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Banach Manifolds
Definition A Cp Banach Manifold M for p ∈ N ∪ {∞} is a
Hausdorff topological space together with a covering by open sets
(Ui )i∈I , a family of Banach vector spaces (Ei )i∈I and a family of
continuous mappings (φi )i∈I from Ui into Ei such that

i) for every i ∈ I

φi Ui −→ φi (Ui ) is an homeomorphism

ii) for every pair of indices i ̸= j in I

φj ◦ φ−1
i : φi (Ui ∩ Uj) ⊂ Ei −→ φj(Ui ∩ Uj) ⊂ Ej

is a Cp diffeomorphism

□
Example : Let l p > k

M := W l ,p(Σk ,Nn) :=
{
u ∈ W l ,p(Σk ,Rm) ; u(x) ∈ Nn a.e. x ∈ Σk

}
Observe : W 1,2(D2,Nn) does not fulfil the conditions.



Paracompact Banach Manifolds
Definition A topological Hausdorff space is called paracompact if
every open covering admits a locally finite1 open refinement. □

Theorem [Stone 1948] Every metric space is paracompact. □

Definition A topological space is called normal if any pair of
disjoint closed sets have disjoint open neighborhoods. □

Proposition Every Hausdorff paracompact space is normal. □

Proof : https://topospaces.subwiki.org/wiki/

Warning ! M Banach Paracompact Manifold, (ϕ,U) a chart s.t.

ϕ : U −→ ϕ(U) = (E , ∥ · ∥) homeomorphism

then ϕ−1(Br (x)) might not be closed in M.
1locally finite means that any point posses a neighborhood which intersects

only finitely many open sets of the sub-covering



Partition of Unity on Paracompact Banach
Manifolds

Proposition Let (Oα)α∈A be an arbitrary covering of a C 1

paracompact Banach manifold M. Then there exists a locally
lipschitz partition of unity subordinated to (Oα)α∈A , i.e. there
exists (ϕα)α∈A where ϕα is locally lipschitz in M and such that

i)
Supp(ϕα) ⊂ Oα

ii)
ϕα ≥ 0

iii) ∑
α∈A

ϕα ≡ 1

where the sum is locally finite.

□



Banach Space Bundles

Definition A Banach manifold V is called Cp− Banach Space
Bundle over another Banach manifold M if there exists a Banach
Space E , a submersion π from V into M, a covering (Ui )i∈I of M
and a family of homeomorphism from π−1Ui into Ui × E such that
the following diagram commutes

π−1Ui

τi−→ Ui × E

↓ σ↘π
Ui

where σ is the canonical projection from Ui × E onto Ui . The
restriction of τi on each fiber Vx := π−1({x}) for x ∈ Ui realizes a
continuous isomorphism onto E . Moreover the map

x ∈ Ui ∩ Uj −→ τi ◦ τ−1
j

∣∣∣
π−1(x)

∈ L(E ,E )

is Cp. □



Finsler Structures on Banach Bundles.

Definition Let M be a normal Banach manifold and let V be a
Banach Space Bundle over M. A Finsler structure on V is a
continuous function

∥ · ∥ : V −→ R

such that for any x ∈ M

∥ · ∥x := ∥ · ∥|π−1({x}) is a norm on Vx .

and the norms are locally uniformly comparable using any
trivialization. □

Definition Let M be a normal Cp Banach manifold. TM
equipped with a Finsler structure is called a Finsler Manifold. □



A Finsler Structure on Sobolev Immersions.

Let Σ2 be a closed oriented 2−dim manifold and Nn be a closed
sub-manifold of Rm. Let q > 2

M := W 2,q
imm(Σ

2,Nn)

:=
{
Φ ∈ W 2,q(Σ2,Nn) ; rank (dΦx) = 2 ∀x ∈ Σ2

}
The tangent space to M at a point Φ is

TΦM =
{
w ∈ W 2,q(Σ2,Rm) ; w(x) ∈ TΦ(x)N

n ∀ x ∈ Σ2
}

.

We equip TΦM with the following norm

∥v∥Φ :=

[ˆ
Σ

[
|∇2v |2gΦ + |∇v |2gΦ + |v |2

]q/2
dvolgΦ

]1/q
+∥ |∇v |gΦ ∥L∞(Σ)

Proposition ∥ · ∥Φ define a C 2−Finsler struct. on M. □



The Palais Distance.

Theorem [Palais 1970] Let (M, ∥ · ∥) be a Finsler Manifold.
Define on M×M

d(p, q) := inf
ω∈Ωp,q

ˆ 1

0

∥∥∥∥dωdt
∥∥∥∥
ω(t)

dt

where

Ωp,q :=
{
ω ∈ C 1([0, 1],M) ; ω(0) = p ω(1) = q

}
.

Then d defines a distance on M
and (M, d) defines the same topology as the one of the Banach
Manifold.

d is called Palais distance of the Finsler manifold (M, ∥ · ∥).

