Minmax Methods

in Geometric Analysis

Tristan Rivière

ETH Zürich

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Part 2 : Palais Deformation Theory

in ∞ Dimensional Spaces.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

CRITICAL POINT THEORY AND THE MINIMAX PRINCIPLE

RICHARD S. PALAIS1

1. Introduction. Since the goal of this paper is to present an exposition of a fairly general method of attack on a certain class of problems in analysis, it is perhaps in order to begin with a discussion of the domain of applicability of the concepts and techniques we are going to describe, and to illustrate them in some simple cases.

In a typical problem in analysis, both linear and nonlinear, we are given a space X and a set of "equations" defined on X and are asked to describe the set S of solutions of these equations.

There are really two quite separate types of description, depending on whether one is interested in the properties of the elements of S on the one hand or in describing the nature of the set S on the other.

Typical of the first type of description is classical "complex variable theory." Here we may take for X the set of say C^1 complex valued functions defined in some open set in the complex plane and for S the set of solutions of the Cauchy-Riemann equations. The emphasis is placed on determining the properties that elements of S have as distinguished from the general element of X (e.g. the open mapping property, the maximum modulus property, complex analyticity etc.).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

◆□ > ◆圖 > ◆臣 > ◆臣 >

æ

Banach Manifolds

Definition A C^p Banach Manifold \mathcal{M} for $p \in \mathbb{N} \cup \{\infty\}$ is a Hausdorff topological space together with a covering by open sets $(U_i)_{i \in I}$, a family of Banach vector spaces $(E_i)_{i \in I}$ and a family of continuous mappings $(\varphi_i)_{i \in I}$ from U_i into E_i such that

i) for every $i \in I$

 $\varphi_i \ U_i \longrightarrow \varphi_i(U_i)$ is an homeomorphism

ii) for every pair of indices
$$i \neq j$$
 in I
 $\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \subset E_i \longrightarrow \varphi_j(U_i \cap U_j) \subset E_j$
is a C^p diffeomorphism

Example : Let l p > k

$$\mathcal{M} := W^{l,p}(\Sigma^k, N^n) := \left\{ u \in W^{l,p}(\Sigma^k, \mathbb{R}^m) ; u(x) \in N^n \text{ a.e. } x \in \Sigma^k \right\}$$

Observe : $W^{1,2}(D^2, N^n)$ does not fulfil the conditions.

Paracompact Banach Manifolds

Definition A topological Hausdorff space is called **paracompact** if every open covering admits a locally finite¹ open refinement.

 \square

Theorem [Stone 1948] Every metric space is paracompact.

Definition A topological space is called **normal** if any pair of disjoint closed sets have disjoint open neighborhoods.

Proposition Every Hausdorff paracompact space is normal.

Proof : https://topospaces.subwiki.org/wiki/

Warning ! M Banach Paracompact Manifold, (ϕ, U) a chart s.t.

 $\phi : U \longrightarrow \phi(U) = (E, \|\cdot\|)$ homeomorphism

then $\phi^{-1}(\overline{B_r(x)})$ might not be closed in \mathcal{M} .

Partition of Unity on Paracompact Banach Manifolds

Proposition Let $(\mathcal{O}_{\alpha})_{\alpha \in A}$ be an arbitrary covering of a C^1 paracompact Banach manifold \mathcal{M} . Then there exists a locally <u>lipschitz</u> partition of unity subordinated to $(\mathcal{O}_{\alpha})_{\alpha \in A}$, i.e. there exists $(\phi_{\alpha})_{\alpha \in A}$ where ϕ_{α} is locally lipschitz in \mathcal{M} and such that i) $Supp(\phi_{\alpha}) \subset \mathcal{O}_{\alpha}$

ii)

$$\phi_{lpha} \ge 0$$

iii)

$$\sum_{\alpha \in \mathcal{A}} \phi_{\alpha} \equiv 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where the sum is locally finite.

Banach Space Bundles

Definition A Banach manifold \mathcal{V} is called C^p - Banach Space Bundle over another Banach manifold \mathcal{M} if there exists a Banach Space E, a submersion π from \mathcal{V} into \mathcal{M} , a covering $(U_i)_{i \in I}$ of \mathcal{M} and a family of homeomorphism from $\pi^{-1}U_i$ into $U_i \times E$ such that the following diagram commutes

where σ is the canonical projection from $U_i \times E$ onto U_i . The restriction of τ_i on each fiber $\mathcal{V}_x := \pi^{-1}(\{x\})$ for $x \in U_i$ realizes a continuous isomorphism onto E. Moreover the map

$$x \in U_i \cap U_j \longrightarrow \tau_i \circ \tau_j^{-1}\Big|_{\pi^{-1}(x)} \in \mathcal{L}(E, E)$$

is C^p.

