Minmax Methods in the Calculus of Variations of Curves and Surfaces

Tristan Rivière*

I Lecture 2

Deformations in Infinite Dimensional Manifolds.

The goal of this section is to present the main lines of Palais deformation theory exposed in [3].

We shall start by recalling some notions from infinite dimensional Banach Manifolds theory that will be useful to us. For a more systematic study we suggest the reader to consult [1].

In this lecture as in the previous one N^{n} denotes a closed C^{∞} submanifold of the Euclidian Space \mathbb{R}^{m}.

We recall that a topological space is Hausdorff if every pair of points can be included in two disjoint open sets containing each exactly one of the two points. A topological space is called normal if for any two disjoint closed sets have disjoint open neighborhoods.

Definition I.1. $A C^{p}$ Banach Manifold \mathcal{M} for $p \in \mathbb{N} \cup\{\infty\}$ is an Hausdorff topological space together with a covering by open sets $\left(U_{i}\right)_{i \in I}$, a family of Banach vector spaces $\left(E_{i}\right)_{i \in I}$ and a family of continuous mappings $\left(\varphi_{i}\right)_{i \in I}$ from U_{i} inton E_{i} such that
i) for every $i \in I$

$$
\varphi_{i} U_{i} \longrightarrow \varphi_{i}\left(U_{i}\right) \quad \text { is an homeomorphism }
$$

ii) for every pair of indices $i \neq j$ in I

$$
\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \subset E_{i} \longrightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right) \subset E_{j}
$$

is a C^{p} diffeomorphism

[^0]Example 1. Let Σ^{k} be a closed oriented k-dimensional manifold and let $l \in \mathbb{N}$ and $p \geq 1$. Define
$\mathcal{M}:=W^{l, p}\left(\Sigma^{k}, N^{n}\right):=\left\{\vec{u} \in W^{l, p}\left(\Sigma^{k}, \mathbb{R}^{m}\right) \quad ; \quad \vec{u}(x) \in N^{n} \quad\right.$ for a.e. $\left.x \in \Sigma^{k}\right\}$ where on Σ^{k} we can choose any arbitrary reference smooth metric, they are all equivalent since Σ^{k} is compact. Assume $\mathbf{l} \mathbf{p}>\mathbf{k}$ then $W^{l, p}\left(\Sigma^{k}, N^{n}\right)$ defines a Banach Manifold. This comes mainly from the fact that, under our assumptions,

$$
\begin{equation*}
W^{l, p}\left(\Sigma^{k}, \mathbb{R}^{m}\right) \quad \hookrightarrow \quad C^{0}\left(\Sigma^{k}, \mathbb{R}^{m}\right) \tag{I.1}
\end{equation*}
$$

The Banach manifold structure is then defined as follows. Choose $\delta>0$ such that each geodesic ball $B_{\delta}^{N^{n}}(z)$ for any $z \in N^{n}$ is strictly convex and the exponential map

$$
\exp _{z}: V_{z} \subset T_{z} N^{n} \longrightarrow B_{\delta}^{N^{n}}(z)
$$

realizes a C^{∞} diffeomorphism for some open neighborhood of the origin in $T_{z} N^{n}$ into the geodesic ball $B_{\delta}^{N^{n}}(z)$. Because of the embedding (I.1) there exists $\varepsilon_{0}>0$ such that

$$
\begin{gathered}
\forall \vec{u}, \vec{v} \in W^{l, p}\left(\Sigma^{k}, N^{n}\right) \quad\|\vec{u}-\vec{v}\|_{W^{l, p}}<\varepsilon_{0} \\
\Longrightarrow \quad\left\|\operatorname{dist}_{N}(\vec{u}(x), \vec{v}(x))\right\|_{L^{\infty}\left(\Sigma^{k}\right)}<\delta .
\end{gathered}
$$

We equip the space $W^{l, p}\left(\Sigma^{k}, N^{n}\right)$ with the $W^{l, p}$ norm which makes it a metric space and for any $\vec{u} \in \mathcal{M}=W^{l, p}\left(\Sigma^{k}, N^{n}\right)$ we denote by $B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{u})$ the open ball in \mathcal{M} of center \vec{u} and radius ε_{0}.

As a covering of \mathcal{M} we take $\left(B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{u})\right)_{\vec{u} \in \mathcal{M}}$. We denote by

$$
E^{\vec{u}}:=\Gamma_{W^{l, p}}\left(\vec{u}^{-1} T N\right):=\left\{\vec{w} \in W^{l, p}\left(\Sigma^{k}, \mathbb{R}^{m}\right) ; \vec{w}(x) \in T_{\vec{u}(x)} N^{n} \forall x \in \Sigma^{k}\right\}
$$

this is the Banach space of $W^{l, p}$-sections of the bundle $\vec{u}^{-1} T N$ and for any $\vec{u} \in \mathcal{M}$ and $\vec{v} \in B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{u})$ we define $\vec{w} \vec{u}(\vec{v})$ to be the following element of $E^{\vec{u}}$

$$
\forall x \in \Sigma \quad \vec{w} \vec{u}(\vec{v})(x):=\exp _{\vec{u}(x)}^{-1}(\vec{v}(x))
$$

It is not difficult to see that

$$
\vec{w}^{\vec{v}} \circ\left(\vec{w}^{\vec{u}}\right)^{-1}: \vec{w}^{u}\left(B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{u}) \cap B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{v})\right) \longrightarrow \vec{w}^{v}\left(B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{u}) \cap B_{\varepsilon_{0}}^{\mathcal{M}}(\vec{v})\right)
$$

defines a C^{∞} diffeomorphism.

The goal of the present section is to construct, for C^{1} lagrangians on some special Banach manifolds, a substitute to the gradient of such lagrangian in order to be able to deform each level set to a lower level set if there is no critical point in between. The strategy for constructing such pseudo-gradient will consist in pasting together "pieces" using partitions of unity of suitable regularity. To that aim we introduce the following notion.
Definition I.2. A topological Hausdorff space is called paracompact if every open covering admits a locally finite ${ }^{1}$ open refinement.

We have the following result
Theorem I.1. [Stones 1948] Every metric space is paracompact.
There is a more restrictive "separation axiom" for topological spaces than being Hausdorff which is called normal.

Definition I.3. A topological space is called normal if any pair of disjoint closed sets have disjoint open neighborhoods.
we have the following proposition

Proposition I.1. Every Hausdorff paracompact space is normal.

