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a b s t r a c t

The Ramsey number r(H) of a graph H is the minimum integer
n such that any two-coloring of the edges of the complete graph
Kn contains a monochromatic copy of H . While this definition
only asks for a single monochromatic copy of H , it is often
the case that every two-edge-coloring of the complete graph on
r(H) vertices contains many monochromatic copies of H . The
minimum number of such copies over all two-colorings of Kr(H)
will be referred to as the threshold Ramsey multiplicity of H .
Addressing a problem of Harary and Prins, who were the first
to systematically study this quantity, we show that there is a
positive constant c such that the threshold Ramsey multiplicity
of a path or an even cycle on k vertices is at least (ck)k. This
bound is tight up to the constant c . We prove a similar result for
odd cycles in a companion paper.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The Ramsey number r(H) of a graph H is the minimum positive integer n such that any two-
oloring of the edges of the complete graph Kn on n vertices contains a monochromatic copy of H .
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Determining Ramsey numbers is a challenging task and the exact value of r(H) is known in only a
ew special cases. For example, determining the Ramsey number of K5, the complete graph on five
ertices, is a well-known open problem.
The few non-trivial families for which the Ramsey number is known exactly include paths and

ycles. To say more, we let Pk denote the path on k vertices and Ck the cycle on k vertices. The
ength of a path or cycle denotes its number of edges, so Pk has length k − 1 and Ck has length k.
n 1967, Gerencsér and Gyárfás [15] determined the Ramsey number of paths, showing that

r(Pk) = k − 1 + ⌊k/2⌋.

t is simple to show that r(C3) = r(C4) = 6, while, for k ≥ 5, Faudree and Schelp [13] and,
ndependently, Rosta [30] proved that

r(Ck) = k + k/2 − 1 if k is even and r(Ck) = 2k − 1 if k is odd.

A more general problem is to determine the Ramsey multiplicity M(H, n), defined to be the
inimum number of monochromatic copies of H that appear in any two-edge-coloring of Kn. In
articular, M(H, n) = 0 if and only if n < r(H), so the problem of determining M(H, n) does indeed
eneralize the problem of determining r(H).
In 1962, Erdős [11] conjectured that if H is a clique, then M(H, n) is asymptotically equal to the

xpected number of monochromatic copies of H in a uniformly random two-coloring of the edges of
n and Burr and Rosta [1] later generalized this conjecture to all graphs H . While true for K3, a result
f Goodman [16] that predates the conjecture and doubtless inspired it, Thomason [36] showed that
t is already false for K4. Despite the failure of this attractive conjecture, the asymptotic behavior of
(H, n) for fixed H and n tending to infinity has drawn considerable attention (see [2,14,17,22,23]

or some examples or [4] for a survey). In particular, it is known that any bipartite graph which
atisfies the well-known conjecture of Erdős–Simonovits [34] and Sidorenko [32,33] also satisfies
he Burr–Rosta conjecture, so the considerable recent progress [3,7–9,21,25,28,35] on Sidorenko’s
onjecture, as it is usually known, may also be interpreted as progress on our understanding of
amsey multiplicity.
Besides the case where H is fixed and n tends to infinity, another much-studied problem asks

or the value of M(H, n) when it first becomes positive, that is, when n = r(H). To distinguish it
rom the more general Ramsey multiplicity function M(H, n), we call this value the threshold Ramsey
ultiplicity.

efinition 1 (Threshold Ramsey Multiplicity). The threshold Ramsey multiplicity m(H) of a graph H is
he minimum number of monochromatic copies of H in any two-coloring of the edges of Kn with
= r(H). In other words,

m(H) = M(H, r(H)).

The threshold Ramsey multiplicity was first studied systematically by Harary and Prins [20]
lmost fifty years ago. Their work and subsequent work by Schwenk [19] and by Piwakowski and
adziszowski [29] determine the threshold Ramsey multiplicity for all graphs with at most four
ertices. However, in general, the problem of determining or even giving a non-trivial lower bound
n the threshold Ramsey multiplicity appears extremely difficult. This is in part because it seems
ecessary to first determine the Ramsey number, a problem which is already hard, before one can
ay anything substantive about the threshold Ramsey multiplicity.
The only family for which m(H) is known is for stars, where Harary and Prins [20] proved that

(K2) = 1 and m(K1,k) = 1 for k even, but m(K1,k) = 2k for k ≥ 3 odd, surprisingly erratic behavior
or such a simple family. In the same paper, Harary and Prins asked for a determination of the
hreshold Ramsey multiplicity for paths and cycles, probably the next simplest families after stars.
he main result of this paper is an approximate answer to their question for paths and even cycles.
he case of odd cycles will be discussed in the companion paper [5].
To the best of our knowledge, the only previous work concerning these questions is due to Rosta

nd her collaborators, who looked at the case of odd cycles. In her first paper on the subject, with
urányi [31], she obtained the exponential lower bound m(C ) ≥ 2ck. This was later improved to
k
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a superexponential lower bound in an unpublished work. More recently, Károlyi and Rosta [24]
improved the lower bound to m(Ck) ≥ kck, which we will see below is sharp up to the constant in
he exponent. However, their method has little to say about paths and even cycles, the main objects
f interest in this paper, in large part because the Ramsey numbers of these graphs are significantly
maller than the Ramsey number of odd cycles of comparable size.
Our main result, proved in this paper and its companion [5], is the following.

heorem 2. There is a positive constant c such that, for every positive integer k, the threshold Ramsey
ultiplicity of paths and cycles on k vertices satisfy m(Pk) ≥ (ck)k and m(Ck) ≥ (ck)k.

We prove Theorem 2 for paths and even cycles in this paper, while the case of odd cycles is
andled in the companion paper [5].
The bound in Theorem 2 is easily seen to be tight up to the constant c , since the total number

f paths or cycles on k vertices in the complete graph with r(Pk) or r(Ck) vertices is at most (c ′k)k
or some constant c ′. However, we may also pinpoint some edge-colorings which we believe to be
ptimal for m(Pk) and m(Ck). Consider the edge-coloring χ (a, b) of the complete graph on n = a+b
ertices with vertex set A ∪ B, |A| = a and |B| = b, where A and B form blue cliques and all edges
etween A and B are red. Let a0 = k−1 and b0 = ⌊k/2⌋−1. The coloring χ (a0, b0) does not contain
monochromatic Pk and gives the tight lower bound for the Ramsey number of the path Pk. If k is
ven, the colorings χ (a0 + 1, b0) and χ (a0, b0 + 1) of the complete graph on a0 + b0 + 1 = r(Pk)
ertices each have exactly k!/2 monochromatic Pk. If k is odd, the coloring χ (a0, b0 + 1) of the

complete graph on a0 +b0 +1 = r(Pk) vertices has exactly (k−1)
4 (k−1)! monochromatic Pk. Not only

o these colorings show that Theorem 2 is tight up to the constant c for paths, but we conjecture
hat they realize the threshold Ramsey multiplicity for k sufficiently large.

onjecture 3. For sufficiently large k, if k is even, then m(Pk) = k!/2 and if k is odd, then m(Pk) =
(k−1)

4 (k − 1)!.

As Pk is a subgraph of Ck, the edge-coloring χ (a0, b0) with a0 = k − 1 and b0 = ⌊k/2⌋ − 1
escribed above also does not contain a monochromatic Ck. For k ≥ 6 even, this coloring realizes
he tight lower bound on r(Ck). The coloring formed from χ (a0 +1, b0) by changing the color of one
dge in the monochromatic blue clique of order a0 + 1 = k to red does not have a monochromatic
ed Ck and thus has (k − 1)!/2 − (k − 2)! =

(k−3)
2 (k − 2)! monochromatic Ck. We conjecture that for

k sufficiently large this is the threshold Ramsey multiplicity for the even cycle Ck.
If k is odd, then the coloring χ (k−1, k−1) has no monochromatic Ck and realizes the tight lower

bound on the Ramsey number r(Ck). In this case, the edge-coloring χ (k, k−1) has all monochromatic
Ck in the blue clique of order k and thus has (k − 1)!/2 monochromatic Ck. We conjecture that for
k sufficiently large this is the threshold Ramsey multiplicity for the odd cycle Ck.

Conjecture 4. For sufficiently large k, if k is even, then m(Ck) =
(k−3)

2 (k − 2)! and if k is odd, then
m(Ck) = (k − 1)!/2.

The rest of the paper is dedicated to the proof of Theorem 2 in the case of paths and even cycles.
Because we focus entirely on this case, we will often use the phrase Theorem 2 as a shorthand to
mean Theorem 2 for paths and even cycles. We note that we have made no attempt to optimize
the value of the constant c in Theorem 2. Throughout the proof, we have also chosen to omit floor
and ceiling signs whenever they are not essential.

2. Proof of Theorem 2 for paths and even cycles

Szemerédi’s regularity lemma (see Lemma 7) will be an important tool in our proof. Given any
graph, the regularity lemma shows that there is a vertex partition of the graph into a small number
of parts of almost equal size, where the bipartite graph between almost every pair of parts is
random-like. This property is useful for many purposes, particularly for embedding and counting
sparse subgraphs. For an excellent (though now somewhat outdated) survey, we refer the interested
reader to [27].
3
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To state the regularity lemma, we need some definitions making precise what is meant by saying

hat the graph between two vertex sets is ‘‘random-like’’. For a pair of vertex subsets (X, Y ) of a
graph, let e(X, Y ) denote the number of pairs in X × Y that are edges and d(X, Y ) = e(X, Y )/|X ||Y |

denote the density of edges between X and Y .

Definition 5 (ϵ-Regular Pair). A pair of vertex subsets (X, Y ) of a graph is ϵ-regular if, for all subsets
U ⊂ X, V ⊂ Y such that |U | ≥ ϵ|X | and |V | ≥ ϵ|Y |, |d(U, V ) − d(X, Y )| ≤ ϵ.

The following lemma collects some basic facts which follow easily from this definition.

Lemma 6. If (X, Y ) is an ϵ-regular pair in a graph G and d = d(X, Y ), then the following hold:

(i) If Y ′
⊂ Y satisfies |Y ′

| ≥ ϵ|Y |, then the number of vertices in X with degree in Y ′ greater than
(d+ϵ)|Y ′

| is less than ϵ|X | and the number of vertices in X with degree in Y ′ less than (d−ϵ)|Y ′
|

is less than ϵ|X |.
(ii) If X ′

⊂ X and Y ′
⊂ Y are such that |X ′

| ≥ α|X | and |Y ′
| ≥ α|Y |, then (X ′, Y ′) is

max(ϵ/α, 2ϵ)-regular.
(iii) Provided X and Y are disjoint, the pair (X, Y ) is also ϵ-regular in the complement of G.

A partition of a set is said to be equitable if each pair of parts differ in size by at most one.
With this definition, we can now state the regularity lemma in a standard colored form, whose
equivalence to the usual form follows easily from Lemma 6(iii).

Lemma 7 (Szemerédi’s Regularity Lemma). For every ϵ > 0 and positive integer m0, there exist positive
integers M0 and n0 such that every two-edge-coloring of the complete graph Kn with n ≥ n0 in colors
red and blue admits an equitable vertex partition V1 ∪ · · ·∪VM into M parts with m0 ≤ M ≤ M0 where
all but at most ϵ

(M
2

)
pairs (Vi, Vj) of parts with 1 ≤ i < j ≤ M are ϵ-regular in both the red and blue

subgraphs.

We remark that there is a strengthening of the regularity lemma, proved in [6], where each part
is ϵ-regular with all but an ϵ-fraction of the other parts and each part is also ϵ-regular with itself.
Working with this variant rather than Lemma 7 would allow us to simplify our proof very slightly.
However, since this variant is, as yet, non-standard, we have opted to work with the usual version
instead.

Once we have the partition guaranteed by the regularity lemma, it is often convenient to consider
a simplified rendering of the graph called the reduced graph of the partition. By saying that a graph
is red/blue-multicolored, we will mean that each edge is colored either blue, red, or both blue and
red.

Definition 8. Given a red/blue-edge-colored graph G, a partition V1 ∪ · · · ∪ VM of its vertex set and
parameters 0 < ϵ, d < 1, the reduced graph H = H(ϵ, d) of the partition with parameters ϵ and d is
the red/blue-multicolored graph with vertex set [M] and a red (respectively, blue) edge between i
and j if and only if (Vi, Vj) is ϵ-regular with density at least d in the red (respectively, blue) graph.

With this preliminary, we may now give a broad outline of the proof of Theorem 2.

