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1. Introduction

The Turán number ex(n, H) of an r-graph H is the maximum number of edges in 
an r-graph on n vertices which does not contain a copy of F as a subhypergraph. For 
ordinary graphs (the case r = 2), a rich theory has been developed (see [31]), initiated 
by the classical Turán’s theorem [43] dating back to 1941. The problem of finding the 
numbers ex(n, H) when r > 2 is notoriously difficult, and exact results are very rare (see 
surveys [30,32,40,42] and references therein).

The following very natural extremal question was raised by Chung and Erdős [8]
almost 40 years ago. What is the minimum possible value of ex(n, H) among r-graphs 
H with a fixed number of edges? The focus of Chung and Erdős was on the equivalent 
inverse question which is perhaps even more natural. Namely, what is the largest size 
of an r-graph that we can not avoid in any r-graph on n vertices and e edges? This 
question was repeated multiple times over the years: it featured in a survey on Turán-
type problems [30], in an Erdős open problem collection [7] and more recently in an open 
problem collection from AIM Workshop on Hypergraph Turán problems [36].

Following Chung and Erdős we call an r-graph H as above (n, e)-unavoidable, so if 
every r-graph on n vertices and e edges contains a copy of H. Their question now becomes 
to determine the maximum possible number of edges in an (n, e)-unavoidable r-graph. 
Let us denote the answer by unr(n, e). In the graph case, Chung and Erdős determined 
un2(n, e) up to a multiplicative factor for essentially the whole range. In a follow-up 
paper from 1987, Chung and Erdős [9] studied the 3-uniform case and identified the 
order of magnitude of un3(n, e) for essentially the whole range of e.3 In the same paper 
Chung and Erdős raise the 4-uniform case as the natural next step since the 3-uniform 
result fails to give a clear indication on how the answer should behave in general. In the 
present paper we resolve this question by determining un4(n, e) up to a multiplicative 
factor for essentially the whole range of e.

Theorem 1.1. The following statements hold.4

(i) For 1 ≤ e ≤ n2, we have un4(n, e) ≈ 1.
(ii) For n2 ≤ e ≤ n3, we have un4(n, e) ≈ min

{
(e/n2)3/4, (e/n)1/3

}
.

(iii) For n3 < e �
(
n
4
)
, we have un4(n, e) ≈ min

{
e4/3/n10/3, e1/4 logn

log
(
(n4)/e

)}.

The optimal unavoidable hypergraphs, or in other words hypergraphs which minimise 
the Turán number, turn out to be certain combinations of sunflowers of different types. 
For this reason, it is essential for our proof of Theorem 1.1 to have a good understanding 

3 Their argument unfortunately contains an error: the proof of [9, Lemma 6] is incorrect. We fill this gap 
in Section 5.
4 We stress that for us � means smaller by a (small enough) constant factor, see the end of Section 1 for 

details on the notation.
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of the Turán numbers of sunflowers for a wide range of parameters. This turns out to be 
a well-studied problem in its own right.

1.1. Sunflowers

A family A1, . . . , Ak of distinct sets is said to be a sunflower if there exists a kernel
C contained in each of the Ai such that the petals Ai \ C are disjoint. The original 
term for this concept was “Δ-system”. The more recent term “sunflower” coined by Deza 
and Frankl [11] has recently become more prevalent. For r, k ≥ 1, let fr(k) denote the 
smallest natural number with the property that any family of fr(k) sets of size r contains 
an (r-uniform) sunflower with k petals. The celebrated Erdős-Rado theorem [17] from 
1960 asserts that fr(k) is finite; in fact Erdős and Rado gave the following bounds:

(k − 1)r ≤ fr(k) ≤ (k − 1)rr! + 1. (1)

They conjectured that for a fixed k the upper bound can be improved to fr(k) ≤
O(k)r. Despite significant efforts, a solution to this conjecture remains elusive. The cur-
rent record is fr(k) ≤ O(k log r)r, established by Bell, Chueluecha and Warnke [3], by 
slightly improving the O(k log(kr))r bound given in 2019 by Rao [38], both of which 
are based upon a recent breakthrough on the problem due to Alweiss, Lovett, Wu and 
Zhang [2].

Some 43 years ago, Duke and Erdős [12] initiated the systematic investigation of a 
closely related problem. Denote by Sf r(t, k) the r-uniform sunflower with k petals, and 
kernel of size t. Duke and Erdős asked for the Turán number of Sf r(t, k). Over the years 
this problem has been reiterated several times [7,30] including in a recent collabora-
tive “polymath” project [37]. The case k = 2 of the problem has received considerable 
attention [22,25,27,33,34,41], partly due to its huge impact in discrete geometry [26], 
communication complexity [39] and quantum computing [5]. Another case that has a 
rich history [13,15,16,19–21,24] is t = 0 (a matching of size k is forbidden); the optimal 
construction in this case is predicted by the Erdős Matching Conjecture. For fixed r, t
and k with 1 ≤ t ≤ r − 1 and k ≥ 3 Frankl and Füredi [23, Conjecture 2.6] give a 
conjecture for the correct value of ex(n, Sf r(t, k)) up to lower order terms, based on two 
natural candidates for near-optimal Sf r(t, k)-free r-graphs. They verify their conjecture 
for r ≥ 2t + 3, but otherwise, with the exception of a few particular small cases, it 
remains open in general. If we are only interested in asymptotic results the answer of 
ex(n, Sf r(t, k)) ≈ nmax{r−t−1,t} was determined by Frankl and Füredi [22] and Füredi 
[29].

Another natural question is what happens if we want to find large sunflowers, in 
other words if we only fix the uniformity r and “type” of the sunflower, determined by 
its kernel size t, while allowing k to grow with n. Further motivation for this question 
is that it is easy to imagine that it could be very useful to know how big a sunflower 
of a fixed type we are guaranteed to be able to find in an r graph with n vertices and 
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e-edges. In particular, it is precisely the type of statement we require when studying 
the unavoidability problem of Chung and Erdős. In the graph case r = 2 the question 
simply asks for the Turán number of a (big) star and the answer is easily seen to be 
ex(n, Sf 2(1, k)) ≈ nk. In contrast, the 3-uniform case is already non-trivial: Duke and 
Erdős [12] and Frankl [18] showed ex(n, Sf 3(1, k)) ≈ nk2 while ex(n, Sf 3(2, k)) ≈ n2k. 
Chung [6] even managed to determine the answer in the 3-uniform case up to lower 
order terms, while Chung and Frankl [10] determined ex(n, Sf 3(1, k)) precisely for large 
enough n. Chung and Erdős [9] wrote in their paper that results for such large sunflowers 
with uniformity higher than 3 are far from satisfactory. Here we make first progress in 
this direction, by solving asymptotically the 4-uniform case.

Theorem 1.2. For 2 ≤ k ≤ n we have

(i) ex(n, Sf 4(1, k)) ≈ k2n2,
(ii) ex(n, Sf 4(2, k)) ≈ k2n2 and
(iii) ex(n, Sf 4(3, k)) ≈ kn3.

1.2. General proof strategy

Our proof strategy for determining fr(n, e) for most of the range is as follows. In order 
to show an upper bound fr(n, e) ≤ D we need to show there is no r-graph with more 
than D edges which is contained in every r graph with n vertices and e edges. With this 
in mind we consider a number of, usually very structured, n-vertex r-graphs on e or more 
edges, and argue they can not have a common subhypergraph with more than D edges. 
The hypergraphs we use are often based on Steiner systems or modifications thereof. A 
major benefit of this approach is that our collection of hypergraphs often imposes major 
structural restrictions on possible common graphs which have close to D edges as well 
and tells us where to look for our optimal examples of unavoidable hypergraphs which we 
need in order to show matching lower bounds, by upper bounding their Turán numbers.

Organisation. In the following section we establish some preliminary results we will need 
later. In Section 3 we prove Theorem 1.2. In Section 4 we prove the first two parts of 
Theorem 1.1. In Section 5 we deal with the remaining regime. This section is split into 
several parts, in Section 5.1 we establish a number of 3-uniform results we will need 
for the lower bounds, which is proved in Section 5.2. We prove the upper bounds in 
Section 5.4. Finally, in Section 6 we make some final remarks and give a number of open 
problems and conjectures.

Notation. A generalised star is defined recursively as follows: St2(d) is the usual star 
Sd with d leaves, and Str(d1, . . . , dr−1) is the r-graph in which all edges have a ver-
tex v in common and upon removal of v from every edge we obtain d1 copies of 
Str−1(d2, . . . , dr−1).
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Let G be an r-graph, and let S ⊆ V (G) such that 1 ≤ |S| ≤ r − 1. Then the link 
graph, denoted LS , is the (r − |S|)-graph on V (G), whose edges are the sets T of size 
r−|S| such that S∪T ∈ E(G). The codegree of S in G is defined as the number of edges 
of G which contain S. If the codegree of S is at least k, we say that S is k-expanding. 
We will refer to the immediate fact that in any k-uniform hypergraph the number of 
edges times the uniformity equals the sum of degrees over all vertices as the handshaking 
lemma.

For non-negative functions f and g we write either f � g or f = O(g) to mean there 
is a constant C > 0 such that f(n) ≤ Cg(n) for all n, we write f � g or f = Ω(g) to 
mean there is a constant c > 0 such that f(n) ≥ cg(n) for all n, we write f ≈ g to mean 
that f � g and f � g. To simplify the presentation we write f 	 g or g � f to mean 
that f ≥ Cg for a sufficiently large constant C,5 which can be computed by analysing 
the argument. In particular, in this paper choosing C = 230 would be sufficient for all 
our arguments. All asymptotics are as n → ∞ unless specified otherwise.

From now on whenever we say optimal unavoidable graph, we mean it has the largest 
number of edges up to a constant factor. Throughout the paper we omit floor and ceiling 
signs whenever they are not crucial, for the sake of clarity of presentation and since they 
would only, possibly, impact the constant factors.

2. Preliminaries

In this section we collect several simple results, that we use later on. The next two 
results will provide us with building blocks for examples of hypergraphs which will be 
useful both for proving lower bounds on Turán numbers of sunflowers needed for Theo-
rem 1.2, as well as to force structure when proving upper bounds in Theorem 1.1. We 
include proofs for completeness.

