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Abstract

In this thesis we consider weak solutions u(x, t) of scalar conservation laws
in 1 + 1 dimensions

∂tu+ ∂xf(u) = 0 in R× R+ ,
u(x, 0) = u0(x) ,

}

where we assume that the flux function satisfies f ∈ C2(R).

The first part is concerned with the rate of entropy production. The Second
Law of Thermodynamics asserts that the physical entropy of an adiabatic
system is an increasing function in time. In this part we will study a more
stringent version of this law, according to which the entropy should not only
increase in time, but the rate of increase is optimal in absolute value among
all possible evolutions. We will establish this property in the framework of
non-linear scalar hyperbolic conservation law with strictly convex fluxes.

In the second part we present a new local Poincaré-type inequality for scalar
conservation laws in 1 + 1 dimensions with strictly non-linear flux, i.e. we
control the oscillation of an entropy solution u in terms of the defect measure
m(x, t, a) given by the kinetic formulation.
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Zusammenfassung

In dieser Arbeit untersuchen wir schwache Lösungen u(x, t) von Erhaltungssätzen
in 1 + 1 Dimensionen

∂tu+ ∂xf(u) = 0 in R× R+ ,
u(x, 0) = u0(x) ,

}

wobei wir annehmen, dass f ∈ C2(R) ist.

Der erste Teil der Arbeit beschäftigt sich mit der Rate der Entropieproduk-
tion. Das zweite Gesetz der Thermodynamik besagt, dass die Entropie eines
adiabatisch abgeschlossenen Systems, in Abhängigkeit der Zeit, eine wach-
sende Funktion ist. In diesem Teil der Arbeit betrachten wir eine strengere
Version von diesem Gesetz. Die Entropie soll nicht nur wachsend sein, son-
dern der Absolutbetrag der Wachstumsrate ist optimal verglichen mit allen
anderen möglichen Entwicklungen. Dies werden wir im Rahmen von skalar-
wertigen hyperbolischen Erhaltungssätzen mit konvexem Fluss beweisen.

Im zweiten Teil präsentieren wir eine Poincaré-Ungleichung für skalarwertige
Erhaltungssätze in 1 + 1 Dimensionen mit streng nicht-linearem Fluss. Mit
anderen Worten wir kontrollieren die Oszillation einer Entropielösung u mit
dem Defektmass m(x, t, a), welches durch die kinetische Formulierung des
Erhaltungssatzes gegeben ist.
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Chapter 1

Introduction

We consider solutions to the following equation

∂tu+ divx f(u) = 0 in R+ × Rn ,
u(x, 0) = u0(x) ,

}

(1.1)

where the flux f ∈ C2(Rn) and the initial data u0 ∈ L∞(Rn). It is well
known, that, even for smooth initial data, the classical solution can cease to
exist in finite time, due to the possible formation of shocks (see Chapter 4.2
in [Da]). Therefore one has to consider weak solutions of (1.1), i.e. solutions,
which satisfy (1.1) in the distributional sense. However it turned out, that,
for a given initial data, the space of weak solutions is huge (see Chapter 4.4
in [Da]). Therefore additional conditions have to be imposed to single out
the physical relevant weak solutions in some models.
For strictly convex fluxes f and n = 1 Oleinik proved 1957 in [Ol] unique-
ness of bounded weak solutions, which satisfy almost everywhere her ‘E-
condition’:

u(y, t)− u(x, t) ≤
y − x

ct
, for x < y , t > 0 , (1.2)

where c = inf f ′′. A immediate consequence of this condition (1.2) is a
spectacular regularization phenomena. Oleinik proved, that for bounded
measurable initial data, the weak solution satisfying almost everywhere (1.2)
has immediately locally bounded variation in the complement of the initial
line .
A more powerful approach was given by Kruzhkov in [Kr], where he replaces
condition (1.2) by a family of integral inequalities. This approach covers
also cases, where f is non-convex and the space dimension is bigger than
one. Moreover in the case of convex fluxes one can show that his entropy
condition is equivalent to Oleinik’s E-condition (see Chapter 8.5 in [Da]).
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2 CHAPTER 1. INTRODUCTION

