Minmax Methods in the Calculus of Variations of Curves and Surfaces

Tristan Rivière*

I Lecture 3

A Viscosity Approach in the Calculus of Variations of Curves and Surfaces.

The heuristic of the method is simple. Consider the energy E to which one aims to apply a minmax procedure. If E does not satisfy the PalaisSmale condition on add to E a more coercive term multiplied by a small "viscosity" parameter σ in order for the obtained "smoothed" functional E^{σ} to satisfy Palais Smale. Apply Palais deformation theory of lecture 2 in order to obtain a minmax critical point of E^{σ} and make σ go to zero. As we will see the procedure, in contrast with the simplicity of it's main strategy, offers surprising difficulties we have to overcome.

I. 1 An Attempt for constructing Geodesics using a Viscosity Approach

We consider again a closed sub-manifold N^{n} of \mathbb{R}^{m}. We consider the Banach manifold introduced in lecture 2 and given by

$$
\mathcal{M}:=W_{i m m}^{2,2}\left(S^{1}, N^{n}\right)
$$

This Banach manifold is equipped with a Finsler structure given for any $\vec{\gamma} \in \mathcal{M}$ and any $\vec{v} \in \Gamma_{W^{2,2}}\left(\vec{\gamma}^{-1} T N^{n}\right)$

$$
\begin{equation*}
\|\vec{v}\|_{\vec{\gamma}}:=\left[\int_{S^{1}}\left[\left|\nabla^{2} \vec{v}\right|_{g_{\vec{\gamma}}}^{2}+|\nabla \vec{v}|_{g_{\vec{\gamma}}}^{2}+|\vec{v}|^{2}\right] d \operatorname{vol}_{g_{\vec{\gamma}}}\right]^{1 / 2} \tag{I.1}
\end{equation*}
$$

We have seen that $(\mathcal{M},\|\cdot\|)$ is complete for the induced Palais distance.
Introduce for any $\vec{\Phi} \in \mathcal{M}$

$$
E^{\sigma}(\vec{\gamma}):=\int_{S^{1}}\left[1+\sigma^{2}\left|\vec{\kappa}_{\vec{\gamma}}\right|^{2}\right] d l_{\vec{\gamma}}
$$

[^0]where $\vec{\kappa}_{\vec{\gamma}}$ is the curvature of the immersion inside N^{n} given by
$$
\vec{\kappa}_{\vec{\gamma}}=\nabla_{\overrightarrow{\tilde{\gamma}} /|\dot{\vec{r}}|}^{h}\left[\partial_{\dot{\gamma} /|\vec{\gamma}|} \vec{\gamma}\right]
$$

We have the following proposition
Lemma I.1. E^{σ} is C^{1} on \mathcal{M} and in constant speed parametrization we have

$$
\begin{align*}
& d E^{\sigma} \cdot \vec{v}=\int_{S^{1}}\left\langle\nabla^{h} \vec{w}, d \vec{\gamma}\right\rangle_{g_{\vec{\gamma}}} d l_{\vec{\gamma}}+\sigma^{2} \int_{S^{1}} 2<\nabla^{2} \vec{v}, \nabla d \vec{\gamma}>_{g_{\vec{\gamma}}} d l_{\vec{\gamma}} \\
& -3 \sigma^{2} \int_{S^{1}}<\nabla \vec{v}, d \vec{\gamma}>_{g_{\vec{\gamma}}}\left|\vec{\kappa}_{\vec{\gamma}}\right|^{2} d l_{\vec{\gamma}}+\sigma^{2} \int_{S^{1}} 2<R^{h}(\vec{v}, d \vec{\gamma}) d \vec{\gamma}, \nabla^{h} d \vec{\gamma}>_{g_{\vec{\gamma}}} d l_{\vec{\gamma}} \tag{I.2}
\end{align*}
$$

The proof can be proved in [1]. As a matter of illustration and for later purposes we compute the derivative of E^{σ} in the case $N^{n}=S^{n}$.

$$
\begin{aligned}
\vec{\kappa}_{\vec{\gamma}}= & P^{T}\left[\frac{1}{\left|\partial_{\theta} \vec{\gamma}\right|} \frac{\partial}{\partial \theta}\left[\frac{\partial_{\theta} \vec{\gamma}}{\left|\partial_{\theta} \vec{\gamma}\right|}\right]\right]=P^{T}\left[\frac{\partial_{\theta^{2}}^{2} \vec{\gamma}}{\left|\partial_{\theta} \vec{\gamma}\right|^{2}}\right]-P_{T}\left[\frac{\partial_{\theta}\left|\partial_{\theta} \vec{\gamma}\right|}{\left|\partial_{\theta} \vec{\gamma}\right|^{3}} \partial_{\theta} \vec{\gamma}\right] \\
& =\frac{\partial_{\theta^{2}}^{2} \vec{\gamma}}{\left|\partial_{\theta} \vec{\gamma}\right|^{2}}+\vec{\gamma}
\end{aligned}
$$

