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1 The Fourier transform of tempered distributions

1.1 The Fourier transforms of L1 functions

Theorem-Definition 1.1. Let f ∈ L1(Rn,C) define the Fourier transform of f as fol-
lows:

∀ξ ∈ Rn f̂(ξ) = (2π)−
n
2

∫
Rn
e−ix·ξf(x) dx.

We have that f̂ ∈ L∞(Rn) and

(1.1) ‖f̂‖L∞(Rn) ≤ (2π)−
n
2 ‖f‖L1(Rn).

Moreover f̂ ∈ C0(Rn) and

(1.2) lim
|ξ|→+∞

|f̂(ξ)| = 0.

We shall also sometimes denote the Fourier transform of f by F(f).

Remark 1.2. There are several possible normalizations for defining the Fourier transform
of an L1 function such as for instance

f̂(ξ) :=

∫
Rn
e−2iπx·ξf(x) dx.

None of them give a full satisfaction. The advantages of the one we chose are the following:

i) f 7−→ f̂ will define an isometry of L2 as we will see in Proposition 1.5.

ii) With our normalization we have the convenient formula (see Lemma 1.11)

∀k = 1 . . . n ∂ξk f̂ = −i ξk f̂

but the less convenient formula (see Proposition 1.32)

ĝ ∗ f = (2π)−n ĝ f̂ .

Proof of Theorem 1.1. The first part of the theorem that is inequality (1.1) is straight-

forward. We prove now that f̂ ∈ C0(Rn). Let fk ∈ C∞0 (Rn) such that

fk −→ f strongly in L1(Rn).

It is clear that since fk ∈ C∞0 (Rn) the functions f̂k are also C∞. Inequality (1.1) gives

‖f̂ − f̂k‖L∞(Rn) ≤ (2π)−
n
2 ‖f − fk‖L1(Rn).

Thus f̂ is the uniform limit of continuous functions and, as such, it is continuous. It
remains to prove that |f |(ξ) uniformly converges to zero as |ξ| converge to infinity. In
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Proposition 1.9 we shall prove that (1.2) holds if f ∈ C∞0 (Rn). Let f ∈ L1(Rn), let ε > 0
and let ϕ ∈ C∞0 such that

(1.3) ‖f − ϕ‖L1(Rn) ≤
ε

2
(2π)

n
2 .

There exists R > 0 such that

(1.4) |ξ| > R =⇒ |ϕ̂(ξ)| ≤ ε

2
.

Combining (1.3) and (1.4) together with (1.1) applied to the difference f − ϕ, we obtain

|ξ| > R =⇒ |f̂(ξ)| ≤ ‖f̂ − ϕ̂‖L∞ + |ϕ̂(ξ)|
≤ ε.

This implies (1.2) and Theorem 1.1 is proved. �

Exercise 1.3. Prove that for any a ∈ R∗+

ê−a|x|2 =
1

(2a)
n
2

e−
|ξ|2
4a .

Prove that for any a ∈ R∗+
f̂a(x) = an f̂(aξ)

where fa(x) := f(x
a
) for any x ∈ Rn.

It is then natural to ask among the functions which are continuous, bounded in L∞

and converging uniformly to zero at infinity, which one is the Fourier transform of an L1

function. Unfortunately, there seems to be no satisfactory condition characterizing the
space of Fourier transforms of L1(Rn). We have nevertheless the following theorem.

Theorem 1.4. (Inverse of the Fourier transform)

Let f ∈ L1(Rn;C) such that f̂ ∈ L1(Rn;C) then

∀x ∈ Rn f(x) = (2π)−
n
2

∫
Rn
eix·ξ f̂(ξ) dξ.

Proof of Theorem 1.4. We can of course explicitly write

(2π)−
n
2

∫
Rn
eix·ξ f̂(ξ) dξ = (2π)−

n
2

∫
Rn
eix·ξ dξ

∫
Rn
eix·y f(y) dy.

The problem at this stage is that we cannot a-priori reverse the order of integrations
because the hypothesis for applying Fubini’s theorem are not fullfilled:

(ξ, y) 7−→ eiξ(x−y)f(y) /∈ L1(Rn × Rn)

unless f ≡ 0.
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The idea is to insert the Gaussian function e−
ε2|ξ|2

4 where ε is a positive number that
we are going to take smaller and smaller. Introduce

Iε(x) := (2π)−n
∫
Rn
eix·ξe−

ε2|ξ|2
4 dξ

∫
Rn
e−iξ·y f(y) dy.

Now we have

(ξ, y) 7−→ e−
ε2|ξ|2

4 eiξ(x−y)f(y) ∈ L1(Rn × Rn)

and we can apply Fubini’s theorem.

We have in one hand

Iε(x) = (2π)−
n
2

∫
Rn
eix·ξ e−

ε2|ξ|2
4 f̂(ξ) dξ.

We can bound the integrand uniformly as follows:

∀x, ξ ∈ Rn
∣∣∣eix·ξ e− ε2|ξ|24 f̂(ξ)

∣∣∣ ≤ |f̂ ∗ ξ)|.
By assumption, the right-hand side of the inequality is integrable and we have moreover,
for every x and ξ

lim
ε⇒0

eix·ξ e−
ε2|ξ|2

4 f̂(ξ) = eix·ξ f̂(ξ).

Hence dominated convergence theorem implies that for any x ∈ R

(1.5) lim
ε⇒0

Iε(x) = (2π)−
n
2

∫
Rn
f̂(x) eix·ξ dξ.

Applying Fubini gives also

Iε(x) = (2π)−n
∫
Rn
f(y) dy

∫
Rn
e−i(y−x)·ξ e−

ε2|ξ|2
4 dξ

= (2π)−
n
2

∫
Rn
f(y)F

(
e−

ε2

4
|ξ|2)(y − x) dy

using Exercise 1.3, we then obtain

Iε(x) = (2π)−
n
2

∫
Rn
f(y) e

−|y−x|2

ε2
2
n
2

εn
dy.

One proves without much difficulties that for any Lebesgue point x ∈ R for f the following
holds

lim
ε⇒0

(2π)−
n
2

∫
Rn
f(y) e−

|y−x|2

ε2
2
n
2

εn
dy = f(x).

Continuing this identity with (1.5) gives the theorem. �

The transformation

f ∈ L1(Rn) 7−→ (2π)−
n
2

∫
Rn
eix·ξ f(ξ) dξ

will be denoted
∨
f or also F−1(f).
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Proposition 1.5. Let f and g ∈ L1(Rn;C). When∫
Rn
f(x) ĝ(x) dx =

∫
Rn
f̂(x) g(x) dx.

Let f ∈ L1(Rn;C) such that f̂ ∈ L1(Rn;C), then∫
Rn
f(x) f(x) dx =

∫
Rn
f̂(ξ) f̂(x) dξ.

This last identity is called Plancherel identity.

Proof of Proposition 1.5. The proof of the first identity in Proposition 1.5 is a direct
consequence of Fubini’s theorem. The second identity can be deduced from the first one
by taking g := F−1(f) and by observing that

F−1(f) = F(f) . �

The second identity is an invitation to extend the Fourier transform as an isometry
of L2. The purpose of the present chapter is to extend the Fourier transform to an even
larger class of distributions. To that aim we will first concentrate on looking at the Fourier
transform in a “small” class of very smooth function with very fast decrease at infinity:
the Schwartz space.

1.2 The Schwartz Space S(Rn)

The Schwartz functions are C∞ functions whose successive derivatives decrease faster
than any polynominal at infinity. We shall use below the following notations:

∀α = (α, . . . , αn) ∈ Nn xα := xα1
1 , . . . , x

αn
n

∀β(β, . . . , βn) ∈ Nn ∂βf :=
∂

∂nβ11

. . .
∂βn

∂xβnn
(f)

and |α| :=
∑
αi.

Definition 1.6. The space of Schwartz functions is the following subspace of C∞(Rn;C):

S(Rn) :=


ϕ ∈ C∞(Rn;C) s.t.

∀p ∈ N Np(ϕ) := sup
|α| ≤ p
|β| ≤ p

‖xα ∂βϕ‖L∞(Rn) < +∞

 .

The following obvious proposition holds

Proposition 1.7. S(Rn) is stable under the action of derivatives and the multiplication
by polynomials in C[x1, . . . , xn].

We prove now the following proposition:
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Proposition 1.8. There exists Cn > 0 s.t. ∀ϕ ∈ S(Rn)∑
|α| ≤ p
|β| ≤ p

‖xα ∂βϕ‖L1(Rn) ≤ Cn Np+n+1(ϕ).

Proof of Proposition 1.8. We have∫
Rn
|xα ∂βϕ(x)| dx ≤

∫
Rn

dx

(1 + |x|n+1)
(1 + |x|n+1) |xα| |∂βϕ|(x)

≤ Cn Np+n+1(ϕ).

(1.6)

This concludes the proof of the proposition. �

The following proposition is fundamental in the theory of tempered distributions we
are going to introduce later on.

Proposition 1.9. Let ϕ be a Schwartz function on Rn, then it’s Fourier transform is also
a Schwartz function. Moreover for any p ∈ N there exists Cn,p > 0 such that

Np(ϕ̂) ≤ Cn,p Np+n+1(ϕ).

Hence the Fourier transform is a one to one linear transformation from S(Rn) into itself.
We shall see in the next sub-chapter that it is also continuous for the topology induced by
the ad-hoc Frechet structure on S(R).

Before proving Proposition 1.9, we need to establish two intermediate elementary
lemmas whose proofs are left to the reader. (They are direct applications respectively of
the derivation with respect to a parameter in an integral as well as integration by parts.
Both operations are justified due to the smoothness of the integrands as well as the fast
decrease at infinity).

We have first

Lemma 1.10. Let ϕ ∈ S(Rn), then ϕ̂ is a C ′ function and

∀j = 1, . . . , n ∂ξj ϕ̂(ξ) = F (−ixj ϕ).

We have also the following lemma:

Lemma 1.11. Let ϕ ∈ S(Rn), then

∀j = 1, . . . , n ∂̂xjϕ = i ξj ϕ̂(ξ).

Observe that the two previous lemmas are illustrating the heuristic idea according to
which Fourier transform exchanges derivatives or smoothness with decrease at infinity.

Proof of Proposition 1.9. By iterating Lemma 1.10 and Lemma 1.11, we obtain that
ϕ̂ ∈ C∞ and we have

|ξα ∂βξ ϕ̂(ξ)| =
∣∣F(∂αx (xβϕ)

)∣∣.
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Hence using inequality (1.1) we obtain

Np(ϕ̂) = sup
|α| ≤ p
|β| ≤ p

‖ξα ∂βξ ϕ̂‖L∞(Rn)

= sup
|α| ≤ p
|β| ≤ p

∥∥F(∂αx (xβϕ)
)∥∥

L∞(Rn)

≤ sup
|α| ≤ p
|β| ≤ p

(2π)−
n
2 ‖∂αx (xβϕ)‖L1(Rn)

≤ Cn,p sup
|α| ≤ p
|β| ≤ p+ n+ 1

‖xβ ∂αx ϕ‖L∞(Rn) ≤ Cn,p Np+n+1(ϕ),

where we used (1.6). This concludes the proof of the proposition. �

We shall now use the Fourier transform on S(Rn) in order to extend by duality the
Fourier transform to the “dual” space to S(Rn) as the first identity of proposition 1.5 is
inviting to do. The idea behind is that S(Rn) is a relatively small space and we expect
the “dual” to be big and we would then extend Fourier to this larger space. Now the
question is to give a precise meaning to the dual space to S(Rn). The classical framework
of Banach space is not sufficient since (S(Rn),Np) is not complete. We have to build a
topology out of the countable family of norms (Np)p∈N. This is the purpose of the next
subsection.

1.3 Frechet Spaces

Definition 1.12. Let V be a R (or C) vector space

N : V → R+

is a pseudo-norm if

i) ∀λ ∈ R (or C), ∀x ∈ V N (λx) = |λ| N (x)

ii) ∀x, y ∈ V N (x+ y) ≤ N (x) +N (y).

In other words, a pseudo-norm is a norm without the non-degeneracy axiom.

Definition 1.13. (Frechet Space)

Let V be a R or C vector space equipped with an increasing sequence of pseudo-norms

Np ≤ Np+1

such that the following non-degeneracy condition is satisfied

Np(x) = 0

∀p ∈ N

}
⇐⇒ x = 0.
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Introduce on V × V the following distance:

∀x, y ∈ V d(x, y) =
+∞∑
p=0

2−p min{1,Np(x− y)}.

We say that (V, (Np)p∈N) defines a Frechet space if (V, d) is a complete metric space.

Examples of Frechet Spaces (left as exercise)

i) A Banach space (V, ‖·‖) for the constant sequence of norms Np(·) := ‖·‖ is Frechet.

ii) The space of smooth functions C∞(Bn
1 (0)) over the unit ball of Rn is a Frechet space

for the sequence of Cp-norms

∀p ∈ N ‖f‖Cp := sup
x ∈ Bn

1 (0)
|α| ≤ p

|∂αf |(x).

iii) The space Lqloc(Rn) of measurable functions of Rn which are Lq on every compact
of Rn(q ∈ [1,∞]) is Frechet for the family of pseudo-norms(

Lq(B2p(0)
)
p∈N.

iv) (
S(Rn), (Np)p∈N

)
,

where Np are the pseudo-norms defined in Definition 1.6 define a Frechet Space. �

In practice the distance d is never really used and can also be replaced by

da(x, y) :=
∑
p∈N

ap min{1,Np(x− y)},

where a = (ap)p∈N is an arbitrary sequence of positive number such that
∑

p∈N ap < +∞.
The following proposition happens to be very useful in the context of Frechet space.

Proposition 1.14. Let F = (V, (Np)p∈N) be a Frechet space, then the following three
assertions hold true:

i) Let (fn)n∈N be a sequence of elements from V

fn
d−→

n⇒+∞
f ⇐⇒ ∀p ∈ N Np(fn − f) −→

n⇒+∞
0.

ii) (fn)n∈N is a Cauchy sequence in (F, d) if and only if (fn)n∈N is a Cauchy sequence
for all the pseudo-norms Np.

iii) Each of the pseudo-norm Np is continuous in (F, d).
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Proof of Proposition 1.14. First we prove the assertion i):

fn
d−→

n⇒+∞
f =⇒ ∀p ∈ N min{1,Np(fn − f)} −→

n⇒+∞
0

⇐⇒ ∀p ∈ N Np(fn − f) −→
n⇒+∞

0.

We now prove the reciprocal of i):

Let ε > 0 and choose Q ∈ N such that

+∞∑
p=Q

2−p <
ε

2
.

Since NP (fn − f) −→
n→+∞

0 for every p there exists N ∈ N such that

∀p < Q and n ≥ N Np(fn − f) ≤ ε

4
.

Thus ∀n ≥ N :

+∞∑
p=0

2−p min{1,Np(fn − f)}

≤
Q−1∑
p=0

2−p Np(fn − f) +
+∞∑
p=Q

2−p

≤ ε

2
+

ε

2
= ε.

This implies that fn
d−→

n→+∞
f . This proves i).

The same arguments imply ii).

The proof of iii) is straightforward. Indeed, let p ∈ N

d(f, g) ≤ 2−p ε =⇒ Np(f − g) ≤ ε.

This concludes the proof of Proposition 1.14. �

The following proposition extends a well-known fact in normed space topology.

Proposition 1.15. Let F = (V, (Np)p∈N) and G = (w, (Mq)q∈N) be two Frechet spaces
and let L : V → W be a linear map. The following three assertions are equivalent:

i) L is continuous at 0,

ii) L is continuous everywhere,

iii) ∀q ∈ N ∃Cq > 0 and ∃p ∈ N, s.t. ∀f ∈ F Mq(Lf) ≤ Cq Np(f).
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Proof of Proposition 1.15. The implication ii) =⇒ i) is tautological. We are now
proving i) =⇒ iii).

Since L is continuous at 0, for any neighbors G of 0 ∈ W , there exists an open
neighborhood U of 0 ∈ V such that

L(U) ⊂ G.

In ther words, U ⊂ L−1(G). Let q ∈ N and choose Gq = M−1
q ([0, 1)). Since Mq is

continuous in (w, dG), due to Proposition 1.15, Gq is an open set containing 0. Because
the topology in F is a metric topology, there exists αq > 0 such that

BdF
dq

(0) ⊂ Uq ⊂ L−1(Gq),

where BdF
dq

(0) denotes the ball of center 0 ∈ V and radius αq for the Frechet distance dF .
In other words, we have

(1.7)
∑
p∈N

2−p min{1,Np(f)} < αq =⇒Mq

(
L(f)

)
< 1.

Let p0 ∈ N such that

(1.8)
+∞∑

p=p0+1

2−p ≤ αq
4
.

Since Np is increasing with respect to p

(1.9) Np0(f) <
αq
4

=⇒
∑
p≤p0

2−p Np(f) <
αq
2
.

Hence, combining (1.7), (1.8) and (1.9), we obtain for any f ∈ V

Np0(f) <
αq
4

=⇒Mq

(
L(f)

)
< 1

using the homogeneity of the two pseudo-norms Mp0 and Mq, we have proved

Mq

(
L(f)

)
≤ αq

4
Np0(f).

Hence we have proved the implication i) =⇒ iii).

In order to conclude the proof of Proposition 1.15, it suffices to establish the implica-
tion iii) =⇒ ii).

We assume iii) and we are going to prove that L is continuous. Since the topologies
of both F and G are metric, it suffices to show that for any sequence fn ∈ V converging
to f ∈ V for dF , then

(1.10) lim
n→+∞

dG
(
L(fn), L(f)

)
= 0.
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Because of Proposition 1.14 i) in order to establish (1.10), it suffices to prove

(1.11) ∀q ∈ N lim
n→+∞

Mq

(
L(fn − f)

)
= 0.

Let q ∈ N, because we are assuming iii), there exists p0 ∈ N and Cq > 0 such that

∀g ∈ V Mq

(
L(g)

)
≤ Cq Np0(g).

Let ε > 0. Let N be large enough such that

∀n ≥ N Np0 (fn − f) ≤ ε

Cq
,

then we have
∀n ≥ N Mq

(
L(fn − f)

)
≤ ε.

This implies (1.11) and L is continuous everywhere. �

The following theorem is the extension of Frechet spaces of the famous Banach-
Steinhaus theorem for normed spaces.

Theorem 1.16. (Banach-Steinhaus for Frechet Spaces)

Let F = (V, (Np)p∈N and G = (W, (Mq)q∈N) be two Frechet spaces. Let Ln be a sequence
of linear maps from V into W and assume that each Ln is continuous from F into G.
Assume moreover that for any f ∈ V the sequence Lnf converges to a limit Lf in W .
Then L defines a linear and continuous map.

Proof of Theorem 1.16. The linearity of L is straightforward. It remains to prove that
L is continuous. For any q ∈ N and positive number A we introduce the following subset
of V :

Cq
A := {f ∈ V s.t. ∀n ∈ N Mq(Lnf) ≤ A}.

First, we observe that Cq
A is a closed set. Indeed, it is the intersection of closed sets

Cq
A =

⋂
n∈N

(Mq ◦ Ln)−1([0, A]).

We now claim that

(1.12)
⋃
A∈R∗+

Cq
A = V.

Indeed, by assumption, dF (Lnf, Lf) −→
n→+∞

0, this implies that

∀q ∈ N sup
n∈N
Mq(Lnf) < +∞.

Thus if one takes A > supn∈NMq(Lnf), one has that f ∈ Cq
A and this proves the claim

(1.12).
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Obviously A ≥ A′ =⇒ Cq
A1 ⊂ Cq

A. Thus

V =
⋃
j∈N

Cq
2j
.

By assumption (V, dF ) is a complete metric space to which we can apply Baire’s theorem
and there exists j0 ∈ N such that Cq

2j0
has a non-empty interior:

Ċq

2ji
6= ∅.

Let f0 ∈ Ċq

2j0
, then there exists α > 0 such that

BdF
α (f0) ⊂ Cq

2j0
=
⋂
n∈N

(Mq ◦ Ln)−1([0, 2j0 ]).

In other words:

(1.13) dF (f, f0) < α =⇒ sup
n∈N
Mq(Lnf) ≤ 2j0 .

Let p0 ∈ N such that

(1.14)
∞∑

j=p0+1

2−j <
α

4
.

Since Np is increasing with respect to p

Np0(f − f0) <
α

4
=⇒

p0∑
j=0

2−j Np(f − f0) <
α

2
.

Thus, because of (1.13) and (1.14), we deduce

Np0(f − f0) <
α

4
=⇒ dF (f, f0) < α

=⇒ sup
n∈N
Mq(Lnf) ≤ 2j0 .

Since supn∈NMq(Ln f0) < 2j0 , we have

Np0(h) <
α

4
=⇒ sup

n∈N
Mq(Lnh) ≤ 2j0+1.

The homogeneity of the pseudo-norms gives then

sup
n∈N
Mq(Lnh) ≤ 4

α
2j0+1 Np0(h).

Since Ln h −→
n→+∞

Lh by continuity of Mq, we deduce

Mq(Lh) ≤ α

4
2j0+1 Np0(h).

This holds for arbitrary q ∈ N. Then, from the characterization of continuity given by
Proposition 1.15 iii), we deduce that L is continuous. �

It is now time to define the dual of the Schwartz Space in the Frechet Space theory.
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1.4 The space of tempered distributions S ′(Rn)

The Schwartz space S(Rn) is from now on equipped with the Frechet topology issued by
the sequence of pseudo-norms Np introduced in Definition 1.6.

Definition 1.17. The space of tempered distributions denoted S ′(Rn) is the space of
continuous and linear maps from S(Rn) into C.

We have the following important characterization of tempered distributions: The ac-
tion of a linear form T on ϕ ∈ S ′(Rn) will be denoted either T (ϕ) or 〈T, ϕ〉.

Proposition 1.18. Let T be a linear map from S(Rn) into C. The following equivalence
holds

(1.15)
T ∈ S ′(Rn)⇐⇒ ∃C > 0 and p ∈ N such that

∀ϕ ∈ S(Rn) |〈T, ϕ〉| ≤ CNp(ϕ).

The minimal p ∈ N for which (1.15) is called the order of the tempered distribution T .

Observe that general distributions in D′(Rn) don’t always have an order. The L1
loc

function on R given by t 7−→ et is an element of D′(R) but cannot be an element of
S ′(Rn) for that reason: indeed, one easily proves that for any p ∈ N

sup
ϕ∈C∞c (R)

∫
R e

tϕ(t) dt

Np(ϕ)
= +∞.

Consider ϕ ≥ 0 compactly supported such that
∫
R ϕ = 1 and take for k ∈ N ϕk(t) :=

ϕ(t− k). We have Np(ϕk) ≤ Ckp but

lim
k→+∞

∫
R
k−p et ϕk(t) = +∞.

The proof of Proposition 1.18 follows from a direct application of the characterization of
continuity in Frechet space given by Proposition 1.15 iii). Indeed, C equipped with the
modulus norm is interpreted as a Frechet space with

∀a ∈ C Mq(a) := |a|.

Example of elements in S ′(Rn)

i) We have for any p ∈ [1,+∞]

Lp(Rn) ⊂ S ′(Rn).

Indeed, let f ∈ Lp(Rn), for any ϕ ∈ S(Rn) Hölder inequality gives∣∣∣ ∫
Rn
f(x)ϕ(x) dx

∣∣∣ ≤ ‖f‖Lp ‖ϕ‖Lp′ ,
≤ ‖f‖Lp

[ ∫
Rn

(1 + |x|n+1)p
′

(1 + |x|n+1)p′
|ϕ|p′(x) dx

] 1
p′

≤ Cn,p ‖f‖Lp Nn+1(ϕ).
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ii) The space C[x1 . . . xn] of complex polynomials in Rn is included in S ′(Rn).

iii) Let a ∈ Rn, the Dirac Mass δa : ϕ ∈ S(Rn) 7−→ ϕ(a) is obviously a tempered
distribution of order 0:

|〈δa, ϕ〉| ≤ N0(ϕ).

Definition 1.19. A sequence of tempered distributions (Tk)k∈N is said to converge weakly
if for any ϕ ∈ S(Rn) the sequence 〈Tk, ϕ〉 converges in C. From Banach Steinhaus theorem
for Frechet spaces we deduce that there exists T ∈ S ′(Rn) such that

lim
k→+∞

〈Tk, ϕ〉 = 〈T, ϕ〉.

The weak convergence of a sequence (Tk)k∈N in S ′(Rn) towards an element T ∈ S ′(Rn) is
denoted

Tk ⇀ T in S ′(Rn).

Exercise: Let ϕ ∈ C∞c (Rn) such that
∫
Rn ϕ(x) dx = 1 denote ϕk(x) := 2kn ϕ(2kx). Prove

that
ϕk ⇀ δ0 in S ′(Rn).

Definition-Proposition 1.20. Let T ∈ S ′(Rn) for any j = 1, . . . , n we denote by ∂xjT
the partial derivative of T along the direction xj which is the following element of S ′(Rn)

(1.16) ∀ϕ ∈ S(Rn) 〈∂xjT, ϕ〉 := −〈T, ∂xjϕ〉.

Proof of Proposition 1.20. Let T ∈ S ′(Rn). It is clear that the map ∂xjT defined by
(1.16) is linear. Let p ∈ N and c > 0 such that

|〈T, ϕ〉| ≤ cNp(ϕ).

By (1.16) we have

|〈∂xjT, ϕ〉| = |〈T, ∂xjϕ〉| ≤ cNp(∂xj)

≤ cNp+1(ϕ).

Hence from the characterization of tempered distributions given by Proposition (1.9), we
deduce that ∂xjT ∈ S ′(Rn) and this concludes the proof of Proposition 1.20. �

More generally, by iterating proposition 1.20, we deduce that for any T ∈ S ′(Rn) and
any α = (α, . . . , αn) ∈ Nn the linear map on S(Rn) given by

∀ϕ ∈ S(Rn) 〈∂αT, ϕ〉 := (−1)|α| 〈T, ∂α, ϕ〉

is an element of S ′(Rn).

Definition 1.21. The space of slowly growing functions denoted O(Rn) is the subspace
of C∞ functions f in Rn such that

∀β = (β1, . . . , βn) ∃mβ ∈ N and Cβ > 0

such that
|∂βf |(x) ≤ Cβ(1 + |x|)mβ .

13



Exercise: Let f ∈ O(Rn) prove that the map

ϕ ∈ S(Rn) 7−→
∫
f(x)ϕ(x) dx

defines a tempered distribution that we shall simply denote by f .

Observe that C[x1, . . . , xn] ⊂ O(Rn).

Proposition 1.22. Let f ∈ O(Rn) the multiplication by f

Mf S(Rn) −→ S(Rn)

ϕ −→ f ϕ

is a continuous linear map from S(Rn) into itself.

Proof of Proposition 1.22. Let f ∈ O(Rn), q ∈ N and ϕ ∈ S(Rn) we have using mostly
Leibnitz rule and triangular inequality

Mq(f ϕ) = sup
|α| ≤ q
|β| ≤ q

‖xα ∂β(f ϕ)‖L∞(Rn)

≤ sup
|α| ≤ q
|β| ≤ q

∑
γ≤β

Cγ,β‖xα ∂γϕ ∂β−γf‖L∞(Rn)

≤ sup
|α| ≤ q
|β| ≤ q

∑
γ≤β

Cγ,β‖ |xα| |∂γϕ|(x) (1 + |x|)mβ−γ‖L∞(Rn)

≤ Cq
∑
|β|≤q

Nmβ+q(ϕ) ≤ C ′q N q + max mβ
|β| ≤ q

(ϕ).

This implies the proposition. �

We define now the Fourier transform of a tempered distribution. This definition is
motivated by the first identity in Proposition 1.5.