2.1. Proof outline

We first prove that in any red/blue edge-coloring of the complete graph Kn, there is a color and
an almost spanning subset W of the vertices such that, for any two vertices of W , there are many
short paths between them in the specified color. We then apply Szemerédi’s regularity lemma to
the subgraph of Kn induced by W , obtaining a reduced graph. If, in this reduced graph, we can find
a large monochromatic matching, then we can build as many of the required paths and even cycles
as we need. This case will be discussed in detail in Section 2.3.1.

If, instead, there is no sufficiently large monochromatic matching in the reduced graph, then a

key stability result (Lemma 11 below) shows that the original two-colored graph G induced by the

4
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vertex set W is close to a certain shape (described in Definition 10). In this case, we can directly
bound the number of paths and even cycles to complete the proof. The details of this case may be
found in Section 2.3.2.

A variant of our stability lemma already appeared in the work of Gyárfás, Sárközy, and Sze-
erédi [18]. However, the version we need is somewhat stronger, so we include a complete proof

n Section 3. One point worth noting is that we make an appeal to the regularity lemma in our
tatement and proof, whereas the stability lemma in [18] is proved without it. We now describe
ur version in more detail.

.2. The stability lemma

The next two definitions already appear in the work of Gyárfás, Sárközy, and Szemerédi [18],
hough the first is stated in slightly more generality than in [18].

efinition 9 (Well-Connected). A vertex subset W of a graph G is (t, l)-well-connected if any two
ertices u, v ∈ W are connected by at least t internally vertex-disjoint paths of length at most l.

Note that any vertex in V (G) \ {u, v} is allowed as an internal vertex for these paths.

We will often refer to a vertex set as being well-connected in a particular color, meaning that
he vertex set is well-connected with respect to the graph consisting of edges in that color. For
he second definition, given a graph G and disjoint vertex subsets A and B, we let G[A] denote
he induced subgraph of G with vertex set A and G[A, B] the bipartite graph with parts A and B
hose edges are the edges of G between A and B. Note that the density within a set X is given by
(X, X) = e(X, X)/|X |

2
= 2e(X)/|X |

2.

efinition 10 (Extremal Coloring with Parameter α). A two-coloring of the edges of a graph G is an
xtremal coloring with parameter α if there exists a partition V (G) = A ∪ B such that

• |A| ≥ (2/3 − α)|V (G)| and |B| ≥ (1/3 − α)|V (G)| and
• the graph G[A] has density at least (1 − α) in some color and the bipartite graph G[A, B] has

density at least (1 − α) in the other color.

Our key stability lemma is now as follows. Roughly speaking, it says that every two-coloring
f the edges of Kn is either close to an extremal coloring or the reduced graph contains a
onochromatic matching covering more than 2/3 of the vertices such that the underlying vertex
et is well-connected in the same color.

emma 11. For any 0 < ϵ ≤ 10−10 and d, λ ≥ 1000ϵ, there is a positive integer M0 = M0(ϵ) such
hat if n is sufficiently large in terms of ϵ, then any two-coloring of the edges of the complete graph Kn
alls into at least one of the following two cases:

• Case 1: There is a positive integer M ≤ M0 and disjoint vertex subsets U1, . . . ,Um, V1, . . . , Vm
with m ≥ (2/3 + λ)M/2 such that each |Ui|, |Vi| ≥ cn with c ≥ (1 − ϵ)/M, all pairs (Ui, Vi)
are simultaneously ϵ-regular in some color with the edge density in that color at least d − ϵ, and⋃m

i=1 Ui ∪
⋃m

i=1 Vi is (200M, 6)-well-connected in the same color.

• Case 2: The coloring is an extremal coloring with parameter 1000(d + λ +
√

ϵ).

Observe that if α ≥ 2/3, any two-coloring of the edges of a complete graph is trivially an
xtremal coloring with parameter α, since we may take A to be the empty set. It follows that we
ay assume d, λ ≤ 1/1000 in Lemma 11.

.3. Proof of Theorem 2 assuming Lemma 11

We now prove Theorem 2 by applying Lemma 11 with d = 20
√

ϵ and λ = 13
√

ϵ.
5
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2.3.1. Proof of Theorem 2 in the situation of case 1 of Lemma 11
We first prove Theorem 2 for paths for edge-colorings satisfying Case 1 of Lemma 11 with the

ollowing approach. Roughly speaking, in the graph of the color given in this case, between any
egular pair (Ui, Vi) with density d(Ui, Vi) = d, there should be many paths of length close to 2cn.
ince the bipartite graph between Ui and Vi is random-like, the count of paths of length l is roughly
t least dl

∏l
i=0(cn − ⌊i/2⌋). Since the union of the Ui and Vi is well-connected, any two vertices in

this union are connected by many internally vertex-disjoint short paths. We can then find many
long paths Pk by using the short paths guaranteed by the well-connectedness property to connect
the end vertices of the paths from different pairs (Ui, Vi). In this section, we will make this idea
igorous.

The following two lemmas show that for a regular pair (U, V ) in a graph G the number of long
paths starting from any vertex of large degree or between any pair of vertices of large degree in
the bipartite graph G[U, V ] is roughly at least the expected count if G[U, V ] were a random graph
of the same density.

Lemma 12. Suppose (U, V ) is an ϵ-regular pair of disjoint vertex subsets of a graph G such that
|U |, |V | ≥ n and d(U, V ) = d. If n ≥ ϵ−2 and d > ϵ +

√
ϵ, then, for any vertex v ∈ V with

at least (d − ϵ)|U | neighbors in U and any positive integer l ≤ 2(1 −
√

ϵ)n − 1, there are at least
d − ϵ −

√
ϵ)l

∏l
i=1(n − ⌊i/2⌋) paths of length l in G[U, V ] starting from v.

Proof. Let Nj be the number of paths P of length j in G(U, V ) of the form v0 = v, v1, . . . , vj starting
from v for which there are at least (d − ϵ)(|U | − ⌊(j + 1)/2⌋) ways to extend the path if j is even
and at least (d− ϵ)(|V |− ⌊(j+ 1)/2⌋) ways to extend the path if j is odd. By extending the path, we
mean finding a vertex vj+1 that is adjacent to vj but distinct from the vertices in P . We will prove
by induction on j that for j ≤ 2(1 −

√
ϵ)n − 2, we have Nj ≥ (d − ϵ −

√
ϵ)j

∏j
i=1(n − ⌊i/2⌋), which

asily implies the lemma.
Clearly N0 = 1, since a path with zero edges starting from v is just v itself and it is extendable

n sufficiently many ways by the degree condition on v. This is the base case of the induction.
Suppose now that we have the claimed lower bound on Nj for some j ≤ 2(1 −

√
ϵ)n − 3 and

e wish to prove the lower bound on Nj+1. Suppose j is even (the case where j is odd can be
andled in exactly the same way). Let P : v0 = v, . . . , vj be a path in G(U, V ) of length j which

can be extended in at least (d − ϵ)(|U | − ⌊(j + 1)/2⌋) ways. Then vj ∈ V and there are at least
(d− ϵ)(|U |− ⌊(j+1)/2⌋) neighbors of vj in U which are not in P . We let U ′ be this set of neighbors.
As the pair (U, V ) is ϵ-regular and |V \ {v0, v1, . . . , vj}| = |V | − ⌊(j + 2)/2⌋ ≥ ϵ|V |, Lemma 6(i)
implies that there are fewer than ϵ|U | vertices in U whose degree in V \ {v0, v1, . . . , vj} is less than
(d−ϵ)|V \{v0, v1, . . . , vj}|= (d − ϵ)|(|V |−⌊(j+2)/2⌋). Therefore, the number of vertices in U ′ which
can be used as vj+1 and added to P so that this longer path is extendable in sufficiently many ways
is at least

|U ′
| − ϵ|U | ≥ (d − ϵ)(|U | − ⌊(j + 1)/2⌋) − ϵ|U |

≥ (d − ϵ)(n − ⌊(j + 1)/2⌋) − ϵn ≥ (d − ϵ −
√

ϵ)(n − ⌊(j + 1)/2⌋),

here the final inequality follows from the upper bound on j assumed in the lemma. Hence,
j+1 ≥ Nj(d − ϵ −

√
ϵ)(n − ⌊(j + 1)/2⌋). By the lower bound on Nj, we obtain the desired lower

bound on Nj+1, completing the induction. □

Lemma 13. Suppose (U, V ) is an ϵ-regular pair of disjoint vertex subsets of a graph G such that
|U |, |V | ≥ n with n ≥ 5ϵ−2 and d(U, V ) = d with d > 5

√
ϵ. Let u, v ∈ U ∪V be distinct vertices which

re each adjacent to at least a (d − ϵ) fraction of the vertices in the other part. Suppose l is an integer
ith 3 ≤ l ≤ 2(1 − 2

√
ϵ)n, where l is even if u and v are in the same part and l is odd if u and v are

n different parts. Then the number of paths of length l in G[U, V ] with end vertices u and v is at least
d − 7

√
ϵ)l−1(ϵn)

∏l−2
i=1(n − ⌊i/2⌋).

roof. We will focus on the case where u ∈ U and v ∈ V . The case where u and v are in the same
art can be handled similarly.
6
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As |N(u)| ≥ (d − ϵ)|V | ≥ ϵ|V | + 1, we can set aside ϵ|V | neighbors of u (not including v) and
remove them from V , calling this set of ϵ|V | neighbors V0. We will only use these vertices in the
last step to connect with u. As 1 ≥ d > 5

√
ϵ, we have ϵ < 1/25. By Lemma 6(ii) with α = 1 − ϵ,

and noting that max(ϵ/(1 − ϵ), 2ϵ) = 2ϵ, the pair (V \ V0,U \ {u}) is 2ϵ-regular.
Let l be an odd positive integer. Our aim is to give a lower bound on the number of paths of

length l with end vertices u and v. Suppose that we fix a path of length l − 3 starting from v, say
P : w0 = v, w1, . . . , wl−3, such that the vertices are in (V \ V0) ∪ (U \ {u}) and there are at least
(d − 2ϵ)(|U | − 1 − ⌊(l − 2)/2⌋) ways to extend the path to a vertex wl−2 ∈ U . Let WP be this set of
candidate vertices for wl−2. Then

|WP | ≥ (d − 2ϵ)(|U | − 1 − ⌊(l − 2)/2⌋) ≥ (d − 2ϵ)(|U | − 1 − (2(1 − 2
√

ϵ)n − 2)/2)
≥ (d − 2ϵ)(|U | − (1 − 2

√
ϵ)|U |) = (d − 2ϵ)(2

√
ϵ|U |) ≥ ϵ|U |.

s (U, V ) is ϵ-regular, |WP | ≥ ϵ|U |, and |V0| ≥ ϵ|V |, the number of edges (wl−2, wl−1) ∈ WP × V0
satisfies

e(WP , V0) ≥ (d − ϵ)|WP ||V0| > (d − 2ϵ)2(|U | − ⌊(l − 2)/2⌋) · (ϵ|V |).

e can obtain a path of length l from v to u by beginning with the path P of length l− 3, followed
y any pair (wl−2, wl−1) of adjacent vertices as above, and finally ending with u.
For any non-negative integer i, let Ni be the total number of paths P : v0 = v, v1, . . . , vi of even

ength i in the bipartite graph G[V \ V0,U \ {u}] starting from v for which the number of ways to
xtend the path is at least (d − 2ϵ)(|U | − 1 − ⌊(i + 1)/2⌋). Applying Lemma 12 with n replaced by

(1− ϵ)n, d replaced by d(V \ V0,U \ {u}) ≥ d− ϵ, and ϵ replaced by 2ϵ, we deduce that the number
l−3 of such paths P of length l − 3 is at least

((d − ϵ) − 2ϵ −
√
2ϵ)l−3

l−3∏
i=1

((1 − ϵ)n − ⌊i/2⌋),

where we can apply Lemma 12 since the conditions on path length, density, and the number of
vertices are all satisfied. Therefore, the number of paths of length l with end vertices u and v is at
east

Nl−3 · (d − 2ϵ)2(n − ⌊(l − 2)/2⌋) · (ϵn)

≥ ((d − ϵ) − 2ϵ −
√
2ϵ)l−3

l−3∏
i=1

((1 − ϵ)n − ⌊i/2⌋) · (d − 2ϵ)2(n − ⌊(l − 2)/2⌋) · (ϵn)

≥ (d − 5
√

ϵ)l−1(1 − ϵ −
√

ϵ)l−3(ϵn)
l−2∏
i=1

(n − ⌊i/2⌋)

≥ (d − 7
√

ϵ)l−1(ϵn)
l−2∏
i=1

(n − ⌊i/2⌋).

he second inequality holds since (1−ϵ)n−⌊i/2⌋ ≥ (1−ϵ−
√

ϵ)(n−⌊i/2⌋) for i ≤ 2(1−2
√

ϵ)n. □

We now prove the path case of Theorem 2 when the coloring satisfies Case 1 of Lemma 11.

heorem 2 for paths for colorings satisfying Case 1 of Lemma 11. Fix 0 < ϵ ≤ 10−20 and
let d = 20

√
ϵ and λ = 13

√
ϵ. Suppose there are vertex subsets U1, . . . ,Um, V1, . . . , Vm with

m = (2/3 + λ)M/2 and |Vi|, |Ui| ≥ cn satisfying the properties of Case 1 of Lemma 11, say in
color red. We may assume that n is sufficiently large in terms of c, ϵ, and M . Let d′

= d − ϵ, so the
edge density between each pair (Ui, Vi) is at least d′. We will show that there is a constant c ′ > 0
such that the number of monochromatic paths with k = ⌈2(n + 1)/3⌉ vertices is at least (c ′k)k.

