Minmax Methods in the Calculus of Variations of Curves and Surfaces

Tristan Rivière^{*}

I Lecture 2

Deformations in Infinite Dimensional Manifolds.

The goal of this section is to present the main lines of *Palais deformation* theory exposed in [3].

We shall start by recalling some notions from **infinite dimensional Banach Manifolds** theory that will be useful to us. For a more systematic study we suggest the reader to consult [1].

In this lecture as in the previous one N^n denotes a closed C^{∞} submanifold of the Euclidian Space \mathbb{R}^m .

We recall that a topological space is **Hausdorff** if every pair of points can be included in two disjoint open sets containing each exactly one of the two points. A topological space is called **normal** if for any two disjoint closed sets have disjoint open neighborhoods.

Definition I.1. A C^p **Banach Manifold** \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is an Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$, a family of Banach vector spaces $(E_i)_{i \in I}$ and a family of continuous mappings $(\varphi_i)_{i \in I}$ from U_i inton E_i such that

i) for every $i \in I$

 $\varphi_i \ U_i \longrightarrow \varphi_i(U_i)$ is an homeomorphism

ii) for every pair of indices $i \neq j$ in I

$$\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \subset E_i \longrightarrow \varphi_j(U_i \cap U_j) \subset E_j$$

is a C^p diffeomorphism

^{*}Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.

Example 1. Let Σ^k be a closed oriented k-dimensional manifold and let $l \in \mathbb{N}$ and $p \ge 1$. Define

$$\mathcal{M} := W^{l,p}(\Sigma^k, N^n) := \left\{ \vec{u} \in W^{l,p}(\Sigma^k, \mathbb{R}^m) \quad ; \quad \vec{u}(x) \in N^n \quad \text{for a.e. } x \in \Sigma^k \right\}$$

where on Σ^k we can choose any arbitrary reference smooth metric, they are all equivalent since Σ^k is compact. Assume $\mathbf{lp} > \mathbf{k}$ then $W^{l,p}(\Sigma^k, N^n)$ defines a Banach Manifold. This comes mainly from the fact that, under our assumptions,

$$W^{l,p}(\Sigma^k, \mathbb{R}^m) \hookrightarrow C^0(\Sigma^k, \mathbb{R}^m)$$
 . (I.1)

The Banach manifold structure is then defined as follows. Choose $\delta > 0$ such that each geodesic ball $B_{\delta}^{N^n}(z)$ for any $z \in N^n$ is strictly convex and the exponential map

$$\exp_z : V_z \subset T_z N^n \longrightarrow B^{N^n}_{\delta}(z)$$

realizes a C^{∞} diffeomorphism for some open neighborhood of the origin in $T_z N^n$ into the geodesic ball $B_{\delta}^{N^n}(z)$. Because of the embedding (I.1) there exists $\varepsilon_0 > 0$ such that

$$\forall \vec{u}, \vec{v} \in W^{l,p}(\Sigma^k, N^n) \quad \|\vec{u} - \vec{v}\|_{W^{l,p}} < \varepsilon_0$$
$$\implies \quad \|\operatorname{dist}_N(\vec{u}(x), \vec{v}(x))\|_{L^{\infty}(\Sigma^k)} < \delta$$

We equip the space $W^{l,p}(\Sigma^k, N^n)$ with the $W^{l,p}$ norm which makes it a metric space and for any $\vec{u} \in \mathcal{M} = W^{l,p}(\Sigma^k, N^n)$ we denote by $B_{\varepsilon_0}^{\mathcal{M}}(\vec{u})$ the open ball in \mathcal{M} of center \vec{u} and radius ε_0 .

As a covering of \mathcal{M} we take $(B_{\varepsilon_0}^{\mathcal{M}}(\vec{u}))_{\vec{u}\in\mathcal{M}}$. We denote by

$$E^{\vec{u}} := \Gamma_{W^{l,p}}\left(\vec{u}^{-1}TN\right) := \left\{\vec{w} \in W^{l,p}(\Sigma^k, \mathbb{R}^m) \; ; \; \vec{w}(x) \in T_{\vec{u}(x)}N^n \; \forall \; x \in \Sigma^k\right\}$$

this is the Banach space of $W^{l,p}$ -sections of the bundle $\vec{u}^{-1}TN$ and for any $\vec{u} \in \mathcal{M}$ and $\vec{v} \in B_{\varepsilon_0}^{\mathcal{M}}(\vec{u})$ we define $\vec{w}^{\vec{u}}(\vec{v})$ to be the following element of $E^{\vec{u}}$

 $\forall x \in \Sigma \qquad \vec{w}^{\vec{u}}(\vec{v})(x) := \exp_{\vec{u}(x)}^{-1}(\vec{v}(x))$

It is not difficult to see that

$$\vec{w}^{\vec{v}} \circ (\vec{w}^{\vec{u}})^{-1} : \vec{w}^{u} \left(B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{u}) \cap B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{v}) \right) \longrightarrow \vec{w}^{v} \left(B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{u}) \cap B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{v}) \right)$$

defines a C^{∞} diffeomorphism.

The goal of the present section is to construct, for C^1 lagrangians on some special Banach manifolds, a substitute to the gradient of such lagrangian in order to be able to deform each level set to a lower level set if there is no critical point in between. The strategy for constructing such **pseudo-gradient** will consist in pasting together "pieces" using **partitions of unity** of suitable regularity. To that aim we introduce the following notion.

Definition I.2. A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement. \Box

We have the following result

Theorem I.1. [Stones 1948] Every metric space is paracompact.

There is a more restrictive "separation axiom" for topological spaces than being **Hausdorff** which is called **normal**.