Finsler Structures on Banach Bundles.

Definition Let \mathcal{M} be a normal Banach manifold and let \mathcal{V} be a Banach Space Bundle over \mathcal{M} . A **Finsler structure** on \mathcal{V} is a continuous function

$$\|\cdot\|\ :\ \mathcal{V}\ \longrightarrow\ \mathbb{R}$$

such that for any $x \in \mathcal{M}$

$$\|\cdot\|_x := \|\cdot\||_{\pi^{-1}(\{x\})}$$
 is a norm on \mathcal{V}_x

and the norms are locally uniformly comparable using any trivialization.

Definition Let \mathcal{M} be a **normal** C^p Banach manifold. $T\mathcal{M}$ equipped with a Finsler structure is called a **Finsler Manifold**.

A Finsler Structure on Sobolev Immersions.

Let Σ^2 be a closed oriented 2-dim manifold and N^n be a closed sub-manifold of \mathbb{R}^m . Let q > 2

$$egin{aligned} \mathcal{M} &:= \mathcal{W}^{2,q}_{imm}(\Sigma^2,\mathcal{N}^n) \ &:= ig\{ \Phi \in \mathcal{W}^{2,q}(\Sigma^2,\mathcal{N}^n) \ ; \ \mathrm{rank} \left(d\Phi_x
ight) = 2 \quad orall x \in \Sigma^2 ig\} \end{aligned}$$

The tangent space to \mathcal{M} at a point Φ is

$$T_{\Phi}\mathcal{M} = \left\{ w \in W^{2,q}(\Sigma^2,\mathbb{R}^m) ; w(x) \in T_{\Phi(x)}N^n \quad \forall x \in \Sigma^2
ight\}$$

We equip $\mathcal{T}_{\Phi}\mathcal{M}$ with the following norm

$$\|v\|_{\Phi} := \left[\int_{\Sigma} \left[|\nabla^2 v|_{g_{\Phi}}^2 + |\nabla v|_{g_{\Phi}}^2 + |v|^2 \right]^{q/2} dvol_{g_{\Phi}} \right]^{1/q} + \||\nabla v|_{g_{\Phi}}\|_{L^{\infty}(\Sigma)}$$

Proposition $\|\cdot\|_{\Phi}$ define a C^2 -Finsler struct. on \mathcal{M} .

The Palais Distance.

Theorem [Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold. Define on $\mathcal{M} \times \mathcal{M}$

$$d(p,q) := \inf_{\omega \in \Omega_{p,q}} \int_0^1 \left\| \frac{d\omega}{dt} \right\|_{\omega(t)} dt$$

where

$$\Omega_{{m p},{m q}} := ig\{\omega \in {m C}^1([0,1],{\mathcal M}) \ ; \ \omega(0) = {m p} \quad \omega(1) = {m q}ig\}$$

Then d defines a distance on \mathcal{M} and (\mathcal{M}, d) defines the same topology as the one of the Banach Manifold.

d is called **Palais distance** of the Finsler manifold $(\mathcal{M}, \|\cdot\|)$.

Corollary Let $(\mathcal{M}, \|\cdot\|)$ be a Finsler Manifold then \mathcal{M} is paracompact.

Completeness of the Palais Distance.

Proposition Let q > 2 and let \mathcal{M} be the normal² Banach manifold

$$\mathcal{W}^{2,q}_{imm}(\Sigma^2, \mathsf{N}^n) := \left\{ \Phi \in \mathcal{W}^{2,q}(\Sigma^2, \mathsf{N}^n) \ ; \ \textit{rank}(d\Phi_x) = 2 \quad \forall x \in \Sigma^2 \right\}$$

The Finsler Manifold given by

$$\|v\|_{\Phi} := \left[\int_{\Sigma} \left[|\nabla^2 v|_{g_{\Phi}}^2 + |\nabla v|_{g_{\Phi}}^2 + |v|^2 \right]^{q/2} dvol_{g_{\Phi}} \right]^{1/q} + \||\nabla v|_{g_{\Phi}} \|_{L^{\infty}(\Sigma)}$$

< □ > < □ > < 三 > < 三 > < 三 > < □ >

is **complete** for the **Palais distance**.

²Recall that every metric space is normal.