Take $\vec{\gamma}_{s}$ and denote $\left.\partial_{s} \vec{\gamma}\right|_{s=0}=\vec{v}$. We have

$$
\begin{gathered}
2 \vec{\kappa}_{\vec{\gamma}} \cdot \partial_{s} \vec{\kappa}_{\vec{\gamma}}=2 \vec{\kappa}_{\vec{\gamma}} \cdot\left[\frac{\partial_{\theta^{2}}^{2} \vec{v}}{\left|\partial_{\theta} \vec{\gamma}\right|^{2}}+\vec{v}\right]-4 \vec{\kappa}_{\vec{\gamma}} \cdot \partial_{\theta^{2}}^{2} \vec{\gamma} \partial_{\theta} \vec{v} \cdot \partial_{\theta} \vec{\gamma} \\
\quad=2 \vec{\kappa}_{\vec{\gamma}} \cdot\left[\frac{\partial_{\theta^{2}}^{2} \vec{v}}{\left|\partial_{\theta} \vec{\gamma}\right|^{2}}+\vec{v}\right]-4\left|\vec{\kappa}_{\vec{\gamma}}\right|^{2}<d \vec{v}, d \vec{\gamma}>_{g_{\vec{\gamma}}}
\end{gathered}
$$

We have seen

$$
\left.\partial_{s} d l_{\vec{\gamma}_{s}}\right|_{s=0}=<d \vec{v}, d \vec{\gamma}>_{g_{\vec{\gamma}}} d l_{\vec{\gamma}} .
$$

Combining all the previous gives in constant speed parametrization $\left|\partial_{\theta} \vec{\gamma}\right| \equiv$ $L / 2 \pi$

$$
\begin{equation*}
\frac{L}{2 \pi} d E^{\sigma}(\vec{\gamma}) \cdot \vec{v}=\int_{S^{1}}\left[-\ddot{\vec{\gamma}}+\sigma^{2}\left[2 \ddot{\vec{\kappa}}+\frac{L^{2}}{2 \pi} \vec{\kappa}+3 \partial_{\theta}\left(|\vec{\kappa}|^{2} \dot{\vec{\gamma}}\right)\right]\right] \cdot \vec{v} d \theta \tag{I.3}
\end{equation*}
$$

We have the following Palais Smale Property "modulo gauge changes".
Proposition I.1. Let $\sigma>0$ and $\vec{\gamma}_{j}$ be a sequence in $\mathcal{M}:=W_{\text {imm }}^{2,2}\left(S^{1}, N^{n}\right)$, where the space of $W^{2,2}$ immersions into N^{n} is equipped with the Finsler structure given by (I.1) such that

$$
E^{\sigma}\left(\vec{\gamma}_{j}\right) \longrightarrow \beta(\sigma) \quad \text { and } \quad D E_{u_{j}}^{\sigma} \longrightarrow 0
$$

then there exists a subsequence $u_{j^{\prime}}$ and a sequence $\psi_{j^{\prime}}$ of $W^{2,2}$ - diffeomorphisms of S^{1} such that

$$
\vec{\gamma}_{j^{\prime}} \circ \psi_{j^{\prime}} \longrightarrow \vec{\sigma}_{\infty} \quad \text { for the Palais distance. }
$$

If one assume furthermore that $u_{j^{\prime}}$ stays within a ball of finite radius in \mathcal{M} for the Palais distance, then one can take $\psi_{j^{\prime}}$ to be the identity.

Proof of proposition I.1. The proof of this result can be found in [1]. As a matter of illustration we present it in the sphere case when $N^{n}=S^{n}$. We take ψ_{j} such that the parametrization is of constant speed $:\left|\partial_{\theta}\left(\vec{\gamma}_{j} \circ \psi_{j}\right)\right| \equiv L_{j} / 2 \pi$. We omit to write explicitly the composition with ψ_{j} and we assume that $\vec{\gamma}_{j}$ itself is in constant speed parametrization. As we saw, the geodesic curvature in S^{n} is given by

$$
\vec{\kappa}_{\vec{\gamma}_{j}}=\frac{\partial_{\theta^{2}}^{2} \vec{\gamma}_{j}}{\left|\partial_{\theta} \vec{\gamma}_{j}\right|^{2}}+\vec{\gamma}_{j}=\vec{k}_{j}+\vec{\gamma}_{j}
$$

where \vec{k}_{j} is the vector curvature of the same immersion but viewed as an immersion into the ambient space \mathbb{R}^{m}. The Fenchel theorem gives

$$
2 \pi \leq \int_{S^{1}}\left|\vec{k}_{j}\right|^{2} d l_{\vec{\gamma}_{j}} \leq L_{j}^{1 / 2}\left[\int_{S^{1}}\left|\vec{k}_{j}\right|^{2} d l_{\vec{\gamma}_{j}}\right]^{1 / 2} \leq L_{j}^{1 / 2}\left[\int_{S^{1}}\left[\left|\vec{k}_{\vec{\gamma}_{j}}\right|^{2}+1\right] d l_{\vec{\gamma}_{j}}\right]^{1 / 2}
$$

Hence the length L_{j} is bounded from above and from below by a positive number. Hence, in constant speed parametrization the assumption that $E^{\sigma}\left(\vec{\gamma}_{j}\right)$ is uniformly bounded reads

$$
\limsup _{j \rightarrow+\infty} \int_{S^{1}}\left|\partial_{\theta^{2}}^{2} \vec{\gamma}_{j}+\frac{L_{j}^{2}}{4 \pi^{2}} \vec{\gamma}_{j}\right|^{2} d \theta<+\infty
$$

