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Abstract. Let g be a complex simple Lie algebra amda fixed Borel
subalgebra ofi. We describe the abelian idealstinn a uniform way, that

IS, independent of the classification of complex simple Lie algebras. As an
application we derive aformula for the maximal dimension of a commutative
Lie subalgebra of.

1. Introduction

Let g be a complex simple Lie algebra ahé fixed Borel subalgebra gf

This paper has three purposes. First, the maximal dimension among
the commutative subalgebras gfs determined purely in terms of certain
invariants. These invariants involve the dual Coxeter numbegranid the
numbers of positive roots of some associated root subsystens@ir
formula gives a conceptual explanation of A. Malcev’s classical result [Mal].
To assuage any possible curiosity we now list the maximal dimensions
together with their computations for the five exceptional types. The whole
picture will be revealed in the table on page 209.

O — 1+ Nag — Na, =12—-1+15-10=16

Os; — 1+ Npg — Np, =18—-1+4+30—-20= 27

O — 1+ Na, — Ny =30—-1+28—-21=36

O, —14+ Ny, —Ng = 9-14+ 1—- 0= 9

Os, —14+Ng —Ng = 4—-14+ 0— 0= 3
Second, we answer a question of Panyushev and Rohrle [PR] who asked
for a uniform explanation for the one-to-one correspondence between the

maximal abelian ideals i and the long simple roots. More generally,
in our approach all positive long roots will emerge in a natural way. We
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define a mapping from the set of nonzero abelian idealsonto the set

of positive long roots. This mapping was also discovered independently by

Panyushev [Pan]. He proved that each fibre of this mapping is a poset having
a unigue maximal element and a unique minimal element and asked for
further investigating the poset structure and, in particular, to find a general

description of the maximal element of each fibre. The exact structure of

the fibres was first announced in a preliminary version of this paper [Su3].

Some additional work by Cellini and Papi appeared recently [CP4].

Third, we keep the promise of giving a generalization and explanation
of the symmetry property of a certain subposet of Young's lattice (the lattice
of integer partitions) that was observed in [Su2] and which we now recall.
For that consider the subposéf, of Young’s lattice induced by the Young
diagrams whose (largest) hook lengths are at lMNesi. One sees easily that
the posefYy has 2'-1 elements. This follows for instance by associating
to each such diagram an integer between 0 ahd 2 1 by the following
procedure: in each column of the diagram write the figure 1 at the bottom
and fill the rest by 0; then read the binary number along the rim,

0[1]

11010100001= 1697

mi=l==

0
0[1

The main result of [Su2] states that the Hasse graphypf(considered
as an undirected graph) has the dihedral groupyhorder 2N as its

automorphism group provided > 3. The following figure exemplifies
this fact forN = 5.

Aut(Ys) = Dihg

The case dealt with in [Su2] is now seen asAlge; case, i.e., associated
with the Lie algebrgy = sly(C). It is so to say the most spectacular case.
The reason is that its affine Coxeter-Dynkin graph is a cycle of leNgth
Its dihedral symmetry induces a dihedral symmetry on a certain simplicial
complexC. The Hasse graph df y can be geometrically realized as the
1-skeleton of the cell complex dual @

Here is a brief historical narrative around the topic of this paper. In his
1905 paper [Sch] in Crelle’s journal I. Schur proved that the maximum
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number of linearly independent commutitgx N matrices is|_N72j + 1.

In 1944 Jacobson [Jac] gave a simplified derivation of Schur’'s result.
In the next year A. Malcev [Mal] determined the commutative subal-
gebras of maximum dimension of the semisimple complex Lie groups,
or equivalently, their Lie algebras. The next entry in this short histori-
cal outline is Kostant's paper [Kol] published in 1965. There he gave
a connexion of Malcev’s result with the maximal eigenvalue of the Lapla-

cian acting on the exterior power/é\kg of the adjoint representation.
Kostant [Ko2] again, in 1998, reconsidered the theme of abelian ideals
in a Borel subalgebra af and reported inter alia about Peterson’s proof
that the number of abelian ideals in a fixed Borel subalgebggi®paks,

This, quoting Kostant, utterly surprising and ingenious proof involves the
affine Weyl group. It seems that Kostant’s paper was the starting point of
much recent activity. A natural generalization of Peterson’s approach from
abelian to ad-nilpotent ideals was developed recently by several authors
[AKOP,CP1,CP2,CP3,KOP,Som], see also [Shi], and for Kostant's results
[CMP].

The structure of the paper is as follows. In Sect. 2 we review the com-
binatorial setup for describing the abelian idealsbinSuch an ideal is
associated with a subs@t of the set of positive roots. Kostant’s theorem,
which will be our main tool, characterizes the subskgtthat arise in this
way. A central notion in our approach will be that gbgoint. Thep-points
are certain integral weights arising from the geometry of the affine Weyl
group. The precise definition is given on page 183. We then reprove Peter-
son’s theorem directly from Kostant's theorem (without using involutions
in a maximal torus). In Sect. 3 we first observe that for each nonzero abelian
ideala < b its subspace spanned by the root spaces corresponding to those
roots that are not perpendicular to the highest root is again an ideal, say
a*?. For each positive long roet we then construct an abelian idedl™".

(A word about the notation may be appropriate here.dlner¥™" is purely
notational whereas in a* denotes a nonzero abelian ideal.) The image of
the mapping 0% a — at? is the set of abelian ideals of the foruft™",

This will be proved in Theorem 17. The main theorem (Theorem 23) also
describes the fibres of the mapping above. As a corollary we get the First
Sum Formula (Theorem 24), which generalizes the fact that the sum of all
entries in the first rows of Pascal’s triangle equals-2 1. In Sect. 4 we

look at the maximal abelian ideals and in particular at those of maximal
dimension. This links to A. Malcev’s list for the maximal dimension of

a commutative subalgebra gn Corollary 25 gives a uniform formula for
these dimensions. Next, the connexion between the maximal abelian ideals
in b and the set of long simple roots is explained. As a corollary we get the
Second Sum Formula (Theorem 27) which generalizes the binomial expan-
sion for (1 + 1)" = 2". Section 5 deals with the symmetry of the Hasse
graph of the poset of abelian idealsbinAs examples we display the Hasse
graphs for the simple types of rank 4 and also the Hasse grajaa.for
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2. Notations and tools, review of someresults

For basic facts about root systems, Weyl groups, and related topics see
[Bou,Hum,Bro,Hil]. Let us fix a complex simple Lie algebgaof rank

| together with a Borel subalgebtta and a Cartan subalgebta C b.
Associated with these data there are quite a number of further objects
whose notations are provided in the following table. Most of them are
standard (but sometimes there are different conventions). We list the most
Important notations used here for the reader’s convenience.

A (closed) fundamental alcove (4),
C (closed) dominant chamber (5),
Fi = H; N Afacets of typa of the fundamental alcova,
g dual Coxeter number,
9y ={X eg|[H X]=¢(H)X YH € h} root space,
h Coxeter number,
bk br real vector space spanned by the roots, and its predual,
Hi walls supporting the facets (i =0, ...,1) of A,
H,, His—, walls Fix(s,), FiX(Ss—y),
I = rankg, R
14 length function onV or onW,
_ 2(6—9¢lp)
L L(p) = @;‘;" :
mj exponentsi(=1,...,I),
!
n; marks (=1,...,1),0 = > n;«;, in addition,ny = 1,
i=1
N number of positive roots for a root system of type
S simple reflectionsi(= 1, ..., ), in addition,s : hj; — bj,
() =1 —(2,07)0 + g9,
S reflection along the highest roa,(1) = s5(A) — $(0),
Sy Sw—p  reflections along the rootg ks — ¢,
w?, w? longest elements i, ,, W,
W, W finite Weyl group, affine Weyl group,
Wiy igp(s\aiLgo(i:l/,\...,l)),
WJ_(/) WJ_(p = WJ_(/) if 6 ,J/_ Q, WJ_(/) = gp(So, WJ_(/)) ifo L Q,
Qi simplerootsi(=1,...,1),00 =8 — 6,
0 highest root,
wi fundamental weights & 1, ..., I),
o = oz @)
I7 = {oy, ..., a} set of simple roots,
I7°n9 set of long simple roots,
0 = 1(®,) half the sum of positive roots,
@’ coroot corresponding o € @,

D, D, root system, set of positive/negative roots,
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@' set of positive long roots,
D(a) setof weightsofi, a = @ g,
ped(a)
Dy = o, Nwd_,
P, Dy affine root system, set of positive/negative affine roots,
Dy =d,. NUwd_,
() canonical bilinear form oB;, or onb}, ® Ré & R Ay,
Il norm from( | ),
() (W)=Y gforw c o,
ey
) natural pairing,

(,
[ ] ] = 2.

We denote byp, C h* the set of positive roots. Here the convention is

that the root spaces nbelong to positive roots, i. eb,= h& & g, where
peD,
g, is the (1-dimensional) root space on whighcts by the weighp, that is,

g, ={X €g|[H X]=¢(H)X VH € b}. As further pieces of notation

we write _ = —a,, for the set of negative root€y = @, U &_ for the
root system ofy relative toh, and/T C @, for the root basis. Recall thal
consists of the roots ik, that lie on the edges of the polyhedral (in fact,
simplicial) cone spanned by the vectorsfin. Each positive root is a linear
combination of the vectors ifY with nonnegative integral coefficients. The
Weyl group of® will be denoted byw. More about Weyl groups and some
geometry associated with them will be recalled at the appropriate place
below.