Definition-Proposition 1.23. Let T be a tempered distribution. We define the Fourier
transform of T that we denote by T̂ or F(T ) to be the following linear map on S(Rn)

ϕ ∈ S(Rn) 〈T̂ , ϕ〉 := 〈T, ϕ̂〉,

T̂ is a tempered distribution as well.

Proof of Proposition 1.23. Let T ∈ S ′(Rn) and let p be the order of T and C > 0 such
that

∀ϕ ∈ S(Rn) |〈T, ϕ〉| ≤ cNp(ϕ).
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Using Proposition 1.9 we then deduce

ϕ ∈ S(Rn) |〈T̂ , ϕ〉| = |〈T, ϕ̂〉| ≤ cNp(ϕ̂)

≤ c1Np+n+1(ϕ).

Using one more time the characterization of S ′(Rn) given by Proposition 1.18, we deduce

that T̂ is a tempered distribution.

Example: Let a ∈ Rn we have

∀ϕ ∈ S(Rn) 〈δ̂a, ϕ〉 = 〈δa, ϕ̂〉 = ϕ̂(a) = (2π)−
n
2

∫
Rn
e−ia·x ϕ(x) dx.

Hence
δ̂a = (2π)−

n
2 e−ia·x ∈ L∞(Rn).

In other words, the Fourier transform exchange the “most concentrated” measure into
the “most dispersed” wave function. This phenomenon is known as the Heisenberg Un-
certainty Principle in quantum mechanics. �

Example: More generally, given α = (α, . . . , αn) ∈ Nn we have, using Lemma 1.10,

〈∂̂α δa, ϕ〉 = (−1)|α| 〈δa, ∂aϕ̂〉

= (−1)|α|〈δa, ̂(−i)|α|xαϕ〉

= (i)|α|(2π)−
n
2

∫
Rn
e−ia·x xα ϕ(x) dx.

Hence we have established

∂̂α δa = (i)|α|(2π)−
n
2 e−ia·xxα ∈ O(Rn).

Exercise: Prove that
1̂ = (2π)

n
2 δ0

and more generally
∀α ∈ Nn x̂α = (2π)

n
2 i|α| ∂α δ0.

�

We shall also denote by Ť or F−1(T ) the inverse Fourier transform of T

〈Ť , ϕ〉 := 〈T, ϕ̌〉

and obviously ∀T ∈ S ′(Rn), Ť ∈ S ′(Rn).

We shall now prove the following proposition:

Proposition 1.24. Let T be a tempered distribution supported at the origin that is to say
∀ϕ ∈ S(Rn) such that ϕ ≡ 0 in a neighborhood of 0, then 〈T, ϕ〉 = 0. Then, there exists
p ∈ N such that for any β = (β1, . . . , βn) satisfying |β| ≤ p, there exists cβ ∈ C such that

T =
∑
|β|≤p

Cβ ∂
βδ0.
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Proof of Proposition 1.24. Let p be the order of T . Let ϕ ∈ S(Rn) we proceed to
the Taylor expansion of ϕ to the order p at the origin: for any γ ∈ Nn and |γ| ≤ p there
exists aγ independent of ϕ such that

ϕ(x) =
∑
|γ|≤p

aj ∂
γ ϕ(0)xγ +Rp(x)

where

lim
|x|→0

|Rp(x)|
|x|p

= 0.

Moreover ∀γ, |γ| ≤ p

(1.17) lim
|x|→0

|∂γRp(x)|
|x|p−|γ|

= 0.

Let χ b a non-negative cut-off function in C∞c (B1(0)) such that χ is identically equal to
one on B 1

2
(0). By assumption

〈T, ϕ〉 = 〈T, χϕ〉+ 〈T, (1− χ)ϕ〉

= 〈T, χϕ〉.

We have, using the Taylor expansion of ϕ,

〈T, χϕ〉 =
∑
|γ|≤p

aγ ∂
γϕ(0) 〈T, χ(x)xγ〉+ 〈T, χ(x)Rp(x)〉.

Observe that the functions χ(x)xγ are Schwartz functions and hence 〈T, χ(x)xγ〉 are
well-defined complex numbers. We claim that

(1.18a) 〈T, χ(x)Rp(x)〉 = 0.

The proof of the claim implies obviously the proposition. Let

ηε(x) := 1− χ
(x
ε

)
where 0 < ε� 1. By assumption we have

〈T, χRp〉 = 〈T, χRp ηε〉+ 〈T, χRp χε〉

= 〈T, Rp χε〉,
(1.18b)

where χε(x) = χ(x/ε). Since T is of order p, there exists C > 0 such that

|〈T, Rp χε〉| ≤ C Np(Rp χε).
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We have, using Leibnitz formula and triangular inequality,

Np(Rp χε) =
∑
|α| ≤ p
|β| ≤ p

‖xα ∂β(Rp χε)‖L∞(Rn)

≤
∑
|α| ≤ p
|β| ≤ p

∑
γ≤β

Cγ ‖xα ∂β−γ Rp ∂
γ χε‖L∞(Rn)

≤ Cp
∑
|β|≤p

∑
γ≤β

‖∂β−γ Rp ∂
γ χε‖L∞(Rn)

(1.19)

We clearly have

(1.20) |∂γ χε|(x) ≤ Cγ
ε|γ|

1βε(0)(x)

where 1
B

(x)
2

(0) is the characteristic function of the ball centered at the origin and of radius

ε. Because of (1.17) we have

‖∂β−γ Rp(x) 1Bε(0)(x)‖L∞(Rn) = o(εp−|β−γ|).

Combining this inequality with (1.19) and (1.20) we obtain

Np(Rp χε) = o
( ∑
|β|≤p

∑
γ≤β

εp−|β−γ|−|γ|
)
.

Since γ ≤ β, we have |β − γ|+ |γ| =
∑

βi − γi +
∑

γi = |β|. Hence

lim
ε→0
Np(Rp χε) = 0

From (1.18b) we deduce (1.18a) and this concludes the proof of Proposition 1.24. �

We shall need the following proposition which is a direct consequence of Proposition
1.22.

Definition-Proposition 1.25. Let f ∈ O(Rn) be a slowly increasing function for any
T ∈ S ′(Rn), we define the multiplication of T by f as follows:

∀ϕ ∈ S(Rn) 〈f T, ϕ〉 := 〈T, f ϕ〉.

This multiplication denoted f T is a tempered distribution.

Proposition 1.26. Let T ∈ S ′(Rn), then for any α = (α1, . . . , αn) and any β =
(β1, . . . , βn) we have respectively

∂α T̂ = (−i)|α| x̂α T

and

∂̂βT = i|β|ξβ T̂ ,

where the products xαT and ξβT̂ have to be understood in the sense of Proposition 1.25.
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Proposition 1.26 is a direct consequence of Lemma 1.10 and Lemma 1.11. We have
the following theorem:

Theorem 1.27. Let T be an harmonic tempered distribution that is an element of S ′(Rn)
satisfying

∀ϕ ∈ S(Rn) 〈∆T, ϕ〉 = 〈T,∆ϕ〉 = 0.

Then T is a polynomial.

This result is a bit “confusing” since we know many more harmonic functions than
polynomials. For instance in R2 every holomorphic function is harmonic but is not nec-
essarily a polynomial (i.e. f(z) = ez). This illustrates the difference between S ′ and D′.
S ′ being roughly the space of distributions for which one can define a Fourier transform.

Proof of Theorem 1.27. For any ϕ ∈ S(Rn) we have

0 = 〈∆T, ϕ̂〉 = 〈T,∆ ϕ̂〉

= −〈T, |̂x|2 ϕ〉

= −〈T̂ , |x|2ϕ〉.

(1.21)

Let ψ ∈ S(Rn) such that ψ is identically 0 in a neighborhood of 0. Then ψ(x)/|x|2 = ϕ(x)
is still an element of S(Rn).

Then we deduce from (1.21) that for such a ψ we have 〈T̂ , ψ〉 = 0. In other words,
the support of the Fourier transform of T is included in the origin. Applying Proposition
1.24 to T̂ , we deduce the existence of p ∈ N and Cβ ∈ C for any β ∈ Nn with |β| ≤ p such
that

T̂ =
∑
|β|≤p

cβ ∂
β δ0.

Using Proposition 1.26, we deduce that

T =
∑
|β|≤p

Cβ(−i)|β|

(2π)
n
2

xβ.

This implies the theorem. �

We shall now meet our first Calderón-Zygmund Kernel in this course.

The function t 7−→ 1
t

misses by “very little” to be an L1 function. This is a measurable
function which is only in the L1-weak space (see the following chapters).

Nevertheless one can construct a tempered distribution out of 1
t

that we shall denote
pv(1

t
) where pv stands for principal value. We proceed as follows. Observe that

∀ϕ ∈ S(R) ∀ε > 0

∫
|t|>ε

∣∣∣ϕ(t)

t

∣∣∣ dt < +∞.

Moreover

(1.22) lim
ε→∞

∫
|t|>ε

ϕ(t)

t
dt =

〈
pv
(1
t

)
, ϕ
〉
∈ C
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exists. Indeed, we write∫
|t|>ε

ϕ(t)

t
dt =

∫
|t|>1

ϕ(t)

t
dt+

∫ −ε
−1

ϕ(t)

t
dt+

∫ 1

ε

ϕ(t)

t
dt.

Using the fact that 1
t

is odd, we have also∫
|t|>ε

ϕ(t)

t
dt =

∫
|t|>1

ϕ(t)

t
dt+

∫
ε<|t|<1

ϕ(t)− ϕ(0)

t
.

Since ϕ in particular is Lipschitz, we have that ϕ(t)−ϕ(0)
t

is uniformly bounded in L∞ which
justifies the passage to the limit (1.22). Moreover we obviously have∣∣∣〈pv(1

t

)
, ϕ
〉∣∣∣ ≤ c

(
‖t ϕ(t)‖L∞ + ‖ϕ′‖L∞

)
≤ cN1(ϕ).

This proves that pv(1
t
) ∈ S ′(R).

One can also without too much difficulty establish that the order of pv(1
t
) is exactly 1.

We shall now compute the Fourier transform of pv(1
t
). First, we claim that

(1.23) t pv
(1
t

)
= 1 in S ′(R),

where the product by t has to be understood in the sense given by Proposition 1.25.
Indeed,

∀ϕ ∈ S(R)
〈
tpv
(1
t

)
, ϕ
〉

=
〈
pv
(1
t

)
, tϕ(t)

〉
= lim

ε→0

∫
|t|>ε

ϕ(t) dt =

∫
R
ϕ(t) dt.

This proves (1.23). The computation above of the Fourier transform of 1 gives then

F
(
t pv
(1
t

))
= (2π)

1
2 δ0.

Using now Proposition 1.26, we have

d

dt
p̂v
(1
t

)
= −i ̂

t pv
(1
t

)
= −i

√
2π δ0.

Let H(t) be the Heaviside function equal to the characteristic function of R+. An ele-
mentary calculus gives

d

dt
H(t) = δ0.

Hence

(1.24)
d

dt

[
p̂v
(1
t

)
+ i
√

2π H(t)
]

= 0.

We shall now need the following lemma:
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Lemma 1.28. Let T be an element of S ′(R) such that

d

dt
T = 0,

then T is the multiplication by a constant.

Proof of Lemma 1.28. Let ϕ ∈ S(R). It is not difficult to prove that if
∫ +∞
−∞ ϕ(t) dt = 0,

then t 7−→
∫ t
−∞ ϕ(s)ds is still a Schwartz function. Hence since d

dt

∫ t
−∞ ϕ(s)ds = ϕ(t), we

have by assumption of the lemma ∀ϕ ∈ S(R) such that
∫ +∞
−∞ ϕ(s) ds = 0

〈T, ϕ〉 = 0.

Let ϕ ∈ S(R) arbitrary. We have then〈
T, ϕ(t)− et2

∫ +∞
−∞ ϕ(s) ds∫ +∞
−∞ e−s2 ds

〉
= 0.

This gives

〈T, ϕ〉 =

∫ +∞

−∞

〈T, e−t2〉∫ +∞
−∞ e−s2 ds

ϕ(t) dt.

Hence T is the multiplication by the constant 〈T,e−t2 〉∫+∞
−∞ e−s2 ds

. This concludes the proof of the

lemma. �

Combining (1.24) and lemma 1.19, we obtain that there exists a constant A ∈ C such
that

p̂v
(1
t

)
= −i

√
2π H(t) + A.

Observe that for any even function ϕ(t), one has〈
p̂v
(1
t

)
, ϕ̌
〉

= 0.

It is not difficult to prove that a Schwartz function is even if and only if it’s Fourier
transform is even too. Hence for any even function we have∫ +∞

−∞

(
− i
√

2π H(t) + A
)
ϕ(t) dt = 0,

this implies that −i
√

2πH(t) + A is odd and we have proved that

p̂v
(1
t

)
= − i

2

√
2π sign(t).

This function belongs to the family of Calderón-Zygmund multipliers that we are going
to study more systematically in Chapter IV. The map

f −→ −F−1

(
i√
2π

sign(t)f̂

)
is called the Hilbert transform and is a first Calderon Zygmund convolution operator we
are considering in this course.
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1.5 Convolutions in S ′(Rn)

Let ϕ and ψ be two Schwartz functions, we recall the classical definition of the convolution

ϕ ∗ ψ(x) :=

∫
R
ϕ(x− y)ψ(y) dy

=

∫
Rn
ψ(x− y)ϕ(y)ldy.

We have the following proposition

Proposition 1.29. Let ϕ and ψ be two Schwartz Functions, then for any p ∈ N

Np(ϕ ∗ ψ) ≤ Cp,n Np(ϕ) Np+n+1(ψ).

and then ϕ ∗ ψ is also a Schwartz function.

Proof of Proposition 1.29.We have

Np(ϕ ∗ ψ) = sup
|α| ≤ p
|β| ≤ p

∥∥∥∥xβ ∫
Rn
ϕ(x− y) ∂αψ(y) dy

∥∥∥∥
L∞(Rn)

= sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∫
Rn

(x− y + y)βϕ(x− y) ∂αψ(y) dy

∥∥∥∥
L∞(Rn)

.

Using the binomial formula, we obtain

Np(ϕ ∗ ψ) ≤ sup
|α| ≤ p
|β| ≤ p

∑
γ≤β

Cβ,γ

∥∥∥∥∫
Rn
|x− y|β−γ |ϕ(x− y)| |y|γ |∂αψ|(y) dy

∥∥∥∥
L∞(Rn)

≤ Cp Np(ϕ)

∫ ∑
|α| ≤ p
|β| ≤ p

|y|γ |∂αψ|(y) dy

≤ Cp Np(ϕ)Np+n+1(ψ).

A classical computation gives for any ϕ, ψ and η in S(Rn)∫
Rn
ψ ∗ η(x) ϕ(x) dx =

∫
R
ψ(x− y) η(y)ϕ(x) dy dx =

∫
R
η(y) ψ# ∗ ϕ(y) dy

where ψ#(z) := ψ(−z). Inspired by this elementary computation, we introduce the
following definition.
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Definition-Proposition 1.30. Let T be an arbitrary element in S ′(Rn) and let ψ be an
arbitrary element in S(Rn). Define

∀ϕ ∈ S(Rn) 〈ψ ∗ T, ϕ〉 := 〈T, ψ# ∗ ϕ〉,

ψ ∗ T is called the convolution between ψ and T . It defines an element of S ′(Rn).

Proof of Definition-Proposition 1.30. Let p be the order of T and c > 0 such that

∀η ∈ S(Rn) |〈T, η〉| ≤ cNp(η).

ψ ∗ T acts obviously linearly on S(Rn), moreover using Proposition 1.29, by definition we
have

|〈ψ ∗ T, ϕ〉| ≤ cNp(ψ# ∗ ϕ) ≤ cNp(ψ)Npn+1(ϕ),

Using the characterization of the membership to S ′(Rn) given by Proposition 1.18, we
obtain that ψ ∗ T ∈ S ′(Rn) and Proposition 1.30 is proved. �

We recall from classical analysis the fact that

∀ϕ, ψ ∈ S(Rn) ∀α ∈ Nn ∂α(ϕ ∗ ψ) = ϕ ∗ ∂αψ = ∂α ∗ ψ.

Using this fact, one easily establishes the following proposition:

Proposition 1.31. For any T in S ′(Rn) and any ψ ∈ S(Rn), one has

∀α ∈ Nn ∂α(ψ ∗ T ) = ∂αψ ∗ T = ψ ∗ ∂αT.

We denote
E ′(Rn) = {T ∈ S ′(Rn); supp(T ) is compact}.

In other words:
T ∈ E ′(Rn)⇐⇒ ∃K compact such that

∀ϕ ∈ S(Rn) with ϕ ≡ 0 on an open set U ⊃ K, then

〈T, ϕ〉 ≡ 0.

We shall now prove the following proposition:

Proposition 1.32. For any ϕ ∈ S(Rn) and for any T ∈ E ′(Rn) the convolution ϕ ∗ T
defines a Schwartz function.

Proof of Proposition 1.32. First we prove that the tempered distribution ϕ∗T defines
an L∞ function. To that aim, using Riesz representation theorem, it suffices to establish
the following inequality:

(1.25a) ∃ C > 0 such that ∀ψ ∈ S(Rn) |〈ϕ ∗ T, ψ〉| ≤ C ‖ψ‖L1(Rn).
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Since T is compactly supported, there exists R ∈ R∗+ such that for any ψ in S ′(Rn)

|〈ϕ ∗ T, ψ〉| = |〈T, ϕ# ∗ ψ〉| ≤ C sup
|α| ≤ p
|β| ≤ p

‖xα ∂β(ϕ# ∗ ψ)‖L∞(BR(0))

≤ Cp sup
|β|≤p
‖∂β(ϕ#) ∗ ψ‖L∞(BR(0))

≤ CpNp(ϕ#) ‖ψ‖L1(Rn),

where we have used Young inequality: L∞ ∗L1 ↪→ L∞. Hence (1.25) holds true and ϕ ∗T
is a measurable function. Now we write for any α ∈ Nn and β ∈ Nn

‖xα ∂β(ϕ ∗ T )‖L∞(Rn) = sup
ψ ∈ S(Rn)
‖ψ‖L1(Rn) ≤ 1

∣∣∣∣ ∫ ∂β(xαψ)ϕ ∗ T dx
∣∣∣∣

= sup
ψ ∈ S(Rn)
L∞(Rn) ‖ψ‖L1(Rn) ≤ 1

|〈T, (∂βϕ∗) ∗ xαψ〉|

≤ sup
|γ| ≤ p
|δ| ≤ p

sup
‖ψ‖L1(Rn)≤1

∥∥∥∥xγ∂δ ∫
Rn)

∂βϕ(y − x) yαψ(y) dy

∥∥∥∥
L∞(BR(0))

≤ Cp,R sup
|δ|≤p

sup
‖ψ‖L1(Rn)≤1

∥∥∥∥∫
Rn
∂β+δϕ(y − x)(y − x+ x)αψ(y) dy

∥∥∥∥
L∞(BR(0))

.

Using the binomial formula, we finally obtain

‖xα∂β(ϕ ∗ T )‖L∞(Rn) ≤ Cp,RNp+|β|+|α|(ϕ),

and this concludes the proof of Proposition 1.32. �

We shall now extend the definition of convolution on E ′ × S ′. We have the following
definition-proposition:

Definition-Proposition 1.33. Let T ∈ S ′(Rn) and U ∈ E ′(Rn), then we define

∀ϕ ∈ S(Rn) 〈U ∗ T, ϕ〉 := 〈T, U# ∗ ϕ〉,

where
∀ψ ∈ S(Rn) 〈U#, ψ〉 := 〈U, ψ#〉.

The convolution between U and T , U ∗ T , defines an element of S ′(Rn).
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The proof of Proposition 1.33 follows from the proof of Proposition 1.32, where we
have established that for any ϕ ∈ S(Rn) and any T ∈ S ′(Rn) of order p one has

∀q ∈ N Nq(ϕ ∗ T ) ≤ Cq,pNp+2q(ϕ).

The convolution operation extends in fact to a larger subspace of E ′ × S ′ in S ′ × S ′. It
extends to the pairs of tempered distributions with convolutive supports but we shall not
explore this notion in this course.

Finally, we establish the following proposition:

Proposition 1.34. Let T be a tempered distribution, then

(1.25b) ∀ϕ ∈ S(Rn) ϕ̂ ∗ T = (2π)
n
2 ϕ̂ T̂ .

For any U ∈ E ′(Rn) we have Û ∈ O(Rn) and

(1.25c) Û ∗ T = (2π)
n
2 Û T̂ .

Proof of Proposition 1.34. We have

∀ψ ∈ S(Rn) 〈ϕ̂ ∗ T , ψ〉 = 〈ϕ ∗ T, ψ̂〉
= 〈T, ϕ# ∗ ψ̂〉.

(1.26)

Observe moreover that

ϕ# ∗ ψ̂(x) =

∫
Rn
ϕ(y − x) ψ̂(y) dy

= (2π)−
n
2

∫
Rn
ϕ(y − x)

∫
Rn
e−iy·ξ ψ(ξ) dξ dy

= (2π)−
n
2

∫
Rn
e−iy·ξ ψ(ξ)

∫
Rn
ϕ(z) e−iy·ξ dz

=

∫
Rn
e−iy·ξ ψ(ξ) ϕ̂(ξ) = (2π)

n
2 F(ψ ϕ̂).

(1.27)

Combining (1.26) and (1.27) gives

〈ϕ̂ ∗ T , ψ〉 = (2π)
n
2 〈T, ψ̂ ϕ̂〉.

This implies (1.25b).

We claim now that for any U ∈ E ′(Rn) there exists q ∈ N such that

(1.28)
Û(ξ)

(1 + |ξ|2)q
∈ L∞(Rn)
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Let ϕ ∈ S(Rn), we have∣∣∣∣〈 Û(ξ)

(1 + |ξ|2)q
, ϕ(ξ)

〉∣∣∣∣ =

∣∣∣∣〈U, ϕ̂(ξ)

(1 + |ξ|2)q

〉∣∣∣∣
≤ C sup

|β|≤p

∥∥∥∥∂β( ϕ̂(ξ)

(1 + |ξ|2)q

)∥∥∥∥
L∞(BR(0))

≤ C sup
|β|≤p

∥∥∥∥(i)|β|
ξ̂β ϕ(ξ)

(1 + |ξ|2)q

∥∥∥∥
L∞(Rn)

≤ C

∫
Rn

|ξ|p + 1

(1 + |ξ|2)q
|ϕ(ξ)| dξ.

Hence by taking 2q > p, we have

sup
‖ϕ‖L1(Rn)

∣∣∣∣〈 Û(ξ)

1 + |ξ|2)q
, ϕ(ξ)

〉∣∣∣∣ < +∞.

Using Riesz representation theorem, we obtain (1.28).

Obviously, U ∈ E ′(Rn) =⇒ ∂α U ∈ E ′(Rn) for any α = (α1, . . . , αn) ∈ Nn. Hence

applying (1.28) to the successive derivative of U , we obtain that Û ∈ O(Rn).

The inequality (1.25c) is obtained by combining (1.25b) and the fact that Ǔ# = Û .
Indeed we have

〈Û ∗ T, ϕ〉 = 〈U ∗ T, ϕ̂〉 = 〈T, U# ∗ ϕ̂〉 = 〈T̂ , U∗ ∗ ϕ̂〉 = (2π)
n
2 〈T̂ , Ǔ∗ ϕ〉 = (2π)

n
2 〈T̂ Û , ϕ〉.

This concludes the proof of Proposition 1.34.
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2 The Hardy-Littlewood Maximal Function

2.1 Definition and elementary properties.

The Lebesgue measure on Rn will be denoted by µ. By measurable function or measurable
set in this book we implicitly mean measurable function with respect to µ or measurable set
with respect to µ unless we precise the underlying measure. Integration along a variable
x in Rn with respect to the Lebesgue measure on Rn will be simply denoted by dx.

If E is a measurable set, we denote by χE it’s characteristic function.

Definition 2.1. For a measurable function f : Rn −→ R, we define its associated distri-
bution function by

df (α) = µ({x ∈ Rn : |f(x)| > α}) ,

with α ≥ 0.

With these notations we establish the following lemma.

Lemma 2.2. For a measurable function f and 0 < p <∞, we have

(2.1) ‖f‖pLp = p

∫ ∞
0

αp−1df (α) dα .

Proof of lemma 2.2. From elementary calculus, we get

|f(x)|p = p

∫ |f(x)|

0

αp−1 dα = p

∫ ∞
0

αp−1χ{x :α<|f(x)|} dα .

By integration over Rn and Fubini’s theorem, it then follows

‖f‖pLp = p

∫ ∞
0

αp−1

(∫
Rn
χ{x : |f(x)|>α} dx

)
dα = p

∫ ∞
0

αp−1df (α) dα .

�

For every x in Rn and every r > 0 we denote by Br(x) the euclidian ball of center x
and radius r.

Definition 2.3. For a locally integrable function f ∈ L1
loc(Rn), we define its associated

Hardy-Littlewood maximal function at the point x by

(2.2) Mf(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f(y)| dy ∈ R+ ∪ {+∞} .

We now prove the following elementary proposition.

Proposition 2.4. Let f be a locally integrable function, then Mf is measurable function
into [0,+∞]. Moreover, if f ∈ L1(Rn) then Mf(x) is finite almost everywhere.
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Proof of Proposition 2.4. For any measurable function in L1
loc one easily check that

the map

(r, x) −→ Arf(x) =
1

µ(Br(x))

∫
Br(x)

|f(x)| dy

is continuous. It implies in one hand that, for a fixed r, Arf(x) is measurable and it also
implies, in the other hand, that taking the supremum at a point x among the real radii,
r ∈ R, coincide with the supremum among rational radii, r ∈ Q. Since the supremum
function of countably many measurable functions is measurable ( 1.1.2 in [?]), we deduce
that Mf(x) is measurable. The second part of the statement in proposition 2.4 is a direct
consequence of Lebesgue-Besicovitch differentiation theorem (1.7.1 in [?]). It also follows
from Theorem 2.5 below. �

From the Lebesgue-Besicovitch differentiation theorem (1.7.1 in [?]) we deduce the
pointwise estimate |f(x)| ≤ |Mf(x)| which holds almost everywhere for any locally inte-
grable function. Therefore, for every p ∈ [1,+∞], and for every function f in Lp(Rn), we
obtain the identity

‖f‖Lp(Rn) ≤ ‖Mf‖Lp(Rn) .

2.2 Hardy-Littlewood Lp−theorem for the Maximal Function.

The following important result gives the reverse estimate when p > 1 and ”almost” but
not quite the reverse estimate when p = 1.

Theorem 2.5 (Hardy-Littlewood Maximal Function Theorem). Let 1 < p ≤ ∞ and
f ∈ Lp(Rn). Then, we have

(2.3) ‖Mf‖Lp ≤ 2

(
5n p

p− 1

)1/p

‖f‖Lp .

Moreover, for f ∈ L1(Rn) and α > 0, we have

(2.4) µ({x : Mf(x) > α}) ≤ 5n

α
‖f‖L1 .

Remark 2.1. The last identity (2.4) is saying that the maximal function of an L1 function
is in the space L1−weak (denoted also L1

w(Rn)). This space is given by the subset of
measurable functions on Rnsatisfying

(2.5) |f |L1
w

= sup
α>0
{α µ({x ∈ Rn : |f(x)| > α})} .

L1−weak functions do not define a-priori distributions. A typical example of a function
in L1

w is |x|−n in Rn. | · |L1
w

defines a quasi-norm on L1
w - the triangle inequality is satisfied

modulo a constant, which is 2 in the present case - and L1
w is complete for this quasi-norm

which makes L1
w to be a quasi-Banach space by definition. However it is very important

to remember that L1
w cannot be made to be a Banach space with a norm equivalent to the

quasi norm given by | · |L1
w

. If it would be the case Calderón-Zygmund theory, and this book
in particular, would dramatically shrink to almost nothing ! We discuss this fact later in
this chapter when we come to the Singular Integral Operators.
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The proof of the Hardy-Littlewood Maximal Function Theorem that we are giving
uses the following famous covering lemma.