And this implies that there exists a subsequence $\vec{\gamma}_{j^{\prime}}$ such that

$$
\vec{\gamma}_{j^{\prime}} \rightharpoonup \vec{\gamma}_{\infty} \quad \text { weakly in } W^{2,2}\left(S^{1}\right) .
$$

Observe that in this constant speed parametrization the assumption we have for any $\vec{v} \in T_{\vec{\gamma}_{j}} \mathcal{M}$

$$
\begin{aligned}
& \|\vec{v}\|_{\vec{\gamma}_{j}} \leq 1 \Longleftrightarrow \\
& \int_{S^{1}}\left|\nabla_{\partial \vec{\gamma}_{j}}^{h}\left(\nabla_{\partial \vec{\gamma}_{j}} \vec{v}\right)\right|^{2}\left|\partial_{\theta} \vec{\gamma}_{j}\right|^{-3} d \theta+\left|\nabla_{\partial_{\theta} \vec{\gamma}_{j}}^{h}\right|^{2}\left|\partial_{\theta} \vec{\gamma}_{j}\right|^{-1} d \theta+|\vec{v}|^{2} d \theta \leq 1
\end{aligned}
$$

We have

$$
\nabla_{\partial_{\theta} \vec{\gamma}_{j}}^{h} \vec{v}=P^{T}\left(\vec{\gamma}_{j}\right)\left(\partial_{\theta} \vec{v}\right)=\partial_{\theta} \vec{v}-\vec{\gamma}_{j} \cdot \partial_{\theta} \vec{v} \vec{\gamma}_{j}=\partial_{\theta} \vec{v}+\partial_{\theta} \vec{\gamma}_{j} \cdot \vec{v} \vec{\gamma}_{j}
$$

and

$$
\begin{aligned}
& \nabla_{\partial_{\theta} \vec{\gamma}_{j}}^{h}\left(\nabla_{\partial_{\theta} \vec{\gamma}_{j}}^{h} \vec{v}\right)=P^{T}\left(\vec{\gamma}_{j}\right)\left(\partial_{\theta}\left(\nabla_{\partial_{\theta} \vec{\gamma}_{j}}^{h} \vec{v}\right)\right) \\
& \quad=\partial_{\theta^{2}}^{2} \vec{v}+2 \partial_{\theta} \vec{\gamma}_{j} \cdot \partial_{\theta} \vec{v} \vec{\gamma}_{j}+\partial_{\theta^{2}}^{2} \vec{\gamma} \cdot \vec{v} \vec{\gamma}_{j}+\partial_{\theta} \vec{\gamma}_{j} \cdot \vec{v} \partial_{\theta} \vec{\gamma}_{j}
\end{aligned}
$$

Hence, using in particular the embedding $W^{1,2} \hookrightarrow C^{0}$ it is not difficult to see that there exists a constant $C>0$ independent of j such that

$$
\|\vec{v}\|_{W^{2,2}\left(S^{1}, \mathbb{R}^{m}\right)} \leq C \quad \Longrightarrow \quad\|\vec{v}\|_{\vec{\gamma}_{j}} \leq 1
$$

Combining this fact with the assumptions together with (I.3) gives

$$
\sup _{\left\{\|\vec{v}\|_{W^{2}, 2} \leq 1 ; \vec{v} \cdot \vec{\gamma}_{j} \equiv 0\right\}} \int_{S^{1}}\left[-\ddot{\vec{\gamma}}_{j}+\sigma^{2}\left[2 \ddot{\vec{\kappa}}_{j}+\frac{L_{j}^{2}}{2 \pi} \vec{\kappa}_{j}+3 \partial_{\theta}\left(\left|\vec{\kappa}_{j}\right|^{2} \dot{\vec{\gamma}}_{j}\right)\right]\right] \cdot \vec{v} d \theta
$$

0
Let $\vec{w} \in W^{2,2}\left(S^{1}, \mathbb{R}^{m}\right)$ there exists $C_{1}>0$ such that $\|\vec{w}\|_{W^{2,2}} \leq C_{1} \Rightarrow$ $\|\vec{v}\|_{W^{2,2}} \leq 1$ where $\vec{v}=\vec{w}-\vec{\gamma}_{j} \cdot \vec{w} \vec{\gamma}_{j}$. Observe that we have successively

$$
-\ddot{\vec{\gamma}}_{j} \cdot \vec{\gamma}_{j}=\left|\dot{\vec{\gamma}}_{j}\right|^{2} \quad, \quad \vec{\kappa}_{j} \cdot \vec{\gamma}_{j}=0 \quad, \quad \partial_{\theta}\left(\left|\vec{k}_{j}\right|^{2} \dot{\vec{\gamma}}_{j}\right) \cdot \vec{\gamma}_{j}=-\left|\vec{\kappa}_{j}\right|^{2}\left|\dot{\vec{\gamma}}_{j}\right|^{2}
$$

and

$$
\ddot{\vec{\kappa}}_{j} \cdot \vec{\gamma}_{j}=\left|\vec{\kappa}_{j}\right|^{2}\left|\dot{\vec{\gamma}}_{j}\right|^{2}
$$