We have the following important lemma (which looks obvious but requires a proof in infinite dimension)
Lemma I.1. Let \mathcal{M} be a normal Banach Manifold and let (U, φ) be a chart on \mathcal{M}, i.e. $U \subset \mathcal{M}$ is an open subset of \mathcal{M} and φ is an homeomorphism from U into an open set $\varphi(U) \subset E$ of a Banach Space $\left(E,\|\cdot\|_{E}\right)$. For any $x_{0} \in U$ and for r small enough

$$
B_{\varphi}\left(x_{0}, r\right):=\left\{y \in U ;\left\|\varphi\left(x_{0}\right)-\varphi(y)\right\|_{E} \leq r\right\}=\varphi^{-1}\left(\overline{B_{r}^{E}\left(x_{0}\right)}\right)
$$

is closed in \mathcal{M} and it's interior is given by

$$
B_{\varphi}^{i n t}\left(x_{0}, r\right):=\left\{y \in U ;\left\|\varphi\left(x_{0}\right)-\varphi(y)\right\|_{E}<r\right\}=\varphi^{-1}\left(B_{r}^{E}\left(x_{0}\right)\right)
$$

Proof of lemma I.1. Since the Banach manifold is assumed to be normal there exists two disjoint open sets V_{1} and V_{2} such that $\mathcal{M} \backslash U \subset V_{1}$ and $x_{0} \in V_{2}$. Since φ is an homeomorphism, the preimage by φ^{-1} of V_{2} is open

[^1]in the Banach space E. Choose now radii $r>0$ small enough such that $\overline{B_{r}^{E}\left(x_{0}\right)} \subset \varphi\left(V_{2}\right)$, hence for such a r we have that
$$
\mathcal{M} \backslash B_{\varphi}\left(x_{0}, r\right)=V_{1} \cup \phi^{-1}\left(E \backslash \overline{B_{r}^{E}\left(x_{0}\right)}\right)
$$

So $\mathcal{M} \backslash B_{\varphi}\left(x_{0}, r\right)$ is the union of two open sets. It is then open and $B_{\varphi}\left(x_{0}, r\right)$ is closed in \mathcal{M}.

Remark I.1. As counter intuitive as it could be at a first glance, there are counter-examples of the closure of $\varphi^{-1}\left(\overline{B_{r}^{E}(x)}\right)$ when r is not assumed to be small enough and even with $\overline{B_{r}^{E}(x)} \subset \varphi(U)$! (see for instance [3]).

We shall need the following lemma
Lemma I.2. Let \mathcal{M} be a normal Banach Manifold and let (U, φ) be a chart on \mathcal{M}, i.e. $U \subset \mathcal{M}$ is an open subset of \mathcal{M} and φ is an homeomorphism from U into an open set $\varphi(U) \subset E$ of a Banach Space $\left(E,\|\cdot\|_{E}\right)$. For any $x_{0} \in U$ and for r small enough such that $\varphi^{-1}\left(\overline{B_{r}^{E}\left(x_{0}\right)}\right)$ is closed and included in U according to lemma I. 1 then the function defined by

$$
\left\{\begin{array}{l}
\forall x \in U \quad g(x):=\inf \left\{\|\varphi(x)-\varphi(y)\|_{E} \quad ; \quad y \in U \backslash \varphi^{-1}\left(B_{r}^{E}\left(x_{0}\right)\right)\right\} \\
\forall x \in \mathcal{M} \backslash U \quad g(x)=0
\end{array}\right.
$$

is locally Lipschitz on \mathcal{M} and strictly positive exactly on $\varphi^{-1}\left(B_{r}^{E}\left(x_{0}\right)\right)$.
Proof of lemma I.2. First of all we prove that g is globally lipschitz on U. Let $x, y \in U$ and let $\varepsilon>0$. Choose $z \in U \backslash \varphi^{-1}\left(B_{r}^{E}\left(x_{0}\right)\right)$ such that

$$
\|\varphi(x)-\varphi(z)\|_{E}<g(x)+\varepsilon
$$

We have by definition

$$
\|\varphi(y)-\varphi(z)\|_{E} \geq g(y)
$$

Combining the two previous inequalities give

$$
\begin{aligned}
g(y) & -g(x) \leq\|\varphi(y)-\varphi(z)\|_{E}-\|\varphi(y)-\varphi(z)\|_{E}+\varepsilon \\
& \leq\|\varphi(y)-\varphi(x)\|_{E}+\varepsilon
\end{aligned}
$$

exchanging the role of x and y gives the lipschitzianity of g on U. Take now $y \notin U$ since $\mathcal{M} \backslash U$ and $\varphi^{-1}\left(\overline{B_{r}^{E}\left(x_{0}\right)}\right)$ are closed and disjoint, since $\varphi^{-1}\left(\overline{B_{r}^{E}\left(x_{0}\right)}\right) \subset U$, the normality of \mathcal{M} gives the existence of two disjoint open neighborhoods containing respectively $\mathcal{M} \backslash U$ and $\varphi^{-1}\left(\overline{B_{r}^{E}\left(x_{0}\right)}\right)$.

Hence there exists an open neighborhood of y which does not intersect $\varphi^{-1}\left(\overline{B_{r}^{E}\left(x_{0}\right)}\right)$ and on which g is identically zero. This implies the local lipschitzianity of g.

One of the reasons why we care about paracompactness in our context comes from the following property.

Proposition I.2. Let $\left(\mathcal{O}_{\alpha}\right)_{\alpha \in A}$ be an arbitrary covering of a C^{1} paracompact Banach manifold \mathcal{M}. Then there exists a locally lipschitz partition of unity subordinated to $\left(\mathcal{O}_{\alpha}\right)_{\alpha \in A}$, i.e. there exists $\left(\phi_{\alpha}\right)_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that
i)

$$
\operatorname{Supp}\left(\phi_{\alpha}\right) \subset \mathcal{O}_{\alpha}
$$

ii)

$$
\phi_{\alpha} \geq 0
$$

iii)

$$
\sum_{\alpha \in A} \phi_{\alpha} \equiv 1
$$

where the sum is locally finite.