Lemma 2.6 (Vitali’s Covering Lemma). Let E be measurable subset of Rn and let F =
{Bj}j∈J be a family of euclidian balls with uniformly bounded diameter i.e., supj diam(Bj) =
R <∞, such that E ⊂

⋃
j Bj. Then, there exists an at most countable subfamily {Bjk}k∈N

of disjoint balls satisfying

(2.6) µ(E) ≤ 5n
∞∑
k=1

µ(Bjk) .

Proof of lemma 2.6. For any i ∈ N we denote

Fi =
{
Bj ∈ F ; 2−i−1R < diam Bj ≤ 2−iR

}
.

We shall now extract our sub-covering step by step in Fi by induction on i.

• Denote by G0 a maximal disjoint collection of balls in F0.

• Assuming G0, · · · ,Gk have been selected, we choose Gk+1 to be a maximal collection
of balls in Fk+1 such that each ball in this collection is disjoint from the balls in
∪ki=0Gi.

We claim now that G = ∪∞i=0Gi is a suitable solution to the lemma.

It is by construction a sub-family of F made of disjoint balls. Let Bj be in F . There
exists i ∈ N such that Bj ∈ Fi. If Bj would intersect none of the balls in Gi it would
contradict the fact that Gi has been chosen to be maximal. Hence, for any Bj ∈ Fi
there exist B ∈ Gi such that B ∩ Bj 6= ∅. Since the ratio between the two diameters of

respectively B and Bj is contained in (2−1, 2), the concentric ball B̂ to B having a radius

5 times larger than the one of B contains necessarily Bj. This proves that E ⊂ ∪B∈GB̂
and this finishes the proof of the lemma. �

Proof of theorem 2.5. We first consider the case p = 1 and prove (2.4). Let

Eα = {x ∈ Rn ; Mf(x) > α} .

By definition, for any x ∈ Eα there exists an euclidian ball Bx of center x such that

(2.7)

∫
Bx

|f(y)| dy > αµ(Bx) .

Since f is assumed to be in L1, the size of the balls Bx is controlled as follows : µ(Bx) ≤
α−1‖f‖L1 . Hence the family {Bx}x∈Eα realizes a covering of Eα by balls of uniformly
bounded radii. We are then in the position to apply Vitali’s covering lemma 2.6. Let
(Bk)k∈K be an at most countable sub-family to {Bx} given by this lemma 2.6. (Bk) are
disjoint balls satisfying ∑

k∈K

µ(Bk) ≥
1

5n
µ(Eα) .
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Combining this last inequality and (2.7) gives

‖f‖L1(Rn) ≥
∫
∪+∞k∈KBk

|f(y)| dy > α
∑
k∈K

µ(Bk) ≥
α

5n
µ(Eα) .

This is proves the desired inequality (2.4).

We establish now (2.3) for 1 < p < +∞ (the case p = +∞ being straightforward).
Define

f1(x) :=

{
f(x) if |f(x)| ≥ α/2

0 if |f(x)| < α/2 .

This definition implies the following inequalities |f(x)| ≤ |f1(x)|+α/2 and also |Mf(x)| ≤
|Mf1(x)|+ α/2 which hold for almost every x ∈ Rn . Hence we have

(2.8) Eα = {x ∈ Rn ; Mf(x) > α} ⊂ {x ∈ Rn ; Mf1(x) > α/2} .

Observe that, for any α > 0, f1 ∈ L1(Rn). Indeed∫
Rn
|f1(y)| dy ≤

(
2

α

)p−1 ∫
Rn
|f(y)|p dy < +∞ .

Thus we can apply identity (2.4) to f1 and this gives, using (2.8),

(2.9)

µ(Eα) ≤ µ ({x ∈ Rn ; Mf1(x) > α/2}) ≤ 2·5n
α
‖f1‖L1

≤ 2·5n
α

∫
{x : |f(x)|≥α/2} |f(y)| dy .

Next, we deduce from Lemma 2.2 that

‖Mf‖pLp = p

∫ ∞
0

αp−1µ(Eα) dα

(2.9)

≤ p

∫ ∞
0

αp−1

(
2 · 5n

α

∫
{x : |f(x)|≥α/2}

|f(x)| dx
)
dα

= p

∫ ∞
0

αp−1

(
2 · 5n

α

∫
Rn
χ{x : |f(x)|≥α/2}|f(x)| dx

)
dα .

Using Fubini’s theorem it follows

‖Mf‖pLp ≤ 2 · 5n p
∫
Rn
|f(x)|

(∫ 2|f(x)|

0

αp−1

α
dα

)
dx

=
2C p

p− 1

∫
Rn
|f(x)| 2p−1|f(x)|p−1 dx ,

since p > 1 by assumption. Thus we arrive at the desired result

‖Mf‖Lp ≤ 2

(
5n p

p− 1

)1/p

‖f‖Lp .
�
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Remark 2.7. The best constant in the previous theorem, both in (2.3) and in (2.4), is
far from being known. For 1 < p < ∞, a remarkable result by Stein is that the optimal
constant stays bounded as n goes to infinity. Whether this holds or not for the optimal
constant in (2.4) is still an open problem. However, one can easily replace 5n with 2n.
Indeed, observe that the constant 5 in Vitali’s covering theorem can be replaced with 3+3ε
for every ε > 0 (just using (1 + ε) in place of 2 when comparing the radii of the balls).
Moreover, here we are interested in a disjoint family of balls whose dilations cover just
the set of centers of the original family: this allows to replace 5n with (2 + 2ε)n for every
ε.

2.3 The limiting case p = 1.

It is important to emphasize that inequality (2.3) does not extend to the limiting case
p = 1 : the maximal operator M is not bounded from L1(Rn) into L1(Rn). Assume f is
a non zero integrable function on Rn then Mf is not integrable on Rn. Indeed, for a non
zero f there exists an euclidian ball Br(0) such that∫

Br(0)

|f(y)| dy = η 6= 0 .

Let x be an arbitrary point in Rn \ Br(0). For such a point x one has Br(0) ⊂ B2|x|(x),
hence, it follows that

Mf(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f(y)| dy

≥ 1

µ(B2|x|(x))

∫
B2|x|(x)

|f(y)| dy

≥ 1

µ(B2|x|(x))

∫
Br(0)

|f(y)| dy ≥ C η

|x|n
,

showing that the integrability of Mf fails at infinity.

Even worth, the integrability of the function f does not ensure the local integrability
of Mf . We illustrate this fact by the following example: For n = 1 consider the positive
function

f(t) =
1

t(log t)2
χ(0,1) ,

which is integrable on [0, 1/2].For t ∈ (0, 1/2), let Bt(t) = (0, 2t) and we have

Mf(t) ≥ 1

2t

∫ 2t

0

1

t(log t)2
dt

=
1

2t

(
− 1

log t

)∣∣∣∣2t
0

= − 1

2t(log 2t)
.

This directly gives that Mf is not integrable over the interval [0, 1/2].
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If we assume ”slightly” more than the integrability of f one can reach the local inte-
grability of Mf . Denote by L1 logL1(Rn) the following Orlicz space

L1 logL1(Rn) =

{
f ∈ L1(Rn) ;

∫
Rn
|f |(y) log

(
e+
|f(y)|
‖f‖L1

)
dy < +∞

}
.

This space is of particular interest for applications due to the fact in particular that
the L1 logL1 control of a non-negative integrable function f can be interpreted as an
”entropy control” of the probability f - assuming it has been normalized in such a way
that

∫
Rn f = 1 -. Back to real-variable function space theory per se, we shall probably

see in the next chapter that L1 logL1 coincide with the non-homogeneous Hardy space
for non-negative functions which makes also L1 logL1 particularly interesting.

Observe that a norm can be assigned to this subspace of integrable functions by taking
the Luxembourg norm :

‖f‖L1 logL1 := ‖f‖L1 + inf

{
t > 0 ;

∫
Rn

|f(y)|
t

log+ |f(y)|
t

dy

}
.

Theorem 2.8. Let f be a measurable function in L1 logL1(Rn), then Mf ∈ L1
loc(Rn)

and for any measurable subset A of finite Lebesgue measure the following inequality holds

(2.10)

∫
A

|Mf |(y) dy ≤ Cn

∫
Rn
|f |(y) log

(
e+ µ(A)

|f(y)|
‖f‖L1

)
dy ,

where Cn > 0 only depends on n.

Proof of theorem 2.8. From lemma 2.2 we express the L1 norm of Mf as follows∫
A

|Mf |(y) dy ≤
∫ +∞

0

µ ({x ∈ A; |Mf |(x) > α}) dα .

Denote µA the restriction of the Lebesgue measure to A and use again the notation
Eα = {x ∈ Rn; |Mf |(x) > α}. Let δ > 0 to be chosen later on. We write

(2.11)

∫
A
|Mf |(y) dy ≤

∫ δ
0
µA(Eα) dα +

∫ +∞
δ

µA(Eα) dα

≤ δ µ(A) + 2
∫ +∞
δ/2

µ(E2α) dα .

Applying inequality (2.9) to (2.11) gives∫
A
|Mf |(y) dy ≤ δ µ(A) + 2 · 5n

∫ +∞
δ/2

dα
α

∫
{x ; |f(x)|>α} |f(y)| dy

≤ δ µ(A) + 2 · 5n
∫
Rn |f(y)| log+ 2|f(y)|

δ
dy ,

where log+ · = max{0, log ·}. Choosing δ =
∫
Rn |f(y)| dy/2µ(A) gives inequality (2.10)

and theorem 2.8 is proved. �

A converse of theorem 2.8 will be given in the section IV - see theorem 4.4 - once we
will have at our disposal the Calderón-Zygmund decomposition.
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3 Quasi-normed vector spaces

3.1 The Metrizability of quasi-normed vector spaces

In the following, K will denote either R or C (since the theory below works equally well
for real or complex coefficients).

Definition 3.1. A topological vector space over K is a K-vector space V with a topology
τ such that

• the sum, i.e. + : V × V → V , is continuous,

• the multiplication by scalar, i.e. · : K× V → V , is continuous,

• the topology τ is Hausdorff.

Example 3.2. A normed vector space (V, ‖ ‖) is a topological vector space with the
topology induced by the canonical distance, namely d(x, y) := ‖x− y‖.

Definition 3.3. Let V be a K-vector space. A quasi-norm on V is a function | · | : V →
[0,∞) such that

• |x| = 0 if and only if x = 0,

• for all λ ∈ K and all x ∈ V we have |λx| = |λ||x|,

• there exists a constant C ≥ 1 such that, for all x, y ∈ V , we have

|x+ y| ≤ C(|x|+ |y|).

The couple (V, | |) is called a quasi-normed vector space.

Remark 3.4. For C = 1 this is exactly the definition of a norm. In general, we use the
notation | · | in place of ‖ · ‖ to recall that we are in presence of a quasi-norm. Notice that
the last property in the definition, which replaces the usual triangle inequality, does not
allow to say that the function d(x, y) := |x− y| is a distance any longer! Nonetheless, we
will see that a quasi-norm induces a canonical topology and that this topology is always
metrizable (by means of a highly nontrivial construction of a true distance function d).

Example 3.5. Given f : Rn → K measurable, let |f |L1,∞ := supα>0 αµ{|f | > α} and let
L1,∞(Rn) be the set of all functions f such that |f |L1,∞ <∞. Notice that, by Chebyshev–
Markov inequality, L1(Rn) ⊆ L1,∞(Rn) and |f |L1,∞ ≤ ‖f‖L1. Also, | · |L1,∞ is a quasi-norm
(with C = 2): given two functions F, g : Rn → K, for any α > 0 we have

µ({|f + g| > α}) ≤ µ
({
|f | > α

2

})
+ µ
({
|g| > α

2

})
≤ 2|f |L1,∞ + 2|g|L1,∞

(since {|f + g| > α} ⊆ {|f | > α
2
} ∪ {|g| > α

2
}). Hence, |f + g|L1,∞ ≤ 2|f |L1,∞ + 2|g|L1,∞.

The second requirement in the definition is satisfied since, for λ 6= 0, αµ({|λf | > α}) =
|λ| α|λ|µ({|f | > α

|λ|}), while the first one is trivial.

In terms of this quasi-norm, Hardy–Littlewood maximal inequality (for p = 1) says
that |f |L1,∞ ≤ 5n‖f‖L1.
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Theorem 3.6. A quasi-normed vector space (V, | |) has a unique vector space topology
such that

Bα(0) := {x ∈ V : |x| < α}, α > 0

is a local basis of neighborhoods of 0.

The above requirement should be compared with the situation of a normed vector
space, where Bα(0) is the standard ball of radius α and center 0. Notice that the theorem
is not asserting that Bα(0) is an open set in this canonical topology (which could be false
in general)!

Proof of Theorem 3.6 If such a topology τ exists, then the sets

Bα(y) := {x ∈ V : |y − x| < α}, α > 0

form a local basis of neighborhoods of y for any y ∈ V : this is because the translation by
y, namely the map x 7→ x+ y, is continuous and has continuous inverse x 7→ x− y (with
respect to τ), hence it is a homeomorphism and carries a local basis of neighborhoods of
0 into a local basis at y. So the open sets of τ must be the sets

U ⊆ V such that ∀y ∈ U ∃α > 0 s.t. Bα(y) ⊆ U.(3.12)

This shows that, if τ exists, it is necessarily unique. To show existence, let us declare that
the open sets are the ones satisfying (3.12). They define a topology, since the axioms for
a topology are clearly satisfied. Let us check that the sets Bα(0) form a local basis at 0:
since every open set contains one such set by definition, it suffices to check that Bα(0)
includes an open set U containing 0. Let

U := {x ∈ V : ∃δ > 0 s.t. Bδ(x) ⊆ Bα(0).

Clearly, 0 ∈ U and U ⊆ Bα(0). In order to show that U satisfies 3.12, given x ∈ U let
δ > 0 such that Bδ(x) ⊆ Bα(0). We claim that Bσ(x) ⊆ U , with σ := δ

2C
(which will

conclude the proof that U is open in τ).
Indeed, if y ∈ Bσ(x) then Bσ(y) ⊆ Bδ(x) ⊆ Bα(x), since

|z − x| ≤ C(|z − y|+ |y − x|) < 2Cσ = δ for all z ∈ Bσ(y).

This shows that y ∈ U (by definition of U), i.e. that Bσ(x) ⊆ U , which is what we
wanted. In order to show that τ is Hausdorff, given x 6= y it suffices to observe that
Bα(x) ∩ Bα(y) = ∅, where α := |x−y|

2
> 0: indeed, we just proved that Bα(x) and Bα(y)

are neighborhoods of x and y respectively (being τ clearly translation invariant).
Finally, we have to check that the operations are continuous. If x + y = z and U is

an open neighborhood of z, then there exists α > 0 such that B2Cα(z) ⊆ U . Hence, given
x′ ∈ Bα(x) and y′ ∈ Bα(y), we have

|x′ + y′ − z| = |(x′ − x) + (y′ − y)| ≤ C |x′ − x|+ C |y′ − y| < 2Cα,
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so that the sum maps Bα(x) × Bα(y) to a subset of U . Since Bα(x) and Bα(y) contain
open neighborhoods of x and y respectively, this shows that the sum is continuous. The
continuity of the multiplication by scalar is similar and is left to the reader. �

The metrizability of quasi-normed vector spaces was proved independently by Aoki
and Rolewicz.

Theorem 3.7. (Aoki-Rolewicz)

The canonical topology of a quasi-normed vector space (V, | |) is metrizable. In fact, it
is induced by a translation-invariant distance d(x, y) := Λ(x− y), for a suitable function
Λ : V → [0,∞) satisfying Λ(z) = Λ(−z), Λ(z + w) ≤ Λ(z) + Λ(w) and vanishing only at
0.

Remark 3.8. In general, one cannot hope to have a distance induced by a norm (meaning
that Λ is a norm, i.e. it also satisfies Λ(αx) = |α|Λ(x) for α ∈ K): in this case (V, τ)
would be a locally convex topological vector space, but we will see in Remark 3.17 that this
fails for L1,∞(Rn).

We will deduce Aoki–Rolewicz theorem from the following lemma.

Lemma 3.9. Let 0 < p ≤ 1 be defined by 21/p := 2C. Given x1, . . . , xn ∈ V we have

|x1 + · · ·+ xn|p ≤ 4(|x1|p + · · ·+ |xn|p).

Proof of Lemma 3.9. This proof illustrate the utility of decomposing dyadically a
range of values. This idea will turn out to be fruitful also later in the course. Define
H : V → [0,∞) by the following formula:

H(x) :=

{
0 if x = 0

2j/p if 2(j−1)/p < |x| ≤ 2j/p.

Notice that |x| ≤ H(x) ≤ 21/p|x|. We show, by induction on n, that

|x1 + · · ·+ xn| ≤ 21/p(H(x1)p + · · ·+H(xn)p)1/p.(3.13)

By the observation just made, (3.13) clearly implies the statement. Also, (3.13) holds for
the base case n = 1. We now show that it holds for a generic n, assuming it holds for
n− 1. By symmetry, we can assume that

|x1| ≥ |x2| ≥ · · · ≥ |xn| ,

which implies that H(x1) ≥ H(x2) ≥ · · · ≥ H(xn). We distinguish two cases.

i) There exists an index 1 ≤ i0 < n such that H(xi0) = H(xi0+1): let 2j0/p be the
common value of H at xi0 and xi0+1 and notice that, since

|xi0 + xi0+1| ≤ C(|xi0 |+ |xi0+1|) ≤ 2C · 2j0/p = 2(j0+1)/p,
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we have H(xi0 + xi0+1) ≤ 2(j0+1)/p. This gives

H(xi0 + xi0+1)p ≤ 2j0+1 = H(xi0)
p +H(xi0+1)p

and so, grouping x1 + · · · + xn = x1 + · · · + xi0−1 + (xi0 + xi0+1) + xi0+2 + . . . and
using induction,

|x1 + · · ·+ xn| ≤ 21/p(H(x1)p + · · ·+H(xi0 + xi0+1)p + · · ·+H(xn)p)1/p

≤ 21/p(H(x1)p + · · ·+H(xi0)
p +H(xi0+1)p + · · ·+H(xn)p)1/p.

ii) We have a strictly decreasing sequence H(x1) > H(x2) > · · · > H(xn): in this case
we must have H(xi) ≤ 2−(i−1)/pH(x1) for all i. Also, iterating the approximate
triangle inequality we obtain

|x1 + · · ·+ xn| ≤ C(|x1|+ |x2 + · · ·+ xn|)
≤ max{2C|x1|, 2C|x2 + · · ·+ xn|
≤ max{2C|x1|, (2C)2 |x2| , (2C)2 |x3 + · · ·+ xn|
≤ · · · ≤ max

i
(2C)i|xi|

≤ max
i

2i/pH(xi)

≤ 21/pH(x1)

and (3.13) trivially follows. �

Proof of Theorem 3.7. For all x ∈ V we define

Λ(x) := inf
n∑
i=1

|xi|p, x =
n∑
i=1

xi, n ≥ 1,

meaning that the infimum is taken over all possible representations of x as a finite sum of
elements of V . Since a possible choice is n = 1 and x1 = x, we trivially have Λ(x) ≤ |x|p.
Moreover, the previous lemma gives

|x|p = |x1 + · · ·+ xn|p ≤ 4(|x1|p + · · ·+ |xn|p)

for all such possible representations, so Λ(x) ≥ 1
4
|x|p. In particular, this implies that Λ

vanishes only at 0. From the definition it is clear that Λ(−x) = Λ(x).
Also, Λ(x+ y) ≤ Λ(x) + Λ(y): given ε > 0, if x = x1 + · · ·+ xm and y = y1 + · · ·+ yn

are chosen so that
∑m

i=1 |xi|p < Λ(x) + ε and
∑n

j=1 |yj|p < Λ(y) + ε, then (being x + y =∑
i xi +

∑
j yj)

Λ(x+ y) ≤
m∑
i=1

|xi|p +
n∑
j=1

|yj|p < Λ(x) + Λ(y) + 2ε.

Hence, defining d : V × V → [0,∞) by d(x, y) := Λ(x − y) gives a distance on V . This
induces the same topology as the quasi-metric since

Br1/p(x) ⊆ {y ∈ V : d(x, y) < r} ⊆ B(4r)1/p(x)

for all x ∈ V and all r > 0. �
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Remark 3.10. The space Lp(E), with 0 < p < 1, is a quasi-normed vector space, with
quasi-norm

|f |Lp :=
(∫

E

|f |p
)1/p

,

which yields a constant 21/p−1 in the approximate triangle inequality. The construction
Aoki–Rolewicz metric is reminiscent of the distance

d(f, g) :=

∫
E

|f − g|p

on Lp(E) (for 0 < p < 1), which induces the same topology as the quasi-norm but is built
in a nonlinear way.

We will now see important concrete examples of quasi-normed vector spaces, namely
Lorentz spaces, which refine the classical Lebesgue spaces in terms of control over the
integrability of a function. Standard estimates such as Sobolev’s embedding or Young’s
inequality can be slightly (but crucially for some applications) improved using these more
refined spaces.

3.2 The Lorentz spaces Lp,∞

Definition 3.11. Let E ⊆ Rn be a set of positive measure. Given 1 ≤ p < ∞ and a
measurable function f : E → K, we let

|f |Lp,∞ := sup
α>0

αµ({|f | > α})1/p

and we define Lp,∞(E) to be the set of all functions f : E → K with |f |Lp,∞ < ∞. We
also let |f |L∞,∞ := ‖f‖L∞, so that L∞,∞(E) = L∞(E). The space Lp,∞ is called weak Lp

(however, it is totally unrelated to the weak topology on the Lp space!).

Remark 3.12. Notice that this specializes to Example 3.5 when p = 1. Again, we have
Lp(E) ⊂ ‖f‖Lp). For p < ∞, this inclusion is strict in general: take e.g. E := Rn and
f(x) := |x|−n/p, which lies in Lp,∞(Rn) \ Lp(Rn) (the inclusion is actually always strict
for subsets of Rn, as can be seen taking |x− x0|−n/p with x0 a density point for E).

Remark 3.13. Using the inequality (α + β)1/p ≤ α1/p + β1/p and arguing as in Example
3.5, we see that Lp,∞(E) is a quasi-normed vector space, with C = 2.

Definition 3.14. A quasi-normed vector space is called quasi-Banach if every | |-Cauchy
sequence converges to a (necessarily unique) limit in the canonical topology, or equivalently
converges with respect to the quasi-norm.

Remark 3.15. Notice that a sequence is Cauchy with respect to the quasi-norm if and only
if it is Cauchy with respect to the Aoki-Rolewicz distance. The same holds for convergence.

Proposition 3.16. The space Lp,∞(E) is a quasi-Banach space.
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Proof. Omitted.

Remark 3.17. The space L1,∞(Rn) is not locally convex, meaning that it does not possess
a local basis of neighborhoods of 0 made of open convex sets. This rules out the possibility
of finding a norm equivalent to its quasi-norm, which is the main difficulty in Calderón–
Zygmund theory for singular convolution kernels (so that, as we will see, not all kernels in
L1,∞(Rn) but only those with enough cancellation and regularity give rise to the important
L1 → L1,∞ bound). Let us see this failure of convexity when n = 1, for simplicity.

For all integers m ≥ 2 and 1 ≤ k ≤ m let

fm,k(x) :=
1

logm
|x− k

m
|−1.

Observe that fm,k ∈ L1,∞(R), with |fm,k|L1,∞ ≤ 2
logm

, so that fm,k → 0 in L1,∞(R) as m→
∞ (uniformly in the index k). On the other hand, the arithmetic mean of fm,1, . . . , fm,m
is pointwise bounded from below on (0, 1):

Fm :=
fm,1(x) + · · ·+ fm,m(x)

m
≥ 1

logm

m∑
j=1

1

j
≥ c > 0,

since if k0
m
< x < k0+1

m
then the left-hand side is at least

1

m logm

(m
k0

+ · · ·+ m

1
+
m

1
+ · · ·+ m

m− k0

)
(the first part being not present if k0 = 0). So |Fm|L1,∞ ≥ c, implying that Fm cannot
converge to 0. This however should hold if L1,∞(R) were locally convex!

3.3 Decreasing rearrangement

In order to define all the Lorentz spaces Lp,q we have to introduce the notion of decreasing
rearrangement.

Definition 3.18. Given f : E → K measurable, we define its decreasing rearrangement
f∗ : [0,+∞]→ [0,+∞] as

f∗(t) := inf{0 ≤ λ ≤ +∞ : µ({|f | > λ}) ≤ t},(3.14)

with the convention that 0 · ∞ =∞ · 0 = 0 (as it is customary in measure theory).

Remark 3.19. The infimum in (3.14) is actually always a minimum: if λ1 ≥ λ2 ≥ . . .
are values such that µ({|f | > λi}) ≤ t and λ∞ := limi→∞ λi, then we still have µ({|f | >
λ∞}) ≤ t (since the last set is the increasing union of the sets {|f | > λi}). Hence,
µ({|f | > f∗(t)}) ≤ t.

Remark 3.20. Define df (λ) := µ({|f | > λ}) (as a function from [0,+∞] to itself), which
is called distribution function, or tail distribution in probability theory. It is clear that
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df and f∗ are decreasing and df is right-continuous. Also f∗ is right-continuous: given
0 ≤ t0 < +∞, setting λ̄ := limt→t+0

f∗(t) we have

µ({|f | > λ̄}) = lim
t→t+0

µ({|f | > f∗(t)}) ≤ lim
t→t+0

t = t0,

where the first equality holds since we have a decreasing union of sets with finite measure.
Hence, f∗(t) ≤ λ̄. Since the converse inequality also holds (being f∗ decreasing), the claim
follows. One can show that df and f∗ are “pseudo-inverses” of each other:

• as already said, dλ ◦ f∗(t) ≤ t and, assuming 0 < t, f∗(t) < +∞, equality holds if
and only if f∗(t

′) > f∗(t) for all t′ < t;

• similarly with f∗ and df interchanged.

Proposition 3.21. The functions f and f∗, although defined on different domains, have
the same distribution function (meaning that df = df∗) and the same decreasing rear-
rangement (meaning that f∗ = (f∗)∗).

Proof. Fix 0 ≤ λ ≤ +∞ and notice that, given 0 ≤ t < +∞,

µ({|f | > λ}) ≤ t⇔ λ ≥ f∗(t)⇔ {f∗ > λ} ⊆ [0, t)⇔ µ({f∗ > λ}) ≤ t.

The penultimate equivalence follows from the fact that f∗ is decreasing, while the last
one follows from the right-continuity of f∗ (so that one cannot have {f∗ > λ} = [0, t]).
Both statements now follow from this chain of equivalences (observe that f∗(+∞) =
(f∗)∗(+∞) = 0).

Corollary 3.22. For any measurable f : E → K, we have |f |Lp,∞ = |f∗|Lp,∞ for all
1 ≤ p ≤ ∞. Also, we have ‖f‖Lp = ‖f∗‖Lp since

‖f‖pLp =

∫ ∞
0

pλp−1df (λ) dλ =

∫ ∞
0

pλp−1df∗(λ) dλ = ‖f∗‖pLp

for 1 ≤ p <∞ and ‖f‖L∞ = inf{λ : df (λ) = 0} = ‖f∗‖L∞.

The following two lemmas are very useful in practice, for instance when approximating
a function by mollification or by simple functions.

