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Abstract. Let g be a complex simple Lie algebra andb a fixed Borel
subalgebra ofg. We describe the abelian ideals inb in a uniform way, that
is, independent of the classification of complex simple Lie algebras. As an
application we derive a formula for the maximal dimension of a commutative
Lie subalgebra ofg.

1. Introduction

Let g be a complex simple Lie algebra andb a fixed Borel subalgebra ofg.
This paper has three purposes. First, the maximal dimension among

the commutative subalgebras ofg is determined purely in terms of certain
invariants. These invariants involve the dual Coxeter number ofg and the
numbers of positive roots of some associated root subsystems ofg. Our
formula gives a conceptual explanation of A. Malcev’s classical result [Mal].
To assuage any possible curiosity we now list the maximal dimensions
together with their computations for the five exceptional types. The whole
picture will be revealed in the table on page 209.

gE6 − 1+ NA5 − NA4 = 12− 1+ 15− 10= 16
gE7 − 1+ ND6 − ND5 = 18− 1+ 30− 20= 27
gE8 − 1+ NA7 − NA6 = 30− 1+ 28− 21= 36
gF4 − 1+ NA1 − N∅ = 9− 1+ 1− 0= 9
gG2 − 1+ N∅ − N∅ = 4− 1+ 0− 0= 3

Second, we answer a question of Panyushev and Röhrle [PR] who asked
for a uniform explanation for the one-to-one correspondence between the
maximal abelian ideals inb and the long simple roots. More generally,
in our approach all positive long roots will emerge in a natural way. We
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define a mapping from the set of nonzero abelian ideals inb onto the set
of positive long roots. This mapping was also discovered independently by
Panyushev [Pan]. He proved that each fibre of this mapping is a poset having
a unique maximal element and a unique minimal element and asked for
further investigating the poset structure and, in particular, to find a general
description of the maximal element of each fibre. The exact structure of
the fibres was first announced in a preliminary version of this paper [Su3].
Some additional work by Cellini and Papi appeared recently [CP4].

Third, we keep the promise of giving a generalization and explanation
of the symmetry property of a certain subposet of Young’s lattice (the lattice
of integer partitions) that was observed in [Su2] and which we now recall.
For that consider the subposetYN of Young’s lattice induced by the Young
diagrams whose (largest) hook lengths are at mostN−1. One sees easily that
the posetYN has 2N−1 elements. This follows for instance by associating
to each such diagram an integer between 0 and 2N−1 − 1 by the following
procedure: in each column of the diagram write the figure 1 at the bottom
and fill the rest by 0; then read the binary number along the rim.

0 1
0
0
0

0 1
0 1

1 1

�−→ 110101000012 = 1697

The main result of [Su2] states that the Hasse graph ofYN (considered
as an undirected graph) has the dihedral group DihN of order 2N as its
automorphism group providedN � 3. The following figure exemplifies
this fact forN = 5.
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Aut(Y5) ∼= Dih5

The case dealt with in [Su2] is now seen as theAN−1 case, i. e., associated
with the Lie algebrag = slN(C). It is so to say the most spectacular case.
The reason is that its affine Coxeter-Dynkin graph is a cycle of lengthN.
Its dihedral symmetry induces a dihedral symmetry on a certain simplicial
complexC. The Hasse graph ofYN can be geometrically realized as the
1-skeleton of the cell complex dual toC.

Here is a brief historical narrative around the topic of this paper. In his
1905 paper [Sch] in Crelle’s journal I. Schur proved that the maximum
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number of linearly independent commutingN×N matrices is
⌊

N2

4

⌋ + 1.
In 1944 Jacobson [Jac] gave a simplified derivation of Schur’s result.
In the next year A. Malcev [Mal] determined the commutative subal-
gebras of maximum dimension of the semisimple complex Lie groups,
or equivalently, their Lie algebras. The next entry in this short histori-
cal outline is Kostant’s paper [Ko1] published in 1965. There he gave
a connexion of Malcev’s result with the maximal eigenvalue of the Lapla-
cian acting on the exterior powers

∧k
g of the adjoint representation.

Kostant [Ko2] again, in 1998, reconsidered the theme of abelian ideals
in a Borel subalgebra ofg and reported inter alia about Peterson’s proof
that the number of abelian ideals in a fixed Borel subalgebra ofg is 2rankg.
This, quoting Kostant, utterly surprising and ingenious proof involves the
affine Weyl group. It seems that Kostant’s paper was the starting point of
much recent activity. A natural generalization of Peterson’s approach from
abelian to ad-nilpotent ideals was developed recently by several authors
[AKOP,CP1,CP2,CP3,KOP,Som], see also [Shi], and for Kostant’s results
[CMP].

The structure of the paper is as follows. In Sect. 2 we review the com-
binatorial setup for describing the abelian ideals inb. Such an ideal is
associated with a subsetΨ of the set of positive roots. Kostant’s theorem,
which will be our main tool, characterizes the subsetsΨ that arise in this
way. A central notion in our approach will be that of aρ-point. Theρ-points
are certain integral weights arising from the geometry of the affine Weyl
group. The precise definition is given on page 183. We then reprove Peter-
son’s theorem directly from Kostant’s theorem (without using involutions
in a maximal torus). In Sect. 3 we first observe that for each nonzero abelian
ideala� b its subspace spanned by the root spaces corresponding to those
roots that are not perpendicular to the highest root is again an ideal, say
a�⊥θ . For each positive long rootϕ we then construct an abelian idealaϕ,min.
(A word about the notation may be appropriate here. Thea in aϕ,min is purely
notational whereasa in a�⊥θ denotes a nonzero abelian ideal.) The image of
the mapping 0�= a �→ a�⊥θ is the set of abelian ideals of the formaϕ,min.
This will be proved in Theorem 17. The main theorem (Theorem 23) also
describes the fibres of the mapping above. As a corollary we get the First
Sum Formula (Theorem 24), which generalizes the fact that the sum of all
entries in the firstl rows of Pascal’s triangle equals 2l − 1. In Sect. 4 we
look at the maximal abelian ideals and in particular at those of maximal
dimension. This links to A. Malcev’s list for the maximal dimension of
a commutative subalgebra ing. Corollary 25 gives a uniform formula for
these dimensions. Next, the connexion between the maximal abelian ideals
in b and the set of long simple roots is explained. As a corollary we get the
Second Sum Formula (Theorem 27) which generalizes the binomial expan-
sion for (1+ 1)n = 2n. Section 5 deals with the symmetry of the Hasse
graph of the poset of abelian ideals inb. As examples we display the Hasse
graphs for the simple types of rank 4 and also the Hasse graph forE6.
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2. Notations and tools, review of some results

For basic facts about root systems, Weyl groups, and related topics see
[Bou,Hum,Bro,Hil]. Let us fix a complex simple Lie algebrag of rank
l together with a Borel subalgebrab and a Cartan subalgebrah ⊆ b.
Associated with these data there are quite a number of further objects
whose notations are provided in the following table. Most of them are
standard (but sometimes there are different conventions). We list the most
important notations used here for the reader’s convenience.

A (closed) fundamental alcove (4),
C (closed) dominant chamber (5),
Fi = Hi ∩ A facets of typei of the fundamental alcoveA,
g dual Coxeter number,
gϕ = {

X ∈ g ∣∣ [H, X] = ϕ(H) X ∀ H ∈ h} root space,
h Coxeter number,
h∗R, hR real vector space spanned by the roots, and its predual,
Hi walls supporting the facetsFi (i = 0, . . . , l) of A,
Hϕ, Hkδ−ϕ walls Fix(sϕ), Fix(skδ−ϕ),
l = rankg,
� length function on̂W or onW ,
L L(ϕ) = 2 (θ−ϕ|ρ)

(θ|θ) ,
mi exponents (i = 1, . . . , l),

ni marks (i = 1, . . . , l), θ =
l∑

i=1
ni αi, in addition,n0 = 1,

NX number of positive roots for a root system of typeX,
si simple reflections (i = 1, . . . , l), in addition,s0 : h∗R→ h∗R,

s0(λ) = λ− 〈λ, θ∨〉 θ + gθ,
sθ reflection along the highest root,sθ(λ) = s0(λ)− s0(0),
sϕ, skδ−ϕ reflections along the rootsϕ, kδ − ϕ,
wϕ◦ , ŵϕ◦ longest elements inW⊥ϕ, Ŵ⊥ϕ,
W , Ŵ finite Weyl group, affine Weyl group,
W⊥ϕ = gp

(
si

∣∣ αi ⊥ ϕ (i = 1, . . . , l)
)
,

Ŵ⊥ϕ Ŵ⊥ϕ = W⊥ϕ if θ �⊥ ϕ, Ŵ⊥ϕ = gp
(
s0, W⊥ϕ

)
if θ ⊥ ϕ,

αi simple roots (i = 1, . . . , l), α0 = δ− θ,
θ highest root,
	i fundamental weights (i = 1, . . . , l),
∨
	 i = 1

‖αi‖2 	i,
Π = {α1, . . . , αl} set of simple roots,
Π long set of long simple roots,
ρ = 1

2〈Φ+〉 half the sum of positive roots,
ϕ∨ coroot corresponding toϕ ∈ Φ,
Φ, Φ± root system, set of positive/negative roots,
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Φ
long
+ set of positive long roots,

Φ(a) set of weights ofa, a = ⊕
ϕ∈Φ(a)

gϕ,

Φw = Φ+ ∩wΦ−,
Φ̂, Φ̂± affine root system, set of positive/negative affine roots,
Φ̂ŵ = Φ̂+ ∩ ŵΦ̂−,

( | ) canonical bilinear form onh∗R, or onh∗R ⊕ Rδ⊕ RΛ0,
‖ ‖ norm from( | ),
〈 〉 〈Ψ 〉 = ∑

ϕ∈Ψ

ϕ for Ψ ⊆ Φ+,

〈 , 〉 natural pairing,
[ ] [n] = 1−tn

1−t .

We denote byΦ+ ⊆ h∗ the set of positive roots. Here the convention is
that the root spaces inb belong to positive roots, i. e.,b = h⊕ ⊕

ϕ∈Φ+
gϕ where

gϕ is the (1-dimensional) root space on whichh acts by the weightϕ, that is,
gϕ =

{
X ∈ g ∣∣ [H, X] = ϕ(H) X ∀ H ∈ h}. As further pieces of notation

we writeΦ− = −Φ+ for the set of negative roots,Φ = Φ+
.∪ Φ− for the

root system ofg relative toh, andΠ ⊆ Φ+ for the root basis. Recall thatΠ
consists of the roots inΦ+ that lie on the edges of the polyhedral (in fact,
simplicial) cone spanned by the vectors inΦ+. Each positive root is a linear
combination of the vectors inΠ with nonnegative integral coefficients. The
Weyl group ofΦ will be denoted byW . More about Weyl groups and some
geometry associated with them will be recalled at the appropriate place
below.

Now leta�b be an ideal. It is adh-stable and hence compatible with the
root space decomposition. If we further require thata lies in the nilpotent
radical n = [b, b], we get thata is of the forma = ⊕

ϕ∈Ψ

gϕ for some

subsetΨ ⊆ Φ+ of positive roots. The ideal property ofa translates into the
condition forΨ thatΨ

.+ Φ+ := (Ψ + Φ+) ∩ Φ+ ⊆ Ψ . If, in addition,a
is supposed to be abelian (so thata ⊆ [b, b] holds automatically), we must
haveΨ

.+ Ψ := (Ψ + Ψ) ∩ Φ+ = ∅. It is clear that there is the following
bijection.{

subsetsΨ ⊆ Φ+ such that
Ψ

.+ Φ+ ⊆ Ψ andΨ
.+ Ψ = ∅

} ∼=←→ {
abelian idealsa� b

}
Ψ �−→ aΨ :=

⊕
ϕ∈Ψ

gϕ

The inner product. Before we can go on and state Kostant’s theorem,
which will be an essential tool for our approach, we recall the canonical
inner product on the real vector spaceh∗R spanned by the (finite) irreducible
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(reduced) root systemΦ. This inner product will be denoted by( | ) and the
associated Euclidean norm by‖ ‖. It is characterized by beingW-invariant
and satisfying the normalization‖ρ + θ‖2 − ‖ρ‖2 = 1 whereρ is half the
sum of positive roots andθ is the highest root.