Definition I.3. A topological space is called **normal** if any pair of disjoint closed sets have disjoint open neighborhoods. \Box

we have the following proposition

Proposition I.1. Every Hausdorff paracompact space is normal. \Box

We have the following important lemma (which looks obvious but requires a proof in infinite dimension)

Lemma I.1. Let \mathcal{M} be a normal Banach Manifold and let (U, φ) be a chart on \mathcal{M} , i.e. $U \subset \mathcal{M}$ is an open subset of \mathcal{M} and φ is an homeomorphism from U into an open set $\varphi(U) \subset E$ of a Banach Space $(E, \|\cdot\|_E)$. For any $x_0 \in U$ and for r small enough

$$B_{\varphi}(x_0, r) := \{ y \in U ; \|\varphi(x_0) - \varphi(y)\|_E \le r \} = \varphi^{-1}(\overline{B_r^E(x_0)})$$

is closed in \mathcal{M} and it's interior is given by

$$B_{\varphi}^{int}(x_0, r) := \{ y \in U ; \|\varphi(x_0) - \varphi(y)\|_E < r \} = \varphi^{-1}(B_r^E(x_0))$$

Proof of lemma I.1. Since the Banach manifold is assumed to be normal there exists two disjoint open sets V_1 and V_2 such that $\mathcal{M} \setminus U \subset V_1$ and $x_0 \in V_2$. Since φ is an homeomorphism, the preimage by φ^{-1} of V_2 is open

 $^{^{1}}$ locally finite means that any point posses a neighborhood which intersects only finitely many open sets of the subcovering

in the Banach space E. Choose now radii r > 0 small enough such that $\overline{B_r^E(x_0)} \subset \varphi(V_2)$, hence for such a r we have that

$$\mathcal{M} \setminus B_{\varphi}(x_0, r) = V_1 \cup \phi^{-1}\left(E \setminus \overline{B_r^E(x_0)}\right)$$

So $\mathcal{M} \setminus B_{\varphi}(x_0, r)$ is the union of two open sets. It is then open and $B_{\varphi}(x_0, r)$ is closed in \mathcal{M} .

Remark I.1. As counter intuitive as it could be at a first glance, there are counter-examples of the closure of $\varphi^{-1}(\overline{B_r^E(x)})$ when r is not assumed to be small enough and even with $\overline{B_r^E(x)} \subset \varphi(U)$! (see for instance [3]).

We shall need the following lemma

Lemma I.2. Let \mathcal{M} be a normal Banach Manifold and let (U, φ) be a chart on \mathcal{M} , i.e. $U \subset \mathcal{M}$ is an open subset of \mathcal{M} and φ is an homeomorphism from U into an open set $\varphi(U) \subset E$ of a Banach Space $(E, \|\cdot\|_E)$. For any $x_0 \in U$ and for r small enough such that $\varphi^{-1}(\overline{B_r^E(x_0)})$ is closed and included in U according to lemma I.1 then the function defined by

$$\begin{cases} \forall x \in U \quad g(x) := \inf \left\{ \|\varphi(x) - \varphi(y)\|_E \quad ; \quad y \in U \setminus \varphi^{-1}(B_r^E(x_0)) \right\} \\ \forall x \in \mathcal{M} \setminus U \quad g(x) = 0 \end{cases}$$

is locally Lipschitz on \mathcal{M} and strictly positive exactly on $\varphi^{-1}(B_r^E(x_0))$. \Box

Proof of lemma I.2. First of all we prove that g is globally lipschitz on U. Let $x, y \in U$ and let $\varepsilon > 0$. Choose $z \in U \setminus \varphi^{-1}(B_r^E(x_0))$ such that

$$\|\varphi(x) - \varphi(z)\|_E < g(x) + \varepsilon$$

We have by definition

$$\|\varphi(y) - \varphi(z)\|_E \ge g(y)$$

Combining the two previous inequalities give

$$g(y) - g(x) \le \|\varphi(y) - \varphi(z)\|_E - \|\varphi(y) - \varphi(z)\|_E + \varepsilon$$
$$\le \|\varphi(y) - \varphi(x)\|_E + \varepsilon$$

exchanging the role of x and y gives the lipschitzianity of g on U. Take now $y \notin U$ since $\mathcal{M} \setminus U$ and $\varphi^{-1}(\overline{B_r^E(x_0)})$ are closed and disjoint, since $\varphi^{-1}(\overline{B_r^E(x_0)}) \subset U$, the normality of \mathcal{M} gives the existence of two disjoint open neighborhoods containing respectively $\mathcal{M} \setminus U$ and $\varphi^{-1}(\overline{B_r^E(x_0)})$. Hence there exists an open neighborhood of y which does not intersect $\varphi^{-1}(\overline{B_r^E(x_0)})$ and on which g is identically zero. This implies the local lipschitzianity of g.

One of the reasons why we care about paracompactness in our context comes from the following property.

Proposition I.2. Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$, i.e. there exists $(\phi_{\alpha})_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that

i)

$$Supp(\phi_{\alpha}) \subset \mathcal{O}_{\alpha}$$

ii)

$$\phi_{\alpha} \ge 0$$

iii)

$$\sum_{\alpha \in A} \phi_{\alpha} \equiv 1$$

where the sum is locally finite.

Proof of proposition I.2. To each point x in \mathcal{O}_{α} we assign an open neighborhood of the form $\varphi_i^{-1}(B_r^{E_i}(\varphi(x)))$ included in \mathcal{O}_{α} for r small enough given by lemma I.1. From the total union of all the families

 $(\varphi_i^{-1}(B_r^{E_i}(\varphi(x))))_{x\in\mathcal{O}_\alpha}$

where $\alpha \in A$ we extract a locally finite sub covering that we denote $(\varphi_i^{-1}(B_r^{E_i}(\varphi(x_i))))_{i\in I_{\alpha}}$ and $\alpha \in A$ (we can have possibly $I_{\alpha} = \emptyset$). To each open set $\varphi_i^{-1}(B_r^{E_i}(\varphi(x_i)))$ we assign the function g_{α}^i given by lemma I.2 which happens to be strictly positive on $\varphi_i^{-1}(B_r^{E_i}(\varphi(x_i)))$ and zero outside. The functions g_{α}^i are locally lipschitz and since the family $(\varphi_i^{-1}(B_r^{E_i}(\varphi(x_i))))_{i\in I_{\alpha}}$ is locally finite, $\sum_{\alpha} \sum_{i\in I_{\alpha}} g_{\alpha}^i$ is locally lipschitz too. we take

$$\phi_{\alpha} := \frac{\sum\limits_{i \in I_{\alpha}} g_{\alpha}^{i}}{\sum\limits_{\alpha \in A} \sum\limits_{i \in I_{\alpha}} g_{\alpha}^{i}}$$

with the convention that $\phi_{\alpha} \equiv 0$ on \mathcal{M} if $I_{\alpha} = \emptyset$. The family $(\phi_{\alpha})_{\alpha \in A}$ solves i), ii) and iii) and proposition I.2.

