + 2θ)x − 1

2 (1 + θ)x2 + o(1). The maximum of the
quadratic is at x = 1

5 (2 + (1 + θ)−1) + o(1) > 6/11 + o(1), as θ < 3/8. This is not in the range
[0,2/5] for large n, so the maximum occurs at x = 2/5, giving n−2b(G) < 2

25 (2 + θ) + o(1) <

0.19 + o(1) < 1/5. If 2/5 � x � 1/2 then

n−2b(G) <
1

5
(3 + 2θ)x − x2 + 2

5
(1 − θ)(x − 1/5) + o(1)

= x − x2 − 2

25
(1 − θ) + o(1).

The maximum occurs at x = 1/2, so we see that n−2b(G) � 17
100 + 2

25θ +o(1) < 1/5, as θ < 3/8
is a constant. However, the graph spanned by the edges joining Vi to Vi+1 for each i is triangle
free and has n2/5 edges, so t (G) � n2/5 > b(G). This completes the proof. �

Before proving the upper bound we need two lemmas.

Lemma 3.2. Suppose Γ is a bipartite subgraph of a graph G and there are m edges incident to
the vertices in V (G) \ V (Γ ). Then G has a bipartite subgraph of size at least e(Γ ) + m/2.

Proof. Let (A0,B0) be the bipartition of Γ . Consider a bipartite subgraph G′ of G with parts
(A,B), where A0 ⊂ A, B0 ⊂ B and we place each vertex v ∈ V (G) \ V (Γ ) in A or B randomly
and independently with probability 1/2. All edges of Γ are edges of G′, and each edge incident
to a vertex in V (G) \ V (Γ ) appears in G′ with probability 1/2. By linearity of expectation
E[e(G′)] = e(Γ ) + m/2, so some bipartite subgraph of G has at least this many edges. �
Lemma 3.3. Let G be a graph with vertices partitioned as V (G) = ⋃

i∈Z5
Vi . Say that an edge

uv of G has type t if t ∈ {0,1,2} and u ∈ Vi , v ∈ Vi+t for some i. Write et for the number of
edges of type t , and e = e(G) = e0 + e1 + e2. Then

b(G) � 2

5
(e + e1) − 3

10
e0.

Proof. Choose i ∈ Z5 uniformly at random, and then randomly partition Vi as Ai ∪ Bi , by plac-
ing v ∈ Vi in Ai or Bi randomly and independently with probability 1/2. Consider the bipartite
subgraph G′ with parts (A,B) where A = Ai ∪Vi+1 ∪Vi−2 and B = Bi ∪Vi−1 ∪Vi+2. For each
edge of G we compute the probability that it appears in G′.

Consider an edge uv of type 0, with u,v ∈ Vj . This will appear in G′ if i = j and then u,v

are placed with one in Ai and the other in Bi , an event with probability 1/10. Next consider an
edge uv of type 1 with u ∈ Vj and v ∈ Vj+1. This appears in G′ if one of the following three
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mutually exclusive events occurs: (i) i ∈ {j − 1, j − 2, j + 2}, (ii) i = j , u ∈ Bi , (iii) i = j + 1,
v ∈ Ai . The total probability of these events is 4/5. Finally, consider an edge uv of type 2 with
u ∈ Vj and v ∈ Vj+2. This appears in G′ if one of the following three mutually exclusive events
occurs: (i) i = j + 1, (ii) i = j , u ∈ Ai , (iii) i = j + 2, v ∈ Bi . The total probability of these
events is 2/5.

Since e = e0 + e1 + e2, by linearity of expectation

E
[
e(G′)

] = 1

10
e0 + 4

5
e1 + 2

5
e2 = 2

5
(e + e1) − 3

10
e0.

Therefore there is a bipartite subgraph of G with at least this many edges. �
Theorem 3.4. Suppose G is a graph on n vertices with minimum degree 4

5n+1, where n is large.
Then the largest triangle-free and largest bipartite subgraphs of G have equal size. Therefore
δc � 4/5.

Proof. Let G be a graph on n vertices with minimum degree 4
5n + 1. Then e(G) � 2

5n2 + 1
2n.

We will suppose that b(G) < t(G) and derive a contradiction. Let H be a triangle-free subgraph
of G with e(H) = t (G) maximal, and write e(H) = tn2. Since t (G) > b(G) � e(G)/2 we have
t > 1/5 + 1/(4n).