Remark The canonical inner product is the restriction toh∗R of the symmetric
bilinear form dual to the Killing form ofg. There are several alternative
descriptions of the same normalization. Here is a short list.

‖ρ + θ‖2 − ‖ρ‖2 = 1, i. e., the eigenvalue of the Casimir operator
associated to the Killing form is 1 for the adjoint representation;
‖θ‖−2 = g, the dual Coxeter number;
‖ρ‖2 = 1

24 dimg, the “strange formula” of Freudenthal and de Vries;∑
ϕ∈Φ

‖ϕ‖2 = rankg, a formula due to G. Brown;

‖θ‖2 +
l∑

i=1
ni ‖αi‖2 = 1, wheren1, . . . , nl are the marks andα1, . . . , αl

the simple roots. (The formula looks funnier if one substitutes
l∑

i=1
ni αi

for θ.) One can show the formula by writing‖θ‖−2 = g and using the
connexion between the Coxeter number and the dual Coxeter number.
Another derivation will be given in the remark beginning on page 211.

Definition ForΨ ⊆ Φ+ we define〈Ψ 〉 := ∑
ϕ∈Ψ

ϕ.

Lemma 1 (Kostant) Let Ψi ⊆ Φ+ with Ψi
.+ Φ+ ⊆ Ψi (i = 1, 2) (ideals)

such that 〈Ψ1〉 = 〈Ψ2〉. Then Ψ1 = Ψ2.

Proof Let Ψ := Ψ1∩Ψ2. Assume to the contrary thatΨ1 �= Ψ2. Then since
〈Ψ1〉 = 〈Ψ2〉 both Ψ1 − Ψ andΨ2 − Ψ are nonempty. Letϕi ∈ Ψi − Ψ
(i = 1, 2). We must have(ϕ1|ϕ2) � 0. Otherwiseϕ1 − ϕ2 would be a root
which can be assumed positive by possibly interchanging the indices 1 and 2.
By the ideal propertyΨi

.+ Φ+ ⊆ Ψi we then haveϕ1 = ϕ2+(ϕ1−ϕ2) ∈ Ψ2,
a contradiction. Thus(ϕ1|ϕ2) � 0. Hence since〈Ψ1 − Ψ 〉 = 〈Ψ2 − Ψ 〉 we
obtain

0�
∥∥〈Ψi − Ψ 〉∥∥2 = (〈Ψ1− Ψ 〉 ∣∣ 〈Ψ2− Ψ 〉) � 0

and soΨ = Ψ1 = Ψ2. ��
Like the previous lemma the following theorem is due to Kostant and

was published in 1965.

Theorem 2 (Kostant) Let Ψ ⊆ Φ+ be a set of positive roots. Further let
aΨ := ⊕

ϕ∈Ψ

gϕ ⊆ b be the corresponding subspace. Then one always has the

inequality ∥∥∥ρ + ∑
ϕ∈Ψ

ϕ

∥∥∥2− ‖ρ‖2 � |Ψ |
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with equality if and only if aΨ is an abelian ideal in b (and every abelian
ideal in b is of this form).

In particular, one recovers the normalization‖ρ + θ‖2 − ‖ρ‖2 = 1 be-
cause the root spacegθ�b is an abelian ideal inb (the unique 1-dimensional
one).

Reflections and Weyl groups. Each sumρ+ ∑
ϕ∈Ψ

ϕ = ρ+〈Ψ 〉 that occurs in

Kostant’s theorem (Theorem 2) and such thataΨ is an abelian ideal inbwill
be shown to be of the formρ+ 〈Ψ 〉 = ŵρ for some element̂w in the affine
Weyl groupŴ . Here, the affine Weyl group is the group of affine isometries
of h∗R generated by the finite Weyl groupW—which is itself generated by
the simple reflectionss1, . . . , sl along the simple rootsα1, . . . , αl, that is,

si : λ �−→ λ− 2(λ|αi)

(αi|αi)
αi = λ− 〈λ, α∨i 〉αi

—and, in addition, the affine reflection

s0 : λ �→ λ−
(

2(λ|θ)
(θ|θ) − g

)
θ = λ− (〈λ, θ∨〉 − g

)
θ = sθλ+ gθ. (1)

Here,〈 , 〉 : h∗R × hR → R stands for the natural pairing;α∨1 , . . . , α∨l , θ∨
are the coroots corresponding toα1, . . . , αl, θ. More generally, for any root
ϕ ∈ Φ the corresponding corootϕ∨ ∈ hR is defined by

〈λ, ϕ∨〉 = 2(λ|ϕ)

(ϕ|ϕ)
∀ λ ∈ h∗R.

The affine Weyl group̂W is a Coxeter group with Coxeter generators
s0, . . . , sl. Let � : Ŵ → Z�0 be the usual length function, that is,�(ŵ) = r
if ŵ = si1 . . . sir with i1, . . . , ir ∈ {0, . . . , l} and r minimal. Similarly,
denoting again by� : W → Z�0 the length function of the parabolic
subgroupW ⊆ Ŵ , one knows that it coincides with the restriction of the
length function ofŴ .

Remark The definition of the affine Weyl group is not exactly the standard
but a scaled one and has the effect thats0ρ = ρ+θ. One has the well-known
decomposition̂W ∼= gM �W of Ŵ as a semidirect product ofW acting on
the normal subgroupgM, the lattice spanned by the long roots and dilated
by the factorg, in the obvious way. Each elementµ ∈ gM acts as the
translationλ �→ λ+ µ.

There is of course also the linear version of the affine Weyl group acting
onh∗R ⊕ Rδ⊕ RΛ0 as in Kac’s book [Kac]. One extends the inner product
in h∗R to a nondegenerate symmetric bilinear form, again denoted( | ), by
declaring thatδ andΛ0 are isotropic vectors perpendicular toh∗R and such
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that(δ|Λ0) = 1. By some slight abuse of notation we define the reflections
s0, . . . , sl ∈ O

(
h∗R ⊕ Rδ⊕ RΛ0, ( | )

)
by the formula

si : λ �−→ λ− 2(λ|αi)

(αi|αi)
αi,

whereα1, . . . , αl are the simple roots as usual andα0 = δ − θ. The group
generated bys0, . . . , sl will again by abuse of notation be denoted bŷW .
Each affine hyperplaneh∗R⊕Rδ+cΛ0 is mapped onto itself by the reflections

s0, . . . , sl. The action of̂W onh∗R defined previously comes from the action
of Ŵ on the subquotienth∗R ⊕ Rδ + 1

2Λ0 (modRδ) if one identifies this
subquotient withh∗R in the evident way. In fact, forϕ ∈ Φ+ andλ ∈ h∗R⊕Rδ
we compute

sδ−ϕ

(
λ+ 1

2Λ0
) = λ+ 1

2Λ0− 2
(
λ+ 1

2Λ0|δ− ϕ
)

(δ− ϕ|δ− ϕ)
(δ− ϕ)

∈ λ+ 1
2Λ0 − 2(λ|ϕ)

(ϕ|ϕ)
ϕ + 1

(ϕ|ϕ)
ϕ + Rδ

= sϕλ+ ‖ϕ‖−2 ϕ + Rδ+ 1
2Λ0,

which for ϕ = θ reduces to the formula (1). Let us also pin down the
expression for the affine action ofsδ−ϕ onh∗R, namely,

sδ−ϕλ = sϕλ+ ‖ϕ‖−2 ϕ. (2)

Lemma 3 Let ϕ ∈ Φ+ be a positive root. Then λ ∈ h∗R satisfies

‖λ+ ϕ‖2− ‖ρ‖2 = ‖λ‖2− ‖ρ‖2+ 1 (3)

if and only if λ+ ϕ = sδ−ϕλ.

Proof The equation (3) is equivalent to 2(λ|ϕ)+ ‖ϕ‖2 = 1. Now by (2)

sδ−ϕλ = sϕλ+ ‖ϕ‖−2 ϕ = λ− 2(λ|ϕ)− 1

‖ϕ‖2
ϕ.

Hencesδ−ϕλ = λ+ ϕ is equivalent to 2(λ|ϕ)+ ‖ϕ‖2 = 1. ��
The fundamental weights	1, . . . ,	l ∈ h∗R are the basis dual to the

basisα∨1 , . . . , α∨l of hR. Also recall thatρ =
l∑

i=1
	i. The next definition is

slightly non-standard: define
∨
	1, . . . ,

∨
	 l ∈ h∗R by

( ∨
	 i

∣∣α j

) = δij
1
2, that is,

∨
	 i= 1

‖αi‖2 	i .
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The mappingŴ → h∗R, ŵ �→ ŵρ is injective. Its image will be termed
the set ofρ-points. Let

A = {
λ ∈ h∗R

∣∣ (λ|α) � 0 for all α ∈ Π and〈λ, θ∨〉 � g
}

= {
λ ∈ h∗R

∣∣ 0� (λ|ϕ) � 1
2 for all ϕ ∈ Φ+

}
(4)

be the (closed) fundamental alcove, which is a fundamental domain forŴ
acting onh∗R. The fundamental alcoveA is the simplex whose vertices are

0,
∨
	1
n1

, . . . ,
∨
	 l
nl

wheren1, . . . , nl are the marks, i. e., the (positive integer)

coefficients inθ =
l∑

i=1
ni αi.

The cone with apex 0 spanned byA is the dominant chamber

C = {
λ ∈ h∗R

∣∣ (λ|α) � 0 for all α ∈ Π
}
. (5)

It is a fundamental domain for the finite Weyl groupW .
TheŴ-translates of the fundamental alcove are called alcoves. For each

i = 0, . . . , l one has the (affine ifi = 0) hyperplane

Hi := Fix(si) =
{
λ ∈ h∗R

∣∣ siλ = λ
}
,

and theirŴ-translates are termed walls. They are the fixed point sets of
a reflection inŴ , that is, of the form

Hkδ−ϕ = Fix(skδ−ϕ) =
{
λ ∈ h∗R

∣∣ (λ|ϕ) = k
2

}
for somek ∈ Z andϕ ∈ Φ+ (note thatHkδ−ϕ = H−(kδ−ϕ)).

The ρ-points are precisely the integral weights in the interior of an
alcove. So there are the natural bijections

Ŵ
∼=←→ {alcoves} ∼=←→ {ρ-points}

ŵ ←→ ŵA ←→ ŵρ.

We have already mentioned above thatρ+ θ is theρ-point of the alcove
s0A. Theρ-points of the other neighbourss1A, . . . , sl A of the fundamental
alcove areρ − α1, . . . , ρ − αl. This follows becausesi (for i = 1, . . . , l)
permutes all positive roots other thanαi andsi(αi) = −αi .

The following picture shows a small part of the tessellation of the plane
by alcoves for typeG2. The shaded region marks the fundamental alcoveA.
The boundaries of the four alcoves in 2A = {2λ |λ ∈ A} are drawn in solid
lines.
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ρ s0ρ

s0s2ρ

s0s2s1ρ

s2ρ

s1ρ

α2

α1

A
0

ρ − s1ρ = α1
ρ − s2ρ = α2
s0ρ − ρ = 3α1+ 2α2 = θ
s0s2ρ − s0ρ = 3α1+ α2
s0s2s1ρ − s0s2ρ = 2α1+ α2

Let us recall that there is a close connexion between reduced expressions
for elementŝw ∈ Ŵ and minimal galleries going fromA to ŵA. In fact, in
general, one has the bijection

{words ins0, . . . , sl}
∼=←→ {(non-stuttering) galleries beginning atA}

si1si2 . . . sik ←→ A, si1 A, si1si2 A, . . . , si1si2 . . . sik A,

and reduced words correspond to minimal galleries. Note thatŵA andŵsi A
are adjacent alcoves with a common facet1 of type i. Instead of keeping
track of the types of the facets where adjacent alcoves meet, one can also
specify the list of separating walls in a gallery. The two alcovesŵA and
ŵsi A = sŵαi ŵA are separated by the wallHŵαi = Fix(sŵαi ). (Surely, we
must consider the linear action of the affine Weyl group when we write
ŵαi. So ŵαi ∈ Φ̂ = Φ + Zδ, the set of so-called real affine roots.) It is
well-known that the length�(ŵ) is the number of walls which separateA
from ŵA.