We introduce more structures in order to be able to perform deformations in Banach Manifolds.

Definition I.4. A Banach manifold \mathcal{V} is called C^p - **Banach Space Bundle** over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1}U_i$ into $U_i \times E$ such that the following diagram commutes

$$\begin{array}{cccc} \pi^{-1}U_i & \stackrel{\tau_i}{\longrightarrow} & U_i \times E \\ \pi \searrow & & \downarrow \rho \\ & & U_i \end{array}$$

where ρ is the canonical projection from $U_i \times E$ onto U_i . The restriction of τ_i on each fiber $\mathcal{V}_x := \pi^{-1}(\{x\})$ for $x \in U_i$ realizes a continuous isomorphism onto E_i . Moreover the map

$$x \in U_i \cap U_j \longrightarrow \tau_i \circ \tau_j^{-1} \Big|_{\pi^{-1}(x)} \in \mathcal{L}(E, E)$$

is C^p .

Definition I.5. Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a Banach Space Bundle over \mathcal{M} . A **Finsler structure** on \mathcal{V} is a continuous function

$$\|\cdot\| \ : \ \mathcal{V} \ \longrightarrow \ \mathbb{R}$$

such that for any $x \in \mathcal{M}$

$$\|\cdot\|_x := \|\cdot\||_{\pi^{-1}(\{x\})} \quad is \ a \ norm \ on \ \mathcal{V}_x$$

Moreover for any local trivialization τ_i over U_i and for any $x_0 \in U_i$ we define on \mathcal{V}_x the following norm

$$\forall \ \vec{w} \in \pi^{-1}(\{x\}) \qquad \|\vec{w}\|_{x_0} := \|\tau_i^{-1}(x_0, \rho(\tau_i(\vec{w})))\|_{x_0}$$

and there exists $C_{x_0} > 1$ such that

$$\forall x \in U_i \qquad C_{x_0}^{-1} \| \cdot \|_x \le \| \cdot \|_{x_0} \le C_{x_0} \| \cdot \|_x$$
.

Definition I.6. Let \mathcal{M} be a normal C^p Banach manifold. $T\mathcal{M}$ equipped with a Finsler structure is called a Finsler Manifold. \Box

Remark I.2. A Finsler structure on $T\mathcal{M}$ defines in a canonical way a dual Finsler structure on $T^*\mathcal{M}$.

Example. Let Σ^2 be a closed oriented 2-dimensional manifold and N^n be a closed sub-manifold of \mathbb{R}^m . For q > 2 we define

$$\mathcal{M} := W_{imm}^{2,q}(\Sigma^2, N^n) := \left\{ \vec{\Phi} \in W^{2,q}(\Sigma^2, N^n) ; \operatorname{rank} (d\Phi_x) = 2 \quad \forall x \in \Sigma^2 \right\}$$

The set $W_{imm}^{2,q}(\Sigma^2, N^n)$ as an open subset of the normal Banach Manifold $W^{2,q}(\Sigma^2, N^n)$ inherits a Banach Manifold structure. The tangent space to \mathcal{M} at a point $\vec{\Phi}$ is the space $\Gamma_{W^{2,q}}(\vec{\Phi}^{-1}TN^n)$ of $W^{2,q}$ -sections of the bundle $\vec{\Phi}^{-1}TN^n$, i.e.

$$T_{\vec{\Phi}}\mathcal{M} = \left\{ \vec{w} \in W^{2,q}(\Sigma^2, \mathbb{R}^m) \; ; \; \vec{w}(x) \in T_{\vec{\Phi}(x)}N^n \quad \forall x \in \Sigma^2 \right\} \quad .$$

We equip $T_{\vec{\Phi}}\mathcal{M}$ with the following norm

$$\|\vec{v}\|_{\vec{\Phi}} := \left[\int_{\Sigma} \left[|\nabla^2 \vec{v}|_{g_{\vec{\Phi}}}^2 + |\nabla \vec{v}|_{g_{\vec{\Phi}}}^2 + |\vec{v}|^2 \right]^{q/2} dvol_{g_{\vec{\Phi}}} \right]^{1/q} + \| |\nabla \vec{v}|_{g_{\vec{\Phi}}} \|_{L^{\infty}(\Sigma)}$$

where we keep denoting, for any $j \in \mathbb{N}$, ∇ to be the connection on $(T^*\Sigma)^{\otimes j} \otimes \vec{\Phi}^{-1}TN$ over Σ defined by $\nabla := \nabla^{g_{\vec{\Phi}}} \otimes \vec{\Phi}^* \nabla^h$ and $\nabla^{g_{\vec{\Phi}}}$ is the Levi Civita connection on $(\Sigma, g_{\vec{\Phi}})$ and ∇^h is the Levi-Civita connection on N^n . We check for instance that $\nabla^2 \vec{v}$ defines a C^0 section of $(T^*\Sigma)^2 \otimes \vec{\Phi}^{-1}TN$.

Observe that, using Sobolev embedding and in particular due to the fact $W^{2,q}(\Sigma, \mathbb{R}^m) \hookrightarrow C^1(\Sigma, \mathbb{R}^m)$ for q > 2, the norm $\|\cdot\|_{\vec{\Phi}}$ as a function on the Banach tangent bundle $T\mathcal{M}$ is obviously continuous.