Proof of proposition I.2. To each point x in \mathcal{O}_{α} we assign an open neighborhood of the form $\varphi_{i}^{-1}\left(B_{r}^{E_{i}}(\varphi(x))\right.$) included in \mathcal{O}_{α} for r small enough given by lemma I.1. From the total union of all the families

$$
\left(\varphi_{i}^{-1}\left(B_{r}^{E_{i}}(\varphi(x))\right)\right)_{x \in \mathcal{O}_{\alpha}}
$$

where $\alpha \in A$ we extract a locally finite sub covering that we denote $\left(\varphi_{i}^{-1}\left(B_{r}^{E_{i}}\left(\varphi\left(x_{i}\right)\right)\right)\right)_{i \in I_{\alpha}}$ and $\alpha \in A$ (we can have possibly $I_{\alpha}=\emptyset$). To each open set $\varphi_{i}^{-1}\left(B_{r}^{E_{i}}\left(\varphi\left(x_{i}\right)\right)\right)$ we assign the function g_{α}^{i} given by lemma I. 2 which happens to be strictly positive on $\varphi_{i}^{-1}\left(B_{r}^{E_{i}}\left(\varphi\left(x_{i}\right)\right)\right)$ and zero outside. The functions g_{α}^{i} are locally lipschitz and since the family $\left(\varphi_{i}^{-1}\left(B_{r}^{E_{i}}\left(\varphi\left(x_{i}\right)\right)\right)\right)_{i \in I_{\alpha}}$ is locally finite, $\sum_{\alpha} \sum_{i \in I_{\alpha}} g_{\alpha}^{i}$ is locally lipschitz too. we take

$$
\phi_{\alpha}:=\frac{\sum_{i \in I_{\alpha}} g_{\alpha}^{i}}{\sum_{\alpha \in A} \sum_{i \in I_{\alpha}} g_{\alpha}^{i}}
$$

with the convention that $\phi_{\alpha} \equiv 0$ on \mathcal{M} if $I_{\alpha}=\emptyset$. The family $\left(\phi_{\alpha}\right)_{\alpha \in A}$ solves i), ii) and iii) and proposition I.2.

We introduce more structures in order to be able to perform deformations in Banach Manifolds.

Definition I.4. A Banach manifold \mathcal{V} is called $C^{p}-$ Banach Space Bundle over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M}, a covering $\left(U_{i}\right)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1} U_{i}$ into $U_{i} \times E$ such that the following diagram commutes

$$
\begin{aligned}
\pi^{-1} U_{i} & \xrightarrow{\tau_{i}} \\
\pi & U_{i} \times E \\
\pi & \downarrow \rho \\
& U_{i}
\end{aligned}
$$

where ρ is the canonical projection from $U_{i} \times E$ onto U_{i}. The restriction of τ_{i} on each fiber $\mathcal{V}_{x}:=\pi^{-1}(\{x\})$ for $x \in U_{i}$ realizes a continuous isomorphism onto E_{i}. Moreover the map

$$
\left.x \in U_{i} \cap U_{j} \longrightarrow \tau_{i} \circ \tau_{j}^{-1}\right|_{\pi^{-1}(x)} \in \mathcal{L}(E, E)
$$

is C^{p}.
Definition I.5. Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a $B a-$ nach Space Bundle over \mathcal{M}. A Finsler structure on \mathcal{V} is a continuous function

$$
\|\cdot\|: \mathcal{V} \longrightarrow \mathbb{R}
$$

such that for any $x \in \mathcal{M}$

$$
\|\cdot\|_{x}:=\|\cdot\| \|_{\pi^{-1}(\{x\})} \quad \text { is a norm on } \mathcal{V}_{x} .
$$

Moreover for any local trivialization τ_{i} over U_{i} and for any $x_{0} \in U_{i}$ we define on \mathcal{V}_{x} the following norm

$$
\forall \vec{w} \in \pi^{-1}(\{x\}) \quad\|\vec{w}\|_{x_{0}}:=\left\|\tau_{i}^{-1}\left(x_{0}, \rho\left(\tau_{i}(\vec{w})\right)\right)\right\|_{x_{0}}
$$

and there exists $C_{x_{0}}>1$ such that

$$
\forall x \in U_{i} \quad C_{x_{0}}^{-1}\|\cdot\|_{x} \leq\|\cdot\|_{x_{0}} \leq C_{x_{0}}\|\cdot\|_{x} .
$$

Definition I.6. Let \mathcal{M} be a normal C^{p} Banach manifold. $T \mathcal{M}$ equipped with a Finsler structure is called a Finsler Manifold.

Remark I.2. A Finsler structure on $T \mathcal{M}$ defines in a canonical way a dual Finsler structure on $T^{*} \mathcal{M}$.

Example. Let Σ^{2} be a closed oriented $2-$ dimensional manifold and N^{n} be a closed sub-manifold of \mathbb{R}^{m}. For $q>2$ we define

$$
\mathcal{M}:=W_{i m m}^{2, q}\left(\Sigma^{2}, N^{n}\right):=\left\{\vec{\Phi} \in W^{2, q}\left(\Sigma^{2}, N^{n}\right) ; \operatorname{rank}\left(d \Phi_{x}\right)=2 \quad \forall x \in \Sigma^{2}\right\}
$$

The set $W_{i m m}^{2, q}\left(\Sigma^{2}, N^{n}\right)$ as an open subset of the normal Banach Manifold $W^{2, q}\left(\Sigma^{2}, N^{n}\right)$ inherits a Banach Manifold structure. The tangent space to \mathcal{M} at a point $\vec{\Phi}$ is the space $\Gamma_{W^{2, q}}\left(\vec{\Phi}^{-1} T N^{n}\right)$ of $W^{2, q}$-sections of the bundle $\vec{\Phi}^{-1} T N^{n}$, i.e.

$$
T_{\vec{\Phi}} \mathcal{M}=\left\{\vec{w} \in W^{2, q}\left(\Sigma^{2}, \mathbb{R}^{m}\right) ; \vec{w}(x) \in T_{\vec{\Phi}(x)} N^{n} \quad \forall x \in \Sigma^{2}\right\} .
$$

We equip $T_{\vec{\Phi}} \mathcal{M}$ with the following norm

$$
\|\vec{v}\|_{\vec{\Phi}}:=\left[\int_{\Sigma}\left[\left|\nabla^{2} \vec{v}\right|_{g_{\vec{\rightharpoonup}}}^{2}+|\nabla \vec{v}|_{g_{\overrightarrow{\bar{W}}}}^{2}+|\vec{v}|^{2}\right]^{q / 2} d \operatorname{vol}_{g_{\overrightarrow{\bar{p}}}}\right]^{1 / q}+\left\||\nabla \vec{v}|_{g_{\overrightarrow{\bar{w}}}}\right\|_{L^{\infty}(\Sigma)}
$$

where we keep denoting, for any $j \in \mathbb{N}, \nabla$ to be the connection on $\left(T^{*} \Sigma\right)^{\otimes^{j}} \otimes \vec{\Phi}^{-1} T N$ over Σ defined by $\nabla:=\nabla^{g_{\vec{a}}} \otimes \vec{\Phi}^{*} \nabla^{h}$ and $\nabla^{g_{\bar{\Phi}}}$ is the Levi Civita connection on $\left(\Sigma, g_{\vec{\Phi}}\right)$ and ∇^{h} is the Levi-Civita connection on N^{n}. We check for instance that $\nabla^{2} \vec{v}$ defines a C^{0} section of $\left(T^{*} \Sigma\right)^{2} \otimes \vec{\Phi}^{-1} T N$.