Lemma 4 Let a0 ⊆ a be abelian ideals in b. Then there is a flag

a0 ⊆ a1 ⊆ · · · ⊆ am = a
1 We follow the traditional terminology which speaks of “facets” for “faces of codimen-

sion one”. The terminology in French is “face” for “facette de codimension une”.
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of abelian ideals in b such that

dimak = dima0 + k (k = 0, . . . , m).

Proof There is nothing to prove ifm = 0. Let us denote byΦ(a0) ⊆ Φ(a)
the sets of weights ofa0 anda. Suppose now thatm > 0 and take a root
ϕ ∈ Φ(a)−Φ(a0) of minimal height. (Recall that the height ht(ϕ) of a root

ϕ =
l∑

i=1
ci αi is defined to be ht(ϕ) =

l∑
i=1

ci , its coefficient sum with respect

to the basis of simple roots. The simple roots are those having height 1, and
the highest rootθ is the root whose height is maximal, namely, ht(θ) = h−1,
one less than the Coxeter number ofg.) Now let am−1 be the sum of root
spaces such thatam = am−1 ⊕ gϕ. The choice ofϕ guarantees thatam−1 is
again an ideal (of course an abelian one) inb. This completes the proof by
induction. ��
Proposition 5 Let a � b be an abelian ideal and Φ(a) its set of weights.
Then ρ + 〈Φ(a)〉 is a ρ-point, ρ + 〈Φ(a)〉 = ŵρ with �(ŵ) = dima.
Moreover, ρ + 〈Φ(a)〉 ∈ 2A.

Proof Let d = dima andΦ(a) = {ϕ1, . . . , ϕd}. According to Lemma 4 we
can assume that the enumeration of the roots is such thatgϕ1 ⊕ · · · ⊕ gϕk is
an abelian ideal for eachk = 0, . . . , d, and hence

‖ρ + ϕ1+ · · · + ϕk‖2− ‖ρ‖2 = k

by Kostant’s theorem (Theorem 2). Applying Lemma 3d times, we conclude
that

ρ + 〈Φ(a)〉 = sδ−ϕd . . . sδ−ϕ1ρ (6)

is a ρ-point. The walls that separateA from sδ−ϕd . . . sδ−ϕ1 A are exactly
Hδ−ϕ1, . . . , Hδ−ϕd . Hence�(sδ−ϕd . . . sδ−ϕ1) = d = dima.

It is clear from formula (6) thatρ + 〈Φ(a)〉 ∈ 2A. In fact,

A, sδ−ϕ1 A, sδ−ϕ2sδ−ϕ1 A, . . . , sδ−ϕd . . . sδ−ϕ1 A

is a gallery starting withA, and the common walls are all different from the
walls 2H0, H1, . . . , Hl which bound 2A.

We shall give a different proof thatρ + 〈Φ(a)〉 ∈ 2A. Let us first show
thatρ + 〈Φ(a)〉 lies in the dominant chamber. Consider a minimal gallery
from the fundamental alcoveA to the alcove containingρ + 〈Φ(a)〉. If
the latter would lie outsideC, then the gallery would contain two adjacent
alcovesA′ (insideC) andA′′ (outsideC). But then theρ-pointsρ′ of A′ and
ρ′′ of A′′ would satisfy‖ρ′‖ = ‖ρ′′‖ which contradicts Kostant’s theorem
(Theorem 2).

Finally we show that theρ-point ρ + 〈Φ(a)〉 and the origin lie on the
same side of the wall 2H0 = H2δ−θ =

{
λ ∈ h∗R

∣∣ (λ|θ) = 1
}
. We give

more than one argument. Consider a minimal gallery from the fundamental
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alcove to the alcove that containsρ+ 〈Φ(a)〉. If the gallery would cross the
wall 2H0, sayρ′ (with (ρ′|θ) < 1) andρ′′ (with (ρ′′|θ) > 1) are theρ-points
of two adjacent alcoves with a common facet in 2H0, thenρ′ + θ = ρ′′.
But the rootθ already occurred right at the beginning asρ + θ = s0ρ, and
surelyρ′ �= ρ. Alternatively one can make a contradiction with Kostant’s
theorem (Theorem 2). Still another way to show that

(
ρ + 〈Φ(a)〉 ∣∣ θ

)
< 1

is to invoke Proposition 11. ��
Lemma 6 Let H be a wall which cuts 2A into two connected components.
Then there is a positive root ϕ ∈ Φ+ such that

H = Hδ−ϕ = Fix(sδ−ϕ) =
{
λ ∈ h∗R

∣∣ (λ|ϕ) = 1
2

}
.

Proof Recall that the fundamental alcoveA (see (4)) can be written as the
intersection

A =
⋂

ϕ∈Φ+

{
λ ∈ h∗R

∣∣ 0� (λ|ϕ) � 1
2

}
of the strips bounded by the wallsHϕ andHδ−ϕ. Hence 2A is the intersection
of the strips bounded by the wallsHϕ and 2Hδ−ϕ = H2δ−ϕ whereϕ runs
through the positive roots. The lemma follows as any wall is the fixed point
setHkδ−ϕ of some reflectionskδ−ϕ with k ∈ Z andϕ ∈ Φ+. ��
Theorem 7 The mapping

{abelian ideals in b} −→ {ρ-points in 2A}
a �−→ ρ + 〈Φ(a)〉

(〈Φ(a)〉 is the sum of the weights of a) is a bijection.

Proof Proposition 5 shows that the mapping is well-defined, and it is injec-
tive by Lemma 1. Hence we are left with proving surjectivity. Letρ′ ∈ 2A
be aρ-point andA′ its alcove. The case whereA′ = A is clear, so suppose
that A′ �= A. Consider a minimal gallery fromA to A′. Surely, the alcoves
of such a gallery all belong to 2A. Lemma 6 tells us that the next-to-last al-
cove in the gallery can be written assδ−ϕ A′ for some positive rootϕ ∈ Φ+.
Moreover,sδ−ϕρ

′ + ϕ = ρ′ = sδ−ϕ(sδ−ϕρ
′) becausesδ−ϕ A′ and A′ have

a common facet lying in the wall Fix(sδ−ϕ) = Hδ−ϕ. Now

‖ρ′‖2− ‖ρ‖2 = ‖sδ−ϕρ
′‖2− ‖ρ‖2+ 1

by Lemma 3. The conclusion follows from Theorem 2 by induction.��
Since 2A is the union of 2l alcoves, hence contains 2l ρ-points, Peterson’s

theorem about the number of abelian ideals follows as a corollary, as already
noted by Cellini and Papi [CP1, Theorem 2.9].

Corollary 8 (Peterson) The number of abelian ideals in b is 2l .
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Our next corollary is a consequence of Theorem 7, Proposition 5, and
Theorem 2.

Corollary 9 If ŵ ∈ Ŵ satisfies ŵρ ∈ 2A, then ‖ŵρ‖2− ‖ρ‖2 = �(ŵ).

3. Explicit description of the abelian ideals

Our approach to describing the abelian ideals hinges on the observation that
for each abelian ideala� b its subspacea�⊥θ spanned by the root spaces for
the roots that are not perpendicular to the highest rootθ is again an abelian
ideal inb. This is the content of the next proposition.

Proposition 10 Let a � b be an abelian ideal and Φ(a) ⊆ Φ+ its set of
weights. Then

Φ �⊥θ(a) := {
ϕ ∈ Φ(a)

∣∣ (ϕ|θ) > 0
}

is also the set of weights for an abelian ideal a�⊥θ � b :

Φ �⊥θ(a) = Φ(a�⊥θ)
( = Φ �⊥θ(a�⊥θ)

)
.

Proof The abelianess is clear:Φ �⊥θ(a)
.+ Φ �⊥θ(a) ⊆ Φ(a)

.+ Φ(a) = ∅.
That the ideal property holds is also easy to show. For this we must

see thatΦ �⊥θ(a)
.+ Φ+ ⊆ Φ �⊥θ(a). Let ϕ ∈ Φ �⊥θ(a) and ϕ′ ∈ Φ+. Of

the four a priori possibilities (1)ϕ + ϕ′ /∈ Φ+, (2) ϕ + ϕ′ ∈ Φ+ − Φ(a),
(3) ϕ + ϕ′ ∈ Φ(a) − Φ �⊥θ(a), (4) ϕ + ϕ′ ∈ Φ �⊥θ(a), we must exclude the
cases (2) and (3). That (2) is impossible follows fromΦ �⊥θ(a) ⊆ Φ(a) and
the fact thata is an ideal. Case (3) cannot occur because(ϕ′|θ) � 0 sinceθ
lies in the dominant chamber and hence(ϕ + ϕ′|θ) > 0 by the definition of
Φ �⊥θ(a). ��
Proposition 11 Let a � b be an abelian ideal. The cardinality of the set
Φ �⊥θ(a) is at most g− 1.

Proof The number of positive roots that are not orthogonal toθ is 2g − 3
[Su1, Proposition 1]. Consider the involution−sθ on the set of positive roots
that are not orthogonal toθ. Its only fixed point isθ, and−sθϕ = θ − ϕ for
ϕ �= θ. The abelianess implies that∣∣{ϕ,−sθϕ} ∩Φ �⊥θ(a)

∣∣ � 1,

and the conclusion follows.
Alternatively, the result follows from Proposition 5. ��
Now the problem of describing the abelian ideals inb decomposes into

two problems according to the disjoint union decomposition{
abelian idealsa� b

} =∐
a′

{
abelian idealsa� b with a�⊥θ = a′}.
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The two tasks are

(1) describe the index set
{
a′
∣∣a′ � b abelian ideal witha′ = a′ �⊥θ

}
;

(2) for eacha′ = a′ �⊥θ describe the set of abelian idealsa with a′ = a�⊥θ .

We will first deal with task (1) and show that there is a canonical one-
to-one correspondence

{
a
�⊥θ

∣∣ 0 �= a� b abelian ideal
} ∼=←→ Φ

long
+

(see Theorems 15 and 17 below). This will then extend and give an a pri-
ori explanation for the observation that the maximal abelian ideals are in
canonical one-to-one correspondence with the long simple roots, as it was
recorded in [PR].

We need some preparation. A modification of the height function will
be important. We define the affine functionalL : h∗R→ R by

L(ϕ) := 2(θ − ϕ|ρ)

(θ|θ) . (7)

Whereas ht(ϕ) > 0 for ϕ ∈ Φ+ and ht(ϕ) < 0 for ϕ ∈ Φ−, we have
L(ϕ) � 0 for all ϕ ∈ Φ; more precisely,L(θ) = 0 andL(ϕ) > 0 for all
ϕ ∈ Φ − {θ}. A second difference concerns the root lengths. Let us write

againϕ =
l∑

i=1
ci αi. Then

L(ϕ) = 2(θ − ϕ|ρ)

(θ|θ) = g− 1− 2

(θ|θ)
( l∑

i=1
ci αi

∣∣∣ l∑
j=1

	 j

)
= g − 1−

l∑
i=1

ci
(αi|αi)

(θ|θ)

because(αi |	 j) = 1
2(αi|αi) δij . And L(ϕ) = g− 1− 〈ρ, ϕ∨〉 ∈ Z�0 if ϕ is

a long root. In particular, forϕ ∈ Φ
long
+ we haveL(ϕ) = g−2 if and only if

ϕ is a long simple root. The affine functionalL shows its importance in the
following proposition.

Proposition 12 For each positive long root ϕ ∈ Φ
long
+ there is a unique

Weyl group element w ∈ W of length �(w) = L(ϕ) such that wϕ = θ is the
highest root. Moreover, w′ϕ �= θ for all w′ ∈ W with �(w′) < L(ϕ).