Proposition I.3. The norms $\|\cdot\|_{\vec{\Phi}}$ defines a C^2 -Finsler structure on the space \mathcal{M} .

Proof of proposition I.3. We introduce the following trivialization of the Banach bundle. For any $\vec{\Phi} \in \mathcal{M}$ we denote $P_{\vec{\Phi}(x)}$ the orthonormal projection in \mathbb{R}^m onto the *n*-dimensional vector subspace of \mathbb{R}^m given by $T_{\vec{\Phi}(x)}N^n$ and for any $\vec{\xi}$ in the ball $B_{\varepsilon_1}^{\mathcal{M}}(\vec{\Phi})$ for some $\varepsilon_1 > 0$ and any $\vec{v} \in T_{\vec{\xi}}\mathcal{M} = \Gamma_{W^{2,q}}(\vec{\xi}^{-1}TN)$ we assign the map $\vec{w}(x) := P_{\vec{\Phi}(x)}\vec{v}(x)$. It is straightforward to check that for $\varepsilon_1 > 0$ chosen small enough the map which to \vec{v} assigns \vec{w} is an isomorphism from $T_{\vec{\xi}}\mathcal{M}$ into $T_{\vec{\Phi}}\mathcal{M}$ and that there exists $k_{\vec{\Phi}} > 1$ such that $\forall \vec{v} \in TB_{\varepsilon_1}^{\mathcal{M}}(\vec{\Phi})$

$$k_{\vec{\Phi}}^{-1} \|\vec{v}\|_{\vec{\xi}} \le \|\vec{w}\|_{\vec{\Phi}} \le k_{\vec{\Phi}} \|\vec{v}\|_{\vec{\xi}}$$

This concludes the proof of proposition I.3.

Theorem I.2. [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$d(p,q) := \inf_{\omega \in \Omega_{p,q}} \int_0^1 \left\| \frac{d\omega}{dt} \right\|_{\omega(t)} dt$$

where

$$\Omega_{p,q} := \left\{ \omega \in C^1([0,1], \mathcal{M}) ; \ \omega(0) = p \quad \omega(1) = q \right\}$$

Then d defines a distance on \mathcal{M} and (\mathcal{M}, d) defines the same topology as the one of the Banach Manifold. d is called **Palais distance** of the Finsler manifold $(\mathcal{M}, \|\cdot\|)$.

Contrary to the first appearance the non degeneracy of d is not straightforward and requires a proof (see [3]). This last result combined with theorem I.1 gives the following corollary.

Corollary I.1. Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold then \mathcal{M} is paracompact. \Box

The following result is going to play a central role in this course

Proposition I.4. Let \mathcal{M} be the space

$$W_{imm}^{2,q}(\Sigma^2, N^n) := \left\{ \vec{\Phi} \in W^{2,q}(\Sigma^2, N^n) ; \ rank(d\Phi_x) = 2 \quad \forall x \in \Sigma^2 \right\}$$

where Σ^2 is a closed oriented surface and N^n a closed sub-manifold of \mathbb{R}^m . The Finsler Manifold given by the structure

$$\|\vec{v}\|_{\vec{\Phi}} := \left[\int_{\Sigma} \left[|\nabla^2 \vec{v}|_{g_{\vec{\Phi}}}^2 + |\nabla \vec{v}|_{g_{\vec{\Phi}}}^2 + |\vec{v}|^2 \right]^{q/2} dvol_{g_{\vec{\Phi}}} \right]^{1/q} + \| |\nabla \vec{v}|_{g_{\vec{\Phi}}} \|_{L^{\infty}(\Sigma)}$$

is complete for the Palais distance.

We have also.

Proposition I.5. For N^n a closed sub-manifold of \mathbb{R}^m and p > 1 we define on

$$\mathcal{M} := W_{imm}^{2,p}(S^1, N^n) := \left\{ \vec{\gamma} \in W^{2,p}(S^1, N^n) \; ; \; rank(d\gamma_x) = 1 \quad \forall x \in S^1 \right\}$$

the following Finsler structure

$$\|\vec{v}\|_{\vec{\gamma}} := \left[\int_{S^1} \left[|\nabla^2 \vec{v}|^2_{g_{\vec{\gamma}}} + |\nabla \vec{v}|^2_{g_{\vec{\gamma}}} + |\vec{v}|^2 \right]^{p/2} \, dvol_{g_{\vec{\gamma}}} \right]^{1/p}$$

Then $(\mathcal{M}, \|\cdot\|)$ is complete for the Palais distance.

We shall present only the proof of proposition I.4. The proof of proposition th-complete-S1 is very similar and can be found in [2].

Proof of proposition I.4. For any $\vec{\Phi} \in \mathcal{M}$ and $\vec{v} \in T_{\vec{\Phi}}\mathcal{M}$ we introduce the tensor in $(T^*\Sigma)^{\otimes^2}$ given in coordinates by

$$\nabla \vec{v} \,\dot{\otimes} \, d\vec{\Phi} + d\vec{\Phi} \,\dot{\otimes} \, \nabla \vec{v} = \sum_{i,j=1}^{2} \left[\nabla_{\partial_{x_i}} \vec{v} \cdot \partial_{x_j} \vec{\Phi} + \partial_{x_i} \vec{\Phi} \cdot \nabla_{\partial_{x_j}} \vec{v} \right] \, dx_i \otimes dx_j$$
$$= \sum_{i,j=1}^{2} \left[\nabla^h_{\partial_{x_i} \vec{\Phi}} \vec{v} \cdot \partial_{x_j} \vec{\Phi} + \partial_{x_i} \vec{\Phi} \cdot \nabla^h_{\partial_{x_j} \vec{\Phi}} \vec{v} \right] \, dx_i \otimes dx_j$$

where \cdot denotes the scalar product in \mathbb{R}^m . Observe that we have

$$\left|\nabla \vec{v} \,\dot{\otimes} \, d\vec{\Phi} + d\vec{\Phi} \,\dot{\otimes} \, \nabla \vec{v}\right|_{g_{\vec{\Phi}}} \le 2 \, |\nabla \vec{v}|_{g_{\vec{\Phi}}}$$

