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I Lecture 2

Deformations in Infinite Dimensional Manifolds.
The goal of this section is to present the main lines of Palais deformation
theory exposed in [3].

We shall start by recalling some notions from infinite dimensional
Banach Manifolds theory that will be useful to us. For a more systematic
study we suggest the reader to consult [1].

In this lecture as in the previous one Nn denotes a closed C∞ sub-
manifold of the Euclidian Space Rm.

We recall that a topological space is Hausdorff if every pair of points
can be included in two disjoint open sets containing each exactly one of
the two points. A topological space is called normal if for any two disjoint
closed sets have disjoint open neighborhoods.

Definition I.1. A Cp Banach Manifold M for p ∈ N ∪ {∞} is an
Hausdorff topological space together with a covering by open sets (Ui)i∈I, a
family of Banach vector spaces (Ei)i∈I and a family of continuous mappings
(ϕi)i∈I from Ui inton Ei such that

i) for every i ∈ I

ϕi Ui −→ ϕi(Ui) is an homeomorphism

ii) for every pair of indices i 6= j in I

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) ⊂ Ei −→ ϕj(Ui ∩ Uj) ⊂ Ej

is a Cp diffeomorphism
∗Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.

1



2

Example 1. Let Σk be a closed oriented k−dimensional manifold and let
l ∈ N and p ≥ 1. Define

M := W l,p(Σk, Nn) :=
{
~u ∈ W l,p(Σk,Rm) ; ~u(x) ∈ Nn for a.e. x ∈ Σk

}
where on Σk we can choose any arbitrary reference smooth metric, they
are all equivalent since Σk is compact. Assume l p > k thenW l,p(Σk, Nn)
defines a Banach Manifold. This comes mainly from the fact that, under
our assumptions,

W l,p(Σk,Rm) ↪→ C0(Σk,Rm) . (I.1)

The Banach manifold structure is then defined as follows. Choose δ > 0
such that each geodesic ball BNn

δ (z) for any z ∈ Nn is strictly convex and
the exponential map

expz : Vz ⊂ TzN
n −→ BNn

δ (z)

realizes a C∞ diffeomorphism for some open neighborhood of the origin in
TzN

n into the geodesic ball BNn

δ (z). Because of the embedding (I.1) there
exists ε0 > 0 such that

∀ ~u , ~v ∈ W l,p(Σk, Nn) ‖~u− ~v‖W l,p < ε0

=⇒ ‖distN(~u(x), ~v(x))‖L∞(Σk) < δ .

We equip the space W l,p(Σk, Nn) with the W l,p norm which makes it a
metric space and for any ~u ∈M = W l,p(Σk, Nn) we denote by BMε0

(~u) the
open ball inM of center ~u and radius ε0.

As a covering ofM we take (BMε0
(~u))~u∈M. We denote by

E~u := ΓW l,p

(
~u−1TN

)
:=

{
~w ∈ W l,p(Σk,Rm) ; ~w(x) ∈ T~u(x)N

n ∀ x ∈ Σk
}

this is the Banach space of W l,p−sections of the bundle ~u−1TN and for
any ~u ∈ M and ~v ∈ BMε0

(~u) we define ~w ~u(~v) to be the following element
of E~u

∀ x ∈ Σ ~w ~u(~v)(x) := exp−1
~u(x)(~v(x))

It is not difficult to see that

~w ~v ◦ (~w ~u)−1 : ~w u
(
BMε0

(~u) ∩BMε0
(~v)

)
−→ ~w v

(
BMε0

(~u) ∩BMε0
(~v)

)
defines a C∞ diffeomorphism. 2
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The goal of the present section is to construct, for C1 lagrangians on
some special Banach manifolds, a substitute to the gradient of such la-
grangian in order to be able to deform each level set to a lower level
set if there is no critical point in between. The strategy for construct-
ing such pseudo-gradient will consist in pasting together “pieces” using
partitions of unity of suitable regularity. To that aim we introduce the
following notion.