Lemma 3.23. If |fk| → |f∞| pointwise a.e., or more generally if |f∞| ≤ lim infk→∞ |fk|
a.e., then df∞ ≤ lim infk→∞ dfk and (f∞)∗ ≤ lim infk→∞(fk)∗.

Proof. Let N ⊂ E be a negligible subset such that |f∞| ≤ lim infk→∞ |fk| everywhere on
E \N . Given 0 ≤ λ ≤ +∞, if x 6∈ N has |f∞(x)| > λ then |fk(x)| > λ eventually, so

χ{|f∞|>λ}\N ≤ lim inf
k→∞

χ{|fk|>λ}\N .

Integrating and applying Fatou’s lemma gives the first claim. Now let 0 ≤ t ≤ +∞ and

λk := (fk)∗(t), λ̄ := lim inf
k→∞

λk.
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Passing to a subsequence, we can assume that λ̄ = limk→∞ λk. Notice that the hypothesis
still holds (in both versions). Again, if |f∞(x)| > λ̄ (and x 6∈ N) then |fk(x)| > λk
eventually, so as before we obtain

µ({|f∞| > λ̄}) ≤ lim inf
k→∞

µ({|fk| > λk}) ≤ t

by Remark 3.19. By definition of decreasing rearrangement, it follows that (f∞)∗(t) ≤
λ̄ = lim infk→∞(fk)∗(t).

Lemma 3.24. If |fk| ↑ |f∞| pointwise a.e. (meaning that |f∞| is the increasing limit of
|fk|), then dfk ↑ df∞ and (fk)∗ ↑ (f∞)∗ everywhere.

Proof. Let N ⊂ E be a negligible subset such that |fk| ↑ |f∞| everywhere on E \N . For
every 0 ≤ λ ≤ +∞, since {|f∞| > λ}∩E is the increasing union of the sets {|fn| > λ}∩E,
we get

df∞(λ) = µ({|f∞| > λ}) = lim
k→∞

µ({|fk| > λ}) = lim
k→∞

dfk(λ).

Given 0 ≤ t ≤ +∞, we set λk := (fk)∗(t) (for k ∈ N ∪ {∞}) and λ̄ = limk→∞ λk. This
limit exists and is at most λ∞ as

λ1 ≤ λ2 ≤ · · · ≤ λ∞.

We also have

µ({|f∞| > λ̄}) = lim
k→∞

µ({|fk| > λ̄})

= lim
k→∞

µ({|fk| > λk})

≤ lim inf
k→∞

µ({|fk| > λk}) ≤ t,

so λ∞ = (f∞)∗(t) ≤ λ̄. We conclude that λ∞ = λ̄, i.e. (fk)∗(t) ↑ (f∞)∗(t).

3.4 The Lorentz spaces Lp,q

Definition 3.25. Given 1 ≤ p <∞ and 1 ≤ q ≤ ∞, we set

|f |qLp,q :=

∫ ∞
0

tq/pf∗(t)
q dt

t

and we call Lp,q(E) the set of all measurable functions f : E → K with |f |Lp,q < ∞. We
also set |f |L∞,q := ‖f‖L∞ (so that L∞,q(E) = L∞(E)).

Remark 3.26. As we will see, even if f∗ is hit by the exponent q, the first exponent p is
the dominant one.

Proposition 3.27. The quantity | · |Lp,q is a quasi-norm.
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Proof. It suffices to show that (f + g)∗(t) ≤ f∗(
t
2
) + g∗(

t
2
). Actually, if 0 ≤ s, s′, t ≤ +∞

and s+ s′ ≤ t, it always holds that (f + g)∗(t) ≤ f∗(s) + g∗(s
′), since

µ({|f + g| > f∗(s) + g∗(s
′)}) ≤ µ({|f | > f∗(s)}) + µ({|g| > g∗(s

′)}) ≤ s+ s′ ≤ t.

Remark 3.28. It follows that Lp,q(E) is a quasi-normed vector space for all exponents
1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Again, one can show that it is always a quasi-normed vector
space. For p > 1, as opposed to the case of L1,∞, we will see that the quasi-norm admits
an equivalent norm, giving thus rise to a genuine Banach space.

Remark 3.29. The Lorentz quasi-norm | |Lp,q measures the integrability of the function,
rather than the regularity. In the language of probability, it depends only on the law of
f , since it is defined in terms of f∗ (which in turn depends only on df). Rearranging
the places where the values are attained, thus possibly making the function very irregular,
does not alter the Lp,q-quasinorm. One can define it in the same way on general measure
spaces. What we just observed can be made precise as follows: if h : E → E ′ is a measure-
preserving map between two measure spaces, then |f ◦ h|Lp,q = |f |Lp,q for any f : E ′ → K
(since df = df◦h and thus f∗ = (f ◦ h)∗).

The definition of the Lp,q-quasinorm when q < ∞ suggests the following equivalent
definition when q =∞.

Proposition 3.30. For 1 ≤ p <∞ we have |f |Lp,∞ = sup0≤t≤+∞ t
1/pf∗(t).

Proof. (≤): given λ > 0 with df (λ) > 0, set t := df (λ)− ε (where ε > 0 is arbitrary and
will tend to 0). Letting λ′ := f∗(t), being df (λ

′) ≤ t = df (λ) − ε we must have λ′ > λ.
Hence,

λ(df (λ)− ε)1/p ≤ λ′t1/p = f∗(t)t
1/p ≤ sup

0≤t≤+∞
t1/pf∗(t)

and the inequality follows letting ε ↓ 0 and then taking the supremum over λ.
(≥): analogous.

Similarly, the Lp,q-quasinorm can be expressed in terms of the distribution function.

Proposition 3.31. For all 1 ≤ p <∞ and 1 ≤ q <∞ we have

|f |Lp,q = p1/q
(∫ ∞

0

λq−1df (λ)q/p dλ
)1/q

.

Proof. We start with the trivial observation that one has f∗(t) > λ if and only if df (λ) > t,
thanks to Remark 3.19. This, together with Fubini, gives

|f |qLp,q =

∫ ∞
0

tq/p−1

∫ f∗(t)

0

qλq−1 dλ dt

= q

∫
{(t,λ):f∗(t)>λ}

tq/p−1λq−1 dt dλ

= q

∫ ∞
0

∫ df (λ)

0

tq/p−1λq−1 dt dλ

= p

∫ ∞
0

df (λ)q/pλq−1 dλ.
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Proposition 3.32. If |fk| → |f∞| pointwise a.e., or more generally if |f∞| ≤ lim infk→∞ |fk|
a.e., then

|f∞|Lp,q ≤ lim inf
k→∞

|fk|Lp,q .

If fk → f∞ and |fk| ↑ |f∞|, then

|fk − f∞|Lp,q → 0,

provided that f∞ ∈ Lp,q(E) and 1 ≤ p, q < ∞. In particular, simple functions are dense
in Lp,q(E) if 1 ≤ p, q <∞

Proof. The first part follows immediately from Lemma 3.23 and Fatou. The second part
follows from the pointwise convergence (fk)∗ → (f∞)∗ given by Lemma 3.24, together
with the dominated convergence theorem.

Proposition 3.33. We have

(1) Lp,p(E) = Lp(E),

(2) Lp,q(E) ⊆ Lp,r(E) if q < r,

(3) Lp,q(E) ⊆ Lt,u(E) if µ(E) <∞ and p > t (regardless of q and u).

Proof. (1) From the definition of the Lp,p-quasinorm and Corollary 3.22 we have |f |pLp,p =
‖f∗‖pLp = ‖f‖pLp .

(2) We assume p < ∞ without loss of generality. We first deal with the case r = ∞:
since f∗ is decreasing, we deduce

t1/pf∗(t) =
(q
p

∫ t

0

sq/p−1f∗(t)
q ds
)1/q

≤
(q
p

∫ t

0

sq/p−1f∗(s)
q ds
)1/q

≤
(q
p

)1/q

|f |Lp,q

for all 0 ≤ t < +∞. Taking the supremum over t, we deduce that |f |Lp,∞ is estimated
by |f |Lp,q and the inclusion follows. If r <∞, notice that

|f |Lp,r =
(∫ ∞

0

sr/pf∗(s)
r ds

s

)1/r

≤
(∫ ∞

0

sq/pf∗(s)
q ds

s

)1/r

sup
0≤s≤+∞

s(r−q)/(pr)f∗(s)
(r−q)/r

= |f |q/rLp,q |f |
(r−q)/r
Lp,∞

≤ C(p, q, r)|f |q/rLp,q |f |
(r−q)/r
Lp,r

by the previous case. Dividing both sides by |f |(r−q)/rLp,r and raising to the power r
q
, the

claim follows.
(3) From the definition of f∗ it follows that f∗(s) = 0 for all s ≥ µ(E). In view of (2),

it suffices to deal with the case u = 1, q =∞. If p <∞ we have

|f |Lt,u =

∫ µ(E)

0

s1/tf∗(s)
ds

s
≤
(∫ µ(E)

0

s1/t−1/p ds

s

)
sup

0≤s≤µ(E)

s1/pf∗(s).
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Since 1
t
− 1

p
> 0, the first integral is a finite constant, while the supremum equals |f |Lp,∞

by Proposition 3.30. If p = ∞, it suffices to bound f∗(s) by ‖f‖L∞ right after the first
equality.

Remark 3.34. The inclusion Lp,q(E) ⊆ Lp,r(E) is always strict: assuming 0 ∈ E is a
density point without loss of generality, it is easy to check that

• |x|−n/p ∈ Lp,∞(E) \
⋃
q<∞ L

p,q(E),

• |x|−n/p log(|x|−1)−αχB1/2
(x) ∈ Lp,q(E) if and only if αq > 1, for all α > 0.

We now turn to the promised fact that Lp,q is normable for p > 1.

Theorem 3.35 (normability of Lp,q). For all 1 < p ≤ ∞ the Lp,q-quasinorm has an
equivalent norm, for all 1 ≤ q ≤ ∞.

Lemma 3.36. Define f∗∗ : (0,+∞)→ [0,+∞] by

f∗∗(t) :=
1

t

∫ t

0

f∗(s) ds.

This modification of the decreasing rearrangement satisfies

f∗∗(t) =
1

t
sup{

∫
F

|f | ; F ⊆ E, µ(F ) ≤ t}.(3.15)

Proof. The statement holds if f is a nonnegative simple function, namely f =
∑N

i=1 λiχAi
with λ1 ≥ λ2 ≥ . . . and Ai ∩ Aj = ∅: indeed, it is easy to check that both sides of (3.15)
equal

1

t

k∑
i=1

λiµ(Ai) + δµ(Ai+1)

where k is such that
∑k

i=1 µ(Ai) ≤ t <
∑k+1

i=1 µ(Ai) (k = N if t ≥
∑N

i=1 µ(Ai)) and

δ := t−
∑k

i=1 µ(Ai). In general, we approximate |f | pointwise from below with nonnegative
simple functions fk. By Lemma 3.24 and the monotone convergence theorem, both sides
of (3.15) converge from below to the desired quantities.

Corollary 3.37. We have (f + g)∗∗ ≤ f∗∗ + g∗∗.

Proof. This immediately follows from the inequality
∫
F
|f + g| ≤

∫
F
|f | +

∫
F
|g| and the

last lemma.

Lemma 3.38 (Hardy’s inequality). Given 1 < p < ∞, 1 ≤ q < ∞ and f : (0,+∞) →
[0,+∞], it holds (∫ ∞

0

(1

x

∫ x

0

f(t) dt
)p
dx
)1/p

≤ p′
(∫ ∞

0

f(x)p dx
)1/p

and more generally(∫ ∞
0

xq/p−1
(1

x

∫ x

0

f(t) dt
)q
dx
)1/q

≤ p′
(∫ ∞

0

xq/p−1f(x)q dx
)1/q

.
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Proof. We argue by duality. In order to show the first inequality, let g ≥ 0 with ‖g‖Lp′ = 1.
We get ∫ ∞

0

(1

x

∫ x

0

f(t) dt
)
g(x) dx =

∫ ∞
0

(∫ 1

0

f(sx) dt
)
g(x) dx

=

∫ 1

0

(∫ ∞
0

f(sx)g(x) dx
)
ds

≤
∫ 1

0

‖f(s·)‖Lp‖g‖Lp′ ds

=

∫ 1

0

s−1/p‖f‖Lp ds

= p′‖f‖Lp .

The proof of the second inequality is identical, working rather with the measure space
X := ((0,∞), xq/p−1 dx) and using the duality (Lq(X))∗ = Lq

′
(X), observing that we still

have ‖f(s·)‖Lq(X) = s−1/p‖f‖Lq(X).

Proof of Theorem 3.35. We assume without loss of generality that 1 < p <∞. We let

‖f‖Lp,q :=
(∫ ∞

0

tq/pf∗∗(t)
q dt

t

)1/q

for 1 ≤ q < ∞ and ‖f‖Lp,∞ := sup0<t<∞ t
1/pf∗∗(t), i.e. we are merely replacing f∗ with

f∗∗ in the definitions. From Corollary 3.37 it follows that this is a norm (when q <∞ we
also use Minkowski’s inequality for Lq(X), where X is the same measure space as in the
previous proof). Finally, since f∗ is decreasing, we have f∗∗ ≥ f∗ and thus ‖f‖Lp,q ≥ |f |Lp,q .
Conversely, by Hardy’s inequality applied to f∗,

‖f‖Lp,q ≤ p′|f |Lp,q .

This shows that the norm ‖ ‖Lp,q is equivalent to the quasi-norm | |Lp,q .

Remark 3.39. By Fatou’s lemma, the conclusions of Lemmas 3.24 and 3.23 are still true
with f∗∗ in place of f∗. Hence, Proposition 3.32 still holds with | |Lp,q replaced with ‖ ‖Lp,q .

The dual spaces of Lorentz spaces are the expected ones, for p > 1.

Theorem 3.40 (Dual spaces). For 1 < p <∞ and 1 ≤ q <∞ we have

(Lp,q(E))∗ = Lp
′,q′(E),

where duality is represented by integration.

Proof. Omitted.
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3.5 Functional inequalities for Lorentz spaces

Theorem 3.41 (Hölder’s inequality). Assume that f ∈ Lp1,q1(E) and g ∈ Lp2,q2(E) with

1 < p1, p2, p <∞, 1 ≤ q1, q2, q ≤ ∞,
1

p1

+
1

p2

=
1

p
,

1

q1

+
1

q2

≥ 1

q
.

Then fg ∈ Lp,q(E), with ‖fg‖Lp,q ≤ C‖f‖Lp1,q1‖g‖Lp2,q2 (where C depends on p1, p2, q1, q2).

Proof. Thanks to Proposition 3.33, we can replace q1 and q2 with possibly higher expo-
nents and assume, without loss of generality, that 1

q1
+ 1

q2
= 1

q
. Given 0 ≤ t1, t2 ≤ +∞,

notice that

µ({|f | > f∗(t1)}) ≤ t1, µ({|g| > g∗(t2)}) ≤ t2,

so that, since |fg| > f∗(t1)g∗(t2) implies either |f | > f∗(t1) or |g| > g∗(t2), we infer

µ({|fg| > f∗(t1)g∗(t2)}) ≤ t1 + t2

and thus

(fg)∗(t1 + t2) ≤ f∗(t1)g∗(t2).

This, together with the classical Hölder’s inequality for Lebesgue spaces with exponents
q1
q

and q2
q

(on the measure space (0,+∞)), gives

|fg|Lp,q = ‖t1/p−1/q(fg)∗(t)‖Lq

≤ ‖t1/p−1/qf∗

( t
2

)
g∗

( t
2

)
‖Lq

= C ′‖t1/p1−1/q1f∗(t) t
1/p2−1/q2g∗(t)‖Lq

≤ C ′‖t1/p1−1/q1f∗(t)‖Lq1‖t1/p2−1/q2g∗(t)‖Lq2
= C ′|f |Lp1,q1 |g|Lp2,q2 .

Remark 3.42. Of course, Hölder’s inequality works also if (p1, q1) = (∞,∞) (or similarly
if (p2, q2) = (∞,∞)), since in this case it reduces to the inequality

‖fg‖Lp,q ≤ ‖f‖L∞‖g‖Lp,q ≤ C‖f‖L∞,∞‖g‖Lp2,q2 .

Theorem 3.43 (Young’s inequality). Assume that f ∈ Lp1,q1(Rn) and g ∈ Lp2,q2(Rn)
with

1 < p1, p2, p <∞, 1 ≤ q1, q2, q ≤ ∞,
1

p1

+
1

p2

= 1 +
1

p
,

1

q1

+
1

q2

≥ 1

q
.

Then the convolution f ∗ g is a.e. defined (meaning that the integral defining f ∗ g exists
a.e.) and f ∗ g ∈ Lp,q(Rn), with ‖fg‖Lp,q ≤ C‖f‖Lp1,q1‖g‖Lp2,q2 (where C depends on
p1, p2, q1, q2).
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Remark 3.44. In some cases, this improves the classical Young’s inequality for Lebesgue
spaces: for instance, it gives L3/2 ∗ L3/2 ⊆ L3,1 rather than just L3/2 ∗ L3/2 ⊆ L3.

The proof, due to O’Neil, is given below (optional: it was not covered in class).

Lemma 3.45. If f, g ≥ 0 are measurable functions on Rn and f ≤ αχE0, then

(1) (f ∗ g)∗∗ ≤ αµ(E0)g∗∗,

(2) ‖(f ∗ g)∗∗‖L∞ ≤ αµ(E0)g∗∗(µ(E0)).

Proof. Given 0 < t < +∞ and F ⊆ Rn with µ(F ) ≤ t, then by (3.15)

t−1

∫
F

f ∗ g ≤ αt−1

∫
F

∫
E0

g(x− y) dy dx

= α

∫
E0

t−1

∫
F−y

g(x) dx dy

≤ α

∫
E0

g∗∗(t) dy

= αµ(E0)g∗∗(t),

so that taking the supremum over F and using (3.15) the first claim follows. Similarly,
notice that

αt−1

∫
F

∫
E0

g(x− y) dy dx = αt−1

∫
F

∫
x−E0

g(y) dy dx

≤ αt−1µ(F )µ(E0)g∗∗(µ(E0))

≤ αµ(E0)g∗∗(µ(E0)),

as µ(x− E0) = µ(E0). This gives the second claim.

Lemma 3.46. For f, g ≥ 0 and 0 < t < +∞, we have

(f ∗ g)∗∗(t) ≤ tf∗∗(t)g∗∗(t) +

∫ ∞
t

f∗g∗.

Proof. We can assume that f is simple and finite, so we can write

f =
N∑
i=1

αiχEi

with αi ≥ 0 and R =: E0 ) E1 ) · · · ) EN ) EN+1 := ∅. Possibly adding artificially a
set with measure t, we can assume that t = µ(Ei0) (with 1 ≤ i0 ≤ N). Using the previous
lemma we have

(f ∗ g)∗∗(t) ≤
i0−1∑
i=1

αiµ(Ei)g∗∗(µ(Ei)) +
N∑
i=i0

αiµ(Ei)g∗∗(t).(3.16)
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Observe that f∗ equals
∑j

i=1 αi on the set [µ(Ej+1, µ(Ej)). The first sum in (3.16) equals

i0−1∑
i=1

αi

∫ µ(Ei)

0

g∗ =

i0−1∑
i=1

N∑
j=i

∫ µ(Ej)

µ(Ej+1)

αig∗ =
N∑
j=1

min{j,i0−1}∑
i=1

∫ µ(Ej)

µ(Ej+1)

αig∗

and the contribution for j < i0 is precisely

i0−1∑
j=1

∫ µ(Ej)

µ(Ej+1)

j∑
i=1

αig∗ =

i0−1∑
j=1

∫ µ(Ej)

µ(Ej+1)

f∗g∗ =

∫ µ(E1)

µ(Ei0 )

f∗g∗ =

∫ ∞
t

f∗g∗.

On the other hand, the contribution for j ≥ i0 is

N∑
j=i0

min{j,i0−1}∑
i=1

∫ µ(Ej)

µ(Ej+1)

αig∗ =
N∑
j=i0

i0−1∑
i=1

αi(µ(Ej)g∗∗(µ(Ej))− µ(Ej+1)g∗∗(µ(Ej+1)))

=

i0−1∑
i=1

αiµ(Ei0)g∗∗(µ(Ei0)) =

i0−1∑
i=1

αiµ(Ei0)g∗∗(t),

where µ(EN+1)g∗∗(EN+1) has to be replaced with 0. Finally, notice that

i0−1∑
i=1

αiµ(Ei0)g∗∗(t) +
N∑
i=i0

αiµ(Ei)g∗∗(t) =
(∫

Ei0

f∗

)
g∗∗(t) = tf∗∗(t)g∗∗(t)

by (3.15).

Proof of Young’s inequality. We assume q <∞. The case q =∞ (where q1 = q2 =∞) is
far easier and left to the reader. It is clear that

‖t1/p−1/q+1f∗∗(t)g∗∗(t)‖Lq = ‖t1/p1−1/q1f∗∗(t) t
1/p2−1/q2g∗∗(t)‖Lq

≤ ‖t1/p1−1/q1f∗∗(t)‖Lq1‖t1/p2−1/q2g∗∗(t)‖Lq2
= ‖f‖Lp1,q1‖g‖Lp2,q2

(assuming without loss of generality that 1
q1

+ 1
q2

= 1
q
). Moreover, changing variables

t = 1
u
, s = 1

r
and using Hardy’s inequality,(∫ ∞

0

tq/p−1
(∫ ∞

t

f∗(s)g∗(s) ds
)q
dt
)1/q

=
(∫ ∞

0

uq/p
′−1
(1

u

∫ u

0

r−2f∗(r
−1)g∗(r

−1) dr
)q
du
)1/q

≤ C
(∫ ∞

0

uq/p
′−1u−2qf∗(u

−1)qg∗(u
−1)q du

)1/q

= C
(∫ ∞

0

tq+q/p−1f∗(t)
qg∗(t)

q dt
)1/q

= C‖t1/p1−1/q1f∗(t) t
1/p2−1/q2g∗(t)‖Lq ,
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which can be estimated by |f |Lp1,q1 |g|Lp2,q2 as before. The inequality follows from the fact
that

‖f ∗ g‖Lp,q ≤ ‖t1/p−1/q+1f∗∗(t)g∗∗(t) + t1/p−1/q

∫ ∞
t

f∗g∗‖Lq

by the previous lemma.

Let us now see an important consequence when n ≥ 2.

Corollary 3.47 (improved Sobolev’s embedding). We have the continuous embedding
W 1,p(Rn) ⊆ Lp

∗,p(Rn) for all 1 < p < d, where 1
p∗

= 1
p
− 1

n
.

Sketch of proof. By mollification and cut-off, it suffices to show that ‖f‖Lp∗,p ≤ C‖f‖W 1,p

whenever f ∈ C∞c (Rn) (since, by Lemma 3.23 and Fatou’s lemma, the Lp,q-quasinorm is
lower semicontinuous under pointwise convergence a.e.). We have

f = G ∗∆f,

where G is Green’s function for the Laplacian. Recall that, up to a multiplicative constant,
G equals log |x| if n = 2 and |x|2−n if n ≥ 3. In all cases, commuting a derivative with
the convolution, we get

f =
n∑
i=1

∂G

∂xi
∗ ∂f
∂xi

(this is legitimate since G ∈ W 1,q
loc (Rn) for any q < n

n−1
) and, observing that ∂G

∂xi
equals

xi
|x|n up to a multiplicative constant, we get | ∂G

∂xi
| ∈ Ln/(n−1),∞(Rn). The claim follows from

Young’s inequality for Lorentz spaces.

Remark 3.48. The improved Sobolev’s embedding also holds for p = 1, although this is
not immediately clear from this proof. Instead, it can be shown using the coarea formula
and the isoperimetric inequality. Here is a sketch (optional: it was not covered in
class). Assuming without loss of generality f ∈ C∞c nonnegative,

|f |L1∗,1 = 1∗
∫ ∞

0

µ({f > λ})1/1∗ dλ

≤ C

∫ ∞
0

Hn−1({f = λ}) dλ

= C

∫
|∇f | ,

where the first equality is Proposition 3.31, the inequality is the isoperimetric inequality
for the set {f > λ} (which is a smooth bounded domain for a.e. λ; notice that 1/1∗ =
(n− 1)/n) and the last equality is the coarea formula.

Proposition 3.49. (optional: it was not covered in class) In spite of the fact that
W 1,n(Rn) 6⊆ L∞(Rn), a function f ∈ L1

loc(Rn) with weak gradient in the Lorentz space
Ln,1(Rn) has a continuous representative and satisfies

‖f − c(f)‖L∞ ≤ C‖∇f‖Ln,1

for a suitable constant function c(f).
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Proof. The main point is that, if f ∈ C∞c (Rn), the same proof as Corollary 3.47 gives

‖f‖L∞ ≤ C‖∇f‖Ln,1 .

Instead of Young’s inequality, we just use this version of Hölder: Ln,1 · Ln/(n−1),∞ ⊆ L1

(same proof as Theorem 3.41). This allows to say that

|f(x)| ≤
∫ ∣∣∣∂G

∂xi

∣∣∣(y)
∣∣∣ ∂f
∂xi

∣∣∣(x− y) dµ(y) ≤ ‖∇G‖Ln/(n−1),∞‖∇f‖Ln,1

for all x. The rest of the work is to reduce to this situation.
Notice first that the convolution with a nonnegative function ρε ∈ C∞c (Rn), with

support in Bε(0) and
∫
ρε = 1, satisfies

‖∇f −∇(ρε ∗ f)‖Lp,q ≤ sup
|h|≤ε
‖∇f −∇f(·+ h)‖Lp,q(3.17)

for all 1 < p ≤ ∞, 1 ≤ q ≤ ∞: indeed, being f ∈ W 1,1
loc (Rn), ρε ∗ f is smooth and its

gradient equals ρε ∗∇f , which can be thought as a pointwise limit of convex combinations
of functions ∇f(·+h), with |h| ≤ ε (e.g. approximating the convolution with a finite sum
as for a Riemann integral). The claim follows from Remark 3.39 and the fact that ‖ ‖Lp,q
is a norm invariant under translations in Rn.

As a consequence, if 1 ≤ p, q <∞ then ∇(ρε∗f)→ ∇f : in fact, g(·+h)→ g as h→ 0
when g = χE is a characteristic function (with µ(E) < ∞) because µ(E∆(E − h)) → 0
and (χE − χE−h)∗ = χ[0,µ(E∆(E−h))), so by Corollary 3.32 this holds also for a generic
g ∈ Lp,q(Rn) and the claim follows from (3.17). So there exist smooth functions fk such
that fk → f in L1

loc(Rn) and ∇fk → ∇f in Ln,1(Rn).
For any R ≥ 1, the embedding W n,1(Rn) ⊂ L2n(Rn) and Poincaré’s inequality give

‖fk − ck,R‖L2n(B2R) ≤ CR1/2‖∇fk‖Ln(B2R) ≤ CR1/2‖∇fk‖Ln,1(B2R)

(with ck,R := −
∫
B2R

fk) and thus, as the proof of Proposition 3.33(3) shows, we get

fk − ck,R‖Ln,1(B2R) ≤ CR‖∇fk‖Ln,1 .

Finally, choosing a smooth cut-off function φR with φ = 1 on BR, φR = 0 outside B2R

and |∇φR| ≤ 2
R

,

‖∇(φR(fk − ck,R))‖Ln,1 ≤
2

R
‖fk − ck,R‖Ln,1(B2R) + ‖∇fk‖Ln,1 ≤ C‖∇fk‖Ln,1

and thus, by the initial part of the proof,

‖fk − ck,R‖L∞(BR) ≤ ‖φR(fk − ck,R)‖L∞ ≤ C‖∇fk‖Ln,1 .