Hence, taking a C^1 path $\vec{\Phi}_s$ in \mathcal{M} one has for $\vec{v} := \partial_s \vec{\Phi}$

$$\begin{aligned} \left\| \left| d\vec{v} \dot{\otimes} d\vec{\Phi} + d\vec{\Phi} \dot{\otimes} d\vec{v} \right|_{g_{\vec{\Phi}}}^{2} \right\|_{L^{\infty}(\Sigma)} &= \left\| \sum_{i,j,k,l=1}^{2} g_{\vec{\Phi}}^{ij} g_{\vec{\Phi}}^{kl} \partial_{s}(g_{\vec{\Phi}})_{ik} \partial_{s}(g_{\vec{\Phi}})_{jl} \right\|_{L^{\infty}(\Sigma)} \\ &= \left\| \left| \partial_{s}(g_{ij}dx_{i} \otimes dx_{j}) \right|_{g_{\vec{\Phi}}}^{2} \right\|_{L^{\infty}(\Sigma)} &= \left\| \left| \partial_{s}g_{\vec{\Phi}} \right|_{g_{\vec{\Phi}}}^{2} \right\|_{L^{\infty}(\Sigma)} \end{aligned}$$
(I.2)

Hence

$$\int_0^1 \left\| \left\| \partial_s g_{\vec{\Phi}} \right\|_{g_{\vec{\Phi}}}^2 \right\|_{L^{\infty}(\Sigma)} ds \le 2 \int_0^1 \left\| \partial_s \vec{\Phi} \right\|_{\vec{\Phi}_s} ds \tag{I.3}$$

We now use the following lemma

Lemma I.3. Let M_s be a C^1 path into the space of positive n by n symmetric matrix then the following inequality holds

$$Tr(M^{-2}(\partial_s M)^2) \ge \|\partial_s \log M\|^2 = Tr((\partial_s \log M)^2)$$

Proof of lemma I.3. We write $M = \exp A$ and we observe that

$$\operatorname{Tr}(\exp(-2A)(\partial_s \exp A)^2) = \operatorname{Tr}(\partial_s A)^2$$

Then the lemma follows.

Combining the previous lemma with (I.2) and (I.3) we obtain in a given chart

$$\int_0^1 \|\partial_s \log(g_{ij})\| \, ds \le \int_0^1 \sqrt{\operatorname{Tr}\left((\partial_s \log g_{ij})^2\right)} \, ds \le 2 \int_0^1 \|\partial_s \vec{\Phi}\|_{\vec{\Phi}_s} \, ds \quad (I.4)$$

This implies that in the given chart the log of the matrix $(g_{ij}(s))$ is uniformly bounded for $s \in [0, 1]$ and hence $\vec{\Phi}_1$ is an immersion. It remains

to show that it has a controlled $W^{2,q}$ norm. We introduce p = q/2 and denote

$$\operatorname{Hess}_{p}(\vec{\Phi}) := \int_{\Sigma} [1 + |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}}]^{p} \, dvol_{g_{\vec{\Phi}}}$$

and we compute

$$\frac{d}{ds}(\operatorname{Hess}_{p}(\vec{\Phi})) = p \int_{\Sigma} \partial_{s} |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}} [1 + |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}}]^{p-1} dvol_{g_{\vec{\Phi}}} + \int_{\Sigma} [1 + |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}}]^{p} \partial_{s}(dvol_{g_{\vec{\Phi}}})$$
(I.5)

Classical computations give

$$\partial_s(dvol_{g_{\vec{\Phi}}}) = \left\langle \nabla \partial_s \vec{\Phi}, d\vec{\Phi} \right\rangle_{g_{\vec{\Phi}}} dvol_{g_{\vec{\Phi}}}$$

So we have

$$\begin{aligned} \left| \int_{\Sigma} [1 + |\nabla d\vec{\Phi}|^2_{g_{\vec{\Phi}}}]^p \, \partial_s (dvol_{g_{\vec{\Phi}}}) \right| &\leq \| |\nabla \partial_s \vec{\Phi}|_{g_{\vec{\Phi}}} \|_{L^{\infty}(\Sigma)} \int_{\Sigma} [1 + |\nabla d\vec{\Phi}|^2_{g_{\vec{\Phi}}}]^p \, dvol_{g_{\vec{\Phi}}} \\ &\leq \| \partial_s \vec{\Phi} \|_{\vec{\Phi}} \, \int_{\Sigma} [1 + |\nabla d\vec{\Phi}|^2_{g_{\vec{\Phi}}}]^p \, dvol_{g_{\vec{\Phi}}} \end{aligned}$$

$$(I.6)$$

In local charts we have

$$|\nabla d\vec{\Phi}|^2_{g_{\vec{\Phi}}} = \sum_{i,j,k,l=1}^2 g_{\vec{\Phi}}^{ij} g_{\vec{\Phi}}^{kl} \left\langle \nabla^h_{\partial_{x_i}\vec{\Phi}} \partial_{x_k}\vec{\Phi}, \nabla^h_{\partial_{x_j}\vec{\Phi}} \partial_{x_l}\vec{\Phi} \right\rangle_h$$

Thus in bounding $\int_{\Sigma} \partial_s |\nabla d\vec{\Phi}|^2_{g_{\vec{\Phi}}} [1 + |\nabla d\vec{\Phi}|^2_{g_{\vec{\Phi}}}]^{p-1} dvol_{g_{\vec{\Phi}}}$ we first have to control terms of the form

$$\left| \int_{\Sigma} \sum_{i,j,k,l=1}^{2} \partial_{s} g_{\vec{\Phi}}^{ij} g_{\vec{\Phi}}^{kl} \left\langle \nabla^{h}_{\partial_{x_{i}}\vec{\Phi}} \partial_{x_{k}} \vec{\Phi}, \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} \left[1 + |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}}]^{p-1} dvol_{g_{\vec{\Phi}}} \right|$$
(I.7)