Definition I.2. A topological Hausdorff space is called paracompact if
every open covering admits a locally finite1 open refinement. 2

We have the following result

Theorem I.1. [Stones 1948] Every metric space is paracompact. 2

There is a more restrictive “separation axiom” for topological spaces
than being Hausdorff which is called normal.

Definition I.3. A topological space is called normal if any pair of disjoint
closed sets have disjoint open neighborhoods. 2

we have the following proposition

Proposition I.1. Every Hausdorff paracompact space is normal. 2

We have the following important lemma (which looks obvious but re-
quires a proof in infinite dimension)

Lemma I.1. LetM be a normal Banach Manifold and let (U,ϕ) be a
chart onM, i.e. U ⊂M is an open subset ofM and ϕ is an homeomor-
phism from U into an open set ϕ(U) ⊂ E of a Banach Space (E, ‖ · ‖E).
For any x0 ∈ U and for r small enough

Bϕ(x0, r) := {y ∈ U ; ‖ϕ(x0)− ϕ(y)‖E ≤ r} = ϕ−1(BE
r (x0))

is closed inM and it’s interior is given by

Bint
ϕ (x0, r) := {y ∈ U ; ‖ϕ(x0)− ϕ(y)‖E < r} = ϕ−1(BE

r (x0))

2

Proof of lemma I.1. Since the Banach manifold is assumed to be normal
there exists two disjoint open sets V1 and V2 such that M\ U ⊂ V1 and
x0 ∈ V2. Since ϕ is an homeomorphism, the preimage by ϕ−1 of V2 is open

1locally finitemeans that any point posses a neighborhood which intersects only finitely many open sets of the subcovering
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in the Banach space E. Choose now radii r > 0 small enough such that
BE
r (x0) ⊂ ϕ(V2), hence for such a r we have that

M\Bϕ(x0, r) = V1 ∪ φ−1 (E \BE
r (x0)

)
SoM\Bϕ(x0, r) is the union of two open sets. It is then open and Bϕ(x0, r)
is closed inM. 2

Remark I.1. As counter intuitive as it could be at a first glance, there are
counter-examples of the closure of ϕ−1(BE

r (x)) when r is not assumed to
be small enough and even with BE

r (x) ⊂ ϕ(U) ! (see for instance [3]).

We shall need the following lemma

Lemma I.2. LetM be a normal Banach Manifold and let (U,ϕ) be a
chart onM, i.e. U ⊂M is an open subset ofM and ϕ is an homeomor-
phism from U into an open set ϕ(U) ⊂ E of a Banach Space (E, ‖ · ‖E).
For any x0 ∈ U and for r small enough such that ϕ−1(BE

r (x0)) is closed
and included in U according to lemma I.1 then the function defined by
∀ x ∈ U g(x) := inf

{
‖ϕ(x)− ϕ(y)‖E ; y ∈ U \ ϕ−1(BE

r (x0))
}

∀ x ∈M \ U g(x) = 0

is locally Lipschitz onM and strictly positive exactly on ϕ−1(BE
r (x0)). 2

Proof of lemma I.2. First of all we prove that g is globally lipschitz on
U . Let x, y ∈ U and let ε > 0. Choose z ∈ U \ ϕ−1(BE

r (x0)) such that

‖ϕ(x)− ϕ(z)‖E < g(x) + ε

We have by definition

‖ϕ(y)− ϕ(z)‖E ≥ g(y)

Combining the two previous inequalities give

g(y)− g(x) ≤ ‖ϕ(y)− ϕ(z)‖E − ‖ϕ(y)− ϕ(z)‖E + ε

≤ ‖ϕ(y)− ϕ(x)‖E + ε

exchanging the role of x and y gives the lipschitzianity of g on U . Take
now y /∈ U since M \ U and ϕ−1(BE

r (x0)) are closed and disjoint, since
ϕ−1(BE

r (x0)) ⊂ U , the normality of M gives the existence of two dis-
joint open neighborhoods containing respectivelyM\U and ϕ−1(BE

r (x0)).
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Hence there exists an open neighborhood of y which does not intersect
ϕ−1(BE

r (x0)) and on which g is identically zero. This implies the local
lipschitzianity of g. 2

One of the reasons why we care about paracompactness in our context
comes from the following property.
Proposition I.2. Let (Oα)α∈A be an arbitrary covering of a C1 paracom-
pact Banach manifoldM. Then there exists a locally lipschitz partition of
unity subordinated to (Oα)α∈A, i.e. there exists (φα)α∈A where φα is locally
lipschitz inM and such that

i)
Supp(φα) ⊂ Oα

ii)
φα ≥ 0

iii) ∑
α∈A

φα ≡ 1

where the sum is locally finite.