Pseudo-gradients

Definition Let \mathcal{M} be a C^2 Finsler Manifold and E be a C^1 function on \mathcal{M} . Denote

$$\mathcal{M}^* := \{ u \in \mathcal{M} \quad ; \quad DE_u \neq 0 \}$$

A pseudo-gradient is a Lipschitz continuous section $X : \mathcal{M}^* \to T\mathcal{M}^* \text{ such that}$ i) $\forall u \in \mathcal{M}^* \quad \|X(u)\|_u < 2 \|DE_u\|_u$ ii) $\forall u \in \mathcal{M}^* \quad \|DE_u\|_u^2 < \langle X(u), DE_u \rangle_{T_u \mathcal{M}^*, T_u^* \mathcal{M}^*}$

Proposition Every C^1 function on a Finsler Manifold admits a pseudo-gradient.

"Proof" Use that **Finsler Manifolds** are **Paracompact** and "glue together" local pseudo-gradients constructed by local trivializations with an ad-hoc partition of unity.

Figure 4: Pull tight going nowhere!

The Palais-Smale condition : (PS)

Definition Let *E* be a C^1 function on a Finsler manifold $(\mathcal{M}, \|\cdot\|)$ and $\beta \in E(\mathcal{M})$. One says that *E* fulfills the **Palais-Smale condition** at the level β if for any sequence u_n satisfying

$$E(u_n) \longrightarrow eta$$
 and $\|DE_{u_n}\|_{u_n} \longrightarrow 0$,

then there exists a subsequence $u_{n'}$ and $u_{\infty} \in \mathcal{M}$ such that

$$d_{\mathbf{P}}(u_{n'}, u_{\infty}) \longrightarrow 0$$

and hence $E(u_{\infty}) = \beta$ and $DE_{u_{\infty}} = 0$.

Example Let \mathcal{M} be $W^{1,2}(S^1, N^n)$ for the Finsler structure given by

$$\forall \ w \in W^{1,2}(S^1, \mathbb{R}^m) \quad w \cdot u = 0 \qquad \|w\|_u := \|w\|_{W^{1,2}(S^1)}$$

Then the Dirichlet Energy satisfies the Palais Smale condition for every level set.

Admissible families

Definition A family of closed subsets $\mathcal{A} \subset \mathcal{P}(\mathcal{M})$ of a Banach manifold \mathcal{M} is called **admissible family** if for every homeomorphism Ψ of \mathcal{M} isotopic to the identity we have

$$\forall A \in \mathcal{A} \qquad \Psi(A) \in \mathcal{A}$$

$$\begin{array}{l} \mathsf{Example} \ \mathcal{M} := \mathcal{W}^{2,q}_{imm}(S^2,\mathbb{R}^3). \ \mathsf{Let} \ c \in \pi_1(\mathsf{Imm}(S^2,\mathbb{R}^3)) = \mathbb{Z}_2 \times \mathbb{Z} \\ \\ \mathcal{A} := \left\{ \Phi \in C^0([0,1],\mathcal{W}^{2,q}_{imm}(S^2,\mathbb{R}^3)) \ ; \ \Phi(0,\cdot) = \Phi(1,\cdot) \quad \text{ and } [\Phi] = c \right\} \end{array}$$

is admissible

: for example a sphere eversion is non zero in

$$\pi_1(\mathsf{Imm}(S^2,\mathbb{R}^3)/\mathsf{Diff}(S^2))=\mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Palais Min-Max Principle

Theorem[Palais 1970] Let $(\mathcal{M}, \|\cdot\|)$ be a $C^{1,1}$ -Finsler manifold. Assume \mathcal{M} is complete for $d_{\mathbf{P}}$ and let $E \in C^1(\mathcal{M})$. Let \mathcal{A} admissible. Let

$$eta := \inf_{A \in \mathcal{A}} \sup_{u \in A} E(u)$$

Assume $(PS)_{\beta}$ for the level set β . Then there exists $u \in \mathcal{M}$ s.t.

$$\begin{cases} DE_u = 0\\ E(u) = \beta \end{cases}$$

Proof By contradiction. $(PS)_{\beta} \Rightarrow$

 $\exists \ \delta > 0 \ , \exists \ \epsilon > 0 \ \ \beta - \varepsilon < E(u) < \beta + \varepsilon \implies \|DE_u\|_u \ge \delta \quad .$ Let $u \in \mathcal{M}^*$ and ϕ_t