Construct a sequence of graphs H = Hn,Hn−1, . . . , where if Hk has a vertex of degree less
than 11

30k we delete that vertex to obtain Hk−1. Let Γ be the final (possibly empty) graph of
this sequence and write |V (Γ )| = αn. Then Γ is a triangle-free graph with minimal degree
δ(Γ ) � 11

30 |V (Γ )|, and e(Γ ) � e(H)− 11
30

((
n+1

2

)−(
αn+1

2

)) = e(H)− 11
60 (1−α2)n2 − 11

60 (1−α)n,
i.e.

n−2e(Γ ) � t − 11

60

(
1 − α2) − 11

60
(1 − α)/n. (1)

As 11/30 > 4/11, by Theorem 2.1, Γ has Fd -type for some d � 3. Choose d so that Γ does not
have Fi -type for any i < d . If d = 3, then by Lemma 2.2(ii) (with γ = 11/30) we have

n−2e(Γ ) �
(
36(11/30)2 − 27(11/30) + 21/4

)
α2 = 19

100
α2.

Since α � 1, this implies t −O(1/n) � 19
100α2 + 11

60 (1−α2) = 11
60 + 1

150α2 � 1/5−1/100, which
is a contradiction.

Next consider the case when d = 1, i.e. Γ is bipartite. The number of edges of G incident to
vertices in V (G) \ V (Γ ) is

m =
∑

v∈V (G)\V (Γ )

d(v) − e
(
V (G) \ V (Γ )

)
> (1 − α)n · 4

5
n −

(
(1 − α)n

2

)

=
(

4

5
(1 − α) − 1

2
(1 − α)2

)
n2 + 1

2
(1 − α)n.

Applying Lemma 3.2 we have

t = n−2t (G) > n−2b(G) � n−2(e(Γ ) + m/2
)

> t − 11(
1 − α2) − 11

(1 − α)/n + 2
(1 − α) − 1

(1 − α)2 + 1
(1 − α)/n.
60 60 5 4 4
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This gives 0 > − 11
60 (1 −α2)+ 2

5 (1 −α)− 1
4 (1 −α)2, which simplifies to 1

30 (1 −α)(1 − 2α) > 0,
i.e. α < 1/2. However e(Γ ) � |V (Γ )|2/4 by Turán’s theorem. Hence by inequality (1)

t � 1

4
α2 + 11

60

(
1 − α2) + 11

60
(1 − α)/n � 11

60
+ 1

15
α2 + 11

60n
< 1/5 + 1/(4n),

which is a contradiction.
Therefore we conclude that d = 2, i.e. Γ has C5-type. By Lemma 2.2(i) we have n−2e(Γ ) �

(5(11/30)2 − 4(11/30) + 1)α2 = 37
180α2, so by inequality (1)

t � 11

60

(
1 − α2) + 37

180
α2 + O(1/n) = 11

60
+ 1

45
α2 + O(1/n). (2)

Write

p = 2n−2eG

(
V (G) \ V (Γ )

)
, q = 2n−2eG

(
V (Γ )

)
,

r = n−2eG

(
V (Γ ),V (G) \ V (Γ )

)
.

By the minimum degree condition on G we have

4

5
α � n−2

∑
v∈V (Γ )

d(v) = q + r,
4

5
(1 − α) � n−2

∑
v /∈V (Γ )

d(v) = p + r. (3)

Label the parts of Γ as Vi , i ∈ Z5, so that edges of Γ have type 1 in the terminology of
Lemma 3.3. By Lemma 3.3 we have

n−2b
(
G

[
V (Γ )

])
� 2

5
(q/2 + e1) − 3

10
e0,

where we have denoted the number of edges of G[V (Γ )] of type i by ein
2 (slightly modifying

the notation used in the lemma).
Now by Lemma 3.2

t > n−2b(G) � n−2b
(
G

[
V (Γ )

]) + 1

2
(p/2 + r) � 1

4
p + 1

5
q + 1

2
r + 2

5
e1 − 3

10
e0.

Also, we have e1 � n−2e(Γ ) � t − 11
60 (1 − α2) − O(1/n), so for large n we get

t � 1

4
p + 1

5
q + 1

2
r + 2

5

(
t − 11

60

(
1 − α2) − O(1/n)

)
− 3

10
e0,

t � 5

12
p + 1

3
q + 5

6
r − 11

90

(
1 − α2) − 1

2
e0 − O(1/n).