2

Proof of proposition I.2. To each point x inOα we assign an open neigh-
borhood of the form ϕ−1

i (BEi
r (ϕ(x))) included in Oα for r small enough

given by lemma I.1. From the total union of all the families

(ϕ−1
i (BEi

r (ϕ(x))))x∈Oα
where α ∈ A we extract a locally finite sub covering that we denote
(ϕ−1

i (BEi
r (ϕ(xi))))i∈Iα and α ∈ A (we can have possibly Iα = ∅). To each

open set ϕ−1
i (BEi

r (ϕ(xi))) we assign the function giα given by lemma I.2
which happens to be strictly positive on ϕ−1

i (BEi
r (ϕ(xi))) and zero outside.

The functions giα are locally lipschitz and since the family (ϕ−1
i (BEi

r (ϕ(xi))))i∈Iα
is locally finite, ∑α

∑
i∈Iα g

i
α is locally lipschitz too. we take

φα :=

∑
i∈Iα

giα∑
α∈A

∑
i∈Iα

giα

with the convention that φα ≡ 0 on M if Iα = ∅. The family (φα)α∈A
solves i), ii) and iii) and proposition I.2. 2
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We introduce more structures in order to be able to perform deforma-
tions in Banach Manifolds.

Definition I.4. A Banach manifold V is called Cp− Banach Space Bun-
dle over another Banach manifold M if there exists a Banach Space E,
a submersion π from V into M, a covering (Ui)i∈I of M and a family of
homeomorphism from π−1Ui into Ui × E such that the following diagram
commutes

π−1Ui
τi−→ Ui × E
↓ ρ↘π
Ui

where ρ is the canonical projection from Ui × E onto Ui. The restric-
tion of τi on each fiber Vx := π−1({x}) for x ∈ Ui realizes a continuous
isomorphism onto Ei. Moreover the map

x ∈ Ui ∩ Uj −→ τi ◦ τ−1
j

∣∣∣
π−1(x) ∈ L(E,E)

is Cp. 2

Definition I.5. LetM be a normal Banach manifold and let V be a Ba-
nach Space Bundle over M. A Finsler structure on V is a continuous
function

‖ · ‖ : V −→ R
such that for any x ∈M

‖ · ‖x := ‖ · ‖|π−1({x}) is a norm on Vx .

Moreover for any local trivialization τi over Ui and for any x0 ∈ Ui we
define on Vx the following norm

∀ ~w ∈ π−1({x}) ‖~w‖x0 := ‖τ−1
i (x0, ρ(τi(~w))) ‖x0

and there exists Cx0 > 1 such that

∀ x ∈ Ui C−1
x0
‖ · ‖x ≤ ‖ · ‖x0 ≤ Cx0 ‖ · ‖x .

2

Definition I.6. Let M be a normal Cp Banach manifold. TM equipped
with a Finsler structure is called a Finsler Manifold. 2

Remark I.2. A Finsler structure on TM defines in a canonical way a
dual Finsler structure on T ∗M. 2
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Example. Let Σ2 be a closed oriented 2−dimensional manifold and Nn

be a closed sub-manifold of Rm. For q > 2 we define

M := W 2,q
imm(Σ2, Nn) :=

{
~Φ ∈ W 2,q(Σ2, Nn) ; rank (dΦx) = 2 ∀x ∈ Σ2

}

The set W 2,q
imm(Σ2, Nn) as an open subset of the normal Banach Manifold

W 2,q(Σ2, Nn) inherits a Banach Manifold structure. The tangent space
to M at a point ~Φ is the space ΓW 2,q(~Φ−1TNn) of W 2,q−sections of the
bundle ~Φ−1TNn, i.e.