Corollary Let (M, ∥ · ∥) be a Finsler Manifold then M is
paracompact. □



Completeness of the Palais Distance.

Proposition Let q > 2 and let M be the normal2 Banach
manifold

W 2,q
imm(Σ

2,Nn) :=
{
Φ ∈ W 2,q(Σ2,Nn) ; rank (dΦx) = 2 ∀x ∈ Σ2

}
The Finsler Manifold given by

∥v∥Φ :=

[ˆ
Σ

[
|∇2v |2gΦ + |∇v |2gΦ + |v |2

]q/2
dvolgΦ

]1/q
+∥ |∇v |gΦ ∥L∞(Σ)

is complete for the Palais distance.

2Recall that every metric space is normal.



Pseudo-gradients
Definition Let M be a C 2 Finsler Manifold and E be a C 1

function on M.
Denote

M∗ := {u ∈ M ; DEu ̸= 0} .

A pseudo-gradient is a Lipschitz continuous section
X : M∗ → TM∗ such that

i)
∀ u ∈ M∗ ∥X (u)∥u < 2 ∥DEu∥u

ii)
∀ u ∈ M∗ ∥DEu∥2u < ⟨X (u),DEu⟩TuM∗,T∗

u M∗

Proposition Every C 1 function on a Finsler Manifold admits a
pseudo-gradient. □

“Proof” Use that Finsler Manifolds are Paracompact and “glue
together” local pseudo-gradients constructed by local trivializations
with an ad-hoc partition of unity.
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Figure 4: Pull tight going nowhere!



The Palais-Smale condition : (PS)

Definition Let E be a C 1 function on a Finsler manifold (M, ∥ · ∥)
and β ∈ E (M). One says that E fulfills the Palais-Smale
condition at the level β if for any sequence un satisfying

E (un) −→ β and ∥DEun∥un −→ 0 ,

then there exists a subsequence un′ and u∞ ∈ M such that

dP(un′ , u∞) −→ 0 .

and hence E (u∞) = β and DEu∞ = 0. □

Example Let M be W 1,2(S1,Nn) for the Finsler structure given by

∀ w ∈ W 1,2(S1,Rm) w · u = 0 ∥w∥u := ∥w∥W 1,2(S1)

Then the Dirichlet Energy satisfies the Palais Smale condition for
every level set. □



Admissible families

Definition A family of closed subsets A ⊂ P(M) of a Banach
manifold M is called admissible family if for every
homeomorphism Ψ of M isotopic to the identity we have

∀A ∈ A Ψ(A) ∈ A

□

Example M := W 2,q
imm(S

2,R3). Let c ∈ π1(Imm(S2,R3)) = Z2 ×Z

A :=
{
Φ ∈ C 0([0, 1],W 2,q

imm(S
2,R3)) ; Φ(0, ·) = Φ(1, ·) and [Φ] = c

}
is admissible
: for example a sphere eversion is non zero in

π1(Imm(S2,R3)/Diff(S2)) = Z



Palais Min-Max Principle

Theorem[Palais 1970] Let (M, ∥ · ∥) be a C 1,1−Finsler manifold.
Assume M is complete for dP and let E ∈ C 1(M).
Let A admissible. Let

β := inf
A∈A

sup
u∈A

E (u)

Assume (PS)β for the level set β.
Then there exists u ∈ M s.t.

DEu = 0

E (u) = β



Proof By contradiction. (PS)β ⇒

∃ δ > 0 ,∃ ϵ > 0 β − ε < E (u) < β + ε =⇒ ∥DEu∥u ≥ δ .

Let u ∈ M∗ and ϕt
dϕt(u)

dt
= − X (ϕt(u)) η(E (ϕt(u))) in [0, tumax)

ϕ0(u) = u

where supp(η) ⊂ [β − ε0, β + ε] and η ≡ 1 on [β − ε0/2, β + ε0/2].

d(ϕt1(u), ϕt2(u)) ≤ 2 |t2 − t1|1/2 [E (ϕt1(u))− E (ϕt2(u))]
1/2

If tumax < +∞ then Completeness of (M, d) ⇒

lim
t→tumax

ϕt(u) ∈ M∗ Impossible ! ⇒ ∀ t ∈ R+ ∀ A ∈ A ϕt(A) ∈ A

Take A ∈ A s.t. maxu∈A E (u) < β + ε0/2. Apply ϕt ...cont. ! □



Birkhoff Existence Result Revisited.

M := W 1,2(S1,N2 ≃ S2) defines a complete Finsler manifold.

E is (PS) on M.

A := { sweep-out}

Palais Theorem ⇒

W = inf
u∈A

max
t∈[0,1]

E (u(t, ·)) > 0

is achieved by a closed geodesic.

This gives a new proof of Birkhoff existence result.