Lemma 2.1 (Partial Steiner Systems). Let k > t > 0 be fixed integers. For every n
sufficiently large, there exists a k-graph S(t, k, n) on n vertices such that every set of 
vertices of size t is contained in at most one edge, and the number of edges of S(t, k, n)
is at least Ω(nt).

Proof. Let X be an arbitrary k-subset of [n]. The number of k-sets which intersect X
in i elements is 

(
k
i

)(
n−k
k−i

)
. Thus the total number of k-sets which intersect X in at least 

t elements is 
∑k

i=t

(
k
i

)(
n−k
k−i

)
. It follows that there exists a k-graph G on [n] such that:

• Any two edges of G intersect in at most t − 1 elements;
• |E(G)| ≥ (nk)∑k

i=t (ki)(n−k
k−i)

� nt.

5 Note here that we are defining �, in a way which is more common in fields outside of combinatorics, 
namely f � g does not mean g = o(f) but is more similar to g = O(f) with the exception that we are 
allowed to choose the constant in the big O as small as we like, as long as it remains fixed.
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This completes the proof. �
The above result as stated requires k to be fixed, however for certain applications we 

will want to relax this assumption. The following result is a special case where t = 2 and 
we allow k ≤

√
n/2. Here we say a hypergraph is linear if no two of its edges intersect 

in more than one vertex.

Lemma 2.2. For 2 ≤ k ≤
√

n/2, there exists a linear k-graph on n vertices with at least 
n2/4k2 edges.

Proof. By Chebyshev’s theorem, there is a prime p between n/2k and n/k. Look at the 
affine plane F2

p , and consider its subset V = {(x, y) ∈ F2
p | 0 ≤ x ≤ k − 1, y ∈ Fp}. The 

vertex set of our hypergraph will be V . Note that |V | < n. The edges are partial lines
L(x,y), defined as follows for each (x, y) ∈ F2

p :

L(x,y) = {(0, x) + t(1, y) | 0 ≤ t ≤ k − 1}.

Notice that for distinct pairs (x1, y1) and (x2, y2) the corresponding lines L(x1,y1) and 
L(x2,y2) intersect in at most one vertex, so our k-graph is linear, and has p2 ≥ n2/4k2

edges. �
The following simple lemma will often come in useful.

Lemma 2.3. Let G be a graph with at least 2k� edges and with no star Sk. Then G
contains a matching of size �.

Proof. We find an �-matching M in G as follows. Let v ∈ V (G) be a non-isolated vertex, 
and take an arbitrary edge (u, v) incident with v and put it in M . Now delete all edges 
incident to u and v from G and repeat this procedure. If we found less than � such edges, 
we deleted at most 2(� − 1)k edges in G, so there is an edge left which we can add to 
M . �

The next auxiliary lemma is a generalisation of [8, Lemma 5] which will come in useful 
when looking at higher uniformities. We give a different proof, as it illustrates an idea 
which will be used a lot later on.

Lemma 2.4. Any graph with n vertices and e = 6sn ≥ 6kn edges contains at least 
min{s, √sn/k} vertex-disjoint copies of the star Sk.

Proof. Let t = min{s, √sn/k}. If there are at least t vertices with degree at least (t −
1)(k+ 1) + k = t(k+ 1) − 1 then we can greedily find t vertex-disjoint copies of Sk. This 
means that by removing at most t · n ≤ sn edges we get a graph with maximum degree 
less than t(k + 1). Now let us take a maximal collection of vertex-disjoint Sk’s. Unless 
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we are done there are at most (t − 1)(k + 1) vertices spanned by these stars, so in total 
they touch less than t2(k+ 1)2 ≤ 4t2k2 ≤ 4sn edges. So upon removing them we are left 
with at least sn ≥ kn edges and can find another Sk. �
3. Turán numbers of sunflowers

In this section we give the proof of Theorem 1.2.

3.1. 3-uniform case

We will need the following 3-uniform results, which were already established by Duke 
and Erdős [12] and Frankl [18]. We include our, somewhat simpler proofs, for complete-
ness and to illustrate the ideas we will use in the 4-uniform case. There are only two 
different types of 3-uniform sunflowers, namely Sf 3(1, k) and Sf 3(2, k).

Lemma 3.1. Let 2 ≤ k � n we have ex(n, Sf 3(1, k)) ≈ k2n.

Proof. For the lower bound, we split [n] into disjoint sets: A of size n − k ≥ n/2, and B
of size k. Let our 3-graph consist of all edges with one vertex in A and two vertices in 
B. This 3-graph has Ω(k2n) edges and is Sf 3(1, k)-free. Indeed, if we can find a copy of 
Sf 3(1, k) each of its edges contains two vertices in B, one of which is not the common 
vertex, so it uses at least k + 1 vertices of B, which has size k, a contradiction. This 
shows ex(n, Sf 3(1, k)) = Ω(k2n).

For the upper bound, we will show that every 3-graph G with 4k2n edges contains 
a copy of Sf 3(1, k). Let G be such a 3-graph and suppose towards a contradiction that 
it does not contain an Sf 3(1, k). For each v ∈ V (G) let Dv denote the 2-graph on 
V whose edges are the 2k-expanding pairs Y such that v ∪ Y ∈ E(G). Dv does not 
contain matchings and stars of size k; if Dv contained a k-matching then v and this 
matching would make an Sf 3(1, k) in G; if Dv contained a star of size k then we can 
greedily extend each edge of the star by a new vertex to obtain an Sf 3(1, k), since the 
edges are 2k-expanding. Using Lemma 2.3 this implies that Dv can have at most 2k2

edges. The number of edges of G containing a 2k-expanding pair is upper bounded by ∑
v |Dv| ≤ 2k2n, so if we delete all such edges we are left with a 3-graph G′ with at least 

2k2n edges with no 2k-expanding pairs of vertices. Now take a vertex v with degree at 
least 3|E(G′)|/n ≥ 4k2 in G′; it cannot have a star of size 2k in its link graph, as then 
the pair v and centre of the star would be 2k-expanding. Using Lemma 2.3 this means 
there must be a k-matching in its link graph, which together with v forms an Sf 3(1, k)
in G, so we are done. �

We now proceed to the second type of sunflowers.

Lemma 3.2. For 2 ≤ k � n we have ex(n, Sf 3(2, k)) ≈ kn2.
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Proof. To prove the lower bound, we consider the linear 3-graph S(2, 3, n) on [n] with 
Ω(n2) edges, given by Lemma 2.1. Let G be a union of k− 1 random copies of S(2, 3, n), 
where each copy is obtained by randomly permuting the vertices of S(2, 3, n). Since each 
pair of vertices lies in at most one edge from each copy of S(2, 3, n), G does not contain 
a copy of Sf 3(2, k). A fixed triple is chosen with probability Ω(1/n) in a random copy 
of S(2, 3, n), independently between our k − 1 copies. Thus the probability that a given 
triple is chosen in one of our k − 1 copies is at least Ω(k/n) so the expected number of 
chosen triples is Ω(kn2), giving ex(n, Sf 3(2, k)) = Ω(kn2).

We now turn to the upper bound. Let G be a 3-graph with kn2 edges. By averaging, 
there must exist a pair of vertices belonging to at least k edges, which make a copy of 
Sf 3(2, k) in G. �
3.2. 4-uniform case

In this subsection we determine the behaviour of the Turán number of 4-uniform 
sunflowers, namely we prove Theorem 1.2. We begin with Sf 4(1, k).

Lemma 3.3. For 2 ≤ k � n we have ex(n, Sf 4(1, k)) ≈ k2n2.

Proof. We consider the lower bound first. We split the n vertices into disjoint sets A
of size n − k ≥ n/2 and B of size k. Let G be the 4-graph consisting of edges which 
have two vertices in each of A and B, so in total G has ≈ k2n2 edges. Note that G is 
Sf 4(1, k)-free. Indeed, if we can find a copy of Sf 4(1, k) each of its edges contains two 
vertices in B, one of which is not the common vertex, so it uses at least k+ 1 vertices of 
B, which has size k, a contradiction.

For the upper bound, we will show that every 4-graph G with e 	 k2n2 edges contains 
a copy of Sf 4(1, k). Let G be such a 4-graph and suppose it does not contain a copy of 
Sf 4(1, k). For each v ∈ V (G), let Dv denote the set of 3k-expanding triples Y such that 
v ∪ Y ∈ E(G). So Dv is a 3-graph. If some Dv has at least e/(2n) 	 k2n edges then by 
Lemma 3.1 we can find an Sf 3(1, k) in Dv and greedily extend it to an Sf 4(1, k) in G, 
so we may assume that each Dv has at most e/(2n) edges. The number of edges of G
containing a 3k-expanding triple is upper bounded by 

∑
v |Dv| ≤ e/2 so if we delete all 

such edges we are left with a 4-graph G′ with at least e/2 edges and no 3k-expanding 
triple of vertices.

Now look at pairs of vertices which are 18k2-expanding. Any such pair has no star of 
size 3k in its link graph as that would give a 3k-expanding triple, so by Lemma 2.3 it 
has a matching of size 3k. If we can find a star of size k formed by the 18k2-expanding 
pairs, then using the matchings we found in the link graphs we can once again greedily 
extend it into a copy of Sf 4(1, k). Hence, the total number of 18k2-expanding pairs is at 
most kn. They can lie in at most 3k2n2 different edges (since the third vertex we can 
choose in n many ways but the fourth in at most 3k, because there are no 3k-expanding 
triples). Deleting all such edges from G′ we obtain G′′ with at least e/4 ≥ 18k2n2 edges, 
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without 18k2-expanding pairs, which is a contradiction (since by density G′′ must have 
an 18k2-expanding pair). �

Remark. By induction this easily extends to higher uniformities, giving ex(n, Sf r(1, k))
≈r k2nr−2. We now turn to the second type of 4-uniform sunflowers, namely Sf 4(2, k).

Lemma 3.4. For 2 ≤ k � n we have ex(n, Sf 4(2, k)) ≈ k2n2.