We give a lower bound on the number of paths with k vertices in the red graph G by first choosing
a pair of anchor vertices (v , u ) ∈ V ×U for each 1 ≤ i ≤ m and then picking short paths P to join
i i i i i

7
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Fig. 1. An illustration showing the anchor vertices vi and ui , the short paths Pi , and the long paths Ti used to build paths
ith k vertices.

i and vi+1 and long paths Ti to join ui and vi, where we will use Lemma 13 to show that there are
any paths Ti connecting ui and vi within G(Ui, Vi) that avoid the vertices of all the short paths Pj

see Fig. 1).
From each Vi and Ui, pick vertices vi ∈ Vi and ui ∈ Ui as anchor vertices such that each is adjacent

to at least a (d′
− ϵ)-fraction of the vertices in the other part. Since (Vi,Ui) is ϵ-regular, there are at

east (1 − ϵ)cn choices for each of vi and ui.
After fixing the choice of pairs of anchor vertices (vi, ui)1≤i≤m, we now pick a set of short disjoint

aths Pi to connect ui to vi+1 for each 1 ≤ i ≤ m−1. By assumption, the vertex set
⋃m

i=1 Vi∪
⋃m

i=1 Ui
s (200M, 6) well-connected. For 1 ≤ i ≤ m−1, we will greedily pick a red path Pi of length at most
ix to connect ui and vi+1. In total, we will pick m − 1 paths; together with v1 and um, there will
e at most 7(m − 1) + 2 ≤ 7m vertices in all the Pi’s and anchor vertices. Since there are at least
00M internally vertex-disjoint paths of length at most six connecting ui and vi+1 by the definition
f a (200M, 6)-well-connected set and 200M > 100(2/3 + λ)M/2 = 100m > 7m, we can greedily
hoose these m − 1 paths such that they are vertex disjoint and internally do not use any anchor
ertices.
After fixing Pi for 1 ≤ i ≤ m − 1, we will use long paths Ti to connect each pair (vi, ui). In

ach regular pair (Vi,Ui), we remove the internal vertices of the m− 1 paths Pi (so that at most 7m
ertices are removed). Removing only a few further vertices if necessary (but not removing vi or
i), we may suppose that the resulting subsets V ′

i ⊂ Vi,U ′

i ⊂ Ui satisfy

|V ′

i | = |U ′

i | = cn − 7m.

ince |V ′

i | ≥ ϵ|Vi| and |U ′

i | ≥ ϵ|Ui|, the fact that (Vi,Ui) is ϵ-regular implies that d(V ′

i ,U
′

i ) ≥ d′
− ϵ.

oreover, by Lemma 6(ii), as cn ≥ 14m, the pair (V ′

i ,U
′

i ) is 2ϵ-regular. Furthermore, since ϵcn > 7m,
i has at least

(d′
− ϵ)cn − 7m > (d′

− 2ϵ)(cn − 7m)

eighbors in U ′

i and similarly for ui. Let ℓ0 be the largest odd integer not larger than ⌊2(1 −
√
2ϵ)(cn − 7m)⌋. By Lemma 13 with d replaced by d′

− ϵ, ϵ by 2ϵ, and n by cn − 7m, for odd
8
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l ≤ ℓ0, the number of paths of length l connecting vi and ui is at least

(d′
− ϵ − 7

√
2ϵ)l−1(2ϵ(cn − 7m))

l−2∏
i=1

(cn − 7m − ⌊i/2⌋)

≥ 2ϵ(d′
− 8

√
2ϵ)l−1

l−2∏
i=0

(cn − 7m − ⌊i/2⌋)

≥ 2ϵ(d′
− 8

√
2ϵ)l−1 2π

e2
((cn − 7m)/e)l−1

=
4ϵπ
e2

(
(d′

− 8
√
2ϵ)(cn − 7m)/e

)l−1
. (1)

n the last inequality, we used the fact that a!/b! ≥

√
2π
e

( a
e

)a−b for positive integers a > b,
which easily follows from the upper and lower bounds in Stirling’s approximation for factorials.
Thus, a!

(a−l1)!
a!

(a−l2)!
≥

2π
e2

( a
e

)l1+l2 , which we applied with a = cn − 7m, l1 = ⌊(l − 2)/2⌋ + 1, and
2 = ⌊(l − 3)/2⌋ + 1.

Therefore, within each bipartite graph G(U ′

i , V
′

i ), there are many choices for the path Ti of any
fixed odd length between 3 and ℓ0. Recall that the way we intend to build paths of length k − 1 is
by alternatingly concatenating Ti and Pi. If all m pairs give rise to a path Ti of length ℓ0, the total
length of these Ti’s, which is also a lower bound on the length of the path we build, is

mℓ0 = m(⌊2(1 − 2
√
2ϵ)(cn − 7m)⌋ − 1)

≥ m(2(1 − 2
√
2ϵ)(cn − 7m) − 2)

≥ (2/3 + λ)M · (1 − 2
√
2ϵ)((1 − ϵ)n/M − 7m − 2), (2)

here the last inequality holds because m = (2/3 + λ)M/2, 2(1 − 2
√
2ϵ) > 1, and c ≥ (1 − ϵ)/M .

Since ϵn/M > 7m + 2 and λ = 13
√

ϵ, (2) is bounded below by

(2/3 + λ) · (1 − 2
√
2ϵ)(1 − 2ϵ)n > 2n/3 ≥ k − 1.

Hence, if all the paths Ti are of length exactly ℓ0, the length of the full path we build would be
arger than k − 1. Since the lengths of the Pi’s are fixed, while the length of Ti can be any positive
dd integer at least three and at most ℓ0, we will shorten some Ti to make the path be of length
xactly k − 1. We greedily include T1, T2, . . . such that each Ti is of length ℓ0, until the length of

the concatenated path T1, P1, T2, P2 . . . is at least k−1 for the first time. If, when we stop, the total
length is exactly k − 1, we will take all those Ti to have length ℓ0. Otherwise, when we stop, the
total length is greater than k − 1. If, when we stop, the last path is Tj for some j, we will shorten
the length of Tj by deleting the last few vertices from Tj; if the last path is Pj for some j, we will
shorten the length of Pj by deleting the last few vertices of Pj. In summary, there exists a properly
chosen integer m − 1 ≥ m′

≥ 0 such that T1, . . . , Tm′ are of length ℓ0 and, after concatenating
T1, P1, T2, P2, . . . , Tm′ , Pm′ , Tm′+1 with the length of Tm′+1 less than ℓ0 or T1, P1, T2, P2, . . . , Tm′ , Pm′

with a possibly shortened Pm′ , we obtain a path of length k − 1. Using (1) to bound the number of
Ti for i ≤ m′, the total number of choices for T1, . . . , Tm′ when fixing the anchor vertices {vi, ui} for
1 ≤ i ≤ m′ and Pi for 1 ≤ i ≤ m′ is at least(

4ϵπ
e2

)m′

·

(
(d′

− 8
√
2ϵ)(cn − 7m)/(2e)

)ℓ0m′
−m′

. (3)

If the concatenated path of length k− 1 needs to end with a path Tm′+1 of length 1 ≤ ℓ′ < ℓ0, then
m′+1 can be any path of length ℓ′ alternating between U ′

m′+1 and V ′

m′+1 that starts with vm′+1. By
Lemma 12 with d replaced by d′

− ϵ, ϵ by 2ϵ, and n by cn − 7m, since 1 ≤ ℓ′ < ℓ0, the number of
hoices for Tm′+1 is at least

(d′
− ϵ − 2ϵ −

√
2ϵ)ℓ

′

ℓ′∏
i=1

((cn − 7m) − ⌈i/2⌉) >
2π
e2

(
(d′

− 4
√
2ϵ)(cn − 7m − 1)/e

)ℓ′

>
2π (

(d′
− 4

√
2ϵ)(cn − 7m)/(2e)

)ℓ′

,

e2

9
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where the first inequality is by the same estimate as in (1). Together with (3), the total number of
k-vertex paths when fixing the anchor vertices {vi, ui} for 1 ≤ i ≤ m′ and Pi for 1 ≤ i ≤ m′ is at
least (

4ϵπ
e2

)m′
+1

·

(
(d′

− 8
√
2ϵ)(cn − 7m)/(2e)

)ℓ0m′
−m′

+ℓ′

. (4)

ere we can assume 0 ≤ ℓ′ < ℓ0 to combine the two cases of whether the path of length k − 1
nds with Tm′+1 or not.
Since the total length of P1, . . . , Pm′ is at most 6m′, the total length of the Ti’s for 1 ≤ i ≤ m′

+1,
which is ℓ0m′

+ ℓ′, is at least k − 1 − 6m′. Thus, (4) is at least(
4ϵπ
e2

)m′
+1

·

(
(d′

− 8
√
2ϵ)cn/(4e)

)k−7(m′
+1)

≥ ϵm
(
(d′

− 8
√
2ϵ)cn/(4e)

)k−7m
.

ince m = (2/3 + λ)M/2, which is a constant, there exists c ′ such that the expression above is at
east (c ′k)k, completing the proof. □

heorem 2 for even cycles for colorings satisfying Case 1 of Lemma 11. Fix 0 < ϵ ≤ 10−20

nd let d = 20
√

ϵ and λ = 13
√

ϵ. The proof for even cycles is very similar to the previous proof
or paths. Suppose there are vertex subsets U1, . . . ,Um, V1, . . . , Vm with m = (2/3 + λ)M/2 and
|Vi|, |Ui| ≥ cn satisfying the properties of Case 1 of Lemma 11, say in color red. Let the edge density
between Ui and Vi be at least d′

= d − ϵ. We may assume that n is sufficiently large in terms of
c, ϵ, and M . We will show that there is a constant c ′ such that the number of monochromatic cycles
with k = ⌈2(n + 1)/3⌉ vertices, with k even, is at least (c ′k)k.

To do this, we will find distinct vertices v1
i , v

2
i , w

1
i , w

2
i ∈ Vi for 2 ≤ i ≤ m − 1 and v1

1, w
1
1 ∈ V1

and v2
m, w2

m ∈ Vm such that (all the indices are mod m and the edges considered are all in color
red):

1. v1
i , v

2
i , w

1
i , w

2
i each have degree at least (d′

− ϵ)|Ui| to Ui for all 1 ≤ i ≤ m;
2. there is a path Pi connecting v1

i and v2
i+1 and a path Qi connecting w1

i and w2
i+1 such that both

Pi and Qi have length at most six;
3. for each i, the lengths of Pi and Qi have the same parity;
4. there is a path Li connecting w1

i and w2
i of length four;

5. all of the paths Pi, Qi, and Li with 1 ≤ i ≤ m − 1 are vertex disjoint except where they share
an end vertex.

See Fig. 2 for an illustration.
Suppose that we can find such vertices v1

i , v
2
i , w

1
i , w

2
i together with appropriate paths Pi, Qi, and

Li. We now show that we are done in this case. First we remove all the internal vertices in these
paths from Ui and Vi; for 2 ≤ i ≤ m − 1, we also remove w1

i , w
2
i from Vi. This results in subsets U ′

i
of Ui and V ′

i of Vi. By the length constraints on Pi, Qi, and Li in conditions 2 and 4, all of these paths
have in total at most

5(m − 1) + 5(m − 1) + 3m < 13m (5)

internal vertices. Thus, we have

|V ′

i | ≥ |Vi| − 13m − 2 ≥ |Vi| − 15m and |U ′

i | ≥ |Ui| − 13m ≥ |Ui| − 15m.