Now leta <b be anideal. It is ag-stable and hence compatible with the
root space decomposition. If we further require thdies in the nilpotent

radicaln = [b, b], we get thata is of the forma = & g, for some
pevw
subsetr C @, of positive roots. The ideal property oftranslates into the

condition fory thaty + &, = (¥ + &,) N &, C . If, in addition, a
Is supposed to be abelian (so that [b, b] holds automatically), we must

have¥ + ¥ := (¥ + ¥) N &, = @. ltis clear that there is the following
bijection.

subsetsV C @, such that
U4+ P, CPand¥ + ¥ =0

U — ay ::@g(p

pev

} < {abelian ideals < b}

The inner product. Before we can go on and state Kostant's theorem,
which will be an essential tool for our approach, we recall the canonical
inner product on the real vector spdgespanned by the (finite) irreducible
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(reduced) root system. This inner product will be denoted lyy| ) and the
associated Euclidean norm py]||. It is characterized by beirgy/-invariant
and satisfying the normalizatiofp + 6|2 — || p||> = 1 wherep is half the
sum of positive roots anglis the highest root.

Remark The canonical inner productis the restrictiofyfoof the symmetric
bilinear form dual to the Killing form ofy. There are several alternative
descriptions of the same normalization. Here is a short list.

lo + 6]> — llpll? = 1, i.e., the eigenvalue of the Casimir operator
associated to the Killing form is 1 for the adjoint representation;
161~ = g, the dual Coxeter number;

lpll? = 2—14 dim g, the “strange formula” of Freudenthal and de Vries;

Y |l¢ll? = rankg, a formula due to G. Brown;
ped

|
160017 + 3" ni llei || = 1, whereny, ..., n are the marks and, ..., o
i=1
|
the simple roots. (The formula looks funnier if one substities; «;
i=1
for 6.) One can show the formula by writing|| 2> = g and using the
connexion between the Coxeter number and the dual Coxeter number.
Another derivation will be given in the remark beginning on page 211.

Definition Forw C @, we define(¥) := > ¢.
pevw

Lemmal (Kostant) Let¥; C @, with¥ + @, C ¥ (i = 1, 2) (ideals)
such that (W) = (V). Then ¥, = ¥,

Proof Lety := ¥; NY,. Assume to the contrary thé, # W,. Then since
(Y1) = (W) bothy, — ¥ and¥, — ¥ are nonempty. Lep; € ¥ — ¥
(i = 1, 2). We must havéyp; |¢2) < 0. Otherwisep; — ¢, would be a root
which can be assumed positive by possibly interchanging the indices 1 and 2.
By the ideal property; + @, C ¥ wethen have; = g+ (p1—¢) € ¥y,
a contradiction. Thusp:|¢o) < 0. Hence sincéw; — ¥) = (¥, — ¥) we
obtain ,

0L (W —¥)|"= (W —¥) | (¥, —¥)) <O
and s = ¥, = s, O

Like the previous lemma the following theorem is due to Kostant and
was published in 1965.

Theorem 2 (Kostant) Let ¥ C ¢, bea set of positive roots. Further let

ay == P g, < b bethe corresponding subspace. Then one always has the
34

inequality

2
lo+ X o =101 < 1w
pev
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with equality if and only if ay is an abelian ideal in b (and every abelian
ideal in b isof thisform).

In particular, one recovers the normalizatipm+ 6||> — ||p||*> = 1 be-
cause the root spage <b is an abelian ideal ia (the unique 1-dimensional
one).

Reflections and Weyl groups. Each sunp+ >~ ¢ = p+ (¥) that occurs in
pe¥

Kostant’s theorem (Theorem 2) and such thats an abelian ideal it will

be shown to be of the form+ (¥) = wp for some elemenb in the affine

Weyl groupW. Here, the affine Weyl group is the group of affine isometries

of b}, generated by the finite Weyl grodfy—which is itself generated by

the simple reflections,, ..., 5 along the simple roots,, ..., ¢, that is,

. 20

(i) G=ho e

S At

—and, in addition, the affine reflection

2 (A
SO:A|—>A—< (;'@? —g)@:k—((A,QV)—g)ezsg)\—l—g& (1)
Here,( , ) : b x bg — R stands for the natural pairingy, ..., o, 0"

are the coroots correspondingdg . . ., «q, 8. More generally, for any root
¢ € @ the corresponding corogt’ € by is defined by

_ 2 (M)
(@lp)

(A, 0") Ve b

The affine Weyl group7\7 is a Coxeter group with Coxeter generators
S, ..., S. Letl : W — Z>( be the usual length function, that &w) =r
if w=s,...5 with iy, ...,i, € {0,...,1} andr minimal. Similarly,
denoting again by : W — Zo the length function of the parabolic
subgroupW < W, one knows that it coincides with the restriction of the
length function ofw.

Remark The definition of the affine Weyl group is not exactly the standard
but a scaled one and has the effect that= p+6. One has the well-known
decompositiortWW = gM x W of W as a semidirect product &Y acting on

the normal subgrougM, the lattice spanned by the long roots and dilated
by the factorg, in the obvious way. Each element € gM acts as the
translation, — A + .

There is of course also the linear version of the affine Weyl group acting
onhy @ RS @ RAp as in Kac’s book [Kac]. One extends the inner product
in b to a nondegenerate symmetric bilinear form, again denoted, by
declaring that and Aq are isotropic vectors perpendicularffp and such
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that (5| Ap) = 1. By some slight abuse of notation we define the reflections
S.-..,5 € O(hi ®RS D RAg, (| )) by the formula

20

(aj o)

§ Al i
whereay, ..., ) are the simple roots as usual angl= § — 6. The group
generated by, ..., s will again by abuse of notation be denoted ¥
Each affine hyperplartg; ®Ré+cAg is mapped onto itself by the reflections
S, ..., S. The action ofW on b defined previously comes from the action

of W on the subquotient; & RS + %Ao (mod Ré) if one identifies this
subquotient withh}; in the evident way. In fact, fap € @, andi € b, RS
we compute

2 (A4 3408 — ¢)

S oA +1A0)=r+21A0— (8 — @)
<P( 2 ) 2 (8—§0|5—§0)
2(Mg)
er+iag— ®+ ¢+ RS
2 (@lo) (@lp)

=s,A + 9] 2@ + RS + 5 Ao,

which for ¢ = 6 reduces to the formula (1). Let us also pin down the
expression for the affine action gf_, on b, namely,

S_oh = S,A + ol 2o (2)

Lemma3 Let ¢ € @, beapositive root. Then A € b}, satisfies

1. + @l = Lol = 1117 = llpll* + 1 (3)
ifandonly if A + ¢ = S5_,A.
Proof The equation (3) is equivalent to(2/¢) + [l¢]|> = 1. Now by (2)

_20p) -1

S-ph = Sh + llol 2o =2 e

Hencess_,A = A + ¢ is equivalent to 2x|g) + |l¢]|? = 1. O

The fundamental weightsry, ..., @ € b are the basis dual to the
|
basisay, ..., o of hg. Also recall thato = ) ;. The next definition is
i—1
slightly non-standard: defing,,.... o € bk by (zzvri lotj) = & 3, that is,
v 1

— .
T e 2
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The mappingV — b, w — wp is injective. Its image will be termed
the set ofp-points. Let

A={rebj | (Aa)>O0foralla e ITand(r,0") < g}
={rebhi|0< (Mg < iforallgc o} ()

be the (closed) fundamental alcove, which is a fundamental domain for
acting onbj. The fundamental alcovA is the simplex whose vertices are

, ﬁ—ll . %I whereny, ..., n; are the marks, i.e., the (positive integer)
|
coefficients i = > nj «;.
i=1
The cone with apex 0 spanned Byis the dominant chamber

C={rebs|(la)>0forallac T} (5)

It is a fundamental domain for the finite Weyl gro.

TheW-translates of the fundamental alcove are called alcoves. For each
I =0,...,l one has the (affine if= 0) hyperplane

Hi ;= Fix(s) = {» € b} | sA = A},

and theirVAV-trg\nsIates are termed walls. They are the fixed point sets of
a reflection inW, that is, of the form

Hio—y = FiX(So_y) = {1 € b% | (Llg) = &)

for somek € Z andg € @, (note thatHys_, = H_(s—y))-

The p-points are precisely the integral weights in the interior of an
alcove. So there are the natural bijections

W <> {alcove$ < {p-points

w <— wA <— wp.

We have already mentioned above that 6 is the p-point of the alcove
SA. The p-points of the other neighboussA, ..., 5 A of the fundamental
alcove areo — s, ..., p — oy. This follows becausg (fori = 1,...,1)
permutes all positive roots other thapands («j) = —a;.