The constants ck,R are obviously equibounded (in k,R), since this inequality gives in
particular

| −
∫
B1

fk − ck,R| ≤ C‖∇fk‖Ln,1 .

Hence, letting R → ∞ along a suitable sequence depending on k, we get ‖fk − ck‖L∞ ≤
C‖∇fk‖Ln,1 (with supk |ck| <∞). Letting k →∞, again along a subsequence, we get the
statement.
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3.6 Dyadic characterization of some Lorentz spaces and another
proof of Lorentz–Sobolev embedding (optional)

In this part we show that, when q ≤ p, the Lp,q-norm of a function f can be measured in
terms of a dyadic decomposition of f according to its values.

In the sequel, ϕ : R→ R is a smooth function supported in the annulus B̄2(0)\B1/2(0)
and such that ∑

j∈Z

ϕ(2−jt) = 1, for all t ∈ R \ {0}.(3.18)

In order to construct ϕ, take for instance any ψ ∈ C∞c (B2) such that ψ = 1 on B1, and
set ϕ(t) := ψ(t)− ψ(2t). For any t ∈ R \ {0}, it holds

∑
j∈Z

ϕ(2−jt) = lim
N→∞

N∑
j=−N

(ψ(2−jt)− ψ(2−(j−1)t)) = lim
N→∞

(ψ(2−N t)− ψ(2N+1t)) = 1;

the sum is well defined and the first equality holds, since at most two terms in the sum
are nonzero: if 2k ≤ t ≤ 2k+1, then ϕ(2−jt) = 0 for j 6= k, k+ 1 since ϕ(2−j·) is supported
in the annulus B̄2j+1 \B2j−1 .

Given f : Rn → R, we split it according to its values: we set

fj := f ϕ(2−j|f |),

so that the piece fj vanishes at x if |f |(x) is not in the range (2j−1, 2j+1). Notice that,
thanks to (3.18),

f =
∑
j∈Z

fj

where the sum is actually finite at each point (since at most two terms are nonzero).
This decomposition should not be confused with the Littlewood–Paley decomposition, en-
countered later in the course, which involves the phase space rather than the values of
f !

Lemma 3.50. For 1 < p <∞ and 1 ≤ q ≤ p we have

C−1‖f‖Lp,q ≤
(∑
j∈Z

‖fj‖qLp
)1/q

≤ C‖f‖Lp,q

for some C depending on p, q.
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Proof. Since fj ≤ 2j+1χ|f |>2j−1 , we have∑
j∈Z

‖fj‖qLp ≤ 2q
∑
j∈Z

2qjµ({|f | > 2j−1})q/p

= 8q
∑
j∈Z

2qjµ({|f | > 2j+1})q/p

≤ 8q
∑
j∈Z

∫ 2j+1

2j
λq−1µ({|f | > λ})q/p dλ

= 8q
∫ ∞

0

λq−1µ({|f | > λ}) dλ.

Conversely, using the subadditivity of t 7→ tq/p (true as q ≤ p),∑
j∈Z

∫ 2j+1

2j
λq−1µ({|f | > λ})q/p dλ ≤ 2q−1

∑
j∈Z

2qjµ({|f | > 2j})q/p

= 2q−1
∑
j∈Z

2qj
(∑
k≥j

µ({2k < |f | ≤ 2k+1})
)q/p

≤ 2q−1
∑
j∈Z

∑
k≥j

2qjµ({2k < |f | ≤ 2k+1})q/p

≤ 2q
∑
k∈Z

2qkµ({2k < |f | ≤ 2k+1})q/p.

For a given x ∈ E with f(x) 6= 0, if k ∈ Z is such that 2k < |f(x)| ≤ 2k+1 then
2k ≤ |f(x)| = |fk(x) + fk+1(x)|, so

2pkµ({2k < |f | ≤ 2k+1}) ≤
∫
|fk + fk+1|p ≤ 2p−1

∫
|fk|p + 2p−1

∫
|fk+1|p.

Hence, raising to the power q
p
,

2q
∑
k∈Z

2qkµ({2k < |f | ≤ 2k+1})q/p ≤ 4q
∑
k∈Z

(∫
|fk|p +

∫
|fk+1|p

)q/p
≤ 2 · 4q

∑
k∈Z

‖fk‖qLp .

The claim now follows from Proposition 3.31.

We now present an alternative proof of the Lorentz–Sobolev embedding W 1,p(Rn) ⊂
Lp
∗,p(Rn) for n ≥ 2 and 1 ≤ p < n.
Given f ∈ C∞c (Rn), we apply the classical Sobolev embedding to the pieces fj to get

‖f‖p
Lp∗,p

≤ C
∑
j∈Z

‖fj‖pLp∗ ≤ C
∑
j∈Z

‖∇fj‖pLp .

Since ∇fj = ϕ(2−jf)∇f + 2−jfϕ′(2−jf)∇f is bounded by |∇f |χ{2j−1<|f |<2j+1} up to
constants (being |2−jf | ≤ 2 on the support of ϕ′(2−jf)), we finally get∑

j∈Z

‖∇fj‖pLp ≤ C
∑
j∈Z

∫
|∇f |pχ{2j−1<|f |<2j+1} ≤ C

∫
|∇f |p.
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(as it is customary, in the above estimates the value of C can change from line to line).
The conclusion follows as in the previous proof.
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4 The Lp−theory of Calderón-Zygmund convolution

operators.

4.1 Calderón-Zygmund decompositions.

The Calderón-Zygmund decomposition of an integrable function is the key ingredient
for proving the continuity of the sub-linear Maximal Operator M in Lp spaces and the
continuity of Calderón-Zygmund Operators in Lp Spaces as well. The later being the
starting point to the analysis of elliptic PDE in Lp and more generally in non Hilbertian
Sobolev or Besov Spaces.

We adopt the following denomination : A cube of size δ > 0 in Rn is a closed set of
the form C =

∏n
i=1[ai, ai + δ] where (ai) is an arbitrary sequence of n real numbers.

Theorem 4.1 (Calderón-Zygmund Decomposition). Let f ∈ L1(Rn) with f ≥ 0 and let
α > 0. Then there exists an at most countable family of cubes (Ck)k∈K having disjoint
interiors such that

(i) The average of f on all cubes is bounded from below and above by

(4.1) α <
1

µ(Ck)

∫
Ck

f(x) dx ≤ 2nα .

(ii) On the complement Ωc of the union Ω =
⋃
k∈K Ck, we have

(4.2) f(x) ≤ α a.e. .

(iii) There exists a constant C = C(n) depending only on the dimension n such that

(4.3) µ(Ω) ≤ C

α
‖f‖L1 .

Remark 4.1. An alternative way to look at the result is the following. The Calderón-
Zygmund Decomposition of threshold α > 0 is a non-linear decomposition of any function
f ∈ L1 of the form f = g+ b where g and b are two functions respectively in L1∩L∞(Rn)
and in L1(Rn) satisfying

i) ∃ (Ck)k∈K a family of disjoint cubes of Rn such that

b =
∑
k∈K

bk with bk ≡ 0 in Rn \ Ck .

ii) For all k ∈ K hold the two following conditions∫
Ck

bk(y) dy = 0 and
1

µ(Ck)

∫
Ck

|bk(y)| dy ≤ 2n+1 α .
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iii) g satisfies the following pointwise inequalities |g(x)| = |f(x)| ≤ α for a.e. x ∈ Rn \ ∪k∈KCk ,

|g(x)| ≤ 2n α for a.e. x ∈ ∪k∈KCk

iv) The L2 norm of g is controlled as follows

‖g‖2
L2(Rn) ≤ 22n α ‖f‖L1(Rn) .

v) The Lebesgue measure of the so called ”bad set” Ω = ∪k∈KCk satisfies

µ(Ω) =
∑
k∈K

µ(Ck) ≤
1

α
‖f‖L1(Rn) .

The link between our construction in the proof of theorem 4.1 (applied to |f |) and the
decomposition f = g + b satisfying i) · · · v) is made by taking

bk :=

(
f − 1

µ(Ck)

∫
Ck

f(y) dy

)
χCk ,

and i)...v) follow from simple estimates. It is worth remembering that Calderón-Zygmund
decomposition is not unique.

Example 4.2. Consider the function f = χ[0,1], the characteristic function of the segment
[0, 1] in R. A Calderón-Zygmund decomposition of f with threshold 2−i−1 is given by
g = 2−iχ[0,2i] and the set Ω is made of a unique cube : [0, 2i]. b = 0 outside [0, 2i] and
b = χ[0,1] − 2−iχ[0,2i] has indeed average 0 on the unique cube of the decomposition.

Proof of theorem 4.1.
We divide Rn into a mesh of equal cubes chosen large enough such that their volume

is larger or equal than ‖f‖L1/α. Thus, for every cube C0 in this mesh, we have

(4.4)
1

µ(C0)

∫
C0

f(x) dx ≤ α .

Every cube C0 from the initial mesh is decomposed into 2n equal disjoint cubes with
half of the side-length. For the resulting cubes, there are now two possibilities: Either
(4.4) still holds or (4.4) is violated. Cubes of the first case are called the good cubes,
the set of good cubes is denoted by Cg1 , and the set of non good cubes, the bad cubes, is
denoted by Cb1. In a next step, we decompose all cubes in Cg1 into equal disjoint cubes with
half side-length and leave the cubes in Cb1 unchanged. The resulting cubes for which an
estimate of the form (4.4) still holds are denoted by Cg2 - they are called good cubes as well
- and the remaining ones by Cb2. Then, we proceed as before dividing the cubes in Cg2 and
leaving the cubes in Cb2 unchanged. – Repeating this procedure for each cube in the initial
mesh, we can define Ω =

⋃
k∈K Ck as the union of all cubes which violate in some step of
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the decomposition process an estimate of the form (4.4). (These are precisely those cubes
with an upper index b for bad.)

Note that for a cube Cb
i in Cbi obtained in the i-th step, we have

(4.5)
1

µ(Cb
i )

∫
Cbi

f(x) dx > α .

Since 2nµ(Cb
i ) = µ(Cg

i−1), where Cg
i−1 is any cube in Cgi−1, we then deduce

α <
1

µ(Cb
i )

∫
Cbi

f(x) dx ≤ 2n

µ(Cg
i−1)

∫
Cgi−1

f(x) dx ≤ 2n α .

This shows (i) of the theorem.
In order to show (ii), we note that by Lebesgue’s differentiation theorem, almost

everywhere the following holds

f(x) = lim
d→0

1

µ(Cx,d)

∫
Cx,d

f(y) dy ,

where Cx,d denotes a cube containing x ∈ Rn with diameter d. By construction of the
decomposition, there exists for every x ∈ Ωc a diameter dx > 0 such that all cubes Cx,d
with diameter d < d0 satisfy an estimate of the form (4.4). This implies directly that
f(x) ≤ α for a.e. x ∈ Ωc.

The last part (iii) of the theorem can be established as follows:

µ(Ω) =
∑
k∈K

µ(Ck)
(4.5)
<

1

α

∫
Ω

f(x) dx ≤ 1

α
‖f‖L1 .

�

4.2 An application of Calderón-Zygmund decomposition

The following theorem gives a statement which is close to a converse to theorem 2.8.
The proof of this theorem we give is an interesting application of the Calderón-Zygmund
decomposition.

Theorem 4.3. Let f be an integrable function on Rn supported on an euclidian ball B.
Then Mf ∈ L1(B) if and only if f ∈ L1 logL1(B).

The proof of theorem 4.3 is using the following lemma.

Lemma 4.4. Let f be a locally integrable function on Rn. Let B be an open euclidian
ball of Rn such that Mf ∈ L1(B) then f ∈ (L1 logL1)loc(B) .
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Proof of lemma 4.4. Let ω be an open subset strictly included in B - i.e. ω ⊂ B.
Denote by fω the restriction of f to ω. It is clear that the inequality Mf(x) ≥ Mfω(x)
holds for almost every x ∈ Rn. Hence, for every β > 0 the following holds

(4.6) µ ({x ; Mf(x) > β}) ≥ µ ({x ; Mfω(x) > β}) .

In order to show that fω ∈ L1 logL1(Rn), we use the following “reverse” inequality to
(2.9) for the Hardy-Littlewood maximal function : there exists a constant c depending
only on n such that

(4.7) µ({x ∈ Ω : Mfω(x) > cα}) ≥ 1

2nα

∫
{x∈Rn : |fω(x)|>α}

|fω(x)| dx

where Ω = ∪k∈KCk is the union of bad cubes for a Calderón-Zygmund decomposition of
mesh α applied to fω on Rn and given by the previous theorem 4.1.

Proof of inequality (4.7). For any α > 0 theorem 4.1 gives, for the function fω, a
family of cubes (Ck)k∈K of disjoint interiors such that (see (4.1))

(4.8)

 2nα ≥ 1
µ(Ck)

∫
Ck
|fω(x)| dx ≥ α and

∀x ∈ Rn \ Ω |fω(x)| ≤ α .

Thus, if x ∈ Ck, it follows that Mfω(x) > cα, where the constant c > 0 is an adjustment
which permits to pass from cubes to balls in the definition of the maximal function. As
a direct consequence, we have that

µ({x ∈ Ω : Mfω(x) > cα}) ≥
∞∑
k=1

µ(Ck)
(4.8)

≥ 1

2nα

∫
Ω

|f(x)| dx .

Since |fω(x)| ≤ α, for x ∈ Rn \ Ω, the desired inequality (4.7) is established.

Let δ > 0 such that for every cube C

(4.9) µ(C) ≤ δ and C ∩ ω 6= ∅ =⇒ C ∩ Rn \B = ∅ .

δ has been chosen in such a way that, for any α > α0 =
∫
ω
f/δ, the bad set Ω is included

in B - this lower bound on α ensures indeed the fact that the mesh of the starting cubes in
the associated Calderón-Zygmund decomposition is less than δ . Hence we deduce using
(4.6), for any α > α0, that

µ({x ∈ B : Mf(x) > cα})≥ 1

2nα

∫
{x∈ω ; |f(x)|>α}

|f(x)| dx .
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Using the previous estimate we compute

‖Mf‖L1(B) =

∫
B

Mf(x) dx
(2.1)

≥
∫ ∞
cα0

µ({x ∈ B : Mf(x) > α}) dα

(4.7)

≥ c

∫ ∞
α0

(
1

2nα

∫
{x∈ω : |f(x)|>α}

|f(x)| dx
)
dα

= c

∫
ω

|f(x)|

(∫ max{α0,|f(x)|}

α0

1

α
dα

)
dx

= c

∫
ω

|f(x)| log+ |f(x)|
α0

dx .

This proves the lemma. �

Proof of theorem 4.3.
One direction in the equivalence has been established in theorem 2.8. It suffices then

to establish that Mf ∈ L1(B) and f supported in B imply that f ∈ L1 logL1(B).
Let’s take to simplify the presentation B to be the unit ball of center the origin

B := B1(0). First we show the following statement

(4.10) f ≡ 0 in Rn \B1(0) and Mf ∈ L1(B1(0)) =⇒Mf ∈ L1(B2(0)) .

Once we will have proved this implication, using the previous lemma, we will deduce that
f ∈ L1 logL1(B) and this will finish the proof of theorem 4.3.

Proof of (4.10). Let x be a point in B2(0) \ B1(0). Since every point in B1(0) is
closer to x/|x|2 than to x, for |x| > 1, one obtains that BR(x)∩B1(0) ⊂ BR(x/|x|)∩B1(0).
We then deduce ∫

BR(x)

|f(y)| dy ≤
∫
BR(x/|x|2)

|f(y)| dy ,

which implies that Mf(x) ≤Mf(x/|x|2) for |x| > 1. Thus∫
B2(0)\B1(0)

Mf(x) dx ≤ 22n

∫
B1(0)\B1/2(0)

Mf(y) dy .

This last inequality implies (4.10) and theorem 4.3 is then proved. �

4.3 The Marcinkiewicz Interpolation Theorem - The Lp case

Definition 4.5. Let 1 ≤ p, q ≤ ∞ and let T be a mapping from Lp(Rn) to the space of
measurable functions. For 1 ≤ q ≤ ∞, we say that the mapping T is of strong type (p, q)
– or simply of type (p, q) – if

‖Tf‖Lq ≤ C ‖f‖Lp ,
where the constant C is independent of f ∈ Lp(Rn). For the case of q < ∞, we say that
T is of weak type (p, q) if

µ({x ∈ Rn : |Tf(x)| > α}) ≤ C

(
1

α
‖f‖Lp

)q
,
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where the constant C is independent of f and α > 0. For q = ∞, we say that T is of
weak type (p,∞) if T is of type (p,∞).

Example 4.6. The sub-linear Maximal Operator f −→ Mf is, according to the Hardy-
Littlewood Maximal Function Theorem 2.5, an example of weak (1, 1) operator or strong
(p, p) for 1 < p ≤ +∞.

Remark 4.2. Observe that for q <∞, and for any measurable function g we have trivialy

(4.11) |g|qLq,∞ = sup
α<+∞

αq µ({x : |g(x)| > α}) ≤ ‖g‖qLq .

Applying this inequality to g = Tf we obtain the fact that T being of type (p, q) is also of
weak type (p, q).

We also define Lp1 + Lp2(Rn) as the space of all functions f which can be written as
f = f1 + f2 with f1 ∈ Lp1(Rn) and f2 ∈ Lp2(Rn). By splitting a function in its small and
large parts, one can show that Lp(Rn) ⊂ Lp1 + Lp2(Rn), for p1 ≤ p ≤ p2 with p1 < p2.

Theorem 4.7 (Marcinkiewicz Interpolation Theorem- The Lp case). Let 1 < r ≤ ∞
and suppose that T is a sublinear operator from L1 + Lr(Rn) to the space of measurable
functions, i.e., for all f, g ∈ L1 + Lr(Rn), the following pointwise estimate holds:

(4.12) |T (f + g)| ≤ |Tf |+ |Tg| .

Moreover, assume that T is of weak type (1, 1) and also of weak type (r, r). Then, for
1 < p < r, we have that T is of type (p, p) meaning that

‖Tf‖Lp ≤ C ‖f‖Lp ,

for all f ∈ Lp(Rn).

Remark 4.3. Because of the last theorem and the fact that the Hardy-Littlewood maximal
function is sublinear, we can directly deduce (2.3) in Theorem 2.5 from (2.4) – saying
that the operator M is of weak type (1, 1) – and the obvious observation that M is of type
(∞,∞).

Remark 4.4. Theorem 4.7 happens to be a special case of the more general Marcinkiewicz
interpolation theorem for Lorentz spaces.

Proof of theorem 4.7.
To simplify the presentation we restrict to the case r < +∞. As in the proof of

theorem 2.5, for an arbitrary parameter α > 0, we introduce the following function

f1(x) :=

 f(x) if |f(x)| > α

0 if |f(x)| ≤ α ,

and we denote f2(x) := f(x)− f1(x) in such a way that |f2(x)| ≤ α. The sub-additivity
of T gives then |Tf(x)| ≤ |Tf1(x)|+ |Tf2(x)| and from this we deduce that

{x ; |Tf(x)| > α} ⊂ {x ; |Tf1(x)| > α/2} ∪ {x ; |Tf2(x)| > α/2} .
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Hence, using (2.3) and (2.4), we bound dTf (α) = µ({x ; |Tf(x)| > α}) as follows

(4.13)

dTf (α) ≤ dTf1(α/2) + dTf2(α/2)

≤ 2C1

α
‖f1‖L1 + 2r Crr

αr
‖f2‖rLr

≤ 2C1

α

∫
Eα
|f(y)| dy + 2r Crr

αr

∫
Rn\Eα |f(y)|r dy

where Eα denotes as usual the set {x ; |f(x)| > α}, C1 = sup |Tf |L1
w
/‖f‖L1 and Cr =

sup |Tf |Lr,∞/‖f‖Lr and where we have also applied inequality (4.11).
Expressing now the Lp norm of Tf by the mean of lemma 2.2 and combining it with

(4.13) we get, using Fubini in the third line,

1
2r

∫
Rn |Tf(x)|p dx = p

2r

∫ +∞
0

αp−1 dTf (α) dα

≤ pC1

∫ +∞
0

αp−2 dα
∫
Eα
|f(y)| dy + pCr

r

∫ +∞
0

αp−1−r dα
∫
Rn\Eα |f(y)|r dy

= pC1

∫
Rn |f(y)| dy

∫ |f(y)|
0

αp−2 dα + pCr
r

∫
Rn |f(y)|r dy

∫ +∞
|f(y)| α

p−1−r dα

≤ 2r p
(
C1

p−1
+ Crr

p−r

) ∫
Rn |f(y)|p dy ,

which proves the theorem. �

4.4 Calderon Zygmund Convolution Operators over Lp

Convolution operators operators are special cases of Calderón-Zygmund type operators.
They are the ”historical” ones : the first one introduced by Calderón and Zygmund in
the 50’s-60’s corresponding to the principal values of singular integrals. They are the key
notion giving access to the Lp theory (and more generally to the non hilbertian theory) of
elliptic operators. Roughly speaking a typical question relevant to the theory of Singular
Integral Operators is the following : if the Lp norm of the laplacian of a function is in Lp

is it true or not that every second derivatives of this function are in Lp ?
This question is answered easily in the case p = 2 by the mean of Fourier transform

but requires a more sophisticated analysis for being considered for p 6= 2. Of course the
interest and the use of Singular Integral Operators goes much far beyond the resolution
to this question and we will see applications of them all along this book.

A singular integral operator is formally a linear mapping of the form T : f → K ? f
where K is the kernel which misses to be in L1 or even L1

loc from ”very little”. If K would
be in L1 then the continuity of T from Lp into itself would be a simple consequence of
Young’s inequality on convolutions. Usually the pointwise expression of the Kernel K is
only in L1−weak :

sup
α>0

α µ ({x ; |K(x)| > α}) < +∞ .

A typical example of such a convolution operator is the one which to f = ∆u assigns the
second derivative of u along the i and j directions : ∂xi∂xju (modulo harmonic functions
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of course). This operator is given formally for i 6= j by

∂xi∂xju = Cn

∫
Rn

(xi − yi) (xj − yj)
|x− y|n+2

f(y) dy .

It is a convolution type operator T of kernel K(x) = Cn xixj/|x|n+2. K is in L1−weak
but it is not a priori a distribution and this makes the use of the convolution operation
and the definition of T problematic or singular. Calderón-Zygmund operators of the first
generation share the same difficulty. The reason why the Calderón-Zygmund Kernels K
can be made to be a distribution is a cancellation property. In the previous example the
cancellation property happens to be (recall that we look at the casei 6= j)∫

Sn−1

xixj
|x|n+2

dy = 0 .

Because of this later fact, for a smooth given compactly supported function f , it is not
difficult to show that

(4.14) lim
ε→0

Cn

∫
Rn\Bε(x)

(xi − yi) (xj − yj)
|x− y|n+2

f(y) dy

exists for every x. This singular integral is the convolution between f and the distribution
called Principal Value of K denoted PV (K).

One of the spectacular result of Calderón-Zygmund theory says the following : the limit
(4.14) PV (K) ? f(x) exists almost everywhere whenever f is in Lp(Rn) for p ∈ [1,+∞]
and is also in Lp(Rn) if f is in Lp(Rn) for p ∈ (1,+∞).

Another example of Singular Integral Operator is the Hilbert Transform on R - which
corresponds in Fourier space by multiplying f̂(ξ) by the sign of ξ - that is : f → f ∗ 1

iπ x

. This singular integral has to be understood as being the limit of the following process

(4.15) lim
ε→0

1

iπ

∫
|y|>ε

f(x− y)

y
dy .

at least when f is smooth and compactly supported, since x−1 is odd, one easily check that
this limit exists everywhere. It is equal to the convolution between f and the Principal
Value of x−1, PV (1/x). Here again Calderón-Zygmund theory will tell us that the limit
(4.15) PV (x−1) ? f exists almost everywhere whenever f is in Lp(Rn) for p ∈ [1,+∞] and
is also in Lp(Rn) if f is in Lp(Rn for p ∈ (1,+∞).

In a way which is reminiscent to the Lp−theory of the maximal operator in the previous
sections, the Hilbert transform and more generally Calderón-Zygmund operator won’t
map L1 functions into L1 functions but to L1−weak functions only. In analogy with the
previous section again, Calderón-Zygmund operator will however send L1 logL1 functions
into L1. The parallel with the results obtained for the maximal operator in the previous
section has some limit since, as we will see, L∞ functions won’t be map by Calderón-
Zygmund operators to L∞ functions but to ∩p<+∞L

p
loc(Rn) functions only.

Here again the Calderón-Zygmund decomposition will be the key instrument in the
proofs. This use of Calderón-Zygmund decomposition is also known under the name of
the real variable method of Calderón and Zygmund.
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Let us finish the introduction to this very important section by making the following
amusing remark. If the L1−weak would have been a Banach space for a norm ‖ · ‖?
equivalent to the quasi-norm L1

w - (2.5) -, then the Lp theory of Calderón-Zygmund
operator would be trivially true without any assumption on the Kernel K except that it
is in L1−weak and that T : f → K ? f sends L2 into L2. Indeed, for any finite set of
k points a1, · · · , ak in Rn and any family of k reals λ1 · · ·λk one would have using the
triangular inequality ∥∥∥∥∥

k∑
i=1

K(x− ai) λi

∥∥∥∥∥
?

≤ ‖K‖?
k∑
i=1

|λi| ,

and we would directly deduce that T sends L1 into L1
w. The Marcinkiewicz interpolation

theorem 4.7 would then imply that T is continuous from Lp into Lp for any p ∈ (1, 2] and
the continuity for p ∈ [2,+∞) would be obtained by a simple duality argument.

We shall see three different formulations of the continuity of a Singular Integral Op-
erator in Lp spaces, each of these formulations are based on different assumptions on the
Kernel K.

4.4.1 A “primitive” formulation

In this subsection we prove the following ”primitive” formulation of the Lp−continuity of
Calderón-Zygmund convolution operator. The sense we give to the adjective ”primitive”
here should not be interpreted as something pejorative about this formulation, which has
the clear pedagogical advantage to bring us progressively to more elaborated ones in the
next subsections. In this formulation the difficulties caused by the singular nature of the
convolution does not appear since the kernel K is ”artificially” assumed to be in L2.

Theorem 4.8. Let K ∈ L2(Rn) and assume the following:

(i) The Fourier transform K̂ of K is bounded in L∞

(4.16) ‖K̂‖L∞ < +∞ .

(ii) The function K satisfies the so-called Hörmander condition : there exists 0 < B <
+∞ such that

(4.17)

∫
2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , ∀y 6= 0 .

Moreover, let T be the well-defined convolution operator on L1(Rn) ∩ Lp(Rn), with 1 <
p <∞, given pointwise by

(4.18) Tf(x) = K ? f(x) =

∫
Rn
K(x− y)f(y) dy .

Then, there exists a constant Cp = C(n, p, ‖K‖∞, B) – independent of the L2-norm of K
– such that

(4.19) ‖Tf‖Lp ≤ Cp ‖f‖Lp .
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Moreover there exists a constant C1 = C(n, ‖K‖∞, B) – independent of the L2-norm of
K – such that for any f ∈ L1(Rn)

(4.20) sup
α>0

α µ({x ∈ Rn ; |K ? f(x)| > α}) ≤ C1 ‖f‖L1

Remark 4.5. a) Note that T is a densely defined linear operator on Lp(Rn). More
precisely, the operator is well-defined on the dense linear subset L1(Rn)∩Lp(Rn) of Lp(Rn)
and from (4.19) we can deduce that T can be extended to all of Lp(Rn) by this.

b) In the previous theorem, the kernel K is assumed to be in L2(Rn). This happens to
be ”artificial” in the following sense : it permits to make the convolution operator T well
defined on L1(Rn) ∩ Lp(Rn), for 1 < p <∞ indeed by Young’s inequality we have

‖Tf‖L2 ≤ ‖K‖L2‖f‖L1 .