More precisely for u0 ∈ L∞ he proved existence and uniqueness of weak
solutions satisfying the entropy condition: He considers the family of convex
entropy flux pairs (ηa, ξa)a∈R, where

ηa(u) = (u− a)+ and ξa(u) = sign(u− a)+(f(u)− f(a)) , (1.3)

and w+ stands for max{w, 0}. Then an entropy solution is a bounded func-
tion u, which satisfies (1.1) in the sense of distributions and

∂tηa(u) + ∂xξa(u) ≤ 0 . (1.4)

Equivalently one can replace the one parameter family (ηa, ξa)a∈R and as-
sume, that (1.4) is fulfilled for all convex η with corresponding entropy flux
ξ, which is defined by ξ =

∫

η′f ′. As a consequence of this one can show, if
the initial data u0 is in BV that u(·, t) is locally in BV for all later times.
A different approach to scalar conservation laws is introduced by Lions,
Perthame and Tadmor in [LPT]: The kinetic formulation of a scalar con-
servation law (1.1). A comprehensive introduction is found in [Pe]. For a
weak solution u ∈ L∞ of (1.1) one considers the set

Ea = {(x, t) : a ≤ u(x, t)}

and we will denote the characteristic function of Ea by

a≤u(x,t) .

Then one can show

Theorem 1.1 ([LPT]). A bounded measurable function u on R×R+, which
satisfies

∂t a≤u + f ′(a) divx a≤u = ∂am(x, t, a) in D′(Rn × R+ × R) (1.5)

for a non-negative measure m(x, t, a) together with the initial condition

a≤u(x,0) = a≤u0(x) ,

is the admissible solution of (1.1).

One can relate the measure m in (1.5) with (1.4) as follows:

∂t|u− a|+ divx[sign(u− a)(f(u)− f(a))] = −2m(x, t, a) in D′(Rn × R+)
(1.6)

or equivalently
∂tu ∧ a+ divx f(u ∧ a) = m(x, t, a) , (1.7)
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where u ∧ a = min{u, a}.

For non-convex respective non-concave fluxes there exist intitial data u0 ∈
L∞, such that the entropy solution u(x, t) is not locally BV for all later
times. If f is linear, the regularity of weak solutions u won’t be better than
the regularity of the initial data u0. Therefore a natural question is, if there
is still a regularization effect for weak solutions u of (1.1) if f is sufficiently
non-linear. One approach is given by kinetic averaging.
Instead of (1.5) one can consider the general Cauchy-Problem

∂tχ(x, t, a) + b(a)∂xχ(x, t, a) = g(x, t, a) in D′(Rn × R+ × R
n) (1.8)

with initial condition
χ(x, 0, a) = χ0(x, a) . (1.9)

In [GLPS] it was observed that that compactness and regularity results exist,
not for the solution χ of (1.8), but for velocity averages of χ. For any φ ∈ C∞

c ,
the velocity average of χ associated to φ is defined by

ρ(x, t) =

∫

R

f(x, t, a)φ(a) da . (1.10)

In the case of (1.5), ρ(x, t) is exactly the entropy solution u(x, t) of (1.1), if
we choose φ ∈ C∞

c such that φ = 1 on [−‖u‖∞, ‖u‖∞]. The main result in
[GLPS] is then as follows: if χ, g ∈ L2(Rn × R× Rn) and satisfy (1.8) with
b(a) = a, then any average ρ(x, t) of χ is in H

1
2 (Rn × R). Such results are

called ‘kinetic averaging lemmas’. In [JP] is is shown via averaging lemmas
that weak solutions u of (1.1) which lie in

W :=







u ∈ L∞ is a weak sol. of (1.1)
s.t. m(x, t, a) = ∂t(u ∧ a) + divx f(u ∧ a)

is a Radon measure.







belonging to u ∈ W α,3/2
loc for α < 1

3 . It is important to notice that entropy
solutions belong to the class W. The result in [JP] is obtained under the
following non-degeneracy assumption for f

∀R > 0 ∃C > 0 s.t. ∀ξ ∈ Sn , u ∈ R ∀ε > 0
L1 ({|a| ≤ R : |f ′(a) · ξ − u| < ε}) ≤ Cε ,

(1.11)

which says that there is no open intervall on which f is affine. In [DW]
it is then showed by De Lellis and Westdickenberg, that the result in [JP]
are actually optimal with respect to the number of derivatives. They con-
struct a weak solutions u ∈W for Burger’s equation in one space dimension,



4 CHAPTER 1. INTRODUCTION

i.e. f(u) = 1
2u

2, such that u /∈ W α,p
loc if α > 1

3 , or α ≤
1
3 and p ≥ 1

α . Hence
there is only hope to improve integrability somewhat but not differentiability.