Observe that, using Sobolev embedding and in particular due to the fact $W^{2, q}\left(\Sigma, \mathbb{R}^{m}\right) \hookrightarrow C^{1}\left(\Sigma, \mathbb{R}^{m}\right)$ for $q>2$, the norm $\|\cdot\|_{\vec{\Phi}}$ as a function on the Banach tangent bundle $T \mathcal{M}$ is obviously continuous.

Proposition I.3. The norms $\|\cdot\|_{\vec{\Phi}}$ defines a $C^{2}-$ Finsler structure on the space \mathcal{M}.

Proof of proposition I.3. We introduce the following trivialization of the Banach bundle. For any $\vec{\Phi} \in \mathcal{M}$ we denote $P_{\vec{\Phi}(x)}$ the orthonormal projection in \mathbb{R}^{m} onto the n-dimensional vector subspace of \mathbb{R}^{m} given by $T_{\vec{\Phi}(x)} N^{n}$ and for any $\vec{\xi}$ in the ball $B_{\varepsilon_{1}}^{\mathcal{M}}(\vec{\Phi})$ for some $\varepsilon_{1}>0$ and any $\vec{v} \in T_{\vec{\xi}} \mathcal{M}=\Gamma_{W^{2, q}}\left(\vec{\xi}^{-1} T N\right)$ we assign the map $\vec{w}(x):=P_{\vec{\Phi}(x)} \vec{v}(x)$. It is straightforward to check that for $\varepsilon_{1}>0$ chosen small enough the map which to \vec{v} assigns \vec{w} is an isomorphism from $T_{\vec{\xi}} \mathcal{M}$ into $T_{\vec{\Phi}} \mathcal{M}$ and that there exists $k_{\vec{\Phi}}>1$ such that $\forall \vec{v} \in T B_{\varepsilon_{1}}^{\mathcal{M}}(\vec{\Phi})$

$$
k_{\vec{\Phi}}^{-1}\|\vec{v}\|_{\vec{\xi}} \leq\|\vec{w}\|_{\vec{\Phi}} \leq k_{\vec{\Phi}}\|\vec{v}\|_{\vec{\xi}}
$$

This concludes the proof of proposition I.3.

Theorem I.2. [Palais 1970] Let $(\mathcal{M},\|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$
d(p, q):=\inf _{\omega \in \Omega_{p, q}} \int_{0}^{1}\left\|\frac{d \omega}{d t}\right\|_{\omega(t)} d t
$$

where

$$
\Omega_{p, q}:=\left\{\omega \in C^{1}([0,1], \mathcal{M}) ; \omega(0)=p \quad \omega(1)=q\right\} .
$$

Then d defines a distance on \mathcal{M} and (\mathcal{M}, d) defines the same topology as the one of the Banach Manifold. d is called Palais distance of the Finsler manifold $(\mathcal{M},\|\cdot\|)$.

Contrary to the first appearance the non degeneracy of d is not straightforward and requires a proof (see [3]). This last result combined with theorem I. 1 gives the following corollary.

Corollary I.1. Let $(\mathcal{M},\|\cdot\|)$ be a Finsler Manifold then \mathcal{M} is paracompact.

The following result is going to play a central role in this course
Proposition I.4. Let \mathcal{M} be the space

$$
W_{i m m}^{2, q}\left(\Sigma^{2}, N^{n}\right):=\left\{\vec{\Phi} \in W^{2, q}\left(\Sigma^{2}, N^{n}\right) ; \operatorname{rank}\left(d \Phi_{x}\right)=2 \quad \forall x \in \Sigma^{2}\right\}
$$

where Σ^{2} is a closed oriented surface and N^{n} a closed sub-manifold of \mathbb{R}^{m}. The Finsler Manifold given by the structure

$$
\|\vec{v}\|_{\vec{\Phi}}:=\left[\int_{\Sigma}\left[\left|\nabla^{2} \vec{v}\right|_{g_{\vec{\rightharpoonup}}}^{2}+|\nabla \vec{v}|_{g_{\vec{\rightharpoonup}}}^{2}+|\vec{v}|^{2}\right]^{q / 2} \operatorname{dvol}_{g_{\vec{\rightharpoonup}}}\right]^{1 / q}+\left\||\nabla \vec{v}|_{g_{\vec{\rightharpoonup}}}\right\|_{L^{\infty}(\Sigma)}
$$

is complete for the Palais distance.
We have also.
Proposition I.5. For N^{n} a closed sub-manifold of \mathbb{R}^{m} and $p>1$ we define on

$$
\mathcal{M}:=W_{i m m}^{2, p}\left(S^{1}, N^{n}\right):=\left\{\vec{\gamma} \in W^{2, p}\left(S^{1}, N^{n}\right) ; \operatorname{rank}\left(d \gamma_{x}\right)=1 \quad \forall x \in S^{1}\right\}
$$

the following Finsler structure

$$
\|\vec{v}\|_{\vec{\gamma}}:=\left[\int_{S^{1}}\left[\left|\nabla^{2} \vec{v}\right|_{g_{\vec{\gamma}}}^{2}+|\nabla \vec{v}|_{g_{\vec{\gamma}}}^{2}+|\vec{v}|^{2}\right]^{p / 2} \operatorname{dvol}_{g_{\vec{\gamma}}}\right]^{1 / p}
$$

Then $(\mathcal{M},\|\cdot\|)$ is complete for the Palais distance .