However the final crucial estimate leading to the continuity of T from Lp into Lp is
independent of the L2 norm of K.

c) Observe that the Hörmander condition (4.17) holds, for instance, whenever K is
locally Lipschitz on Rn \ {0} and there exists C > 0 such that

∀x ∈ Rn \ {0} |∇K|(x) ≤ C

|x|n+1
.

This comes from the following estimate : Let y 6= 0 and denote v = y/|y|, then the
following holds

(4.21)

∫
2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx

=
∫

2‖y‖≤‖x‖

∣∣∣∫ |y|0
∂K
∂v

(x+ t v) dt
∣∣∣ dx

≤
∫ |y|

0
dt
∫

2‖y‖≤‖x‖ |∇K|(x+ tv) dx

≤ |y|
∫
‖y‖≤‖z‖ |∇K|(z) dz ≤ Cn

|y|
|y| = Cn .

where we have proceeded to the change of variable z = x+ tv.

Proof of theorem 4.8 The proof is divided in the following three steps: First, we show
that the convolution operator T is of strong type (2, 2). In a second step, we establish
that T is of weak type (1, 1) - i.e. inequality (4.20), which is the most difficult part of the
proof. Finally we obtain the inequality (4.19) from Marcinkiewicz’s interpolation theorem
and a duality argument.

First step: Let f ∈ L1(Rn)∩L2(Rn), then for the Fourier transform T̂ f of Tf ∈ L2(Rn),
we have

‖T̂ f‖L2 = ‖K̂ ? f‖L2 = ‖K̂ f̂‖L2

(4.16)

≤ ‖K‖∞ ‖f‖L2 .

Since ‖T̂ f‖L2 = ‖Tf‖L2 by Plancherel’s theorem, we then obtain

(4.22) ‖Tf‖L2 ≤ ‖K‖∞ ‖f‖L2 .
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This shows that T is of type (2, 2), which also implies that T is of weak type (2, 2) as we
mentioned in remark 4.2, precisely

(4.23) ∀α > 0 µ({x : |Tf(x)| > α}) ≤ ‖K‖
2
∞

α2
‖f‖2

L2 .

Second step: Let f ∈ L1(Rn) and α > 0. We apply the Calderón-Zygmund Decompo-
sition 4.1 of threshold α to f . The resulting family of disjoint ”bad cubes” will be denoted
by {Ck}k∈K and we write Ω =

⋃∞
k=1Ck for their union.

Now, we define

(4.24) g(x) =

 f(x) for x ∈ Ωc

1

µ(Ck)

∫
Ck

f(y) dy for x ∈ Ck .

Following remark 4.1 C-Z Decomposition permits to write f as sum of a ”good” and a
”bad” function, namely f = g + b - ”good” and ”bad” stand for the fact that there is a
better control, namely L∞, on g than on b - where

(4.25) b =
∑
k∈K

bk ,

with

bk(x) =

(
f(x)− 1

µ(Ck)

∫
Ck

f(y) dy

)
χCk(x) .

From the linearity of the convolution operator T and the triangular inequality we have
for all x ∈ Rn

(4.26) |Tf(x)| ≤ |Tg(x)|+ |Tb(x)| .

Hence we deduce

µ({x : |Tf(x)| > α}) ≤ µ({x : |Tg(x)| > α/2})
+µ({x : |Tb(x)| > α/2}) .(4.27)

In order to get an estimate for the first term on the right-hand side of (4.27), we first
use the fact that g is an element of L2(Rn)- see remark 4.1 iv) - with the following control

‖g‖2
L2(Rn) ≤ 22n α ‖f‖L1(Rn) .

As a consequence, we can apply (4.23) to g ∈ L2(Rn) in order to get the following estimate
for the first term on the right-hand side of (4.27):

µ({x : |Tg(x)| > α/2}) ≤ 4‖K‖2
∞

α2
‖g‖2

L2

≤ 22n+2 ‖K‖2
∞

α
‖f‖L1(Rn) .(4.28)
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Next, we estimate the second term on the right hand-side of (4.27). – For this purpose,
we expand each cube Ck in the Calderón-Zygmund decomposition by the factor 2

√
n

leaving its center ck fixed. The new bigger cubes are denoted by C̃k and its union by
Ω̃ =

⋃
k∈K C̃k. It is easy to see that Ω ⊂ Ω̃, Ω̃c ⊂ Ωc and µ(Ω̃) ≤ (2

√
n)n µ(Ω). Moreover,

for x 6∈ C̃k, we have

(4.29) ‖x− ck‖ ≥ 2 ‖y − ck‖ , for all y ∈ Ck .

Now, let ck denote the center of the cube Ck. Then, we can write

Tb(x) =
∑
k∈K

Tbk(x) =
∑
k∈K

∫
Ck

K(x− y)bk(y) dy

=
∑
k∈K

∫
Ck

(
K(x− y)−K(x− ck)

)
bk(y) dy ,

being a direct consequence of the fact that for all Ck∫
Ck

bk(y) dy =

∫
Ck

(
f(y)− 1

µ(Ck)

∫
Ck

f(z) dz

)
dy = 0 ,

- condition ii) in remark 4.1 -. This then leads to∫
Ω̃c
|Tb(x)| dx ≤

∑
k∈K

∫
Ω̃c

(∫
Ck

∣∣K(x− y)−K(x− ck)
∣∣ ∣∣bk(y)

∣∣ dy) dx
≤

∑
k∈K

∫
C̃ck

(∫
Ck

∣∣K(x− y)−K(x− ck)
∣∣ ∣∣bk(y)

∣∣ dy) dx
=

∑
k∈K

∫
Ck

(∫
C̃ck

∣∣K(x− y)−K(x− ck)
∣∣ dx)∣∣bk(y)

∣∣ dy .
Setting x̄ = x− ck, ȳ = y− ck and using (4.29), the integral in parenthesis ca be bounded
this way ∫

C̃ck

∣∣K(x− y)−K(x− ck)
∣∣ dx ≤ ∫

2‖ȳ‖≤‖x̄‖

∣∣K(x̄− ȳ)−K(x̄)
∣∣ dx̄ .

The assumption (4.17) of the theorem hence implies that

(4.30)

∫
Ω̃c
|Tb(x)| dx ≤ B

∑
k∈K

∫
Ck

|bk(y)| dy ≤ C ‖f‖L1 .

At this stage, we are ready to give the following estimate for the second term in (4.27):

µ({x ∈ Rn : |Tb(x)| > α

2
}) ≤ µ({x ∈ Ω̃c : |Tb(x)| > α/2}) + µ(Ω̃)

(4.30)

≤ 2C

α
‖f‖L1 + (2

√
n)n µ(Ω)

(4.3)

≤ 2C

α
‖f‖L1 +

C

α
‖f‖L1 ≤ C

α
‖f‖L1 .

(4.31)
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Where C only depends on n, ‖K‖∞ and B. Combining (4.28) with (4.31), we end up
with the existence of a constant C1 > 0 such that

(4.32) µ({x : |Tf(x)| > α}) ≤ C1

α
‖f‖L1 ,

showing (4.20) and hence that the convolution operator T is of weak type (1, 1).

Third step: Note that we have already shown the inequality (4.19) in the case of p = 2
in (4.22). – Putting r = 2 in Marcinkiewicz Interpolation Theorem 4.7 and using the
fact that T is of weak type (1, 1), respectively (2, 2), by (4.23), respectively (4.32), we
conclude that

(4.33) ‖Tf‖Lp ≤ C ‖f‖Lp ,

for 1 < p < 2 and where C only depends on n, p, ‖K‖∞ and B the constant in the
Hörmander condition.

For the case 2 < p < ∞, we will use a duality argument. – Consider the dual space
Lp
′
(Rn) of Lp(Rn) with 1/p + 1/p′ = 1. We easily see that 1 < q < 2. Consider now

f ∈ L1(Rn) ∩ Lp(Rn). Since Lp is itself the dual space to Lp
′

and since L1 ∩ Lp′ is dense
in Lp

′
, the Lp-norm of Tf is given by the following expression:

(4.34) ‖Tf‖Lp = sup
g∈L1∩Lp′

‖g‖
Lp
′≤1

∣∣∣∣∫
Rn
Tf(x)g(x) dx

∣∣∣∣ .
We calculate ∣∣∣∣∫

Rn
Tf(x)g(x) dx

∣∣∣∣ =

∣∣∣∣∫
Rn

(∫
Rn
K(x− y)f(y) dy

)
g(x) dx

∣∣∣∣
=

∣∣∣∣∫
Rn

(∫
Rn
K(x− y)g(x) dx

)
f(y) dy

∣∣∣∣ ,
where Fubini’s theorem was applied because of K ∈ L2(Rn) and the assumptions on g
and f . For the first integral, we conclude from (4.33) that it is an element of Lp

′
(Rn).

Using Hölder’s inequality, we end up with

sup
g∈L1∩Lp′

‖g‖
Lp
′≤1

∣∣∣∣∫
Rn
Tf(x)g(x) dx

∣∣∣∣ ≤
∫
Rn

∣∣∣∣(∫
Rn
K(x− y)g(x) dx

)
f(y)

∣∣∣∣ dy
(4.33)

≤ C ‖g‖Lp′‖f‖Lp ≤ C ‖f‖Lp .

This establishes the theorem. �

4.4.2 A singular integral type formulation

In the present formulation of the Lp continuity for convolution type Calderón-Zygmund
Operator we will skip the too strong assumption that the kernel K is in L2 and will
assume only a L1−weak type pointwise control of K + a cancellation property together,
still with the Hörmander condition. We will be then facing the heart of the matter : how
can we deal with the singular integral K ? f when f is only assumed to be in Lp ?
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Theorem 4.9. Let K : Rn −→ R be a measurable function such that there exists A,B > 0
for which the following holds

|K(x)| ≤ A

‖x‖n
, ∀ x 6= 0 .(4.35a) ∫

2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , ∀ x 6= 0 .(4.35b) ∫

∂Br(0)

K(x) dx = 0 , for a. e. r > 0 .(4.35c)

For ε > 0 and f ∈ Lp(Rn) with 1 ≤ p <∞, we set

(4.36) Tεf(x) =

∫
‖y‖≥ε

f(x− y)K(y) dy .

Then, for any 1 < p < +∞ there exists a positive constant C such that for any ε > 0 and
any f ∈ Lp(Rn),

(4.37) ‖Tεf‖Lp ≤ C ‖f‖Lp ,
where the constant C = C(p, n,A,B) is independent of ε and f . Moreover, there exists
Tf ∈ Lp(Rn) such that

(4.38) Tεf −→ Tf in Lp (ε −→ 0) .

For any f ∈ L1(Rn) there exists a measurable function Tf in L1−weak such that

(4.39) Tεf −→ Tf in L1
w

and there exists a constant positive C(n,A,B) independent of f and ε such that

(4.40) sup
α>0

α µ({x ∈ Rn ; |Tf(x)| > α}) ≤ C(n,A,B) ‖f‖L1

Remark 4.6. The singular integral defined in (4.36) is, for a fixed ε, absolutely con-
vergent. To see this, note that due to (4.35a) we have that K ∈ Lp

′
(Rn \ Bε), where

1 < p′ is the Hölder conjugate exponent of p. From Young’s inequality, it then follows
that ‖Tεf‖∞ ≤ ‖f‖Lp‖K‖Lp′ .

A substantial part of the proof of theorem 4.9 will be to derive from the assump-
tions (4.35a), (4.35b) and (4.35c) an L∞ bound for the Fourier transform of Kε(y) :=
K(y) χRn\Bε(0) independent of ε. This estimate will permit us to invoke theorem 4.8 at
some point in our proof. Precisely the following lemma holds.

Lemma 4.10. Let K : Rn −→ R be a measurable function such that

|K(x)| ≤ A

‖x‖n
, for x 6= 0 .(4.41a) ∫

2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , for y 6= 0 .(4.41b) ∫

∂Br(0)

K(x) dx = 0 , for a. e. r > 0 .

(4.41c)
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Moreover, for every ε > 0, we define

(4.42) Kε(x) =

{
K(x) if ‖x‖ ≥ ε
0 if ‖x‖ < ε .

Then, there exists a constant C = C(n,A,B), independent of ε, such that

(4.43) ‖K̂ε‖∞ ≤ C .

Before to prove this L∞ bound we would like to show first how the hypothesis relative
to the cancellation property (4.35c) is essential. How cancellation property can lead to
decisive improvements in the estimates will be a leitmotiv in this book - see in particular
the chapter on Hardy spaces and the integrability by compensation phenomenon.

Example 4.11. Consider the function on R given by K(t) = 1
|t| It is not difficult to check

that K satisfies hypothesis (4.41a) and (4.41b) but the cancellation assumption (4.41c) is
violated. we now prove that for this function K the conclusion of lemma 4.10 fails. We
have

K̂ε(ξ) := limr→0

∫
ε<|t|<r e

2πit ξ dt
|t| = limr→0

∫
ε<|t|<r cos(2πt ξ)

dt
|t| ,

= 2sgn(ξ)
∫ +∞
ε|ξ|

cos 2πs
s

ds ,

where we have used the parity and the imparity respectively of cos(2πt ξ)/|t| and sin(2πt ξ)/|t|.
Now, since

∫ +1

0
cos s/s ds = +∞ we deduce that K̂ε(ξ) goes to +∞ as ε goes to zero for

non zero ξ.
Observe that a change of sign for K that would ensure the cancellation property (4.41c)

- by taking 1/t instead of 1/|t| - would lead to the integral
∫ +∞

0
sin s/s, which converges,

instead of the previous integral
∫ +∞

0
cos s/s which diverges. This illustrate the importance

of the cancellation assumption (4.41c)

Proof of lemma 4.10.
For any 0 < ε < R Denote Kε,R := K(x) χBR(0)\Bε(0). For a fixed ξ such that

ε < |ξ|−1 < R, we write

K̂ε,R(ξ) =

∫
ε<|x|<R

e2πi x·ξ K(x) dx

=

∫
ε<|x|<|ξ|−1

e2πi x·ξ K(x) dx+

∫
|ξ|−1<|x|<R

e2πi x·ξ K(x) dx

= I1 + I2 .

We bound I1 first. Using the cancellation assumption (4.41c), we have

I1 =

∫
ε<|x|<|ξ|−1

(e2πi x·ξ − 1) K(x) dx .

Hence we deduce the following bound, using this time assumption (4.41a)

|I1| ≤ 2π |ξ|
∫
ε<|x|<|ξ|−1

|x| |K(x)| dx ≤ Cn A .
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In order to bound I2 we introduce z = ξ/2|ξ|2. Observe that the choice of z has been
made in such a way that exp(2π iz · ξ) = −1, hence a change of variable x → x + z will
generate a minus sign in front of the integral and formally we would have∫

Rn
e2πi x·ξ K(x) dx =

1

2

∫
Rn
e2πi x·ξ K(x)−K(x− z) dx

which would put us in position to make use of the Hörmander condition (4.41b). The
only difficulty is to keep track of the domains of integrations that we precise now.

2I2 =

∫
|ξ|−1<|x|<R

e2πi x·ξ K(x) dx−
∫
|ξ|−1<|x−z|<R

e2πi x·ξ K(x− z) dx

We write ∫
|ξ|−1<|x−z|<R

e2πi x·ξ K(x− z) dx =

∫
|ξ|−1<|x|<R

· · · dx

−
∫
|x−z|<|ξ|−1<|x|

· · · dx−
∫
|x|<R<|x−z|

· · · dx

+

∫
|x|<|ξ|−1<|x−z|

· · · dx+

∫
|x−z|<R<|x|

· · · dx .

The following elementary inclusions are longer to state than to prove...

{x ; |x− z| < |ξ|−1 < |x|} ⊂ {x ; |x− z| < |ξ|−1 < |x− z|+ |z|}

{x ; |x| < R < |x− z|} ⊂ {x ; |x− z| − |z| < R < |x− z|}
{x ; |x| < |ξ|−1 < |x− z|} ⊂ {x ; |x− z| − |z| < |ξ|−1 < |x− z|}
{x ; |x− z| < R < |x|} ⊂ {x ; |x− z| < R < |x− z|+ |z|} .

Using these inclusions and the fact that |z| = 1/2|ξ|, we can bound I2 in the following
way

(4.44)

2|I2| ≤
∫
|ξ|−1<|x|<R

|K(x)−K(x− z)| dx

+

∫
1
2
|ξ|−1<|x|< 3

2
|ξ|−1

|K(x)| dx+

∫
R− 1

2
|ξ|−1<|x|<R+ 1

2
|ξ|−1

|K(x)| dx

Since |z| = 1
2
|ξ|−1 we can invoke the Hörmander condition (4.41b) and bound the first

integral in the right-hand-side of (4.44) by B. For the second integral we use (4.41a) and
bound it by a constant Cn A and the third integral is treated in the same way using the
fact that |ξ|−1 < R which implies that the quotient of R+ 1

2
|ξ|−1 by R− 1

2
|ξ|−1 is bounded

by 3. Hence I2 is bounded by B + 4Cn A. So we have proved that |K̂ε,R(ξ)| is uniformly
bounded by a constant depending only on n, A and B, which is the desired result. �

Proof of theorem 4.9.
Combining lemma 4.10 and theorem 4.8 we obtain (4.37) and (4.40) where Tf is

replaced by Tεf . It remains to show the Lp convergence (4.38), the L1
w convergence (4.39)

and inequality (4.40) for Tf itself.
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We consider first a smooth function f ∈ C∞0 (Rn) and using the cancellation property
(4.35c) we write

Tεf(x) =

∫
1≤‖y‖

f(x− y)K(y) dy +

∫
ε≤‖y‖≤1

f(x− y)K(y) dy

=

∫
Rn
f(x− y)K1(y) dy +

∫
ε≤‖y‖≤1

(
f(x− y)− f(x)

)
K(y) dy .

(4.45)

Because of the regularity of f , using assumption (4.35a), we have the following bound
which holds for every x in Rn and y 6= 0

(4.46)
∣∣(f(x− y)− f(x)

)
K(y)

∣∣ ≤ ‖∇f‖∞ ‖y‖ |K(y)|
(4.35a)

≤ ‖∇f‖∞
A

‖y‖n−1
.

Hence, inserting the bound (4.46) in (4.45) we can define for every x the limit

(4.47) Tf(x) := lim
ε→0

Tεf(x) =

∫
Rn
f(x− y)K(y) dy .

Observe that at this stage Tf is a distribution obtained by the convolution between a
smooth compactly supported function and the principal value of K, p.v.K, which is an
order 1 distribution. However using (4.46) again we have

(4.48)
∀x ∈ Rn |Tf(x)− Tεf(x)| ≤

∫
Bε(0)

|f(x− y)− f(x)| |K(y)| dy

≤ Cn‖∇f‖∞ A ε .

Thus Tεf converges uniformly to Tf and hence in Lploc(Rn) for any p ≥ 1. Let R > 1 such
that f ≡ 0 in Rn \BR(0). For |x| > 4R

K(y)[f(x− y)− f(x)] = K(y) f(x− y)

is supported in BR(x) and one has |K(y) f(x − y)| ≤ 2n‖f‖∞A/|x|n. Hence the bound
(4.48) can be completed by a behavior at infinity as follows :

(4.49)

∀x ∈ Rn |Tf(x)− Tεf(x)| ≤
∫
Bε(0)

|f(x− y)| |K(y)| dy

≤ Cn A
εn

|x|n
‖f‖∞ .

This later inequality implies that Tεf → Tf in Lp(Rn) for any p > 1 and that |Tεf−Tf |L1
w

converges to zero.

Let us take now f ∈ Lp(Rn) for p ≥ 1. Since C∞0 (Rn) is dense in Lp(Rn), using
inequalities (4.19) and (4.20) for Kε ?g - where g is a difference between f and a finer and
finer approximation of it in C∞0 for the Lp norm - a classical diagonal argument implies
that, for p > 1, Tεf converges strongly in Lp and that, for p = 1, Tε is Cauchy for the
quasi-norm L1

w. This concludes the proof of theorem 4.9. �
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Remark 4.7. The exact cancellation assumption (4.41c) can be relaxed in the statement
of theorem 4.9 by requiring only the existence of a constant C > 0 such that for any
0 < r < R < +∞

(4.50)

∣∣∣∣∫
BR(0)\Br(0)

K(x) dx

∣∣∣∣ ≤ C .

Under this weakened assumption however the convergence of Tεf to Tf does not neces-
sarily hold in Lp or even almost everywhere but in the distributional sense only (see a
counterexample in [?]). The nature of this convergence nevertheless is not a main point
in the theory the most important one being given by the inequalities (4.37) and (4.40)
which still hold under the weakest assumption (4.50).

4.4.3 The case of homogeneous kernels

It is interesting to look at the case of homogeneous kernels which correspond to operators
of special geometric interest - such as Hilbert Transform for instance. The following result
is obtained as a corollary of theorem 4.9 and has the advantage to provide a ”translation”,
in the special case of homogeneous Kernels, of general assumptions on K that imply
(4.35a), (4.35b) and (4.35c). Precisely we consider kernels K of the form

(4.51) K(x) =
Ω(x)

‖x‖n
,

where Ω is an homogeneous function of degree 0, i.e., Ω(δx) = Ω(x), for δ > 0. In
other words, the function Ω is radially constant and therefore completely determined
by its values on the sphere Sn−1. Note also that K is homogeneous of degree −n, i.e.,
K(δx) = δ−nK(x).

Proposition 4.12. Let K : Rn −→ R be a measurable function given by K(x) =
Ω(x)/‖x‖n where Ω is an homogeneous function of degree 0 satisfying

i)

(4.52)

∫
Sn−1

Ω(x) dσ(x) = 0 .

ii) If we set
ω(δ) = sup

‖x−y‖≤δ
x,y∈Sn−1

∣∣Ω(x)− Ω(y)
∣∣ ,

the following integral is finite:

(4.53)

∫ 1

0

ω(δ)

δ
dδ <∞ .

Then K satisfies the conditions (4.35a)–(4.35c) and theorem 4.9 can be applied to K.
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Remark 4.8. Observe that the so called Dini condition ii) implies that Ω is continuous
on Sn−1. Moreover observe that if Ω is assumed to be Hölder continuous, C0,α(Sn−1), for
some exponent 1 > α > 0 then the Dini condition ii) is automatically satisfied.

Proof of proposition 4.12.
The conditions (4.35a), respectively (4.35c), follow directly from (4.53), respectively

(4.52) and integration in polar coordinates. In order to establish (4.35b), we first observe
that ∫

2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤ ∫

2‖y‖≤‖x‖

∣∣Ω(x− y)− Ω(x)
∣∣

‖x− y‖n
dx

+

∫
2‖y‖≤‖x‖

|Ω(x)|
∣∣∣∣ 1

‖x− y‖n
− 1

‖x‖n

∣∣∣∣ dx .
(4.54)

Since Ω is bounded due to (4.53) and as a consequence of the mean value theorem∣∣∣∣ 1

‖x− y‖n
− 1

‖x‖n

∣∣∣∣ ≤ C‖y‖
‖x‖n+1

,

we conclude by integration in polar coordinates that the second integral on the right-hand
side of (4.54) is finite. Note also that

∣∣Ω(x− y)− Ω(x)
∣∣ =

∣∣∣∣Ω( x− y
‖x− y‖

)
− Ω

(
x

‖x‖

)∣∣∣∣
≤ ω

(∥∥∥∥ x− y
‖x− y‖

− x

‖x‖

∥∥∥∥)
by definition of the function ω. Moreover, if 2‖y‖ ≤ ‖x‖, then 1/‖x− y‖n ≤ C/‖x‖n and
also ∥∥∥∥ x− y

‖x− y‖
− x

‖x‖

∥∥∥∥ ≤ C
‖y‖
‖x‖

.

Inserting these estimates in the first integral on the right-hand side of (4.54), we obtain

∫
2‖y‖≤‖x‖

∣∣Ω(x− y)− Ω(x)
∣∣

‖x− y‖n
dx ≤ C

∫
2‖y‖≤‖x‖

ω
(
C ‖y‖‖x‖

)
‖x‖n

dx

≤ C

∫ ∞
2‖y‖

ω
(
C ‖y‖

r

)
r

dr .

Changing coordinates δ = C‖y‖/r and using (4.53), we deduce that the last integral is
finite showing that (4.35b) holds and proposition 4.12 is proved. �
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4.4.4 A multiplier type formulation

It is useful to explicit sufficient conditions on K̂ only that implies the strong type (p, p)
( for 1 < p < +∞) and the weak type (1, 1) properties of the corresponding convolution

operator T . Such results are called multiplier theorems - m(ξ) := K̂(ξ) is the multiplier
associated to T . We shall give more and more sophisticated multiplier theorem in this
book that will play a crucial role in characterizing real-variable function spaces using the
Fourier transform. Multiplier theorems are moreover the basic tools in the analysis of
pseudo-differential operators. Here is maybe the most elementary one that we will deduce
from the previous sections.

Theorem 4.13. Let m be a C∞ function on Rn satisfying :

(4.55)
∀ l ∈ N ∃Cl > 0 s. t. ∀ξ ∈ Rn

|∇lm|(ξ) ≤ Cl |ξ|−l .

Let p ∈ [1,+∞). Define Tm on Lp ∩ L2 by

∀f ∈ Lp ∩ L2(Rn) ∀ξ ∈ Rn T̂mf(ξ) := m(ξ) f̂(ξ) .

Then for p ∈ (1,+∞) there exists Cp,m > 0 such that for any f ∈ Lp ∩ L2

(4.56) ‖Tmf‖Lp ≤ Cp,m ‖f‖Lp ,

and there exists C1,m > 0 such that for any f ∈ L1 ∩ L2

(4.57) sup
α>0

α µ({x ∈ Rn ; |Tmf(x)| > α}) ≤ C1,m ‖f‖L1 .

Hence Tm extends continuously as a linear operator of strong type (p, p) - 1 < p < +∞ -
and weak type (1, 1).

Remark 4.9. It is important to compare at this stage already, before to proceed to the proof
of theorem 4.13 itself, the difference between the assumption (4.55) and the assumptions
we made on K in the previous subsections. Take for instance the condition |∇K|(x) ≤
C/|x|n+1 that implies the Hörmander condition (4.17) - as it is established in remark 4.5
c) - would hold if, for instance, we would assume ∇n+1m to be in L1. Observe that this
later condition is just ”at the border” to be implied, but is not implied, by our assumption
(4.55). As it will be seen later in the book, assumption (4.55) is however very relevant to
the theory.

Proof of theorem 4.13. Theorem 4.13 will a direct consequence of theorem 4.8 once
we will have proved that assumption (4.55) implies the Hörmander condition (4.17) for
K := m̂ - Observe that (4.55) contains (4.16) already.

In order to establish the Hörmander condition we cannot afford to be as little cautious
as we were in establishing the bound (4.21). We shall use a more refined argument based
on dyadic decomposition in the Fourier variable ξ - the phase space. This techniques is
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making use of the Littlewood-Paley decomposition presented in chapter 5. Precisely let
ψ ∈ C∞0 (B2(0)) be a smooth non negative function with compact support in the ball
B2(0) such that ψ equals identically 1 on B1(0) and let φ(ξ) := ψ(ξ) − ψ(2ξ). It follows
from this definition that φ ∈ C∞0 (Rn \ {0}) and that

1 ≡ lim
N→+∞

k=+N∑
k=−N

φ(2−kξ) =
∑
k∈Z

φ(2−kξ) on Rn .

For k ∈ Z we denote
mk(ξ) := φ(ξ) m(2−kξ) .

Observe that with this notation

m(ξ) =
∑
k∈Z

mk(2
kξ) .

Denoting Kk(x) := m̂k(x), we have :

(4.58) K(x) := m̂(ξ) =
∑
k∈Z

2−k nKk(2
−kx) .