A different approach, which lies out of reach of kinetic averaging lemmas,
is to investigate the structure of weak solutions of (1.1). One wonders if
weak solutions of (1.1) such that its entropy production is a Radon measure
have a structure similar to BV functions without being necessarily in BV. In
a work [DOW] by De Lellis, Westdickenberg and Otto it is shown that the
singular set of shock waves of such solutions is contained in a countable union
of Lipschitz curves and Hn−1 almost everywhere along these curves the solu-
tion has left and right approximate limits. The Hn−1 dimensional part of the
entropy production is concentrated on the shock waves and can be explicitly
computed in terms of the approximate limits. The solution has vanishing
mean oscillation Hn almost everywhere outside this union of curves. More
precisely, they proved:

Theorem 1.2 ([DOW]). Let f satisty (1.11) and let u ∈ W be a weak
solution of (1.1). Then there exists a rectifiable set Ju of dimension n − 1
such that

a) u has vanishing means oscillation outside of Ju,

b) u has left and right traces on Ju.

The Theorem doesn’t answer the questions, if points of vanishing mean oscil-
lation are actually Lebesgue points or if the measurem is a Hn−1 dimensional
measure. From BV one conjectures that both questions can be positively an-
swered. A similar Theorem but for n = 1 and f strictly convex is shown in
[Le1]. For n = 1 Theorem 1.2 is improved by De Lellis and Rivière in [DR].
They deduce that for entropy solutions of (1.1) with strictly non-linear flux
f , m(x, t, a) is a H1-dimensional rectifiable measure and u is approximate
continuous outside of Ju.

Besides the area of conservation laws, these questions appear also in un-
derstanding the Γ-limit of functionals arising in different areas of physics.
It turns out that the Γ-limit can be properly understood in class of func-
tions, which satisfy certain PDEs and for which the divergence of specific
nonlinear quantities are Radon measures. Yet these classes of functions are
strictly larger than BV and the same questions as in the case of scalar con-
servation laws are addressed. We consider for a bounded domain Ω ⊂ R2

the space Mdiv(Ω), which consists of unit vectorfields u such that u = eiϕ

for a φ ∈ L∞(Ω,R) and div eiϕ∧a is a Radon measure over Ω × R. This
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space Mdiv(Ω) was introduced by Serfaty and Rivière in [RS1] and [RS2] in
connection to a problem related to micromagnetism. We give here a brief
description.
Let Ω be a bounded and simply connected domain, for u ∈ W 1,2(Ω, S1) and
a ε > 0 we consider

Eε(u) = ε

∫

Ω

|∇u|2 +
1

ε

∫

R2

|H|2 , (1.12)

where H = ∇(G ∗ û) , û = u on Ω and û = 0 in Ωc and G is the kernel of the
Laplacian on R2.
It was proved in [RS1], [RS2] that from any sequence uεn ∈ W 1,2(Ω, S1)
such that ε → 0 and Eεn(uεn) < C one can extract a subsequence uεn′

such
that ϕεn′

converges strongly in Lp(Ω) for any p < ∞ to a limit ϕ such that
eiϕ = u ∈ Mdiv(Ω). Furthermore the authors are conjecturing that the
Γ-Limit should be given by the following functional E0 over Mdiv(Ω) :

E0(u) := 2

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da

Part of the Γ−convergence has been proved as they established in one hand
the following inequality

E0(u) := 2

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da ≤ lim inf Eεn′
(uεn′

)

and in the other hand that

lim
ε→0

inf
u∈W 1,2

Eε(u) = 2 inf
u∈Mdiv(Ω)

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da = 2|∂Ω| , (1.13)

where |∂Ω| is the perimeter of the set Ω. One can prove (see [RS1]), that
the infimum on the right hand side is achieved by u = −∇⊥ dist(·, ∂Ω) ∈
Mdiv(Ω). The function g = ∇⊥ dist(·, ∂Ω) is the viscosity solution of

|∇g|− 1 = 0 on Ω ,
g = 0 on ∂Ω .