Combining all the previous implies that

$$
\begin{aligned}
&-\ddot{\vec{\gamma}}_{j}-\left|\dot{\vec{\gamma}}_{j}\right|^{2} \vec{\gamma}_{j}+\sigma^{2}\left[2 \ddot{\vec{\kappa}}_{j}+\frac{L_{j}^{2}}{2 \pi} \vec{\kappa}_{j}+3 \partial_{\theta}\left(\left|\vec{k}_{j}\right|^{2} \dot{\vec{\gamma}}_{j}\right)+\left|\vec{\kappa}_{j}\right|^{2}\left|\dot{\vec{\gamma}}_{j}\right|^{2} \vec{\gamma}_{j}\right] \\
& \downarrow \text { strongly in } W^{-2,2}\left(S^{1}\right) \\
& 0
\end{aligned}
$$

Wedging by $\vec{\gamma}_{j}$ gives that

$$
\begin{equation*}
\partial_{\theta}\left(\left(1-2 \sigma^{2}\right) \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}+2 \sigma^{2} \vec{\gamma}_{j} \wedge \dot{\vec{\kappa}}_{j}-2 \sigma^{2} \dot{\vec{\gamma}}_{j} \wedge \vec{\kappa}_{j}+3 \sigma^{2}\left|\vec{\kappa}_{j}\right|^{2} \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}\right) \tag{I.4}
\end{equation*}
$$

converges to zero in $W^{-2,2}$. Hence there exists a converging sequence of constant 2-vectors \vec{C}_{j} such that

$$
\left(1-2 \sigma^{2}\right) \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}+2 \sigma^{2} \vec{\gamma}_{j} \wedge \dot{\vec{\kappa}}_{j}-2 \sigma^{2} \dot{\vec{\gamma}}_{j} \wedge \vec{\kappa}_{j}+3\left|\vec{\kappa}_{j}\right|^{2} \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}-\vec{C}_{j} \rightarrow 0
$$

in $W^{-1,2}$. Since $L^{1}\left(S^{1}\right)$ embeds in a compact way into $W^{-1,2}\left(S^{1}\right)$ we deduce that $\vec{\gamma}_{j} \wedge \vec{\kappa}_{j}$ is strongly pre-compact in $L^{2}\left(S^{1}\right)$ and since $\vec{\kappa}_{j}=\left(\vec{\gamma}_{j} \wedge \vec{\kappa}_{j}\right)\left\llcorner\vec{\gamma}_{j}\right.$
we have that $\vec{\kappa}_{j}$ and thus $\partial_{\theta^{2}}^{2} \vec{\gamma}_{j}$ is pre-compact in L^{2}. This gives the strong convergence of $\vec{\gamma}_{j}$ to $\vec{\gamma}_{\infty}$ in $W^{2,2}$ and this easily imply that

$$
D E^{\sigma}\left(\vec{\gamma}_{\infty}\right)=0 .
$$

This concludes the proof of the theorem.
Let \mathcal{A} be an admissible family of $W_{\text {imm }}^{2,2}\left(S^{1}, N^{n}\right)$ and denote

$$
\beta(0):=\inf _{A \in \mathcal{A}} \sup _{\vec{\gamma} \in A} \int_{S^{1}} d l_{\vec{\gamma}}
$$

Assume $\beta(0)>0$.
Example. \mathcal{A} is the sub-family of

$$
C^{0}\left((0,1), W_{i m m}^{2,2}\left(S^{1}, N^{2}\right) \cap C^{0}\left([0,1], W^{1,1}\left(S^{1}, N^{2}\right)\right.\right.
$$

of maps $\vec{\gamma}(t, \cdot)$ which are constant at $t=0$ and $t=1$ and which realize a non trivial sweep-out of N^{2} (i.e. a non zero class of $\pi_{2}\left(N^{2}\right)$).

For any $A \in \mathcal{A}$ we define

$$
A_{0}:=\left\{\vec{\gamma} \in A \text { s.t. } \quad \int_{S^{1}} d l_{\vec{\gamma}} \geq \beta(0) / 2\right\} .
$$

and $\mathcal{A}_{0}=\left\{A \in \mathcal{A} ; A_{0} \neq \emptyset\right\}$. Let

$$
\beta(\sigma):=\inf _{A \in \mathcal{A}_{0}} \sup _{\vec{\gamma} \in A_{0}} E^{\sigma}(\vec{\gamma}) .
$$

It is straightforward to prove that

$$
\lim _{\sigma \rightarrow 0} \beta(\sigma)=\beta(0)
$$

Because of all the previous we have the existence of $\vec{\gamma}^{\sigma}$ such that

$$
E^{\sigma}\left(\vec{\gamma}^{\sigma}\right)=\beta(\sigma) \quad \text { and } \quad D E^{\sigma}\left(\vec{\gamma}^{\sigma}\right)=0
$$

In constant speed parametrization we have a sequence σ_{j} such that

$$
\vec{\gamma}^{\sigma_{j}} \rightharpoonup \vec{\gamma}^{\sigma_{\infty}} \quad \text { weakly in } \quad\left(W^{1, \infty}\right)^{*}
$$

We are now facing the following difficulty.
Do we have $\beta_{0}=L\left(\vec{\gamma}^{\sigma_{\infty}}\right)$ and $\vec{\gamma}^{\sigma_{\infty}}$ is a geodesic ?
The answer to this question is a-priori negative. We have

