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Extremal Graph Theory

Problem:

Determine or estimate the size of the largest configuration with a
given property.

Example: Forbidden subgraph problem

Given a fixed graph H, find

ex(n,H) = max
{

e(G )
∣∣ H 6⊂ G , |V (G )| = n

}
Which G are extremal, i.e., achieve maximum?



Turán’s theorem

Kr+1 = complete graph
of order r + 1

Turán graph Tr (n): complete r -partite
graph with equal parts.
tr (n) = e(Tr (n)) = r−1

2r n2 + O(r)

Theorem: (Turán 1941, Mantel 1907 for r = 2)

For all r ≥ 2, the unique largest Kr+1-free graph
on n vertices is Tr (n).



General graphs

Definition:

Chromatic number of graph H

χ(H) = min
{
k | V (H) = V1 ∪ · · ·∪ Vk ,Vi = independent set

}

Theorem: (Erdős-Stone 1946, Erdős-Simonovits 1966)

Let H be a fixed graph with χ(H) = r + 1. Then

ex(n,H) = tr (n) + o(n2) = (1 + o(1))
r − 1

2r
n2.

Remark:

This gives an asymptotic solution for non-bipartite H.



Local density

Problem: (Erdős 1975)

Suppose 0 ≤ α, β ≤ 1, r ≥ 2, and G is a Kr+1-free graph on n
vertices in which every αn vertices span at least βn2 edges.

How large can β be as a function of α?

Example:

When α = 1, Turán’s theorem implies that β = r−1
2r .

Remark:

Szemerédi’s regularity lemma implies that for fixed H with
χ(H) = r + 1 ≥ 3, the bound on the local density for H-free
graphs is the same as for Kr+1-free graphs.



Large subsets

Conjecture: (Erdős, Faudree, Rousseau, Schelp)

There exists a constant cr < 1 such that for cr ≤ α ≤ 1, the Turán
graph has the largest local density with respect to subsets of size
αn.

Theorem: (Keevash and S., Erdős et al. for r = 2)

There exists εr > 0 such that if G is a Kr+1-free graph of order n
and 1− εr ≤ α ≤ 1, then G contains a subset of size αn which
spans at most

r − 1

2r
(2α− 1)n2

edges. Equality is attained only by the Turán graph Tr (n).



Triangle-free graphs

Conjecture: (Erdős, Faudree, Rousseau, Schelp)

Any triangle-free graph G on n vertices should
contain a set of αn vertices that spans at most

2α−1
4 n2 edges if 17/30 ≤ α ≤ 1.

5α−2
25 n2 edges if 1/2 ≤ α ≤ 17/30.

Theorem: (Krivelevich 1995)

Conjecture holds for 0.6 ≤ α ≤ 1, i.e., the Turán graph T2(n) has
the largest local density with respect to subsets in this range.



Sparse halves

Conjecture: (Erdős 1975)

Any triangle-free graph G on n vertices should contain a set of n/2
vertices that span at most n2/50 edges.

Examples:

C5(n) = blow-up of 5-cycle.

e(C5(n)) = 1
5n2.

P(n) = blow-up of Petersen graph.

e(P(n)) = 3
20n2.



Partial results

Theorem: (Krivelevich 1995)

Any triangle-free graph contains a set of size n/2 which spans at
most n2/36 edges.

Theorem: (Keevash and S. 2005)

Let G be a triangle-free graph on n vertices with at least n2/5
edges, such that every set of bn/2c vertices of G spans at
least n2/50 edges. Then n = 10m for some integer m, and
G = C5(n).

Conjecture also holds for triangle-free graphs on n vertices
with at most n2/12 edges.



Kr+1-free graphs, r ≥ 3

Conjecture: (Chung and Graham 1990)

Among Kr+1-free graphs of order n, the Turán graph Tr (n) has
the largest local density with respect to sets of size αn for all
1
2 ≤ α ≤ 1 and r ≥ 3.

In particular, every K4-free graph on n vertices contains a set of
size n/2 that spans at most n2/18 edges.

Remark:

For K4-free graphs the result of Keevash and S. shows that
the conjecture holds when α > 0.861.

It is easy to show that every K4-free graph on n vertices
contains a set of size n/2 that spans at most n2/16 edges.