 $\begin{cases} \frac{d\phi_t(u)}{dt} = -X(\phi_t(u)) \ \eta(E(\phi_t(u))) & \text{in } [0, t^u_{max}) \\ \phi_0(u) = u \end{cases}$

where supp $(\eta) \subset [\beta - \varepsilon_0, \beta + \varepsilon]$ and $\eta \equiv 1$ on $[\beta - \varepsilon_0/2, \beta + \varepsilon_0/2]$. $d(\phi_{t_1}(u), \phi_{t_2}(u)) \leq 2 |t_2 - t_1|^{1/2} [E(\phi_{t_1}(u)) - E(\phi_{t_2}(u))]^{1/2}$

If $t^u_{max} < +\infty$ then **Completeness** of $(\mathcal{M}, d) \Rightarrow$

 $\lim_{t \to t^{u}_{max}} \phi_{t}(u) \in \mathcal{M}^{*} \quad \text{Impossible } ! \Rightarrow \forall \ t \in \mathbb{R}_{+} \quad \forall \ A \in \mathcal{A} \ \phi_{t}(A) \in \mathcal{A}$

Take $A \in \mathcal{A}$ s.t. $\max_{u \in A} E(u) < \beta + \varepsilon_0/2$. Apply ϕ_t ...cont. !

Birkhoff Existence Result Revisited.

 $\mathcal{M} := W^{1,2}(S^1, N^2 \simeq S^2)$ defines a complete Finsler manifold.

- *E* is (PS) on \mathcal{M} .
- $\mathcal{A}:=\{ \text{ sweep-out} \}$
- Palais Theorem \Rightarrow

$$W = \inf_{u \in \mathcal{A}} \max_{t \in [0,1]} E(u(t, \cdot)) > 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is achieved by a **closed geodesic**.

This gives a new proof of **Birkhoff existence result**.

Homotopy type of the Loop Space in arbitrary Manifolds.

$$\mathcal{M}:=\mathcal{W}^{1,2}(\mathcal{S}^1,\mathcal{M}^m):=\left\{u\in\mathcal{W}^{1,2}(\mathcal{S}^1,\mathbb{R}^Q)\;;\;u(heta)\in\mathcal{M}^m\;,\;\forall heta\in\mathcal{S}^1
ight\}$$

 $\mathcal{M} \simeq_{homot} C^0(S^1, M^m).$ Let $\Omega_p(M^m)$ the path space based at p.

Exact sequence of Serre fibration

$$\cdots \pi_n(\Omega_p(M^m)) \longrightarrow \pi_n(C^0(S^1, M^m)) \xrightarrow{e_{V_*}} \pi_n(M^m) \longrightarrow \pi_{n-1}(\Omega_p(M^m)) \cdot$$

It "splits" : $ev_* \circ \iota_* = id_*$ where $\iota_*(q) \equiv q$. Hence

$$\pi_n(C^0(S^1, M^m)) = \pi_n(\Omega_p(M^m)) \oplus \pi_n(M^m)$$

Eckmann-Hilton duality $\pi_n(\Omega_p(M^m)) = \pi_{n+1}(M^m)$. Hence

$$\pi_n(\mathcal{M}) = \pi_{n+1}(\mathcal{M}) \oplus \pi_n(\mathcal{M}^m)$$

▲□▶▲□▶▲□▶▲□▶ = のへの

Birkhoff Sweep-outs revisited.

$$\begin{split} &M^m \text{ simply connected.} \\ &\text{Let } k \in \{2, \cdots, m\} \text{ s.t.} \\ &\pi_k(M^m) \neq 0 \quad \text{but } \pi_l(M^m) = 0 \quad \text{ for } l \in \{1 \cdots k - 1\} \quad . \\ &\text{Thus } \pi_{k-1}(\mathcal{M}) = \pi_k(M^m) \neq 0. \end{split}$$

Example : For $M^m = S^2$ we have

$$\pi_1(W^{1,2}(S^1,S^2)) = \pi_2(S^2) = \mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is generated by Birkhoff Sweep-Out.

Existence of closed Geodesics in arbitrary Manifolds.