Proof. We prove a lower bound first. Let us say that a (2-)graph G is good if it has at 
most 2k vertices and each of its edges is contained in a copy of K4. If we can show that 
there exists m edge disjoint copies of good graphs G1, . . . , Gm on the same vertex set 
[n], with at least Θ(n2k2) copies of K4 in total among G1, . . . , Gm, then we would be 
done. Indeed, we can construct a 4-graph H on [n] by putting a 4-edge in H for any 
4 vertices which induce a copy of K4 in one of G1, . . . , Gm; this 4-graph has at least 
Θ(n2k2) edges, and by assumption each vertex pair P in [n] is an edge of at most one 
graph Gi, and therefore all the 4-edges in H which contain P contain only vertices from 
Gi of which there are at most 2k, so no pair can be the centre of a sunflower Sf 4(2, k)
which has 2k + 2 vertices.

Now we show the existence of such G1, . . . , Gm, for m = n2

48k2 . We choose 2k vertices 
uniformly at random, with repetition from [n] and choose G1 to be the complete graph 
on these 2k vertices. Suppose we obtained graphs G1, . . . , Gi, where i < m. Choose again 
a set of uniformly random 2k vertices, and choose Gi+1 to be the complete graph on 
these vertices from which we remove all the edges in G1, . . . , Gi and after this we remove 
all edges not participating in a K4.

Notice that for each graph Gi, with i ∈ [m], the expected number of K4’s is at least
(

2k
4

)(
1 − 6i · (2k/n)2

)
· 1
2 ≥ Θ(k4),

since probability that 4 randomly sampled vertices are different is at least 1 −6/n ≥ 1/2
and by a union bound the probability that one of its 6 edges already got chosen in some 
G1, . . . , Gi is at most 6i · (2k/n)2 ≤ 1/2. So the total expected number of K4’s among 
G1, . . . , Gm is by linearity of expectation at least m ·Θ(k4) = Θ(n2k2) and we are done.

For the upper bound, there must be a vertex v with degree 	 k2n in any graph 
on 	 k2n2 edges, so we can find an Sf 3(1, k) in its link graph, by Lemma 3.1, which 
together with v forms a copy of Sf 4(2, k). �

Finally, we deal with the third and last kind, namely Sf 4(3, k).

Lemma 3.5. For 2 ≤ k � n we have ex(n, Sf 4(3, k)) ≈ kn3.

Proof. For the lower bound, we take a 4-graph G which is a union of k − 1 random 
copies of a 4-graph S(3, 4, n) on n vertices with Ω(n3) edges, given by Lemma 2.1. A 
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single triple of vertices lies in at most one edge for each copy so in total in at most k− 1
edges; this means there is no Sf 4(3, k) in G. Each fixed quadruple is an edge of G with 
probability Ω(1/n), independently between different choices. Thus the probability that 
a quadruple is chosen in G is at least Ω(k/n), so the expected number of chosen triples 
is at least Ω(kn3). Therefore, ex(n, Sf 4(3, k)) ≥ Ω(kn3).

Let G be a 4-graph on n vertices with kn3 edges. By the pigeonhole principle there is 
a triple of vertices belonging to at least k edges, which makes an Sf 4(3, k). This shows 
ex(n, Sf 4(3, k)) ≤ kn3. �

The above three results establish Theorem 1.2 when k � n. This shows that 
ex(n, Sf 4(i, k)) ≈ n4 for any k = cn for some small enough constant c. The bound 
in the remaining range, namely when k ≥ cn, is immediate since Sf 4(i, k) ⊆ Sf 4(i, k′)
for any k ≤ k′ in the case of lower bounds and by the trivial bound ex(n, Sf 4(i, k)) ≤

(
n
4
)

in the case of upper bounds, since we are only interested in bounds up to constant factor.

4. Unavoidability, sparse regimes

In this section we prove Theorem 1.1 for e � n3, so for the majority of the first 
two regimes. We note that in order to prove Theorem 1.1 it is sufficient to prove it for 
the regimes e � n2, n2 � e � n3 and n3 � e � n4 since in the remaining cases 
e ≈ n2, e ≈ n3 the bounds of the regimes match (up to a constant factor) and un4(n, e)
is monotone in e. We begin with the sparsest regime e � n2, which is quite simple to 
handle but illustrates the general approach.

Theorem 4.1. For 1 ≤ e � n2, we have un4(n, e) = 1.

Proof. Starting with the upper bound, let H be an (n, e)-unavoidable 4-graph where 
e ≤ cn2 for some sufficiently small constant c > 0. This means it is contained in any 
4-graph on n vertices with at least e edges and our task is to show that it must consist 
of only one edge. To see this, observe that the 4-graph S(2, 4, n), given by Lemma 2.1, 
has Ω(n2) ≥ e edges so it must contain H as a subgraph. This forces H to be linear. 
Similarly, the n-vertex 4-graph which consists of all edges which contain two fixed vertices 
has Ω(n2) ≥ e edges so also has H as a subgraph. This forces any two edges of H to 
intersect in at least 2 vertices. Since H must also be linear this means it can have at 
most 1 edge.

The lower bound is immediate, since any n-vertex graph with e edges contains an 
edge (e ≥ 1) so a single edge graph is (n, e)-unavoidable showing un4(n, e) ≥ 1. �

We now turn to the upper bound for the second regime.

Theorem 4.2. For n2 � e � n3 we have un4(n, e) � min{(e/n2)3/4, (e/n)1/3}.
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Proof. Let H be an (n, e)-unavoidable 4-graph and let k = c
√
e/n, for c > 0 large 

enough. This means that any n-vertex 4-graph with at least Ω(k2n2) edges must contain 
H (by choosing c large enough, since e = n2k2/c2). Note that the regime bounds imply 
1 � k � √

n. To show the bound it suffices to show that |E(H)| ≤ min{2k3/2, (k2n)1/3}. 
In order to do this, we will consider a number of examples of 4-graphs with more than e
edges. Each of them will reveal some additional information on how H should look like 
and allow us to conclude it can’t have more than the claimed number of edges.

• The 4-graph S(3, 4, n), given by Lemma 2.1, has Ω(n3) ≥ e edges. So it forces H to 
have no two edges intersecting in three vertices.

• The graph with one special vertex contained in all of 
(
n−1

3
)

possible edges implies 
that all edges of H must contain a common vertex, say v. Let H3 be the link graph 
of v (so a 3-graph).

• We take the graph obtained from an n-vertex linear k-graph by taking every 4-
subset of every edge in this k-graph as an edge. Note that by Lemma 2.2, since 
k � √

n, we can find such a 4-graph with Ω(k2n2) edges. This implies that H3 splits 
into components of size at most k each, since v is contained in all 4-edges and by 
construction any two 4-edges which intersect in more than one vertex belong to a 
single k-edge of our starting linear k-graph.

• Let us take the hypergraph with sets of vertices V1 of size k and V2 of size n − k

such that we choose any pair of vertices in V1 and any pair of vertices in V2 and join 
them in an edge. This 4-graph has Ω(k2n2) edges. Since every edge has at least two 
vertices in V1 this means every edge of H3 must have at least one vertex in V1; in 
other words, H3 has a cover of size at most k, so we fix such a cover and denote it 
by C. Consequently, H3 has at most k components.

• Let us take a set S of 2k2 � n vertices and split them into k2 pairs. We join each of 
these k2 pairs with every pair among the n − |S| vertices outside of S into a 4-edge. 
This gives us an n vertex 4-graph with Ω(k2n2) edges, so we must be able to find 
a copy of H inside it. If v is embedded inside S and we let w be its pair, then v
and w belong to each edge of H. We claim this implies that H has at most k edges. 
To see this observe first that every edge of H3 contains w, so H3 only has a single 
component. By the third point we know it consists of at most k vertices. We further 
know, by the first point, that if we remove w we get a matching, since otherwise 
we would have two edges of H which intersect in 3 vertices. This implies H has at 
most k edges and we are done. So, v must be embedded outside of S. If a vertex of 
C is in S then it participates in at most one edge of H (since we know each such 
edge contains the vertex of C, its pair in S and v and there is only one edge of H
containing any triple of vertices), so such vertices contribute at most k edges. If we 
remove these edges from H we know that in the remaining 4-graph upon removing 
v and the vertex of C from an edge we obtain one of our pairs in S.
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Since we removed at most k � min{k3/2, (k2n)1/3} edges, so at most a constant pro-
portion of edges in H, we may assume we started with H in which such edges did not 
exist. Putting together the observations so far we know that H has a fixed vertex v in all 
edges, its link graph is the 3-graph H3 which consists of at most k vertex-disjoint copies 
of a subhypergraph of Sf 3(1, k), whose centres are vertices of C and whose petals upon 
removal of the centre vertices give a matching M (our pairing of vertices in S) which in 
total has size at most k2. The following two further examples provide us with one of the 
desired bounds each.

• Let V1 induce k disjoint copies of K√
k,
√
k, we extend each edge of this graph into 

4-edges by adding every possible pair of the remaining vertices (the set of which 
we denote by V2). Since |V1| = 2k3/2 � n if we set |V2| = n − |V1| this 4-graph 
will have n vertices and Ω(k2n2) edges, so contains H. Let us consider the edges 
of M containing a vertex embedded in V1. There can be at most 2k3/2 such edges 
since |V1| = 2k3/2, so upon deleting all corresponding edges of H we are left with 
a subgraph of H in which v and C got embedded into V1 (or we are left with an 
empty graph). But this implies |C| ≤ 2

√
k, so again there are at most 2k3/2 edges of 

H remaining (since we know that if we fix a vertex from C, in addition to v, their 
link graph is a matching of size at most k). It follows that |E(H)| ≤ 4k3/2 giving us 
the first part of the result.

• Take a set V1 of (k2n)1/3 � n vertices and let V2 be the set of remaining vertices. 
We make a 4-graph by taking any triple in V1 and a single vertex in V2. This gives 
us Ω(k2n2) edges and implies |E(H)| ≤ (k2n)1/3 since among every pair of vertices 
in M at least one must be in V1.

This completes the proof. �
The rest of this section is devoted to the upper bound part of the following theorem, as 

the lower bound follows from Theorem 4.2. Analysing the above proof narrows down the 
possibilities for an optimal unavoidable graph significantly, leading us to St4(

√
k, k, 1) as 

a natural candidate for an optimal unavoidable graph. This indeed turns out to be the 
case as a consequence of the following result.

Theorem 4.3. For 2 ≤ k ≤ n2/3 we have ex(n, St4(
√
k, k, 1)) ≈ max{k2n2, k9/2n}.