The following picture shows a small part of the tessellation of the plane
by alcoves for typ&s,. The shaded region marks the fundamental alchve
The boundaries of the four alcoves iAZ= {21 | A € A} are drawn in solid
lines.
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sp . p-Sip=o

e . p—sp=—a
Sp—p=3a1+ 20, =6
a2 e S%p—Sp =3t

SOSS10 — oS0 = 201 + a2

Let us recall that there is a close connexion between reduced expressions
for elementaw € W and minimal galleries going fromA to wA. In fact, in
general, one has the bijection

{words ins, ..., S} < {(non-stuttering) galleries beginning A}
S,S,---S, <— A s, A s;S,A ..., 5SS, S A

and reduced words correspond to minimal galleries. Notaildeandws A

are adjacent alcoves with a common faoef typei. Instead of keeping
track of the types of the facets where adjacent alcoves meet, one can also
specify the list of separating walls in a gallery. The two alcowes and

ws A = Sy, WA are separated by the wall;,, = Fix(Sze, ). (Surely, we

must consider the linear action of the affine Weyl group when we write
wai. Sowa; € @ = @ + Z§, the set of so-called real affine roots.) It is
well-known that the lengtli(w) is the number of walls which separate
fromwA.

Lemma4 Let ag C a beabelianidealsin b. Thenthereisaflag

Wy ---Cap=a

1 We follow the traditional terminology which speaks of “facets” for “faces of codimen-
sion one”. The terminology in French is “face” for “facette de codimension une”.
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of abelian ideals in b such that
dimay = dimag + k (k=0,...,m).

Proof There is nothing to prove i = 0. Let us denote by (ag) € @(a)
the sets of weights afy anda. Suppose now thah > 0 and take a root
@ € @(a) — ®(ag) of minimal height. (Recall that the height(l of a root

| |

¢ = )_Giciis defined to be fip) = > ¢, its coefficient sum with respect

i=1 i=1
to the basis of simple roots. The simple roots are those having height 1, and
the highest roat is the root whose height is maximal, namelyght= h—1,
one less than the Coxeter numbergof Now let a3 be the sum of root
spaces such that, = am—1 @ g,. The choice ofp guarantees thaty_1 is
again an ideal (of course an abelian oneb.iThis completes the proof by
induction. O

Proposition 5 Let a < b be an abelian ideal and @(a) its set of weights.
Then p + (@(a)) is a p-point, p + (®(a)) = wp with £(w) = dima.
Moreover, p + (D(a)) € 2A.

Proof Letd = dimaand®(a) = {¢1, ..., ¢q}. According to Lemma 4 we
can assume that the enumeration of the roots is suclythat - - - @ g, is
an abelian ideal for eadh= 0, ..., d, and hence

lp+ @1+ +@ll>— ol =k

by Kostant’s theorem (Theorem 2). Applying Lemnmatimes, we conclude
that

p+(®(a) = Ss—gq -+ - S5—p1 0 (6)

is a p-point. The walls that separat& from s;_, ...S5—,, A are exactly
Ho—g1s - - -, Hs—gy. HENCEL(Ss_y, ... $5—yy) = d = dima.
It is clear from formula (6) thap + (@(a)) € 2A. In fact,

A S_p A S_0S5—o Ao Ss—gg - S A

Is a gallery starting wittA, and the common walls are all different from the
walls 2Hq, Hy, ..., H, which bound 2.

We shall give a different proof that+ (@(a)) € 2A. Let us first show
thatp + (@(a)) lies in the dominant chamber. Consider a minimal gallery
from the fundamental alcové to the alcove containing + (®(a)). If
the latter would lie outsid€, then the gallery would contain two adjacent
alcovesA’ (insideC) andA” (outsideC). But then thep-pointsp’ of A" and
" of A” would satisfy||p’|| = ||0”|| which contradicts Kostant’'s theorem
(Theorem 2).

Finally we show that the-point p + (@(a)) and the origin lie on the
same side of the wallldy = Hz_ = {1 € b} | (A6) = 1}. We give
more than one argument. Consider a minimal gallery from the fundamental
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alcove to the alcove that contaipst (@(a)). If the gallery would cross the
wall 2Hg, sayp’ (with (p’|0) < 1) andp” (with (0”|0) > 1) are thep-points

of two adjacent alcoves with a common facet iH@2thenp’ + 6 = p”.
But the rootv already occurred right at the beginning@s- 6 = 0, and
surely p’ # p. Alternatively one can make a contradiction with Kostant’s
theorem (Theorem 2). Still another way to show that- (@(a)) | 0) < 1

Is to invoke Proposition 11.

Lemma6 Let H be awall which cuts 2A into two connected components.
Then there is a positive root ¢ € @ such that

H = H;_, = Fix(s—y) = {* € b | (Alg) = 3.
Proof Recall that the fundamental alcoye(see (4)) can be written as the

intersection
A= (){rebz|0< o) <3
peDy

of the strips bounded by the walt, andH;_,,. Hence ZA\is the intersection

of the strips bounded by the walls, and H;_, = Hy;s_, whereg runs
through the positive roots. The lemma follows as any wall is the fixed point
setHy;_, of some reflectiors;_, with k € Z andg € @... O

Theorem 7 The mapping

{abelianidealsin b} —> {p-pointsin 2A}
ar— p+ (P(a))

((@(a)) isthe sum of the weights of a) is a bijection.

Proof Proposition 5 shows that the mapping is well-defined, and it is injec-
tive by Lemma 1. Hence we are left with proving surjectivity. loee 2A

be ap-point andA'’ its alcove. The case whe# = A is clear, so suppose
that A’ £ A. Consider a minimal gallery fromA to A'. Surely, the alcoves

of such a gallery all belong to”R Lemma 6 tells us that the next-to-last al-
cove in the gallery can be written as, A’ for some positive roop € @.,..
Moreover,ss_yp0' + ¢ = p' = S5_,(S5—,p') becausess_, A" and A" have

a common facet lying in the wall F%_,) = Hs_,. Now

1o'II2 = 1plI? = lISs—p0'II> = I olI* + 1
by Lemma 3. The conclusion follows from Theorem 2 by induction. O

Since 2Ais the union of 2alcoves, hence contains2points, Peterson’s
theorem about the number of abelian ideals follows as a corollary, as already
noted by Cellini and Papi [CP1, Theorem 2.9].

Corollary 8 (Peterson) The number of abelian idealsin b is 2.
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Our next corollary is a consequence of Theorem 7, Proposition 5, and
Theorem 2.

Corollary 9 If @ € W satisfiesp € 2A, then |[@pl|% — ||pl|% = £(D).

3. Explicit description of the abelian ideals

Our approach to describing the abelian ideals hinges on the observation that
for each abelian ideal < b its subspace*’ spanned by the root spaces for
the roots that are not perpendicular to the highest#astagain an abelian
ideal inb. This is the content of the next proposition.

Proposition 10 Let a < b be an abelian ideal and @(a) C &, its set of
weights. Then
®*%(a) == {p € ®(a) | (¢|0) > O}

is also the set of weights for an abelian ideal a*? < b:
®*(a) = &™) (= @+ (a™)).

Proof The abelianess is cleab*’(a) + ®*%(a) € ®(a) + P(a) = @.
That the ideal property holds is also easy to show. For this we must

see thatd*?(a) + &, C ®*%(a). Let ¢ € &#%(a) andy € &,. Of

the four a priori possibilities (19 + ¢' ¢ @, (2) o + ¢’ € &, — P(a),

R) o+ ¢ € @(a) — @+ (a), (4) ¢ + ¢’ € &*%(a), we must exclude the
cases (2) and (3). That (2) is impossible follows frém’(a) € ®(a) and

the fact that is an ideal. Case (3) cannot occur becays@) > 0 sinced

lies in the dominant chamber and heriget ¢'|0) > 0 by the definition of

D+ (a). O

Proposition 11 Let a < b be an abelian ideal. The cardinality of the set
®+9(a) isat most g — 1.

Proof The number of positive roots that are not orthogonat te 2g — 3
[Sul, Proposition 1]. Consider the involutiers, on the set of positive roots
that are not orthogonal #@ Its only fixed point i¥9, and—sy¢ = 6 — ¢ for

¢ # 6. The abelianess implies that

e, —sp} N @™ ()| < 1,

and the conclusion follows.
Alternatively, the result follows from Proposition 5. O

Now the problem of describing the abelian ideal$ idecomposes into
two problems according to the disjoint union decomposition

{abelian ideals < b} = | [{abelian ideals: < b with o’ = o'},

a/
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The two tasks are

(1) describe the index s¢t'|a’ < b abelian ideal withy' = o'*"};
(2) for eacha’ = o’*’ describe the set of abelian idealsvith o’ = a*.

We will first deal with task (1) and show that there is a canonical one-
to-one correspondence

{a* | 0# a < b abelian ided) «—> &'

(see Theorems 15 and 17 below). This will then extend and give an a pri-
ori explanation for the observation that the maximal abelian ideals are in
canonical one-to-one correspondence with the long simple roots, as it was
recorded in [PR].

We need some preparation. A modification of the height function will
be important. We define the affine functionat h; — R by

20 —¢lp)

L(p) := @9 (7)

Whereas hy) > 0 for ¢ € @, and htyp) < 0 for ¢ € &_, we have
L(¢) > O for all ¢ € @; more preciselyL (9) = 0 andL(¢) > 0 for all

¢ € @ — {0}. A second difference concerns the root lengths. Let us write
|
againg = > G «j. Then
i=1

20-9lp) . 2 b
L@ =G —91 (9|@>(§1Q°")

becausQai |w,) = %(Oli lop) (Sij . And L((p) =0—- 1-—(p, (pv) S Z}() if @ IS

a long root. In particular, fop € ®'°"®we haveL (p) = g — 2 if and only if

@ is a long simple root. The affine functionklshows its importance in the
following proposition.