Proposition I.2. Let $N^{n}=S^{2}$, the unit sphere of the 3-dimensional euclidian Space. Under the previous notations, there exists $\sigma_{j} \rightarrow 0$ and $\vec{\gamma}_{j} \in W_{i m m}^{2,2}\left(S^{1}, S^{2}\right)$ such that

$$
\limsup _{j \rightarrow+\infty} E^{\sigma_{j}}\left(\vec{\gamma}_{j}\right)<+\infty \quad \text { and } \quad D E_{\vec{\gamma}_{j}}^{\sigma_{j}}=0
$$

moreover $\vec{\gamma}_{j}$ is in normal parametrization and

$$
\vec{\gamma}_{j} \rightharpoonup \vec{\gamma}_{\infty} \quad \text { weakly in } \quad\left(W^{1, \infty}\right)^{*}
$$

but

$$
\dot{\vec{\gamma}}_{j} \underset{j \rightarrow \infty}{ } \dot{\vec{\gamma}}_{\infty} \quad \text { a.e. }
$$

Moreover, for every measurable $I \subset S^{1}$ such that $\mathcal{L}^{1}(I) \neq 0$

$$
L\left(\vec{\gamma}_{\infty}\llcorner I)<\liminf _{j \rightarrow+\infty} L\left(\vec{\gamma}_{j}\llcorner I)\right.\right.
$$

and $\vec{\gamma}_{\infty}$ is not a geodesic.

I. 2 Struwe's Monotonicity Trick.

Theorem I.1. Let $(\mathcal{M},\|\cdot\|)$ be a complete Finsler manifold. Let E^{σ} be a family of C^{1} functions for $\sigma \in[0,1]$ on \mathcal{M} such that for every $\vec{\gamma} \in \mathcal{M}$

$$
\begin{equation*}
\sigma \longrightarrow E^{\sigma}(\vec{\gamma}) \quad \text { and } \quad \sigma \longrightarrow \partial_{\sigma} E^{\sigma}(\vec{\gamma}) \tag{I.5}
\end{equation*}
$$

are increasing and continuous functions with respect to σ. Assume moreover that

$$
\begin{equation*}
\left\|D E_{\vec{\gamma}}^{\sigma}-D E_{\vec{\gamma}}^{\tau}\right\|_{\vec{\gamma}} \leq C(\sigma) \delta(|\sigma-\tau|) f\left(E^{\sigma}(\vec{\gamma})\right) \tag{I.6}
\end{equation*}
$$

where $C(\sigma) \in L_{\text {loc }}^{\infty}((0,1)), \delta \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}\right)$and goes to zero at 0 and $f \in$ $L_{l o c}^{\infty}(\mathbb{R})$. Assume that for every σ the functional E^{σ} satisfies the Palais Smale condition. Let \mathcal{A} be an admissible family of \mathcal{M} and denote

$$
\beta(\sigma):=\inf _{A \in \mathcal{A}} \sup _{\vec{\gamma} \in A} E^{\sigma}(\vec{\gamma})
$$

Then there exists a sequence $\sigma_{j} \rightarrow 0$ and $\vec{\gamma}_{j} \in \mathcal{M}$ such that

$$
E^{\sigma_{j}}\left(\vec{\gamma}_{j}\right)=\beta\left(\sigma_{j}\right) \quad, \quad D E^{\sigma_{j}}\left(\vec{\gamma}_{j}\right)=0
$$

Moreover $\vec{\gamma}_{j}$ satisfies the so called "entropy condition"

$$
\partial_{\sigma_{j}} E^{\sigma_{j}}\left(\vec{\gamma}_{j}\right)=o\left(\frac{1}{\sigma_{j} \log \left(\frac{1}{\sigma_{j}}\right)}\right)
$$

Before proving theorem I. 1 we are going to apply this result to the case of $W^{2,2}$-immersions of curve into a closed sub-manifold N^{n}
Theorem I.2. In the Finsler manifold $W_{i m m}^{2,2}\left(S^{1}, N^{n}\right)$ equipped with the Finsler structure (I.1) we consider the family of C^{1} functions on \mathcal{M} given by

$$
E^{\sigma}(\vec{\gamma}):=\int_{S^{1}}\left[1+\sigma^{2}\left|\vec{\kappa}_{\vec{\gamma}}\right|^{2}\right] d l_{\vec{\gamma}}
$$

then for any admissible family of $W_{i m m}^{2,2}\left(S^{1}, N^{n}\right)$ we denote

$$
\beta(\sigma):=\inf _{A \in \mathcal{A}} \sup _{\vec{\gamma} \in A} E^{\sigma}(\vec{\gamma})
$$

and assume $\beta(0)>0$. Then there exists a sequence $\sigma_{j} \rightarrow 0$ and $\vec{\gamma}_{j} \in \mathcal{M}$ such that

$$
E^{\sigma_{j}}\left(\vec{\gamma}_{j}\right)=\beta\left(\sigma_{j}\right) \quad, \quad D E^{\sigma_{j}}\left(\vec{\gamma}_{j}\right)=0
$$

moreover

$$
\begin{equation*}
\sigma_{j}^{2} \int_{S^{1}}\left|\vec{\kappa}_{\vec{\gamma}_{j}}\right|^{2} d l_{\vec{\gamma}_{j}}=o\left(\frac{1}{\log \left(\frac{1}{\sigma_{j}}\right)}\right) \tag{I.7}
\end{equation*}
$$

