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1. INTRODUCTION

Turán’s theorem [10] is one of the fundamental results in Extremal Graph Theory.

It states that among n-vertex graphs not containing a clique of size t, the complete

ðt � 1Þ-partite graph with (almost) equal parts has the maximum number of

edges. For two graphs G and H, we define the Turán number exðG;HÞ of H in G,

as the largest integer e, such that there is an H-free subgraph of G with e edges.

Obviously, exðG;HÞ � jEðGÞj, where EðGÞ denotes the edge set of G. Turán’s

theorem, in an asymptotic form, can be restated as

exðKn;KtÞ ¼
t � 2

t � 1
þ oð1Þ

� �
n

2

� �
; ð1Þ

that is, the largest Kt-free subgraph of Kn contains approximately ðt � 2Þ=ðt � 1Þ-
fraction of its edges. We would like to extend this result to graphs other than Kn.

Let us consider an arbitrary graph G on n vertices. It is easy to give a lower

bound on exðG;KtÞ following Turán’s construction. One can partition the vertex

set of G into t � 1 parts such that the degree of each vertex within its own part is at

most 1=ðt � 1Þ-times its degree in G. Thus, the subgraph consisting of the edges

of G connecting two different parts has at least a ðt � 2Þ=ðt � 1Þ-fraction of the

edges of G and is clearly Kt-free. We say that a graph (or rather a family of

graphs) is t-Turán if this trivial lower bound is essentially an upper bound as well.

More precisely, G is t-Turán if exðG;KtÞ ¼
�

t�2
t�1

þ oð1Þ
�
jEðGÞj. The question we

pursue is

Which graphs are t-Turán ?

It has been shown that for any fixed t, there is a number mðt; nÞ such that

almost all graphs on n vertices with m � mðt; nÞ edges are t-Turán. The most

recent estimate for mðt; nÞ, due to Szabó and Vu [9], is cn2� 1
t�1:5, provided t � 4

and c is a sufficiently large constant. It is conjectured that one can set mðt; nÞ as

small as c n2�2=ðtþ1Þ, but so far this has been verified only for t ¼ 3 [4], t ¼ 4 [5],

and t ¼ 5 [6]. All these results, however, are results about random graphs and do

not yet provide a deterministic sufficient condition for a graph to be t-Turán.

The main difficulty in generalizing Turán’s theorem is that all of its classical

proofs are tailored to the complete graph Kn. However, the recent investigations

in [9] revealed that one of the key conditions for a graph to be t-Turán is that its

edges are distributed sufficiently evenly. It has turned out that under certain

circumstances, this condition (to be more precise, a sufficiently strong variant of

it) can be guaranteed by a simple assumption about the spectrum of the graph.

For a graph G, let �1 � �2 � � � � � �n be the eigenvalues of its adjacency

matrix. The quantity �ðGÞ ¼ maxf�2;��ng is called the second eigenvalue of

G. A graph G ¼ ðV;EÞ is called an ðn; d; �Þ-graph if it is d-regular and has n
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vertices, and the second eigenvalue of G is at most �. It is well known (see [3] for

more details) that if � is much smaller than the degree d, then G has certain

random-like properties. Thus, � could serve as some kind of ‘‘measure of ran-

domness’’ in G. Our main result is the following:

Theorem 1.1. Let t � 3 be an integer and let G ¼ ðV ;EÞ be an ðn; d; �Þ-graph.

If dt�1=nt�2 � �, then

exðG;KtÞ ¼
t � 2

t � 1
þ oð1Þ

� �
jEðGÞj:

To see that this result generalizes Turán’s theorem, observe that the second

eigenvalue of the complete graph Kn is 1. Theorem 1.1 could also be considered

as a contribution to the fast-developing comprehensive study of graph theoretical

properties of ðn; d; �Þ-graphs, which has recently attracted lots of attention both

in combinatorics and theoretical computer science. For a recent survey about

these fascinating graphs and their properties, we refer the interested reader to the

paper of Krivelevich and Sudakov [7].

Our proof of Theorem 1.1 uses an approach similar to that in [9] with some

additional ideas. The main obstacle of an adaptation is that it is not clear how the

technical condition used there can be applied for ðn; d; �Þ-graphs. The crucial

Definition 2.3 of our paper circumvents this difficulty with only a slight loss in the

outcome, and then a simplified variant of the double-counting argument of [9] can

be applied.