Max Cut in H-free graphs

Problem: (Erdős)

Let G be an H-free graph on n vertices. How many edges (as a
function of n) does one need to delete from G to make it bipartite?

Remark:

For every G it is enough to delete at most half of its edges to
make it bipartite. Hence the extremal graph should be dense.



Max Cut versus local density

Observation: (Krivelevich)

Let G be a d-regular H-free graph on n vertices and S be a set of
size n/2. Then

dn

2
=

∑
s∈S

d(s) = 2e(S) + e(S , S̄)

=
∑
s∈S̄

d(s) = 2e(S̄) + e(S , S̄),

i.e. e(S) = e(S̄). Deleting the 2e(S) edges within S or S̄ makes
the graph bipartite, so if we could find S spanning at most βn2

edges, we would delete at most 2βn2 edges and make G bipartite.



Triangle-free case

Conjecture: (Erdős 1969)

If G is a triangle-free graph of order n, then
deleting at most n2/25 edges is enough to
make G bipartite.

Theorem: (Erdős, Faudree, Pach, Spencer 1988)

If G has at least n2/5 edges then the conjecture is true.

Every triangle-free graph of order n can be made bipartite by
deleting at most

(
1/18− ε

)
n2 edges.



K4-free graphs

Example:

The Turán graph T3(n) has n3/27 triangles
and every edge is in ≤ n/3 of them. We

need to delete ≥ n3/27
n/3 = n2/9 edges to

make it bipartite.

Conjecture: (Erdős)

Every K4-free graph with n vertices can be made bipartite by
deleting at most

(
1/9 + o(1)

)
n2 edges.



Making K4-free graph bipartite

Theorem: (S. 2005)

Every K4-free graph G with n vertices can be made bipartite by
deleting at most n2/9 edges, and the only extremal graph which
requires deletion of that many edges is the Turán graph T3(n).

Problem:

Prove that deleting at most r−2
4r n2 edges for even r ≥ 4 and

(r−1)2

4r2 n2 edges for odd r ≥ 5 will be enough to make every
Kr+1-free graph of order n bipartite.



Turán’s theorem revisited

Problem: (Erdős 1983)

Find conditions on a graph G which imply that the largest
Kr+1-free subgraph and the largest r -partite subgraph of G have
the same number of edges.

Theorem: (Babai, Simonovits and Spencer 1990)

Almost all graphs have this property, i.e., the largest Kr+1-free
subgraph and the largest r -partite subgraph of the random graph
G (n, 1/2) almost surely have the same size.



Large minimum degree is enough

Theorem: (Alon, Shapira, S. 2005)

Let H be a fixed graph of chromatic number r + 1 ≥ 3 which
contains an edge whose removal reduces its chromatic number,
e.g., H is the clique Kr+1. Then there is a constant µ = µ(H) > 0
such that if G is a graph on n vertices with minimum degree at
least (1− µ)n and Γ is the largest H-free subgraph of G , then

Γ is r -partite.

Remark:

In the special case when H is a triangle, this was proved by
Bondy, Shen, Thomassé, Thomassen and in a stronger form
by Balogh, Keevash, S.

In this theorem µ is of order r−2.



When is the max. 4-free subgraph bipartite?

Conjecture: (Balogh, Keevash, S.)

Let G be a graph of order n with min. degree δ(G ) ≥
(

3
4 + o(1)

)
n.

Then the largest triangle-free subgraph of G is bipartite.

Example:

Substitute ∀ vertex of a 5-cycle by a clique of size
n/5, ∀ edge by a complete bipartite graph, add
remaining edges with probability θ < 3/8. The
min. degree can be as close to 3n/4 as needed.

Max Cut =
(

17
100 + 2

25θ
)
n2 < n2/5.

Theorem: (Balogh, Keevash, S., extending Bondy et al.)

If the minimum degree δ(G ) ≥ 0.791n, then the largest
triangle-free subgraph of G is bipartite.



Large minimum degree and H-free subgraphs

Theorem: (Alon, Shapira, S.)

Let H be a fixed graph with chromatic number r + 1 > 3. There
exist constants γ = γ(H) > 0 and µ = µ(H) > 0 such that if G is
a graph on n vertices with minimum degree at least (1− µ)n and Γ
is the largest H-free subgraph of G , then Γ can be made r -partite
by deleting O

(
n2−γ

)
edges.