Before proving this result let’s see why it gives the desired lower bound for the un-
avoidability problem. We want to show that there is an (n, e)-unavoidable 4-graph with �
min{(e/n2)3/4, (e/n)1/3} edges, for any n2 � e � n3. To do this we choose k as large as 
possible, so that e 	 max{k2n2, k9/2n}, which means that k � min{(e/n2)1/2, (e/n)2/9}. 
By our choice of k the above theorem applies and tells us that any 4-graph with n ver-
tices and e edges contains St4(

√
k, k, 1), i.e. it is (n, e)-unavoidable. This implies there 

is an (n, e)-unavoidable 4-graph with k3/2 � min{(e/n2)3/4, (e/n)1/3} edges, as desired. 
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So, combining Theorem 4.3 and Theorem 4.2 we obtain the desired result for the middle 
range.

Theorem 4.4. For n2 � e � n3, we have un4(n, e) ≈ min
{
(e/n2)3/4, (e/n)1/3

}
.

Let us now turn to the proof of Theorem 4.3. For the upper bound our task is to 
show that any 4-graph G on n vertices with e 	 max{k2n2, k9/2n} edges contains a 
copy of St4(

√
k, k, 1). To this end, note that by the pigeonhole principle, the link graph 

Lv of some vertex v ∈ V (G) must have e/n 	 max{k2n, k9/2} triples. If Lv contains √
k vertex-disjoint copies of Sf 3(1, k), then we are done. Unfortunately, a 3-graph on 

n vertices with 	 max{k2n, k9/2} edges may not have more than one vertex-disjoint 
copy Sf 3(1, k), let alone 

√
k copies. For example, the 3-graph consisting of all triples 

containing a fixed vertex has 
(
n−1

2
)

edges (which is large enough when k � n4/9), and 
it clearly does not contain two disjoint copies of Sf 3(1, k). As the next result shows, one 
can remedy the situation by imposing a boundedness condition on the codegrees.

Lemma 4.5. Let k ≥ 2. Every n-vertex 3-graph with at least e 	 max{k2n, k9/2} edges, 
in which every pair of vertices has codegree at most 3k3/2, contains 

√
k vertex-disjoint 

copies of Sf 3(1, k).

Proof. Assume first that there exist vertices v1, . . . , v√k with degree at least 18k3. Since 
there are no pairs of vertices with codegree larger than 3k3/2, we know that the link 
graph of any vi does not contain a star of size 3k3/2, so by Lemma 2.3 it must contain 
a matching of size 3k3/2. Now assume we have found i − 1 disjoint copies of Sf 3(1, k)
centred at v1, . . . , vi−1 and not using any other vj’s. Let us consider a matching of size 
3k3/2 in the link graph of vi. At most 

√
k+2(i −1)k < 2k3/2 of the pairs in the matching 

already contain a vertex from either {vi, . . . , v√k} or belonging to one of our (i − 1)
already found copies of Sf 3(1, k)’s. The remaining pairs make a matching of size at least 
k in the link graph of vi while avoiding {v1, . . . , v√k} as well as any already used vertex. 
This gives us a new Sf 3(1, k) centred at vi which is disjoint from the previous ones. After 
repeating 

√
k many times we get the desired 

√
k vertex-disjoint copies of Sf 3(1, k).

So we may assume there are less than 
√
k vertices with degree at least 18k3. Each 

such vertex belongs to at most 3k3/2n edges (the second vertex we can choose in n ways 
and then third in 3k3/2 ways since codegrees are at most 3k3/2). Thus in total there are 
at most 3k2n edges containing a vertex with degree at least 18k3. We delete these edges 
and are left with at least e/2 edges.

Suppose we have found i − 1 vertex-disjoint copies of Sf 3(1, k) in the remaining 3-
graph, where 1 ≤ i ≤

√
k. There are at most (i − 1)(2k + 1) · 18k3 < 54k9/2 edges which 

contains a vertex from one of these copies. Removing these edges, we are left with at 
least e/4 	 k2n edges. Thus Lemma 3.1 applies giving us a new Sf 3(1, k). This way we 
obtain 

√
k vertex-disjoint copies of Sf 3(1, k). �

We are now ready to finish our analysis of the middle range by proving Theorem 4.3.
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Proof of Theorem 4.3. The lower bound follows from Theorem 4.2.
Turning to the upper bound, set m 	 max{k2n, k9/2} and let G be an n-vertex 

4-graph with at least nm edges. Suppose to the contrary that G has no copies of 
St4(

√
k, k, 1).

Let us first consider the case that there are at most nm/2 edges containing a 3k3/2-
expanding triple in G. Remove all these edges to obtain a 4-graph G′ with at least nm/2
edges in which there is no 3k3/2-expanding triple. By the handshaking lemma, we can 
find a vertex x in G′ of degree at least 2m. If we look at the 3-graph Gx obtained by 
removing x from all these edges we know it has at least 2m edges, additionally we know 
that no pair of vertices is 3k3/2-expanding in Gx as such pair together with x would 
give a 3k3/2-expanding triple. So all codegrees in Gx are at most 3k3/2 and Lemma 4.5
applies, giving us 

√
k vertex-disjoint copies of Sf 3(1, k) which together with x make a 

copy of St4(
√
k, k, 1), a contradiction.

Therefore, there are at least nm/2 edges which contain a 3k3/2-expanding triple. For 
any v ∈ V (G) let Dv denote the 3-graph consisting of triples X such that v ∪X ∈ E(G)
and X is 3k3/2-expanding. Note that we have 

∑
v∈V (G) |Dv| ≥ nm/2 since each edge of 

G, containing a 3k3/2-expanding triple, contributes at least 1 to this sum. Hence, there 
exists a vertex x with |Dx| ≥ m/2.

Claim 1. There is no star of size 
√
k consisting of 3k3/2-expanding pairs in the 3-graph 

Dx.

Proof. Suppose to the contrary that we can find distinct vertices v0, . . . , v√k such that 
{v0, vi} makes a 3k3/2-expanding pair for all 1 ≤ i ≤

√
k. We know that {v0, vi} com-

pletes into an edge of Dx in at least 3k3/2 different ways, so we can greedily find k
vertices vi1, . . . vik such that {v0, vi, vij} ∈ E(Dx) and all vi, vij are distinct, for all 
1 ≤ i ≤

√
k and 1 ≤ j ≤ k. The last part is due to the fact that we choose at most 

1 +
√
k+k3/2 < 2k3/2 vertices in total and each pair completed an edge in at least 3k3/2

ways so we always have an unused vertex to choose for our vij’s.
Now since each {v0, vi, vij} ∈ E(Dx) and is in particular expanding, we can extend it 

into an edge of G in 3k3/2 ways so again greedily we obtain St4(
√
k, k, 1) as it contains 

1 +
√
k + 2k3/2 < 3k3/2 vertices so we always have a new vertex to choose to extend 

{v0, vi, vij}. This is a contradiction. �
For y 
= x, let Dxy denote the set of pairs X such that y ∪ X ∈ E(Dx) and X is 

3k3/2-expanding in Dx.

Claim 2. For every y 
= x, one has |Dxy| ≤ 6k3/2n.

Proof. Suppose to the contrary that |Dxy| ≥ 6k3/2n for some y 
= x. According to 

Lemma 2.4 (with s = k3/2), the graph Dxy contains min
{
k3/2, 

√
k3/2n
k

}
≥

√
k (using 

n ≥ k3/2) vertex-disjoint copies of Sk. Label the edges of these stars by e1, e2, . . . , ek3/2 . 
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As y ∪ ei is a 3k3/2-expanding triple for every i, we can greedily find distinct vertices 
v1, . . . , vk3/2 ∈ V (G) \

⋃
j ej such that y ∪ e1 ∪ v1, . . . , y ∪ ek3/2 ∪ vk3/2 are edges of G. 

This yields a copy of St4(
√
k, k, 1), a contradiction. �

Claim 3. There are at most 
√
k vertices y having |Dxy| ≥ 6k2.

Proof. Suppose otherwise and let v1, . . . , v√k denote vertices with |Dxvi | ≥ 6k2. Since 
by Claim 1 there are no stars of size 

√
k in Dxvi we know by Lemma 2.3 that there must 

be a matching of size 3k3/2 in Dxvi . Now assume for some i ≤
√
k we have found i − 1

vertex-disjoint copies of Sf 3(1, k) centred at v1, . . . , vi−1 which do not use vertices from 
{vi, . . . , v√k}. We know there is a matching of size 3k3/2 in Dxvi , at most 

√
k + 2k3/2

of the pairs in the matching use a vertex which already belongs to one of our Sf 3(1, k)’s 
so we can still find a k-matching in Dxvi , avoiding any already used vertices. This gives 
us a new Sf 3(1, k) centred at vi disjoint from the previous ones and we may repeat this √
k many times. Finally, these copies of Sf 3(1, k) when joined with x make a copy of 

St4(
√
k, k, 1) which is a contradiction. �

Finally, it follows from Claims 2 and 3 that the number of edges in Dx containing a 
3k3/2-expanding pair is at most 

∑
y |Dxy| ≤

√
k ·6k3/2n +n ·6k2 ≤ m/4. Deleting all such 

edges we are left with m/4 edges of Dx such that no pair of vertices is 3k3/2-expanding. 
Lemma 4.5 implies we can find 

√
k disjoint copies of Sf 3(1, k) which together with x

gives us a St4(
√
k, k, 1), a contradiction. This completes the proof. �

5. Unavoidability, the dense regime

In this section we deal with the last regime, when e 	 n3. Note once again that by 
monotonicity of un4(n, e) and combining it with Theorem 4.4 this will imply the result 
for e ≈ n3 as well.

For the majority of the regime the optimal unavoidable 4-graphs turn out to be 
based on generalised stars. Specifically, for e = kn3 they will be disjoint unions of 
St4((n/k)1/3, (n/k)1/3, k) of suitable size. Unfortunately, in this regime upper bounds 
do not force as much structure as they do in the previous section, so we begin with the 
lower bounds. With this in mind our first goal is to determine ex(n, St4(d1, d2, d3)) for 
d1 = d2 = (n/k)1/3 and d3 = k (although our methods should allow one to answer this 
question in general as well).