T~ΦM =
{
~w ∈ W 2,q(Σ2,Rm) ; ~w(x) ∈ T~Φ(x)N

n ∀x ∈ Σ2
}

.

We equip T~ΦM with the following norm

‖~v‖~Φ :=
[∫

Σ

[
|∇2~v|2g~Φ + |∇~v|2g~Φ + |~v|2

]q/2
dvolg~Φ

]1/q
+ ‖ |∇~v|g~Φ ‖L∞(Σ)

where we keep denoting, for any j ∈ N, ∇ to be the connection on
(T ∗Σ)⊗j⊗ ~Φ−1TN over Σ defined by ∇ := ∇g~Φ⊗ ~Φ∗∇h and ∇g~Φ is the Levi
Civita connection on (Σ, g~Φ) and ∇h is the Levi-Civita connection on Nn.
We check for instance that ∇2~v defines a C0 section of (T ∗Σ)2 ⊗ ~Φ−1TN .

Observe that, using Sobolev embedding and in particular due to the fact
W 2,q(Σ,Rm) ↪→ C1(Σ,Rm) for q > 2, the norm ‖ · ‖~Φ as a function on the
Banach tangent bundle TM is obviously continuous.

Proposition I.3. The norms ‖ · ‖~Φ defines a C2−Finsler structure on the
spaceM. 2

Proof of proposition I.3. We introduce the following trivialization of
the Banach bundle. For any ~Φ ∈ M we denote P~Φ(x) the orthonormal
projection in Rm onto the n−dimensional vector subspace of Rm given
by T~Φ(x)N

n and for any ~ξ in the ball BMε1
(~Φ) for some ε1 > 0 and any

~v ∈ T~ξM = ΓW 2,q(~ξ−1TN) we assign the map ~w(x) := P~Φ(x)~v(x). It is
straightforward to check that for ε1 > 0 chosen small enough the map
which to ~v assigns ~w is an isomorphism from T~ξM into T~ΦM and that
there exists k~Φ > 1 such that ∀~v ∈ TBMε1

(~Φ)

k−1
~Φ ‖~v‖~ξ ≤ ‖~w‖~Φ ≤ k~Φ ‖~v‖~ξ

This concludes the proof of proposition I.3. 2
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Theorem I.2. [Palais 1970] Let (M, ‖ ·‖) be a Finsler Manifold. Define
onM×M

d(p, q) := inf
ω∈Ωp,q

∫ 1

0

∥∥∥∥∥dωdt
∥∥∥∥∥
ω(t)

dt

where
Ωp,q :=

{
ω ∈ C1([0, 1],M) ; ω(0) = p ω(1) = q

}
.

Then d defines a distance onM and (M, d) defines the same topology as
the one of the Banach Manifold. d is called Palais distance of the Finsler
manifold (M, ‖ · ‖). 2

Contrary to the first appearance the non degeneracy of d is not straight-
forward and requires a proof (see [3]). This last result combined with
theorem I.1 gives the following corollary.

Corollary I.1. Let (M, ‖·‖) be a Finsler Manifold thenM is paracompact.
2

The following result is going to play a central role in this course

Proposition I.4. LetM be the space

W 2,q
imm(Σ2, Nn) :=

{
~Φ ∈ W 2,q(Σ2, Nn) ; rank (dΦx) = 2 ∀x ∈ Σ2

}
where Σ2 is a closed oriented surface and Nn a closed sub-manifold of Rm.
The Finsler Manifold given by the structure

‖~v‖~Φ :=
[∫

Σ

[
|∇2~v|2g~Φ + |∇~v|2g~Φ + |~v|2

]q/2
dvolg~Φ

]1/q
+ ‖ |∇~v|g~Φ ‖L∞(Σ)

is complete for the Palais distance. 2

We have also.