Using now the assumption (4.55) on m and the definition of mk, it is not difficult to see
that

(4.59) ∀l ∈ N ∃Cl > 0 s.t. ∀k ∈ Z ‖∇lmk‖L∞(Rn) ≤ Cl .

Moreover, since the mk are supported in the fixed compact set B2(0)\B1/2(0), we deduce
that every Hs norm of mk is bounded independently of k.

Take s > n, we then have the existence of C, independent of k such that∫
Rn

(1 + |x|2)s/2|Kk(x)|2 dx = ‖mk‖2
Hs ≤ C .

Hence, using Cauchy-Schwarz, we deduce the following bound

(4.60)

∫
|x|>|y|

|Kk(x)| dx

≤
[∫
|x|>|y|

1

(1 + |x|2)s/2
dx

] 1
2
[∫

Rn
(1 + |x|2)s/2|Kk(x)|2 dx

] 1
2

≤ C

(1 + |y|)−n/2+s/2

where C is possibly a new constant but again independent of k.
Similarly as before, ξ mk(ξ) is a function supported in the fixed compact set B2(0) \

B1/2(0) and, hence, (4.59) implies that

(4.61) ∀ l ∈ N ∃Cl > 0 s.t. ∀k ∈ Z ‖∇l(ξ mk(ξ))‖L∞(Rn) ≤ Cl .
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Hence for the same reasons as above we obtain a uniform bound, independent of k, for
∇Kk. Precisely there exists C > 0 such that for every k ∈ Z

(4.62)

∫
Rn
|∇Kk(x)| dx ≤ C < +∞ .

Let now y ∈ Rn and denote v = y/|y|, we have

(4.63)

∫
Rn

∣∣Kk(x− y)−Kk(x)
∣∣ dx =

∫
Rn

∣∣∣∣∣
∫ |y|

0

∂Kk

∂v
(x+ t v) dt

∣∣∣∣∣ dx
≤ |y|

∫
Rn
|∇Kk|(z) dz ≤ C |y| .

Consider again y ∈ Rn \ {0} and let k0 be the largest integer less than log2 |y|: k0 =
[log2 |y|]. Using (4.60), we obtain∫

|x|>2|y|

∣∣∣∣∣∑
k≤k0

2−nk
[
Kk(2

−k(x+ y)−Kk(2
−kx)

]∣∣∣∣∣ dx
≤ 2

∑
k≤k0

∫
|z|>2−k|y|

|Kk(z)| dz ≤
∑
k≤k0

C

(1 + 2−k|y|)α

where α = −n/2 + s/2 > 0. Hence, we have in one hand

(4.64)

∫
|x|>2|y|

∣∣∣∣∣∑
k≤k0

2−nk
[
Kk(2

−k(x+ y)−Kk(2
−kx)

]∣∣∣∣∣ ≤ C
∑
k≤k0

2α(k−k0)

≤ C

1− 2α
.

In the other hand, using (4.63), we have

(4.65)

∫
|x|>2|y|

∣∣∣∣∣∑
k≥k0

2−nk
[
Kk(2

−k(x+ y)−Kk(2
−kx)

]∣∣∣∣∣
≤
∑
k≥k0

∫
|z|>2−k|y|

∣∣Kk(z + 2−ky)−Kk(z)
∣∣ dz

≤ C
∑
k≥k0

2−k|y| ≤ 2C
∑
k≥k0

2k0−k ≤ 4C

Combining (4.64) and (4.65) gives

(4.66)

∫
|x|>2|y|

|K(x+ y)−K(x)| dx ≤ B < +∞ ,

where B is independent of y ∈ Rn \ {0}. This is the Hörmander condition (4.17) and
theorem 4.13 is proved. �
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4.4.5 Applications: The Lp theory of the Riesz Transform and the Laplace
and Bessel Operators

In this subsection we apply to the Riesz Transform and the Laplace Operator the Lp

continuity of the convolution type Calderón-Zygmund operators that we proved above.
For j = 1, . . . , n, we now consider the kernels Kj(x) = Ωj(x)/‖x‖n with

(4.67) Ωj(x) = cn
xj
‖x‖

,

where

cn =
Γ
(
n+1

2

)
π(n+1)/2

.

Observe first that Ωj = cnxj is smooth on Sn−1 and moreover, since Ωj is an odd function
the cancellation property ∫

Sn−1

Ωj(x) dσ(x) = 0

also holds. Hence proposition 4.12 can be applied to the kernels Kj. For any 1 ≤ p <∞,
any j = 1 · · ·n and any f ∈ Lp(Rn) the following limit exists (in Lp or L1

w when p = 1)

(4.68) Rjf(x) = lim
ε→0

Rj,εf(x) ,

where

Rj,εf(x) =

∫
ε≤‖y‖

f(x− y)Kj(y) dy

= cn

∫
ε≤‖y‖

f(x− y)
yj

‖y‖n+1
dy .

Definition 4.14. Riesz Transform For any function f ∈ Lp(Rn), 1 ≤ p < +∞, the Rn

valued measurable map given almost everywhere by

Rf(x) := (R1f(x), · · · , Rnf(x)) ,

is called the Riesz transform of f .

Theorem 4.9 implies the following proposition

Proposition 4.15. For any 1 < p < +∞ and any f ∈ Lp(Rn)

(4.69) ‖Rf‖Lp ≤ Cn,p ‖f‖Lp .

Moreover, for any f ∈ L1(Rn)

(4.70) sup
α>0

α µ({x ∈ Rn ; |Rf(x)| > α}) ≤ Cn ‖f‖L1 .

We now derive the multiplier m(ξ) = (m1(ξ), · · · ,mn(ξ)) corresponding to the Riesz
transform. Precisely we establish the following result.

74



Proposition 4.16. The following holds

(4.71) R̂jf(ξ) =
i ξj
|ξ|

f̂(ξ) = mj(ξ) f̂(ξ)

i.e. the multiplier corresponding to Rj is

mj(ξ) = i
ξj
|ξ|

.

Remark 4.10. Observe that the multipliers mj(ξ) of the components Rj of the Riesz
transform R satisfy the main assumption (4.55) of theorem 4.13. Hence combining the pre-
vious proposition together with the theorem 4.13 provides a new proof of proposition 4.15.

Proof of proposition 4.16. For a C∞0 function f we have that

Kj ? f = cn PV

(
xj
|x|n+1

)
? f = − cn

n− 1

∂

∂xj
|x|−n+1 ? f .

Hence

(4.72) mj(ξ) = 2iπ
cn

n− 1
ξj ̂|x|−n+1 .

In order to identify mj it remains to compute the Fourier transform of |x|−n+1. Denoting
dσn−1 the canonical volume form on the n− 1 sphere, one has for ξ 6= 0:

̂|x|−n+1(ξ) = lim
δ→0

̂e−π δ |x|2

|x|n−1
(ξ)

=

∫ +∞

0

∫
Sn−1

e−π δ ρ
2

e2π i ρ ζ·ξ dσn−1(ζ) dρ .

Denote Sn−1
ξ := {ζ ∈ Sn−1 ; ζ ·ξ ≥ 0}. Using this notation, the previous identity becomes

̂|x|−n+1(ξ) =

∫ +∞

0

∫
Sn−1
ξ

e−π δ ρ
2

e2π i ρ ζ·ξ dσn−1(ζ) dρ

+

∫ +∞

0

∫
Sn−1\Sn−1

ξ

e−π δ ρ
2

e2π i ρ ζ·ξ dσn−1(ζ) dρ

=

∫ +∞

0

∫
Sn−1
ξ

e−π δ ρ
2 [

e2π i ρ ζ·ξ − e−2π i ρ ζ·ξ] dσn−1(ζ) dρ

=

∫
Sn−1
ξ

dσn−1(ζ)

∫
R
e−π δ ρ

2

e2π i ρ |ξ|α dρ ,

where α := ζ · ξ/|ξ|. Using the fact that the Fourier transform of e−π δ t
2

is equal at the

point τ to δ−1/2 e−π (τ/
√
δ)2 , we obtain

(4.73) ̂|x|−n+1(ξ) =

∫
Sn−1
ξ

1√
δ
e
−π

(
|ξ|α√
δ

)2
dσn−1(ζ) .
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We interpret α = z1 as being the first coordinate of a positive orthonormal basis containing
the unit vector ξ/|ξ| as first vector. We have

dσn−1 =
n∑
i=1

(−1)i−1 zi dz1 · · · dzi−1 ∧ dzi+1 · · · dzn .

We decompose dσn−1 is the following way : dσn−1 = dz1 ∧ dσn−2 + z1 dz2 · · · dzn

(4.74)

∫
Sn−1
ξ

1√
δ
e
−π

(
|ξ|α√
δ

)2
dσn−1(ζ) =

∫
Sn−2

dσn−2

∫ 1

0

1√
δ
e
−π

(
|ξ| z1√
δ

)2
dz1

+

∫
Sn−1
ξ

z1√
δ
e
−π

(
|ξ| z1√
δ

)2
dz2 · · · dzn .

Since , as δ goes to zero, z1√
δ
e
−π

(
|ξ| z1√
δ

)2
is converging to zero uniformly on any compact

subset of Sn−1
ξ \ {ξ/|ξ|}, we obtain that

(4.75)

∫
Sn−1
ξ

1√
δ
e
−π

(
|ξ|α√
δ

)2
dσn−1(ζ) = |Sn−2| |ξ|−1

∫ |ξ|√
δ

0

e−πt
2

dt+ oδ(1) ,

where |Sn−2| denotes the volume of the n−2 unit sphere which is equal to 2 π(n−1)/2/Γ((n−
1)/2) - Γ is the Euler Gamma Function. Recall that∫ +∞

0

e−πt
2

dt =
1

2
.

Hence, combining (4.72) and (4.75) we obtain that

mj(ξ) = 2i
π
n+1
2

Γ
(
n−1

2

) cn
n− 1

ξj
|ξ|

=
π
n+1
2

Γ
(
n+1

2

) cn ξj|ξ| = i
ξj
|ξ|

.

where we have used that Γ(z + 1) = z Γ(z). We have proved proposition 4.16. �

Let f ∈ C2
0(Rn) and note that the Fourier transform of its second order partial deriva-

tives are given by

∂̂k∂jf(ξ) = (i ξk)(i ξj) f̂(ξ) = −ξkξj f̂(ξ) .

In particular, we have for the Fourier transform of the Laplace operator ∆̂f(ξ) = −‖ξ‖2 f̂(ξ).
This enables us to write the following:

∂̂k∂jf(ξ) = −ξkξj f̂(ξ) =
i ξk
‖ξ‖

i ξj
‖ξ‖

∆̂f(ξ)

(4.71)
=

i ξk
‖ξ‖

R̂j(∆f)(ξ)
(4.71)
= ̂(

Ri(Rj(∆f))
)
(ξ) .

Thus, we get

(4.76) ∂i∂jf = Ri

(
Rj(∆f)

)
.
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From (4.69), it then follows for 1 < p < +∞ that

‖∂i∂jf‖Lp =
∥∥Ri

(
Rj(∆f)

)∥∥
Lp

≤ Cn,p ‖Rj(∆f)‖Lp ≤ C2
n,p ‖∆f‖Lp ,

Using the density of C∞0 (Rn) in the Sobolev space W 2,p(Rn), we have proved the following
result.

Proposition 4.17. Let 1 < p < +∞. There exists a positive constant Cp > 0 such that,
for any function f in the Sobolev Space W 2,p(Rn) the following identity holds

‖∇2f‖Lp(Rn) ≤ Cp ‖∆f‖Lp(Rn) .

where ∇2f denotes the Hessian matrix of f .

The previous result can be improved when the operator ∆ is made inhomogeneous
and more coercive by adding −id to it. Precisely, the following result which says that
the inverse of the Bessel Operator, given by (∆ − id)−1, is continuous from Lp(Rn) into
W 2,p(Rn) is a direct application of theorem 4.13.

Proposition 4.18. Let 1 < p < +∞. Let f be an Lp function on Rn. Then there exists
a unique tempered Distribution u in S ′(Rn) such that (∆− id)u = f moreover u belongs
to the Sobolev Space W 2,p(Rn) and the following inequality holds

‖u‖W 2,p ≤ Cp ‖f‖Lp(Rn) .

Proof of Proposition 4.18. A tempered Distribution f being given and f̂ being its
Fourier transform, −(1 + |ξ|2)−1f̂(ξ) is the Fourier transform of the only tempered Dis-
tribution solution to

∆u− u = f in S ′(Rn) .

It is straightforward to check that the multipliers −(1 + |ξ|2)−1, −iξj (1 + |ξ|2)−1 and
ξk ξj (1 + |ξ|2)−1 satisfy the assumption (4.55) of theorem 4.13 and hence proposition 4.18
follows. �

4.4.6 The limiting case p = 1

As for the sub-linear maximal operator, Calderón-Zygmund convolution operators are
usually not bounded from L1 into L1. The following proposition illustrates this fact.

Proposition 4.19. Let R be the Riesz Transform and let f ∈ L1(Rn) such that f ≥ 0 on
Rn and f 6≡ 0 then the measurable function Rf is not in L1(Rn).

Proof of proposition 4.19. Since f is in L1(Rn), f̂ is a continuous function and

moreover f̂(0) =
∫
Rn f(x) dx > 0.

mj(ξ) = ξj/|ξ| is discontinuous at the origin and hence, since f̂ is continuous at the

origin and since f̂(0) 6= 0, mj(ξ) f̂(ξ) is also discontinuous at the origin.

Assuming Rf ∈ L1(Rn) this implies that R̂f is continuous too on Rn and in particular
at 0, which contradicts the previous assertion. �
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Lemma 4.20. There exists f ∈ L1(R2) such that, for any u ∈ S ′(R2) satisfying

(4.77) ∆u = f in S ′(R2),

then ∇2u /∈ L1
Loc(R2). �

Proof of Lemma 4.20. We choose

f(x) :=
1D2

1/2
(x)

|x|2 Log2|x|
,

where 1D2
1/2

(x) is the characteristic function of the disc of radius 1/2 and centered at the

origin. One easily verifies that f ∈ L1(R2). We are now looking for an axially symmetric
solution of (4.77) in S ′(R2). That is, we look for u(x) = v(|x|) and we use the conventional
notation r = |x|. V should then satisfy

v̈ +
v̇

r
=

1[0,1/2](r)

r2 Log2r
in R∗+

where 1[0,1/2](r) is the characteristic function of the segment [0, 1/2]. In other words,

d

dr
(r v̇) =

1[0,1/2](r)

r Log2 r
.

For this to be satisfied, it suffices

v̇(r) =


− 1

r Log r
for r ∈

(
0,

1

2

]
− 1

r Log 1/2
for r >

1

2

.

This holds in particular if

v(r) =


+ Log

[ 1

Log r−1

]
for r ∈

(
0,

1

2

]
1 +

Log r

Log 2
− Log Log 2 for r >

1

2

.

Observe that u(x) := v(|x|) ∈ S ′(R2) because it can obviously be decomposed as the sum
of an element in L1(R2) and an element in O(R2). By construction, we have

∆u(x) = f(x) in S ′(R2\{0}) .

Let χ(x) be a cut-off function in C∞c (B1(0)) with χ ≡ 1 on B1/2(0). Denote χε(x) = χ(x
ε
).

For any ϕ ∈ S(R2) one has∫
R2

ϕ[∆u− f(x)] dx+

∫
R2

χεϕ[∆u− f(x)] dx.
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Since f ∈ L1(R2)

(4.78) lim
ε→0

∫
R2

χεϕ f(x) dx = 0.

We write ∫
R2

χεϕ(x) ∆u(x) dx = −
∫
R2

∇χε ∇u ϕ(x) dx

+

∫
R2

χε ∇u · ∇ϕ(x) dx.

(4.79)

Oberseve that for |x| < 1
2

∇u = v̇(r)
∂

∂r
=

1

r Log r−1

∂

∂r
.

Since ∫
Bε(0)

|∇u|2 dx = 2π

∫ ε

0

dr

r(Log r−1)2
=

2π

Log ε−1
,

we have

lim
ε→0

∫
Bε

|∇u|2 dx = 0.

Hence this last fact implies

lim
ε→0

∣∣∣∣ ∫
R2

χε∇u · ∇ϕ(x) dx

∣∣∣∣ ≤ lim
ε→0
‖∇ϕ‖∞ ‖χ‖∞ ε

[ ∫
Bε(0)

|∇u|2 dx
] 1

2

= 0.

Moreover we have also

lim
ε→0

∣∣∣∣ ∫
Rn
∇χε · ∇uϕ

∣∣∣∣ ≤ lim
ε→0

[ ∫
Bε(0)

|∇u|2 dx
] 1

2

= 0.

Hence we have proved
∆u = f in S ′(R2).

A classical computation gives for |x| < 1
2

2∑
i,j=1

xi xj
r2

∂2u

∂xi ∂xj
=
∂2u

∂r2
= − 1

r2 Log r−1
+

1

r2(Log r)2
.

Hence ∫
B1/2

∣∣∣∣ 2∑
i,j=1

xi xj
r2

∂2u

∂xi ∂xj

∣∣∣∣ dx = +∞

and we cannot have that ∆2u ∈ L1
loc(R2). This concludes the proof of the Lemma. �

This being established, if we make a slightly stronger integrability assumption on the
function f such as f ∈ L1 logL1(Rn), then, in the similar way to the case of the maximal
sub-linear operator, Tf is in L1

loc.
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Theorem 4.21. Let T be a convolution operator satisfying the assumptions of either
theorem 4.8, theorem 4.9, theorem 4.13 or proposition 4.12. Let f be a measurable function
in L1 logL1(Rn), then Tf ∈ L1

loc(Rn) and for any measurable subset A of finite Lebesgue
measure the following inequality holds

(4.80)

∫
A

|Tf(y)| dy ≤ CT

∫
Rn
|f(y)| log

(
e+ µ(A)

|f(y)|
‖f‖L1

)
dy ,

where CT > 0 only depends on T .

Proof of theorem 4.21. We use the notations from the proof of theorem 4.8. For any
positive number α we proceed to the Calderón-Zygmund decomposition of f : f = gα+bα.
-we add the subscript α in order to insists on the fact that the result of the decomposition
depends on α. Let δ > 0 to be fixed later and write

(4.81)

∫
A

|Tf |(x) dx =

∫ δ

0

µ ({x ∈ A ; |Tf(x)| > α}) dα

+

∫ +∞

δ

µ ({x ∈ A ; |Tf(x)| > α}) dα .

We use the decomposition f = gα + bα in order to deduce :

(4.82)
µ({x : |Tf(x)| > α}) ≤ µ({x : |Tgα(x)| > α/2})

+µ({x : |Tbα(x)| > α/2}) .

We have, using the embedding L2(Rn) ↪→ L2,∞(Rn)

(4.83)

∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| > α

2

})
dα ≤ cn

∫ +∞

δ

‖gα‖2
L2(Rn)

dα

α2
.

We decompose ∫
Rn
|gα|(x)2dx =

∫
Rn\Ωα

|gα|2(x) dx+

∫
Ωα

|gα|2(x) dx,

where Ωα is the “bad set” away from which gα ≡ f . Recall moreover that

sup
x∈Ωα

|gα|(x) ≤ 2nα

and
|f(x)| ≤ α in Rn\Ωα.

Combining these facts with (4.83) give:∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| < α

2

})
dα ≤ Cn

∫ +∞

δ

dα

α2

∫
|f |≤α

|f |2(x) dx

+

∫ +∞

δ

22n α
2

α2
µ(Ωα) dα.

(4.84)
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Using Fubini, we have in one hand∫ +∞

δ

dα

α2

∫
|f |≤α

|f |2(x) dx =

∫
Rn
|f |2(x) dx

∫ +∞

max{δ,|f |(x)}

dα

α2

≤
∫
Rn

|f |2(x)

max{δ, |f |(x)}
dx ≤ ‖f‖L1(Rn).

(4.85)

In the other hand, we recall that the bad set Ωα is the union of disjoint cubes (Ck)k∈N
and on each of these cubes the average of |f | is larger than α. Hence we have

µ(Ωα) =
∑
k∈N

µ(Ck) ≤ α−1
∑
k∈N

∫
Ck

|f |(x) dx

= α−1

∫
Ωα

|f |(x) dx.

We write then

µ(Ωα) ≤ α−1

∫
Ωα

|f |(x) dx =α−1

∫
Ωα∩{x;|f |(x)>α

2
}
|f |(x) dx

+ α−1

∫
Ωα∩{x;|f |(x)<α

2
}
|f |(x) dx

≤ µ(Ωα)

2
+ α−1

∫
|f |>α

2

|f |(x) dx.

Thus we just proved

(4.86)
µ(Ωα)

2
≤ α−1

∫
|f |>α

2

|f |(x) dx.

Combining (4.84), (4.85) and (4.86), we finally obtain∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| > α

2

})
dα ≤ Cn

[
‖f‖L1 +

∫ +∞

δ

dα

α

∫
|f |>α

2

|f |(x) dx
]

≤Cn
[
‖f‖L1 +

∫
|f |(x) Log +

(2|f |(x)

δ

)]
.

(4.87)

Now we bound the contribution of the action of T on the bad part. We have seen in
the proof of the primitive formulation of Lp theorem for convolution Calderón-Zygmund
kernels that the following inequality holds∫

Rn\Ω̃α
|T bα| ≤ C(T )

∫
Ω̃α

|f |(x) dx,

where Ω̃α =
⋃
k∈N C̃k and C̃k are the cubes obtained from the Ck by dilating by the factor

2
√
n leaving the cube centers fixed.
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For any β > 0, we bound

µ({x ∈ A : |Tbα|(x) ≥ β}) ≤ µ(Ω̃α) + µ({x ∈ Rn\Ω̃α; |T bα(x)| > β}

≤ (2
√
n)n µ(Ωα) +

Cn
β

∫
Rn\Ω̃α

|T bα|(x) dx

≤ (2
√
n)n µ(Ωα) +

Cn
β

∫
Ω̃α

|f |(x) dx.

We apply this inequality to β = α
2

and we integrate between δ and +∞. We obtain∫ +∞

δ

µ
({
x ∈ A : |Tbα|(x) ≥ α

2

})
dα ≤ Cn

∫ +∞

δ

µ(Ωα) dα

+ Cn

∫ +∞

δ

dα

α

∫
Ω̃α

|f |(x) dx.

We decompose again

1

α

∫
Ω̃α

|f |(x) dx ≤ 1

α

∫
{x∈Ω̃α;|f |(x)<α

2
}
|f |(x) dx+

1

α

∫
|f |>α

2

|f |(x) dx

≤ Cn µ(Ωα) +
1

α

∫
|f |>α

2

|f |(x) dx.

Hence we have proved∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| ≥ α

2

})
dα ≤ c

∫ +∞

δ

µ(Ωα) dα

+ c

∫ +∞

δ

dα

α

∫
|f |> dα

α

|f |(x) dx.

Using (4.86) again, we then have

(4.88)

∫ +∞

δ

µ
({
x ∈ A : |Tbα|(x) ≥ α

2

})
≤ c

∫
Rn
|f |(x) Log +

(2|f |(x)

δ

)
dx,

where c depends on T . Combining (4.87) and (4.88) together with (4.88), we obtain∫
A

|T f |(x) ≤ δ µ(A) + c

∫
Rn
|f |(x) Log

[
e+

2|f |(x)

δ

]
.

The inequality (4.81) follows by taking δ = 2 ‖f‖L1/µ(A).
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5 The Lp−Theorem for Littlewood Paley Decompo-

sitions

5.1 Bernstein and Nikolsky inequalities

Theorem 5.1. (Bernstein inequality)

Let p ∈ [1,+∞]. There exists a constant Cn,p > 1 such that, for any k ∈ N∗ and any
f ∈ Lp(Rn) satisfying

supp f̂ ⊂ B2k(0)\B2k−1(0),

then ∇f ∈ Lp(Rn) and we have

(5.1) C−1
n,p ‖f‖Lp(Rn) ≤ 2−k ‖∇f‖Lp(Rn) ≤ Cn,p ‖f‖Lp(Rn).

�

Proof of Theorem 5.1. Let χ be a cut of function in C∞c (Rn) such that{
χ ≡ 0 in B 1

4
(0) ∪

(
Rn\B4(0)

)
χ ≡ 1 in B1(0)\B 1

2
(0).

By assumption we have
f̂(ξ) = χ(2−kξ) f̂(ξ) in S ′(Rn).

Using Proposition 1.34, we deduce

f(x) = (2π)−
n
2 χ̌(2kx) 2kn ∗ f(x).

This implies for any j = 1, . . . , n (using Proposition 1.32)

∂xjf = (2π)−
n
2 2k(n+1) ∂xj χ̌(2kx) ∗ f in S ′(Rn).

Since χ ∈ C∞c (Rn), ∂xj χ̌ ∈ S(Rn) and then in particular ∂xj χ̌ ∈ L1(Rn). Using Young
inequality, we deduce that

‖∇f‖Lp(Rn) ≤ Cn 2k ‖∇χ̌‖L1(Rn) ‖f‖Lp(Rn).

This implies the second inequality in (5.1).

We shall now present the proof of the first inequality in (5.1) in the particular case
where p ∈ (1,+∞).

For the limiting cases respectively p = 1 and p = +∞, we shall need a multiplier
theorem that takes into account the support of the Fourier transform and that we shall
prove in Chapter 7 only. Recall from Chapter 1 that for any j ∈ {1, . . . , n}

∂̂xj f = −i ξj f̂ .
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Multiplying the identity by iξj and summing out j gives1

χ
(
2−kξ

) n∑
j=1

i ξj
|ξ|2

∂̂xj f = f̂ in S ′(Rn).

Denote

mj,k(ξ) := i 2k
χ(2−kξ)

|ξ|2
ξj

= i χ(2−kξ)
2−k ξj
|2−kξ|2

.

We have mj,k(ξ) = mj(2
−kξ) where

mj(η) := i
χ(η) ηj
|η|2

∈ C∞c (Rn).

Hence, it is straightforward to prove that

∀` ∈ Nn ∃C` > 0 s.t. sup
j
|∂`mj,k(ξ)| ≤

C`
|ξ||`|

.

We can use the multiplyer Theorem 4.13 to deduce

2k ‖f‖Lp(Rn) ≤ Cp,n ‖∇f‖Lp(Rn).

This is the first inequality in (5.1) and this concludes the proof of Theorem 5.1 in the
case p ∈ (1,+∞). The general case is postponed to Chapter 7.

While the second inequality in (5.1) looks a bit like a “reverse Poincaré inequality”,
the following theorem could be interpreted as some sort of “reverse Hölder inequality”.

Theorem 5.2. There exists Cn > 0 such that for any 1 ≤ p ≤ q ≤ +∞, for any k ∈ N
and any f ∈ Lp(Rn) satisfying

supp f̂ ⊂ B2k(0),

then f ∈ Lq(Rn) and the following inequality holds

(5.2) ‖f‖Lq(Rn) ≤ Cn (2k)
n
p
−n
q ‖f‖Lp(Rn).

�

Proof of Theorem 5.2. Let fk(x) := 2kn f(2kx). We have then

f̂k(ξ) = f̂(2−kξ)

which gives supp f̂k ⊂ B1(0).

1We are using here the fact that f̂ is supported away from the origin.
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Let χ now be a function in C∞c (Rn) such that{
χ ≡ 1 on B1(0)

χ ≡ 0 on Rn\B2(0).

Because of the choice of χ we have

f̂k(ξ) = χ(ξ) f̂k(ξ).

Using Proposition 1.34, we deduce

fk = (2π)−
n
2 χ̌ ∗ fk .

Since we only consider the case p < q and since p ≥ 1, we have

0 <
1

p
− 1

q
< 1 .

