Turán's theorem: Variations and generalizations

Benny Sudakov Princeton University and IAS

Extremal Graph Theory

PROBLEM:

Determine or estimate the size of the largest configuration with a given property.

EXAMPLE: Forbidden subgraph problem

Given a fixed graph H, find

$$ex(n, H) = max \{ e(G) \mid H \not\subset G, |V(G)| = n \}$$

Which G are extremal, i.e., achieve maximum?

Turán's theorem

 $K_{r+1} = \text{complete graph}$ of order r+1

Turán graph $T_r(n)$: complete r-partite graph with equal parts.

$$t_r(n) = e(T_r(n)) = \frac{r-1}{2r}n^2 + O(r)$$

THEOREM: (Turán 1941, Mantel 1907 for r = 2)

For all $r \ge 2$, the unique largest K_{r+1} -free graph on n vertices is $T_r(n)$.

GENERAL GRAPHS

Definition:

Chromatic number of graph H

$$\chi(H) = \min \{k \mid V(H) = V_1 \cup \cdots \cup V_k, V_i = \text{independent set} \}$$

THEOREM: (Erdős-Stone 1946, Erdős-Simonovits 1966)

Let H be a fixed graph with $\chi(H) = r + 1$. Then

$$ex(n, H) = t_r(n) + o(n^2) = (1 + o(1))\frac{r - 1}{2r}n^2.$$

REMARK:

This gives an asymptotic solution for non-bipartite H.

LOCAL DENSITY

Problem: (Erdős 1975)

Suppose $0 \le \alpha, \beta \le 1$, $r \ge 2$, and G is a K_{r+1} -free graph on n vertices in which every αn vertices span at least βn^2 edges.

How large can β be as a function of α ?

EXAMPLE:

When $\alpha = 1$, Turán's theorem implies that $\beta = \frac{r-1}{2r}$.

Remark:

Szemerédi's regularity lemma implies that for fixed H with $\chi(H)=r+1\geq 3$, the bound on the local density for H-free graphs is the same as for K_{r+1} -free graphs.

Large Subsets

CONJECTURE: (Erdős, Faudree, Rousseau, Schelp)

There exists a constant $c_r < 1$ such that for $c_r \le \alpha \le 1$, the Turán graph has the largest local density with respect to subsets of size αn .

THEOREM: (Keevash and S., Erdős et al. for r = 2)

There exists $\epsilon_r > 0$ such that if G is a K_{r+1} -free graph of order n and $1 - \epsilon_r \leq \alpha \leq 1$, then G contains a subset of size αn which spans at most

$$\frac{r-1}{2r}(2\alpha-1)n^2$$

edges. Equality is attained only by the Turán graph $T_r(n)$.

Triangle-free graphs

CONJECTURE: (Erdős, Faudree, Rousseau, Schelp)

Any triangle-free graph G on n vertices should contain a set of αn vertices that spans at most

- $\frac{2\alpha-1}{4}n^2$ edges if $17/30 \le \alpha \le 1$.
- $\frac{5\alpha-2}{25}n^2$ edges if $1/2 \le \alpha \le 17/30$.

THEOREM: (Krivelevich 1995)

Conjecture holds for $0.6 \le \alpha \le 1$, i.e., the Turán graph $T_2(n)$ has the largest local density with respect to subsets in this range.

SPARSE HALVES

Conjecture: (Erdős 1975)

Any triangle-free graph G on n vertices should contain a set of n/2 vertices that span at most $n^2/50$ edges.

EXAMPLES:

• $C_5(n) = \text{blow-up of 5-cycle.}$

$$e(C_5(n)) = \frac{1}{5}n^2.$$

• P(n) = blow-up of Petersen graph.

$$e(P(n)) = \frac{3}{20}n^2$$
.

Partial results

THEOREM: (Krivelevich 1995)

Any triangle-free graph contains a set of size n/2 which spans at most $n^2/36$ edges.

THEOREM: (Keevash and S. 2005)

- Let G be a triangle-free graph on n vertices with at least $n^2/5$ edges, such that every set of $\lfloor n/2 \rfloor$ vertices of G spans at least $n^2/50$ edges. Then n=10m for some integer m, and $G=C_5(n)$.
- Conjecture also holds for triangle-free graphs on n vertices with at most $n^2/12$ edges.

K_{r+1} -FREE GRAPHS, $r \geq 3$

CONJECTURE: (Chung and Graham 1990)

Among K_{r+1} -free graphs of order n, the Turán graph $T_r(n)$ has the largest local density with respect to sets of size αn for all $\frac{1}{2} \leq \alpha \leq 1$ and $r \geq 3$.

In particular, every K_4 -free graph on n vertices contains a set of size n/2 that spans at most $n^2/18$ edges.

REMARK:

- For K_4 -free graphs the result of Keevash and S. shows that the conjecture holds when $\alpha > 0.861$.
- It is easy to show that every K_4 -free graph on n vertices contains a set of size n/2 that spans at most $n^2/16$ edges.