Proposition 12 For each positive long root ¢ € @'°" there is a unique
Weyl group element w € W of length ¢(w) = L () such that wp = 6 isthe
highest root. Moreover, w'¢ # 6 for all w' € W with £(w’) < L(g).

Proof We first show the minimality that is expressed in the second sen-
tence. Lets be a simple reflection witls ¢ positive, too, hence # +q;.
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We compute
L(g) — L(sg) = 2(9(079‘;)"’) - 2(9(;;)‘”"’) (by definition (7))
_ 2((990||9")) ) 42 ((zll“z)'o ) (by orthogonality)
_ 2(27'@"))) L2 (¢(|gp|9_) %) (s is a simple reflection)
_ 2((;'60?) _ 2((;0||;)i) (¢ is a long root)
—(aj, ¢") € {0, £1}. (p # +aj is along root)

It follows thatL (¢) = L(¢) — L(0) < £(w) if we = 6.

The same calculation shows that givene ®'°" — {9}, there exists
a simple reflections such thatL(¢) — L(s¢) = 1. Otherwise, by the
previous computation, we would gét;, ¢¥) > Oforalli = 1,...,1, so
thaty would lie in the dominant chamber. This is absurd becauséhe only
long dominant root angh # 6 by assumption. Hence there is a sequence
Sy -5 S of simple reflections with (s, s, _, - .. S,9) = L(¢) — k (for
k=0,. L((p)) In particular,s, s, ---S.¢ =90

Unlqueness follows from the unlqueness of coset representatives of
minimal length for standard parabolic subgroups. In factWey be the
standard parabolic subgroup generated by the simple reflections that fix the
highest root). Its Coxeter-Dynkin graph is the subgraph of the Coxeter-
Dynkin graph of W induced by those nodes that are not adjacent to the
affine node (corresponding t@). The quotient in question is the set of
right cosetaV ,\W. O

The following table compiles for each long simple regtthe Weyl
group elementv with £(w) = g — 2 and such thaia; = 6. The labeling
coincides with the labeling in the table on pages 197-201.

IX | i | wsuch thatwe; =06 |
Al | st7.s-19 %S4
Gl | s1.7. 91
B|i |4 9s1.7.5-19-1.%541 (i=1..., | — 1)
Di|i | 7. 9.25.7.5.18 .%s41 (i=1..., | —2)

i | 908 7 935-i-19-2 (=1-1,])
E6| 1 | 198464

2 | SIS SBSHH

3| SIBUDSISSHUSD

4| 19UV

S| SIBUNSI U3

6| SIS
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E7 SIBHUSEBNHEURBSESTHUBR
S1S2SBHUSERBNSI USRS STHUS3
S1S2SBHUSEBNS1HHUSBNSSTS™
SIBHUSEBNSISEHUBNSBSTS

SIS HHUSBNSTHUS3
SIS IS S BN
SIBHUSEBNSIHEHUBNSESBUS

SIS BHUSEHSTSEUBBESEUBTSESUSGSSTBHSUBR
SIS SBHUSEHST SNBSS I BESEUBTSHUSGSSTBSHSUS3
SIS BHSESHST SIS I BHESEUSBNTSHUHS5STBSH S
SIS BHUSEHSTSEUBN I BESEUBNTSURBHSSTB6S
SIS BHUSEHST SNBSS BESEUBNTSHUBSHSHUST8S
SIS BHUSEHSTSEUBNIBESEUBTSESUBSHESUSTS
SIS BHUSEHSTSEUBN I BESEUBTSUBSHESUBS6S
SIS BHUSEHST SNBSS BESEUBNTSUBSHSUSTS S
SIS USBS

SIS S1S

25

Es

Fa

NINFPIOONO O WDNREPNO O WDN PR

G2

The notations/. and .. mean that one has to interpolate by increasing and decreasing

indices, respectively, with the obvious conventions understood, ®. ¢, 4 = S1 S 3 4
and alsos; /. s = 51 ands; /. sp = 1 (empty index set).

Remark Note that ifsj, . .. Sjg i = 0, then foreacm=1,...,9— 2,

IS a positive root (and fom = g — 2 equalsy;).

Surely, one can count the number of reduced decompositions. We do not
elaborate on this point. But let me mention the two relatively recent papers
[St1,St2] by Stembridge about some Weyl group combinatorics like fully
commutative elements, minuscule elements, and other interesting topics.

Remark The lengths of the Weyl group elements that occurred in Proposi-
tion 12 have the polynomial of degrge- 2

qt) = Z ttw) Z tL©®

(pecblfng goecblfrmg

we=0 with
£(w) minimal

as a generating function. Sinséwaj) = —«;, we have the sum

>t =g+t %t
(peq)Iong

we=>0 with
£(w) minimal
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for all the (positive and negative) long roots, which is the Poiaqzoly-
nomial for the set of minimal coset representatives\ibr, \W. For more
background about this folklore part in the theory see for instance [Win] and
references therein. The usual Poirec@olynomialW(t) of W is defined

asW(t) = > t*® It can be expressed by a product formula. Namely,
weW

if mq,..., m are the exponemtsof W (or of its typeX), then using the
I
abbreviationn] := (1 —t")/(1 — t) one can writeN(t) = _]"[[mi + 1].

i=1
The Poincag polynomial of W, 4\W is the quotientW(t) /W ,(t) of
the corresponding Poin@polynomials. The rightmost column in the next
table contains the numbetrgX) = the number of positive long roots in
a root system of typ&. The Poinca& polynomial evaluated at= 1 equals
2v(X).

X X0 exponents oK W(t) /W4 (1) v(X)
Al AL 1,2,....1 00l + 13 al erl)
Ci Ci—1 1,3....2-1 (2] I

B | Bl_o+ A1 1,3, ..., 2 -1 12 -212] I — 1)

(2]
12 — 4][2 — 2]

D | DI +A 1,3...,2-31-1
[ -2+ A1 ) 9, , , 20 — 2]

I —1)

81[91[12]
E A 1,4,5,7, 8, 11 36
° > [31[4]
[12][14][18]
E D 1,5,7,9 11 13, 17 _— 63
! ® L [4116]
[20][24][30]
Eg E7 1,7,11 13 17,19, 23, 29 W 120
Fa C3 1,5 7, 11 [8]12] 12
[4]
G| A1 1,5 (6] 3

The usual conventions are employed for the entries in the column m3rkgdnamely,
A_1=Ap=Bo=9,C1 =B1 =A1,Cz2 =82, D2=A1+A1.

Lajlcilel
[b][d]
table above (since £ [1]). Of course, one can always ta&e- h.
Here is a little numerological table for the typesg, E¢, E7, andEsg.

Remark In all casesW(t) /W 4 (t) is of the form according to the

2 A word about the labeling: the numbers, .. ., my are not naturally associated to the
nodes of the Coxeter-Dynkin graph.
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X | r:= g = % [a[]b[](E]d[]e] = W[]r[i: 1—][12]r[]6r] lgroupl = (r + 1)2r
| 1 191 R
Es 2 % |Alty| =34
E7 3 % |Symy|=4-6
Eg 5 % |Alts| = 6 - 10

One could extend the table above to the typesndA, but without the
entries for the last column. The six typ@s, Ay, D4, Eg, E7, andEg are
precisely the simply laced ones in Deligne’s family (see [Del] and follow-
up papers by various authors). Further numerology pertaining to the types
Es, E7, Eg can be found in the paper of Arnold [Arn] about trinities.

Forw € W one definesp,, := &, N w®_, the set of positive roots
which are of the formwg for a negative roop. The following fundamental
lemma is well-known.

Lemma 13 For a Weyl group element w € W with reduced decomposition
w=s8,...5 (@05 {1 ...,1}) theset @, consists of the k distinct positive
roots

ail» Sl(aiz)v S]_Sz(ai3)’ ] S]_ s e Sk—l (aik)-

Proof Clearly ®; = @. One shows by induction thats,, = s®,, U {«;}
if L(sw) = L(w) + 1 (o ¢ @) using the fact thag (fori = 1,...,1)
permutes all positive roots other thanands (—o;) = «;. O

Let s(w) := (®,,), the sum of the elements @,,. Now the function
s: W — b}, satisfies the 1-cocycle conditistww’) = ws(w’) + s(w), and
in fact, s(w) = p — wp.

Lemmal4d £(sw) =£4(w) £ 1 < wly € &,
L(ws) =L(w) £1 < wa; € Py

Theorem 15 Let ¢ € @'°"% bea positive long root. Let w € W be the Weyl
group element suchthat we = 6 andwith £(w) = L (¢) asinProposition 12.
Then for all ¢ € @, 6 — i isa poditive root and

a(p7m|n = gg @ @ ge_w
Vedy,

is an (obviously nonzero) abelian ideal in b. The p-point of the alcove
corresponding to a*™" is sywp.
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Proof For the proof we use Kostant’s theorem (Theorem 2). First let us
write w as a reduced decomposm@m = S, ---S; as in the proof of
Proposition 12. Eachroat € @,, is of the formw =S - Sk (@) @and

we compute

2(y10) 2
00~ @) S - Sa @ [ 1y -+ S19)
2 2
_(aik’ (Sk—l oo Sl(p)\/)
=L(Siy--S5.0) — L(S...5,0) = 1.