}

(1.14)

It therefore natural to study elements of the space Mdiv(Ω). In [RS2] it is ex-
plained, that the measure div eiφ∧a da detects singularities and it is shown for
elements eiφ ∈Mdiv(Ω) such that φ has finite total variation, that div eiφ∧a

is concentrated on the H1-rectifiable set Jφ of approximate jump points of
φ. An immediate question is, if for elements of Mdiv(Ω), which are not BV,
the measure div eiφ∧a is still H1 dimensional and rectifiable. Connected to
this question is, if elements of Mdiv(Ω) have still a similar or even the same
structure as BV functions. A partial answer is given in [AKLR], where it is
shown that
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Theorem 1.3. Let u = eiφ ∈Mdiv(Ω). Then

i) The jump set Jφ is countably H1-rectifiable and coinciedes, up to H1-
negible sets, with

Σ :=

{

x ∈ Ω : lim sup
r→0+

r−1µφ(Br(x)) > 0

}

.

In addition

div
(

eiφ∧a
)

= φ−<a<φ=

(

eia − eiφ
−

)

· νφH
1 Jφ ∀a ∈ R .

ii) For H1-a.e. x ∈ Ω\Jφ we have the following VMO property:

lim
r→0+

∫

Br(x)

|φ− φ| = 0 ,

where φ is the average of φ on Br(x).

iii) The measure δ := µ(Ω\Jφ) is orthogonal H1, i.e.

B Borel with H1(B) <∞⇒ δ(B) = 0 .

The same result was obtained in [DO] by DeLellis and Otto, but in n dimen-
sions.

A question addressed in scalar conservation laws, which is also related to
problems in micromagnetic is the question of minimality for entropy produc-
tion. In [RS2] it is shown, that a sequence un = eiφn such that ‖φn‖∞ is
uniformly bounded and Eεn(un)→ 2|∂Ω| converges to an element u = eiφ of
Mdiv(Ω) such that u is a minimizer of E0 and satisfies div eiφ∧a ≥ 0. It is
furthermore shown in [RS2], that any minimizer (u,φ) of E0 satisfies either
div eiφ∧a ≥ 0 or div eiφ∧a ≤ 0. A minimizer of E0 is as mentioned above given
by the viscosity solution of (1.14). Therefore one might wonder if the only
minimizers of E0 are the viscosity or the anti-viscosity solution of (1.14). In
other words, for (u,φ) ∈Mdiv(Ω) such that div eiφ∧a ≥ 0 is g = ∇⊥u a vis-
cosity solution of (1.14). This is indeed the case as it is shown by Ambrosio,
Lecumberry and Rivière in [ALR].

For weak solutions u ∈ W of (1.1) one can define the absolute value of
the entropy production over a set Ω ⊂ R× R+ as being

EP =

∫

R

|m|(Ω, a) da . (1.15)
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For initial data u0 ∈ L∞ with compact support the entropy production over
the set R× [0, T ] is finite for the entropy solution. But the main concern is,
if the entropy solution is a minimizer of the entropy production and if this
minimizer is unique. It was positively answered by Dafermos in Chapter 9.7
of [Da] in a restricive setting. He proposes an entropy rate admissibility crite-
rion, which says, that a solution satisfies this criterion, if its rate of entropy
production is minimal. For the Riemann-Problem for scalar conservation
laws with strictly convex flux he shows, that a self-similar solution satisfies
the entropy rate criteria if and only if it satisfies the Oleinik-E-condition.