Let

$$\mathcal{A} := \left\{ u \in C^0(S^{k-1}, \mathcal{M}) ; \ [u] \neq 0 \ \text{ in } \pi_{k-1}(\mathcal{M})
ight\}$$

It is clearly **admissible**. Introduce the width

$$W_k := \inf_{u \in \mathcal{A}} \max_{s \in S^{k-1}} E(u(s, \cdot))$$

We have

 $W_k > 0$

Indeed there exists $\delta > 0$ such that

$$\max_{s \in S^{k-1}} E(u(s, \cdot)) < \delta \quad \Rightarrow \quad [u] = 0 \quad (\text{use } \pi_{k-1}(M^m) = 0)$$

The Dirichlet Energy is **Palais Smale** in $W^{1,2}(S^1, M^m)$. Hence **Theorem** [Fet-Lyusternik 1951]. Every closed manifold posses a non trivial closed geodesic.

More closed Geodesics in arbitrary Manifolds ?

Definition A geodesic is called **prime** if it is not a multiple covering of another one.

Question Does there exists infinitely many prime geodesics in a given closed manifold ?

This is still open for (S^n, g) when $n \ge 3$.

Question Which are the manifolds for which we know the existence of **infinitely many prime geodesics** ?

Gromov Dimension and non-linear Spectrum

Let

$$\mathcal{M}^{\lambda} := \left\{ u \in W^{1,2}(S^1, M^m) \; ; \; \sqrt{E(u)} \leq \lambda \right\}$$

.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Define Gromov dimension for any $\lambda > 0$

$$\mathsf{dm}(\mathcal{M}^{\lambda}) := \sup\{k \in \mathbb{N} ; H_{l}(\mathcal{M}; \mathcal{M}^{\lambda}; \mathbb{Z}) = 0 \quad \forall l \leq k\}$$

and Gromov Spectrum

$$\lambda_k := \sup \left\{ \lambda \in \mathbb{R}_+ \; ; \; \mathsf{dm}(\mathcal{M}^{\lambda}) \leq k
ight\}$$

Exercise : This formal definition permits to recover the **linear spectrum of the laplacian** for

$$\mathcal{M} := \left\{ u \in W^{1,2}(M^m, \mathbb{R}) ; \|u\|_{L^2(M^m)} = 1 \right\}$$

A quasi Weyl Law for the Gromov Spectrum

Theorem [Gromov 1978] Assume $\pi_1(M^m)$ is finite then

 $\lambda_k \simeq k$

Morse theory implies that - for a generic metric - at each generator of $H_k(\mathcal{M}; \mathbb{R})$ corresponds a geodesic. Combining the two gives

$$\mathsf{Card} \left\{ \mathsf{geodesics} \ \mathsf{of} \ \mathsf{length} \ \leq \lambda
ight\} \geq \sum_{k \leq [\mathcal{C}\lambda]} \ \mathsf{dim}(\mathcal{H}_k(\mathcal{M};\mathbb{R}))$$

Which implies

 $\mathsf{Card} \left\{ \mathsf{prime geodesics of length } \leq \lambda \right\} \geq \frac{\displaystyle\sum_{k \leq [C\lambda]} \mathsf{dim}(H_k(\mathcal{M};\mathbb{R}))}{\lambda}$

A D N A 目 N A E N A E N A B N A C N

Gromoll Meyer Theorem

Ballman and Ziller improved Gromov lower bound Theorem [Ballman, Ziller 1982] If $\pi_1(M^m) = 0$ and (M^m, g) generic we have

 $\mathsf{Card} \left\{ \mathsf{prime} \text{ geodesics of length } \leq \lambda \right\} \geq \max_{k \leq C\lambda} \, \dim(\mathcal{H}_k(\mathcal{M};\mathbb{R})) \quad .$

This permits to deduce in the case of simply connected and generic M^m

Theorem [Gromoll, Meyer 1969] Assume $\pi_1(M^m)$ is finite and

$$\limsup_{k \to +\infty} \dim(H_k(\mathcal{M};\mathbb{R})) = +\infty \qquad (\star)$$

then (M^m, g) has infinitely many prime geodesic

An application of Gromoll Meyer Theorem

The computation of the **minimal model** of M^m (an algebraic procedure introduced by Quillen and Sullivan to compute $\pi_k(M^m) \otimes \mathbb{R}$) implies the following

Theorem [Vigué-Poirrier, Sullivan 1976] If $\pi_1(M^m) = 0$ and $H^k(M, \mathbb{R})$ is not generated by a single element then

$$\limsup_{k \to +\infty} \dim(H_k(\mathcal{M};\mathbb{R})) = +\infty \qquad (\star)$$

holds and M^m has infinitely many prime geodesic.

This does not apply to $M^m := (S^m, g)$. However

Theorem [Franks 1992, Bangert 1993] Let g be an arbitrary metric on S^2 then (S^2, g) has infinitely many prime geodesic.