Proof We first show the minimality that is expressed in the second sen-
tence. Letsi be a simple reflection withsiϕ positive, too, henceϕ �= ±αi.
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We compute

L(ϕ)− L(siϕ) = 2(θ − ϕ|ρ)

(θ|θ) − 2(θ − siϕ|ρ)

(θ|θ) (by definition (7))

= −2(ϕ|ρ)

(θ|θ) +
2(ϕ|siρ)

(θ|θ) (by orthogonality)

= −2(ϕ|ρ)

(θ|θ) +
2(ϕ|ρ − αi)

(θ|θ) (si is a simple reflection)

= −2(ϕ|αi)

(θ|θ) = −2(ϕ|αi)

(ϕ|ϕ)
(ϕ is a long root)

= −〈αi, ϕ
∨〉 ∈ {0,±1}. (ϕ �= ±αi is a long root)

It follows that L(ϕ) = L(ϕ)− L(θ) � �(w) if wϕ = θ.
The same calculation shows that givenϕ ∈ Φ

long
+ − {θ}, there exists

a simple reflectionsi such thatL(ϕ) − L(siϕ) = 1. Otherwise, by the
previous computation, we would get〈αi, ϕ

∨〉 � 0 for all i = 1, . . . , l, so
thatϕ would lie in the dominant chamber. This is absurd becauseθ is the only
long dominant root andϕ �= θ by assumption. Hence there is a sequence
si1, . . . , siL(ϕ)

of simple reflections withL(sik sik−1 . . . si1ϕ) = L(ϕ)− k (for
k = 0, . . . , L(ϕ)). In particular,siL(ϕ)

siL(ϕ)−1 . . . si1ϕ = θ.
Uniqueness follows from the uniqueness of coset representatives of

minimal length for standard parabolic subgroups. In fact, letW⊥θ be the
standard parabolic subgroup generated by the simple reflections that fix the
highest rootθ. Its Coxeter-Dynkin graph is the subgraph of the Coxeter-
Dynkin graph ofW induced by those nodes that are not adjacent to the
affine node (corresponding toα0). The quotient in question is the set of
right cosetsW⊥θ\W . ��

The following table compiles for each long simple rootαi the Weyl
group elementw with �(w) = g − 2 and such thatwαi = θ. The labeling
coincides with the labeling in the table on pages 197–201.

X i w such thatwαi = θ

Al i s1
↗. . . si−1 sl

↘. . . si+1

Cl l s1
↗. . . sl−1

Bl i s2
↗. . . sl s1

↗. . . si−1 sl−1
↘. . . si+1 (i = 1, . . . , l − 1)

Dl i s2
↗. . . sl−2 s1

↗. . . si−1 sl
↘. . . si+1 (i = 1, . . . , l − 2)

i s2
↗. . . sl−2 s1

↗. . . sl−3 s2l−i−1 sl−2 (i = l − 1, l)
E6 1 s1 s2 s3 s4 s2 s5 s3 s6 s4 s2

2 s1 s2 s3 s4 s2 s1 s5 s3 s6 s4

3 s1 s2 s3 s4 s2 s1 s5 s6 s4 s2

4 s1 s2 s3 s4 s2 s1 s5 s3 s2 s6

5 s1 s2 s3 s4 s2 s1 s6 s4 s2 s3

6 s1 s2 s3 s4 s2 s1 s5 s3 s2 s4



190 R. Suter

E7 1 s1 s2 s3 s4 s5 s3 s2 s6 s4 s3 s5 s7 s6 s4 s3 s2

2 s1 s2 s3 s4 s5 s3 s2 s1 s6 s4 s3 s5 s7 s6 s4 s3

3 s1 s2 s3 s4 s5 s3 s2 s1 s6 s4 s3 s2 s5 s7 s6 s4

4 s1 s2 s3 s4 s5 s3 s2 s1 s6 s4 s3 s2 s5 s3 s7 s6

5 s1 s2 s3 s4 s5 s3 s2 s1 s6 s4 s3 s2 s7 s6 s4 s3

6 s1 s2 s3 s4 s5 s3 s2 s1 s6 s4 s3 s2 s5 s3 s4 s7

7 s1 s2 s3 s4 s5 s3 s2 s1 s6 s4 s3 s2 s5 s3 s4 s6

E8 1 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s8 s6 s5 s4 s3 s7 s5 s4 s6 s5 s7 s8 s6 s5 s4 s3 s2

2 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s1 s8 s6 s5 s4 s3 s7 s5 s4 s6 s5 s7 s8 s6 s5 s4 s3

3 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s1 s8 s6 s5 s4 s3 s2 s7 s5 s4 s6 s5 s7 s8 s6 s5 s4

4 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s1 s8 s6 s5 s4 s3 s2 s7 s5 s4 s3 s6 s5 s7 s8 s6 s5

5 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s1 s8 s6 s5 s4 s3 s2 s7 s5 s4 s3 s6 s5 s4 s7 s8 s6

6 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s1 s8 s6 s5 s4 s3 s2 s7 s5 s4 s3 s6 s5 s4 s7 s5 s8

7 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s1 s8 s6 s5 s4 s3 s2 s7 s5 s4 s3 s6 s5 s4 s8 s6 s5

8 s1 s2 s3 s4 s5 s6 s7 s5 s4 s3 s2 s1 s8 s6 s5 s4 s3 s2 s7 s5 s4 s3 s6 s5 s4 s7 s5 s6

F4 1 s1 s2 s3 s2 s4 s3 s2

2 s1 s2 s3 s2 s1 s4 s3

G2 2 s2 s1

The notations↗. . . and ↘. . . mean that one has to interpolate by increasing and decreasing

indices, respectively, with the obvious conventions understood, e. g.,s1
↗. . . s4 = s1 s2 s3 s4

and alsos1
↗. . . s1 = s1 ands1

↗. . . s0 = 1 (empty index set).

Remark Note that ifs j1 . . . s jg−2αi = θ, then for eachm = 1, . . . , g− 2,

θ −
m∑

k=1

‖θ‖2

‖α jk‖2
α jk

is a positive root (and form = g− 2 equalsαi).
Surely, one can count the number of reduced decompositions. We do not

elaborate on this point. But let me mention the two relatively recent papers
[St1,St2] by Stembridge about some Weyl group combinatorics like fully
commutative elements, minuscule elements, and other interesting topics.

Remark The lengths of the Weyl group elements that occurred in Proposi-
tion 12 have the polynomial of degreeg− 2

q(t) :=
∑

ϕ∈Φ
long
+{

wϕ=θ with
�(w) minimal

t�(w) =
∑

ϕ∈Φ
long
+

tL(ϕ)

as a generating function. Sincesi(αi) = −αi, we have the sum∑
ϕ∈Φlong{

wϕ=θ with
�(w) minimal

t�(w) = q(t)+ t2g−3q(t−1)
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for all the (positive and negative) long roots, which is the Poincaré poly-
nomial for the set of minimal coset representatives forW⊥θ\W . For more
background about this folklore part in the theory see for instance [Win] and
references therein. The usual Poincaré polynomialW(t) of W is defined
as W(t) = ∑

w∈W
t�(w). It can be expressed by a product formula. Namely,

if m1, . . . , ml are the exponents2 of W (or of its typeX), then using the

abbreviation[n] := (1− tn)/(1− t) one can writeW(t) =
l∏

i=1
[mi + 1].

The Poincaŕe polynomial ofW⊥θ\W is the quotientW(t)/W⊥θ(t) of
the corresponding Poincaré polynomials. The rightmost column in the next
table contains the numbersν(X) = the number of positive long roots in
a root system of typeX. The Poincaŕe polynomial evaluated att = 1 equals
2ν(X).

X X⊥θ exponents ofX W(t)/W⊥θ (t) ν(X)

Al Al−2 1, 2, . . . , l [l][l + 1] l(l + 1)

2

Cl Cl−1 1, 3, . . . , 2l − 1 [2l] l

Bl Bl−2 + A1 1, 3, . . . , 2l − 1
[2l − 2][2l]

[2] l(l − 1)

Dl Dl−2+ A1 1, 3, . . . , 2l − 3, l − 1
[l][2l − 4][2l − 2]

[2][l − 2] l(l − 1)

E6 A5 1, 4, 5, 7, 8, 11
[8][9][12]
[3][4] 36

E7 D6 1, 5, 7, 9, 11, 13, 17
[12][14][18]
[4][6] 63

E8 E7 1, 7, 11, 13, 17, 19, 23, 29
[20][24][30]
[6][10] 120

F4 C3 1, 5, 7, 11
[8][12]
[4] 12

G2 A1 1, 5 [6] 3

The usual conventions are employed for the entries in the column markedX⊥θ , namely,
A−1 = A0 = B0 = ∅, C1 = B1 = A1, C2 = B2, D2 = A1+ A1.

Remark In all cases,W(t)/W⊥θ(t) is of the form
[a][c][e]
[b][d] according to the

table above (since 1= [1]). Of course, one can always takee = h.
Here is a little numerological table for the typesD4, E6, E7, andE8.

2 A word about the labeling: the numbersm1, . . . , ml are not naturally associated to the
nodes of the Coxeter-Dynkin graph.
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X r := h

6
= l + 2

10− l

[a][c][e]
[b][d] =

[4r][5r − 1][6r]
[r + 1][2r] |group| = (r + 1)2r

D4 1
[4][4][6]
[2][2] |Dih2 | = 2 · 2

E6 2
[8][9][12]
[3][4] |Alt4 | = 3 · 4

E7 3
[12][14][18]
[4][6] |Sym4 | = 4 · 6

E8 5
[20][24][30]
[6][10] |Alt5 | = 6 · 10

One could extend the table above to the typesA1 andA2 but without the
entries for the last column. The six typesA1, A2, D4, E6, E7, andE8 are
precisely the simply laced ones in Deligne’s family (see [Del] and follow-
up papers by various authors). Further numerology pertaining to the types
E6, E7, E8 can be found in the paper of Arnold [Arn] about trinities.

For w ∈ W one definesΦw := Φ+ ∩ wΦ−, the set of positive roots
which are of the formwϕ for a negative rootϕ. The following fundamental
lemma is well-known.

Lemma 13 For a Weyl group element w ∈ W with reduced decomposition
w = si1 . . . sik (i j ∈ {1, . . . , l}) the set Φw consists of the k distinct positive
roots

αi1, si1(αi2), si1si2(αi3), . . . , si1 . . . sik−1(αik ).

Proof ClearlyΦ1 = ∅. One shows by induction thatΦsiw = siΦw ∪ {αi}
if �(siw) = �(w) + 1 (αi /∈ Φw) using the fact thatsi (for i = 1, . . . , l)
permutes all positive roots other thanαi andsi(−αi) = αi . ��

Let s(w) := 〈Φw〉, the sum of the elements inΦw. Now the function
s : W → h∗R satisfies the 1-cocycle conditions(ww′) = ws(w′)+ s(w), and
in fact, s(w) = ρ −wρ.

Lemma 14 �(siw) = �(w)± 1 ⇐⇒ w−1αi ∈ Φ±,
�(wsi) = �(w)± 1 ⇐⇒ wαi ∈ Φ±.

Theorem 15 Let ϕ ∈ Φ
long
+ be a positive long root. Let w ∈ W be the Weyl

group element such that wϕ = θ and with �(w) = L(ϕ) as in Proposition 12.
Then for all ψ ∈ Φw, θ − ψ is a positive root and

a
ϕ,min := gθ ⊕

⊕
ψ∈Φw

gθ−ψ

is an (obviously nonzero) abelian ideal in b. The ρ-point of the alcove
corresponding to aϕ,min is s0wρ.
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Proof For the proof we use Kostant’s theorem (Theorem 2). First let us
write w as a reduced decompositionw = siL(ϕ)

. . . si1 as in the proof of
Proposition 12. Each rootψ ∈ Φw is of the formψ = siL(ϕ)

. . . sik+1(αik ) and
we compute

2(ψ|θ)
(θ|θ) = 2

(θ|θ)
(
siL(ϕ)

. . . sik+1(αik )
∣∣ siL(ϕ)

. . . si1ϕ
)

= 2

(θ|θ)
(
αik

∣∣ sik . . . si1ϕ
) = 2

(θ|θ)
(−αik

∣∣ sik−1 . . . si1ϕ
)

= −〈
αik , (sik−1 . . . si1ϕ)∨

〉
= L(sik−1 . . . si1ϕ)− L(sik . . . si1ϕ) = 1.