and

$$
\dot{\gamma}_{j} \longrightarrow \dot{\gamma}_{\infty}
$$

moreover $\vec{\gamma}_{\infty}$ is a geodesic satisfying

$$
L\left(\vec{\gamma}_{\infty}\right)=\beta(0) .
$$

Proof of theorem I.2. We aim to apply first theorem I.1. Conditions (I.5) are clearly fulfilled. Regarding condition (I.6) a short computation, starting from the explicit expression of the derivative of E^{σ} given by lemma I.1, implies that for any $\vec{\gamma} \in W_{i m m}^{2,2}\left(S^{1}, N^{n}\right)$ and any $\vec{v} \in T_{\vec{\gamma}} \mathcal{M}$

$$
\left|D E_{\vec{\gamma}}^{\sigma} \cdot \vec{v}-D E_{\vec{\gamma}}^{\tau} \cdot \vec{v}\right| \leq C_{N^{n}}\left|\tau^{2}-\sigma^{2}\right| \int_{S^{1}}|\nabla(d \vec{\gamma})|_{g_{\vec{\gamma}}}^{2} d l_{\vec{\gamma}}\|\vec{v}\|_{\vec{\gamma}}
$$

Hence, all the conditions for applying theorem I. 1 are fulfilled and we obtain a sequence $\sigma_{j} \rightarrow 0$ together with a sequence of critical points $\vec{\gamma}_{j}$ of $E^{\sigma_{j}}$ such that $\beta\left(\sigma_{j}\right)=E^{\sigma_{j}}\left(\vec{\gamma}_{j}\right)$ and the entropy condition (I.7) is fulfilled.

In order to simplify the presentation we give the rest of the argument in the particular case $N^{n}=S^{n}$ (the general case is presented in [1]). In that case we can use the expression (I.4) and infer the existence of a sequence
of constant 2-vectors \vec{C}_{j} such that in constant speed parametrization one has.

$$
\left(1-2 \sigma_{j}^{2}\right) \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}+2 \sigma^{2} \vec{\gamma}_{j} \wedge \dot{\vec{\kappa}}_{j}-2 \sigma_{j}^{2} \dot{\vec{\gamma}}_{j} \wedge \vec{\kappa}_{j}+3 \sigma_{j}^{2}\left|\vec{\kappa}_{j}\right|^{2} \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}=\vec{C}_{j}
$$

Because of the entropy condition (I.7) we have that

$$
L_{j} \rightarrow \beta(0)>0
$$

and hence $\left|\vec{\gamma}_{j}\right| \equiv L_{j} / 2 \pi \rightarrow \beta(0) / 2 \pi$. Using this fact we deduce that in normal parametrization

$$
\sigma_{j}^{2}\left|\vec{\kappa}_{j}\right|^{2} \longrightarrow 0 \quad \text { strongly in } L^{1}\left(S^{1}\right)
$$

Hence there exists a sequence of 2 -vector valued function $\vec{F}_{j} \longrightarrow 0$ strongly in $L^{1}\left(S^{1}\right)$ such that

$$
\vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}=-2 \sigma_{j}^{2} \vec{\gamma}_{j} \wedge \dot{\vec{k}}_{j}+\vec{F}_{j}+\vec{C}_{j} .
$$

Integrating this identity over S^{1} gives

$$
\int_{S^{1}} \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}=2 \pi \vec{C}_{j}+o(1)
$$

hence

$$
\limsup _{j \rightarrow+\infty}\left|\vec{C}_{j}\right| \leq \beta(0) / 2 \pi
$$

Taking now the scalar product with $\vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}$ and integrating over S^{1} gives

$$
\frac{L_{j}^{2}}{2 \pi}=-2 \sigma_{j}^{2} \int_{S^{1}}\left(\vec{\gamma}_{j} \wedge \dot{\vec{\kappa}}_{j}\right) \cdot\left(\vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}\right)+o(1)+\int_{S^{1}} \vec{C}_{j} \cdot \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j} d \theta
$$

This implies that

$$
\left|\vec{C}_{j}\right| \longrightarrow \beta(0) / 2 \pi
$$

and consequently

$$
\lim _{j \rightarrow+\infty}| | \int_{S^{1}} \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j} d \theta\left|-\int_{S^{1}}\right| \vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}|d \theta|=0
$$

we deduce the strong convergence of $\vec{\gamma}_{j} \wedge \dot{\vec{\gamma}}_{j}$ in L^{1} from which the theorem follows.

Remark I.1. Observe that the argument of the proof is similar to a "compensated compactness type argument" as it has been originally introduced by Luc Tartar in [2].

Proof of theorem I.1. Since $\beta(\sigma)$ is a non decreasing function of σ Lebesgue theorem implies that it is differentiable almost everywhere. Denoting by $D \beta$ the distributional derivative of β we have the existence of an L^{1} non negative function $\beta^{\prime}(\sigma)$ which coincides with the derivative of β almost everywhere and a non negative Radon measure μ on $[0,1]$ such that

$$
D \beta(\sigma)=\beta^{\prime}(\sigma) d \mathcal{L}^{1}\llcorner[0,1]+\mu
$$

we have moreover the existence of a Lebesgue zero measure subset B of $[0,1]$ such that $\mu(B)=\mu([0,1])$. We then deduce that

$$
\int_{0}^{\tau} \beta^{\prime}(\sigma) d \sigma \leq \beta(\tau)-\beta(0) .
$$