We write

$$\begin{split} \sum_{i,j,k,l=1}^{2} \partial_{s} g_{\vec{\Phi}}^{ij} g_{\vec{\Phi}}^{kl} \left\langle \nabla_{\partial_{x_{i}}\vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}}\vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} \\ &= \sum_{i,j,k,l,r=1}^{2} \partial_{s} g_{\vec{\Phi}}^{ij} g_{jt} g^{tr} g_{\vec{\Phi}}^{kl} \left\langle \nabla_{\partial_{x_{i}}\vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}}\vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} \\ &= -\sum_{i,j,k,l=1}^{2} \left(\sum_{t,r=1}^{2} \partial_{s} g_{jt} g^{tr} \right) g_{\vec{\Phi}}^{ij} g_{\vec{\Phi}}^{kl} \left\langle \nabla_{\partial_{x_{i}}\vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}}\vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} \end{split}$$

Hence

$$\begin{aligned} \left| \int_{\Sigma} \sum_{i,j,k,l=1}^{2} \partial_{s} g_{\vec{\Phi}}^{ij} g_{\vec{\Phi}}^{kl} \left\langle \nabla^{h}_{\partial_{x_{i}}\vec{\Phi}} \partial_{x_{k}} \vec{\Phi}, \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} \left[1 + |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}}]^{p-1} dvol_{g_{\vec{\Phi}}} \right] \\ &\leq \| |\partial_{s} g_{\vec{\Phi}}|_{g_{\vec{\Phi}}} \|_{L^{\infty}(\Sigma)} \int_{\Sigma} [1 + |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}}]^{p} dvol_{g_{\vec{\Phi}}} \\ &\leq \| \partial_{s} \vec{\Phi} \|_{\vec{\Phi}_{s}} \int_{\Sigma} [1 + |\nabla d\vec{\Phi}|^{2}_{g_{\vec{\Phi}}}]^{p} dvol_{g_{\vec{\Phi}}} \end{aligned}$$
(I.8)

We have also

$$\partial_{s} \left\langle \nabla^{h}_{\partial_{x_{i}}\vec{\Phi}} \partial_{x_{k}} \vec{\Phi}, \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h}$$

$$= \left\langle \nabla^{h}_{\partial_{s}\vec{\Phi}} \left(\nabla^{h}_{\partial_{x_{i}}\vec{\Phi}} \partial_{x_{k}} \vec{\Phi} \right), \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} + \left\langle \nabla^{h}_{\partial_{x_{i}}\vec{\Phi}} \partial_{x_{k}} \vec{\Phi}, \nabla^{h}_{\partial_{s}\vec{\Phi}} \left(\nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right) \right\rangle_{h}$$

By definition we have

$$\nabla^{h}_{\partial_{s}\vec{\Phi}}\left(\nabla^{h}_{\partial_{x_{i}}\vec{\Phi}}\partial_{x_{k}}\vec{\Phi}\right) = \nabla^{h}_{\partial_{x_{i}}\vec{\Phi}}\left(\nabla^{h}_{\partial_{s}\vec{\Phi}}\partial_{x_{k}}\vec{\Phi}\right) + R^{h}(\partial_{x_{i}}\vec{\Phi},\partial_{s}\vec{\Phi})\partial_{x_{k}}\vec{\Phi}$$

where we have used the fact that $[\partial_s \vec{\Phi}, \partial_{x_i} \vec{\Phi}] = \vec{\Phi}_*[\partial_s, \partial_{x_i}] = 0$. Using also that $[\partial_s \vec{\Phi}, \partial_{x_k} \vec{\Phi}] = 0$, since ∇^h is torsion free, we have finally

$$\nabla^{h}_{\partial_{s}\vec{\Phi}}\left(\nabla^{h}_{\partial_{x_{i}}\vec{\Phi}}\partial_{x_{k}}\vec{\Phi}\right) = \nabla^{h}_{\partial_{x_{i}}\vec{\Phi}}\left(\nabla^{h}_{\partial_{x_{k}}\vec{\Phi}}\partial_{s}\vec{\Phi}\right) + R^{h}(\partial_{x_{i}}\vec{\Phi},\partial_{s}\vec{\Phi})\partial_{x_{k}}\vec{\Phi} \qquad (I.9)$$

where \mathbb{R}^h is the Riemann tensor associated to the Levi-Civita connection ∇^h . We have

$$\nabla^{h}_{\partial_{x_{i}}\vec{\Phi}}\left(\nabla^{h}_{\partial_{x_{k}}\vec{\Phi}}\partial_{s}\vec{\Phi}\right) = (\nabla^{h})^{2}_{\partial_{x_{i}}\vec{\Phi}\partial_{x_{k}}\vec{\Phi}}\partial_{s}\vec{\Phi} + \nabla^{h}_{\nabla^{h}_{\partial_{x_{i}}\vec{\Phi}}\partial_{x_{k}}\vec{\Phi}}\partial_{s}\vec{\Phi}$$
(I.10)

Hence

$$\left\langle \nabla^{h}_{\partial_{s}\vec{\Phi}} \left(\nabla^{h}_{\partial_{x_{i}}\vec{\Phi}} \partial_{x_{k}} \vec{\Phi} \right), \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} = \left\langle (\nabla^{h})^{2}_{\partial_{x_{i}}\vec{\Phi}\partial_{x_{k}}\vec{\Phi}} \partial_{s} \vec{\Phi}, \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} + \left\langle \nabla^{h}_{\nabla^{h}_{\partial_{x_{i}}\vec{\Phi}}\partial_{x_{k}}\vec{\Phi}} \partial_{s} \vec{\Phi}, \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} + \left\langle R^{h} (\partial_{x_{i}}\vec{\Phi}, \partial_{s}\vec{\Phi}) \partial_{x_{k}} \vec{\Phi}, \nabla^{h}_{\partial_{x_{j}}\vec{\Phi}} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h}$$
(I.11)