Proposition I.5. For Nn a closed sub-manifold of Rm and p > 1 we define
on

M := W 2,p
imm(S1, Nn) :=

{
~γ ∈ W 2,p(S1, Nn) ; rank (dγx) = 1 ∀x ∈ S1}

the following Finsler structure

‖~v‖~γ :=
[∫
S1

[
|∇2~v|2g~γ + |∇~v|2g~γ + |~v|2

]p/2
dvolg~γ

]1/p

Then (M, ‖ · ‖) is complete for the Palais distance . 2
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We shall present only the proof of proposition I.4. The proof of proposi-
tion th-complete-S1 is very similar and can be found in [2].
Proof of proposition I.4. For any ~Φ ∈ M and ~v ∈ T~ΦM we introduce
the tensor in (T ∗Σ)⊗2 given in coordinates by

∇~v ⊗̇ d~Φ + d~Φ ⊗̇∇~v =
2∑

i,j=1

[
∇∂xi

~v · ∂xj~Φ + ∂xi
~Φ · ∇∂xj

~v
]
dxi ⊗ dxj

=
2∑

i,j=1

[
∇h
∂xi

~Φ~v · ∂xj~Φ + ∂xi
~Φ · ∇h

∂xj
~Φ~v

]
dxi ⊗ dxj

where · denotes the scalar product in Rm. Observe that we have∣∣∣∣∇~v ⊗̇ d~Φ + d~Φ ⊗̇∇~v
∣∣∣∣
g~Φ
≤ 2 |∇~v|g~Φ

Hence, taking a C1 path ~Φs inM one has for ~v := ∂s~Φ

‖|d~v⊗̇d~Φ + d~Φ⊗̇d~v|2g~Φ‖L∞(Σ) =
∥∥∥∥∥∥

2∑
i,j,k,l=1

gij~Φ gkl~Φ ∂s(g~Φ)ik ∂s(g~Φ)jl
∥∥∥∥∥∥
L∞(Σ)

=
∥∥∥∥ |∂s(gijdxi ⊗ dxj)|2g~Φ

∥∥∥∥
L∞(Σ)

=
∥∥∥∥ |∂sg~Φ|2g~Φ

∥∥∥∥
L∞(Σ)

(I.2)
Hence ∫ 1

0

∥∥∥∥ |∂sg~Φ|2g~Φ
∥∥∥∥
L∞(Σ)

ds ≤ 2
∫ 1

0
‖∂s~Φ‖~Φs ds (I.3)

We now use the following lemma

Lemma I.3. Let Ms be a C1 path into the space of positive n by n sym-
metric matrix then the following inequality holds

Tr (M−2(∂sM)2) ≥ ‖∂s logM‖2 = Tr ((∂s logM)2)

Proof of lemma I.3. We write M = expA and we observe that

Tr (exp(−2A)(∂s expA)2) = Tr (∂sA)2

Then the lemma follows. 2

Combining the previous lemma with (I.2) and (I.3) we obtain in a given
chart∫ 1

0
‖∂s log(gij)‖ ds ≤

∫ 1

0

√
Tr ((∂s log gij)2) ds ≤ 2

∫ 1

0
‖∂s~Φ‖~Φs ds (I.4)

This implies that in the given chart the log of the matrix (gij(s)) is uni-
formly bounded for s ∈ [0, 1] and hence ~Φ1 is an immersion. It remains
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to show that it has a controlled W 2,q norm. We introduce p = q/2 and
denote

Hessp(~Φ) :=
∫

Σ
[1 + |∇d~Φ|2g~Φ]p dvolg~Φ

and we compute
d

ds
(Hessp(~Φ)) = p

∫
Σ
∂s|∇d~Φ|2g~Φ [1 + |∇d~Φ|2g~Φ]p−1 dvolg~Φ

+
∫

Σ
[1 + |∇d~Φ|2g~Φ]p ∂s(dvolg~Φ)

(I.5)

Classical computations give

∂s(dvolg~Φ) =
〈
∇∂s~Φ, d~Φ

〉
g~Φ

dvolg~Φ

So we have∣∣∣∣∫Σ
[1 + |∇d~Φ|2g~Φ]p ∂s(dvolg~Φ)

∣∣∣∣ ≤ ‖ |∇∂s~Φ|g~Φ ‖L∞(Σ)