Max Cut in H-free graphs

Problem: (Erdős)

Let G be an H-free graph on n vertices. How many edges (as a function of n) does one need to delete from G to make it bipartite?

REMARK:

For every G it is enough to delete at most half of its edges to make it bipartite. Hence the extremal graph should be dense.

MAX CUT VERSUS LOCAL DENSITY

Observation: (Krivelevich)

Let G be a d-regular H-free graph on n vertices and S be a set of size n/2. Then

$$\frac{dn}{2} = \sum_{s \in S} d(s) = 2e(S) + e(S, \overline{S})$$
$$= \sum_{s \in \overline{S}} d(s) = 2e(\overline{S}) + e(S, \overline{S}),$$

i.e. $e(S)=e(\bar{S})$. Deleting the 2e(S) edges within S or \bar{S} makes the graph bipartite, so if we could find S spanning at most βn^2 edges, we would delete at most $2\beta n^2$ edges and make G bipartite.

Triangle-free case

Conjecture: (Erdős 1969)

If G is a triangle-free graph of order n, then deleting at most $n^2/25$ edges is enough to make G bipartite.

THEOREM: (Erdős, Faudree, Pach, Spencer 1988)

- If G has at least $n^2/5$ edges then the conjecture is true.
- Every triangle-free graph of order n can be made bipartite by deleting at most $(1/18 \epsilon) n^2$ edges.

K_4 -FREE GRAPHS

EXAMPLE:

The Turán graph $T_3(n)$ has $n^3/27$ triangles and every edge is in $\leq n/3$ of them. We need to delete $\geq \frac{n^3/27}{n/3} = n^2/9$ edges to make it bipartite.

Conjecture: (Erdős)

Every K_4 -free graph with n vertices can be made bipartite by deleting at most $(1/9 + o(1)) n^2$ edges.

Making K_4 -free graph bipartite

THEOREM: (S. 2005)

Every K_4 -free graph G with n vertices can be made bipartite by deleting at most $n^2/9$ edges, and the only extremal graph which requires deletion of that many edges is the Turán graph $T_3(n)$.

PROBLEM:

Prove that deleting at most $\frac{r-2}{4r}n^2$ edges for even $r \ge 4$ and $\frac{(r-1)^2}{4r^2}n^2$ edges for odd $r \ge 5$ will be enough to make every K_{r+1} -free graph of order n bipartite.

Turán's theorem revisited

Problem: (Erdős 1983)

Find conditions on a graph G which imply that the largest K_{r+1} -free subgraph and the largest r-partite subgraph of G have the same number of edges.

THEOREM: (Babai, Simonovits and Spencer 1990)

Almost all graphs have this property, i.e., the largest K_{r+1} -free subgraph and the largest r-partite subgraph of the random graph G(n,1/2) almost surely have the same size.

Large minimum degree is enough

THEOREM: (Alon, Shapira, S. 2005)

Let H be a fixed graph of chromatic number $r+1\geq 3$ which contains an edge whose removal reduces its chromatic number, e.g., H is the clique K_{r+1} . Then there is a constant $\mu=\mu(H)>0$ such that if G is a graph on n vertices with minimum degree at least $(1-\mu)n$ and Γ is the largest H-free subgraph of G, then Γ is r-partite.

REMARK:

- In the special case when H is a triangle, this was proved by Bondy, Shen, Thomassé, Thomassen and in a stronger form by Balogh, Keevash, S.
- In this theorem μ is of order r^{-2} .

When is the max. \triangle -free subgraph bipartite?

CONJECTURE: (Balogh, Keevash, S.)

Let G be a graph of order n with min. degree $\delta(G) \geq \left(\frac{3}{4} + o(1)\right)n$. Then the largest triangle-free subgraph of G is bipartite.

EXAMPLE:

Substitute \forall vertex of a 5-cycle by a clique of size n/5, \forall edge by a complete bipartite graph, add remaining edges with probability $\theta < 3/8$. The min. degree can be as close to 3n/4 as needed. Max Cut = $(\frac{17}{100} + \frac{2}{26}\theta)n^2 < n^2/5$.

THEOREM: (Balogh, Keevash, S., extending Bondy et al.)

If the minimum degree $\delta(G) \geq 0.791n$, then the largest triangle-free subgraph of G is bipartite.

Large minimum degree and H-free subgraphs

THEOREM: (Alon, Shapira, S.)

Let H be a fixed graph with chromatic number r+1>3. There exist constants $\gamma=\gamma(H)>0$ and $\mu=\mu(H)>0$ such that if G is a graph on n vertices with minimum degree at least $(1-\mu)n$ and Γ is the largest H-free subgraph of G, then Γ can be made r-partite by deleting $O(n^{2-\gamma})$ edges.

REMARKS:

- When G is a complete graph K_n , this gives the Erdős-Stone-Simonovits theorem.
- The error term $n^{2-\gamma}$ cannot be avoided.

EDGE-DELETION PROBLEMS

DEFINITION:

A graph property \mathcal{P} is *monotone* if it is closed under deleting edges and vertices. It is *dense* if there are *n*-vertex graphs with $\Omega(n^2)$ edges satisfying it.