Let ℓ0 be the largest even integer not larger than ⌊2(1−2
√
2ϵ)(cn−15m)⌋. Then, in the bipartite

raph G(U ′

1, V
′

1), we will show that we can obtain many paths T1 from w1
1 to v1

1 where T1 has length
1 ≤ ℓ0. Clearly, T1 is of even length since it alternates between U1 and V1, eventually coming back
o the side where it started. For 2 ≤ i ≤ m − 1, we show that we can find many paths Ti from
2
i to v1

i in G(V ′

i ,U
′

i ) where Ti has even length li ≤ ℓ0. In G(Um, Vm), we will find many paths Tm
rom v2

m to w2
m where Tm has even length lm ≤ ℓ0. Since v1

i , v
2
i , w

1
i , w

2
i each have large degree to Ui,

hey also have large degree to U ′

i . As in the proof of the path case, we can use Lemma 13 applied
o G(V ′,U ′) to count the number of choices for the path T given l .
i i i i

10
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Fig. 2. An illustration showing the paths Pi , Qi , and Li .

As in the previous proof, we can create a cycle by concatenating

T1, P1, T2, P2, . . . , Tm−1, Pm−1, Tm,Qm−1, Lm−1, . . . ,Q2, L2,Q1.

Since the Ti and Li are all of even length and the lengths of Pi and Qi have the same parity by
condition 3, we obtain an even cycle.

The total length of the even cycle we build is the total length of Pi, Qi, and Li plus
∑m

i=1 li. If li = 4
for all 1 ≤ i ≤ m, the total length is at most

6(m − 1) + 6(m − 1) + 4m + 4m < 20m < k.

On the other hand, if li = ℓ0 for all 1 ≤ i ≤ m, when n is sufficiently large, the total length is at
east

(m − 1) + (m − 1) + 4m + ℓ0m > (m − 1) + (m − 1) + 4m

+ (⌊2(1 − 2
√
2ϵ)(cn − 15m)⌋ − 1)m

> ⌊2(1 − 2
√
2ϵ)(cn − 15m)⌋(2/3 + λ)M/2

≥ ⌊2(1 − 2
√
2ϵ)((1 − ϵ)n/M − 15m)⌋(2/3 + λ)M/2

> (2/3 +
√

ϵ)n > k,

here we used that c ≥ (1 − ϵ)n/M and λ = 13
√

ϵ. Therefore, we can reduce the lengths of some
i, maintaining the condition that 4 ≤ li ≤ ℓ0 are even integers for each i, to obtain a cycle of length
xactly k.
Thus, the total number of even cycles of length k, having fixed the Pi, Qi, and Li, is at least the

roduct of the number of choices for Ti for 1 ≤ i ≤ m. Since the total length of the Pi, Qi, and Li is
t most 6(m − 1) + 6(m − 1) + 4m < 16m, the total length of the Ti, which is

∑m
i=1 li, is at least

k − 16m. By a similar computation to (1) in the previous proof, the total number of even cycles of
11
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length k is therefore at least
m∏
i=1

(
4ϵπ
e2

)
(d′

− 8
√
2ϵ)li−1((cn − 15m)/e)li−1

=

(
4ϵπ
e2

)m

(d′
− 8

√
2ϵ)

∑m
i=1 li−m((cn − 15m)/e)

∑m
i=1 li−m

≥

(
4ϵπ
e2

)m

(d′
− 8

√
2ϵ)k−17m((cn − 15m)/e)k−17m,

hich is at least (c ′k)k for some positive constant c ′. It thus suffices to show that we can find vertices
1
i , v

2
i , w

1
i , w

2
i and paths Pi, Qi, and Li satisfying Conditions 1 to 5.

We will pick v1
i , v

2
i , w

1
i , w

2
i and Li, Pi, and Qi with the desired properties greedily. In step one,

e pick four vertices w1
1, v

1
1, w

2
2, v

2
2 and two paths P1 and Q1. In each step i ≥ 2 except the last one,

e pick four vertices w1
i , v

1
i , w

2
i+1, v

2
i+1 and three paths Pi,Qi, and Li. Suppose we have completed

ll steps j < i. We now need to pick w1
i , v

1
i ∈ Vi and w2

i+1, v
2
i+1 ∈ Vi+1.

Let distinct arbitrary vertices v1, v
′

1, v
′′

1 ∈ Vi, v2, v
′

2, v
′′

2 ∈ Vi+1 be such that v1, v
′

1, v
′′

1 each have
egree at least (d′

− ϵ)|Ui| to Ui and v2, v
′

2, v
′′

2 each have degree at least (d′
− ϵ)|Ui+1| to Ui+1. Since

Ui, Vi) is ϵ-regular, there are at least (1−ϵ)cn vertices in each of Vi and Vi+1 that satisfy this degree
ondition from which v1, v

′

1, v
′′

1 and v2, v
′

2, v
′′

2 can be chosen. Since
⋃m

i=1 Vi ∪
⋃m

i=1 Ui is (200M, 6)
ell-connected in red, the pigeonhole principle implies that there are at least 100M red internally-
isjoint paths connecting v1 and v2 whose lengths are at most six and of the same parity. Label

(v1, v2) as odd or even depending on the parity of the paths between them. We can similarly label
(v′

1, v
′

2) and (v′′

1 , v
′′

2 ). By the pigeonhole principle again, at least two of the pairs (v1, v2), (v′

1, v
′

2),
and (v′′

1 , v
′′

2 ) have the same parity. Suppose (v1, v2) and (v′

1, v
′

2) have the same parity, say odd. Then
we let v1 be v1

i , v2 be v2
i+1, v

′

1 be w1
i , and v′

2 be w2
i+1, noting that there are at least 100M internally

vertex-disjoint paths connecting v1 and v2 of odd length at most 6 and the same for v′

1 and v′

2.
Therefore, we have at least 100M candidates for Pi and at least 100M candidates for Qi. Since the
previously chosen paths Pj,Qj, and Lj use in total at most 7(m− 1)+ 7(m− 1)+ 5m < 19m vertices
and 100M > 19m, there are choices for Pi and Qi with the desired properties.

It remains to choose Li. We remove all the internal vertices in the previously chosen Pj, Qj, and
j from Ui and Vi and we also remove v1

i and v2
i from Vi. This results in U ′′

i and V ′′

i . By (5),

|V ′′

i | ≥ |Vi| − 13m − 2 > |Vi| − 15m

nd, similarly, |U ′′

i | > |Ui| − 15m. Furthermore, the pair (U ′′

i , V ′′

i ) is 2ϵ-regular with density
(U ′′

i , V ′′

i ) ≥ d′
− ϵ.

As w1
i and w2

i are in V ′′

i and each has degree at least (d′
−2ϵ)|U ′′

i | to U ′′

i , Lemma 13 applied with
replaced by cn − 15m, ϵ by 2ϵ, d by d′

− ϵ, and l by 4 implies that there are at least

(d′
− ϵ − 7

√
2ϵ)3(2ϵ)(cn − 15m)2(cn − 15m − 1) ≥ ϵ(d − 11

√
ϵ)3(cn)3/4

paths of length 4 connecting w1
i and w2

i . Each vertex is in at most 3n2 paths with the prescribed end
ertices, since n2 is an upper bound on the number of choices for the other two internal vertices
n this path and the multiplicative factor 3 indicates which of the three internal vertices our vertex
s. Therefore, we have at least ϵ(d− 11

√
ϵ)3c3n/12 vertex-disjoint paths of length 4 connecting the

wo end vertices, each of which is a candidate for Li, completing the proof. □

.3.2. Proof of Theorem 2 in the situation of case 2 of Lemma 11
We begin by showing that Theorem 2 is true for paths for edge-colorings satisfying Case 2 of

emma 11. The argument for even cycles will be almost the same. Throughout the proof, n will be
ssumed to be sufficiently large in terms of ϵ.

heorem 2 for paths for colorings satisfying Case 2 of Lemma 11. Fix 0 < ϵ ≤ 10−20 and let
= 20

√
ϵ and λ = 13

√
ϵ. We are given an extremal coloring with parameter α = 1000(d+λ+

√
ϵ),
12
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so we have a red/blue edge-coloring of a complete graph whose vertex set has a partition into
subsets V and U with

|V | ≥ (2/3 − α)n, |U | ≥ (1/3 − α)n, |U | + |V | = n. (6)

urthermore, without loss of generality, we can assume that the red density within V is at least
− α and the blue density between U and V is at least 1 − α. We want to prove that the number

of monochromatic paths with k vertices for k = ⌈2(n + 1)/3⌉ is at least (k/10)k.
We first perform a standard cleaning-up process, moving a few vertices between U and V , so

that within V and between U and V certain degree conditions hold.

Claim 14 (Updated Extremal Coloring). There is a partition V ′
∪ U ′ satisfying the following conditions:

• |V ′
| ≥ (2/3 − 3α)n, |U ′

| ≥ (1/3 − 2α)n.
• The red graph on V ′ has minimum degree at least (2/3 − 4α)|V ′

|.
• The blue density between U ′ and V ′ is at least 1 − 8α.
• Each vertex in U ′ has blue degree to V ′ at least (1/3 − 4α)|V ′

|.

Proof. We define V ′ to be the set of vertices which have red degree at least 2|V |/3 in V and let U ′

be the complement of V ′, noting that each vertex in U ′ has blue degree larger than |V |/3 − 1 to V .
We claim that this partition has the desired properties.

We first show that most vertices of V are in V ′. Suppose |V \ V ′
| = x|V |. Since the red density

in V is at least 1−α, we have x ·2|V |/3+ (1− x)|V | ≥ (1−α)|V | and, therefore, x ≤ 3α. Combining
this inequality with (6), we conclude that

|V ′
| ≥ (1 − 3α)|V | ≥ (1 − 3α)(2/3 − α)n > (2/3 − 3α)n.

We next show that not many vertices in U were moved to V ′. Suppose |U ∩ V ′
| = y|U |. Since

the red density between U and V is at most α, we have y · 2|V |/3 ≤ α|V | and so y ≤ 3α/2. This
implies that |V | + 3α|U |/2 ≥ |V ′

|. Using that α ≤ 10−5 and (6) gives

|V ′
| ≤ |V | + 3α/2 · |V |(1/3 + α)/(2/3 − α) < (1 + α)|V |. (7)

e also have

|V ′
| ≤ |V | + 3α|U |/2 ≤ (2/3 + α)n + 3α/2 · (1/3 + α)n ≤ (2/3 + 2α)n

nd so |U ′
| = n − |V ′

| ≥ (1/3 − 2α)n.
Furthermore, each vertex in V ′ has red degree in V ′ at least

2|V |/3 − 3α|V | = (2/3 − 3α)|V | ≥ (2/3 − 3α)|V ′
|/(1 + α) > (2/3 − 4α)|V ′

|,

here the second to last inequality is by (7).
Similarly, together with (7), each vertex in U ′ has blue degree to V ′ at least

|V |/3 − 1 − 3α|V | >
1/3 − 3α
1 + α

|V ′
| − 1 > (1/3 − 4α)|V ′

|.