We shall present only the proof of proposition I.4. The proof of proposition th-complete-S1 is very similar and can be found in [2].
Proof of proposition I.4. For any $\vec{\Phi} \in \mathcal{M}$ and $\vec{v} \in T_{\vec{\Phi}} \mathcal{M}$ we introduce the tensor in $\left(T^{*} \Sigma\right)^{\otimes^{2}}$ given in coordinates by

$$
\begin{gathered}
\nabla \vec{v} \dot{\otimes} d \vec{\Phi}+d \vec{\Phi} \dot{\otimes} \nabla \vec{v}=\sum_{i, j=1}^{2}\left[\nabla_{\partial_{x_{i}}} \vec{v} \cdot \partial_{x_{j}} \vec{\Phi}+\partial_{x_{i}} \vec{\Phi} \cdot \nabla_{\partial_{x_{j}}} \vec{v}\right] d x_{i} \otimes d x_{j} \\
=\sum_{i, j=1}^{2}\left[\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \vec{v} \cdot \partial_{x_{j}} \vec{\Phi}+\partial_{x_{i}} \vec{\Phi} \cdot \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \vec{v}\right] d x_{i} \otimes d x_{j}
\end{gathered}
$$

where • denotes the scalar product in \mathbb{R}^{m}. Observe that we have

$$
|\nabla \vec{v} \dot{\otimes} d \vec{\Phi}+d \vec{\Phi} \dot{\otimes} \nabla \vec{v}|_{g_{\vec{\Phi}}} \leq 2|\nabla \vec{v}|_{g_{\vec{\Phi}}}
$$

Hence, taking a C^{1} path $\vec{\Phi}_{s}$ in \mathcal{M} one has for $\vec{v}:=\partial_{s} \vec{\Phi}$

$$
\begin{align*}
& \left\||d \vec{v} \dot{\otimes} d \vec{\Phi}+d \vec{\Phi} \dot{\otimes} d \vec{v}|_{g_{\vec{\Phi}}}^{2}\right\|_{L^{\infty}(\Sigma)}=\left\|\sum_{i, j, k, l=1}^{2} g_{\dot{\Phi}}^{i j} g_{\dot{\Phi}}^{k l} \partial_{s}\left(g_{\vec{\Phi}}\right)_{i k} \partial_{s}\left(g_{\vec{\Phi}}\right)_{j l}\right\|_{L^{\infty}(\Sigma)} \\
& \quad=\left\|\left|\partial_{s}\left(g_{i j} d x_{i} \otimes d x_{j}\right)\right|_{g_{\vec{\Phi}}}^{2}\right\|_{L^{\infty}(\Sigma)}=\left\|\left|\partial_{s} g_{\vec{\Phi}}\right|_{g_{\vec{\Phi}}}^{2}\right\|_{L^{\infty}(\Sigma)} \tag{I.2}
\end{align*}
$$

Hence

$$
\begin{equation*}
\int_{0}^{1}\left\|\left|\partial_{s} g_{\vec{\Phi}}\right|_{g_{\vec{\Phi}}}^{2}\right\|_{L^{\infty}(\Sigma)} d s \leq 2 \int_{0}^{1}\left\|\partial_{s} \vec{\Phi}\right\|_{\vec{\Phi}_{s}} d s \tag{I.3}
\end{equation*}
$$

We now use the following lemma
Lemma I.3. Let M_{s} be a C^{1} path into the space of positive n by n symmetric matrix then the following inequality holds

$$
\operatorname{Tr}\left(M^{-2}\left(\partial_{s} M\right)^{2}\right) \geq\left\|\partial_{s} \log M\right\|^{2}=\operatorname{Tr}\left(\left(\partial_{s} \log M\right)^{2}\right)
$$

Proof of lemma I.3. We write $M=\exp A$ and we observe that

$$
\operatorname{Tr}\left(\exp (-2 A)\left(\partial_{s} \exp A\right)^{2}\right)=\operatorname{Tr}\left(\partial_{s} A\right)^{2}
$$

Then the lemma follows.
Combining the previous lemma with (I.2) and (I.3) we obtain in a given chart

$$
\begin{equation*}
\int_{0}^{1}\left\|\partial_{s} \log \left(g_{i j}\right)\right\| d s \leq \int_{0}^{1} \sqrt{\operatorname{Tr}\left(\left(\partial_{s} \log g_{i j}\right)^{2}\right)} d s \leq 2 \int_{0}^{1}\left\|\partial_{s} \vec{\Phi}\right\|_{\vec{\Phi}_{s}} d s \tag{I.4}
\end{equation*}
$$

This implies that in the given chart the log of the matrix $\left(g_{i j}(s)\right)$ is uniformly bounded for $s \in[0,1]$ and hence $\vec{\Phi}_{1}$ is an immersion. It remains
to show that it has a controlled $W^{2, q}$ norm. We introduce $p=q / 2$ and denote

$$
\operatorname{Hess}_{p}(\vec{\Phi}):=\int_{\Sigma}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{W}}}^{2}\right]^{p} d \text { vol }_{g_{\vec{\Phi}}}
$$

and we compute

$$
\begin{align*}
& \frac{d}{d s}\left(\operatorname{Hess}_{p}(\vec{\Phi})\right)=p \int_{\Sigma} \partial_{s}|\nabla d \vec{\Phi}|_{g_{\overrightarrow{\bar{W}}}}^{2}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right]^{p-1} \text { dvol }_{g_{\overrightarrow{\bar{T}}}} \tag{I.5}\\
& \quad+\int_{\Sigma}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right)^{p} \partial_{s}\left(d \operatorname{vol}_{g_{\vec{\Phi}}}\right)
\end{align*}
$$

Classical computations give

$$
\partial_{s}\left(d v o l_{g_{\vec{\Phi}}}\right)=\left\langle\nabla \partial_{s} \vec{\Phi}, d \vec{\Phi}\right\rangle_{g_{\vec{\Phi}}} \text { dvol }_{g_{\vec{\Phi}}}
$$

So we have

$$
\begin{gather*}
\left|\int_{\Sigma}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right]^{p} \partial_{s}\left(d v o l_{g_{\vec{\Phi}}}\right)\right| \leq\left\|\left|\nabla \partial_{s} \vec{\Phi}\right|_{g_{\vec{\Phi}}}\right\|_{L^{\infty}(\Sigma)} \int_{\Sigma}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right]^{p} d v o l_{g_{\vec{\Phi}}} \\
\leq\left\|\partial_{s} \vec{\Phi}\right\|_{\vec{\Phi}} \int_{\Sigma}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right]^{p} d v o l_{g_{\vec{\Phi}}} \tag{I.6}
\end{gather*}
$$

In local charts we have

$$
|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}=\sum_{i, j, k, l=1}^{2} g_{\bar{\Phi}}^{i j} g_{\vec{\Phi}}^{k l}\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h}
$$

Thus in bounding $\int_{\Sigma} \partial_{s}|\nabla d \vec{\Phi}|_{g_{\vec{\sigma}}}^{2}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right]^{p-1}$ dvol $_{g_{\vec{\Phi}}}$ we first have to control terms of the form

$$
\begin{equation*}
\left|\int_{\Sigma_{i, j, k, l=1}} \sum_{s}^{2} \partial_{s} g_{\vec{\Phi}}^{i j} g_{\vec{\Phi}}^{k l}\left\langle\nabla_{\partial_{x_{i}} \overrightarrow{\bar{\phi}}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h}\left[1+|\nabla d \vec{\Phi}|_{g_{\overrightarrow{\bar{W}}}}^{2}\right]^{p-1} d v o l_{g_{\vec{\Phi}}}\right| \tag{I.7}
\end{equation*}
$$