Hence we havesθ(ψ) = ψ − θ andθ − ψ is a positive root. Now we put
� := �(w) = L(ϕ) for abbreviation, so that|Φw| = �. We check that the
� + 1 element setΨ := {θ} ∪ {θ − ψ|ψ ∈ Φw} ⊆ Φ+ satisfies Kostant’s
criterion (Theorem 2) for an abelian ideal. Using

∑
ψ∈Φw

ψ = ρ−wρ we have

ρ + 〈Ψ 〉 = ρ + θ +
∑

ψ∈Φw

(θ − ψ) = wρ + (�+ 1)θ = wρ + (
L(ϕ)+ 1

)
θ

= wρ + (
g − 〈ρ, ϕ∨〉)θ = wρ + (

g− 〈wρ, (wϕ)∨〉)θ
and becausewϕ = θ we get

= wρ − 〈wρ, θ∨〉θ + gθ = s0wρ.

This proves the assertion about theρ-point. Now we compute

‖s0wρ‖2− ‖ρ‖2 = ∥∥(�+ 1)θ +wρ
∥∥2− ‖ρ‖2

= (�+ 1)2‖θ‖2+ (�+ 1) 2(θ|wρ)

and with� ‖θ‖2 = 2(θ − ϕ|ρ) andw−1θ = ϕ the calculation continues

= (�+ 1)
(
2(θ − ϕ|ρ)+ ‖θ‖2 + 2(ϕ|ρ)

)
= (�+ 1)

(‖ρ + θ‖2− ‖ρ‖2) = �+ 1.

This completes the proof of the theorem. ��
Now it is appropriate to digress and review Peterson’s description of the

abelian ideals inb, to see how this fits with Theorem 15, and to observe
why this gives an equality of the form‖ρ + 〈Ψ 〉‖2 − ‖ρ‖2 = |Ψ |.

First we have to extend the setsΦw to the affine context. Let us briefly
recall how one does this. The affine root systemΦ̂ = Φ + Zδ was already
mentioned before. (The so-called imaginary roots±nδ for n ∈ Z>0 are fixed
by Ŵ and play no role here, so we disregard them.) Let

Φ̂+ := Φ+ ∪
{
ϕ + nδ

∣∣ ϕ ∈ Φ, n ∈ Z>0
}
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andΦ̂− := −Φ̂+. We further define for̂w ∈ Ŵ the set̂Φŵ := Φ̂+ ∩ ŵΦ̂−
of cardinality�(ŵ). The sum of the elements of̂Φŵ is ρ̂ − ŵ ρ̂ where now
ρ̂ = ρ + 1

2Λ0.
One knows from Peterson’s work thatΨ = Φ(a) for an abelian ideal

a � b if and only if the set{δ − ϕ|ϕ ∈ Ψ } is of the formΦ̂ŵ. (For an
explanation of this fact see equation (6) in the proof of Proposition 5.) The
abelian ideal that we constructed in Theorem 15 belongs to

Φ̂sδ−θw = sδ−θΦ̂w ∪ {δ− θ} = sδ−θΦw ∪ {δ− θ}
= {

δ− (θ − ψ)
∣∣ ψ ∈ Φw

} ∪ {δ− θ}.
Now if a is an abelian ideal inb with Ψ := Φ(a) = {ϕ1, . . . , ϕd},

d = dima, then we havêΦŵ = {δ−ϕ1, . . . , δ−ϕd} for somêw ∈ Ŵ . From

dδ− 〈Ψ 〉 = (δ− ϕ1)+ · · · + (δ− ϕd) = ρ̂ − ŵ ρ̂

and sincêw is orthogonal,̂w ∈ O
(
h∗R ⊕ Rδ⊕ RΛ0, ( | )

)
, we get

0= ‖ŵ ρ̂‖2 − ‖̂ρ‖2 = ‖ρ + 〈Ψ 〉 − dδ+ 1
2Λ0‖2− ‖ρ + 1

2Λ0‖2

= ‖ρ + 〈Ψ 〉‖2 − d − ‖ρ‖2,

so that in fact
‖ρ + 〈Ψ 〉‖2 − ‖ρ‖2 = |Ψ |.

Lemma 16 If w ∈ W satisfies s0wρ ∈ 2A, then ϕ := w−1θ is a positive
long root and s0wρ is the ρ-point of the alcove corresponding to aϕ,min.

Proof First note thats0w0= s00= gθ is a vertex of the alcove withρ-point
s0wρ. The special vertexgθ is a vertex of|W | alcoves. Now we compute
which fraction of them lies in 2A. By elementary geometry this fraction
is the reciprocal of the number of alcoves that contain the point1

2gθ. To
compute the number of these alcoves, the standard procedure is to delete
from the Coxeter-Dynkin graph of the affine Weyl group̂W the nodes that
are adjacent to the node for the reflections0. What remains is the Coxeter-
Dynkin graph of the group gp(s0) ×W⊥θ of order 2|W⊥θ |. So the number
of alcoves that lie in 2A and havegθ as a vertex is |W |

2 |W⊥θ | = |Φ
long
+ |.

Thus the alcoves in 2A of the forms0wA with w ∈ W are exactly the
alcoves that are associated with the abelian ideals that were constructed in
Theorem 15. In particular,ϕ := w−1θ is a positive long root ands0wρ is
theρ-point of the alcove corresponding toaϕ,min. ��
Theorem 17 The mapping

Φ
long
+ −→ {

a
�⊥θ

∣∣ 0 �= a� b abelian ideal
}

ϕ �−→ aϕ,min

is a bijection.
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Proof By Theorem 15 the mapping is well-defined and injective. Suppose
that a = a�⊥θ is a nonzero abelian ideal that is not of the formaϕ,min. Let
a1 ⊆ · · · ⊆ ad = a be a flag of abelian ideals with dimak = k. Clearly
ak = a�⊥θ

k becausea = a�⊥θ . By hypothesis we can choose an indexk such
thatak = aϕ,min but ak+1 is not of the formaψ,min. By taking into account
Lemma 16 we can write

ρ + 〈Φ(ak)〉 = s0wρ,

ρ + 〈Φ(ak+1)〉 = s0ws0ρ,

wherew ∈ W , and ϕ = w−1θ is a positive long root. The difference
s0ws0ρ − s0wρ would have to be a positive root such that(

s0ws0ρ − s0wρ
∣∣ θ

)
> 0.

But on the other hand we haves0ws0ρ− s0wρ = sθw(s0ρ−ρ) = sθwθ and
hence (

s0ws0ρ − s0wρ
∣∣ θ

) = (sθwθ|θ) = −(wθ|θ) = −(θ|ϕ) � 0

becauseϕ is a positive root andθ lies in the dominant chamber. This
contradiction completes the proof of the theorem. ��
Remark As the notationaϕ,min suggests there will also be abelian ideals
aϕ,max. In fact, each nonzero abelian ideala satisfiesaϕ,min ⊆ a ⊆ aϕ,max

for some positive long rootϕ which is characterized bya�⊥θ = aϕ,min. If ϕ
is not perpendicular to the highest rootθ, thenaϕ,max= aϕ,min.

Let us now look closer at the case whereϕ ⊥ θ. Before giving the
general picture, we state a preliminary result.

Proposition 18 Let ϕ ∈ Φ
long
+ and w ∈ W be as in Theorem 15 and suppose

in addition that ϕ is perpendicular to the highest root θ. Then

a
ϕ,min+ := aϕ,min⊕ gwθ

is an abelian ideal in b.

Proof We first show thatwθ is a positive root perpendicular toθ. In fact,
(wθ|θ) = (wθ|wϕ) = (θ|ϕ) = 0. Hencewθ is a long root spanned by the
simple rootsαi that are perpendicular toθ. (To make this assertion clear, let

us writewθ =
l∑

i=1
ai αi. Here the coefficientsai are either all nonnegative

or all nonpositive. Now we take the inner product withθ and use(αi|θ) � 0
becauseθ lies in the dominant chamber andαi is a positive root.) For each
such rootαi ⊥ θ we havesiwϕ = siθ = θ. Hence�(siw) � �(w) by the
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minimality of �(w). Lemma 14 shows thatw−1αi ∈ Φ+. Sinceθ lies in
the dominant chamber, we get 0� (w−1αi|θ) = (αi|wθ) for all simple
rootsαi ⊥ θ. This means thatwθ lies in the dominant chamber for the root
subsystemΦ⊥θ (spanned by the simple rootsαi ⊥ θ). The rootwθ appears
to be the highest root of theϕ-component ofΦ⊥θ .

Putting again� := �(w) we define the setΨ of cardinality � + 2 as
Ψ := {θ} ∪ {θ −ψ|ψ ∈ Φw} ∪ {wθ} ⊆ Φ+. (wθ is of course different from
the elementsθ−ψ because onlywθ is perpendicular toθ.) Now we employ
Kostant’s criterion (Theorem 2) as in the proof of Theorem 15. Looking
back at the proof there we see that we must show the equality

‖(�+ 1)θ +wρ +wθ‖2− ‖(�+ 1)θ +wρ‖2 = 1.

It follows from θ ⊥ wθ and theW-invariance of the inner product together
with the identity‖ρ + θ‖2 − ‖ρ‖2 = 1. ��

More minimal coset representatives and Poincaré polynomials. Now we
define for each positive rootϕ ∈ Φ+ the polynomialPϕ(t) ∈ Z�0[t] by
setting

Pϕ(t) := Ŵ⊥ϕ(t)

W⊥ϕ(t)
. (8)

HereŴ⊥ϕ is the standard parabolic subgroup of the affine Weyl groupŴ
generated by those reflectionssi (i = 0, . . . , l) for which αi ⊥ ϕ (here
α0 ⊥ ϕ meansθ ⊥ ϕ). Note thatŴ⊥ϕ is a finite Coxeter group. Similarly,
W⊥ϕ is the standard parabolic subgroup of the finite Weyl groupW generated
by those simple reflectionssi (i = 1, . . . , l) for whichαi ⊥ ϕ. In particular,
Ŵ⊥ϕ = W⊥ϕ if ϕ �⊥ θ. The expressionŝW⊥ϕ(t) andW⊥ϕ(t) stand for the
Poincaŕe polynomials of the Coxeter groups in question, and the quotient
Ŵ⊥ϕ(t)
W⊥ϕ(t) is the Poincaŕe polynomial for the set of minimal coset representatives

in W⊥ϕ\Ŵ⊥ϕ.
Let ŵϕ◦ be the longest element of̂W⊥ϕ andwϕ◦ the longest element of

W⊥ϕ. The set of minimal coset representatives inW⊥ϕ\Ŵ⊥ϕ is the inter-
val

[
1, wϕ◦ ŵϕ◦

]
in the right weak Bruhat order—coming from the covering

relation ŵ ≺ siŵ :⇔ �(siŵ) = �(ŵ) + 1 — (note that(wϕ◦)2 = 1 and
also(ŵϕ◦)2 = 1). In particular, the longest element in

[
1, wϕ◦ ŵϕ◦

]
has length

�(wϕ◦ŵϕ◦) = �(ŵϕ◦)− �(wϕ◦).
In the following long table we show the polynomialsPα(t) for all simple

rootsα ∈ Π. The polynomialsPϕ(t) can be extracted from this piece of
information. This is clear for the simple types different fromAl because
then the affine node of the Coxeter-Dynkin graph is a leaf in a tree and
hencePϕ(t) = Pα(t) for an appropriate simple rootα ∈ Π. For typeAl we
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can reduce to the case of a simple root by looking atAk for appropriatek,
namely,PAl

αi+···+αi+ j
(t) = P

Al− j
αi (t).

Definition For a nonnegative integern let us recall the definition of the
polynomial

[n] := 1− tn

1− t
∈ Z�0[t].

Moreover, we define the factorials

[n]! :=
n∏

i=1

[i]

and their relatives

[2n]!! :=
n∏

i=1

[2i] and [2n + 1]!! :=
n∏

i=0

[2i + 1].

Of course,[0]! = [0]!! = 1.

The following table shows the polynomialsPαi (t) = Ŵ⊥αi (t)/W⊥αi (t)
and the minimal coset representatives forW⊥αi\Ŵ⊥αi (the latter for the
classical series in the rank 5 case). Above or beneath each node marked by
the simple reflectionsi we have depicted along with the polynomialPαi (t)
the Hasse graph of the poset ofW⊥αi\Ŵ⊥αi . To read a minimal coset rep-
resentative we have to start at the bottom node and read upwards along the
edges. E. g., the minimal coset representatives forW⊥α3\Ŵ⊥α3 for typeA5
are 1,s0, s0s1, s0s5, s0s1s5 = s0s5s1, s0s1s5s0 = s0s5s1s0.