1.1 Main results and Outlook

In this section we present the main results of this work and give an outlook. In
Chapter 1, we are going to show that the entropy rate criterion characterizes
admissible L∞ solutions for scalar conservation laws with strictly convex flux.
Precisely we are going to show

Theorem 1.4. Let f ∈ C2(R) such that f ′′ ≥ c > 0 and

lim
|x|→∞

f(x) =∞ . (1.16)

Moreover let u0 ∈ L∞(R) be compactly supported. Let u ∈ L∞(R× [0, T )) be
an arbitrary weak solution of (1.1), such that m(x, t, a) = ∂t(u∧a)+∂xf(u∧a)
is locally a Radon measure in R×[0, T )×R. Assume the ”entropy production”
m satisfies
∫

R

|m| (R× (0, t̄), a) da ≤

∫

R

|q| (R× (0, t̄), a) da ∀ q ∈W and ∀t̄ ∈ (0, T ) .

(1.17)
Then u is the entropy solution, i.e. satisfies (1.2) and equivalently (1.4).

The proof of Theorem 1.4 is based on the work done in [AKLR]. One wishes
to generalize Theorem 1.4 to more general fluxes f . However this is not
straightforward from the work done in Chapter 1, since the proof of Theo-
rem 1.4 is based on the connection between hyperbolic scalar conservation
laws and Hamilton-Jacobi equations.
Another open question is the following: Let u0 ∈ L∞ be compactly sup-
ported. Then let u ∈W be a weak solution of (1.1) with defect measure m,
such that for a fixed T > 0 u statisfies

∫

R

|m|(R× [0, T ], a) da ≤

∫

R

|q|(R× [0, T ], a) da (1.18)
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for all q(x, t, a) = ∂tv ∧ a + ∂xf(v ∧ a), where v ∈ W. Now one might
wonder if the optimality of u at time T > 0 implies, that u is also optimal
for all times T1 < T . If this would hold, Theorem 1.4 would immediately
imply, that u is entropic. It is important to notice that via compensated
compactness one could show the existence of a minimizer satisfying (1.18).
Hence an improvement of Theorem 1.4 would immediately give that the
entropy solutions is an unique minimizer of the entropy production on a
fixed strip R× [0, t].
Another desirable improvement would be to have a more local statement of
Theorem 1.4. For (x0, t0) ∈ R× R+ let

D(x0,t0) = {(x, t) ∈ R× R+ : |x− x0| ≤ λ(t0 − t), 0 ≤ t ≤ t0} ,

where λ is the maximal speed of propagation. Let u be the entropy solution
of (1.1) for intial data u0 ∈ L∞ and m(x, t, a) its defect measure, then is it
true that for all (x0, t0)

∫

R

|m|(D(x0,t0), a) da ≤

∫

R

|q|(D(x0,t0), a) da (1.19)

for all q(x, t, a) = ∂tv ∧ a+ ∂xf(v ∧ a) such that v ∈W?

The second Chapter is dedicated to the control of oscillation of entropy so-
lutions u of (1.1). We are going to show

Theorem 1.5. Let f ∈ C2(R,R) be such that |{u ∈ R : f ′(u) = 0}| < ∞.
For an entropy solution u ∈ L∞ ∩ L1(R× R+) of (1.1) there exist constants
C > 0 and δ0 > 0 such that for all ε, δ ∈ (0, δ0) and for all (x0, t0), r ∈
(0, t0/4)

1

π(δr)2

∫

Bδr(x0,t0)

|u(x, t)− uδr| dx dt

≤ C

[

1

δr
µ(Br(x0, t0))

]
1
2

+
C

ρ(ε)4/3

[

1

r
µ(Br(x0, t0))

]
1
3

+ C

(

δ

ρ(ε)
+ ε

)

, (1.20)

where ρ(ε) is defined as

ρ(ε) = min
a∈{f ′′=0}

min
ε≤|u−a|≤2ε

|f ′′(u)| .
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Estimate (1.20) should provide a new tool for improving regularity results
like Theorem 1.2). Especially one wishes to deduce that the defect measure
m is H1-dimensional. However so far we are unable to recover the result in
[DR] completely. Nevertheless one wishes to generalize Theorem 1.5 to solu-
tions v ∈W. From that one could also slightly improve the results in [DOW]
like it is done in chapter two for entropic solutions. The approach in [DR]
seems to be limited to entropy solutions, since a central point in the proof
is the fact that for entropic solutions u to (1.1) the function f ′(u(·, t)) has
locally bounded variation, if the flux f is strictly non-linear. However this is
not true for non-entropic solutions even for Burgers equation, i.e. f(u) = 1

2u
2.