We write

$$
\begin{aligned}
& \sum_{i, j, k, l=1}^{2} \partial_{s} g_{\vec{\Phi}}^{i j} g_{\vec{\Phi}}^{k l}\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h} \\
& \quad=\sum_{i, j, k, l, t, r=1}^{2} \partial_{s} g_{\vec{\Phi}}^{i j} g_{j t} g^{t r} g_{\vec{\Phi}}^{k l}\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h} \\
& \quad=-\sum_{i, j, k, l,=1}^{2}\left(\sum_{t, r=1}^{2} \partial_{s} g_{j t} g^{t r}\right) g_{\vec{\Phi}}^{i j} g_{\vec{\Phi}}^{k l}\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h}
\end{aligned}
$$

Hence

$$
\begin{align*}
& \left|\int_{\Sigma} \sum_{i, j, k, l=1}^{2} \partial_{s} g_{\vec{\Phi}}^{i j} g_{\vec{\Phi}}^{k l}\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{W}}}^{2}\right]^{p-1} d v o l_{g_{\vec{\Phi}}}\right| \\
& \quad \leq\left\|\left|\partial_{s} g_{\vec{\Phi}}\right|_{g_{\vec{W}}}\right\|_{L^{\infty}(\Sigma)} \int_{\Sigma}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{T}}}^{2}{ }^{p} \text { dvol }_{g_{\vec{\rightharpoonup}}}\right. \\
& \quad \leq\left\|\partial_{s} \vec{\Phi}\right\|_{\vec{\Phi}_{s}} \int_{\Sigma}\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right]^{p} \text { dvol }_{g_{\vec{\rightharpoonup}}} \tag{I.8}
\end{align*}
$$

We have also

$$
\begin{aligned}
& \partial_{s}\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h} \\
& \quad=\left\langle\nabla_{\partial_{s} \vec{\Phi}}^{h}\left(\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}\right), \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h}+\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{s} \vec{\Phi}}^{h}\left(\nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right)\right\rangle_{h}
\end{aligned}
$$

By definition we have

$$
\nabla_{\partial_{s} \vec{\Phi}}^{h}\left(\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}\right)=\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h}\left(\nabla_{\partial_{s} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}\right)+R^{h}\left(\partial_{x_{i}} \vec{\Phi}, \partial_{s} \vec{\Phi}\right) \partial_{x_{k}} \vec{\Phi}
$$

where we have used the fact that $\left[\partial_{s} \vec{\Phi}, \partial_{x_{i}} \vec{\Phi}\right]=\vec{\Phi}_{*}\left[\partial_{s}, \partial_{x_{i}}\right]=0$. Using also that $\left[\partial_{s} \vec{\Phi}, \partial_{x_{k}} \vec{\Phi}\right]=0$, since ∇^{h} is torsion free, we have finally

$$
\begin{equation*}
\nabla_{\partial_{s} \vec{\Phi}}^{h}\left(\nabla_{\partial_{x_{i}} \vec{T}}^{h} \partial_{x_{k}} \vec{\Phi}\right)=\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h}\left(\nabla_{\partial_{x_{k}} \vec{\Phi}}^{h} \partial_{s} \vec{\Phi}\right)+R^{h}\left(\partial_{x_{i}} \vec{\Phi}, \partial_{s} \vec{\Phi}\right) \partial_{x_{k}} \vec{\Phi} \tag{I.9}
\end{equation*}
$$

where R^{h} is the Riemann tensor associated to the Levi-Civita connection ∇^{h}. We have

$$
\begin{equation*}
\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h}\left(\nabla_{\partial_{x_{k}} \vec{\varphi}}^{h} \partial_{s} \vec{\Phi}\right)=\left(\nabla^{h}\right)_{\partial_{x_{i}} \vec{\Phi} \partial_{x_{k}} \vec{\Phi}}^{2} \partial_{s} \vec{\Phi}+\nabla_{\nabla_{\partial_{x_{i}} \bar{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}}^{h} \partial_{s} \vec{\Phi} \tag{I.10}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \left\langle\nabla_{\partial_{s} \vec{\Phi}}^{h}\left(\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}\right), \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h}=\left\langle\left(\nabla^{h}\right)_{\partial_{x_{i}} \vec{\Phi} \partial_{x_{k}} \vec{\Phi}}^{2} \partial_{s} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h} \\
& \quad+\left\langle\nabla_{\nabla_{\partial_{x_{i}} \dot{\psi}}^{h} \partial_{x_{k}} \vec{\Phi}} \partial_{s} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h}+\left\langle R^{h}\left(\partial_{x_{i}} \vec{\Phi}, \partial_{s} \vec{\Phi}\right) \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{T}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h} \tag{I.11}
\end{align*}
$$

Combining all the previous gives then

$$
\begin{align*}
& \mid \int_{\Sigma} \sum_{i, j, k, l=1}^{2} g_{\vec{\Phi}}^{i j} g_{\vec{\Phi}}^{k l} \partial_{s}\left\langle\nabla_{\partial_{x_{i}} \vec{\Phi}}^{h} \partial_{x_{k}} \vec{\Phi}, \nabla_{\partial_{x_{j}} \vec{\Phi}}^{h} \partial_{x_{l}} \vec{\Phi}\right\rangle_{h} d \text { vol } g_{g_{\vec{\Phi}}} \mid \\
& \leq C \int_{\Sigma}\left|\left\langle\nabla^{2} \partial_{s} \vec{\Phi}, \nabla d \vec{\Phi}\right\rangle_{g_{\vec{\Phi}}}\right|\left[1+|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}^{2}\right]^{p-1} d v o l_{g_{\vec{\Phi}}} \tag{I.12}\\
& +C \int_{\Sigma}\left|\nabla \partial_{s} \vec{\Phi}\right|_{g_{\vec{\Phi}}}|\nabla d \vec{\Phi}|_{g_{\vec{W}}}^{2}\left[1+|\nabla d \vec{\Phi}|_{g_{\overrightarrow{\bar{W}}}^{2}}^{2}\right]^{p-1} d v o l_{g_{\vec{\Phi}}} \\
& +C\left\|R^{h}\right\|_{L^{\infty}\left(N^{n}\right)} \int_{\Sigma}\left|\partial_{s} \vec{\Phi}\right|_{h}|\nabla d \vec{\Phi}|_{g_{\vec{\Phi}}}\left[1+|\nabla d \vec{\Phi}|_{g_{\overrightarrow{\bar{W}}}}^{2}\right]^{p-1} d v o l_{g_{\vec{\Phi}}}
\end{align*}
$$

Combining all the above we finally obtain that

$$
\begin{equation*}
\left|\partial_{s} \operatorname{Hess}_{p}(\vec{\Phi})\right| \leq C\left\|\partial_{s} \vec{\Phi}\right\|_{\vec{\Phi}}\left[\operatorname{Hess}_{p}(\vec{\Phi})+\operatorname{Hess}_{p}(\vec{\Phi})^{1-1 / 2 p}\right] \tag{I.13}
\end{equation*}
$$

Combining (I.4) and (I.13) we deduce using Gromwall lemma that if we take a C^{1} path from $[0,1)$ into \mathcal{M} with finite length for the Palais distance d, the limiting map $\vec{\Phi}_{1}$ is still a $W^{2, q}$-immersion of Σ into N^{n}, which proves the completeness of (\mathcal{M}, d).