Next we substitute q � 4
5α − r and p � 4

5 (1 − α) − r from inequalities (3) to get

t � 1

3
− 1

15
α + 1

12
r − 11

90

(
1 − α2) − 1

2
e0 − O(1/n).

Also, Lemma 2.2(i) (with γ = 11/30) gives 1
2e0 � 1

4 (30(11/30)2 − 24(11/30) + 5)α2 = 7
120α2.

Since r � 0 we have

t � 1

3
− 1

15
α − 11

90

(
1 − α2) − 7

120
α2 − O(1/n) = 23

360
α2 − 1

15
α + 19

90
− O(1/n). (4)

Combining this with inequality (2) gives

11 + 1
α2 + O(1/n) � 23

α2 − 1
α + 19 − O(1/n),
60 45 360 15 90
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i.e. 1
24α2 − 1

15α + 1
36 � O(1/n). However, this quadratic is always at least 1/900. This contra-

diction completes the proof. �
4. Proof of the full result

In this section we will show how to extend the above argument to deal with the case δ > 0.791,
which will complete the proof of Theorem 1.1. A possible method is that instead of merely com-
bining inequalities (2) and (4) in the preceding argument, we could use the lower bound on t

given by inequality (4) to ‘bootstrap’ the argument—with each iteration we will improve the
lower bound on t and be able to delete vertices of slightly higher degree from H in forming Γ ,
until we arrive at a contradiction. Equivalently (and this is the approach we will take) we can
delete vertices from H according to some degree condition depending on the unknown parame-
ter t , and then conclude the argument by showing that inequalities (2) and (4) have no common
solution. The necessary computations are rather involved, so we will state them altogether in the
following lemma so as not to clutter the proof of the theorem.

Lemma 4.1. Let δ = 0.791 and suppose 1 � t � δ/4. Then there exists ε > 0 so that the following

hold with γ = 4t−(2δ−1)2

6−8δ+8t
− ε:

(i) 5/14 < γ < 2t , and
(ii) (1 − 2γ )(4t − 2γ ) > (1 + 2γ − 2δ)2.

Suppose also that t < ((9 − 10δ)2 + 4)/20. Then:

(iii) if γ � 3/8 then t > 36γ 2 − 27γ + 21/4;

(iv) if γ � 4/11 then t > 297
4 γ 2 − 54γ + 10;

(v) 2t−γ

10γ 2−9γ+2
> 1/4; and

(vi) the inequalities(
5γ 2 − 9

2
γ + 1

)
α2 + 1

2
γ � t � 5

12
(1 − α)2 + 1

3

(
α2 − (1 − δ)(2α − 1)

)

+ 5

6

(
δ(1 − α) − (1 − α)2)

− 1

3
γ
(
1 − α2) − 1

4

(
30γ 2 − 24γ + 5

)
α2

have no solution with 0 � α � 1.

We defer the proof of this lemma to Section 5, and first show how the theorem follows.

Theorem 4.2. Suppose G is a graph on n vertices with minimum degree 0.791n, where n is large.
Then the largest triangle-free and largest bipartite subgraphs of G have equal size. Therefore
δc < 0.791.

Proof. Let G be a graph on n vertices with minimum degree δn. Then e(G) � 1
2δn2. We will

suppose that b(G) < t(G) and show that we can derive a contradiction when δ = 0.791. This
will show that δc < 0.791.
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Let H be a triangle-free subgraph of G with e(H) = t (G) maximal, and write e(H) = tn2.

Since t (G) � b(G) � e(G)/2 we have t � δ/4. Set γ = 4t−(2δ−1)2

6−8δ+8t
− ε, where ε is chosen as in

the statement of Lemma 4.1. Construct a sequence of graphs H = Hn,Hn−1, . . . , where if Hk has
a vertex of degree less than γ k we delete that vertex to obtain Hk−1. Let Γ be the final (possibly
empty) graph of this sequence. Write |V (Γ )| = αn and e(Γ ) = β|V (Γ )|2. Then Γ is a triangle-
free graph with minimal degree δ(Γ ) � γ |V (Γ )| and e(Γ ) > e(H) − γ

((
n+1

2

) − (
αn+1

2

))
, i.e.

βα2 = n−2e(Γ ) > t − 1

2
γ
(
1 − α2) − O(1/n),

or equivalently (2β −γ )α2 > 2t −γ −O(1/n). By Lemma 4.1(i) 2t −γ > 0, so then 2β −γ > 0
for large n, and.