∫
Σ
[1 + |∇d~Φ|2g~Φ]p dvolg~Φ

≤ ‖∂s~Φ‖~Φ
∫
Σ
[1 + |∇d~Φ|2g~Φ]p dvolg~Φ

(I.6)
In local charts we have

|∇d~Φ|2g~Φ =
2∑

i,j,k,l=1
gij~Φ g

kl
~Φ

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

Thus in bounding ∫
Σ ∂s|∇d~Φ|2g~Φ [1 + |∇d~Φ|2g~Φ]p−1 dvolg~Φ we first have to

control terms of the form∣∣∣∣∣∣
∫

Σ

2∑
i,j,k,l=1

∂sg
ij
~Φ g

kl
~Φ

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

[1 + |∇d~Φ|2g~Φ]p−1 dvolg~Φ

∣∣∣∣∣∣
(I.7)

We write
2∑

i,j,k,l=1
∂sg

ij
~Φ g

kl
~Φ

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

=
2∑

i,j,k,l,t,r=1
∂sg

ij
~Φ gjt g

trgkl~Φ

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

= −
2∑

i,j,k,l,=1

 2∑
t,r=1

∂sgjt g
tr

 gij~Φ g
kl
~Φ

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h
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Hence∣∣∣∣∣∣
∫
Σ

2∑
i,j,k,l=1

∂sg
ij
~Φ g

kl
~Φ

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

[1 + |∇d~Φ|2g~Φ]p−1 dvolg~Φ

∣∣∣∣∣∣
≤ ‖ |∂sg~Φ|g~Φ‖L∞(Σ)

∫
Σ

[1 + |∇d~Φ|2g~Φ]p dvolg~Φ

≤ ‖∂s~Φ‖~Φs
∫

Σ
[1 + |∇d~Φ|2g~Φ]p dvolg~Φ

(I.8)
We have also

∂s

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

=
〈
∇h
∂s~Φ

(
∇h
∂xi

~Φ∂xk
~Φ
)
,∇h

∂xj
~Φ∂xl

~Φ
〉
h

+
〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂s~Φ

(
∇h
∂xj

~Φ∂xl
~Φ
)〉

h

By definition we have

∇h
∂s~Φ

(
∇h
∂xi

~Φ∂xk
~Φ
)

= ∇h
∂xi

~Φ

(
∇h
∂s~Φ∂xk

~Φ
)

+Rh(∂xi~Φ, ∂s~Φ)∂xk~Φ

where we have used the fact that [∂s~Φ, ∂xi~Φ] = ~Φ∗[∂s, ∂xi] = 0. Using also
that [∂s~Φ, ∂xk~Φ] = 0, since ∇h is torsion free, we have finally

∇h
∂s~Φ

(
∇h
∂xi

~Φ∂xk
~Φ
)

= ∇h
∂xi

~Φ

(
∇h
∂xk

~Φ∂s
~Φ
)

+Rh(∂xi~Φ, ∂s~Φ)∂xk~Φ (I.9)

where Rh is the Riemann tensor associated to the Levi-Civita connection
∇h. We have

∇h
∂xi

~Φ

(
∇h
∂xk

~Φ∂s
~Φ
)

= (∇h)2
∂xi

~Φ∂xk ~Φ
∂s~Φ +∇h

∇h
∂xi

~Φ
∂xk

~Φ∂s
~Φ (I.10)

Hence〈
∇h
∂s~Φ

(
∇h
∂xi

~Φ∂xk
~Φ
)
,∇h

∂xj
~Φ∂xl

~Φ
〉
h

=
〈

(∇h)2
∂xi

~Φ∂xk ~Φ
∂s~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

+
〈
∇h
∇h
∂xi

~Φ
∂xk

~Φ∂s
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

+
〈
Rh(∂xi~Φ, ∂s~Φ)∂xk~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h

(I.11)
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Combining all the previous gives then∣∣∣∣∣∣
∫
Σ