Definition I.7. Let \mathcal{M} be a C^{2} Finsler Manifold and E be a C^{1} function on M. Denote

$$
\mathcal{M}^{*}:=\left\{u \in \mathcal{M} \quad ; \quad D E_{u} \neq 0\right\}
$$

A pseudo-gradient is a Lipschitz continuous section $X: \mathcal{M}^{*} \rightarrow T \mathcal{M}^{*}$ such that
i)

$$
\forall u \in \mathcal{M}^{*} \quad\|X(u)\|_{u}<2\left\|D E_{u}\right\|_{u}
$$

ii)

$$
\forall u \in \mathcal{M}^{*} \quad\left\|D E_{u}\right\|_{u}^{2}<\left\langle X(u), D E_{u}\right\rangle_{T_{u} \mathcal{M}^{*}, T_{u}^{*} \mathcal{M}^{*}}
$$

The following result is mostly using the existence of a Lipschitz partition of unity for any covering of a Finsler Manifold (combine proposition I. 2 and corollary I.1).
Proposition I.6. Every C^{1} function on a Finsler Manifold admits a pseudogradient.

The following definition is central in Palais deformation theory.

Definition I.8. Let E be a C^{1} function on a Finsler manifold $(\mathcal{M},\|\cdot\|)$ and $\beta \in E(\mathcal{M})$. On says that E fulfills the Palais-Smale condition at the level β if for any sequence u_{n} staisfying

$$
E\left(u_{n}\right) \longrightarrow \beta \quad \text { and } \quad\left\|D E_{u_{n}}\right\|_{u_{n}} \longrightarrow 0
$$

then there exists a subsequence $u_{n^{\prime}}$ and $u_{\infty} \in \mathcal{M}$ such that

$$
d\left(u_{n^{\prime}}, u_{\infty}\right) \longrightarrow 0
$$

and hence $E\left(u_{\infty}\right)=\beta$ and $D E_{u_{\infty}}=0$.
Example. Let \mathcal{M} be $W^{1,2}\left(S^{1}, N^{n}\right)$ for the Finsler structure given by

$$
\forall \vec{w} \in \Gamma_{W^{1,2}}\left(\vec{u}^{-1} T N^{n}\right) \quad\|\vec{w}\|_{\vec{u}}:=\|\vec{w}\|_{W^{1,2}\left(S^{1}\right)}
$$

Then the Dirichlet Energy satisfies the Palais Smale condition for every level set.

Definition I.9. A family of subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called admissible family if for every homeomorphism Ξ of \mathcal{M} isotopic to the identity we have

$$
\forall A \in \mathcal{A} \quad \Xi(A) \in \mathcal{A}
$$

Example 1. A closed 2 dimensional sub-manifold N^{2} of \mathbb{R}^{m} being given and $\alpha \in \pi_{2}\left(N^{2}\right) \neq 0$, considering the Banach Manifold $\mathcal{M}:=W^{1,2}\left(S^{1}, N^{2}\right)$ we can take

$$
\mathcal{A}:=\left\{\begin{array}{c}
u \in C^{0}\left([0,1], W^{1,2}\left(S^{1}, N^{2}\right)\right) ; u(0, \cdot) \text { and } u(1, \cdot) \text { are constant } \tag{I.14}\\
\text { and } u(t, \theta)[0,1] \times S^{1} \longrightarrow N^{2} \quad \text { realizes } \alpha
\end{array}\right\}
$$

i.e. for $N^{2} \simeq S^{2} \mathcal{A}$ corresponds to a class of sweep-outs of the form $\Omega_{\sigma_{0}}$.

Example 2. Consider $\mathcal{M}:=W_{i m m}^{2, q}\left(S^{2}, \mathbb{R}^{3}\right)$ and take $c \in \pi_{1}\left(\operatorname{Imm}\left(S^{2}, \mathbb{R}^{3}\right)\right)=$ $\mathbb{Z}_{2} \times \mathbb{Z}$ then the following family is admissible

$$
\mathcal{A}:=\left\{\vec{\Phi} \in C^{0}\left([0,1], W_{i m m}^{2, q}\left(S^{2}, \mathbb{R}^{3}\right)\right) ; \vec{\Phi}(0, \cdot)=\vec{\Phi}(1, \cdot) \quad \text { and }[\vec{\Phi}]=c\right\}
$$

We can now state the main theorem in this section.

Theorem I.3. [Palais 1970] Let $(\mathcal{M},\|\cdot\|)$ be a Banach manifold together with a $C^{1,1}$-Finsler structure. Assume \mathcal{M} is complete for the induced Palais distance d and let $E \in C^{1}(\mathcal{M})$ satisfying the Palais-Smale condition $(P S)_{\beta}$ for the level set β. Let \mathcal{A} be an admissible family in $\mathcal{P}(\mathcal{M})$ such that

$$
\inf _{A \in \mathcal{A}} \sup _{u \in A} E(u)=\beta
$$

then there exists $u \in \mathcal{M}$ satisfying

$$
\left\{\begin{array}{l}
D E_{u}=0 \tag{I.15}\\
E(u)=\beta
\end{array}\right.
$$

Proof of theorem I.3. We argue by contradiction. Assuming there is no u satisfying (I.1) then Palais Smale condition $(P S)_{\beta}$ implies

$$
\begin{equation*}
\exists \delta_{0}>0, \exists \epsilon_{0}>0 \quad \beta-\varepsilon<E(u)<\beta+\varepsilon \quad \Longrightarrow \quad\left\|D E_{u}\right\|_{u} \geq \delta . \tag{I.16}
\end{equation*}
$$