Al

· · ·
α1 α2 αl−1 αl

Pαi (t) =
[l − 1]!

[i − 1]! [l − i]! (i = 1, . . . , l)

A5

1
s1

s0

s5

s4

[4]
s2

s0

s1

s5

s0

[3][4]
[2]
s3

s0

s1

s2

[4]
s4

1
s5
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Cl

<· · ·
α1 α2 αl−2 αl−1 αl

Pαi (t) =
[2i − 2]!!
[i − 1]! (i = 1, . . . , l)

C5

<

1
s1

s0

[2]
s2

s0

s1

s0

[4]
s3

s0

s1

s0

s2

s1

s0

[4][6]
[3]
s4

s0

s1

s0

s2
s1

s0

s3

s2

s1

s0

[6][8]
[3]
s5

Bl

>· · ·
α1 α2 αl−2 αl−1 αl

Pα1(t) = [2]
Pαi (t) =

[2i − 4]!!
[i − 2]! (i = 2, . . . , l)

B5

>

s0

[2]
s1

1
s2

s0

[2]
s3

s0

s2

s1

[4]
s4

s0

s2

s1

s3

s2

s0

[4][6]
[3]
s5
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Dl

· · ·
α1 α2 αl−3 αl−2

αl−1

αl

Pα1(t) = [2]
Pαi (t) =

[2i − 4]!!
[i − 2]! (i = 2, . . . , l − 1)

Pαl (t) = Pαl−1(t)

D5

s0

[2]
s1

1
s2

s0

[2]
s3

s0

s2

s1

[4]
s4

s5

s0

s2

s1

[4]

E6

s0

s1

s2

s4

s6

[6]
s5

s1

1

s0

s1

[3]
s3

s0

[2]
s2

s0

s1

[3]
s4

s0

s1

s2

s3

s5

[6]
s6
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E7

1
s1

s5

s0

s1

s2

[4]

s0

[2]
s2

s0

s1

[3]
s3

s0

s1

s2

[4]
s4

s0

s1

s2

s3

s5

[6]
s6

s0

s1

s2

s3

s4

s5

s3

s2

s1

s0

[6][10]
[5]
s7

E8

s0

s1

s2

s3

s4

s5

s7

[8]
s8

s7

s0

s1

s2

s3

s4

[6]

s0

s1

s2

s3

s4

[6]
s6

s0

s1

s2

s3

[5]
s5

s0

s1

s2

[4]
s4

s0

s1

[3]
s3

s0

[2]
s2

1
s1
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F4

>

1
s1

s0

[2]
s2

s0

s1

[3]
s3

s0

s1

s2

[4]
s4

G2

<

s0

[2]
s1

1
s2

Lemma 19 Let ŵ ∈ Ŵ⊥ϕ be a minimal coset representative for a coset in
W⊥ϕ\Ŵ⊥ϕ. Then ŵρ lies in the dominant chamber.

Proof We have�(siŵ) > �(ŵ) for all i = 1, . . . , l, namely, for thosei for
which αi ⊥ ϕ by the minimality ofŵ, and for the remainingi because
si /∈ Ŵ⊥ϕ. Hencêw is a minimal coset representative for a coset inW\Ŵ .
The assertion̂wρ ∈ C is now clear. (SinceC is a fundamental domain
for W , there is a uniquew ∈ W and a (minimal) gallery from the fundamental
alcoveA towŵA which stays inside the dominant chamberC and so neither
of the wallsH1, . . . , Hl is crossed. By the minimality of̂w we obtainw = 1,
i. e.,ŵA ⊆ C, or equivalently,̂wρ ∈ C.) ��

The next lemma generalizes in part (i) the orthogonalitywθ ⊥ θ in the
proof of Proposition 18, which corresponds tôw = s0 and requiresϕ ⊥ θ
in Lemma 20.

Lemma 20 Let ϕ ∈ Φ
long
+ . Let w ∈ W be such that wϕ = θ and let

ŵ ∈ Ŵ⊥ϕ.

(i) s0wŵρ − s0wρ is perpendicular to the highest root θ.
(ii) If s0wŵsiρ − s0wρ ⊥ θ, then si ∈ Ŵ⊥ϕ.

Proof We first note that̂w(λ + ϕ⊥) ⊆ λ + ϕ⊥ for eachλ ∈ h∗R by the
definition ofŴ⊥ϕ. To prove (i) we compute (recall thatsθ is the linear part
of s0)(

s0wŵρ − s0wρ
∣∣ θ

) = (
sθ(wŵρ −wρ)

∣∣ θ
)

= (
w(ŵρ − ρ)

∣∣ −θ
) = (

ŵρ − ρ︸ ︷︷ ︸
⊥ ϕ

∣∣ −ϕ
) = 0.
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To prove (ii) we write(
s0wŵsiρ − s0wρ

∣∣ θ
) = (

ŵsiρ − ρ︸ ︷︷ ︸
∈ siρ + ϕ⊥ − ρ
= −αi + ϕ⊥

∣∣ −ϕ
) = (αi|ϕ).

Hences0wŵsiρ − s0wρ ⊥ θ is actually equivalent tosi ∈ Ŵ⊥ϕ. ��
Proposition 21 Let ϕ ∈ Φ

long
+ be a positive long root and ŵ ∈ Ŵ⊥ϕ be the

minimal coset representative for a coset in W⊥ϕ\Ŵ⊥ϕ. Then ŵρ ∈ 2A.

Proof By the definition ofŴ⊥ϕ at least one of the simple reflectionss1, . . .

. . . , sl is not contained in the standard parabolic subgroupŴ⊥ϕ of Ŵ . Say

si /∈ Ŵ⊥ϕ. All other Coxeter generators of̂W fix the vertex
∨
	 i
ni

of the

fundamental alcove, and hence so does the groupŴ⊥ϕ. In particular, the

pointsρ,
∨
	 i
ni

, andŵρ all belong to the half space
{
λ ∈ h∗R

∣∣ (λ|θ) < 1
}
.

Moreover, by Lemma 19,̂wρ lies in the dominant chamber. This con-
cludes the proof. ��

Let us recall that for̂w ∈ Ŵ the implication

ŵρ ∈ 2A �⇒ ‖ŵρ‖2− ‖ρ‖2 = �(ŵ)

holds by Corollary 9. The converse implication is not true. However, the
next lemma states a partial converse.

Lemma 22 Let w̃ρ be the ρ-point of an alcove that lies outside the dominant
chamber C but is adjacent to an alcove of 2A. Then

‖w̃ρ‖2− ‖ρ‖2 = �(w̃)− 1.

Proof Say the alcove withρ-point w̃ρ lies in the chambersiC. This means
thatw̃ = siŵ with ŵρ ∈ 2A and�(w̃) = �(ŵ)+ 1. It follows that

‖w̃ρ‖2− ‖ρ‖2 = ‖ŵρ‖2− ‖ρ‖2 = �(ŵ) = �(w̃)− 1.
��

Here is the main theorem of this paper.

Theorem 23 Let ϕ ∈ Φ
long
+ be a positive long root and ŵ ∈ Ŵ⊥ϕ be the

minimal coset representative for a coset in W⊥ϕ\Ŵ⊥ϕ. To the pair (ϕ, ŵ)
we associate the ρ-point s0wŵρ where w ∈ W is the Weyl group element
such that wϕ = θ and with �(w) = L(ϕ) as in Proposition 12. Then
s0wŵρ ∈ 2A − A and hence s0wŵρ is the ρ-point of an alcove that
corresponds to a nonzero abelian ideal aϕ,ŵ � b. Moreover, each nonzero
abelian ideal occurs in this way.
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Hence we have the parametrization we looked for∐
ϕ∈Φ

long
+

W⊥ϕ\Ŵ⊥ϕ
1:1←→ {

a
∣∣ 0 �= a� b, a abelian

}
(9)

where the right coset W⊥ϕŵ in the component for ϕ on the left hand side
with ŵ ∈ Ŵ⊥ϕ its minimal coset representative corresponds to the abelian
ideal aϕ,ŵ of dimension L(ϕ)+ 1+ �(ŵ).

Remark The abelian idealsaϕ,min, aϕ,min+ if ϕ ⊥ θ, andaϕ,max that were
mentioned earlier have the following descriptions.

a
ϕ,min = aϕ,1

a
ϕ,min+ = aϕ,s0 if ϕ ⊥ θ

a
ϕ,max= aϕ,w

ϕ◦ ŵϕ◦ .

Proof By Lemma 20 we know thats0wŵρ ∈ s0wρ+ θ⊥. And Theorem 15
says thats0wρ is theρ-point of a nonzero abelian ideal. Hence we have
s0wρ ∈ 2A − A. It follows that s0wŵρ lies in the strip between the two
walls H0 =

{
λ ∈ h∗R

∣∣ (λ|θ) = 1
2

}
and 2H0 =

{
λ ∈ h∗R

∣∣ (λ|θ) = 1
}
.

Let ŵ = si1 . . . sim be a reduced decomposition ofŵ. Each initial sub-
word ŵk := si1 . . . sik (for 0� k � m) is again a minimal coset representa-
tive for a coset inW⊥ϕ\Ŵ⊥ϕ. In fact�(sisi1 . . . sim ) = m+1 for i = 1, . . . , l
implies �(sisi1 . . . sik ) = k + 1 for i = 1, . . . , l for eachk = 0, . . . , m.
Hence we compute for eachk = 0, . . . , m

‖s0wŵkρ‖2− ‖ρ‖2

= ∥∥s0wŵkρ − s0wρ
∥∥2+ 2

(
s0wŵkρ − s0wρ︸ ︷︷ ︸
⊥ θ (by Lemma 20)

∣∣s0wρ
)+ ‖s0wρ‖2− ‖ρ‖2︸ ︷︷ ︸

= �(s0w)

= ∥∥sθw(ŵkρ − ρ)
∥∥2+ 2

(
sθw(ŵkρ − ρ)︸ ︷︷ ︸

⊥ θ

∣∣ sθwρ + gθ
)+ �(s0w)

= ∥∥ŵkρ − ρ
∥∥2+ 2

(
ŵkρ − ρ

∣∣ ρ
)+ �(s0w) = ‖ŵkρ‖2− ‖ρ‖2︸ ︷︷ ︸

= �(ŵk)

+ �(s0w)

� �(s0wŵk). (10)

In the list s0wρ = s0wŵ0ρ, s0wŵ1ρ, . . . , s0wŵmρ = s0wŵρ the first
ρ-point belongs to 2A − A. We show that actually all of them belong to
2A − A. Suppose not, and lets0wŵkρ be the firstρ-point outside 2A − A.
We know thats0wŵkρ lies in the strip between the wallsH0 and 2H0.
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Hences0wŵkρ would lie outside the dominant chamber. By Lemma 22 we
would have‖s0wŵkρ‖2− ‖ρ‖2 = �(s0wŵk)− 1, which according to (10)
is absurd.

So far we have proved that the mapping(ϕ, ŵ) �→ aϕ,ŵ in (9) is well-
defined. It is injective because(aϕ,ŵ)�⊥θ = aϕ,min.

Finally, we must show that our construction is exhaustive. So leta be
a nonzero abelian ideal inb. Its subideala�⊥θ is of the forma�⊥θ = aϕ,min

by Theorem 17, and its alcove hass0wρ as itsρ-point wherew ∈ W with
�(w) = L(ϕ) for ϕ = w−1θ by Theorem 15. By Lemma 4 we can choose
a flag

a
�⊥θ = a0 ⊆ · · · ⊆ am = a

of abelian ideals with dimak = dima�⊥θ + k for k = 0, . . . , m. Theρ-point
of the alcove ofak can be written as

ρ + 〈Φ(ak)〉 = s0wsi1 . . . sik ρ

where si1, . . . , sim are simple reflections in̂W⊥ϕ by Lemma 20 and the
definition of the ideala�⊥θ . From Proposition 5 we get

�(s0wsi1 . . . sik ) = �(s0w)+ k

so that�(si1 . . . sik ) = k. Now we compute as above

‖s0wsi1 . . . sik ρ‖2− ‖ρ‖2 = ‖si1 . . . sik ρ‖2− ‖ρ‖2+ �(s0w).