Hence we havey(y) = ¥ — 6 andd — ¢ is a positive root. Now we put
¢ := {(w) = L(¢) for abbreviation, so thaw,,| = ¢. We check that the
¢+ 1 element se¥ = {0} U {0 — ¥|y¥ € &,} C & satisfies Kostant's

criterion (Theorem 2) for an abelian ideal. Using v = p —wp we have
VEDy

— iy ‘ S PET 3190)

pHWy=p+0+ > O —v)=wp+ €+ D0 =uwp+ (L(p)+ 1)0
Yedy

=wp+ (9 — (0, ¢"))0 = wp + (g — (wp, (wp)"))o
and becausey = 0 we get
= wp — (wp, 0Y)0 + g = Sywp.

This proves the assertion about {hpoint. Now we compute

2
Isowpll® = llpll> = [[(€ + DO +wo|” — llpll?
= L+ D)0+ (£ + 1) 2(0wp)

and with [|0]|° = 2 (6 — ¢|p) andw ™0 = ¢ the calculation continues

=+ D(20 —¢lp) + 101I° + 2(¢]p))
= (+D(lo+01%—llplI’) =€+ 1.
This completes the proof of the theorem. O

Now it is appropriate to digress and review Peterson’s description of the
abelian ideals irb, to see how this fits with Theorem 15, and to observe
why this gives an equality of the forifp + (&) || — || plI* = |¥].

First we have to extend the seds, to the affine context. Let us briefly
recall how one does this. The affine root systém= @ + 7§ was already
mentioned before. (The so-called imaginary rabts forn € Z. o are fixed
by W and play no role here, so we disregard them.) Let

&3+::q§+u{<p+n8|¢)eq§, neZ>o}
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and®_ = —q>+ We further define foiv € Wthe setd;, = d>+ NDP_
of cardlnallty({(w) The sum of the elements @f; is 5 — @ where now
= p+ 3Ao.

One knows from Peterson’s work thét = @(a) for an abelian ideal
a < b if and only if the set{s — ¢|¢ € ¥} is of the form®;. (For an
explanation of this fact see equation (6) in the proof of Proposition 5.) The
abelian ideal that we constructed in Theorem 15 belongs to

B,y = S5-9Pu U {8 — 0} = $_9@, U {§ — 6}
={6-0—-y|ved,}U{s-0}

Now if a is an abelian ideal ib with ¥ = ®(a) = {¢1, ..., ¢4},
d = dima, thenwe hav@; = {§ — @1, ..., § — ¢q} for somew € W. From

- ¥)=0—-—¢pD+--+@B6—p))=p—wp
and sincew is orthogonal € O(hj & RS @ RAo, ( | )), we get

0= [[wpll*— IPII° = llp + (¥) — ds + 5 A0l1* — llp + 5 Aol
= |lp + ()2 —d — |Ipl%,

so that in fact
o+ ()% = lIpll? = |¥].

Lemma 16 If w € W satisfies sswp € 2A, then ¢ := w16 is a positive
long root and sywp is the p-point of the alcove corresponding to a®™".

Proof First note thatow0 = 550 = g6 is a vertex of the alcove with-point

Swp. The special vertegp is a vertex of|{W| alcoves. Now we compute
which fraction of them lies in A. By elementary geometry this fraction

is the reciprocal of the number of alcoves that contain the p%Ijﬁt To
compute the number of these alcoves, the standard procedure is to delete
from the Coxeter-Dynkin graph of the affine Weyl growpthe nodes that

are adjacent to the node for the reflectggn\What remains is the Coxeter-
Dynkin graph of the group dig) x W, of order 2W,4|. So the number

of alcoves that lie in 2 and havegs as a vertex isfy— = 12",

Thus the alcoves in& of the formsowA with w €¢ W are exactly the
alcoves that are associated with the abelian ideals that were constructed in
Theorem 15. In particulay := w16 is a positive long root angywp is
the p-point of the alcove corresponding ¢ ™". 0

Theorem 17 The mapping
P — [a#? | 0 # a < b abelian ideal }

@ a(p,min

isa bijection.
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Proof By Theorem 15 the mapping is well-defined and injective. Suppose
thata = a#? is a nonzero abelian ideal that is not of the foufii"". Let

ap € --- € ag = a be a flag of abelian ideals with dim = k. Clearly

ax = a’ becauser = a*?. By hypothesis we can choose an indesuch
thatay = a®™" but a1 is not of the forma?-M". By taking into account
Lemma 16 we can write

P+ (P(ax)) = Sowp,
o+ (P(aky1)) = SowSop,

wherew € W, andg = w16 is a positive long root. The difference
SwSpe — SSwpe would have to be a positive root such that

(Sowso,o — SwWp ‘ 0) > 0.

But on the other hand we hasgwsyp — Swp = Sw(Spe — p) = Sw and
hence

(SowSop — Sowp | 8) = (Swhl6) = —(whlf) = —(Blp) < O

becauseyp is a positive root and lies in the dominant chamber. This
contradiction completes the proof of the theorem. O

Remark As the notationa™" suggests there will also be abelian ideals
a”™ In fact, each nonzero abelian ideakatisfiesa?™" C a C a® M

for some positive long roap which is characterized by*? = a»™". If ¢

is not perpendicular to the highest régtthena? M = q#-mn,

Let us now look closer at the case wherel 6. Before giving the
general picture, we state a preliminary result.

Proposition 18 Lety € ®'°"%andw € W beasin Theorem 15 and suppose
in addition that ¢ is perpendicular to the highest root 6. Then

a(p,minJr . acp,min D Gus
iIsan abelian ideal in b.

Proof We first show thatwé is a positive root perpendicular to In fact,
(whlo) = (wl|lwy) = (Alp) = 0. Hencewd is a long root spanned by the

simple rootsy; that are perpendicular to (To make this assertion clear, let
|
us writewd = ) g «;. Here the coefficients; are either all nonnegative

i=1
or all nonpositive. Now we take the inner product witand us€c;|6) > 0
becaus# lies in the dominant chamber apglis a positive root.) For each
such rootw; L 6 we haveswg = 560 = 6. Hencel(sw) > £(w) by the
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minimality of £(w). Lemma 14 shows thab—'a; e @,. Sinced lies in
the dominant chamber, we getQ (w«;|0) = (ai|wh) for all simple
rootsa; L 6. This means thaié lies in the dominant chamber for the root
subsysten® 4, (spanned by the simple roats L 6). The rootwé appears
to be the highest root of the-component ofp 4.

Putting again? := ¢(w) we define the se¥ of cardinality ¢ + 2 as
v ={0}U{0 — |y € ,} U{wd} C &,. (wh is of course different from
the elements — ¢ because onlwd is perpendicular t6.) Now we employ
Kostant’s criterion (Theorem 2) as in the proof of Theorem 15. Looking
back at the proof there we see that we must show the equality

1€ 4+ 16 +wp + wo||* — |(€ + 1O + wpl* = L.

It follows from 6 1 w6 and theW-invariance of the inner product together
with the identity||p + 6] — || o[> = 1. O

More minimal coset representatives and Poincaré polynomials. Now we
define for each positive roat € @, the polynomialP,(t) € Z>o[t] by
setting

Wi, ()

P,(1) := Wi, () .

(8)

HereVAVl(p is the standard parabolic subgroup of the affine Weyl glﬁbp
generated by those reflectiogs(i = 0, ...,l) for which«; L ¢ (here

ap L ¢ meansy) L ¢). Note thatV/\\/l(p Is a finite Coxeter group. Similarly,

W, , is the standard parabolic subgroup of the finite Weyl gMugenerated

by those simple reflectiorss (i = 1, ..., ) for whiche; L ¢. In particular,
W,, = Wy, if ¢ £ 6. The expressionsV,,,(t) and W, (t) stand for the
Poincaé polynomials of the Coxeter groups in question, and the quotient

% is the Poincag polynomial for the set of minimal coset representatives
(ﬂ ~

in WJ_(p\WL(p. N

Let w? be the longest element &%/, , and w? the longest element of
W,,. The set of minimal coset representatives\/‘i/@w\v’\\/w is the inter-
val [1, wf’u?f] in the right weak Bruhat order—coming from the covering
relationw < sw :& £(sw) = £(w) + 1 — (note that(w?)? = 1 and
also(w?)? = 1). In particular, the longest element[ib, w?w?| has length
Lwewe) = L) — L(w?).

In the following long table we show the polynomid?s(t) for all simple
rootsa € I1. The polynomialsP,(t) can be extracted from this piece of
information. This is clear for the simple types different frasnbecause
then the affine node of the Coxeter-Dynkin graph is a leaf in a tree and
henceP,(t) = P,(t) for an appropriate simple roet e I1. For typeA, we
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can reduce to the case of a simple root by looking,afor appropriatek,
A_.

namely,Py', ... () =Py ().