Homotopy type of the Loop Space in arbitrary
Manifolds.

M := W 1,2(S1,Mm) :=
{
u ∈ W 1,2(S1,RQ) ; u(θ) ∈ Mm , ∀θ ∈ S1

}
M ≃homot C

0(S1,Mm).
Let Ωp(M

m) the path space based at p.

Exact sequence of Serre fibration

· · ·πn(Ωp(M
m)) −→ πn(C

0(S1,Mm))
ev∗−→ πn(M

m) −→ πn−1(Ωp(M
m)) · · ·

It “splits” : ev∗ ◦ ι∗ = id∗ where ι∗(q) ≡ q. Hence

πn(C
0(S1,Mm)) = πn(Ωp(M

m))⊕ πn(M
m)

Eckmann-Hilton duality πn(Ωp(M
m)) = πn+1(M

m) . Hence

πn(M) = πn+1(M)⊕ πn(M
m)



Birkhoff Sweep-outs revisited.

Mm simply connected.
Let k ∈ {2, · · · ,m} s.t.

πk(M
m) ̸= 0 but πl(M

m) = 0 for l ∈ {1 · · · k − 1} .

Thus πk−1(M) = πk(M
m) ̸= 0.

Example : For Mm = S2 we have

π1(W
1,2(S1, S2)) = π2(S

2) = Z

It is generated by Birkhoff Sweep-Out.



Existence of closed Geodesics in arbitrary Manifolds.
Let

A :=
{
u ∈ C 0(Sk−1,M) ; [u] ̸= 0 in πk−1(M)

}
It is clearly admissible.
Introduce the width

Wk := inf
u∈A

max
s∈Sk−1

E (u(s, ·))

We have
Wk > 0

Indeed there exists δ > 0 such that

max
s∈Sk−1

E (u(s, ·)) < δ ⇒ [u] = 0 (use πk−1(M
m) = 0)

The Dirichlet Energy is Palais Smale in W 1,2(S1,Mm). Hence

Theorem [Fet-Lyusternik 1951]. Every closed manifold posses a
non trivial closed geodesic.



More closed Geodesics in arbitrary Manifolds ?

Definition A geodesic is called prime if it is not a multiple covering
of another one.

Question Does there exists infinitely many prime geodesics in a
given closed manifold ?

This is still open for (Sn, g) when n ≥ 3.

Question Which are the manifolds for which we know the
existence of infinitely many prime geodesics ?



Gromov Dimension and non-linear Spectrum

Let

Mλ :=
{
u ∈ W 1,2(S1,Mm) ;

√
E (u) ≤ λ

}
.

Define Gromov dimension for any λ > 0

dm(Mλ) := sup{k ∈ N ; Hl(M;Mλ;Z) = 0 ∀l ≤ k}

and Gromov Spectrum

λk := sup
{
λ ∈ R+ ; dm(Mλ) ≤ k

}
Exercise : This formal definition permits to recover the linear
spectrum of the laplacian for

M :=
{
u ∈ W 1,2(Mm,R) ; ∥u∥L2(Mm) = 1

}



A quasi Weyl Law for the Gromov Spectrum

Theorem [Gromov 1978] Assume π1(M
m) is finite then

λk ≃ k

□
Morse theory implies that - for a generic metric - at each generator
of Hk(M;R) corresponds a geodesic. Combining the two gives

Card {geodesics of length ≤ λ} ≥
∑

k≤[Cλ]

dim(Hk(M;R)) .

Which implies

Card {prime geodesics of length ≤ λ} ≥

∑
k≤[Cλ]

dim(Hk(M;R))

λ
.



Gromoll Meyer Theorem

Ballman and Ziller improved Gromov lower bound
Theorem [Ballman, Ziller 1982] If π1(M

m) = 0 and (Mm, g)
generic we have

Card {prime geodesics of length ≤ λ} ≥ max
k≤Cλ

dim(Hk(M;R)) .

This permits to deduce in the case of simply connected and generic
Mm

Theorem [Gromoll, Meyer 1969] Assume π1(M
m) is finite and

lim sup
k→+∞

dim(Hk(M;R)) = +∞ (⋆)

then (Mm, g) has infinitely many prime geodesic



An application of Gromoll Meyer Theorem

The computation of the minimal model of Mm (an algebraic
procedure introduced by Quillen and Sullivan to compute
πk(M

m)⊗ R) implies the following

Theorem [Vigué-Poirrier, Sullivan 1976] If π1(M
m) = 0 and

Hk(M,R) is not generated by a single element then

lim sup
k→+∞

dim(Hk(M;R)) = +∞ (⋆)

holds and Mm has infinitely many prime geodesic.

This does not apply to Mm := (Sm, g). However

Theorem [Franks 1992, Bangert 1993] Let g be an arbitrary metric
on S2 then (S2, g) has infinitely many prime geodesic.