The left hand side is�(s0wsi1 . . . sik ) by Proposition 5 and Corollary 9 so
that

‖si1 . . . sik ρ‖2− ‖ρ‖2 = k.

Again using Lemma 22 we conclude that

si1 . . . sik ρ ∈ 2A ⊆ C.

In particular,si1 . . . sim ρ ∈ C so thatsi1 . . . sim is the minimal coset repre-
sentative for the cosetWsi1 . . . sim ∈ W\Ŵ , and sincesi1, . . . , sim are simple
reflections inW⊥ϕ, we conclude thatsi1 . . . sim is the minimal coset repre-
sentative for the cosetW⊥ϕsi1 . . . sim ∈ W⊥ϕ\Ŵ⊥ϕ. Hence we have shown
thata = aϕ,si1 ...sim . ��

Another parametrization. In the previous theorem we have parametrized
the nonzero abelian ideals inb asaϕ,ŵ. Theρ-point ŵρ belongs to 2A by
Proposition 21. So either̂w = 1 or ŵρ is again theρ-point of a nonzero
abelian idealaϕ

′,ŵ′ . By iteration this procedure yields a list of positive long
rootsϕ1, . . . , ϕr corresponding to the abelian idealaϕ,ŵ = a(ϕ1,...,ϕr ). Now
we can put the zero ideal back into the picture and write 0= a( ), the abelian
ideal for the empty sequence.
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In the classicalAl case an abelian ideal corresponds to a Young diagram.
The associated positive rootsϕ1, . . . , ϕr correspond to the decomposition of
the Young diagram into hooks. Let us make that more concrete by looking
at an example. TakeA11 and examine the abelian ideal corresponding to the
following Young diagram.

s0 s11 s10 s9 s8

s1 s0 s11 s10

s2 s1 s0 s11

s3 s2 s1 s0

s4 s3 s2 s1

s5 s4 s3

s6 s5

The filled diagram on the right yields the following affine Weyl group
element when read hook-wise.

ŵ = s0 s1 s2 s3 s4 s5 s6 s11 s10 s9 s8︸ ︷︷ ︸
=: w1

s0 s1 s2 s3 s4 s5 s11 s10︸ ︷︷ ︸
=: w2

s0 s1 s2 s3 s11︸ ︷︷ ︸
=: w3

s0 s1︸︷︷︸
=: w4

The abelian ideal withρ-point ŵρ is a(ϕ1,...,ϕ4), where

ϕ1 = w−1
1 θ = α7,

ϕ2 = w−1
2 θ = α6+ · · · + α9,

ϕ3 = w−1
3 θ = α4+ · · · + α10,

ϕ4 = w−1
4 θ = α2+ · · · + α11.

Our next theorem is a corollary of Theorem 23 and Corollary 8. The two
sets on the left and the right hand sides in (9) have the same cardinality.

Theorem 24 (First Sum Formula) The following formula holds.

∑
ϕ∈Φ

long
+

|Ŵ⊥ϕ|
|W⊥ϕ| = 2l − 1

Proof As mentioned, the First Sum Formula is already proved. Nevertheless
we shall give an alternative (case by case) proof. This is then an alternative
for the exhaustiveness part in Theorem 23 and also for Theorem 17.

Let us use the abbreviationPϕ(1) = |Ŵ⊥ϕ|
|W⊥ϕ| in accordance with (8). Let

S := ∑
ϕ∈Φ

long
+

Pϕ(1).
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Al Using Pαi+···+αi+ j (1) = (l− j−1)!
(i−1)! (l− j−i)! (i = 1, . . . , l, j = 0, . . . , l − i)

we get

S =
l∑

i=1

l−i∑
j=0

Pαi+···+αi+ j (1) =
l∑

i=1

l−i∑
j=0

(l− j−1)!
(i−1)! (l− j−i)! = 2l − 1.

For the other simple types the affine Coxeter-Dynkin graph has a tree

as its underlying simple graph. Each rootϕ is of the formϕ =
l∑

i=1
ai αi and

has support suppϕ := {
αi

∣∣ ai �= 0
}
. Let pr(ϕ) ∈ suppϕ be the simple

root which is nearest toα0 when considered as nodes in the affine Coxeter-
Dynkin tree. It is clear thatPϕ(t) = Ppr(ϕ)(t). For i = 1, . . . , l let ri be
the number of positive long rootsϕ for which pr(ϕ) = αi . The sumS can

now be rewritten asS =
l∑

i=1
ri Pαi (1). The numbersri can be expressed via

the numbersν(X) = the number of positive long roots of a root system of
typeX (for ν(X) see the table on page 191).

Cl ri = 1 (i = 1, . . . , l)

S =
l∑

i=1
2i−1 = 2l − 1

Bl r1 = ν(A1) = 1
r2 = ν(Bl)− ν(Bl−2)− ν(A1) = 4l − 7
ri = ν(Bl−i+1)− ν(Bl−i) = 2l − 2i (i = 3, . . . , l − 2)
rl−1 = ν(B2) = 2 (for l � 4)
rl = 0

S = 1 · 2+ (4l − 7) · 1+
l−1∑
i=3

(2l − 2i) · 2i−2 + 0 · 2l−2 = 2l − 1

Dl r1 = ν(A1) = 1
r2 = ν(Dl)− ν(Dl−2)− ν(A1) = 4l − 7
ri = ν(Dl−i+1)− ν(Dl−i) = 2l − 2i (i = 3, . . . , l − 3)
rl−2 = ν(A3)− 2ν(A1) = 4 (for l � 5)
rl−1 = rl = ν(A1) = 1

S = 1 · 2+ (4l − 7) · 1+
l−2∑
i=3

(2l − 2i) · 2i−2 + 1 · 2l−3 + 1 · 2l−3

= 2l − 1

For the exceptional types we write the numbersri directly near the
corresponding node in the Coxeter-Dynkin graph. It is clear how to compute
them, e. g., forE6, r1 = ν(E6)− ν(A5), r2 = ν(A5)− 2ν(A2), and so on.



Abelian ideals in a Borel subalgebra of a complex simple Lie algebra 207

E6 1

21

2 9 2 1

S = 21 · 1+ 9 · 2+ 2 · 3+ 2 · 3+ 1 · 6+ 1 · 6= 26− 1

E7 33

1

15 8 3 2 1

S = 33 · 1+ 15 · 2+ 8 · 3+ 3 · 4+ 1 · 4+ 2 · 6+ 1 · 12= 27− 1

E8 1

1

2 6 10 16 27 57

S = 57 · 1+ 27 · 2+ 16 · 3+ 10 · 4+ 6 · 5+ 2 · 6+ 1 · 6+ 1 · 8
= 28− 1

F4
>

9 3 0 0

S = 9 · 1+ 3 · 2+ 0 · 3+ 0 · 4= 24 − 1

G2
<

0 3

S = 3 · 1+ 0 · 2= 22− 1 ��

4. Maximal abelian ideals

Among the maximal abelian ideals are those whose dimension is maximal.
We can express these dimensions in a uniform way asg − 1+ N ′ − N ′′
whereg is the dual Coxeter number ofg and N ′, N ′′ are the numbers of
positive roots of certain root subsystems of the root system ofg. In fact, for
a long simple rootα we have

dimaα,max= dimaα,wα◦ ŵα◦

= L(α)+ 1+ �
(
wα
◦ŵ

α
◦
) = g− 1+ �

(
ŵα
◦
)− �

(
wα
◦
)
.

So we have our next corollary which gives a clear explanation of these
maximal dimensions that hitherto appeared somewhat mysterious.
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Corollary 25 The maximal dimension of an abelian ideal in b can be
expressed as g − 1+ N̂⊥α − N⊥α where α ∈ Π long is a long simple root
such that the difference N̂⊥α − N⊥α is maximal. Here N̂⊥α = �(ŵα◦) is the
length of the longest element ŵα◦ ∈ Ŵ⊥α, or, equivalently, the number of
positive roots of a root system of type X̂⊥α. Analogously, N⊥α = �(wα◦) for
wα◦ ∈ W⊥α its longest element.

The maximal dimension of an abelian ideal inb coincides with the
maximal dimension of a commutative subalgebra ofg (as first calculated by
A. Malcev [Mal] case by case). Let us briefly state the algebraic reason why
these dimensions are the same. For ak-dimensional ideala�b consider the
1-dimensional subspace

∧k
a ⊆ ∧k

g. Sincea is an ideal, the line
∧k
a is

the highest weight space of a simpleg-moduleLa ⊆ ∧k
g. One can show

that
Ak :=

⊕
a

La =
∑
c

∧k
c

wherea runs through thek-dimensional abelian ideals inbandc is taken over
thek-dimensional commutative subalgebras ofg. The maximal dimension
is max

{
k
∣∣ Ak �= 0

}
. For the details see [Ko1].

Remark In the table on the next page, in some cases there are several
possibilities for the long simple rootα that yields an abelian ideal of maximal
dimension. By inspection we see that the number of abelian ideals inb of
maximal dimension is

3 for typeD4,
2 for typesAl (l even),Dl (l > 4), andE6, and
1 for the other types.

Remark Instead of takinĝX⊥α andX⊥α one could already delete the common
components (nonvoid for the typesB3, Dl, andF4).

Abelian ideals of maximal dimension. The fourth column in the table shows
the Coxeter-Dynkin graph CDX of type X and the affine Coxeter-Dynkin
graph CD̂X with the node corresponding toα0 encircled.
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X gX − 1 NX CDX CD̂X α X̂⊥α X⊥α max dim

A1 1 1 ∞
α

∅ ∅ 1

A2 2 3
α

∅ ∅ 2

Al
l�3
l odd

l
l(l + 1)

2

· · · · · ·α

Al−2 A l−3
2
+ A l−3

2

(l + 1)2

4

Al
l�4
l even

l
l(l + 1)

2

· · · · · ·α

Al−2 A l−2
2
+ A l−4

2

l2 + 2l

4

Cl
l�2

l l2 <> · · · α
Cl−1 Al−2

l2+ l

2

B3 4 9
α

> A1+ A1 A1 5

Bl
l�4

2l − 2 l2 >· · · α
Dl−2 Al−3

l2− l + 2

2

Dl
l�4

2l − 3 l(l − 1) · · ·
α

Dl−2+ A1 Al−3+ A1
l2− l

2

E6 11 36

α

A5 A4 16

E7 17 63
α

D6 D5 27

E8 29 120
α

A7 A6 36

F4 8 24 >
α

A1+ A1 A1 9

G2 3 6 <
α

∅ ∅ 3

The usual conventions apply, namely,A0 = ∅, C1 = A1, B2 = C2, D2 = A1+ A1.

Remark As already mentioned the numbers in the rightmost column of
the table above were first computed case by case by A. Malcev [Mal].
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In the paper [Boe] B. Boe computed, again case by case, the maximal
length�(ŵ) of an affine Weyl group element̂w such that̂wA ⊆ (k + 1)A;
see [Boe, Table 1] but with the typesCl andBl interchanged because there
the highestshort root is used to define the tessellation by alcoves. Neither
Boe’s paper nor its review paper [Sri] mentions the connexion with Malcev’s
result.

We are now interested in the maximal abelian ideals inb. It has been
observed in [PR] that the number of maximal abelian ideals in a fixed Borel
subalgebra ofg equals the number of long simple roots. A canonical one-
to-one correspondence was exhibited between the two sets. However, the
proof was based on a case by case consideration and was therefore rather
unsatisfactory. Here we will give a geometric approach which makes the
whole picture very transparent.

We know by Proposition 5 that each abelian ideala � b corresponds
to an alcovêwA ⊆ 2A. If no facet ofŵA lies in the wall 2H0, then by
convexity a minimal gallery betweenA andŵA can be extended beyond
ŵA but still inside 2A. Hence each maximal abelian ideal has an alcove with
one facet lying in the wall 2H0. It is convenient to have some terminology
which describes this geometric situation.

Definition An upper alcove ŵA is an alcove in 2A such that one facet of
ŵA lies in the wall 2H0. For an upper alcovêwA the lower vertex is the
vertex that sticks out, i. e., does not lie in the wall 2H0.