The blue density between U ′ and V ′ is e(U ′, V ′)/|U ′
||V ′

|, which is at least

(1 − α)|V ||U | − |V \ V ′
||U | −

1
3 |U \ U ′

||V |

|U ′||V ′|

=
(1 − α)|V ||U | − |V \ V ′

||U | −
1
3 |U \ U ′

||V |

(|U | + |V \ V ′| − |U \ U ′|)(|V | + |U \ U ′| − |V \ V ′|)

≥
(1 − α)|V ||U | − |V \ V ′

||U | −
1
3 |U \ U ′

||V |

|V ||U | + (|V | − |U |)|V \ V ′| − (|V | − |U |)|U \ U ′|
.

e have already established that |V \ V ′
| ≤ 3α|V | and |U \ U ′

| = |U ∩ V ′
| ≤ 3α|U |/2. Hence,

ubstituting for |U \ U ′
| in the numerator of the last expression its maximum 3α|U |/2 and in the
13
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denominator zero decreases the fraction. Moreover, since α is sufficiently small, the last expression
above is decreasing in |V \ V ′

| and, therefore, minimized when |V \ V ′
| = 3α|V |. Hence, the blue

density is at least
(1 − 4.5α)|V ||U |

|V ||U | + (|V | − |U |)3α|V |
>

(1 − 4.5α)|V ||U |

|V ||U | + ( 2/3+α

1/3−α
|U | − |U |)3α|V |

> 1 − 8α,

where we used that α ≤ 10−5 is sufficiently small and |V |/|U | ≤ (2/3 + α)/(1/3 − α). □

Abusing notation, we let V ′ be the new V and U ′ the new U and assume that they satisfy the
roperties described in Claim 14. We now wish to count the number of monochromatic paths with
vertices in this configuration. We have two cases.

ase A: Suppose |V | ≥ k = ⌈2(n + 1)/3⌉. Let V ′′
⊂ V be an arbitrary subset with |V ′′

| = k. The
inimum red degree in V ′′ is at least

(2/3 − 4α)|V | − (|V | − ⌈2(n + 1)/3⌉) > (2/3 − 4α)|V | − 4αn ≥
2
3
k − 8αn ≥ k/2.

herefore, the red graph on V ′′ is a Dirac graph. By the main result of [10], the number of
amiltonian cycles (and, hence, paths with k vertices) in the red graph on V ′′ is at least k!/2k+o(k).

ase B: Suppose |V | < k. In this case, |U | ≥ n − (k − 1) ≥ ⌊k/2⌋. To complete the proof,
e apply Lemma 15 below to the blue bipartite graph with parts U and V with β = 8α and
= (1/3 − 4α)|V |. Since |V | ≥ (2/3 − 3α)n ≥ 3k/4 and every vertex in U has blue degree to
at least (1/3 − 4α)|V | ≥ 4

√
8α max(|V |, 2|U |), the conditions of Lemma 15 are satisfied. Thus,

he number of monochromatic blue paths with k vertices is at least

0.9|U |2−k/20.94k/2
⌊k/2⌋!(3k/4)!/(k/4)! > (k/10)k.

In either case, we get at least (k/10)k monochromatic paths with k vertices, as required. □

For a complete bipartite graph with parts U and V , where |V | ≥ |U | ≥ ⌊k/2⌋, the number of
aths with k vertices starting in V is precisely (|V |)⌈k/2⌉(|U |)⌊k/2⌋, where we use the standard falling
actorial notation (n)k = n(n−1) · · · (n−k+1). If the bipartite graph is not complete but just nearly
omplete, then, provided |V | is much larger than |U | and U satisfies an appropriate minimum degree
ondition, we can prove that there are still almost this many paths with k vertices between U and
. This can be thought of as a counting version of a special case of the blow-up lemma [26].

emma 15. Let k be a sufficiently large positive integer and G a bipartite graph with parts U and
such that |V | ≥ 3k/4 and |U | ≥ ⌊k/2⌋, the edge density between U and V is at least 1 − β with
< 10−4, and every vertex in U has degree at least δ ≥ 4

√
β max(|V |, 2|U |). Then the number of

paths with k vertices in G starting from a vertex in V is at least(
δ

4|V |

)2
√

β|U | (
1 −

4
√

β|U |

δ

)k/2 (
1 − 6

√
β

)k/2
(|U |)⌊k/2⌋(|V |)⌈k/2⌉.

roof. Let U0 be the set of vertices in U that have degree at most (1 −
√

β)|V | and U1 = U \ U0.
he number of edges in G satisfies (1 − β)|V ||U | ≤ e(G) ≤ (1 −

√
β)|V ||U0| + |V |(|U | − |U0|), from

which we obtain |U0| ≤
√

β|U |.
We will show that there are many paths with k vertices in G alternating between V and U

hat start from a vertex in V . We do this by first showing that there are many sequences L =

1, . . . , u⌊k/2⌋ of ⌊k/2⌋ distinct vertices in U that extend to many paths with k vertices in G(U, V ),
here extending here means that we can find vertices v1, . . . , v⌈k/2⌉ such that v1, u1, v2, u2, . . . is
path with k vertices, where the last vertex of the path is uk/2 if k is even and v⌈k/2⌉ if k is odd.
We will require that the sequences L satisfy the following property:
(P) If ui ∈ L is in U0, then i ≤ δ/2 and i is odd.
We first bound the number of choices for L. Note that if i ≤ δ/2 and even or ⌊k/2⌋ ≥ i > δ/2,

hen u must be in U . There are in total ℓ := ⌊k/2⌋ − ⌈δ/4⌉ such terms. Thus, we have (|U |)
i 1 1 ℓ

14
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choices for these terms in the sequence L. For the remaining ⌈δ/4⌉ terms, we can choose any of
he remaining vertices from U , so we get (|U | − ℓ)⌈δ/4⌉ possible choices to complete the sequence,
iving a total of

(|U1|)ℓ(|U | − ℓ)⌈δ/4⌉ ≥

(
|U1| − ℓ + 1
|U | − ℓ + 1

)ℓ

(|U |)ℓ(|U | − ℓ)⌈δ/4⌉ =

(
|U | − |U0| − ℓ + 1

|U | − ℓ + 1

)ℓ

(|U |)⌊k/2⌋

≥

(
⌊k/2⌋ − |U0| − ℓ + 1

⌊k/2⌋ − ℓ + 1

)ℓ

(|U |)⌊k/2⌋ ≥

(
δ/4 − |U0|

δ/4

)ℓ

(|U |)⌊k/2⌋

≥

(
1 − 4

√
β|U |/δ

)k/2
(|U |)⌊k/2⌋

possible sequences L.
Having picked L, we greedily choose v1, . . . , v⌈k/2⌉ to complete the path. We can pick v1 to be

any neighbor of u1, so there are at least δ choices if u1 ∈ U0 and at least (1 −
√

β)|V | choices if
u1 ∈ U1. Having already picked out v1, . . . , vj−1, we next show how to pick vj. Note that (aside from
the case5 where k is odd and j = ⌈k/2⌉), this amounts to picking a common neighbor of uj−1 and
uj different from v1, . . . , vj−1. Notice that, by property (P), no two consecutive terms of L are in U0.
We thus have two cases to consider.

In the first case, one of uj−1 and uj is in U0. In this case, we have j − 1 ≤ δ/2 by property (P).
The degree of the vertex from U0 is at least δ and the degree of the other vertex, which is in U1,
is at least (1 −

√
β)|V |, so uj−1 and uj have at least δ + (1 −

√
β)|V | − |V | = δ −

√
β|V | common

eighbors. Hence, there are at least δ −
√

β|V | − (j − 1) ≥ δ/2 −
√

β|V | ≥ δ/4 common neighbors
f uj−1 and uj not among v1, . . . , vj−1. Any of these at least δ/4 vertices can be chosen for vj.
In the second case, both uj−1 and uj are in U1. Then uj−1 and uj have at least 2(1−

√
β)|V |−|V | =

(1−2
√

β)|V | common neighbors, so there are at least (1−2
√

β)|V |−(j−1) > (1−6
√

β)(|V |−(j−1))
hoices for vj, where we used |V | ≥

3
4k and j − 1 < k/2.

As there are at most |U0| terms in the sequence L that belong to U0, there are at most 2|U0|

consecutive pairs in L that include a term from U0. Therefore, the first case happens at most 2|U0|

times. Observe that δ/4 ≤ |V |/4 ≤ (1− 6
√

β)|V |/3 ≤ (1− 6
√

β)(|V | − (j− 1)). From the estimates
bove, we therefore see that the number of ways of greedily choosing v1, . . . , v⌈k/2⌉ is at least

(δ/4)2|U0|(1 − 6
√

β)⌈k/2⌉−2|U0|(|V |)⌈k/2⌉/|V |
2|U0|

≥ (δ/(4|V |))2
√

β|U |(1 − 6
√

β)k/2(|V |)⌈k/2⌉.

ence, by counting the number of choices for L and then the number of ways of completing any
iven choice of L to a path with k vertices, we find that the number of paths with k vertices in G
tarting from a vertex in V is at least the desired bound. □

We now briefly discuss how to modify the argument above to prove Theorem 2 for even cycles
or colorings satisfying Case 2 of Lemma 11. Case A is identical, since we actually counted red cycles
f length k in the proof. Case B is almost identical, in that we only need to modify the proof of
emma 15 so that the conclusion guarantees many even cycles of length k (instead of just paths
ith k vertices) in the bipartite graph G. This amounts to also guaranteeing that v1 is a neighbor of
k/2 and only changes the bound slightly, so that, as in the case of paths, the number of blue cycles
f length k is at least (k/10)k for k sufficiently large.

. Proof of Lemma 11

Throughout this subsection 0 < ϵ ≤ 10−10 and d, λ ≥ 1000ϵ, as in the assumptions of Lemma 11.

5 When k is odd and j = ⌈k/2⌉, we are instead picking a neighbor of u(k−1)/2 not among v1, . . . , vj−1 , for which there
are at least (1 −

√
β)|V | − (j − 1) > (1 − 3

√
β) |V | − (j − 1) choices, where we used |V | ≥

3 k and j = (k − 1)/2.
( ) 4

15
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3.1. Preparation

In order to prove Lemma 11, we first collect some auxiliary results, beginning with a lemma
f Gyárfás, Sárközy, and Szemerédi [18] about finding a well-connected subset in any red/blue-
ulticolored Kn.

emma 16 (Lemma 4.1 in [18]). For every positive integer t and red/blue-multicolored Kn, there exist
⊂ V (Kn) and a color, say red, such that |W | ≥ n − 28t and W is (t, 3)-well-connected in the red

ubgraph of Kn.

We will also use two lemmas concerning extremal numbers of matchings. The first is a classical
esult of Erdős and Gallai [12], which is easily seen to be tight by considering either the graph which
onsists of a clique on 2k+1 vertices and a collection of isolated vertices or the graph in which the
nly edges are those incident to at least one of k vertices.

emma 17 (Erdős and Gallai [12]). For integers k and n with 0 ≤ k ≤ n/2, if the maximum matching
n an n-vertex graph G has size k, then G has at most max

((2k+1
2

)
,
(k
2

)
+ (n − k)k

)
edges.

The second lemma about matchings that we will need is the following simple consequence of
önig’s theorem, which says that the covering and matching numbers of a bipartite graph are equal.
t is easily seen to be tight by considering the bipartite graph with k vertices in one part complete
o the other part, which has n vertices, and no other edges.

emma 18. If a bipartite graph has at most n vertices in each part and does not contain a matching
of size larger than k, then it has at most kn edges.

The final lemma in this section says that if a reduced graph satisfies certain properties, then the
riginal graph it describes is well-connected.

emma 19. Let H be a graph with vertex set [h] in which each vertex has distance at most three
rom vertex 1. Let G be an h-partite graph with parts V1, . . . , Vh, each of order at least N. Suppose that
< α < 1/10, 3α < d < 1, and, for every edge (i, j) ∈ E(H), the pair (Vi, Vj) is α-regular in G with
(Vi, Vj) ≥ d. Let T ≤ (d − 3α)N/5 be a positive integer. Then, for each i ∈ [h], there is V ′

i ⊂ Vi such
hat the following hold:

1. |V ′

i | ≥ (1 − α)|Vi|.
2. For every edge (i, j) ∈ E(H), the pair (V ′

i , V
′

j ) is 2α-regular with density d(V ′

i , V
′

j ) ≥ d − α.
3.

⋃h
i=1 V

′

i is (T , 6)-well-connected in G.

roof. For i ∈ [h], let s(i) denote the distance of i from 1. We are given s(i) ≤ 3 for all i ∈ [h]. For
∈ [2, h], let n(i) be an arbitrary neighbor of i with s(n(i)) = s(i) − 1 and let n(1) be an arbitrary
eighbor of vertex 1 in H . We call n(i) the successor of vertex i. Let D be the directed graph on [h]
n which each vertex i has outdegree one with n(i) as its outneighbor.

For each i ∈ [h], let V ′

i be the set of vertices in Vi whose degree to Vn(i) is at least (d − α)|Vn(i)|.
y Lemma 6(i), |V ′

i | ≥ (1 − α)|Vi|. For each (i, j) ∈ E(H), we have d(V ′

i , V
′

j ) ≥ d − α as (Vi, Vj) is
-regular and 1 − α > α. Moreover, by Lemma 6(ii), since max(2α, α/(1 − α)) = 2α, (V ′

i , V
′

j ) is
α-regular. It only remains to check Item 3 of the lemma, that is, to show that, for any two vertices
, v ∈

⋃h
i=1 V

′

i , we can find T internally-disjoint paths of length at most six connecting them.
For each i ∈ [h], there is a unique directed path Pi in D from i to 1. This path has length s(i) ≤ 3

nd the next vertex of the path is the successor of the current vertex. For each pair (a, b) of not
ecessarily distinct vertices of H , let Wab be a walk in H from a to b formed by concatenating a
alk from a to 1 in D of length two or three and a walk from b to 1 in D of length two or three.
uch a walk of length two or three from a to 1 in D is either Pa itself or formed by adding to Pa a
alk of length two from 1 to its successor and back. We can similarly construct a walk of length

wo or three from b to 1 in D.