α2 >
2t − γ

2β − γ
. (5)

By Lemma 4.1(i) γ > 5/14, so by Theorem 2.1 Γ has Fd -type for some d � 4. Let d be such
that Γ has Fd -type but does not have Fi -type for any i < d .

Suppose first that d = 1, i.e. Γ is bipartite. In this case e(Γ ) � |V (Γ )|2/4 by Turán’s theorem,
i.e. β � 1/4. The number of edges of G incident to vertices in V (G) \ V (Γ ) is.

m =
∑

v∈V (G)\V (Γ )

d(v) − e
(
V (G) \ V (Γ )

)
� (1 − α)n · δn −

(
(1 − α)n

2

)
.

Applying Lemma 3.2 we have.

t = n−2t (G) � n−2b(G) � n−2(e(Γ ) + m/2
)

> t − 1

2
γ
(
1 − α2) + 1

2

(
δ(1 − α) − 1

2
(1 − α)2

)
.

Cancelling a factor 1−α gives γ (1+α)+ 1
2 (1−α) > δ, and since γ < 1/2 this can be rewritten

as.

α <
1 + 2γ − 2δ

1 − 2γ
.

Combining this with inequality (5) gives (2t −γ )(1−2γ )2 < (1+2γ −2δ)2(2β −γ ), and since
β � 1/4 we have (1 − 2γ )(4t − 2γ ) < (1 + 2γ − 2δ)2. This contradicts Lemma 4.1(ii), so this
case leads to a contradiction. Note that if t � 1

20 ((9 − 10δ)2 + 4) then we may choose γ = 2/5
to satisfy inequalities (i) and (ii) of Lemma 4.1, which immediately gives a contradiction, as by
Theorem 2.1 we know that Γ can only be bipartite. Therefore we can assume that.

t <
(9 − 10δ)2 + 4

20
. (6)

For the case d = 4 by Lemmas 2.2 and 4.1(iv) we have β � 297
4 γ 2 − 54γ + 1 < t , and then by

inequality (5) we get the contradiction α > 1. Likewise, in the case d = 3 we get β � 36γ 2 −
27γ + 21/4 < t , which again gives the contradiction α > 1. Therefore we conclude that d = 2,
i.e. Γ has C5-type.

By Lemma 2.2 we have β � 5γ 2 − 4γ + 1, so by inequality (5) α2 >
2t−γ
2β−γ

� 2t−γ

10γ 2−9γ+2
.

Now by Lemma 4.1(v) we have α2 > 1/4, i.e. α > 1/2. It will also be useful later to rewrite
inequality (5) as(

5γ 2 − 9
γ + 1

)
α2 + 1

γ > t. (7)

2 2
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Write

p = 2n−2eG

(
V (G) \ V (Γ )

)
, q = 2n−2eG

(
V (Γ )

)
,

r = n−2eG

(
V (Γ ),V (G) \ V (Γ )

)
.

Recalling that |V (Γ )| = αn we have inequalities

0 � p � (1 − α)2, 0 � q � α2, 0 � r � α(1 − α). (8)

Also, by the minimum degree condition on G we have

δα � n−2
∑

v∈V (Γ )

d(v) = q + r, δ(1 − α) � n−2
∑

v /∈V (Γ )

d(v) = p + r. (9)

Label the parts of Γ as Vi , i ∈ Z5, so that edges of Γ have type 1 in the terminology of
Lemma 3.3. By Lemma 3.3 we have

n−2b
(
G

[
V (Γ )

])
� 2

5
(q/2 + e1) − 3

10
e0,

where we have denoted the number of edges of G[V (Γ )] of type i by ein
2 (slightly modifying

the notation used in the lemma).
Now by Lemma 3.2

t � n−2b(G) � n−2b
(
G

[
V (Γ )

]) + 1

2
(p/2 + r) � 1

4
p + 1

5
q + 1

2
r + 2

5
e1 − 3

10
e0.

Also, we have e1 � n−2e(Γ ) > t − 1
2γ (1 − α2) − O(1/n), so taking n large we have

t � 1

4
p + 1

5
q + 1

2
r + 2

5

(
t − 1

2
γ
(
1 − α2)) − 3

10
e0,

t � 5

12
p + 1

3
q + 5

6
r − 1

3
γ
(
1 − α2) − 1

2
e0. (10)

To make further progress we want to see how small the right-hand side of this inequality can
be, subject to inequalities (8) and (9) that we know for p, q , r . This is a simple linear program,
which can be solved as follows.