2∑
i,j,k,l=1

gij~Φ g
kl
~Φ ∂s

〈
∇h
∂xi

~Φ∂xk
~Φ,∇h

∂xj
~Φ∂xl

~Φ
〉
h
dvolg~Φ

∣∣∣∣∣∣
≤ C

∫
Σ

∣∣∣∣∣
〈
∇2∂s~Φ,∇d~Φ

〉
g~Φ

∣∣∣∣∣ [1 + |∇d~Φ|2g~Φ]p−1 dvolg~Φ

+C
∫

Σ
|∇∂s~Φ|g~Φ |∇d~Φ|

2
g~Φ

[1 + |∇d~Φ|2g~Φ]p−1 dvolg~Φ

+C ‖Rh‖L∞(Nn)

∫
Σ
|∂s~Φ|h |∇d~Φ|g~Φ [1 + |∇d~Φ|2g~Φ]p−1 dvolg~Φ

(I.12)

Combining all the above we finally obtain that∣∣∣∣∂sHessp(~Φ)
∣∣∣∣ ≤ C ‖∂s~Φ‖~Φ

[
Hessp(~Φ) + Hessp(~Φ)1−1/2p

]
(I.13)

Combining (I.4) and (I.13) we deduce using Gromwall lemma that if we
take a C1 path from [0, 1) intoM with finite length for the Palais distance
d, the limiting map ~Φ1 is still a W 2,q−immersion of Σ into Nn, which
proves the completeness of (M, d). 2

Definition I.7. LetM be a C2 Finsler Manifold and E be a C1 function
onM. Denote

M∗ := {u ∈M ; DEu 6= 0} .

A pseudo-gradient is a Lipschitz continuous section X : M∗ → TM∗

such that

i)
∀u ∈M∗ ‖X(u)‖u < 2 ‖DEu‖u

ii)
∀u ∈M∗ ‖DEu‖2

u < 〈X(u), DEu〉TuM∗,T ∗uM∗

2

The following result is mostly using the existence of a Lipschitz partition
of unity for any covering of a Finsler Manifold (combine proposition I.2
and corollary I.1).

Proposition I.6. Every C1 function on a Finsler Manifold admits a pseudo-
gradient. 2

The following definition is central in Palais deformation theory.
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Definition I.8. Let E be a C1 function on a Finsler manifold (M, ‖ · ‖)
and β ∈ E(M). On says that E fulfills the Palais-Smale condition at
the level β if for any sequence un staisfying

E(un) −→ β and ‖DEun‖un −→ 0 ,

then there exists a subsequence un′ and u∞ ∈M such that

d(un′, u∞) −→ 0 .

and hence E(u∞) = β and DEu∞ = 0. 2

Example. LetM be W 1,2(S1, Nn) for the Finsler structure given by

∀ ~w ∈ ΓW 1,2(~u−1TNn) ‖~w‖~u := ‖~w‖W 1,2(S1)

Then the Dirichlet Energy satisfies the Palais Smale condition for every
level set. 2

Definition I.9. A family of subsets A ⊂ P(M) of a Banach manifoldM
is called admissible family if for every homeomorphism Ξ ofM isotopic
to the identity we have

∀A ∈ A Ξ(A) ∈ A

2

Example 1. A closed 2 dimensional sub-manifold N 2 of Rm being given
and α ∈ π2(N 2) 6= 0, considering the Banach ManifoldM := W 1,2(S1, N2)
we can take

A :=

u ∈ C0([0, 1],W 1,2(S1, N2)) ; u(0, ·) and u(1, ·) are constant

and u(t, θ) [0, 1]× S1 −→ N 2 realizes α


(I.14)

i.e. for N 2 ' S2 A corresponds to a class of sweep-outs of the form Ωσ0.
2

Example 2. ConsiderM := W 2,q
imm(S2,R3) and take c ∈ π1(Imm(S2,R3)) =

Z2 × Z then the following family is admissible

A :=
{
~Φ ∈ C0([0, 1],W 2,q

imm(S2,R3)) ; ~Φ(0, ·) = ~Φ(1, ·) and [~Φ] = c
}
2

We can now state the main theorem in this section.
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Theorem I.3. [Palais 1970] Let (M, ‖·‖) be a Banach manifold together
with a C1,1−Finsler structure. Assume M is complete for the induced
Palais distance d and let E ∈ C1(M) satisfying the Palais-Smale condition
(PS)β for the level set β. Let A be an admissible family in P(M) such
that

inf
A∈A

sup
u∈A

E(u) = β

then there exists u ∈M satisfying
DEu = 0

E(u) = β
(I.15)