Definition For a nonnegative integer let us recall the definition of the

polynomial
n

=77

Moreover, we define the factorials

[n1t:= [ 1]
i=1

€ Z)o[t].

and their relatives

[2n]!! := ]_[ [2i] and [2n+ 1] := ]_[ [2i + 1].

i=1 i=0
Of course[0]! = [O]!! = 1.

The following table shows the polynomiaR, (t) = W, (t)/W_4 (1)
and the minimal coset representatives Wi, \W,,, (the latter for the
classical series in the rank 5 case). Above or beneath each node marked by
the simple reflectiors; we have depicted along with the polynomRj (t)

the Hasse graph of the poset\df ,, \WJ_ai. To read a minimal coset rep-
resentative we have to start at the bottom node and read upwards along the

edges. E. g., the minimal coset representativeé/\fggccg\VA\/M3 for type As
are 1,5, SS1, S5, 0515 = 05551, 051550 = 055150

Al o1 o a1 o
[ — 1 .
Pa' 1) = = - | = 1, ce ,l
' =190 -] ( )
As S
s/ S
S5 S S1
. S S S .
1 [ B g 1
S1 S S3 4 S
° ° ° ® °
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Ci a1 ar a_r o1 o
o ——eo— - ® ‘ §
[2i — 2!
P,(t) = —— o
Cs S
S1
S
$3
%] s
S1
S A
S ) )
S1 S1 S1
S SV S
(4161 [618]
L L
¢ 1 ® e—9
BI (04 (6%} o2 o)1 o
o ——e——»
Pal (t) - [2]
[2i — 4]
P,(t) = —— , N
Bs .
S
S3
S1 S
S S
%] R B
[4][6]
12 L

R. Suter



Abelian ideals in a Borel subalgebra of a complex simple Lie algebra

D, -1
o1 (0'%) -3 -2
oo —

(o4]
P(xl(t) = [2]

B [21 — 4] . . _
Pai(t)—m (|—2,...,| 1)
Pon (t) — I:)oq,l (t)

Dg s

S
S
S T
2] 1 [2] s
S /) 5.3<:
° °
S
S
S
S
[4]

Ee S6 S
% 3
) 7]

S1 S1 S1 S1
S0 SO{ %] So} S}
6] [B1 [2 [3] [6]
S S3 S S S
° ° I ° °
S
1

199
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Ez S
S1
%
S
%
5| s
s s
2 2 %
S1 S1 S1 S1
. SOI o s S %
1 [2] [3] [4] [6] —[6%;0]
S S S S S S7
@ L I L L ®
S
S
S1
S
[4]
Eg N
S
s 0w
5] sl s
2 2 2 %
S1 S1 S1 S1 St
0 S S| %] % SoI .
B8] [6] [5] [4 3] [2] 1
S S S S S ) S
@ L I L L L ®
S7

YL QYL

[6]
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Fa sQ
| :;{ Z
1 [2] [38] [4]
S S S ST
———eo———o @
G2«
2] 1
S S
—»

Lemmal9 Letw € VA\IM be a minimal coset representative for a coset in
W, ,\W,,. Then wp liesin the dominant chamber.

Proof We havel(sw) > ¢(w) foralli = 1, ..., 1, namely, for thosé for
which ; L ¢ by the minimality ofw, and for the remaining because
s ¢ W,,. Hencew is a minimal coset representative for a cosetMRW.
The assertionwp € C is now clear. (SinceC is a fundamental domain
for W, thereisaunique € W and a (minimal) gallery from the fundamental
alcoveAto ww A which stays inside the dominant chamBesind so neither
of the wallsHy, . .., H, is crossed. By the minimality @b we obtainw = 1,
i.e.,wA C C, or equivalentlywp € C.) O

The next lemma generalizes in part (i) the orthogonality L 6 in the
proof of Proposition 18, which correspondsiio= s, and requires 1L 6
in Lemma 20.

Lemma20 Let ¢ € @' Let w € W be such that wg = 6 and let
we WJ_(/).

(i) sowwp — sowp isperpendicular to the highest root 6.

(i) If swwsp —sowp L 6,thens € W,,,.

Proof We first note that(x + @T) C A+ ¢t for eachir € b by the
definition of W,,,. To prove (i) we compute (recall that is the linear part
of s0)
(Sowidp — sowp | 6) = (s (wip — wp) | 6)
(w@p —p) | =6) = (W —p | —9)
Lo
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To prove (ii) we write

(Sowws p — sowp | 8) = (WSp — p | —¢) = (ailg).
e e’

€Espt+ot—p
= —ai +¢*
Hencesswws p — Sswpe L 6 is actually equivalent tg € VA\/W. O

Proposition 21 Let ¢ € '°" be a positive long root and € W, , be the
minimal coset representative for a coset in WM\WM, Thenwp € 2A.

Proof By the definition 01WL¢ at least one of the simple reflectlosis
, § IS not contained in the standard parabolic subgmu};; of W. Say

S ¢ Wm. All other Coxeter generators oW fix the vertexf]’—i' of the
fundamental alcove, and hence so does the gl@’gp. In particular, the

4

pointsp, £, andwp all belong to the half spacp. € b, | (M10) < 1}.
Moreover, by Lemma 19pp lies in the dominant chamber. This con-
cludes the proof. 0

Let us recall that fois € W the implication
wp € 2A = |wpl® — lIp|l* = £()

holds by Corollary 9. The converse implication is not true. However, the
next lemma states a partial converse.

Lemma 22 Let wp bethe p-point of an alcovethat liesoutsidethe dominant
chamber C but is adjacent to an alcove of 2A. Then

lwoll? — llpll* = e(w) — L.

Proof Say the alcove with-point wp lies in the chambesg C. This means
thatw = sw with wp € 2A and{(w) = £(w) + 1. It follows that

lwoll2 — llpll? = lwpll? — llpll? = €w) = (@) — 1.

Here is the main theorem of this paper.

Theorem 23 Let ¢ € @' be a positive long root and w € W,,, be the

minimal coset representatlve for a coset in WM\WW To the pair (¢, w)
we associate the p-point sswwp where w € W is the Weyl group element
such that wy = 6 and with £(w) = L(¢) as in Proposition 12. Then
swwp € 2A — A and hence sswwp is the p-point of an alcove that
corresponds to a nonzero abelian ideal a®* <1 b. Moreover, each nonzero
abelian ideal occursin this way.
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Hence we have the parametrization we |ooked for

[ Wi\W., <= {a|0# a<b, aabelian} 9)

long
ped

where the right coset W, ,w in the component for ¢ on the left hand side
with w € W,, itsminimal coset representative corresponds to the abelian
ideal a?¥ of dimension L(¢) + 1+ £(w).

Remark The abelian ideals® ™", a#™"" if ¢ 1 6§, anda®™M that were
mentioned earlier have the following descriptions.

aPmin _ a(p,l

a? M = q#%0jif o | @

qPmax _ qo.wlind

Proof By Lemma 20 we know thaywwp € sowp + 6+. And Theorem 15
says thatsywp is the p-point of a nonzero abelian ideal. Hence we have
sswp € 2A — A It follows thatsywwp lies in the strip between the two
walls Ho = {1 € b3 | (A[6) = 3} and Ho = {1 € b | (A1) = 1}.

Letw = s, ...5,, be a reduced decomposition @f Each initial sub-
wordwy :=§;, .. .S, (for 0 < k < m) is again a minimal coset representa-
tive for a coset ier\VT/w. Infacté(ss,...s,,) =m+1lfori=1,...,1
implies £(ss,...s5,) = k+1fori =1,...,| foreachk = 0,...,m.
Hence we compute for eagh=0, ..., m

Isowwkpll® — llplI?

= || sowip — sowp||*+ 2 (Sowip — Sowp [sowp) + sowp?— Il

1 6 (by Lemma 20) = L(Sow)
= | w@o — p)|* + 2(sw@e — p) | Swp + ) + £(sow)
Lo
= |[wko — o) + 2 (@0 — o | p) + £(sow) = llwkpll? = llpl1? + £(sow)
= £(wy)
> £(sowiby). (10)

In the list qwp = SYwwep, SSWw1p, ..., SWwme = Swwp the first
p-point belongs to 2 — A. We show that actually all of them belong to
2A — A. Suppose not, and Isgwwyp be the firsto-point outside 2 — A.
We know thatsswwyp lies in the strip between the walldy and H,.
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Hencesywwyp would lie outside the dominant chamber. By Lemma 22 we
would have||sswwkp||? — ||pll? = £(sswwy) — 1, which according to (10)
Is absurd. ~

So far we have proved that the mappifig w) — a*" in (9) is well-
defined. Itis injective becauge?*)*? = a#™n,

Finally, we must show that our construction is exhaustive. Sa It
a nonzero abelian ideal in Its subideak*? is of the format? = g#mn
by Theorem 17, and its alcove hggvp as itsp-point wherew € W with
¢(w) = L(p) for ¢ = w0 by Theorem 15. By Lemma 4 we can choose
aflag

' =qpC---Can=a

of abelian ideals with dim, = dima*? + kfork =0, ..., m. The p-point
of the alcove ofi, can be written as

P+ {(P(ax)) = SHws; ...Sp

wheres,, ..., s,, are simple reflections irVAVL(/, by Lemma 20 and the
definition of the ideak”?. From Proposition 5 we get

L(Sws; ... S,) = £(Sw) + K

so thaté(s; .. .s,) = k. Now we compute as above

Isows, ... S, o2 — llol? = ISy - .- Seoll® — ol + £(Sow).