Let $u \in \mathcal{M}^{*}$. Because of the Local lipschitz nature of a fixed pseudogradient given by proposition I. 6 there exists a maximal time $t_{\text {max }}^{u} \in$ $(0,+\infty]$ such that

$$
\begin{cases}\frac{d \phi_{t}(u)}{d t}=-X\left(\phi_{t}(u)\right) \eta\left(E\left(\phi_{t}(u)\right)\right) & \text { in }\left[0, t_{\max }^{u}\right) \\ \phi_{0}(u)=u\end{cases}
$$

where $1 \geq \eta(t) \geq 0$ is supported in $\left[\beta-\varepsilon_{0}, \beta+\varepsilon\right]$ and is equal to one on $\left[\beta-\varepsilon_{0} / 2, \beta+\varepsilon_{0} / 2\right]$.
We have for any $0 \leq t_{1}<t_{2}<t_{\text {max }}^{u}$ we have

$$
\begin{aligned}
& d\left(\phi_{t_{1}}(u), \phi_{t_{2}}(u)\right) \leq \int_{t_{1}}^{t_{2}}\left\|\frac{d \phi_{t}(u)}{d t}\right\|_{\phi_{t}(u)} d t \\
& \quad \leq 2 \int_{t_{1}}^{t_{2}} \eta\left(E\left(\phi_{t}(u)\right)\right)\left\|D E_{\phi_{t}(u)}\right\|_{\phi_{t}(u)} d t \\
& \quad \leq\left|t_{2}-t_{1}\right|^{1 / 2}\left[\int_{t_{1}}^{t_{2}} \eta\left(E\left(\phi_{t}(u)\right)\right)\left\|D E_{\phi_{t}(u)}\right\|_{\phi_{t}(u)}^{2} d t\right]^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} \eta(& \left.E\left(\phi_{t}(u)\right)\right)\left\|D E_{\phi_{t}(u)}\right\|_{\phi_{t}(u)}^{2} d t \\
& \leq-\int_{t_{1}}^{t_{2}} \eta\left(E\left(\phi_{t}(u)\right)\right)\left\langle X\left(\phi_{t}(u)\right), D E_{\phi_{t}(u)}\right\rangle d t \\
& \leq E\left(\phi_{t_{1}}(u)\right)-E\left(\phi_{t_{2}}(u)\right)
\end{aligned}
$$

Hence

$$
d\left(\phi_{t_{1}}(u), \phi_{t_{2}}(u)\right) \leq 2\left|t_{2}-t_{1}\right|^{1 / 2}\left[E\left(\phi_{t_{1}}(u)\right)-E\left(\phi_{t_{2}}(u)\right)\right]^{1 / 2}
$$

Hence, assuming $t_{\text {max }}^{u}<+\infty, \phi_{t}(u)$ realizes a Cauchy sequence as $t \rightarrow t_{\text {max }}^{u}$. Since \mathcal{M} is complete, the only possibility for the extinction of the flow is that $\lim _{t \rightarrow t_{\text {max }}^{u}} \phi_{t}(u)$ belongs to \mathcal{M}^{*}. But the flow is constant in time outside $E^{-1}\left(\left[\beta-\varepsilon_{0}, \beta+\varepsilon\right]\right)$ hence $t_{\text {max }}^{u}=+\infty$.

Hence for any $t \in \mathbb{R}_{+} \phi_{t}$ is an homeomorphism of \mathcal{M} isotopic to the identity and, since \mathcal{A} is admissible

$$
\forall A \in \mathcal{A} \quad \forall t \in[0,+\infty) \quad \phi_{t}(A) \in \mathcal{A} .
$$

Let u now such that $\beta \leq E(u) \leq \beta+\varepsilon_{0} / 2$. For any $\tau>0$ such that $E\left(\phi_{t}(u)\right) \geq \beta-\varepsilon_{0} / 2$ we have (taking $\delta_{0}<1$)

$$
-\tau \delta_{0} \leq E\left(\phi_{t}(u)\right)-E(u)=\int_{0}^{\tau} \frac{d \phi_{t}(u)}{d t} d t \leq-2 \tau \delta_{0}^{2}
$$

Hence for any $\tau \delta_{0} \leq \varepsilon_{0} / 2$ we have ${ }^{2}$

$$
E\left(\phi_{\tau}(u)\right) \leq E(u)-2 \tau \delta_{0}^{2} .
$$

In particular

$$
E\left(\phi_{\varepsilon_{0} / 2 \delta_{0}}(u)\right) \leq E(u)-\delta_{0} \varepsilon_{0}
$$

Choose $A \in \mathcal{A}$ such that

$$
\sup _{u \in A} E(u)<\beta+\delta_{0} \varepsilon_{0}
$$

Hence we have for $t_{0}=\varepsilon_{0} / 2 \delta_{0}$

$$
\sup _{\phi_{t_{0}}(u) \in \phi_{t_{0}}(A)} E\left(\phi_{t_{0}}(u)\right)<\beta
$$

which is a contradiction.
Application. We take $\mathcal{M}:=W^{1,2}\left(S^{1}, N^{2}\right)$ where $N^{2} \simeq S^{2}$. Let any sweep-out $\vec{\sigma}_{0}$ of N^{2} corresponding to a non zero element of $\pi_{2}\left(N^{2}\right)$. Then

$$
W_{\vec{\sigma}_{0}}=\inf _{\vec{\sigma} \in \Omega_{\vec{\sigma}_{0} \cap \Lambda}} \max _{t \in[0,1]} E(\vec{\sigma}(t, \cdot))
$$

is achieved by a closed geodesic. This gives a new proof of Birkhoff existence result.

[^2]Now, what about surfaces ? The Dirichlet energy of maps into a submanifold of is not satisfying the Palais Smale anymore in 2 dimension. So Palais Deformation theory does not apply directly to the construction of minimal surfaces by working with the Dirichlet energy. We would also like to go beyond the Colding-Minicozzi framework which is restricted to spheres.

References

[1] Lang, Serge Fundamentals of differential geometry. Graduate Texts in Mathematics, 191. Springer-Verlag, New York, 1999.
[2] Alexis Michelat, Tristan Rivière "A Viscosity Method for the Min-Max Construction of Closed Geodesics" arXiv:1511.04545 (2015).
[3] Palais, Richard S. Critical point theory and the minimax principle. 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968) pp. 185-212 Amer. Math. Soc., Providence, R.I.
[4] Stone, A. H. Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 (1948), 977-982.

[^0]: *Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.

[^1]: ${ }^{1}$ locally finite means that any point posses a neighborhood which intersects only finitely many open sets of the subcovering

[^2]: ${ }^{2}$ Observe that this kind of inequality is reminiscent to the condition v) of the definition of Birkhoff curve shortening process.