We need to purchase units of p, q , r at prices 5/12, 1/3, 5/6 to satisfy inequalities (9) as
cheaply as possible. Since a unit of r is the most expensive, and contributes the same as p or
q to either inequality, we want to make r as small as possible, subject to being able to satisfy
inequalities (8). Therefore,

r = max
{
δα − α2, δ(1 − α) − (1 − α)2,0

}
, p = δ(1 − α) − r, q = δα − r.

Now δ(1 − α) − (1 − α)2 > 0, since δ > 1/2 > 1 − α, and δ(1 − α) − (1 − α)2 − (δα − α2) =
(1 − δ)(2α − 1) > 0, since α > 1/2, so we have

r = δ(1 − α) − (1 − α)2, p = (1 − α)2, q = α2 − (1 − δ)(2α − 1).

Also, Lemma 2.2(i) gives 1
2e0 � 1

4 (30γ 2 − 24γ + 5)α2, so substituting into inequality (10) we
have

t � 5

12
(1 − α)2 + 1

3

(
α2 − (1 − δ)(2α − 1)

) + 5

6

(
δ(1 − α) − (1 − α)2)

− 1
γ
(
1 − α2) − 1(

30γ 2 − 24γ + 5
)
α2. (11)
3 4
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Combining this with inequality (7) and applying Lemma 4.1(vi) we find that there is no solution
with 0 � α � 1. This contradiction completes the proof. �
5. Proof of Lemma 4.1

Before starting, we remark that the reader may find a computer algebra package helpful in
verifying some of the following computations. Let δ = 0.791, suppose 1 � t � δ/4, ε > 0 and

set γ = 4t−(2δ−1)2

6−8δ+8t
− ε. We will use the notation x = y ± z to mean y − z < x < y + z. We also

write s = 4t − 4δ + 3 and note that s � 3(1 − δ) > 0.
(i) We can compute dγ

dt
= 8(1 − δ)2s−2 so 0 <

dγ
dt

� 8/9. Therefore to show that 5/14 <

γ < 2t it suffices to check it for t = δ/4. Then we may compute γ = δ−(2δ−1)2

6(1−δ)
−ε = 0.36±0.001

for small ε. Since 5/14 = 0.357 ± 0.001 and 2t = 0.791/2 = 0.3955 we have 5/14 < γ < 2t .
(ii) We have

(1 − 2γ )(4t − 2γ ) − (1 + 2γ − 2δ)2 = 2sε > 0.

Now suppose also that t < t∗ = ((9−10δ)2 +4)/20. Then we have s = 4t −4δ+3 < 20(1−δ)2.
(iii) Suppose that γ � 3/8. Let g1(γ ) = 36γ 2 − 27γ + 21/4. Then we can compute

d2g1(γ (t))

dt2
= 576(1 − δ)2(24(1 − δ)2 − s

)
s−4 + O(ε).

Since s < 20(1 − δ)2 we have d2g1
dt2 > 0. Therefore t − g1(γ ) is a concave function of t so

to show that it is positive it suffices to check the extreme values t = δ/4 and t = t ′, where
t ′ = 0.215 ± 0.001 is the value of t at which γ = 3/8. We have

δ/4 − g1
(
γ (δ/4)

) = 1

4

(
105δ − 64δ2 − 43

) + O(ε) = 0.002 ± 0.001 + O(ε) > 0,

and

t ′ − g1(3/8) = 0.02 ± 0.01 + O(ε) > 0,

for small ε, as required.
(iv) Suppose that γ � 4/11. Let g2(γ ) = 297

4 γ 2 − 54γ + 10. Then we can compute

d2g2(γ (t))

dt2
= 1296(1 − δ)2(22(1 − δ)2 − s

)
s−4 + O(ε).

Since s < 20(1 − δ)2 we have d2g1
dt2 > 0. Again t − g2(γ ) is concave, so we need to show that it

is positive at the values t = δ/4 and t = t ′′, where t ′′ = 0.201 ± 0.001 is the value of t at which
γ = 4/11. We have

δ/4 − g2
(
γ (δ/4)

) = 1

16

(
844δ − 528δ2 − 337

) + O(ε) = 0.015 ± 0.001 + O(ε) > 0,

and

t ′′ − g2(4/11) = 0.02 ± 0.01 + O(ε) > 0.