The left hand side ig(spws; - ..S,) by Proposition 5 and Corollary 9 so
that

IS, -- - Sl = loll? = k.
Again using Lemma 22 we conclude that

S,...Sp€2ACC.

In particular,s; ...s,,p0 € C so thats, . ..s,, is the minimal coset repre-

sentative for the cos8is; ...s, € W\W, and sinces, ..., S, are simple
reflections inW, ,, we conclude thas;, . ..s,, is the minimal coset repre-

sentative for the cos&V, s, ...s,, € W,,\W,,. Hence we have shown
thata = a#S1-Sm, 0

Another parametrization. In the previous theorem we have parametrized
the nonzero abelian ideals thasa®®. The p-point wp belongs to A by
Proposition 21. So eithab = 1 or wp is again theo-point of a nonzero
abelian ideah? ™. By iteration this procedure yields a list of positive long
rootsgs, ..., ¢, corresponding to the abelian idagt® = a@v#) Now
we can put the zero ideal back into the picture and write @ ’, the abelian
ideal for the empty sequence.
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In the classical, case an abelian ideal corresponds to a Young diagram.
The associated positive roais, . . . , ¢ correspond to the decomposition of
the Young diagram into hooks. Let us make that more concrete by looking
at an example. Take;; and examine the abelian ideal corresponding to the
following Young diagram.

&
&L
[N

S10| S9 | S8
S11|S10

Y
&

S11

S1

& @ @ &
&

& |& L& |©
® L& @

The filled diagram on the right yields the following affine Weyl group
element when read hook-wise.

W=S0S1928MS5S6S115109801 2 BH4S5S115100S1 285110 St
=: w1 =: w2 =: w3 =: w4

The abelian ideal with-pointwp is a?v ¢4 where

golzwzlezcw,
92 =w;'0 =ag+ -+ as,
93 = w30 = a4+ + oo,

§04=w219=052+"'+0611.

Our next theorem is a corollary of Theorem 23 and Corollary 8. The two
sets on the left and the right hand sides in (9) have the same cardinality.

Theorem 24 (First Sum Formula) The following formula holds.

3 Wiyl _ o
<1§|_Eng |WJ_<,0|

Proof As mentioned, the First Sum Formulais already proved. Nevertheless
we shall give an alternative (case by case) proof. This is then an alternative
for the exhaustiveness part in Theorem 23 and also for Theorem 17.

Let us use the abbreviatioR, (1) = m—“‘" in accordance with (8). Let
L<p|
S= ) P,®D.

long
peD
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Al USIng P0l|+ +0l|+1 (1> 1)!(| 1)' |)! (I = 1 I J O’ e ’I - I)
we get
I 1=i
S= X;- X%) P06i+“'+0li+j (1) Z Z = 1)‘(I 1)' v — 2| -1
1= ]:

For the other simple types the affine Coxeter-Dynkin graph has a tree
as its underlying simple graph. Each rqois of the formg = Z a «j and

has support supp := {a, | & # O} Let pr(¢) € suppy be the simple
root which is nearest t@y when considered as nodes in the affine Coxeter-
Dynkin tree. It is clear thaP,(t) = Py, (t). Fori = 1,...,1 letr; be

the number of positive long roois for which pri¢) = «j. The sumScan
|

now be rewritten aS= ) r; P, (1). The numbers; can be expressed via

i=1
the numbers(X) = the number of positive long roots of a root system of
type X (for v(X) see the table on page 191).

CGlrn=10=1...,1

L
S= ZZ“1:2'—1

i=1

Bi| ri=v(A) =1
ry = V(B|) - \)(B|_2) - U(Al) =4 —7

r =vBi_it1) —vB_H)=2A-2((=3,...,1 —2)
r_1 = v(By) = 2 (forl > 4)
N = 0

-1 _
S=1-2+@ -7 -1+Y @2 -2)-224+0.22=2 -1
i=3

Di| ri=v(A) =1
=v(D)) —v(D_2) —v(A) =4 -7
ri =v(D_iz1) —v(iDj)=2A-21(1=3,...,1 = 3)
Mo = V(Ag) — ZU(A]_) =4 (fOI'l = 5)
noo=rn=vA;) =1

-2 _
S=1-24+@-7)-1+3 @2 —2).-2241.2-341.2-3
i=3
—2 1

For the exceptional types we write the numberdirectly near the
corresponding node in the Coxeter-Dynkin graph. Itis clear how to compute
them, e.g., foEg, r1 = v(Eg) — V(As), I'> = v(As) — 2v(Ay), and so on.
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Ee|] 1 2 9 2 1

21
S=21-1+9-2+2-3+2-3+1-6+1-6=20-1

Ez] 3315 8 3 2 1

1
S=33.1+15-2+8-3+3-44+1-442-6+1-12=2"-1

Ee| 1 2 6 10 16 27 57

1
S=57-1+27-24+16-34+10-4+6-54+2-6+1-6+1-8
=28_1

Fa) 9 3.0 0
4.—.%=.—.

S=9.1+3.24+0-340-4=2-1

G2l 0 .3
—

S=3.1+0.2=22-1

4. Maximal abelian ideals

Among the maximal abelian ideals are those whose dimension is maximal.
We can express these dimensions in a uniform wag asl + N’ — N”
whereg is the dual Coxeter number gfand N’, N” are the numbers of
positive roots of certain root subsystems of the root systegn loffact, for

a long simple rootr we have

dima*™ = dim a®" "
= L(o) + 1+ (wtw%) = g— 1+ £(@%) — £(w?).

So we have our next corollary which gives a clear explanation of these
maximal dimensions that hitherto appeared somewhat mysterious.
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Corollary 25 The maximal dimension of an abelian ideal in b can be
expressed asg — 1+ N, — N, where « € IT°"9 is a long simple root
such that the difference N\, — N, is maximal. Here N, = £(@?) isthe
length of the longest element w? € W, O, equivalently, the number of
positive roots of a root system of type X . Analogously, N, = 2(w?) for
w® € W, itslongest element.

The maximal dimension of an abelian ideal incoincides with the
maximal dimension of a commutative subalgebrg (s first calculated by
A. Malcev [Mal] case by case). Let us briefly state the algebraic reason why
these dimensions are the same. Fordaimensional ideak < b consider the
1-dimensional subspagk®a € A*g. Sincea is an ideal, the line\* a is
the highest weight space of a simgienoduleL, C /\kg. One can show

that
Ak:=@La=Z/\kC
a c

wherea runs through th&-dimensional abelian ideals brandc is taken over
thek-dimensional commutative subalgebrasgofrhe maximal dimension
is max{k | Ay # 0}. For the details see [Ko1].

Remark In the table on the next page, in some cases there are several
possibilities for the long simple roatthat yields an abelian ideal of maximal
dimension. By inspection we see that the number of abelian ideal®in
maximal dimension is

3 for typeDy,
2 for typesA (I even),D; (I > 4), andgg, and
1 for the other types.

Remark Instead of takiné(\m andX  , one could already delete the common
components (nonvoid for the types, Dy, andF,).

Abelian ideals of maximal dimension. The fourth column in the table shows
the Coxeter-Dynkin graph CDof type X and the affine Coxeter-Dynkin
graph CDO; with the node corresponding @ encircled.
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X |ogx—1 Ny CDx CDg « X Xy max dim
o
AL 1 1 & o o 1
o

Az 2 3 A @ @ 2

1+ 1) - (I + 1)2
A [ A_ Al— Al—
2 I S N LT R
| odd

10+ 1) - S 12 4 2
Al .\©/ A2 A2 +Al_4
>4 2 2 2 4
| even

2 o 12 4|
C | | & o —0<o Ci-1 Ao
1>2 2
(07
B3 4 9 &'*’ A1+ A1 Aq 5
1Z—14+2
B 2 -2 |2 oo Dj_2 A_3 +
>4 2
12 —|
D |2-3 (10~ & L | Di2t+AL | AztA >
>4
o
Eg 11 36 £ As Ay 16
(07
E7 17 63 @—o—o—I—o—o—o Dsg Ds 27
o
Eg 29 120 H—I—Q—H—Q—@ A7 As 36
F4 8 24 @—O—O.[%’—’ A1+ A1 A1 9
o

Go 3 6 =9 o) o) 3

The usual conventions apply, namely, = &, C1 = A1, Bo = C2, D2 = A1 + As1.

209

Remark As already mentioned the numbers in the rightmost column of
the table above were first computed case by case by A. Malcev [Mal].
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In the paper [Boe] B. Boe computed, again case by case, the maximal
length¢(w) of an affine Weyl group elemeni such thatw A € (k + 1) A;

see [Boe, Table 1] but with the typ€s andB, interchanged because there
the highesshort root is used to define the tessellation by alcoves. Neither
Boe’s paper nor its review paper [Sri] mentions the connexion with Malcev’s
result.