2

Proof of theorem I.3. We argue by contradiction. Assuming there is
no u satisfying (I.1) then Palais Smale condition (PS)β implies
∃ δ0 > 0 ,∃ ε0 > 0 β−ε < E(u) < β+ε =⇒ ‖DEu‖u ≥ δ . (I.16)

Let u ∈ M∗. Because of the Local lipschitz nature of a fixed pseudo-
gradient given by proposition I.6 there exists a maximal time tumax ∈
(0,+∞] such that

dφt(u)
dt

= − X(φt(u)) η(E(φt(u))) in [0, tumax)

φ0(u) = u

where 1 ≥ η(t) ≥ 0 is supported in [β − ε0, β + ε] and is equal to one on
[β − ε0/2, β + ε0/2].
We have for any 0 ≤ t1 < t2 < tumax we have

d(φt1(u), φt2(u)) ≤
∫ t2
t1

∥∥∥∥∥∥dφt(u)
dt

∥∥∥∥∥∥
φt(u)

dt

≤ 2
∫ t2
t1
η(E(φt(u))) ‖DEφt(u)‖φt(u) dt

≤ |t2 − t1|1/2
[∫ t2
t1
η(E(φt(u))) ‖DEφt(u)‖2

φt(u) dt

]1/2

and ∫ t2
t1
η(E(φt(u))) ‖DEφt(u)‖2

φt(u) dt

≤ −
∫ t2
t1
η(E(φt(u)))

〈
X(φt(u)), DEφt(u)

〉
dt

≤ E(φt1(u))− E(φt2(u))
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Hence

d(φt1(u), φt2(u)) ≤ 2 |t2 − t1|1/2 [E(φt1(u))− E(φt2(u))]1/2

Hence, assuming tumax < +∞, φt(u) realizes a Cauchy sequence as t→ tumax.
SinceM is complete, the only possibility for the extinction of the flow is
that limt→tumax φt(u) belongs toM∗. But the flow is constant in time outside
E−1([β − ε0, β + ε]) hence tumax = +∞.

Hence for any t ∈ R+ φt is an homeomorphism of M isotopic to the
identity and, since A is admissible

∀ A ∈ A ∀ t ∈ [0,+∞) φt(A) ∈ A .

Let u now such that β ≤ E(u) ≤ β + ε0/2. For any τ > 0 such that
E(φt(u)) ≥ β − ε0/2 we have (taking δ0 < 1)

− τ δ0 ≤ E(φt(u))− E(u) =
∫ τ

0

dφt(u)
dt

dt ≤ − 2 τ δ2
0

Hence for any τ δ0 ≤ ε0/2 we have2

E(φτ(u)) ≤ E(u)− 2 τ δ2
0 .

In particular
E(φε0/2δ0(u)) ≤ E(u)− δ0 ε0

Choose A ∈ A such that

sup
u∈A

E(u) < β + δ0 ε0

Hence we have for t0 = ε0/2δ0

sup
φt0(u)∈φt0(A)

E(φt0(u)) < β

which is a contradiction. 2

Application. We take M := W 1,2(S1, N2) where N 2 ' S2. Let any
sweep-out ~σ0 of N 2 corresponding to a non zero element of π2(N 2). Then

W~σ0 = inf
~σ∈Ω~σ0∩Λ

max
t∈[0,1]

E(~σ(t, ·))

is achieved by a closed geodesic. This gives a new proof of Birkhoff exis-
tence result. 2

2Observe that this kind of inequality is reminiscent to the condition v) of the definition of Birkhoff curve shortening
process.
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Now, what about surfaces ? The Dirichlet energy of maps into a sub-
manifold of is not satisfying the Palais Smale anymore in 2 dimension. So
Palais Deformation theory does not apply directly to the construction of
minimal surfaces by working with the Dirichlet energy. We would also
like to go beyond the Colding-Minicozzi framework which is restricted to
spheres.
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