(v) We need to show 2t−γ

10γ 2−9γ+2
> 1/4, i.e. 8t > g3(γ ) = 10γ 2 − 5γ + 2. We compute

dg3(γ (t))

dt
= 40(1 − δ)2(s − 8(1 − δ)2)s−3 + O(ε),

d2g3(γ (t))

2
= 320(1 − δ)2(12(1 − δ)2 − s

)
s−4 + O(ε).
dt
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Now 12(1 − δ)2 − s � 12(1 − δ)2 − 3(1 − δ) = 3(1 − δ)(3 − 4δ) < 0, so d2g3(γ (t))

dt2 < 0. We

deduce that dg3(γ (t))
dt

is minimised at t = t∗, where its value is 3
50(1−δ)2 + O(ε). Therefore, the

derivative of 8t −g3(γ ) is at least 8− 3
50(1−δ)2 +O(ε) > 0, so it is enough to verify the inequality

8t > g3(γ ) at t = δ/4. We have 8(δ/4) − g3(γ (δ/4)) = 4
9 (17δ − 10δ2 − 7) + O(ε) = 0.08 ±

0.01 + O(ε) > 0, as required.
(vi) We write the given inequalities as f1(α) � 0 and f2(α) � 0, where fi(α) = c2,iα

2 +
c1,iα + c0,i for i = 1,2, with c2,1 = 5γ 2 − 9

2γ + 1, c1,1 = 0, c0,1 = γ /2 − t and c2,2 =
15
2 γ 2 − 19

3 γ + 4
3 , c1,2 = − 1

6 (1 − δ), c0,2 = 1
3γ − 1

2δ + 1
12 + t . Write Δi = c2

1,i − 4c2,ic0,i for the
corresponding discriminants. We compute

c2,1 = (1 − δ)2(20(1 − δ)2 − s
)
s−2 + O(ε) > 0, and

c2,2 = 1

24

(
20(1 − δ)2 − s

)(
36(1 − δ)2 − s

)
s−2 + O(ε) > 0.

The roots of f1 are ±r1, where

r1 = 1

2
s1/2(1 − δ)−1(20(1 − δ)2 − s

)−1/2
(4t + 1 − 2δ) > 0,

since 4t + 1 − 2δ � 1 − δ > 0. Since c2,1 > 0 and α � 0 we must have α > r1.
We find

dr1

ds
= 1

2
(1 − δ)−1(20(1 − δ)2 + s

(
30(1 − δ)2 − s

))
s−1/2(20(1 − δ)2 − s

)−3/2
> 0.

Numerical computation shows that r1 = 1 for some t in the range 0.2054±0.0001. If t � 0.2055
we would have the contradiction α > r1 > 1, so we must have t < 0.2055.

Also

Δ2 = (−85 ± 1)(8t − 0.32 ± 0.01)(t ± 0.1)(t − 0.2058 ± 0.0001)

× (t − 0.23 ± 0.01)(t − 0.4 ± 0.1).

Since 0.197 ± 0.001 = δ/4 � t < 0.2055 we see that Δ2 is positive so f2 has real roots. Denote
these roots by r2,1 and r2,2, with r2,1 < r2,2. Numerical computations show that r2,2 > 1 for
t < 0.2056, so we must have α < r2,1. Now we have r1 < α < r2,1. But computations show that
r1 > r2,1 for t < 0.2055, so we have a contradiction. This shows that the inequalities f1(α) � 0
and f2(α) � 0 have no common solution 0 � α � 1, so we are done.

6. Concluding remarks

Our proofs actually show that in a graph on n vertices with minimum degree at least 0.791n

the largest triangle-free graph must be bipartite. There is some slight room for improvement in
our bound using the same methods (say to give δc < 0.7909), but a significant improvement
seems to require a new idea. We believe that the lower bound in Theorem 1.1 gives the correct
value, i.e. δc = 3/4. There are two obstacles to pushing our approach towards this. The first is
our analysis of the C5-type case, which is certainly not optimal. The second is the classification
of triangle-free graphs with given minimum degree, as Theorem 2.1 does not help for δ < 10/29.
One can check that when δ = 3/4+ε we need to choose γ = 1/3+O(ε) (with the same notation
as in the proof) to deal with the bipartite case. For such γ Thomassen [6] showed that triangle-
free graphs with minimum degree γ n have chromatic number bounded by a function of ε, but
probably more precise information on the structure would be needed to make this approach work.
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