Hence there exists r ∈ (1,∞) such that

1− 1

r
=

1

p
− 1

q
.

Since χ̌ ∈ S(Rn), we have in particular χ̌ ∈ L1(Rn) and Young inequality gives then

‖fk‖Lq(Rn) ≤ (2π)−
n
2 ‖χ̌‖L1(Rn) ‖fk‖Lp(Rn).

Hölder inequality gives
‖χ̌‖L1(Rn) ≤ ‖χ̌‖1−β

L1(Rn) ‖χ̌‖
θ
L∞(Rn),

where θ = 1− 1
r
. Choose cn = max{‖χ̌‖L1 , ‖χ̌‖L∞} and we have proved

‖fk‖Lq(Rn) ≤ Cn ‖fk‖Lp(Rn).

(5.2) follows by substituting fk(x) = 2−nkf(2−kx). This concludes the proof of Theorem
5.2. �

5.2 Littlewood Paley projections

In the proof of Theorem 4.13 we introduced a partition of unity over the phase space with
each function ϕk = ϕ(2−kξ) being supported in the dyadic annuli B2k+1(0)\B2k−1(0). We
shall consider the same partition of unity of the phase space but truncated at 0. Precisely,
let ψ ∈ C∞c (Rn) such that {

ψ(ξ) ≡ 1 in B1(0)

ψ(ξ) ≡ 0 in Rn\B2(0),

and denote ϕ(ξ) := ψ(ξ)− ψ(2ξ). We have clearly

suppϕ ⊂ B2(0)\B 1
2
(0).
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For k > 0 we take ϕk(ξ) := ϕ(2−kξ) while for k = 0 we take ϕ0(ξ) = ψ(ξ). This gives

N∑
k=0

ϕk(ξ) = ψ(2−Nξ).

This implies that ∑
k∈N

ϕk(ξ) = lim
N→+∞

N∑
k=0

ϕk(ξ) ≡ 1 in Rn.

Definition 5.3. Let f ∈ S(Rn) and k ∈ N. We define the k-th Littlewood-Paley projection
of f associated to the partition of unity (ϕk)k∈N to be fk := F−1(ϕkf̂).

Because of Bernstein theorem 5.1, we have in particular, by iterating (5.1):

∀p ∈ [1,∞] ∀k ∈ N ∀q ∈ N sup
|`|=q
‖∂`fk‖Lp(Rn) ∼ 2kq ‖fk‖Lp(Rn).

We have for k > 0 (using Proposition 1.34)

(5.3) fk = 2kn ϕ̌ (2kx) ∗ f (2π)−
n
2 .

Hence we deduce that for any p ∈ [1,∞]

(5.4) sup
k∈N
‖fk‖Lp(Rn) ≤ Cn,ϕ ‖f‖Lp(Rn).

By the triangular inequality we also have trivially

(5.5) ‖f‖Lp(Rn) ≤
∑
k∈N

‖fk‖Lp(Rn).

The goal of the present chapter is to prove that for any p ∈ (1,+∞)

‖f‖Lp(Rn) ∼
∥∥∥(∑

k∈N

|fk|2
) 1

2
∥∥∥
Lp(Rn)

.

To that aim we have to present briefly the Lp-spaces for families.

5.3 The spaces Lp(Rn, `q)

We recall the classical notation for any sequence (ak)k∈N and any q ∈ [1,∞)

‖ak‖`q :=
(∑
k∈N

|ak|q
) 1
q

and

‖ak‖`∞ := sup
k∈N
|ak| .
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It is a well-known fact that RN or CN equipped with lack of these norms is complete and
then define a Banach space.

We now define

Lp(Rn, `q) :=
{

(fk)k∈N s.t. fk ∈ Lp(Rn)
(∑
k∈N

|fk|q
) 1
q
(x) < +∞

for almost every x ∈ Rn and
∥∥∥(∑

k∈N

|fk|q
) 1
q
∥∥∥
Lp(Rn)

< +∞
}
.

We have the following proposition:

Proposition 5.4. For any p ∈ [1,∞] and q ∈ [1,∞] the space Lp(Rn, `q) defines a Banach
space. Moreover for p ∈ (1,∞) and q ∈ (1,∞)(

Lp(Rn, `q)
)′

= Lp
′
(Rn, `q

′
).

Proof of Proposition 5.4. We first prove that Lp(Rn, `q) is complete. Let (f jk)k∈N be
a Cauchy sequence in Lp(Rn, `q). Then for each k ∈ N (f jk)j∈N is a Cauchy sequence in
Lp(Rn). Since Lp(Rn) defines a Banach space, there exists (f∞k )k∈N such that

∀k ∈ N f jk −→ f∞k strongly in Lp(Rn).

This implies in particular that for any N ∈ N( N∑
k=0

|f jk |
q
) 1
q −→

( N∑
k=0

|f∞k |q
) 1
q

strongly in Lp(Rn).

Let FN(x) := (
∑N

k=0 |f∞k |q)
1
q . Because of the previous strong convergence we have

‖FN‖Lp(Rn) ≤ lim sup
j→+∞

∥∥∥( N∑
k=0

|f jk |
q
) 1
q
∥∥∥
Lp(Rn)

≤ lim sup
j→+∞

‖(f jk)‖Lp(Rn,`q) < +∞.

(FN)N∈N is a monotone sequence of Lp functions whose Lp norm is uniformly bounded. By
using Beppo Levi monotone convergence theorem, we deduce that FN strongly converges

in Lp to a limit which is obvioulsly equal to (
∑

k=0 |f∞k |q)
1
q . It implies that (f∞k )k∈N ∈

Lp(Rn, `q). It remains to prove

(f jk)k∈N −→ (f∞k )k∈N strongly in Lp(Rn, `q).

Let ε > 0 and let respectively j0 ∈ N and N0 ∈ N such that

i) sup
j,`≥j0

∥∥∥(∑
k∈N

|f jk − f
`
k|q
) 1
q
∥∥∥
Lp(Rn)

<
ε

3
.

ii)
∥∥∥( ∑

k>N0

|f∞k |q
) 1
q
∥∥∥
Lp(Rn)

<
ε

3
.

iii)
∥∥∥( ∑

k>N0

|f j0k |
q
) 1
q
∥∥∥
Lp(Rn)

<
ε

3
.
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We then deduce that

sup
j≥j0

∥∥∥( ∑
k>N0

|f jk |
q
) 1
q
∥∥∥
Lp(Rn)

<
2ε

3
.

Hence we have

lim sup
j→+∞

∥∥∥( ∑
k>N0

|f jk − f
∞
k |q
) 1
q
∥∥∥
Lp(Rn)

< ε.

Since for each k ∈ N f jk → f∞k strongly in Lp(Rn), we have

lim
j→+∞

∥∥∥( N0∑
k=0

|f jk − f
∞
k |q
) 1
q
∥∥∥
Lp(Rn)

= 0.

Hence for j large enough, we have∥∥∥( +∞∑
k=0

|f jk − f
∞
k |q
) 1
q
∥∥∥ < ε

which implies the convergence of (f jk)k∈N towards (f∞k )k∈N in Lp(Rn, `q).
We prove now the second part of Proposition 5.4. Let p and q in (1,+∞]. Let

T ∈ (Lp(Rn, `q))′. Let k0 ∈ N and denote Lpk0(R
n, `q) the subspace of (fk)k ∈ Lp(Rn, `q)

such that fk ≡ 0 for k 6= k0 = 0. Lpk0(R
n, `q) is obviously isomorphic to Lp(Rn) and, using

Riesz representation theorem, we define the existence of gk0 ∈ Lp
′
(Rn) such that

T|
L
p
k0

(Rn,`q)

(
(fk)

)
=

∫
Rn
fk0(x) gk0(x) dx.

Let
Lp≤k0(R

n, `q) :=
{

(fk)k∈N ∈ Lp(Rn, `q) such that fk ≡ 0 for k > k0

}
.

By linearity we have

T|
L
p
≤k0

(Rn,`q)

(
(fk)

)
=
∑
k≤k0

∫
Rn
fk(x) gk(x) dx.

Let
Πk0 : Lp(Rn, `q) −→ Lp≤k0(R

n, `q)

(fk)k∈N −→ (fk)k≤k0 .

It is not difficult to prove that for any (fk)k∈N

lim
k0→+∞

Πk0

(
(fk)k∈N

)
= (fk)k∈N in Lp(Rn, `q).

Hence, by continuity of T , we deduce that

∀(fk)k∈N ∈ Lp(Rn, `q) T
(
(fk)k∈N

)
=
∑
k∈N

∫
Rn
fk(x) gk(x) dx.
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It remains to prove that (gk)k∈N ∈ Lp
′
(Rn, `q

′
).

Let k0 ∈ N and denote fk0k ∈ L
p
≤k0(R

n, `q), the element defined by

∀k ≤ k0 fk0k :=

gk
|gk|2−q′( k0∑

k=0

|gk|q′
)1− p′

q′
.

We have that ∀k ≤ k0

|fk0k |(x) ≤ |gk|
q′−1

|gk|q′−p′
= |gk|

p′
p ∈ Lp(Rn).

Because of the continuity of T we have in one hand

∣∣T((fk0k )
)∣∣ ≤ CT ‖(fk0k )‖Lp(Rn,`q) = CT

[ ∫
Rn

( k0∑
k=0

|gk|q
′
) p′
q′
] 1
p

.

In the other hand, a direct computation gives

T
(
(fk0k )

)
=

∫
Rn

( k0∑
k=0

|gk|q
′
(x′)
) p′
q′
dx.

Since p > 1, we have proved∫
Rn

( k0∑
k=0

|gk|q
′
(x)
) p′
q′
dx ≤ CT,p .

The constant in the right-hand side of the inequality is independent of k0. Hence (gk) ∈
Lp
′
(Rn, `q

′
) and this concludes the proof of Proposition 5.4. �

5.4 The Lp-theorem for Littlewood-Paley decompositions

The goal of the present subsection is to give a proof of the following theorem which is the
main achievement of the course.

Theorem 5.5. Let (ϕk)k∈N be a dyadic partition of unity of the phase space and let
p ∈ (1,∞), there exists 1 < C such that for any f ∈ Lp(Rn):

(5.6) C−1 ‖f‖Lp(Rn) ≤ ‖(fk)k∈N‖Lp(Rn,`2) ≤ C ‖f‖Lp ,

where (fk)k∈N is the Littlewood-Paley decomposition of f relative to the partition of unity
(ϕk)k∈N. �
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Proof of Theorem 5.5. For any f ∈ S(Rn), we denote ∀x ∈ Rn

S(f)(x) :=
(∑
k∈N

|fk|2(x)
) 1

2
.

By Minkowski inequality, we deduce that S is a sub-additive map.
We first prove that S is strong (2, 2). Indeed, using Plancherel theorem, we have∫

Rn
|S(f)|2(x) dx =

∑
k∈N

∫
Rn
|fk|2(x) dx

=
∑
k∈N

∫
Rn

f̂k(ξ) f̂k(ξ) dξ

=
∑
k∈N

∫
Rn

ϕ2
k(ξ) |f̂ |2(ξ) dξ .

(5.7)

Since suppϕk ⊂ B2k+1(0)\B2k−1 , each ξ ∈ Rn is contained in the support of at most 3
different ϕk. Hence we have the bound

(5.8) ∀ξ ∈ Rn
∑
k∈N

ϕ2
k(ξ) ≤ 3 ‖ϕ‖2

L∞(Rn).

Combining (5.7) and (5.8), we obtain that S is indeed strong (2, 2).
We claim now that S is weak (1, 1). Let Kk(x) := ϕ̌k(x). In particular for k > 1, we

have Kk(x) = 2kn ϕ̌(2kx) and

fk = (2π)−
n
2 2kn ϕ̌(2kx) ∗ f.

In order to prove the claim, we shall be using the following lemma which is the Hörmander
condition for families:

Lemma 5.6. (Hörmander condition for families)

Under the notations above, we have the existence of B > 0 such that

(5.9) ∀y ∈ Rn

∫
|x|>2|y|

‖Kk(x− y)−Kk(x)‖`2 dx ≤ B < +∞.

�

Proof of Lemma 5.6. Let y 6= 0 and denote v := y
|y| . For any x ∈ Rn, one has

|Kk(x− y)−Kk(x)| ≤
∫ |y|

0

∣∣∣∂Kk

∂v

∣∣∣(x− tv) dt.

Using Minkowski integral inequality, one has∫
|x|>2|y|

‖Kk(x− y)−Kk(x)‖`2 dx ≤
∫
|x|>2|y|

(∑
k∈N

∣∣∣∣ ∫ |y|
0

∣∣∣∂Kk

∂v

∣∣∣(x− tv) dt

∣∣∣∣2) 1
2

dx

≤
∫
|x|>2|y|

∫ |y|
0

‖∇Kk‖`2(x− tv) dt dx.
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We interchange the order of integration and we proceed to the change of variable z :=
x− tv. This gives

(5.10a)

∫
|x|>2|y|

‖Kk(x− y)−Kk(x)‖`2 dx ≤ |y|
∫
|z|>|y|

‖∇Kk‖`2(z) dz.

We have for each k ∈ N∗
|∇Kk|(z) = 2k(n+1)|∇ϕ̌|(2kz).

Since ϕ ∈ C∞c (Rn), we have that ϕ̌ ∈ S(Rn) and hence, obviously, we have in particular

|∇ϕ̌|(x) ≤ C min{1; |x|−n−2}.

This implies then
|∇Kk|(z) ≤ C min{2k(n+1); 2−k |z|−n−2}.

For each z we denote by kz the integer part of

log2 |z|−1
(
i.e. kz := [log2 |z|−1]

)
.

We write (∑
k∈N

|∇Kk|2(z)
) 1

2 ≤
(∑
k≤kz

|∇Kk|2(z)
) 1

2
+
( ∞∑
k=kz+1

|∇Kk|2(z)
) 1

2

≤ C
(∑
k≤kz

22k(n+1)
) 1

2
+ C |z|−n−2

( ∞∑
k=kz+1

2−2k
) 1

2

≤
√

2 C 2kz(n+1) +
C√

2
|z|−n−2 2−kz .

Using the fact that 2kz ∼ 1
|z| , we deduce

(∑
k∈N

|∇Kk|2(z)
) 1

2 ≤ C ′

|z|n+1
.

Inserting this last inequality in (5.10) gives then∫
|x|>2|y|

‖Kk(x− y)−Kk(x)‖`2 dx ≤ C ′ |y|
∫
|z|>|y|

dz

|z|n+1

≤ B |y|
∫ +∞

|y|

dρ

ρ2

≤ B < +∞.

This concludes the proof of Lemma 5.6. �

Continuation of the proof of Theorem 5.5. Let α > 0, we proceed to a Calderón-
Zygmund decomposition of f for the threshold α. We write f = gα + bα where gα and bα
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are respectively the good and bad parts of the decomposition. Using the subadditivity of
S, we have

(5.10b) µ
({
x;S(f)(x) > α

})
≤ µ

({
x;S(gα)(x) >

α

2

})
+ µ
({
x;S(bα)(x) >

α

2

})
.

Using the fact that S is strong (2, 2), we deduce

α2

4
µ
({
x ∈ Rn;S(gα)(x) >

α

2

})
≤ C

∫
Rn
|gα|2(x) dx

≤ C 2n+1α

∫
Rn
|f |(x) dx.

(5.11)

We recall the notations from Chapter 4:
The bad part of Rn for the decomposition is a union of disjoint cubes with faces parallel
to the canonical hyperplanes: Ω =

⋃
`∈NC` and C̃` are the dilations of these cubes by the

factor 2
√
n leaving each center c` fixed. This dilation factor is chosen in such a way that

∀x ∈ Rn\C̃` ∀y ∈ C` |x− c`| ≥ 2|y − c`|.

Denote as usual Ω̃ =
⋃
`∈N C̃`.

We estimate ∫
Rn\Ω̃
|S(bα)|(x) dx =

∫
Rn\Ω̃

∣∣∣∑
k∈N

|Kk ∗ bα|2(x)
∣∣∣ 12dx.

We write bα =
∑

`∈N b` where b` = b1c` and we use Minkowski inequality to obtain

(5.12)

∫
Rn\Ω̃
|S(bα)|(x) dx ≤

∑
`∈N

∫
Rn\Ω̃
‖Kk ∗ b`‖`2(x) dx.

Using the fact that
∫
C`
b`(y) dy = 0, we write

‖Kk ∗ b`‖`2(x) =

∥∥∥∥∫
y∈C`

Kk(x− y) b`(y) dy

∥∥∥∥
`2

=

∥∥∥∥∫
y∈c`

[
Kk

(
x− c` − (y − c`)

)
−Kk(x− c`)

]
b`(y) dy

∥∥∥∥
`2
.

(5.13)

Using again Minkowski integral inequality and continuing (5.12) and (5.13), we obtain by
the mean of Lemma 5.6∫

Rn\Ω̃
|S(bα)|(x) dx ≤

∑
`∈N

∫
Rn\Ω̃

dx

∫
C`

|b`(y)|
∥∥Kk

(
x− c` − (y − c`)−Kk(x− c`

)∥∥
`2
dy

≤
∑
`∈N

∫
C`

|b`(y)| dy
∫
|x−c`|>2|y−c`|

∥∥Kk(x− c` − (y − c`)
)
−

Kk(x− c`)
∥∥
`2
dx

≤ B
∑
`∈N

∫
C`

|b`(y)| dy ≤ B

∫
Rn
|bα(y)| dz ≤ 2B

∫
Rn
|f(y)| dy.
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This implies that

sup
β>0

β µ
({
x ∈ Rn\Ω̃; S(bα)(x) > β

})
≤ 2B

∫
Rn
|f(y)| dy.

Applying this inequality to β := α
2

and recalling that |Ω̃| ≤ Cn α
−1
∫
Rn |f(x)| dx, we

deduce

αµ
({
x ∈ Rn; S(bα)(x) >

α

2

})
≤ C

∫
Rn
|f(x)| dx.

Combining this inequality with (5.10b) and (5.11) gives that S is weak (1, 1) and the
claim is proved. Using now Marcinkiewicz interpolation theorem 4.7, we deduce that S is
strong (p, p) for p ∈ (1, 2].

We claim now that S is strong (p, p) for p ∈ (2,+∞). We shall use a duality argument.
Thanks to Proposition 5.4, using Hahn Banach theorem, we have[ ∫

|S(f)|p (x) dx

] 1
p

= ‖(fk)‖Lp(Rn,`2) = sup
‖(hk)‖

Lp
′
(Rn,`2)≤1

∑
k∈N

∫
fk(x)hk(x) dx

= sup
‖(hk)‖

Lp
′
(Rn,`2)≤1

∑
k∈N

∫
Rn
Kk ∗ f(x)hk(x) dx

= sup
‖(hk)‖

Lp
′
(Rn,`2)≤1

∫
Rn

f(x)
∑
k∈N

K#
k ∗ hk(x) dx.

Therefore, in order to prove that S is strong (p, p) for p > 2, it suffices to prove that the
operator S∗ defined by

S∗(hk)k∈N :=
∑
k∈N

K#
k ∗ hk

maps continuously Lp
′
(Rn, `2) into Lp

′
(Rn). Precisely, we are proving the following lemma:

Lemma 5.7. Under the above notations, for any p′ ∈ (1, 2], there exists C > 0 such that
∀(hk) ∈ Lp

′
(Rn, `2), we have

(5.14)
∥∥∥∑
k∈N

K#
k ∗ hk

∥∥∥
Lp′ (Rn)

≤ C ‖(hk)‖Lp′ (Rn,`2)

Proof of Lemma 5.7. We use a natural extension of Marcinkiewicz interpolation the-
orem 4.7 to the framework of mappings from Lp

′
(Rn, `2) into Lp

′
(Rn) whose proof is left

to the reader in order to infer that the lemma is proved if it holds for p′ = 2 and if there
exists C > 0 such that

(5.15) |S∗(hk)k∈N|L1,∞(Rn) ≤ C ‖(hk)‖L1(Rn,`2).

We then first consider the case p′ = 2.
To justify all steps in the computations below, we can of course restrict to elements

(hk)k∈N ∈ L2(Rn, `2) such that hk ∈ S(Rn) and hk ≡ 0 for k large enough. It is not
difficult to prove that this class is dense in L2(Rn, `2).
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We have by using Plancherel theorem:∫
Rn
|S∗(hk)|2 = (2π)−n

∫
Rn

(∑
k∈N

K̂#
k ĥk

)(∑
`∈N

K̂#
` ĥ`

)
= (2π)−n

∫
Rn

∑
k,`∈N

ϕ#
k (ξ) ϕ#

` (ξ) ĥk(ξ) ĥ`(ξ) dξ.

Recall that suppϕk(ξ) ⊂ B2k+1(0)\B2k−1(0), hence

ϕ#
k (ξ)ϕ#

` (ξ) ≡/ 0 =⇒ |k − `| ≤ 3.

This implies that∫
Rn
|S∗(hk)|2(x) dx = (2π)−n

∫
Rn

∑
|k−`|<4

ϕ#
k (ξ)ϕ#

` (ξ) ĥk(ξ) ĥ`(ξ) dξ

≤ C (2π)−n
∫
Rn

7
∑
k∈N

|ϕ#
k (ξ)|2 |ĥk| (ξ) dξ

≤ 7 (2π)−n ‖ϕ‖2
L∞(Rn)

∑
k∈N

∫
Rn
|ĥk|2(ξ) dξ

≤ C ‖(hk)‖L2(Rn,`2).

Hence we have proved (5.14) for p′ = 2.
We establish now (5.15). Let

H(x) :=
(∑
k∈N

|hk|2(x)
) 1

2
.

We fix α > 0 and we proceed to a Calderón-Zygmund decomposiiton for H. As usual, we
denote by Ω =

⋃
`∈NC` the union of the bad cubes relative to this decomposition. For

each k ∈ N, we write hk = gk + bk, where

gk(x) =


hk(x) for x ∈ Rn\Ω

−
∫
C`

hk(y) dy for x ∈ C` (` ∈ N).

Since H(x) ≤ α on Rn\Ω and −
∫
C`

(H(y) dy ≤ 2nα for any `, we deduce, using Minkowski
inequality, that

(5.16) ‖(gk)‖L∞(Rn,`2) ≤ 2nα.

For any k ∈ N and ` ∈ N, we denote

bk,` := bk 1C` ,
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where 1C` denotes the characteristic function of the bad cube C`. Observe that we have
fixed

(5.17) ∀k, ` ∈ N −
∫
C`

bk,`(y) dy = 0.

Moreover, using Minkowski inequality, we have also for any ` ∈ N

−
∫
C`

(∑
k∈N

|bk,`|2(y)
) 1

2
dy ≤ −

∫
C`

(∑
k∈N

|hk − −
∫
C`

hk|2(y)
) 1

2
dy

≤ −
∫
C`

‖hk‖`2(y) dy +

∥∥∥∥ −∫
C`

hk

∥∥∥∥
`2
.

Using Minkowski integral inequality, we then deduce

(5.18) ∀` ∈ N −
∫
C`

‖bk,`‖`2(y) dy ≤ 2 −
∫
C`

‖hk‖`2(y) dy.

Finally, recall that from the fundamental properties of the Calderón-Zygmund decompo-
sition one has

(5.19) µ(Ω) =
∑
`∈N

µ(C`) ≤

∫
Rn
‖hk‖`2(y) dy

α
.

Using the strong (2, 2) property, we have

α2µ
({
x ∈ Rn; |S∗(gk)|(x) >

α

2

})
≤ C ‖(gk)‖2

L2(Rn,`2).

Combining this inequality with (5.16) gives then

αµ
({
x ∈ Rn; |S∗(gk)|(x) >

α

2

})
≤ C

∫
Rn
‖(gk)‖`2(y) dy

≤ C

∫
Rn
‖(hk)‖`2(y) dy ,

(5.20)

where we used again Minkowski integral inequality.
Denote as usual C̃` the dilated cubes by the factor 2

√
n and Ω̃ =

⋃
`∈N C̃` with respect

to the center cl of Cl. We estimate now∫
Rn\Ω̃
|S∗(bk)|(x) dx ≤

∫
Rn\Ω̃

∑
`∈N

(∑
k∈N

|K∗k ∗ bk,`|(x)
)
dx.

As usual we write

|K#
k ∗ bk,`|(x) =

∣∣∣∣ ∫
C`

K#
k

(
x− c` − (y − c`)

)
bk,`(y) dy

∣∣∣∣
=

∣∣∣∣ ∫
C`

[
K#
k

(
x− c` − (y − c`)

)
−K#

k (x− c`)
]
bk,`(y) dy

∣∣∣∣ .
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We then bound using Cauchy-Schwarz inequality∑
k∈N

|K#
k ∗ bk,`|(x) ≤

∫
c`

∑
k∈N

∣∣K#
k (x− c` − (y − c`)−K∗k(x− c`)

∣∣ |bk,`(x)| dy

≤
∫
c`

‖K#
k

(
x− c` − (y − c`)

)
−K#

k (x− c`)‖`2 ‖bk,`(y)‖`2 dy.

This gives∫
Rn\Ω̃
|S∗(bk)|(x) dx ≤∑

`∈N

∫
C`

‖bk,`‖`2(y) dy

∫
|x−c`|>2|y−c`|

‖K#
k

(
x− c` − (y − c`)

)
−Kk(x− c`)‖`2 dy.

Using Lemma 5.6 (i.e. Hörmander property for families), we then deduce∫
Rn\Ω̃
|S∗(bk)|(x) dx ≤ C

∑
`∈N

∫
C`

‖bk,`‖`2(y) dy

= C

∫
Rn
‖bk‖`2(y) dy

≤ 2C

∫
Rn
‖hk‖`2(y) dy.

(5.21)

Combining (5.19), (5.20) and (5.21) gives

αµ
({
x ∈ Rn; |S∗(hk)|(x) > α

})
≤ C

∫
Rn
‖hk‖`2(y) dy,

which is the weak (1, 1) property for S∗ (5.15). We then deduce Lemma 5.7. �

End of the proof of Theorem 5.5. We recall the identity[ ∫
Rn
|S(f)|p(x) dx

] 1
p

= sup
‖(hk)‖

Lp
′
(Rn,`2)≤1

∫
Rn
f(x) S∗(hk)(x) dx.

Since by Lemma 5.7 S∗ is continuously mapping Lp
′
(Rn, `2) into Lp

′
(Rn) for any p′ ∈ (1, 2],

we deduce then ∀p ∈ [2,∞) ∃Cp > 0 such that[ ∫
Rn
|S(f)|p(x) dx

] 1
p

≤ Cp ‖f‖Lp(Rn).

Hence we have proved the second inequality in (5.6). It remains to prove the first one in
order to conclude the proof of the theorem.

We use the following duality argument

‖f‖Lp(Rn) = sup
‖g‖

Lp
′
(Rn)
≤1

∫
Rn
f(x) g(x) dx

= sup
‖g‖

Lp
′
(Rn)
≤1

∫
Rn

∑
k,`∈N

fk(x) g`(x) dx.
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Since supp f̂k ∩ supp ĝ` = ∅ for |k − `| ≥ 4, we deduce

‖f‖Lp(Rn) = sup
‖g‖

Lp
′
(Rn)
≤1

∫
Rn

∑
|k−`|<4

fk(x) g`(x) dx

≤ sup
‖g‖

Lp
′
(Rn)
≤1

7

∫
Rn
‖fk‖`2(x) ‖gk‖`2(x) dx

≤ sup
‖g‖

Lp
′
(Rn)
≤1

7 ‖(fk)‖Lp(Rn,`2)‖(gk)‖Lp′ (Rn,`2)

≤ C ‖(fk)‖Lp(Rn,`2),

where we used
‖(gk)‖Lp(Rn,`2) ≤ C ‖g‖Lp′ (Rn).

This concludes the proof of the Theorem 5.5. �
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