In order to find a copy of St4(d1, d2, d3) in a graph we will either find d1 vertex-disjoint 
copies of St3(d2, d3) inside the link graph of a vertex or find St3(d1, d2) consisting of so 
called expanding triples, namely triples of vertices which belong to many edges of our 
graph. In the former case we are done immediately, in the latter we can use the expansion 
of the triples to greedily extend each edge of our St3(d1, d2) using d3 new vertices. To 
find disjoint copies of St3(d2, d3) or St4(d1, d2, d3) we can simply remove any already 
used vertex from the graph and argue that the remainder still contains enough edges 
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to find a new copy. Unfortunately, as we have already seen in the previous section this 
approach fails to provide enough stars in most cases. A way around this is to embed the 
leaves of all our stars (since there are many of them) among vertices with low degrees, 
the 3rd layer vertices among vertices with only slightly higher degree and so on. This 
approach requires very good understanding of Turán numbers of 3-uniform generalised 
stars and their unions which we give in the following section.

In the subsequent section we show the desired bounds for our 4-uniform case. Interest-
ingly, towards the end of the range, as e approaches 

(
n
4
)
, generalised stars stop being the 

optimal examples and are replaced with (disjoint unions) of complete 4-partite graphs, 
which we will find through a combination of the Kövári-Sós-Turán theorem and a similar 
embedding trick where we embed largest parts of our already found r-partite graphs into 
vertices with low degree, in order to be able to find many disjoint copies.

5.1. Turán numbers of 3-uniform generalised stars

In this section we will give a number of upper bounds on Turán numbers of generalised 
stars, and their disjoint unions. The first two results determine these Turán numbers up 
to constant factors and we prove them in full generality since we find them interesting in 
their own right. The subsequent three lemmas allow us to do even better (find our stars 
in graphs with even less edges) if we know certain additional properties of our graph or 
give us more control where in the graph we can find our stars. We do not state these in 
full generality, but rather for the cases which arise naturally in the proof of our 4-uniform 
result.

The following lemma, which generalises Lemma 3.1, determines the Turán number of 
any 3-uniform generalised star, up to a constant factor.

Theorem 5.1. For every positive integers n, h and k, we have

ex(n,St3(h, k)) � max{kn2, h2k2n}.

Proof. Let G be a 3-graph with e 	 max{kn2, h2k2n} edges. We want to find h vertex-
disjoint copies of Sk in the link graph of some vertex. Let Dv be the subgraph of the link 
graph of v consisting of pairs Y for which v∪Y is an edge of G and Y is 3hk-expanding.

If at least e/2 edges in G contain a pair which is 3hk-expanding then there exists a Dv

of size at least e/(2n), as 
∑

v∈V |Dv| ≥ e/2. If Dv contains an Sh, then since it consists of 
3hk-expanding edges, we would be done by greedily extending it into a copy of St3(h, k), 
since 3hk ≥ hk + h + 1 = |St3(h, k)|. Hence, we suppose there is no Sh in Dv, i.e. every 
vertex has degree at most h in Dv. Take a maximal collection of disjoint k-stars in Dv. 
If this collection consists of at least h stars, they together with v make St3(h, k) and we 
are done, so let us assume towards a contradiction that there are less than h of them. 
So the union of the stars in this collection has at most hk + h ≤ 2hk vertices, which 
participate in at most 2hk · h ≤ e/(4n) edges of Dv, since we have shown that degree 
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of any vertex is at most h. This means that among the remaining at least e/(4n) ≥ kn

edges in Dv we can find a new Sk, contradicting maximality of our collection.
So we may assume that G contains at most e/2 edges containing a 3hk-expanding 

pair; removing all such edges we obtain a graph G′ in which there is no 3hk-expanding 
pair of vertices. We can find a vertex with degree at least e/n and once again keep finding 
k-stars in its link graph for as long as we have less than h of them. At any point we have 
at most hk vertices and they have degree at most 3hk in the link graph of the found 
vertex (since we removed all edges containing a 3hk-expanding pair), so they always 
touch at most 3h2k2 ≤ e/(4n) edges, hence we have at least e/(4n) ≥ kn other edges, 
and we can find a new Sk, as desired. �

Remark. One can show the bound in the proposition is tight, up to a constant factor, 
provided 2 ≤ k ≤ n/h. Indeed, Lemma 3.2 gives the first term, and taking n/(hk)
disjoint copies of the complete 3-graph on hk vertices gives the second. Note also that, 
since |St3(h, k)| > hk, when hk > n we can never find a copy of St3(h, k) in a graph on 
n vertices, hence the largest St3(h, k)-free graph is complete; this completes the picture 
on Turán numbers of generalised 3-uniform stars (case k = 1 being Lemma 3.1).

The next result shows that if |E(G)| 	 max{kn2, h2k2n} then not only G contains a 
copy of St3(h, k), as guaranteed by the above proposition, but it contains many disjoint 
copies of them. After the proof we make a few remarks about the optimality of the given 
result, which the reader might want to read beforehand, since one might find this helpful 
to understand where the parameters come from.

Theorem 5.2. Every 3-graph on n vertices with e 	 sn2 edges, with s ≥ max{k, h2k2/n}, 
contains at least t = min{s, √sn/h, s1/3n2/3/(hk)} vertex-disjoint copies of St3(h, k).

Proof. Let G be a 3-graph on n vertices with e edges. Set L2 = e/(3ht) and L3 =
e/(3hkt). We call a star St3(h, k) in G well-behaved if its h second layer vertices have 
degrees at most L2 and its hk third layer vertices have degrees at most L3. Suppose 
we have found a collection of less than t vertex-disjoint well-behaved generalised stars 
St3(h, k). The used vertices touch at most t ·

(
n
2
)
+ ht ·L2 + hkt ·L3 ≤ 3

4e edges. We call 
this set of edges R.

Our goal now is to show that we can find a new well-behaved star St3(h, k) in G among 
the vertices which are not contained in any of the previous stars. Let A denote the set 
of vertices with degree at least L2, B the set of vertices with degrees between L3 and L2
and C the set of vertices with degree at most L3. Note that |A ∪B| ≤ 9ht +9hkt ≤ 18hkt. 
Furthermore, there exists a subset F ⊆ E(G) \ R such that every edge in F contains 
the exact same number of vertices in A, as well as in B, and in C, and we have |F | ≥
1
10 · 1

4e 	 sn2, since there are6 (3+2
2
)

= 10 different types of edges according to how 
many vertices they have in each of the sets A, B and C. We distinguish four cases.

6 The number of non-negative integer solutions to x1 + x2 + x3 = 3.
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Case (i). The edges in F have no vertices in C.
We have |F | ≤

(|A∪B|
3

)
� (hkt)3 ≤ sn2 � |F |, a contradiction.

Case (ii). All three vertices of each edge in F are in C.
We can find a copy of St3(h, k) using only the edges in F by Theorem 5.1, 
since s ≥ max{k, h2k2/n} and |F | 	 sn2. As all its vertices are in C the star 
is well-behaved.

Case (iii). All edges of F have exactly two vertices in C.
There must exist a vertex in A ∪B of degree at least |F |

|A∪B| ≥
|F |

18hkt 	 sn2

hkt . 
Hence, we can use Lemma 2.4 to find h vertex-disjoint copies of Sk in its link 
graph. To see why the lemma gives this, note that for s′ = sn/(hkt) we have 
min{s′, 

√
s′n/k} ≥ h and s′ ≥ k. Indeed, we have

s′

h
=

√
sn

hk
·
√
sn

ht
≥ 1,

√
s′n

hk
= t ·

√
sn2

(hkt)3 ≥ t ≥ 1 and

s′

k
= s

k
· s

1/3n2/3

hkt
· n

1/3

s1/3 ≥ 1,

where we used s ≥ h2k2/n and t ≤ √
sn/h in the first inequality, t ≤

s1/3n2/3/hk in the second and last inequalities, where we also used n ≥ s ≥ k. 
This yields a copy of St3(h, k) with all second and third layer vertices in C, 
so the copy is well-behaved.

Case (iv). Each edge in F has exactly one vertex in C.
Let P be the set of sn2/(hkt)2-expanding pairs of vertices in A ∪ B. The 
total number of edges in F which do not contain a pair in P is less than (|A∪B|

2
)
· sn2/(hkt)2 ≤ 9 · 18sn2 ≤ |F |/2. The remaining, at least |F |/2 edges 

each contain a pair from P and each such pair can belong to at most n
edges, so |P| ≥ |F |/(2n) 	 sn. Since at most 

(|A|
2
)
≤

(9ht
2
)
< 41sn pairs 

have both vertices in A, there are at least 18sn pairs in P with at least 
one vertex in B. This means that there is a vertex in A ∪B having at least 
18sn/|A ∪B| ≥ sn/(hkt) ≥ h neighbours (with respect to P) in B, so we find 
a copy of Sh in P with leaves in B. Since the pairs in P have degrees at least 
sn2/(hkt)2 ≥ hkt ≥ hk (using t ≤ s1/3n2/3/hk), we can greedily extend this 
Sh into a copy of St3(h, k), which is well-behaved since every edge in Sh had 
at most one vertex in A and exactly two in A ∪B so the third vertex of any 
edge containing it must be in C, by the case assumption. �

Remark. This result is again best possible in a number of ways. We need the bound on 
s in order to be able to find even a single star, since Theorem 5.1 is tight, as explained 
by the remark below it. The actual number of stars we find is also optimal: the bound 
t ≤ s follows by taking Ks,n,n, t ≤ √

sn/h by taking K√
sn,

√
sn,n (note that 

√
sn ≤ n) 

and t ≤ s1/3n2/3/(hk) by taking the complete graph on s1/3n2/3 ≤ n vertices.
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The following lemmas arise as parts of our argument bounding ex(n, St4(d, d, k)), 
where d = (n/k)1/3, in the following subsection. They are either strengthenings of the 
above bounds or allow us more control over where we find vertices of our 3-uniform stars.

Lemma 5.3. Let H be a 3-graph on n vertices with e 	 kn2 edges. If every pair of 
vertices belongs to less than 3kd2 edges of H, then H contains d vertex-disjoint copies 
of St3(d, k), where d = (n/k)1/3.