Combining all the previous gives then

$$\begin{aligned} \left| \int_{\Sigma} \sum_{i,j,k,l=1}^{2} g_{\vec{\Phi}}^{ij} g_{\vec{\Phi}}^{kl} \partial_{s} \left\langle \nabla_{\partial_{x_{i}}\vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}}\vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi} \right\rangle_{h} dvol_{g_{\vec{\Phi}}} \right| \\ &\leq C \int_{\Sigma} \left| \left\langle \nabla^{2} \partial_{s} \vec{\Phi}, \nabla d \vec{\Phi} \right\rangle_{g_{\vec{\Phi}}} \right| \left[1 + |\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2} \right]^{p-1} dvol_{g_{\vec{\Phi}}} \\ &+ C \int_{\Sigma} |\nabla \partial_{s} \vec{\Phi}|_{g_{\vec{\Phi}}} |\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2} \left[1 + |\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2} \right]^{p-1} dvol_{g_{\vec{\Phi}}} \\ &+ C \| R^{h} \|_{L^{\infty}(N^{n})} \int_{\Sigma} |\partial_{s} \vec{\Phi}|_{h} |\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}} \left[1 + |\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2} \right]^{p-1} dvol_{g_{\vec{\Phi}}} \end{aligned}$$
(I.12)

Combining all the above we finally obtain that

$$\left|\partial_{s} \operatorname{Hess}_{p}(\vec{\Phi})\right| \leq C \left\|\partial_{s} \vec{\Phi}\right\|_{\vec{\Phi}} \left[\operatorname{Hess}_{p}(\vec{\Phi}) + \operatorname{Hess}_{p}(\vec{\Phi})^{1-1/2p}\right]$$
(I.13)

Combining (I.4) and (I.13) we deduce using Gromwall lemma that if we take a C^1 path from [0, 1) into \mathcal{M} with finite length for the Palais distance d, the limiting map $\vec{\Phi}_1$ is still a $W^{2,q}$ -immersion of Σ into N^n , which proves the completeness of (\mathcal{M}, d) .

Definition I.7. Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \} \quad .$$

A pseudo-gradient is a Lipschitz continuous section $X : \mathcal{M}^* \to T\mathcal{M}^*$ such that

i)

$$\forall u \in \mathcal{M}^* \qquad \|X(u)\|_u < 2 \ \|DE_u\|_u$$

ii)

$$\forall u \in \mathcal{M}^* \quad \|DE_u\|_u^2 < \langle X(u), DE_u \rangle_{T_u \mathcal{M}^*, T_u^* \mathcal{M}^*}$$

The following result is mostly using the existence of a Lipschitz partition of unity for any covering of a Finsler Manifold (combine proposition I.2 and corollary I.1).

Proposition I.6. Every C^1 function on a Finsler Manifold admits a pseudogradient.

The following definition is central in Palais deformation theory.

Definition I.8. Let E be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$. On says that E fulfills the **Palais-Smale condition** at the level β if for any sequence u_n staisfying

$$E(u_n) \longrightarrow \beta \quad and \quad \|DE_{u_n}\|_{u_n} \longrightarrow 0 \quad ,$$

then there exists a subsequence $u_{n'}$ and $u_{\infty} \in \mathcal{M}$ such that

$$d(u_{n'}, u_{\infty}) \longrightarrow 0$$

and hence $E(u_{\infty}) = \beta$ and $DE_{u_{\infty}} = 0$.

Example. Let \mathcal{M} be $W^{1,2}(S^1, N^n)$ for the Finsler structure given by

$$\forall \ \vec{w} \in \Gamma_{W^{1,2}}(\vec{u}^{-1}TN^n) \qquad \|\vec{w}\|_{\vec{u}} := \|\vec{w}\|_{W^{1,2}(S^1)}$$

Then the Dirichlet Energy satisfies the Palais Smale condition for every level set. $\hfill \Box$

Definition I.9. A family of subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called **admissible family** if for every homeomorphism Ξ of \mathcal{M} isotopic to the identity we have

$$\forall A \in \mathcal{A} \qquad \Xi(A) \in \mathcal{A}$$

Example 1. A closed 2 dimensional sub-manifold N^2 of \mathbb{R}^m being given and $\alpha \in \pi_2(N^2) \neq 0$, considering the Banach Manifold $\mathcal{M} := W^{1,2}(S^1, N^2)$ we can take

$$\mathcal{A} := \left\{ \begin{array}{c} u \in C^0([0,1], W^{1,2}(S^1, N^2)) \; ; \; u(0, \cdot) \text{ and } u(1, \cdot) \text{ are constant} \\ \text{and} \quad u(t, \theta) \; [0,1] \times S^1 \longrightarrow N^2 \quad \text{realizes } \alpha \end{array} \right\}$$
(I.14)

i.e. for $N^2 \simeq S^2 \mathcal{A}$ corresponds to a class of sweep-outs of the form Ω_{σ_0} .

Example 2. Consider $\mathcal{M} := W^{2,q}_{imm}(S^2, \mathbb{R}^3)$ and take $c \in \pi_1(\text{Imm}(S^2, \mathbb{R}^3)) = \mathbb{Z}_2 \times \mathbb{Z}$ then the following family is admissible

$$\mathcal{A} := \left\{ \vec{\Phi} \in C^0([0,1], W^{2,q}_{imm}(S^2, \mathbb{R}^3)) \; ; \; \vec{\Phi}(0, \cdot) = \vec{\Phi}(1, \cdot) \quad \text{and} \; [\vec{\Phi}] = c \right\}$$

We can now state the main theorem in this section.