16
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Let u ∈ V ′
a and v ∈ V ′

b, noting that a and b may not be distinct. Let a = a0, . . . , as = b with s ≤ 6
enote the vertices of the walk Wab from a to b in order and let r be the length of the walk from
to 1 that makes up the first part of Wab, so that r = 2 or 3 and ar = 1. In particular, aj is the
uccessor of aj−1 for 1 ≤ j ≤ r and aj−1 is the successor of aj for r < j ≤ s.
We greedily construct T internally vertex-disjoint paths from u to v of length at most s. Each

uch path has at most five internal vertices. In particular, after pulling out the internal vertices of
< T such paths, all but at most 5t of the vertices in each part remain. The remaining subset Ui
f V ′

ai for 1 ≤ i ≤ s − 1 has size |Ui| ≥ |V ′
ai | − 5t ≥ (1 − α)|Vai | − 5t . We next build a walk

= u0, u1, . . . , us = v from u to v of length s with ui ∈ Ui for each i. If this walk is a path, it is
he desired next path from u to v. Otherwise, we get the desired path by deleting some internal
ertices from the walk.
The vertex u has at least (d − α)|Va1 | neighbors in Va1 , so u has at least (d − α)|Va1 | − (|Va1 | −

Ua1 |) ≥ (d − 2α)|Va1 | − 5t neighbors in Ua1 . These neighbors are all potential choices for u1. As
d − 2α)|Va1 | − 5t ≥ α|Va1 |, d > α, the pair (Va1 , Va2 ) is α-regular, and Ua2 ⊂ Va2 , Lemma 6(i)
mplies that all but at most α|Va2 | vertices in Ua2 have a common neighbor with u in U1 and thus
an be chosen for u2. If r = 3, we similarly get that all but α|Va3 | vertices in Ua3 can be chosen for
3. In either case, we get that all but at most α|Var | vertices in Ur can be chosen for ur when starting
he walk from u. Similarly, working backwards from v, we get that all but at most α|Var | vertices
n Ur can be chosen for ur when starting the walk from v. As |Ur | ≥ (1 − α)|Var | − 5t > 2α|Var |,
here is a vertex in Ur that can be chosen for ur to complete the walk from u to v. Hence, we can
ontinue the process of pulling out T internally vertex-disjoint paths from u to v, completing the
roof. □

.2. Proof of Lemma 11

Consider a red/blue edge-coloring of Kn. Let M0 be as in Szemerédi’s regularity lemma, Lemma 7,
ith ϵ/2 in place of ϵ and m0 = 1000/ϵ. Apply Lemma 16 to this edge-coloring of Kn with
= 200M0 to obtain a vertex subset W with |W | ≥ n − 5600M0 and a color such that W is

200M0, 3)-well-connected in that color. By applying the regularity lemma, Lemma 7, with ϵ/2 in
lace of ϵ and m0 = 1000/ϵ to the induced edge-coloring on W , we obtain the following lemma.

emma 20. For every 0 < ϵ, d ≤ 1/2, there are positive integers M0 and n0 such that the following
olds. For every red/blue edge-coloring of Kn with n ≥ n0, there is a positive integer 1000/ϵ ≤ M ≤ M0,
vertex subset W ⊂ V (Kn)with |W | ≥ n−5600M0 which is (200M0, 3)-well-connected in either the red
r the blue subgraph, and an equitable partition W = V1 ∪· · ·∪VM such that the red/blue-multicolored
educed graph H with vertex set [M] and parameters ϵ/2 and d has at most ϵ

(M
2

)
/2 non-adjacent pairs.

For the rest of this section, we fix an edge-coloring of Kn with colors red and blue and the set
, the sets V1, . . . , VM in the equitable partition of W , and the reduced graph H guaranteed by

emma 20. We will also assume without loss of generality that W is (200M0, 3)-well-connected in
ed. Let Hb be the spanning blue subgraph of H and Hr the spanning red subgraph, noting that
he same edge can be in both Hb and Hr . As n is sufficiently large, for each i ∈ M , we have
Vi| ≥ ⌊|W |/M⌋ ≥ ⌊(n − 5600M0)/M⌋ ≥ (1 − ϵ/4)n/M .

emma 21. If the red subgraph Hr contains a matching with at least (2/3 + λ)M vertices, then the
onditions of Case 1 in Lemma 11 are satisfied.

roof. For each edge (ai, bi) of such a matching in Hr , consider the corresponding sets of vertices
ai and Vbi . By construction, the union of these sets of vertices is a subset of a (200M, 3)-well-
onnected set in red. Furthermore, each of the parts has size at least (1 − ϵ/4)n/M and each pair
f parts corresponding to an edge of the matching in Hr is ϵ-regular of density at least d. Hence, all
he conditions of Case 1 in Lemma 11 are indeed satisfied. □

emma 22. If the blue subgraph Hb contains a matching with at least (2/3 + λ)M vertices and there
s a vertex v such that each vertex in the matching has distance at most three from v in Hb, then the

onditions of Case 1 in Lemma 11 are satisfied.

17
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Proof. Let S be the set of vertices with distance at most 3 from v. Then, by assumption, S contains
he vertices of the blue matching. Furthermore, by Lemma 20, for every (i, j) ∈ E(Hb[S]), (Vi, Vj) is
/2-regular with blue density d(Vi, Vj) ≥ d. Thus, we can apply Lemma 19 with H being Hb[S], G
eing the blue |S|-partite graph induced on

⋃
i∈S Vi, vertex 1 being v, α = ϵ/2, T = 200M0, and

= (1 − ϵ/4)n/M . As n is sufficiently large, the conditions of Lemma 19 are satisfied. Hence, for
ach i ∈ S, there is V ′

i ⊂ Vi such that |V ′

i | ≥ (1 − ϵ/2)|Vi| ≥ (1 − 3ϵ/4)n/M , for every edge (i, j) of
b the pair (V ′

i , V
′

j ) is ϵ-regular in Hb with density d(V ′

i , V
′

j ) ≥ d − ϵ/2, and
⋃

i∈S V
′

i is (200M, 6)-
well-connected. Since the vertices of the matching in Hb are all in S, the conditions of Case 1 in
Lemma 11 are satisfied. □

For the rest of the section, we may therefore suppose that the largest matching in Hr has
2m < (2/3+λ)M vertices and no subgraph of Hb with radius at most three contains a matching with
(2/3 + λ)M vertices. We will conclude that the given coloring of Kn must be an extremal coloring
with parameter β := 1000(d + λ +

√
ϵ), which will complete the proof of Lemma 11.

Consider a maximum matching in Hr with m edges (ai, bi) for 1 ≤ i ≤ m, so m < (1/3+ λ/2)M .
Let A = {ai : i ∈ [m]}, B = {bi : i ∈ [m]}, and C = [M] \ (A∪B), so A, B, and C form a partition of [M]

ith |A| = |B| = m and |C | = M − 2m > (1/3 − λ)M . We may assume without loss of generality
hat the red degree of bi to C is at least the red degree of ai to C . Observe that C contains no red
dge as otherwise we could add it to the already constructed red matching, contradicting the fact
hat the chosen matching is maximum in Hr . Moreover, each ai has red degree to C at most one, as
therwise there are red edges (ai, c1) and (bi, c2) with c1, c2 ∈ C distinct and we could replace the
dge (ai, bi) in the matching by the two edges (ai, c1) and (bi, c2), making a larger matching in Hr

and again contradicting that the red matching is of maximum size. For the rest of the proof, we fix
vertex subsets A, B, and C with the properties described above.

We prove several claims along the way to establishing that the coloring is an extremal coloring
with parameter β . In outline, we will first show that the parts A, B, and C each have roughly equal
size by showing that m is close to M/3 (this will follow from the upper bound on m already given
above and the lower bound on m given in Claim 1 below). We will then deduce that we have an
extremal coloring by showing that either the edges in

⋃
i∈A∪C Vi are almost all blue and the edges

from this set to
⋃

i∈B Vi are almost all red or the edges in
⋃

i∈A∪B Vi are almost all red and the edges
from this set to

⋃
i∈C Vi are almost all blue. Note that this will be sufficient as W contains almost

all vertices of Kn and the regularity partition of W is equitable.
Recall that all edges of H with both vertices in C are blue. Let v ∈ C be a vertex of largest

lue degree in C and C ′
⊂ C be the neighbors of v in C in the graph Hb. As there are at most(M

2

)
/2 non-adjacent pairs in H and, hence, in the induced subgraph on C , by averaging, the

ertex v is in at most ϵ
(M
2

)
/|C | < ϵ

(M
2

)
/((1/3 − λ)M) < 2ϵM − 1 non-adjacent pairs. Hence,

C ′
| ≥ |C | − 1 − (2ϵM − 1) = |C | − 2ϵM .
Let m1 be the size of a maximum blue matching between A and C ′. Pick a blue matching between
and C ′ of size m1 whose vertices consist of subsets A1 ⊂ A and C1 ⊂ C ′ subject to the condition

hat C ′
\ C1 contains a blue matching as large as possible. Let C2 ⊂ C ′

\ C1 be the vertices of this
blue matching, so the vertices in A1 ∪ C1 ∪ C2 are all in C ′ or adjacent in blue to a vertex in C ′ and
therefore have distance in Hb at most two from v and are all in a blue matching with 2|A1| + |C2|

vertices. By construction, |A1| = |C1| = m1. Let C3 = C ′
\ (C1 ∪ C2), so C ′

= C1 ∪ C2 ∪ C3 forms a
partition of C ′ into three parts. Fig. 3 illustrates the different sets.

By the choice of the maximum blue matching, there are no blue edges from A \ A1 to C ′
\ C1.

Moreover, for each edge (a, c) of the maximum blue matching between A and C ′ (so a ∈ A1 and
c ∈ C1), a has no blue edges to C ′

\ C1 or c has no blue edges to A \ A1. On the other hand, each
vertex in A has at most one red edge to C , C contains no red edges, and there are at most ϵ

2

(M
2

)
on-adjacent pairs. Comparing these upper and lower bounds on the number of non-blue pairs in
∪ C ′ with not both vertices in A, we obtain

|A \ A1||C ′
\ C1| + |A1|min(|A \ A1|, |C ′

\ C1|) ≤
ϵ

2

(
M
2

)
+ |A| ≤

2
7
ϵM2, (8)

here the last inequality is from |A| ≤ M and M ≥ m = 1000/ϵ.
0
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Fig. 3. An illustration showing A, B, C , A1 , C1 , C2 , and C3 . C ′ is the set of blue neighbors of the vertex v and C1 , C2 , and
C3 form a partition of C ′ .