Proof. We first show that for any vertex w of degree at least 7kn in H, there is an 
St3(d, k) centred at w. Observe first that the link graph Lw does not contain a star of 
size 3kd2, as otherwise the centre of this star and w make a pair of too high codegree. 
This means that in the link graph of w we can find d vertex-disjoint copies of Sk, again 
by a greedy procedure. Indeed in every step we have used at most 2kd vertices, each 
having degree at most 3kd2 in Lw, so in total they touch at most 6k2d3 = 6kn edges, 
and we can find the new Sk among the remaining nk edges. This gives us the desired 
St3(d, k) centred at w.

Let A be the set of vertices with degree larger than ed/(8n) 	 nkd and B the set of 
vertices with degree at most this. Since we have e edges in total this implies |A| ≤ 24n/d. 
This in turn implies that there can be at most 

(|A|
2
)
· 3kd2 ≤ e/3 edges with at least 2

vertices in A, so we can remove them to get a subgraph H ′ ⊆ H in which every vertex 
has at most one vertex in A and |E(H ′)| ≥ 2e/3 	 kn2.

Let us first assume there are at least e/3 edges with all vertices in B. Taking a maximal 
collection of vertex-disjoint St3(d, k) using only such edges, either we are done (if we have 
found d of them) or have used at most 2kd2 vertices, each with degree at most ed/(8n). 
So in total, currently used vertices touch at most 2kd2 · ed/(8n) = e/4 edges of H ′. 
Upon removing them we are left with at least e/12 	 kn2 edges with all vertices in B
and disjoint from the set of already used vertices. In particular, there is still a vertex of 
degree at least 7kn and we can use the observation from the beginning of the proof to 
find an additional St3(d, k), a contradiction.

So we may assume there are at least e/3 edges with one vertex in A and 2 in B. Now 
take a maximal collection of vertex-disjoint copies of St3(d, k) with centres in A and 
remaining vertices in B. Either we are done or we have used at most d vertices from A
and 2kd2 vertices in B. The former have degrees at most n · 3kd2 (second vertex we may 
choose in n many ways, but for the final we are restricted by the codegree assumption) 
so touch at most d ·n ·3kd2 = 3n2 ≤ e/24 edges. The latter have degrees at most ed/(8n), 
by definition of B, so touch at most 2kd2 · ed/(8n) = e/4 edges. Hence, upon removing 
all these edges we are left with at least e/24 ≥ 7kn2 of our edges, all of which are disjoint 
from the set of already used vertices. This means there is a vertex in A with degree at 
least 7kn, so once again using our initial observation we find an additional St3(d, k), a 
contradiction. �



326 M. Bucić et al. / Journal of Combinatorial Theory, Series B 151 (2021) 307–338
The following lemma allows us to find many copies of 3-uniform stars with an added 
restriction that its leaves should avoid a relatively small subset of vertices, provided the 
edges of our graph have at least one vertex in this small subset. The choice of parameters 
might seem a bit arbitrary, but it arises from our intended application of the lemma in 
the 4-uniform case.

Lemma 5.4. Let n, k and t be positive integers with t ≤ min{k, 
√
d}, where d = (n/k)1/3. 

Let H be an n-vertex 3-graph with e 	 n3

td2 edges. Let C ⊆ V (H) such that |C| ≤ 16nt/d
and assume that every edge of H has precisely one vertex in C. Then H contains d
vertex-disjoint copies of St3(d, k) whose leaves lie outside of C.

Proof. Let D = V (H) \ C. Suppose there exists a set X of d vertices in D with degree 
at least

δ := ed

8n 	 n2

dt
= nd2k

t
≥ max{nd2, ntdk} (2)

where in the last inequality we used the assumption on t. We delete from H any edge 
containing two vertices in X. We deleted at most

d2|C| ≤ 16ntd � δ

k

such edges, using (2). Hence, vertices in X after deletion still have degree at least δ2 . We 
now show how to find d vertex-disjoint copies of St3(d, k) with centres in X, 2nd layer 
vertices in C and leaves in D \X. We construct them as follows. We pick a vertex from 
X and look inside its link graph for copies of stars Sk with centres in C, leaves in D \X
and not using any already used vertices. If we find d of them we proceed to the next 
vertex of X, otherwise we stop. If we did not stop by the time we considered all vertices 
of X, we have found our desired structure. So we may assume that we do stop at some 
point when considering x ∈ X. At this point we have used at most d2 vertices from C
and kd2 + d ≤ 2kd2 vertices from D (the first term being the contribution of D \X and 
the second of X). In the link graph Lx (note that this graph consists of edges with one 
vertex in C and one in D), already used vertices from C touch at most d2 ·n ≤ δ/8 edges 
in total, using (2). Furthermore, used vertices from D touch at most

2kd2|C| ≤ 32ntdk ≤ δ

8

edges in total, using (2). So removing all edges touching these forbidden, already used, 
vertices we are left with at least

δ ≥ 16ntk ≥ k|C|
4 d
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edges in Lx, avoiding all already used vertices. Hence, we find another appropriate Sk, 
a contradiction.

So we may assume that there are at most d vertices in D with degree at least δ. These 
vertices participate in at most

dn2 = n3

kd2 ≤ e

4

edges (using t ≤ k); we delete them and are left with a graph H ′ with at least 3e
4 edges 

such that all vertices in D have degree at most δ in H ′. Let us take a maximal collection 
of vertex-disjoint copies of St3(d, k) with centres in C. If we are not done, the centres 
touch at most dn2 ≤ e

4 edges, while the other used vertices touch at most 2kd2 · δ = e
4

edges (since they all belong to D so touch at most δ edges). So there are at least e/4
edges which do not touch any of the used vertices. Let H ′′ be the graph consisting of 
these edges. Now it is enough to find another St3(d, k) in H ′′, with its centre in C. Note 
that there is a vertex in C of degree at least

e

4|C| ≥
6n2

dt2
= 6n · kd

2

t2

in H ′′. Applying Lemma 2.4 with s := kd2

t2 , which we can since s ≥ kd ≥ k (using 
t ≤

√
d), we find min{s, √sn/k} ≥ min{kd, d2} ≥ d (using n = kd3 and t ≤

√
d in the 

second term) disjoint stars Sk in the link graph of this vertex, completing the proof. �
The final lemma for the 3-uniform case is the following. It is similar in spirit to the 

above one, except that it works with smaller sets and only finds a single star. While the 
above lemma will be used to embed a number of stars within the link graph of a fixed 
vertex, the following one will be used to find the star making the first three layers of the 
generalized stars that we will consider in the next subsection.

Lemma 5.5. Let n, k and t be positive integers with t ≤ min{k, 
√
d}, where d = (n/k)1/3. 

Let H be a 3-graph on vertex set B ∪ C where B and C are disjoint, |B| ≤ 16td2 and 
|C| ≤ 16td2k. If H has e 	 kn2 edges then it contains a copy of St3(d, d) whose leaves 
all lie in C.

Proof. There are at most
(
|B|
3

)
≤ 212t3d6 ≤ 212k3(n/k)2 ≤ e

4

edges within B. If we have e/4 edges living completely in C then by Theorem 5.1, since

e/4 ≥ 28n2 ≥ max{d|C|2, d4|C|},
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where we used t2 ≤ d for the first term and t ≤ k for the second, we can find a copy of 
St3(d, d) consisting of these edges, so in particular having all leaves in C, as desired. So 
we may assume there are at least e/2 edges containing vertices from both B and C. Let 
H ′ be the subgraph consisting of such edges.

A pair of vertices in H is said to be a B-pair if it contains at least one vertex in B. 
There are at most

|B| · (|B| + |C|) ≤ 29t2d4k ≤ 29d4k3 = 29kn2/d2 ≤ e/(12d2)

B-pairs. We say a B-pair is C-expanding if it extends into an edge of H ′ using a vertex 
from C in at least 3d2 many ways. This means there are at most e/4 edges which contain 
a non-C-expanding B-pair. The remaining, at least e/4, edges only contain C-expanding 
B-pairs. Each of these edges can be split into a B-pair, which must be C-expanding and 
a vertex in C. Hence, there needs to be at least

e

4|C| ≥
kn2

td2k
= k

t
· n

d3k
· dn ≥ dn

C-expanding B pairs. Hence, we can find a star of size d made of such pairs and since 
each of them extends to at least 3d2 ≥ |St3(d, d)| edges using a vertex in C, we find our 
desired star by a greedy procedure. �
5.2. Optimal 4-uniform unavoidable graphs

We finally have all the 3-uniform results our hearts might desire, we proceed to the 
4-uniform case.

We begin by determining the Turán number of a single copy of our unavoidable 
generalised 4-uniform star. The proof is relatively simple since we did most of the legwork 
in the previous section.

Lemma 5.6. For 1 ≤ k ≤ n one has ex(n, St4(d, d, k)) � kn3, where d = (n/k)1/3.

Proof. For ease of notation, set St = St4(d, d, k). Let G be an n-vertex 4-graph with 
e 	 kn3 edges. We say a triple of vertices X is expanding in G if it is 3kd2-expanding.

Claim. If at least e/2 	 kn3 edges contain an expanding triple, then G contains St.

Proof. Let Dv := {X ⊆ V (G)3 | X ∪ v ∈ E(G), X is expanding}. We have 
∑

v |Dv| ≥
e/2, since every edge containing an expanding triple contributes at least one to the sum 
on the left. This implies that there exists a vertex v with |Dv| ≥ e/(2n). Now, if there 
exists a vertex w with degree at least 6dn in Dv then we can find d vertex-disjoint copies 
of the star of size d within the link graph of w in Dv, by Lemma 2.4 and using that 
n = d3k ≥ d3. Adding w to these edges gives us an St3(d, d) within Dv (so consisting of 
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expanding triples). This in turn implies we are done by greedily extending it to a copy 
of St. So we may assume every vertex has degree at most 6dn in Dv.

Theorem 5.1 tells us that we can find at least one St3(d, k) in any 3-graph with 
e/(4n) 	 kn2 edges (using that n = d3k ≥ d2k so that d2k2n ≤ kn2). Suppose we have 
found t < d vertex-disjoint copies of St3(d, k) in Dv; they span at most 3kd2 vertices, 
each having degree at most 6dn in Dv. Hence, these vertices are incident to at most 
18n2 edges, so if we remove all of them, we are left with at least e/(4n) edges. Now, 
Theorem 5.1 implies that we can find another disjoint St3(d, k). Therefore, we can find 
at least d vertex-disjoint copies of St3(d, k) inside Dv, which together with v give us a 
copy of St. �

By the claim we may assume there are at most e/2 edges containing an expanding 
triple, so after deleting them we are left with a subgraph G′ with at least e/2 	 kn3

edges, with no expanding triples. Take a vertex of maximum degree; it has degree at 
least e/n 	 kn2 and in its link graph no pair of vertices belongs to more than 3kd2

edges since there is no expanding triple. So Lemma 5.3 implies the result. �
The following result gives us our optimal unavoidable 4-graphs.