 \square

Theorem I.3. [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Banach manifold together with a $C^{1,1}$ -Finsler structure. Assume \mathcal{M} is <u>complete</u> for the induced Palais distance d and let $E \in C^1(\mathcal{M})$ satisfying the Palais-Smale condition $(PS)_\beta$ for the level set β . Let \mathcal{A} be an admissible family in $\mathcal{P}(\mathcal{M})$ such that

$$\inf_{A \in \mathcal{A}} \sup_{u \in A} E(u) = \beta$$
there exists $u \in \mathcal{M}$ satisfying
$$\begin{cases}
DE_u = 0 \\
E(u) = \beta
\end{cases}$$
(I.15)

Proof of theorem I.3. We argue by contradiction. Assuming there is no u satisfying (I.1) then Palais Smale condition $(PS)_{\beta}$ implies

$$\exists \delta_0 > 0 , \exists \epsilon_0 > 0 \quad \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad (I.16)$$

Let $u \in \mathcal{M}^*$. Because of the Local lipschitz nature of a fixed pseudo-
gradient given by proposition I.6 there exists a maximal time $t^u_{max} \in (0, +\infty]$ such that

$$\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t^u_{max}) \\ \phi_0(u) = u \end{cases}$$

where $1 \ge \eta(t) \ge 0$ is supported in $[\beta - \varepsilon_0, \beta + \varepsilon]$ and is equal to one on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$.

We have for any $0 \le t_1 < t_2 < t_{max}^u$ we have

$$d(\phi_{t_1}(u), \phi_{t_2}(u)) \leq \int_{t_1}^{t_2} \left\| \frac{d\phi_t(u)}{dt} \right\|_{\phi_t(u)} dt$$

$$\leq 2 \int_{t_1}^{t_2} \eta(E(\phi_t(u))) \| DE_{\phi_t(u)} \|_{\phi_t(u)} dt$$

$$\leq |t_2 - t_1|^{1/2} \left[\int_{t_1}^{t_2} \eta(E(\phi_t(u))) \| DE_{\phi_t(u)} \|_{\phi_t(u)}^2 dt \right]^{1/2}$$

and

then

$$\begin{aligned} \int_{t_1}^{t_2} \eta(E(\phi_t(u))) & \|DE_{\phi_t(u)}\|_{\phi_t(u)}^2 dt \\ & \leq -\int_{t_1}^{t_2} \eta(E(\phi_t(u))) \ \left\langle X(\phi_t(u)), DE_{\phi_t(u)} \right\rangle \ dt \\ & \leq E(\phi_{t_1}(u)) - E(\phi_{t_2}(u)) \end{aligned}$$

Hence

$$d(\phi_{t_1}(u), \phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$$

Hence, assuming $t_{max}^u < +\infty$, $\phi_t(u)$ realizes a Cauchy sequence as $t \to t_{max}^u$. Since \mathcal{M} is complete, the only possibility for the extinction of the flow is that $\lim_{t\to t_{max}^u} \phi_t(u)$ belongs to \mathcal{M}^* . But the flow is constant in time outside $E^{-1}([\beta - \varepsilon_0, \beta + \varepsilon])$ hence $t_{max}^u = +\infty$.

Hence for any $t \in \mathbb{R}_+ \phi_t$ is an homeomorphism of \mathcal{M} isotopic to the identity and, since \mathcal{A} is admissible

$$\forall A \in \mathcal{A} \quad \forall t \in [0, +\infty) \qquad \phi_t(A) \in \mathcal{A}$$

Let u now such that $\beta \leq E(u) \leq \beta + \varepsilon_0/2$. For any $\tau > 0$ such that $E(\phi_t(u)) \geq \beta - \varepsilon_0/2$ we have (taking $\delta_0 < 1$)

$$-\tau\,\delta_0 \le E(\phi_t(u)) - E(u) = \int_0^\tau \frac{d\phi_t(u)}{dt}\,dt \le -2\,\tau\,\delta_0^2$$

Hence for any $\tau \, \delta_0 \leq \varepsilon_0/2$ we have²

$$E(\phi_{\tau}(u)) \le E(u) - 2\,\tau\,\delta_0^2$$

In particular

$$E(\phi_{\varepsilon_0/2\delta_0}(u)) \le E(u) - \delta_0 \varepsilon_0$$

Choose $A \in \mathcal{A}$ such that

$$\sup_{u \in A} E(u) < \beta + \delta_0 \varepsilon_0$$

Hence we have for $t_0 = \varepsilon_0/2\delta_0$

$$\sup_{\phi_{t_0}(u)\in\phi_{t_0}(A)} E(\phi_{t_0}(u)) < \beta$$

which is a contradiction.

Application. We take $\mathcal{M} := W^{1,2}(S^1, N^2)$ where $N^2 \simeq S^2$. Let any sweep-out $\vec{\sigma}_0$ of N^2 corresponding to a non zero element of $\pi_2(N^2)$. Then

$$W_{\vec{\sigma}_0} = \inf_{\vec{\sigma} \in \Omega_{\vec{\sigma}_0} \cap \Lambda} \quad \max_{t \in [0,1]} E(\vec{\sigma}(t, \cdot))$$

is achieved by a closed geodesic. This gives a new proof of Birkhoff existence result. $\hfill \Box$

 $^{^2 \}rm Observe$ that this kind of inequality is reminiscent to the condition v) of the definition of Birkhoff curve shortening process.

Now, what about surfaces ? The Dirichlet energy of maps into a submanifold of is <u>not satisfying the Palais Smale</u> anymore in 2 dimension. So Palais Deformation theory does not apply directly to the construction of minimal surfaces by working with the Dirichlet energy. We would also like to go beyond the Colding-Minicozzi framework which is restricted to spheres.

References

- Lang, Serge Fundamentals of differential geometry. Graduate Texts in Mathematics, 191. Springer-Verlag, New York, 1999.
- [2] Alexis Michelat, Tristan Rivière "A Viscosity Method for the Min-Max Construction of Closed Geodesics" arXiv:1511.04545 (2015).
- [3] Palais, Richard S. Critical point theory and the minimax principle. 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968) pp. 185-212 Amer. Math. Soc., Providence, R.I.
- [4] Stone, A. H. Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 (1948), 977-982.