α2

α1

↖vertex of type 1

vertex of
type 2↘

ρ

s0ρ

s0s1ρ

s0s2ρ

0

A2

α2

α1

ρ s0ρ

s0s1ρ

s0s1s0ρ
vertex of
type 2↘

0

C2

Let us look at some examples. For typeA2 there are two upper alcoves,
namely, those withρ-pointss0s2ρ ands0s1ρ. Both belong to maximal abelian
ideals, namely,aα1,1 = a(α1) andaα2,1 = a(α2). For the former alcove, the
lower vertex has type 1 and for the latter type 2. For typeC2 there are again
two upper alcoves, withρ-points s0s1ρ (ideal aα2,1 = a(α2)) and s0s1s0ρ
(idealaα2,s0 = a(α2,θ)), both with the same lower vertex of type 2. Only the
latter belongs to the maximal abelian ideal. For typeG2 (see the picture on
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page 184) there is only one upper alcove, withρ-point s0s2s1ρ and lower
vertex of type 2.

From the previous results we already know that the lower vertices are in
one-to-one correspondence with the long simple roots.

Another way for proving that each lower vertex necessarily has the type
of a long simple root can be deduced from the following proposition which
we also use for our Second Sum Formula (Theorem 27).

Proposition 26 voll−1(F0) : · · · : voll−1(Fl) = ‖α0‖ n0 : · · · : ‖αl‖ nl.

Proof Recall that the vertices of the fundamental alcoveA with facets

F0, . . . , Fl are 0,
∨
	1
n1

, . . . ,
∨
	 l
nl

. We compute the volume of an alcove in two
different ways.

The volume of the pyramidA over F0 with apex 0 is1
l times voll−1(F0)

times the distance of the apex 0 from the wallH0 supporting the facetF0.
This distance is 1

2‖θ‖ because θ

2‖θ‖2 = 1
2gθ ∈ H0 is the orthogonal projection

of the apex 0 toH0. On the other hand, the volume ofA is 1
l! times the

volume D =
∣∣∣ ∨	1

n1
∧ · · · ∧ ∨

	 l
nl

∣∣∣ of the parallelepiped spanned by the vectors
∨
	 i
ni

(i = 1, . . . , l). Hence

voll−1(F0) = 2‖θ‖ D

(l − 1)! = 2‖α0‖ n0
D

(l − 1)! . (11)

Now we compute the(l− 1)-dimensional volume of an(l− 1)-simplex
Fi (i = 1, . . . , l) as thel-dimensional volume of the prismFi × I whereI
is a unit interval perpendicular toFi. Hence

voll−1(Fi) = 1

(l − 1)!
∣∣∣∣ ∨	1

n1
∧ · · · ∧

∨
	 i−1

ni−1
∧ αi

‖αi‖ ∧
∨
	 i+1

ni+1
∧ · · · ∧

∨
	 l

nl

∣∣∣∣
= 2‖αi‖ ni

D

(l − 1)! (12)

becauseαi = 2
l∑

k=1

(
αi

∣∣ ∨	 k
)
αk = 2

l∑
k=1

(
αi

∣∣ αk
) ∨
	 k.

The proof follows from (11) and (12). ��

Remark The two formulae

voll(A) = 1

l
· voll−1(F0) · 1

2‖θ‖
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and

voll(A) =
l∑

i=0

voll(pyramid with baseFi and apexρ)

= 1

l
·

l∑
i=0

dist(ρ, Fi) · voll−1(Fi)

= 1

l
·

l∑
i=0

1

2
‖αi‖ · ni ‖αi‖

n0 ‖α0‖ · voll−1(F0)

= 1

l
· 1

2‖θ‖ · voll−1(F0) ·
l∑

i=0

ni ‖αi‖2

show that
l∑

i=0
ni ‖αi‖2 = 1.

The previous proposition makes clear that the lower vertex of an upper
alcove cannot have the type of a short simple root for commensurability
reasons. (Here the convention is that a root is long and not short if the root
system is simply laced.) We next observe that no lower vertex can have
type 0. For volume reasons such a vertex would have to lie inF0 which is
absurd.

Theorem 27 (Second Sum Formula) The following sum formula holds.∑
αi∈Π long

ni
|Ŵ⊥αi |
|W⊥αi |

=
∑

αi∈Π long

ni Pαi (1) = 2l−1.

Proof We look at voll−1(2F0) and compute the volume in two ways. First, of
course, voll−1(2F0) = 2l−1 voll−1(F0). Second, consider the tessellation of
2F0 induced by the tessellation ofh∗R by the alcoves. Namely, voll−1(Fi) =
ni · voll−1(F0) and for eachαi ∈ Π long there arePαi (1) simplices of typei
in the tessellation of 2F0. ��

5. Symmetries of the Hasse graphs

In this section we look at the Hasse graph of the poset of abelian ideals in
b and determine its group of symmetries. A natural geometric realization
of this Hasse graph lives inh∗R. The nodes are theρ-points of the alcoves
contained in 2A. Two ρ-points are connected if and only if their alcoves
are adjacent. Surely, the geometric symmetry group of this 1-dimensional
complex is a subgroup of the abstract symmetry group of the Hasse graph.
In fact, it turns out that the two symmetry groups coincide unlessg has type
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C3 or G2. In the former case the abstract Hasse graph has the following
shape with symmetry groupZ/2Z× Z/2Z.

In the natural geometric realization the cycle of length four is actually
not a square but a rectangle with side ratio

√
2 : 1. Thus the geometric

symmetry group collapses toZ/2Z. In the case ofG2 the two groups are
Z/2Z (see page 184) and 1.

Loosely speaking, the geometric symmetry group is the symmetry group
of 2A, hence isomorphic to the symmetry group of the affine Coxeter-
Dynkin graph. Going through the classification one sees that the abstract
symmetry group is the same as the geometric one, except for the two cases
mentioned above.

In the next few pages we show the Hasse graphs of the posets of abelian
ideals inb for the five simple types of rank 4. Each node of the Hasse graph
consists of a diagram of a shape of which an enlarged version is drawn
before the Hasse graph. The boxes of the enlarged version are filled with
the nonforbidden3 positive roots. Each node in the Hasse graph corresponds
to the abelian ideal

⊕
ϕ

gϕ whereϕ runs over the positive roots marked by
a dot.

The arrows in the Hasse graphs have the following meaning. Each node
which is not the source of an arrow corresponds to an ideal of the form
aϕ,min for someϕ ∈ Φ

long
+ . For ϕ a long simple root, we have labeled the

node belonging toaϕ,min. The passage from 0�= a to a�⊥θ corresponds to
following the arrows till one arrives at a sink. Finally, an arrow points from
the empty diagram (a = 0) to the diagram filled with one dot (a = gθ ).
The numbers along the edges show the types of the facets between adjacent
alcoves. Disregard the arrows for the automorphism groups.

3 A forbidden positive rootϕ is such thatθ − 2ϕ is a sum of positive roots. Then the root
spacegϕ cannot belong to an abelian ideal inb.



214 R. Suter

Al

· · ·
α1 α2 αl−1 αl

1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0

0 1 1 1 0 1 1 0 0 1 0 0

0 0 1 1 0 0 1 0

0 0 0 1

• • •• • • • •• •• •

• • •• •
��4

• •• ••

��1

α1
• • • •

α2
• • ••

��
0 ���� • •• •

3

BBBB
2 ����

α3
••••

��0

BBBB

α4
••••

• • •2

LLLLLLLLL
1

• ••
3

PPPPPPPPPPPP
��0

2
nnnnnnnnnnnn •••

4
3

rrrrrrrrr

• •3

BBBB
1 ���� ••

4

BBBB
2 ����

•4

BBBB
1 ����

OO
0

Aut
(
Hasse(A1)

) ∼= Z/2Z
Aut

(
Hasse(Al)

) ∼= Dihl+1 (l � 2)
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Cl

<· · ·
α1 α2 αl−2 αl−1 αl

<
2 2 2 1

<
1 2 2 1

<
1 1 2 1

<
1 1 1 1

<
0 2 2 1

<
0 1 2 1

<
0 1 1 1

<
0 0 2 1

<
0 0 1 1

<
0 0 0 1

• • • •• • •• ••

• • • •• • •• •

��0

• • • •• • ••

��1

• • ••• ••
��

0 vvvvvv • • • •• ••
��2

HHHHHH

• • ••• •
��2

uu

0
kkkkkkkkkkkkkkk • • •• ••

3

• • •••
��1

• • •• •
3

SSSSSSSSSSSSSSS
��0

α4
• • ••

��0

• • ••
3

SSSSSSSSSSSSSSS
��1

• • •
3

uu

0
kkkkkkkkkkkkkkk • ••

2

• •2

HHHHHH ��
0 vvvvvv

•
1

OO
0

Aut
(
Hasse(C2)

) ∼= Z/2Z
Aut

(
Hasse(C3)

) ∼= Z/2Z× Z/2Z
Aut

(
Hasse(Cl)

) ∼= Z/2Z (l � 4)
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Bl

>· · ·
α1 α2 αl−2 αl−1 αl

>
1 2 2 2

>
1 1 2 2

>
1 1 1 2

>
1 1 1 1

>
1 1 1 0

>
1 1 0 0

>
1 0 0 0

>
0 1 2 2

>
0 1 1 2

>
0 0 1 2

• • • • • • • • • • •• ••

α1 • • • • • •
��

0

α2 • • • • •• α3 •• • •• •
��

0
������

• • •• ••

4

CCCCCC

• • • • •
2

CCCCCC

1
������

• • • ••
3

CCCCCC

2
������

• • •• •
4

CCCCCC ��
0

������

• • • •
3

CCCCCC

1
������

•• ••
4

CCCCCC

2
������

• • •

4
1

mmmmmmmmmmmm •••

3

• •
3

CCCCCC

1
������

•

2

OO
0

Aut
(
Hasse(Bl)

) ∼= Z/2Z (l � 2)
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Dl

· · ·
α1 α2 αl−3 αl−2

αl−1

αl

1 2 1

1

1 1 1

1

1 1 0

1

1 1 1

0

1 1 0

0

1 0 0

0

0 1 1

1

0 1 0

1

0 1 1

0

0 0 0

1

0 0 1

0

• • • • • • • • •• ••
• • •• ••

α1 • •• • •
��

0
������

α2 • • • •• α4 • • •• •
��0

������

α3 •• •• •
��0

������

• • • •
2

������

1
������

• • ••
4

������

2 ������
• • ••

3

UUUUUUUUU

UUUUUUUUU 2
������

• • •

4

1 ooooooooooo • • •3

OOOOO

OOOOO 1

ooooo

ooooo

• ••
3

OOOOOOOOOOO
4

• •
3

OOOOOOOOOOO
4

1
ooooooooooo

•

2

OO
0

Aut
(
Hasse(D4)

) ∼= Sym4

Aut
(
Hasse(Dl)

) ∼= Dih4 (l � 5)
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F4

>
α1 α2 α3 α4

>
2 3 4 2

>
1 3 4 2

>
1 2 4 2

>
1 2 2 2

>
1 1 2 2

>
0 1 2 2

>
1 2 3 2

>
1 2 3 1

>
1 2 2 1

>
1 2 2 0

• • • • • •• • •

• •• • • •••

3
������

α2 • • • • •• • •
��0

������

α1 • • • •• • ••

• •• • • ••

4

• • • • •• •
��0

OOOOOOOOOOO
3

• • • •• • •
1

OOOOOOOOOOO
2

• • • • ••
��0

������

4
������

• • • •• •
1

������

3
������

• • • ••

1
4

ooooooooooo • • •• •

2

• • ••
2

������

4
������

• • •

3

• •

2

•

1

OO
0

Aut
(
Hasse(F4)

) = 1
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Finally, let us display the Hasse graph of the poset of abelian ideals inb for
typeE6. I chose to draw it in a way in which the symmetry becomes manifest.
The nodes marked byϕ = θ, α1, . . . , α6 carry the abelian idealsaϕ,min. The
encircled nodes mark the maximal abelian idealsaαi ,max (i = 1, . . . , 6).

0

1

2

3

5

3

1

0

1

2 3

5
4

6

4
3

5

3

2

4
6

1

0

1

4

6
4

2

2

2

2

θ

α1

α2

α3

α4

α5

α6

Aut
(
Hasse(E6)

) ∼= Sym3

5

1

3 2 4 6

0
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