Remarks:

When G is a complete graph Kn, this gives the
Erdős-Stone-Simonovits theorem.

The error term n2−γ cannot be avoided.



Edge-deletion problems

Definition:

A graph property P is monotone if it is closed under deleting edges
and vertices. It is dense if there are n-vertex graphs with Ω(n2)
edges satisfying it.

Examples:

P =
{
G is 5-colorable

}
.

P =
{
G is triangle-free

}
.

P =
{
G has a 2-edge coloring with no monochromatic K6

}
Definition:

Given a graph G and a monotone property P, denote by

EP(G ) = smallest number of edge deletions needed to turn
G into a graph satisfying P.



Approximation and hardness

Theorem: (Alon, Shapira, S. 2005)

For every monotone P and ε > 0, there exists a linear time,
deterministic algorithm that given graph G on n vertices
computes number X such that

∣∣X − EP(G )
∣∣ ≤ εn2.

For every monotone dense P and δ > 0 it is NP-hard to
approximate EP(G ) for graph of order n up to an additive
error of n2−δ.

Remark:

Prior to this result, it was not even known that computing EP(G )
precisely for dense P is NP-hard. We thus answer (in a stronger
form) a question of Yannakakis from 1981.



Hardness: example

Setting:

P = property of being H-free, χ(H) = r + 1.
Er -col(F ) = number of edge-deletions needed to make graph F

r -colorable. Computing Er -col(F ) is NP-hard.

Reduction:

• Given F , let F ′ = blow-up of F : vertex ← large independent
set, edge ← complete bipartite graph. Add edges to F ′ in a
pseudo-random way to get a graph G with large minimum degree.

• Er -col(F ) changes in a controlled way, i.e., knowledge of an
accurate estimate for Er -col(G ) tells us the value of Er -col(F ).

• Since G has large minimum degree,∣∣Er -col(G )− EP(G )
∣∣ ≤ n2−γ .

• Thus, approximating EP(G ) up to an additive error of n2−δ is as
hard as computing Er -col(F ).



Another extension

Claim: (Folklore)

Every graph G contains a Kr+1-free subgraph with at least
r−1
r e(G ) edges.

Question:

For which G is the size of the largest Kr+1-free subgraph
r−1
r e(G ) + o

(
e(G )

)
?

Examples:

Holds for the complete graph Kn by Turán’s theorem.

Hold almost surely for the random graph G (n, p) of
appropriate density.



Spectra of graphs

Notation:

The adjacency matrix AG of a graph G has aij = 1 if (i , j) ∈ E (G )
and 0 otherwise. It is a symmetric matrix with real eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn. If G is d-regular, then λ1 = d .

Definition:

G is an (n, d , λ)-graph if it is d-regular, has n vertices, and

max
i≥2
|λi | ≤ λ.

Remark:

A large spectral gap, i.e., when λ� d , implies that the edges of G
are distributed as in the random graph G

(
n, d

n

)
.



Properties of (n, d , λ)-graphs

Proposition: (Alon)

Let G be an (n, d , λ)-graph and B,C ⊆ V (G ). Then∣∣∣ e(B,C )− d

n
|B||C |

∣∣∣ ≤ λ
√
|B||C |.

Facts:

Let B = C be the set of neighbors of a vertex v in G . Then
|B| = |C | = d and the above inequality gives that if

d2 � λn,
then there is an edge in the neighborhood of v , i.e., G
contains a triangle.

Using induction one can show that if d r � λnr−1 then every
(n, d , λ)-graph contains cliques of size r + 1.



Spectral Turán’s theorem

Theorem: (S., Szabó, Vu 2005)

Let r ≥ 2, and let G be an (n, d , λ)-graph with d r � λnr−1. Then
the size of the largest Kr+1-free subgraph of G is

r−1
r e(G ) + o

(
e(G )

)
.

Remarks:

The complete graph Kn has d = n − 1 and λ = 1. Thus we
have an asymptotic extension of Turán’s theorem.

The theorem is tight for r = 2. By the result of Alon, there are
(n, d , λ)-graphs with d2 = Θ(λn) which contain no triangles.

Problem:

Find constructions of Kr+1-free (n, d , λ)-graphs with d r ≈ λnr−1.