Then there exists a sequence of point of differentiability for β in $(0,1)$ that we denote σ_{j} such that

$$
\sigma_{j} \rightarrow 0 \quad \text { and } \quad \beta^{\prime}\left(\sigma_{j}\right) \leq \frac{o(1)}{\sigma_{j} \log \frac{1}{\sigma_{j}}}
$$

Let now σ be a point of differentiability of β and fix $\varepsilon>0$. Since β is differentiable at σ we have for τ close enough to σ an larger than σ

$$
\begin{equation*}
\beta(\tau) \leq \beta(\sigma)+\left(\beta^{\prime}(\sigma)+\varepsilon\right)(\tau-\sigma) \tag{I.8}
\end{equation*}
$$

Take now $\tau>\sigma$ close enough to σ in such a way that (I.8) holds and let $A \in \mathcal{A}$ and $\vec{\gamma} \in A$ such that

$$
\left\{\begin{array}{l}
\beta(\sigma) \leq E^{\sigma}(\vec{\gamma})+\varepsilon(\tau-\sigma) \tag{I.9}\\
E^{\tau}(\vec{\gamma}) \leq \beta(\tau)+\varepsilon(\tau-\sigma)
\end{array}\right.
$$

We claim that under the two assumptions (I. 8 and (I.9) we have

$$
\begin{equation*}
\partial_{\sigma} E^{\sigma}(\vec{\gamma}) \leq \beta^{\prime}(\sigma)+3 \varepsilon . \tag{I.10}
\end{equation*}
$$

Indeed, combining (I.8) and (I.9) together with the fact that $E^{\tau}(\vec{\gamma})$ is non decreasing in τ we have
$\beta(\sigma)-\varepsilon(\tau-\sigma) \leq E^{\sigma}(\vec{\gamma}) \leq E^{\tau}(\vec{\gamma}) \leq \beta(\tau)+\varepsilon(\tau-\sigma) \leq \beta(\sigma)+\left(\beta^{\prime}(\sigma)+2 \varepsilon\right)(\tau-\sigma)$
which gives

$$
\frac{E^{\tau}(\vec{\gamma})-E^{\sigma}(\vec{\gamma})}{\tau-\sigma} \leq \beta^{\prime}(\sigma)+3 \varepsilon
$$

using the fact that $\partial_{\sigma} E^{\sigma}(\vec{\gamma})$ is non decreasing we deduce the claim (I.10).

We are now going to construct for any $\sigma_{k} \rightarrow \sigma^{+}$and $\vec{\gamma}_{k}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|D E^{\sigma_{k}}\left(\vec{\gamma}_{k}\right)\right\|_{\vec{\gamma}_{k}}=0 \tag{I.11}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\beta(\sigma) \leq E^{\sigma}\left(\vec{\gamma}_{k}\right)+\varepsilon\left(\sigma_{k}-\sigma\right) \tag{I.12}\\
E^{\sigma_{k}}\left(\vec{\gamma}_{k}\right) \leq \beta\left(\sigma_{k}\right)+\varepsilon\left(\sigma_{k}-\sigma\right) .
\end{array}\right.
$$

Given an arbitrary sequence $\sigma_{j} \rightarrow \sigma^{+}$we assume that there exists δ such that for k large enough and for all $\vec{\gamma}$ satisfying

$$
\left\{\begin{array}{l}
\beta(\sigma) \leq E^{\sigma}(\vec{\gamma})+\varepsilon\left(\sigma_{k}-\sigma\right) \tag{I.13}\\
E^{\sigma_{k}}(\vec{\gamma}) \leq \beta\left(\sigma_{k}\right)+\varepsilon\left(\sigma_{k}-\sigma\right)
\end{array} .\right.
$$

one has

$$
\begin{equation*}
\left\|D E^{\sigma_{k}}(\vec{\gamma})\right\|_{\vec{\gamma}}>\delta . \tag{I.14}
\end{equation*}
$$

We take a pseudo-gradient $X^{\sigma_{k}}(\vec{\gamma})$ on \mathcal{M}^{*} given by proposition ?? and we consider a cut-off function $\chi \in C^{\infty}(\mathbb{R})$ supported on \mathbb{R}_{+}and such that $\chi \equiv 1$ on $[1,+\infty)$. We consider then the following cut off of the pseudogradient

$$
\tilde{X}^{\sigma_{k}}(\vec{\gamma}):=\chi\left(\frac{E^{\sigma}(\vec{\gamma})-\beta(\sigma)+\varepsilon\left(\sigma_{k}-\sigma\right)}{\varepsilon\left(\sigma_{k}-\sigma\right)}\right) X^{\sigma_{k}}(\vec{\gamma})
$$

and consider the flow given by

$$
\left\{\begin{array}{l}
\frac{d \phi_{t}^{k}(\vec{\gamma})}{d t}=-\tilde{X}^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \quad \text { in }\left[0, t_{\max }^{\vec{\gamma}}\right) \\
\phi_{0}^{k}(\vec{\gamma})=\vec{\gamma}
\end{array}\right.
$$