EXAMPLES:

- $\mathcal{P} = \{G \text{ is 5-colorable}\}.$
- $\mathcal{P} = \{G \text{ is triangle-free}\}.$
- ullet $\mathcal{P}=\left\{ extit{G} \text{ has a 2-edge coloring with no monochromatic } \mathcal{K}_{6}
 ight\}$

DEFINITION:

Given a graph G and a monotone property \mathcal{P} , denote by

 $E_{\mathcal{P}}(G) = \text{smallest number of edge deletions needed to turn } G \text{ into a graph satisfying } \mathcal{P}.$

APPROXIMATION AND HARDNESS

THEOREM: (Alon, Shapira, S. 2005)

- For every monotone $\mathcal P$ and $\epsilon>0$, there exists a linear time, deterministic algorithm that given graph G on n vertices computes number X such that $|X-E_{\mathcal P}(G)|\leq \epsilon n^2$.
- For every monotone dense \mathcal{P} and $\delta > 0$ it is NP-hard to approximate $E_{\mathcal{P}}(G)$ for graph of order n up to an additive error of $n^{2-\delta}$.

Remark:

Prior to this result, it was not even known that computing $E_{\mathcal{P}}(G)$ precisely for dense \mathcal{P} is NP-hard. We thus answer (in a stronger form) a question of Yannakakis from 1981.

HARDNESS: EXAMPLE

SETTING:

 $\mathcal{P}= ext{property of being H-free, $\chi(H)=r+1$.}$ $E_{r\text{-}col}(F)= ext{number of edge-deletions needed to make graph F}$ $r\text{-}colorable. Computing $E_{r\text{-}col}(F)$ is NP-hard.}$

REDUCTION:

- Given F, let F' = blow-up of F: vertex \leftarrow large independent set, edge \leftarrow complete bipartite graph. Add edges to F' in a pseudo-random way to get a graph G with large minimum degree.
- $E_{r-col}(F)$ changes in a controlled way, i.e., knowledge of an accurate estimate for $E_{r-col}(G)$ tells us the value of $E_{r-col}(F)$.
- Since G has large minimum degree,

$$|E_{r\text{-}col}(G) - E_{\mathcal{P}}(G)| \leq n^{2-\gamma}.$$

• Thus, approximating $E_{\mathcal{P}}(G)$ up to an additive error of $n^{2-\delta}$ is as hard as computing $E_{r-col}(F)$.

Another extension

CLAIM: (Folklore)

Every graph G contains a K_{r+1} -free subgraph with at least $\frac{r-1}{r}e(G)$ edges.

QUESTION:

For which G is the size of the largest K_{r+1} -free subgraph $\frac{r-1}{r}e(G) + o(e(G))$?

Examples:

- Holds for the complete graph K_n by Turán's theorem.
- Hold almost surely for the random graph G(n, p) of appropriate density.

SPECTRA OF GRAPHS

NOTATION:

The adjacency matrix A_G of a graph G has $a_{ij}=1$ if $(i,j)\in E(G)$ and 0 otherwise. It is a symmetric matrix with real eigenvalues $\lambda_1\geq \lambda_2\geq \ldots \geq \lambda_n$. If G is d-regular, then $\lambda_1=d$.

DEFINITION:

G is an (n, d, λ) -graph if it is d-regular, has n vertices, and

$$\max_{i\geq 2}|\lambda_i|\leq \lambda.$$

Remark:

A large spectral gap, i.e., when $\lambda \ll d$, implies that the edges of G are distributed as in the random graph $G(n, \frac{d}{n})$.

Properties of (n, d, λ) -graphs

Proposition: (Alon)

Let G be an (n, d, λ) -graph and $B, C \subseteq V(G)$. Then

$$\left| e(B,C) - \frac{d}{n}|B||C| \right| \leq \lambda \sqrt{|B||C|}.$$

FACTS:

- Let B=C be the set of neighbors of a vertex v in G. Then |B|=|C|=d and the above inequality gives that if $d^2\gg \lambda n$,
 - then there is an edge in the neighborhood of v, i.e., G contains a triangle.
- Using induction one can show that if $d^r \gg \lambda n^{r-1}$ then every (n, d, λ) -graph contains cliques of size r + 1.

SPECTRAL TURÁN'S THEOREM

THEOREM: (S., Szabó, Vu 2005)

Let $r \geq 2$, and let G be an (n, d, λ) -graph with $d^r \gg \lambda n^{r-1}$. Then the size of the largest K_{r+1} -free subgraph of G is

$$\frac{r-1}{r}e(G)+o(e(G)).$$

Remarks:

- The complete graph K_n has d = n 1 and $\lambda = 1$. Thus we have an asymptotic extension of Turán's theorem.
- The theorem is tight for r=2. By the result of Alon, there are (n,d,λ) -graphs with $d^2=\Theta(\lambda n)$ which contain no triangles.

PROBLEM:

Find constructions of K_{r+1} -free (n, d, λ) -graphs with $d^r \approx \lambda n^{r-1}$.