For each edge (a, c) ∈ A1 × C1 in the maximum blue matching between A and C ′, either a
or c has blue degree to C3 at most one, since otherwise we can replace (a, c) by two blue edges
(a, c1) and (c, c2) with c1, c2 ∈ C3, which would also give a maximum blue matching between
A and C ′, but would increase the size of the maximum blue matching in the remaining vertices
in C ′, contradicting our choice of the blue matching between A and C ′. Hence, there are at least
|A1|(|C3| − 1) pairs between A1 ∪ C1 and C3 which are not blue. Moreover, for each matching edge
(c3, c4) in the maximum blue matching in C ′

\ C1 (so c3, c4 ∈ C2), either c3 or c4 has blue degree
at most one to C3, so there are at least (|C2|/2)(|C3| − 1) pairs between C2 and C3 which are not
blue. Finally, there are no blue edges in C3. Hence, comparing the upper and lower bounds on the
number of non-blue pairs between A1 ∪ C ′ and C3, we similarly obtain

(|A1| + |C2|/2 + |C3|/2)(|C3| − 1) ≤
ϵ

2

(
M
2

)
+ |A1| ≤

2
7
ϵM2. (9)

Claim 1. m ≥
( 1
3 − λ − 4ϵ

)
M.

roof. Suppose, for the sake of contradiction, that m <
( 1
3 − λ − 4ϵ

)
M . Then |C ′

| ≥ |C | − 2ϵM =

− 2m − 2ϵM ≥ m = |A|. In particular, min(|A \ A1|, |C ′
\ C1|) = |A \ A1|. Since also |A1| = |C1| =

1, the left-hand side of (8) simplifies to |C ′
|(m−m1). Hence, (8) implies that |C ′

|(m−m1) ≤ ϵM2/3.
s |C ′

| ≥ M − 2m − 2ϵM ≥ M/3, we obtain m1 ≥ m − ϵM .
As |A1| = |C1| = m1 and |C ′

| = |C1| + |C2| + |C3|, we have

|A1| + |C2|/2 + |C3|/2 = (|C ′
| + m1)/2 ≥ (M − m − 3ϵM)/2 ≥ M/3.

ence, from (9), we similarly obtain |C3| ≤ ϵM .
Thus, the number of vertices of the blue matching of distance at most two from v is

2|A1| + |C2| = 2m1 + |C ′
| − m1 − |C3| ≥ m1 + M − 2m − 2ϵM − ϵM

≥ M − m − 4ϵM > (2/3 + λ)M,

ontradicting the assumption that no such large blue matching exists. □

If |C ′
\ C1| ≥ |A \ A1|, the left-hand side of (8) is equal to |C ′

|(m − m1). Otherwise, |A \ A1| >
C ′

\ C1| and the left-hand side of (8) is equal to m(|C ′
| − m1). In either case, as m, |C ′

| ≥
2
7M , we

btain from (8) that

|A | = m ≥ min(m, |C ′
|) − ϵM. (10)
1 1
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Fig. 4. An illustration showing A2 ⊂ A1 , B2 , C ′

1 ⊂ C1 , C4 , and C5 . The sets of blue edges represent three distinct blue
atchings.

Consider a maximum blue matching between A1 and B. Let m2 be the number of edges of this
lue matching and let A2 ⊂ A1 and B2 ⊂ B be the vertices in this blue matching. Consider a blue
atching between A1 \ A2 and C1 that matches every vertex in A1 \ A2 subject to the condition that

he vertices in C ′ not contained in this blue matching contain a blue matching of maximum possible
ize. Note that such a blue matching between A1 \ A2 and C1 exists as there is a perfect matching
between A1 and C1 by construction. Let C ′

1 be the set of |A1 \ A2| vertices in C1 that match with a
vertex in A1 \ A2 and C4 ⊂ C ′

\ C ′

1 consist of the vertices in the maximum blue matching in C ′
\ C ′

1.
Let C5 = C ′

\ (C ′

1 ∪ C4). Fig. 4 is an illustration of these sets.
There are clearly no blue edges in C5. As before, for each edge (a, c) in the blue matching between

A1 \A2 and C ′

1, either a or c has blue degree at most one to C5. Similarly, for each edge (c1, c2) of the
blue perfect matching in C4, either c1 or c2 has blue degree at most one to C5. Hence, the number
of pairs between (A1 \A2)∪ C ′ and C5 which are not blue is at least (|C ′

1|+ |C4|/2+|C5|/2)(|C5|− 1)
and at most ϵ

2

(M
2

)
+|A1 \ A2| ≤ ϵM2/4+M (recall that C has no red edges and each vertex in A has

t most one red neighbor in C). As

|C ′

1| + |C4|/2 + |C5|/2 = |C ′
|/2 + |C ′

1|/2 ≥ |C ′
|/2 ≥ M/7,

e obtain that |C5| ≤
7
4ϵM + 8 ≤ 2ϵM .

We have obtained a blue matching with vertex set B2 ∪ A1 ∪ C ′

1 ∪ C4. Each vertex in this blue
atching has distance in Hb at most three from v and, therefore, the number of vertices in this blue
atching is less than (2/3+ λ)M . On the other hand, the number of vertices in this blue matching

s at least

|B2| + m1 + |C ′
| − |C5| ≥ |B2| + min(m, |C ′

|) + |C ′
| − 3ϵM ≥ |B2| + min(m, |C |) + |C | − 7ϵM

> |B2| +

(
2
3

− 2λ − 7ϵ
)
M,

where the first inequality uses (10) and the last inequality uses 2m < (2/3 + λ)M and |C | + m =

−m when m ≤ |C | and uses |C | > (1/3−λ)M when m > |C |. We thus have the following claim.

Claim 2. |B2| ≤ (3λ + 7ϵ)M.

In particular, as there are no blue edges between B \ B2 and A1 \ A2, the graph between A and B
s almost entirely red. Let µ := (6λ + 16ϵ)M .
20
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Fig. 5. An illustration showing A3 and B3 .

Claim 3. The largest red matching with vertices in A has size less than µ or the largest red matching
etween B and C ′ has size less than 2µ.

roof. Suppose, for the sake of contradiction, that the claim does not hold. Consider a red matching
n A of size µ and let A3 be the set of vertices of this red matching, so |A3| = 2µ. Consider a
ed matching between B and C ′ of size 2µ and let B3 be the vertices of this matching in B. Fig. 5
llustrates these sets.

Observe that |A \ A3| = |B \ B3| = m− 2µ. Edge partition the balanced complete bipartite graph
etween A\A3 and B\B3 into m−2µ perfect matchings, so each of the perfect matchings has exactly
− 2µ edges. The number of missing edges in H is at most ϵ

2

(M
2

)
< ϵM2/4 and m − 2µ ≥ M/4,

so the density of non-adjacent pairs between A \ A3 and B \ B3 in H is at most 4ϵ and there is a
matching M in H between A \ A3 and B \ B3 with at least (1 − 4ϵ)(m − 2µ) edges by Lemma 18.
By Claim 2, the maximum size of a blue matching between A1 and B is at most (3λ + 7ϵ)M , so the
maximum size of a blue matching between A and B is at most

(3λ + 7ϵ)M + |A| − |A1| ≤ (4.5λ + 10ϵ)M,

where the last inequality uses (10) (so that |A| − |A1| = m − m1 ≤ m − min(m, |C ′
|) + ϵM),

|C ′
| ≥ |C | − 2ϵM = M − 2m − 2ϵM , and m < (1/3 + λ/2)M . Hence, the matching M has at least

(1− 4ϵ)(m− 2µ)− (4.5λ + 10ϵ)M red edges. This red matching, together with the red matching of
size µ with vertex set A3 and the red matching between B3 and C3 of size 2µ, forms a red matching
of size at least

(1 − 4ϵ)(m − 2µ) − (4.5λ + 10ϵ)M + 3µ ≥ m − (4.5λ + 12ϵ)M + µ

≥ (1/3 − 5.5λ − 16ϵ)M + µ

≥ (2/3 + λ)M/2,

here the first inequality uses m ≤ (2/3 + λ)M/2 ≤ M/2, the second inequality follows from
laim 1, and the final inequality from the definition of µ. This contradicts the assumption that Hr
as no red matching of size (2/3 + λ)M/2. □

From Claim 3, the rest of the proof naturally splits into two cases.

ase 1: The largest red matching with vertices in A has size less than µ.
Let τ := 2µ+2λM+3ϵM+1. Suppose, for the sake of contradiction, that there is a blue matching

etween C ′ and B of size τ . Let C6 ⊂ C ′ be the τ vertices of C ′ in this blue matching. Fig. 6 is an

llustration.
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Fig. 6. An illustration showing A′ , A′′ , and C6 .

Let A′
⊂ A be those vertices with at least one blue neighbor in C ′ and A′′

= A \ A′. Each vertex in
A has red degree to C ′ at most one and so each vertex in A′′ is in at most one edge to C ′. As there are
at most ϵM2/4 non-adjacent pairs in total and |C ′

| ≥ M/4+1, we thus have |A′′
|(|C ′

|−1) ≤ ϵM2/4
and hence |A′′

| ≤ ϵM .
We next bound the number of pairs of vertices in A′

∪C ′
\C6 which are not blue edges. There are

at most ϵ
2

(M
2

)
non-adjacent pairs. There are also no red edges in C ′. By Lemma 17, there are fewer

han
(
µ

2

)
+ µ(|A′

| − µ) red edges in A′. Finally, as each vertex in A has red degree at most one to
, there are at most |A′

| red edges between A′ and C ′. In total, the number of pairs of vertices in
A′

∪ C ′
\ C6 which are not blue is at most

ϵ

2

(
M
2

)
+

(
µ

2

)
+ µ(|A′

| − µ) + |A′
| ≤ µ|A′

| − µ2/2 + |A′
| + ϵM2/4

≤ 2µ|A′
|

≤ 2µ(|A′
| + |C ′

| − τ − µ − 1/2)
= 2µ

(
|A′

| + |C ′
\ C6| − µ − 1/2

)
=

(
|A′

| + |C ′
\ C6|

2

)
−

(
|A′

| + |C ′
\ C6| − 2µ
2

)
.

Here we used
(x
2

)
−

(x−y
2

)
= y (x − y/2 − 1/2) with x = |A′

| + |C ′
\ C6| and y = 2µ. Therefore,

there are at least
(
|A′

|+|C ′
\C6|−2µ
2

)
blue edges with both vertices in A′

∪ C ′
\ C6. By Lemma 17, there

s a blue matching in A′
∪ C ′

\ C6 spanning at least |A′
| + |C ′

\ C6| − 2µ − 1 vertices. The blue
atching consisting of the blue matching between C6 and B of size τ together with the maximum
lue matching in A′

∪ C ′
\ C6 contains only vertices of distance at most two from v and has at least

2τ + |A′
| + |C ′

\ C6| − 2µ − 1 = τ + |A′
| + |C ′

| − 2µ − 1 ≥ τ + |A| + |C | − 3ϵM − 2µ − 1
= τ + M − m − 3ϵM − 2µ − 1 = 2λM + M − m ≥ (2/3 + λ)M

ertices, contradicting our assumption that there is no such blue matching. Hence, there is no blue
atching between C ′ and B of size τ .
We now show that the coloring is an extremal coloring with parameter β = 1000(d + λ +

√
ϵ)

ith the set
⋃

i∈A∪C Vi almost entirely blue and the bipartite graph between
⋃

i∈A∪C Vi and
⋃

i∈B Vi
lmost entirely red. We first check that the two parts of this partition are of the claimed size. It
uffices to check that

⏐⏐⋃ V
⏐⏐ /n is 1

± β . Since W ⊂ V (K ) satisfies |W |/n ≥ 1 − ϵ/4 and the
i∈B i 3 n
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partition W =
⋃

i∈[M]
Vi is equitable with n ≫ M , it is enough to show that |B|/M is 1

3 ±
β

2 . But this
ollows easily, since |B| = m and 1

3 − λ − 4ϵ < m/M ≤
1
3 + λ/2, where the first inequality is by

laim 1.
We next show that the induced subgraph on

⋃
i∈A∪C Vi is almost entirely blue. The number of

on-edges in A∪C is at most ϵ
2

(M
2

)
. There are also no red edges in C . The number of red edges from

to C is at most |A|. By Lemma 17, the number of red edges in A is at most
(
µ

2

)
+ µ(|A| − µ). Each

part Vi in the equitable partition has size at most ⌈n/M⌉ and the density between any ϵ/2-regular
air of parts that does not correspond to a red edge in H is at most d. Hence, the total number of

edges with both vertices in
⋃

i∈A∪C Vi which are red is at most(
ϵ

2

(
M
2

)
+ |A| +

(
µ

2

)
+ µ(|A| − µ)

)
⌈n/M⌉

2
+ d

(
n
2

)
≤

(
d +

ϵ

2
+

µ

M

)(
n
2

)
≤ β

(⏐⏐⋃
i∈A∪C Vi

⏐⏐
2

)
,

here we used that
⏐⏐⋃

i∈A∪C Vi
⏐⏐ ≥ 3n/5 and β ≥ 4d + 2ϵ + 4µ/M .