Let us briefly discuss the sharpness of Theorem 1.1. The condition involving

n; d, and � is known to be tight (up to a constant factor) for t ¼ 3. For t ¼ 3, the

above theorem states that if d2=n � �, then one needs to delete at least half of the

edges of G to destroy all the triangles. On the other hand, in [1], Alon constructed

a triangle-free d-regular graph G on n vertices with second eigenvalue � ¼ �ðGÞ,
where d ¼ �ðn2=3Þ and � ¼ �ðn1=3Þ. Using the blow-up of this construction, it

was shown in [8] that for any pair of integers d and n such that �ðn2=3Þ � d � n,

there exist a triangle-free graph G1, which has n1 ¼ OðnÞ vertices, is d1-regular

with d1 ¼ �ðdÞ, and whose second eigenvalue satisfies �ðG1Þ ¼ Oðd2
1=n1Þ. Ob-

viously, exðG1;K3Þ ¼ jEðG1Þj. This implies that for t ¼ 3 and any sensible degree

d, the condition in Theorem 1.1 is not far from being best possible.

The rest of this paper is organized as follows. In the next section, we sum-

marize some useful quantitative results on the edge distribution of pseudo-

random regular graphs, which we use later in the proof. In Section 3, we present

the proof of our main theorem. The last section of the paper is devoted to con-

cluding remarks and discussion of relevant open problems.

We close this section with some conventions and notation. For two (not neces-

sarily) disjoint subsets of vertices U;W � V , let eðU;WÞ be the number of

ordered pairs ðu;wÞ such that u 2 U; w 2 W , and ðu;wÞ is an edge of G. We also

denote by eðUÞ ¼ eðU;UÞ=2, the number of edges spanned by U. For a vertex v
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of G, let NðvÞ denote the set of vertices of G adjacent to v, and let dðvÞ denote its

degree. Similarly, for a subset U of the vertex set, NUðvÞ ¼ NðvÞ \ U and dUðvÞ ¼
jNUðvÞj. We will make no serious attempt to optimize our absolute constants.

2. PROPERTIES OF PSEUDO-RANDOM GRAPHS

In this section, we obtain a result on the edge distribution in pseudo-random

regular graphs, which will be used later in the proof. We start with the following

two well-known facts whose proofs can be found, e.g., in Chapter 9 of the

monograph of Alon and Spencer [3].

Theorem 2.1. Let G ¼ ðV ;EÞ be an ðn; d; �Þ-graph. Then for every subset U of V

X
v2V

�
dUðvÞ � djUj=n

�2

� �2jUj:

This theorem has the following easy corollary (see, e.g., [3]).

Corollary 2.2. Let G ¼ ðV ;EÞ be an ðn; d; �Þ-graph. Then for every two subsets

B;C � V, we have

eðB;CÞ � jBjjCjd
n

����
���� � �

ffiffiffiffiffiffiffiffiffiffiffiffi
jBjjCj

p
:

To make our inductive argument work, we need the following somewhat

technical definition.

Definition 2.3. Let G ¼ ðV ;EÞ be a graph of order n, let t � 2 be an integer,

and let �ðnÞ and pðnÞ be two functions of n such that 0 < p ¼ pðnÞ � 1 and �ðnÞ
tends to zero when n tends to infinity. We say that G has the ðt; p; �Þ-property if it

satisfies the following two conditions:

ðiÞ For every two subsets U and W of VðGÞ of cardinality, at least ð�pÞt�2
n

��� eðU;WÞ � pjUjjW j
��� � �pjUjjW j:

ðiiÞ For every subset U of VðGÞ with cardinality at least ð�pÞt�3
n, there are at

most ð�pÞt�1
n vertices of G with

��� dUðvÞ � pjUj
��� > �pjUj:

The main result of this section provides a sufficient condition for an ðn; d; �Þ-
graph to have the ðt; d=n; �Þ-property.
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Proposition 2.4. Let t � 2 be an integer, and let G ¼ ðV ;EÞ be an ðn; d; �Þ-
graph such that

dt�1

nt�2
> !ðnÞ�;

where !ðnÞ is a function, which tends to infinity arbitrarily slowly with n. Set � ¼
�ðnÞ ¼ !ðnÞ�1=ðt�1Þ

. If n is sufficiently large, then G has the ðt; d=n; �Þ-property.

Proof. (i) Let U and W be subsets of VðGÞ with cardinality at least

ð�d=nÞt�2
n. Then by Corollary 2.2, we have

eðU;WÞ � d

n
jUjjW j

����
���� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUjjW j

p
¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jUjjW j
p jUjjW j � �

ð�d=nÞt�2
n
jUjjW j

¼ �nt�2

�t�2dt�1

d

n
jUjjW j < 1

!ðnÞ�t�2

d

n
jUjjW j ¼ �

d

n
jUjjW j :

(ii) Let U � VðGÞ with jUj � ð�d=nÞt�3
n. By Theorem 2.1, the number of

vertices with
��dUðvÞ � djUj=n

�� > �djUj=n is at most

�2jUj
ð�djUj=nÞ2

¼ �2n2

�2d2jUj �
�2n2

�2d2ð�d=nÞt�3
n
¼ �2nt�2

�t�1dt�1
¼ �!ðnÞ�nt�2

dt�1

� � � dt�1

!ðnÞnt�2
¼ �

d

n

� �t�1

n:
&

3. PROOF OF THE MAIN RESULT

In this section, we prove that in graphs having the ðt; p; �Þ-property, Turán’s

theorem is valid asymptotically. In the light of Proposition 2.4, the following

result (which may be of independent interest) immediately implies the assertion

of Theorem 1.1.