We have for any $\vec{\gamma}$ and for $t<t_{\text {max }}^{\vec{\gamma}}$

$$
\begin{aligned}
& \frac{d E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)}{d t}=-D E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right) \cdot \tilde{X}^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \\
& \quad=-\chi\left(\frac{E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)-\beta(\sigma)+\varepsilon\left(\sigma_{k}-\sigma\right)}{\varepsilon\left(\sigma_{k}-\sigma\right)}\right) D E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right) \cdot X^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \\
& =-\chi\left(\frac{E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)-\beta(\sigma)+\varepsilon\left(\sigma_{k}-\sigma\right)}{\varepsilon\left(\sigma_{k}-\sigma\right)}\right) D E^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \cdot X^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \\
& \quad+\chi_{k}\left(\phi_{t}^{k}(\vec{\gamma})\right)\left[D E^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right)-D E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)\right] \cdot X^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right)
\end{aligned}
$$

where

$$
\chi_{k}\left(\phi_{t}^{k}(\vec{\gamma})\right):=\chi\left(\frac{E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)-\beta(\sigma)+\varepsilon\left(\sigma_{k}-\sigma\right)}{\varepsilon\left(\sigma_{k}-\sigma\right)}\right) .
$$

Starting with $\vec{\gamma}$ satisfying

$$
E^{\sigma_{k}}(\vec{\gamma}) \leq \beta\left(\sigma_{k}\right)+\varepsilon\left(\sigma_{k}-\sigma\right)
$$

since the flow is decreasing the $E^{\sigma_{k}}$ energy i.e.

$$
E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right) \leq E^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \leq E^{\sigma_{k}}(\vec{\gamma}) \leq \beta\left(\sigma_{k}\right)+\varepsilon\left(\sigma_{k}-\sigma\right)
$$

and since

$$
\tilde{X}^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \neq 0 \Longrightarrow \beta(\sigma) \leq E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)+\varepsilon\left(\sigma_{k}-\sigma\right)
$$

The energy $E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)$ is uniformly bounded from above and from below all along the flow and then, from our assumptions, we can choose k large enough in such a way that

$$
\left[D E^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right)-D E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)\right] \cdot X^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \leq \delta^{2} / 2
$$

Since

$$
D E^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \cdot X^{\sigma_{k}}\left(\phi_{t}^{k}(\vec{\gamma})\right) \geq \delta^{2}
$$

for $\beta(\sigma) \leq E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)+\varepsilon\left(\sigma_{k}-\sigma\right)$, the energy E^{σ} also decreases along the flow and, unless

$$
E^{\sigma}(\vec{\gamma})<\beta(\sigma)-\varepsilon\left(\sigma_{k}-\sigma\right)
$$

in which case the flow is constant, we must have

$$
\beta(\sigma) \leq E^{\sigma}\left(\phi_{t}^{k}(\vec{\gamma})\right)+\varepsilon\left(\sigma_{k}-\sigma\right)
$$

for all time. Arguing as in the proof of Palais theorem ??, because of our assumption (I.14) under the condition (I.13), if we start with $\vec{\gamma}$ satisfying

$$
E^{\sigma_{k}}(\vec{\gamma}) \leq \beta\left(\sigma_{k}\right)+\varepsilon\left(\sigma_{k}-\sigma\right)
$$

the flow cannot extinct on a critical point of $\mathcal{M} \backslash \mathcal{M}^{*}$ and then exists for all time and $t_{\text {max }}^{\vec{\gamma}}=+\infty$. Taking now a point $A \in \mathcal{A}$ such that

$$
\sup _{\vec{\gamma} \in A} E^{\sigma_{k}}(\vec{\gamma}) \leq \beta\left(\sigma_{k}\right)+\varepsilon\left(\sigma_{k}-\sigma\right)
$$

we consider $\phi_{t}^{k}(A)$. Because of the above there will be a finite time T such that

$$
\sup _{\vec{\gamma} \in A} \frac{\left.E^{\sigma}\left(\phi_{T}^{k}(\vec{\gamma})\right)-\beta(\sigma)+\varepsilon\left(\sigma_{k}-\sigma\right)\right)}{\varepsilon\left(\sigma_{k}-\sigma\right)}<1
$$

which implies

$$
\sup _{\vec{\gamma} \in A} E^{\sigma}\left(\phi_{T}^{k}(\vec{\gamma})<\beta(\sigma)\right.
$$

Since $\phi_{T}^{k}(A) \in \mathcal{A}$ we have reached a contradiction and we have proved the existence of $\vec{\gamma}_{k}$ satisfying both (I.11) and (I.12). We have then

$$
\partial_{\sigma} E^{\sigma}\left(\vec{\gamma}_{k}\right) \leq \beta^{\prime}(\sigma)+3 \varepsilon \quad \text { and } \quad \lim _{k \rightarrow+\infty}\left\|D E^{\sigma_{k}}\left(\vec{\gamma}_{k}\right)\right\|_{\vec{\gamma}_{k}}=0
$$

Because of the assumption (I.6) we deduce that $\vec{\gamma}_{k}$ is a Palais Smale sequence and since $\varepsilon=o\left(1 / \sigma \log \left(\sigma^{-1}\right)\right)$ as $\sigma \rightarrow 0$, the theorem I. 1 follows.

References

[1] Alexis Michelat, Tristan Rivière "A Viscosity Method for the Min-Max Construction of Closed Geodesics" arXiv:1511.04545 (2015).
[2] Luc Tartar "Compensated compactness and applications to partial differential equations". Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, pp. 136-212, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979.

[^0]: *Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.