We are now interested in the maximal abelian ideals.itt has been
observed in [PR] that the number of maximal abelian ideals in a fixed Borel
subalgebra of equals the number of long simple roots. A canonical one-
to-one correspondence was exhibited between the two sets. However, the
proof was based on a case by case consideration and was therefore rather
unsatisfactory. Here we will give a geometric approach which makes the
whole picture very transparent.

We know by Proposition 5 that each abelian ideal! b corresponds
to an alcovewA C 2A. If no facet ofwA lies in the wall H, then by
convexity a minimal gallery betweeA andwA can be extended beyond
wAbut still inside 2A. Hence each maximal abelian ideal has an alcove with
one facet lying in the wall By. It is convenient to have some terminology
which describes this geometric situation.

Definition An upper alcove wA is an alcove in 2 such that one facet of
wA lies in the wall Hy. For an upper alcov@ A the lower vertex is the
vertex that sticks out, i. e., does not lie in the wal2

A2 C2 p
vertex of vertex of e 4
type 2\ type 2\ SoS1S00
oo o2 SoS10
p | s '
0 Nvertex of type 1 N
(0%} o1

Let us look at some examples. For tybgethere are two upper alcoves,
namely, those with-pointssy S 0 andsys; p. Both belong to maximal abelian
ideals, namelya®t! = a@ anda®>! = a2, For the former alcove, the
lower vertex has type 1 and for the latter type 2. For tgp¢here are again
two upper alcoves, with-points 55,0 (ideal a®>! = a@?) and s58;50
(ideal a®2® = q@29), both with the same lower vertex of type 2. Only the
latter belongs to the maximal abelian ideal. For t@sgsee the picture on



Abelian ideals in a Borel subalgebra of a complex simple Lie algebra 211

page 184) there is only one upper alcove, witpoint 55,50 and lower
vertex of type 2.

From the previous results we already know that the lower vertices are in
one-to-one correspondence with the long simple roots.

Another way for proving that each lower vertex necessarily has the type
of a long simple root can be deduced from the following proposition which
we also use for our Second Sum Formula (Theorem 27).

Proposition 26 vol_1(Fp) : --- : voli_1(F) = |laollno : -+« : |l || Ny

Proof Recall that the vertices of the fundamental alcovewith facets

Fo,...,F areQ % e %l We compute the volume of an alcove in two
different ways.

The volume of the pyramid over Fy with apex 0 isll times vo|_1(Fo)
times the distance of the apex 0 from the wdj supporting the facef,.
This distance i% becausezﬁ = %g@ € Hpis the orthogonal projection
of the apex 0 toHy. On the other hand, the volume &fis Il, times the

\4

volumeD = f—ll A A an’—l' of the parallelepiped spanned by the vectors

f—ii (i=1...,1).Hence
vol_1(Fo) =26 =2 n : 11
-1(Fo) = 21101l g7 = 2lleoll No (11)
Now we compute thd — 1)-dimensional volume of afl — 1)-simplex
Fi (=1, ...,1) asthd-dimensional volume of the prisiif x | wherel
IS a unit interval perpendicular tg. Hence
Vv Vv V Vv
1 - . .
VO||_1(Fi) = ﬂ JANRIE i1 “i @i+l @
(I=D!n i llaill N n
= 2|lexi|| nj m (12)
| |
becauser; = 2" («; {%k)ak =2 (o | o) o
k=1 k=1
The proof follows from (11) and (12). O

Remark The two formulae

1 1
ol (A) = = - voly_1(Fo) - ——
Vol (A) | vol;_1(Fop) 2101
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and

Vol (A) = Z vol, (pyramid with basd= and apexp)
i=0

|
— % : Zdist(,o, Fi) - voli_1(F)
i—0

1 (-1 N s
== Sl - - vol_3 (Fo)
| ;2 U onglleoll

1

|
1
= —.——.vol_1(F E n; Jlog |2
| 2”0” 1—1(Fo) < i llaill

|
show thatd" n; [|;||? = 1.
i—0

The previous proposition makes clear that the lower vertex of an upper
alcove cannot have the type of a short simple root for commensurability
reasons. (Here the convention is that a root is long and not short if the root
system is simply laced.) We next observe that no lower vertex can have
type 0. For volume reasons such a vertex would have to |l iwhich is
absurd.

Theorem 27 (Second Sum Formula) The following sum formula holds.

oo :wail = Y nP@M=2""

Laj |
Qi er7'ong I i er7'ong

Proof We look at vol_; (2F) and compute the volume in two ways. First, of
course, val 1 (2Fy) = 2-1vol,_;(Fp). Second, consider the tessellation of
2Fo induced by the tessellation bf by the alcoves. Namely, ok (Fi) =
n; - vol,_1(Fo) and for eachy; € I7'°"9 there areP,, (1) simplices of typd
in the tessellation of B,. O

5. Symmetries of the Hasse graphs

In this section we look at the Hasse graph of the poset of abelian ideals in
b and determine its group of symmetries. A natural geometric realization
of this Hasse graph lives iff;. The nodes are the-points of the alcoves
contained in A. Two p-points are connected if and only if their alcoves
are adjacent. Surely, the geometric symmetry group of this 1-dimensional
complex is a subgroup of the abstract symmetry group of the Hasse graph.
In fact, it turns out that the two symmetry groups coincide ungdsas type
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Cs or G,. In the former case the abstract Hasse graph has the following
shape with symmetry group/27Z x 7./ 27.

aa¥as

In the natural geometric realization the cycle of length four is actually

not a square but a rectangle with side rati@ : 1. Thus the geometric
symmetry group collapses #/2Z. In the case of5, the two groups are
7./27 (see page 184) and 1.

Loosely speaking, the geometric symmetry group is the symmetry group
of 2A, hence isomorphic to the symmetry group of the affine Coxeter-
Dynkin graph. Going through the classification one sees that the abstract
symmetry group is the same as the geometric one, except for the two cases
mentioned above.

In the next few pages we show the Hasse graphs of the posets of abelian
ideals inb for the five simple types of rank 4. Each node of the Hasse graph
consists of a diagram of a shape of which an enlarged version is drawn
before the Hasse graph. The boxes of the enlarged version are filled with
the nonforbiddehpositive roots. Each node in the Hasse graph corresponds
to the abelian ideadp g, whereg runs over the positive roots marked by
a dot. ¢

The arrows in the Hasse graphs have the following meaning. Each node
which is not the source of an arrow corresponds to an ideal of the form

a”Min for someyp € ®'2"%. For ¢ a long simple root, we have labeled the
node belonging ta®™". The passage from & a to a*? corresponds to
following the arrows till one arrives at a sink. Finally, an arrow points from

the empty diagrama(= 0) to the diagram filled with one doti(= go).

The numbers along the edges show the types of the facets between adjacent
alcoves. Disregard the arrows for the automorphism groups.

3 A forbidden positive roop is such tha® — 2¢ is a sum of positive roots. Then the root
spaceg, cannot belong to an abelian idealtin
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o1 o2 o-1 o

1111111011001000
*—O 0O 60 0 0 6o 0o o

011101100100
—0 00 060 00 o6 o 0 °

00110010
——0—90 06000

0001
*—o——o

Aut(Hasse€A1)) = Z/2Z
Aut(Hass€A))) = Dihy (1 > 2)
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Ci
a1 a2 o2 o1 Q|
*o——o— ——————eo—==9
2221122111211111
—0—6==0 [ 0—0—0=0 00060 | 0— 009
022101210111
—0—6=90 | 0060 0000
00210011
—0—0=9 | —0—0—0
o} 0001
ﬁ‘f‘f? "—o—=<0
Lt
a
(o]o]e]®
DE

[ i&if; [ iliiz
2| / y
4 T
g L
|
o R

Aut(Hass€C,)) = Z/2Z
Aut(Hass€Cs)) = Z/2Z x 7/ 2Z
Aut(Hass€C))) = Z/2Z (I > 4)



216 R. Suter

o1 o2 o2 Q-1

12221122111211111110/(1100{21000
—0—6=0 0000 00 0=0 0060 060 6=0 06000 60 o0

01220112
060 | 00 =0

0012
*—o—0

[e]e]e[e]e[e[0] DDDDIII
H

| \

X/X/ /

\/\
/
T H
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EEH:EED

IEEH:ED:I

0

E@:EED

Aut(Hass€B))) = Z/2Z (I > 2)

\/\
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D o1
o1 0%) -3 -2

o

1 1 0 1 0 0
12: 11: 11: 11: 11: 10:
1 1 1 0 0 0
01 1: 01 0: 01 1:
1 1 0
00 0: 00 1:
1 0
g Cae
1 (o] | L 1e]
0
0 0
al [o[e[o[o[0] | az [e[e]o[o] T | a4 [o[e]o] T [ ] a?) [o[e] o] T |
T c e =

Aut(Hass€D4)) = Sym,
Aut(Hass€D))) = Dihy (I > 5)
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e=00| 6600 0000
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N N
4
2
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1

Aut(Hass€F,)) = 1
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Finally, let us display the Hasse graph of the poset of abelian ide&lfin
typeEe. | chose to draw it in a way in which the symmetry becomes manifest.
The nodes marked by = 6, g, . . ., ag carry the abelian ideats”™". The
encircled nodes mark the maximal abelian ide&ls"® (i =1, ..., 6).

A‘.
AN

,
I\

N

[ N

RANAY
NN
N

A A S
N
AN
Y
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