Theorem 3.1. Let t � 2 be an integer, and let G ¼ ðV ;EÞ be a graph of order n.

If G has the ðt; p; �Þ-property with some 0 < p ¼ pðnÞ � 1 and � ¼ �ðnÞ ! 0,

then

exðG;KtÞ ¼ 1 � 1

t � 1
þ oð1Þ

� �
jEðGÞj:
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Proof. As it was noted in the Introduction, the lower bound exðG;KtÞ �
t�2
t�1

jEðGÞj is valid for every graph G.

To prove the corresponding upper bound on exðG;KtÞ, it is enough to show that

for n large enough one needs to remove at least
�

1
t�1

� 9t�
�
n2p=2 edges from G in

order to destroy all copies of Kt. Since by part ðiÞ of Definition 2.3, G has at most

ð1 þ �Þn2p=2 edges, this indeed would imply that

exðG;KtÞ � eðGÞ � 1

t � 1
� 9t�

� �
n2

2
p � eðGÞ � 1

t � 1
� 9t�

� �
eðGÞ
1 þ �

¼ t � 2

t � 1
þ oð1Þ

� �
eðGÞ:

We prove the above claim by induction on t. For t ¼ 2, this statement follows

easily from part ðiÞ of the definition of ð2; p; �Þ-property. Indeed, G has at least

ð1 � �Þn2p=2 edges, and we need to delete all of them to obtain a K2-free graph.

Now let us assume that the claim holds for some t � 2 and prove it for t þ 1.

Consider a graph G, which has the ðt þ 1; p; �Þ-property, and let R be the set of

edges of G such that deleting R destroys all ðt þ 1Þ-cliques in G. Color the edges

in R red and all other edges blue. Let N1, N2 be the number of triangles in G with

exactly one and two red edges, respectively. To prove the claim, we will estimate

N1 from both sides.

For each vertex v, let Rv (Bv) be the set of neighbors of v, which are connected

to v by a red (blue) edge and denote by rv ¼ jRvj (bv ¼ jBvj), the red (blue)

degree of v. Let r ¼ 1
n

P
v rv be the average red degree and b ¼ 1

n

P
v bv be the

average blue degree. Observe that ð1 � �Þnp � r þ b � ð1 þ �Þnp. Furthermore,

let fv be the number of red edges in the graph induced by Bv. It is clear that

N1 ¼
X
v2V

fv : ð2Þ

For every vertex v of G, we distinguish two cases. First, assume jBvj � �np.

Then, it is easy to check that the induced subgraph G½Bv� has the ðt; p; �Þ-property.

As EðGÞ � R does not contain Ktþ1, the deletion of red edges should destroy all

copies of Kt in G½Bv�. Therefore, by the induction hypothesis,

fv �
1

t � 1
� 9t�

� �
jBvj2

2
p : ð3Þ

In the second case, when jBvj < �np, we clearly have that

1

t � 1
� 9t�

� �
jBvj2

2
p � �2

2
n2p3 :
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This, together with (2) and (3) implies the following lower bound on N1

2N1 �
X
v2V

1

t � 1
� 9t�

� �
b2
vp � �2n2p3

� �

¼ 1

t � 1
� 9t�

� �
p
X
v2V

b2
v � �2n3p3

� 1

t � 1
� 9t�

� �
b2np � �2n3p3

� npb2

t � 1
�
�
9t�ð1 þ �Þ2 þ �2

�
n3p3: ð4Þ

Here we used that by the Cauchy–Schwartz inequality
P

v b2
v � nb2 and that

b � ð1 þ �Þnp.

Now we obtain an upper bound on N1.

