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Extremal Graph Theory

Typical goal:

Determine or estimate the maximum or minimum possible size of a
discrete structure (e.g., graph or hypergraph) satisfying certain
restrictions.

Examples and applications:

Discrete geometry

Additive number theory

Probability

Harmonic Analysis

Computer Science

Coding Theory
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Forbidden subgraphs

Problem:

Given a fixed graph H, e.g.,

determine ex(n,H), the maximum number of edges in a graph on
n vertices that does not contain a copy of H.

Mantel 1907: Every triangle-free graph on n vertices has
at most bn2/4c edges.
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Probabilistic inequality

Theorem: (Katona 1969)

Let X1,X2 are i.i.d. random vectors in Rd . Then

P[ |X1 + X2| ≥ 1 ] ≥ 1

2
P2[ |X1| ≥ 1 ]

Observation:

Let v1, . . . , vn be vectors in Rd with length at least 1. Then pairs
(i , j) such that |vi + vj | < 1 can not form a triangle. Therefore

there are at least n(n−2)
2 pairs i 6= j with |vi + vj | ≥ 1.

Proof. Let a = P[|X1| ≥ 1] and let b = P[|X1 + X2| ≥ 1]. Sample
independently X1, . . . ,Xm from the distribution. Then there are
n ≈ am vectors |Xi | ≥ 1 and ≈ bm(m − 1) pairs |Xi + Xj | ≥ 1.

Thus bm(m − 1) ≥ n(n−2)
2
≈ 1

2
a2m2. �
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Turán’s theorem

Kr+1 = complete graph
of order r + 1

Turán graph Tr (n): complete r -partite
graph with equal parts.
tr (n) = e(Tr (n)) = r−1

2r n2 + O(r)

Theorem: (Turán 1941, Mantel 1907 for r = 2)

For all r ≥ 2, the unique largest Kr+1-free graph
on n vertices is Tr (n).
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General graphs

Question:

What is the Turán number ex(n,H)
for a general graph H?

E.g., H =



General graphs

Definition:

The chromatic number χ(H) is the minimum
number of colors needed to color V (H), so
that adjacent vertices have distinct colors.

Theorem: (Erdős-Stone 1946, Erdős-Simonovits 1966)

Let H be a fixed graph with χ(H) = r + 1. Then

ex(n,H) = tr (n) + o(n2) = (1 + o(1))
r − 1

2r
n2.

Remark: Determines the asymptotics of Turán numbers ex(n,H)
for all graphs with chromatic number at least 3.
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Complete bipartite graphs

Corollary:

For any constant ε > 0 and large n, every n-vertex graph with at
least εn2 edges contains all fixed bipartite graphs.

Application: Let S ⊂ Z2 and define density of S

d(S) = lim sup
k→∞

dk(S), where dk(S) = max
A,B⊂Z
|A|=|B|=k

S ∩ A×B

|A||B|
.

Is it an interesting definition?

Claim: For every S ⊂ Z2, d(S) is either 0 or 1!

Theorem: (Kővári, Sós and Turán 1954)

Let Kr ,s be a complete bipartite graph with parts of size r and s. Then
for all r ≤ s there is a constant c = c(r , s) such that

ex(n,Kr ,s) ≤ c n2−1/r .
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Unit distances

Problem: (Erdős 1946)

What is the maximum possible number of unit distances among n
points in the plane?

Observation:

Connect two points by an edge if the distance between
them is 1. Note that this graph can not have K2,3.
Thus, from estimate on ex(n,K2,3) the number of unit
distances is at most O(n3/2).

Remarks:

The best current upper bound for this problem is O(n4/3).

It is conjectured that the number of unit distance is ≤ n1+o(1).
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Representing squares economically

Problem: (Wooley, Erdős-Newman)

Let A ⊂ Z such that A + A = {a + a′|a, a′ ∈ A} contains
12, 22, . . . n2. How small can set A be?

Theorem: (Erdős-Newman)

|A| ≥ n2/3−o(1) .

Sketch: For every 1 ≤ x ≤ n connect some pair (a, a′) such that
a + a′ = x2 by an edge. If |A| = m = n2/3−ε then this graph has m
vertices, n ≥ m3/2+ε edges and by estimate on ex(m,K2,s) contains
a pair a1, a2 with at least s = nδ common neighbors. Then a1 − a2
can be written as a difference of two squares in nδ ways and hence
has too many devisor. �
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|A| ≥ n2/3−o(1) .

Sketch: For every 1 ≤ x ≤ n connect some pair (a, a′) such that
a + a′ = x2 by an edge. If |A| = m = n2/3−ε then this graph has m
vertices, n ≥ m3/2+ε edges and by estimate on ex(m,K2,s) contains
a pair a1, a2 with at least s = nδ common neighbors. Then a1 − a2
can be written as a difference of two squares in nδ ways and hence
has too many devisor. �



Growth of Turán numbers

Question:

What parameter of the bipartite graph H might determine the
growth of ex(n,H)?

Known:

For complete bipartite graphs Kr ,s for s > (r − 1)!.

For cycles of even length C2k for k = 2, 3, 5.

Open:

Complete bipartite graph with equal parts of size 4.

Cycle of length 8.

The 3-cube.
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Degenerate bipartite graphs

Definition: A graph is r -degenerate if each of its subgraphs has a
vertex of degree at most r .

Conjecture: (Erdős 1966)

Every r -degenerate bipartite H satisfies ex(n,H) ≤ O(n2−1/r ).

Remark: For all r this estimate is best possible.