Theorem 5.7. In any 4-graph G on n vertices with e 	 kn3 edges, one can find t =
min{k, d1/4} vertex-disjoint copies of St4(d, d, k), where d = (n/k)1/3.

Proof. Set L2 = e
4td , L3 = e

4td2 and L4 = e
4td2k . We partition V (G) into level sets 

according to their degrees

A := {v | d(v) > L2} ,
B := {v | L3 < d(v) ≤ L2} ,
C := {v | L4 < d(v) ≤ L3} and

D := {v | d(v) ≤ L4} .

Let St := St4(d, d, k). A generalised star St in G is said to be well-behaved if its second 
layer vertices are embedded among vertices with degree at most L2 (i.e. vertices in 
B ∪ C ∪ D), the third layer vertices in vertices of degree at most L3 (i.e. vertices in 
C ∪D), and the fourth layer vertices in vertices of degree at most L4 (i.e. vertices in D). 
Let us consider a maximal collection of vertex-disjoint well-behaved generalised stars St. 
If we found less than t stars then already used vertices touch at most t ·

(
n
3
)
+td ·L2 +td2 ·

L3 + td2k · L4 ≤ 7
8e edges. So there are at least e/8 edges disjoint from any previously 

used edges and our task is to show we can embed an additional well-behaved St using 
these edges.

Handshaking lemma gives us:

|A| ≤ 4e/L2 = 16td,
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|B| ≤ 4e/L3 = 16td2 and

|C| ≤ 4e/L4 = 16td2k.

This implies |A ∪B| ≤ 32td2 and |A ∪B ∪C| ≤ 48td2k. Hence the total number of edges 
with at least 2 vertices in A, or at least 3 vertices in A ∪B, or all 4 vertices in A ∪B ∪C

is upper bounded by
(
|A|
2

)(
n

2

)
+

(
|A ∪B|

3

)
n +

(
|A ∪B ∪ C|

4

)

≤ 26t2d2n2 +210t3d6n +219t4d8k4

≤ 26d5/2n2 +210k3d6n +219d9k4

≤ 26n3k +210n3k +219n3k ≤ 220kn3 ≤ e/16,

where we used t4 ≤ d and t ≤ k in the second inequality and n = kd3 in the third. In 
particular, there are at least e/16 remaining edges (which do not touch used vertices) 
such that they have at least 1 vertex in D, at least 2 vertices in C ∪ D and at least 
3 vertices in B ∪ C ∪ D. Furthermore, there exists a subset F of these edges of size 
|F | ≥ (e/16)/35 	 kn3 which all have the same number of vertices in each of A, B, C
and D, since there are7 (4+3

3
)

= 35 different types of edges according to how many vertices 
they have in each of the sets A, B, C and D. We distinguish several cases depending on 
how many vertices our edges in F have in D.

Case (i). All edges in F have 4 vertices in D.
Any St we find in this case is well-behaved so we are done by Lemma 5.6.

Case (ii). All edges in F have exactly 3 vertices in D.
There is a vertex v in A ∪B∪C of degree at least |F |

|A∪B∪C| 	
kn3

td2k = n2dk/t. 
Using Theorem 5.2 (with s := dk/t and h := d so that s ≥ k and ns =
k2d4/t ≥ h2k2), we get at least d vertex-disjoint copies of St3(d, k), since

s ≥ d,

√
sn

h
= kd√

t
≥ d and s1/3n2/3

hk
= (d4/t)1/3 ≥ d.

Together with v, this gives a desired well-behaved copy of St.
Case (iii). All edges in F have exactly 2 vertices in D.

There can be at most |A||B|
(
n
2
)
≤ 128t2n3/k < |F | edges in F with 1 vertex 

in A and 1 in B. Hence our edges either have exactly 2 vertices in B and 2
in D, or at least 1 vertex in C.
Subcase (a). All edges in F have 2 vertices in B and 2 in D.

Given a vertex set S, a pair of vertices in S is called an S-S pair. 
Denote by P the set of B-B pairs with at least |F |/|B|2 ≥ 3nkd2

7 The number of non-negative integer solutions to x1 + x2 + x3 + x4 = 4.
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pairs in their link graph. Since there are 
(|B|

2
)

different B-B
pairs, ones outside of P belong to at most 

(|B|
2
)
·|F |/|B|2 ≤ |F |/2

edges. Hence, the remaining |F |/2 edges have their B-B pair 
belonging to P. Each B −B pair can extend into an edge in at 
most 

(|D|
2
)

many ways. Hence,

|P| ≥ |F |
2 /

(
|D|
2

)
≥ 16kn ≥ d|B|.

Therefore, P contains a star of size d. We embed vertex-disjoint 
stars Sk into the link graphs of the leaves of our star in P, 
dealing with one leaf at a time and moving to the next one 
when we found d stars Sk inside its link. Unless we are done, 
we have used at most 2kd2 vertices which can touch at most 
2kd2 · n many D-D pairs within the current link graph. Thus 
we still have at least nkd2 ≥ kn many D-D pairs in the link 
graph, disjoint from any already used vertices, which means we 
can find another Sk, as desired.

Subcase (b). All edges have at least 1 vertex in C and exactly 2 vertices in 
D.
There is a vertex v ∈ A ∪ B ∪ C which appears in at least 

|F |
|A∪B∪C| 	

kn3

td2k = n3/(td2) edges with the remaining vertices 
being one in C and two in D. By Lemma 5.4 (note that |C| ≤
16td2k = 16nt/d), the link graph of v contains d vertex-disjoint 
copies of St3(d, k) whose leaves lie in D.

Case (iv). All edges in F have exactly 1 vertex in D.
Let T denote the collection of all triples in A ∪B ∪ C of codegree at least

|F |
|A ∪B ∪ C|3 ≥ 3kn3

(td2k)3 = 3kd3

t3
≥ 3kd2.

Triples from A ∪B ∪ C outside T belong to at most 
(|A∪B∪C|

3
)
· |F |
|A∪B∪C|3 ≤

|F |/2 edges, so at least half of the edges in F contain a triple in T , and so 
|T | ≥ |F |/(2n) 	 kn2. As there are at most

|A| ·
(
|A ∪B ∪ C|

2

)
≤ 216t3d5k2 ≤ 216d6k2 = 216n2 ≤ |T |/2

triples with a vertex in A, we can remove them to obtain a collection T ′ of 
triples in B∪C such that |T ′| 	 kn2. Now, if we find a well-behaved St3(d, d)
within T ′ (meaning that the second and third layer of vertices are embedded 
in B ∪ C and C respectively) then we are done by greedily extending it and 
choosing distinct vertices in D for 4-th layer vertices of St, which we can 
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since each triple has codegree at least 3kd2. The existence of such St3(d, d)
is guaranteed by Lemma 5.5. �

Finally, the optimal unavoidable 4-graphs at the very end of the range are of a very 
different flavour.

Theorem 5.8. Every n-vertex 4-graph with e ≥ n4−1/216 edges contains 1
24 (e/n)1/4 vertex-

disjoint copies of the complete 4-partite 4-graph K4(s, s, s, t), where s = 1
12

(
logn

log(n4/e)

)1/3

and t = n1/4.

As the proof is an easy consequence of the well-known Kövári-Sós-Turán theorem and 
is very similar to its 3-uniform analogue ([9, Theorem 8]), we defer it to the appendix.

5.3. Lower bounds

Let us now deduce the lower bound of the last regime of the unavoidability problem, 
i.e. we show the lower bound in Theorem 1.1 (iii). Note first that if e ≤ n4−ε for any ε > 0
we know e1/4 logn

log((n4)/e)
≈ e1/4. In particular, for n3 � e ≤ n4−1/216, we can use Theorem 5.7

with k � e/n3, to conclude there is an (n, e)-unavoidable 4-graph with

min{k, (n/k)1/12} · (n/k)2/3k = min{n2/3k4/3, n3/4k1/4} � min{e4/3/n10/3, e1/4}

edges, showing the desired bound.
Similarly for n4−1/216 ≤ e � n4, Theorem 5.8 provides us with an (n, e)-unavoidable 

graph with

� (e/n)1/4 logn
log(n4/e)n

1/4 � e1/4 log n
log(

(
n
4
)
/e)

edges, as desired.

5.4. Upper bounds

The results of the previous sections complete the picture in terms of lower bounds on 
un4(n, e). Let us now turn to the upper bounds. They turn out to be much simpler than 
in the previous case, largely thanks to the following easy counting lemma from [9].

Lemma 5.9. If an r-graph H on p vertices with q edges is (n, e)-unavoidable then

q <
p logn((

n
) ) .
log r /e
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The following result, together with monotonicity of un4(n, e) establishes the upper 
bounds for Theorem 1.1 (iii) and completes its proof.

Theorem 5.10.

(i) For n3 � e � n40/13 we have un4(n, e) � e4/3/n10/3.
(ii) For n40/13 � e ≤

(
n
4
)

we have un4(n, e) � e1/4 logn

log
(
(n4)/e

) .

Proof of Theorem 5.10. (i) Let H be an (n, e)-unavoidable graph. Let t = 3(e/n)1/3. 
Take n/t disjoint copies of a 4-uniform clique on t vertices. In total this gives us nt

(
t
4
)
>

e edges so this graph must contain H as a subgraph. In particular, every connected 
component of H has size at most t. Now take another graph with a set V1 of 50e/n3 ≤ n/2
vertices and a set V2 of n/2 vertices and we pick all edges having one vertex in V1 and 
three in V2; this graph has more than e edges, so it must contain H as a subgraph. This 
implies H can have at most 50e/n3 connected components. In turn this implies H has at 
most 50te/n3 = 150e4/3/n10/3 vertices. Now Lemma 5.9 implies H has at most 1312 |V (H)|
edges, which completes the proof.