2N1 � 2N1 þ 2N2 ¼
X

v2VðGÞ
eðRv;BvÞ: ð5Þ

To estimate eðRv;BvÞ, we distinguish three cases. If bv and rv are both at least

�pn, then by part ðiÞ of the definition of the ðt þ 1; p; �Þ-property, we have

eðRv;BvÞ � ð1 þ �Þprvbv:

Now suppose that one of rv and bv, say rv, is less than �np. Assume, more-

over, that jdðvÞ � pnj � �pn. Then we know that dðvÞ ¼ jRv [ Bvj � jBvj �
ð1 � 2�Þnp � �np and so by part ðiÞ of Definition 2.3,

eðRv;BvÞ ¼ eðRv [ BvÞ � eðRvÞ � eðBvÞ

� ð1 þ �Þ ðrv þ bvÞ2
p

2
� ð1 � �Þ b2

vp

2

¼ ð1 þ �Þrvbvp þ �pb2
v þ ð1 þ �Þ r2

vp

2

� ð1 þ �Þrvbvp þ 2�n2p3:

Finally, assume that rv < �np and jdðvÞ � pnj > �pn. By part ðiiÞ of the

definition of the ðt þ 1; p; �Þ-property, there are at most ð�pÞt
n � �2p2n such

vertices. For these v; eðRv;BvÞ � rvbv � �pn � n, so altogether they contribute at

most �3p3n3 to the sum ð5Þ.
Summing up over all vertices the above estimates on eðRv;BvÞ, from (5) we

obtain that
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2N1 �
X

v2VðGÞ
ð1 þ �Þprvbv þ 2�n2p3
� �

þ �3p3n3

¼ ð1 þ �Þp
X

v2VðGÞ

�
dðvÞbv � b2

v

�
þ ð2� þ �3Þn3p3

� ð1 þ �Þp
X

v2VðGÞ
dðvÞbv � ð1 þ �Þb2np þ ð2� þ �3Þn3p3

� ð1 þ �Þp
X

v2VðGÞ
dðvÞbv � b2np þ 4�n3p3:

Here we used again that
P

v b2
v � nb2; b � ð1 þ �Þnp, and that �3 	 �2 	 �.

Denote by V 0, the set of vertices with jdðvÞ � pnj � �pn. Since

jVðGÞnV 0j � ð�pÞt
n � �2p2n, then

2N1 � ð1 þ �Þp
X
v2V 0

dðvÞbv þ
X
v 62V 0

dðvÞbv

 !
� b2np þ 4�n3p3

� ð1 þ �Þp
�
ð1 þ �Þnp � nb þ �2p2n � n2

�
� b2np þ 4�n3p3

¼ bn2p2 � b2np þ ð2� þ �2Þbn2p2 þ ð1 þ �Þ�2n3p3 þ 4�n3p3

� npb np � bð Þ þ 7�n3p3:

Combining this with (4), we have

npb2

t � 1
� 9t�ð1 þ �Þ2 þ �2
� �

n3p3 � pbn pn � bð Þ þ 7�n3p3: ð6Þ

We claim that b � t�1
t

pn þ ð9t þ 8Þ�np. Indeed, if b � t�1
t

pn, then we are

done. Otherwise, dividing both parts of (6) by npb � t�1
t

n2p2 and using that

�3 	 �2 	 �, we obtain that

b

t � 1
� pn � bð Þ þ t

t � 1
ð9t þ 8Þ�np:

Therefore

b � t � 1

t
pn þ ð9t þ 8Þ�np:

Since r þ b � ð1 � �Þnp, the last inequality implies that

jRj ¼ nr

2
�

n
�
ð1 � �Þnp � b

�
2

� 1

t
� 9ðt þ 1Þ�

� �
n2p

2
:
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This completes the proof of the induction step and the proof of the theorem. &

4. CONCLUDING REMARKS

The major question, of course, remains to determine a threshold-type condition

for the validity of an asymptotic Turán’s theorem in pseudo-random graphs.

Theorem 1.1 together with Alon’s construction [1] implies that d2n=� ¼ �ð1Þ is

some kind of a threshold for an ðn; d; �Þ graph to be 3-Turán, but it is not clear

what happens when t � 4. Some construction could be obtained by the slight

modification of the Erdős-Rényi graphs, which appears in the paper of Alon and

Krivelevich [2]. These are ðn; d; �Þ-graphs with parameters d ¼ n
t�3
t�2ð1 þ oð1ÞÞ

and � ¼ n
t�3

2ðt�2Þð1 þ oð1ÞÞ, which can be made Kt-free by deleting at most

n
t�3
t�2ð1 þ oð1ÞÞ vertices. It shows that Theorem 1.1 is not true with the weaker

condition � < Cd
t�1

2 =n
t�3

2 , provided C is a large enough constant. A plausible

approach to improve the condition of Theorem 1.1 could involve an adjusted

double counting argument with a suitably chosen technical condition in the place

of Definition 2.3. We believe, however, that such an improvement is not possible,

and there is an extension of Alon’s construction to Kt-free graphs. Note that for

most values of t, such an extension would not have to improve on the known

constructive bounds of the asymmetric Ramsey number rðKt;KnÞ.
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