Finally, we show that the bipartite graph between
⋃

i∈A∪C Vi and
⋃

i∈B Vi is almost entirely red.
e first bound the number of edges between A∪C and B which are not red. The number of missing

dges between A ∪ C and B is at most ϵ
2

(M
2

)
. Recall that the maximum blue matching from A1 to B

s of size |B2|. Moreover, the maximum blue matching between C ′ and B is of size less than τ and
ence, by Lemma 18, the number of blue edges between A ∪ C and B is less than(

|B2| + |A \ A1| + |C \ C ′
|
)
|B| + max(|C ′

|, |B|)τ

≤
(
(3λM + 7ϵM) +

(
m − min(m, |C ′

|) + ϵM
)
+ 2ϵM

)
m + τM

= (3λ + 10ϵ)Mm + (m − min(m, |C ′
|))m + τM

≤ (3λ + 12ϵ)Mm + (m − min(m, |C |))m + τM
≤ (4.5λ + 12ϵ)Mm + τM

<(20λ + 50ϵ)M2,

where we used Claim 2 and (10) in the first inequality, |C ′
| ≥ |C | − 2ϵM in the second inequality,

m − min(m, |C |) ≤ 1.5λM in the third inequality, and, in the last inequality, we substituted in
the values of τ and µ and used the lower bound on M . Hence, the number of blue edges between⋃

i∈A∪C Vi and
⋃

i∈B Vi is at most(
ϵ

2

(
M
2

)
+ (20λ + 50ϵ)M2

)
⌈n/M⌉

2
+ d

(
n
2

)
≤

(
d + 20λ + 51ϵ

)
n2

≤ β

⏐⏐⏐⏐⏐ ⋃
i∈A∪C

Vi

⏐⏐⏐⏐⏐ ·

⏐⏐⏐⏐⏐⋃
i∈B

Vi

⏐⏐⏐⏐⏐ ,
here we used that 3n/5 ≤

⏐⏐⋃
i∈A∪C Vi

⏐⏐ ≤ 7n/10 and also that β ≥ 6(d+20λ+51ϵ). This completes
he proof in this case.

ase 2: The largest red matching between B and C ′ has size less than 2µ.
Our goal is to show that the coloring is an extremal coloring with parameter β = 1000(d+λ+

√
ϵ)

ith at most a β-fraction of the edges in
⋃

i∈A∪B Vi blue and at most a β-fraction of the edges
etween

⋃
i∈A∪B Vi and

⋃
i∈C Vi red. To show these two parts have the desired size, it suffices to

how that
⋃

i∈C Vi has size (1/3 ± β)n and this follows from a very similar computation to that in
ase 1.
Let B4 be the set of vertices in B that have at least one blue neighbor in C ′, so every vertex in

4 has distance at most two from v in blue. Since there is no red matching between B \ B4 and
′ of size 2µ, Lemma 18 implies that the number of red edges between B \ B4 and C ′ is at most
µmax(|C ′

|, |B \ B4|). However, since the edges between B \ B4 and C ′ are all red and there are at
ost ϵ

2

(M
2

)
non-edges, the number of red edges between B \ B4 and C ′ is at least |B \ B4||C ′

|−
ϵ
2

(M
2

)
.

Since |C ′
| ≥ |C | − 2ϵM ≥ (1/3 − λ − 2ϵ)M , it follows that |B \ B4| ≤ 3µ. We get a blue matching

ith vertices of distance at most two from v by taking a maximum blue matching between A and
23
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C ′ (which is of size m1) together with a maximum blue matching in B4, which is of size m4, say.
Together this matching has size m1 +m4 and so, by assumption, we have m1 +m4 < (2/3+λ)M/2.
Hence, together with (10),

m4 < (2/3 + λ)M/2 − m1 ≤ (2/3 + λ)M/2 − min(m, |C ′
|) + ϵM ≤

3
2
λM + 5ϵM,

here we used that m ≥
( 1
3 − λ − 4ϵ

)
M by Claim 1 and |C ′

| ≥ |C | − 2ϵM >
( 1
3 − λ − 2ϵ

)
M . By

emma 17, with k =
3
2λM + 5ϵM , the number of blue edges in B4 is thus at most |B4|k ≤ km. The

umber of pairs of vertices in B that are not in B4 is at most |B \ B4||B| ≤ 3µm. Hence, there are at
ost

( 3
2λM + 5ϵM + 3µ

)
m ≤ 4µm blue edges in B.

We next bound the number of blue edges in A. We first claim that there is a matching (which
oes not have to be monochromatic) in B4 ∪ C ′ with each edge containing at most one vertex in
4 and with at least |C ′

| + min(|B4|, |C ′
|) − 5

√
ϵM vertices. Indeed, if |B4| ≥ |C ′

|, then, since the
umber of edges between B4 and C ′ is at least |B4||C ′

| −
ϵ
2

(M
2

)
, Lemma 18 gives a matching of size

C ′
|−ϵM , better than desired. On the other hand, if |B4| < |C ′

|, Lemma 18 instead implies that there
s a matching of size |B4|−ϵM between B4 and C ′. To complete the matching, we consider the set of
t least |C ′

| − |B4| remaining vertices of C ′ and show that if q is the size of the maximum matching
n this set and 2q < |C ′

|−|B4|−3
√

ϵM , then max(
(2q+1

2

)
,
(q
2

)
+ (|C ′

|−|B4|−q)q) <
(
|C ′

|−|B4|

2

)
−ϵ

(M
2

)
,

hich would contradict Lemma 17. We may clearly assume that |C ′
| − |B4| ≥ 3

√
ϵM . But then(

2q + 1
2

)
= (2q + 1)q < (|C ′

| − |B4| − 3
√

ϵM + 1)(|C ′
| − |B4| − 3

√
ϵM)/2

≤

(
|C ′

| − |B4|

2

)
− (6

√
ϵM − 2)(|C ′

| − |B4|)/2 + 9ϵM2/2

≤

(
|C ′

| − |B4|

2

)
− (6

√
ϵM − 2)(3

√
ϵM)/2 + 9ϵM2/2 <

(
|C ′

| − |B4|

2

)
− ϵ

(
M
2

)
and (

q
2

)
+ (|C ′

| − |B4| − q)q ≤ q(q/2 + (|C ′
| − |B4| − q)) = q(|C ′

| − |B4| − q/2)

< (|C ′
| − |B4| − 3

√
ϵM)(|C ′

| − |B4|)/2

=

(
|C ′

| − |B4|

2

)
− (3

√
ϵM − 1)(|C ′

| − |B4|)/2

≤

(
|C ′

| − |B4|

2

)
− (3

√
ϵM − 1)(3

√
ϵM)/2 <

(
|C ′

| − |B4|

2

)
− ϵ

(
M
2

)
,

s required.
As there are no red edges in C ′ and the largest red matching between B4 and C ′ has size less than

µ, there is a blue matching in B4∪C ′ with at least |C ′
|+min(|B4|, |C ′

|)−5
√

ϵM−4µ vertices. If now
1 contains a blue matching of size at least 4µ + 3

√
ϵM , then, together with the blue matching in

4 ∪ C ′, we get a blue matching, each vertex of distance at most two from v, with the total number
f vertices at least

8µ + 6
√

ϵM + |C ′
| + min(|B4|, |C ′

|) − 5
√

ϵM − 4µ ≥ (2/3 + λ)M,

contradiction. Note that in the inequality we used that |C ′
| ≥ |C | − 2ϵM ≥ (1/3 − λ − 2ϵ)M and,

y Claim 1, that |B4| ≥ |B|−3µ ≥ (1/3−λ−4ϵ)M−3µ. Hence, A1 does not contain a blue matching
of size 4µ + 3

√
ϵM . By Lemma 17, it follows that A1 has at most 4µm + 3

√
ϵMm blue edges. The

umber of pairs in A not in A1 is also at most |A \ A1||A| ≤ µm, where we used (10) to obtain that

|A \ A1| ≤ m − min(m, |C ′
|) + ϵM ≤ max(0,m − (1/3 − λ − 2ϵ)M) + ϵM

< (1/3 + λ/2)M − (1/3 − λ − 2ϵ)M + ϵM < µ.

ence, there are at most 5µm + 3
√

ϵMm blue edges in A.
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Fig. 7. An illustration showing A′

1 , B5 , and C7 and the corresponding blue matchings.

We next bound the number of blue edges between A and B. First suppose, for the sake of
ontradiction, that there is a blue matching between A1 and B4 of size 2λM . Let the set of remaining
ertices in A1 be A′

1 and the set of remaining vertices in B4 be B5. Pick a maximum blue matching
n the union of C ′ and A′

1 ∪ B5. We claim that this second matching has size at least |C ′
| − 2ϵM . See

ig. 7 for an illustration.
To see this, we first build a blue matching between C ′ and B5. Since there are at most ϵ

2

(M
2

)
on-edges in total and there is no red matching between B and C ′ of size 2µ, Lemma 18 implies
hat the number of blue edges between B5 and C ′ is at least |B5||C ′

| − 2µmax(|B5|, |C ′
|)− ϵ

2

(M
2

)
. By

emma 18 again, there is a blue matching between B5 and C ′ of size at least

|B5||C ′
| − 2µmax(|B5|, |C ′

|) −
ϵ
2

(M
2

)
max(|B5|, |C ′|)

− 1 ≥ min(|B5|, |C ′
|) − 2µ − ϵM.

Let C7 be the remaining vertices of C ′ that are not in this matching, noting that |C7| is significantly
smaller than |A1| and so also significantly smaller than |A′

1| = |A1| − 2λM . Since each vertex in A
has red degree at most one to C , Lemma 18 implies that there is a blue matching between A′

1 and
C7 of size at least

|A′

1||C7| − |A′

1| −
ϵ
2

(M
2

)
max(|A′

1|, |C7|)
− 1 ≥ |C7| − 1 −

ϵ

2|A′

1|

(
M
2

)
− 1 ≥ |C7| − 2 − ϵM.

hus, we have a matching of size at least |C ′
\ C7|+|C7|−2−ϵM > |C ′

|−2ϵM , as required. Together
ith the matching of size 2λM between A1 \ A′

1 and B4, we see that we have a blue matching with
t least

4λM + 2|C ′
| − 4ϵM ≥ (2/3 + λ)M

ertices. But these vertices are all of distance at most two from v, a contradiction. Hence, there is no
lue matching of size 2λM between A1 and B4 and Lemma 18 implies that there are in total at most
λM max(|A1|, |B4|) ≤ λM2 blue edges between these two sets. As |A \ A1| ≤ m−min(m, |C ′

|)+ϵM
y (10) and |B \ B4| ≤ 3µ, we see that the number of blue edges between A and B is at most

λM2
+ |A \ A1||B| + |B \ B4||A|

≤ λM2
+ (max(0,m − |C ′

|) + ϵM)M + 3µM/2

≤ λM2
+ (max(0, (1/3 + λ/2)M − (|C | − 2ϵM)) + ϵM)M + 1.5µM
25
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b

w

T

R

≤ λM2
+ ((1/3 + λ/2)M − (1/3 − λ − 2ϵ)M + ϵM)M + 1.5µM

≤ (1.5µ + 2.5λM + 3ϵM)M < 2µM.

In total, the number of blue edges in A ∪ B is at most 11µm + 3
√

ϵMm. Hence, the number of
lue edges in

⋃
i∈A∪B Vi is at most(

ϵ

2

(
M
2

)
+ 11µm + 3

√
ϵMm

)
⌈n/M⌉

2
+d

(
n
2

)
≤

(
d +

11µ
M

+ 4
√

ϵ

)(
n
2

)
≤ β

(⏐⏐⋃
i∈A∪B Vi

⏐⏐
2

)
,

here we used that m ≤ M/2,
⏐⏐⋃

i∈A∪B Vi
⏐⏐ ≥ 3n/5 and β ≥ 3(d + 11µ/M + 4

√
ϵ).

Since the largest red matching between B and C ′ has size less than 2µ and |C \ C ′
| ≤ 2ϵM , it

follows that the number of red edges between B and C is at most µM . Indeed, by Lemma 18, the
number of red edges between B and C ′ is at most 2µmax(|B|, |C ′

|). Thus, the number of red edges
between B and C is at most

2µmax(|B|, |C ′
|) + |C \ C ′

||B| ≤ 2µmax(|B|, |C ′
|) + 2ϵM|B| ≤ 2µmax(m,M − 2m) + 2ϵM|B|

≤ 2µmax((1/3 + λ/2)M, (1/3 + 2λ + 8ϵ)M) + 2ϵM2 < µM.

Moreover, every vertex in A has red degree at most one to C , so there are at most |A| red edges
between A and C . In total, we get that the number of red edges between

⋃
i∈A∪B Vi and

⋃
i∈C Vi is

at most(
ϵ

2

(
M
2

)
+ µM + |A|

)
⌈n/M⌉

2
+ d

(
n
2

)
≤

(
d +

2µ
M

)
n2

≤ β

⏐⏐⏐⏐⏐ ⋃
i∈A∪C

Vi

⏐⏐⏐⏐⏐ ·

⏐⏐⏐⏐⏐⋃
i∈B

Vi

⏐⏐⏐⏐⏐ .
his completes the proof in this case. □
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