(ii) Let H be an (n, e)-unavoidable graph. Take a 4-uniform clique on m = 3e1/4

vertices; it has 
(
m
4
)
> e edges so must contain H, hence H has at most m vertices. The 

claimed upper bound again follows from Lemma 5.9. �
6. Concluding remarks and open problems

In this paper we resolve a question of Chung and Erdős which asks to determine the 
order of magnitude of un4(n, e) defined as the maximum number of edges in a 4-graph G
which is contained in every 4-graph on n vertices and e �

(
n
4
)

edges. The most immediate 
open question is to answer their question for any uniformity.

Question 6.1 (Chung and Erdős, 1983). What is the order of magnitude of unr(n, e) for 
any r?

From our result the answer is now known for r ≤ 4 and e �
(
n
4
)
. In addition, 

our methods and certain further partial results give some indication about how the 
answer should behave for larger uniformities as well. For example, it seems likely that 
in general there are 

⌈
r
2
⌉

+ 1 different regimes. The first one, when e � n
⌊
r
2
⌋

always has 
an easy answer of unr(n, e) = 1 and the following regimes are ni � e � ni+1 where ⌊
r
2
⌋
≤ i ≤ r− 1. In each regime (with the exception of i = (r− 1)/2 and i = r− 1) there 

are two competing bounds, which arise from the fact there are two sunflowers Sf r(t, 2)
with ex(n, Sf r(t, 2)) ≈ ni. Our answer in the second regime for the 4-uniform case turned 
out to be a bit surprising and is in fact in-between the two natural guesses, so we are 
not willing to conjecture the correct value of the turning point for general uniformity. 
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In the last regime, i = r − 1, the upper bound given by Theorem 5.10 generalises easily 
and seems to give the correct answer for all uniformities (as long as e � nr).

Conjecture 6.2. For any r ≥ 2 and ε > 0, provided nr−1 � e � nr−ε we have

unr(n, e) ≈ min{e r
r−1 /nr−1+ 1

r−1 , e
1
r }.

Here, even the optimal unavoidable r-graphs seem to be clear, namely they should con-
sist of an appropriate number of copies of Str((n/k)1/(r−1), . . . , (n/k)1/(r−1), k), however 
bounding their Turán numbers seems to be highly non-trivial. The assumption e � nr−ε

was made since it is not hard to generalise Theorem 5.8 (we do so in the Appendix) and 
hence determine unr(n, e) for all nr−ε � e � nr for some ε > 0.

The main stumbling block for extending our methods to higher uniformities is the fact 
that Turán numbers of sunflowers ex(n, Sf r(t, k)) are not very well understood when 
r ≥ 5 and k is allowed to depend on n, as pointed out by Chung and Erdős in [9]. 
The main reason being that these sunflowers represent main building blocks for all our 
examples, across most of the range. On this front, the appropriate generalisation of 
Theorem 1.2 seems to be as follows.

Conjecture 6.3. For every fixed r ≥ 5 and t < r one has ex(n, Sf r(t, k)) ≈
kmin{t+1,r−t}nmax{r−t−1,t}.

This would generalise a result of Frankl and Füredi [22] and Füredi [29] (who solve 
it when k is a constant) and the question may be attributed to Chung and Erdős. One 
can generalise our constructions from Section 3 to show the lower bound part, and some 
methods for upper bounds also generalise. We can prove this conjecture for several more 
uniformities, although even in the case r = 5 we needed additional ideas.

Since generalised stars seem to be optimal unavoidable graphs, as long as e � nr−1, 
(at which point their unions take over) the following seems to be the key problem one 
needs to resolve in order to answer Question 6.1.

Question 6.4. Let r be fixed. Determine the order of magnitude of ex(n, Str(d1, . . . ,
dr−1)), where di’s are allowed to depend on n.

One can read out the answer for r = 3 from Theorem 5.1 and we believe our methods 
suffice to also solve it for r = 4. Yet for higher uniformities even the case in which we 
keep the di’s fixed, which is yet another generalisation of the result of Frankl and Füredi 
[22] and Füredi [29] on Turán numbers of sunflowers with fixed uniformity and number 
of petals, seems potentially interesting.

Both Conjecture 6.2 and Question 6.4 are examples of an interesting general question. 
Turán numbers of both graphs and hypergraphs are well-studied, but in most cases one is 
only interested in Turán numbers of a graph of fixed size. For many classical examples one 
can ask what happens if the fixed size restriction is removed. This can be very useful in a 
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number of situations, perhaps the most ubiquitous being the Kövári-Sós-Turán theorem 
[35] which is often used to find complete bipartite graphs of order even comparable to 
that of the underlying graph. For some additional examples see [1,14,28]. It definitely 
seems there is plenty of potential for interesting future work in this direction.

So far we have avoided discussing the assumption e � n4 in Theorem 1.1, mostly 
following in line of Chung and Erdős. In fact we can replace this condition in Theorem 1.1
with e ≤

(
n
4
)
− n1+c for any c > 0 (it requires choosing s and t slightly differently in 

Theorem 5.8). The problem seems to change significantly at this point and attains a very 
different flavour. Even the graph case, which was raised by Chung and Erdős in 1983 
has only recently been resolved in [4] and it suggests that around this point the optimal 
extremal examples seem to become (pseudo)random graphs in place of the complete r-
partite graphs and the answer changes. Given that even the graph case turned out to be 
somewhat involved and relies on completely different ideas, we leave this open for future 
research.

Question 6.5. For r ≥ 3 determine the order of magnitude of unr(n, e) when e = (1 −
o(1))

(
n
r

)
.

Another natural follow-up question is to determine how optimal (up to a constant 
factor) (n, e)-unavoidable r-graphs look like. It is entirely possible to answer this question 
without answering Question 6.1, since one can potentially force the structure of an 
optimal unavoidable graph similarly as in Theorem 4.2 (as was demonstrated by Chung 
and Erdős in the 3-uniform case). At the very least we believe that optimal unavoidable 
graphs should be (close to) generalised stars as long as e is not too close to 

(
n
4
)
. Towards 

the end of the range the situation becomes blurry, as at least for part of the range, both 
copies of complete r-partite graphs and generalised stars are simultaneously optimal.
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Appendix A. Large complete r-partite subgraphs of dense r-graphs

In this section we provide a proof of (a generalisation of) Theorem 5.8.
The proof is based on Kövári-Sós-Turán theorem [35], for hypergraphs. Since the sizes 

of the r-partite graphs we want to find grow with the number of vertices we need to go 
through the standard proof with care. The starting point is the graph case.

Theorem A.1 (Kövári, Sós and Turán [35]). If G = (A ∪ B, E) is a bipartite graph and 
for some integers s and t we have
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t

(
|A|
s

)
< |B|

(
|E|/|B|

s

)

then G contains a complete bipartite graph Ks,t with the vertex class of size s embedded 
in A.

We will apply the following in the not so dense case.

Lemma A.2. Let n, r and s be positive integers with r ≥ 2 and n ≥ 2(4s)r−1 . Let V1, . . . , Vr

be sets of size n and M be a subset of V1 × · · · × Vr with |M | ≥ nr−1/(4s)r−1 . Then there 
exists A1 × · · · ×Ar ⊂ M such that |Ai| = s for every 1 ≤ i < r and |Ar| =

√
n.

Proof. We prove Lemma A.2 by induction on r. The base case r = 2 follows from 
Theorem A.1 since

√
n

(
n

s

)
< n

(
n1−1/(4s)

s

)
.

Here we used the fact that 
(
n
s

)
/
(
m
s

)
≤ ( n

m−s )
s ≤ (2n

m )s provided m ≥ 2s.
Assume that the statement holds for r−1. Consider the bipartite graph G = (A ∪B, M)

in which A = V1 and B = V2 × · · · × Vr. Since

nr−1−1/(4s)r−2
(
n

s

)
< nr−1

(
n1−1/(4s)r−1

s

)

for n ≥ 2(4s)r−1 , there exists A1 × M ′ ⊂ M with |A1| = s and |M ′| = nr−1−1/(4s)r−2 . 
By appealing to the induction hypothesis, we conclude M ′ contains A2 × . . .× Ar such 
that |Ai| = s for every 2 ≤ i ≤ r − 1 and |Ar| =

√
n. This completes the proof of 

Lemma A.2. �
We now show a similar bound for a number of copies of r-partite graphs.

Theorem A.3. Every n-vertex r-graph G with e ≥ nr−1/6r−1 edges contains 1
6r (e/n)1/r

vertex-disjoint copies of the complete r-partite r-graph Kr(s, . . . , s, t), where s =
1
12

(
logn

log(nr/e)

)1/(r−1)
and t = n1/r.

Proof. A vertex of G is called expanding if its degree is at least re1−1/r. By the hand-
shaking lemma, there are at most e1/r expanding vertices. Let k denote the maximum 
number of vertex-disjoint copies of Kr(s, . . . , s, t) that can be embedded in G, whereas 
in each copy the r-th vertex class consists of t non-expanding vertices. Suppose to the 
contrary that k < 1

6r (e/n)1/r.
The number of edges containing some used vertices is at most k(r − 1)s ·

(
n

r−1
)

+
kt · re1−1/r ≤ e/3 assuming e ≥ nr−1/r. Moreover, the number of edges within the set 
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of expanding vertices is at most 
(
e1/r

r

)
≤ e/6. Therefore, by removing those edges we 

obtain a subhypergraph H with e/2 edges such that any edge of H contains at least one 
non-expanding vertex, and the edges of H don’t touch used vertices. Let V1, . . . , Vr−1
be r − 1 copies of V (G), and Vr be a copy of the set of non-expanding vertices. Denote 
by M the set of r-tuples (v1, . . . , vr) in V1 × · · · × Vr such that {v1, . . . , vr} is an edge of 
H. Clearly, |M | ≥ |E(H)| ≥ e/2 ≥ nr−1/(4s)r−1 .8 Lemma A.2 implies that there exists 
a set A1 × · · · × Ar ⊂ M satisfying |A1| = . . . = |Ar−1| = s and |Ar| =

√
n ≥ t. The 

sets A1, . . . , Ar are disjoint, for the edges of H consist of distinct vertices. Hence H
contains a copy of Kr(s, . . . , s, t) in which the r-th vertex class is embedded in the set 
of non-expanding vertices, a contradiction to the maximality of k. �
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