Theorem: (Alon-Krivelevich-S. 2003)

Conjecture holds for every H in which vertices of one part have
degrees at most r . For general r -degenerate bipartite H

ex(n,H) ≤ O(n2− 1
4r ) .
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Sidorenko’s conjecture

Question: How many copies of a fixed bipartite graph H must
exist in an n-vertex graph with m edges?

Definition:

hH(G ) = the number of homomorphisms from H to G .

tH(G ) = hH(G)

|G ||H| = fraction of mappings from H to G which

are homomorphisms.

Conjecture: (Erdős-Simonovits 84, Sidorenko 93)

For every bipartite H and every n-vertex G with pn2/2 edges,

tH(G ) ≥ pe(H).
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Conjecture: (Erdős-Simonovits 84, Sidorenko 93)

For every bipartite H and every n-vertex G with pn2/2 edges,

tH(G ) ≥ pe(H).



Analytical form

Conjecture: ∀ bipartite H and n-vertex G with pn2/2 edges,
tH(G ) ≥ pe(H).

Remarks:

Random graphs with edge probability p achieve minimum.

Known for trees, even cycles, complete bipartite graphs, cubes.

Has connections to matrix theory [BR], Markov chains [BP],
graph limits [L], and quasi-randomness.

Conjecture:

µ is the Lebesgue measure on [0, 1], h(x , y) ≥ 0 is bounded,
measurable function on [0, 1]2, H = (U,V ,E ) is bipartite graph
with U = {u1, . . . , ut}, V = {v1, . . . , vs} and |E (H)| = q. Then∫ ∏

(ui ,vj )∈E

h(xi , yj)dµs+t ≥
(∫

hdµ2
)q

.
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Sidorenko’s conjecture

Theorem: (Conlon-Fox-S. 2010)

Sidorenko’s conjecture holds for every bipartite H = (U,W ) which
has a vertex u∗ ∈ U adjacent to all vertices in the part W . This
also gives an asymptotic version of the conjecture for all graphs.

Key idea:

Let G be an n-vertex graph with pn2/2 edges and let v be a
random vertex of G . Then almost all small subsets S ⊂ N(v)
have at least cHp|S |n common neighbors, which, apart from
the constant factor cH , is the expected size of the common
neighborhood of a subset of size |S | in the random graph Gn,p.

Use this observation to show that there exist a constant cH
such that a probability tH(G ) that a random mapping from H
to G is a homomorphism is at least cHpe(H).

Use a tensor power trick to show that cH = 1. �
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Turán’s theorem revisited

Observation:

The size of the maximum
bipartite subgraph
of a graph G

≤
The size of the maximum
triangle-free subgraph
of a graph G

Turán’s theorem: Equality if G is a complete graph.

Problem: (Erdős 1983)

Find conditions on a graph G which imply that the largest
Kr+1-free subgraph and the largest r -partite subgraph of G have
the same number of edges.
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Large minimum degree is enough

Theorem: (Alon, Shapira, S. 2009)

Let H be a fixed graph with chromatic number r + 1 > 3. There
exist constants γ = γ(H) > 0 and µ = µ(H) > 0 such that if G is
a graph on n vertices with minimum degree at least (1− µ)n and Γ
is the largest H-free subgraph of G , then

Γ can be made r -partite by deleting O
(
n2−γ) edges.

If H is a is a clique Kr+1, then Γ is r -partite.

Remark: Since a complete graph has minimum degree n − 1,
this extends Turán’s and Erdős-Stone-Simonovits theorems to all
graphs with large minimum degree.
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Edge-deletion problems

Definition:

A graph property P is monotone if it is closed under deleting edges
and vertices. It is dense if there are n-vertex graphs with Ω(n2)
edges satisfying it.

Examples:

P =
{

G is 5-colorable
}

.

P =
{

G is triangle-free
}

.

P =
{

G has a 2-edge coloring with no monochromatic K6

}
.

Definition:

Given a graph G and a monotone property P, let

EP(G ) = smallest number of edge deletions needed to turn
G into a graph satisfying P.
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Approximation and hardness

Theorem: (Alon, Shapira, S. 2009)

For every monotone P and ε > 0, there exists a linear-time
deterministic algorithm that, given a graph G on n vertices,
computes a number X such that

∣∣X − EP(G )
∣∣ ≤ εn2.

For every monotone dense P and δ > 0, approximating EP(G )
within an additive error of n2−δ is NP-hard.

Remarks:

Answers in a strong form a question of Yannakakis from 1981.
For many monotone dense P it even wasn’t known before that
computing EP(G ) precisely is NP-hard.

First result uses a strengthening of Szemerédi regularity
lemma to approximate G by a fixed size weighted graph W .

Second result uses generalizations of Turán and Erdős-
Stone-Simonovits theorems together with spectral techniques.
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Theorem: (Alon, Shapira, S. 2009)

For every monotone P and ε > 0, there exists a linear-time
deterministic algorithm that, given a graph G on n vertices,
computes a number X such that

∣∣X − EP(G )
∣∣ ≤ εn2.

For every monotone dense P and δ > 0, approximating EP(G )
within an additive error of n2−δ is NP-hard.
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Summary

In this talk we presented several extremal problems and results
and gave examples of connection between Extremal Graph
Theory and other areas of mathematics. In the future it is safe
to predict that the number of such examples will only grow.

These connections with other mathematical disciplines and the
fundamental nature of the area will ensure that in the future
Extremal Graph Theory will continue to play an essential role
in the development of mathematics.
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