In order to obtain a control of oscillation for general weak solutions in W
one could use a comparison argument, i.e. let u be the entropy solution and
v ∈W be a weak solution. One wants to control

1

π(δr)2

∫

Bδr(x0,t0)

|v(x, t)− vδr| dx dt

in terms of the defect measure q(x, t, a) = ∂tv ∧ a+ ∂xf(v ∧ a). We observe

1

π(δr)2

∫

Bδr(x0,t0)

|v(x, t)−vδr| dx dt ≤ 2
1

π(δr)2

∫

Bδr(x0,t0)

|u(x, t)−v(x, t)| dx dt

+
1

π(δr)2

∫

Bδr(x0,t0)

|u(x, t)− uδr| dx dt . (1.21)

The first term on the right-hand side of (1.21) can be estimatet in terms of
m(x, t, a) = ∂tu∧ a+ ∂xf(u∧ a) and q(x, t, a) via kinetic averaging methods.
For the second term one applies Theorem 1.20. Finally a minimality result
in the spirit of (1.19) would then give a control of oscillation for v in terms
of q.
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Chapter 2

A Minimality property for
entropic solutions to scalar
conservation laws in 1 + 1

dimensions

This chapter is joint work with T. Rivière and will appear in Comm. PDE
35, (2010), 1763 - 1801

11
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2.1 Introduction

We consider solutions to the following equation

∂tu+ ∂xf(u) = 0 in R+ × R ,
u(x, 0) = u0(x) ,

}

(2.1)

with strictly convex flux f ( f ′′ ≥ c > 0 ) and initial data u0 ∈ L∞. It is
well known that even for smooth initial data classical solutions can cease to
exist in finite time, due to the possible formation of shocks (see Chapter 4.2
in [Da]). Therefore one has to consider weak solutions of (2.1), i.e. solutions,
which satisfy (2.1) in the distributional sense. However it turned out that
for given initial data the space of weak solutions is huge (see Chapter 4.4 in
[Da]). Therefore additional conditions have to be imposed to single out the
physical relevant weak solutions in some models.
In 1957 Oleinik proved in [Ol] uniqueness of bounded weak solutions, which
satisfy almost everywhere her ‘E-condition’

u(y, t)− u(x, t) ≤
y − x

ct
, for x < y , t > 0 , (2.2)

where c = inf f ′′. A immediate consequence of this condition (2.2) is a spec-
tacular regularization phenomena. Oleinik proved that for bounded measur-
able initial data the weak solution satisfying almost everywhere (2.2) becomes
immediately locally BV in the complement of the initial line .
A more powerful approach was given by Kruzhkov in [Kr], where he replaces
condition (2.2) by a family of integral inequalities. This approach covers
also cases, where f is non-convex and the space dimension is bigger than
one. However in the case of convex fluxes one can show that his entropy
condition is equivalent to Oleinik’s E-condition (see Chapter 8.5 in [Da]).
More precisely for u0 ∈ L∞ he proved existence and uniqueness of weak
solutions satisfying the entropy condition: an entropy solution is a bounded
function u which satisfies (2.1) in the sense of distributions and

∂tηa(u) + ∂xξa(u) ≤ 0 D′ , (2.3)

where (ηa, ξa)a∈R is the family of convex entropy flux pairs, such that

ηa(u) = (u− a)+ and ξa(u) = sign(u− a)+(f(u)− f(a)) , (2.4)

and w+ stands for max{w, 0}.

Equivalently one can replace the one parameter family (ηa, ξa)a∈R and assume
that (2.3) is fulfilled for all convex η with corresponding entropy flux ξ, which
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is defined by ξ =
∫

η′f ′. As a consequence one can show, if the initial data
u0 is in BVloc, that u is in BVloc for all later times.
Let a ∧ b denote min{a, b}. Let u ∈ L∞(R × [0, T )) be a weak solution of
(2.1), such that

m(x, t, a) = ∂t(u ∧ a) + ∂xf(u ∧ a) ∈Mloc(R× R+ × R)

where M denotes the space of Radon measures. One can define the absolute
value of the entropy production over a set Ω ⊂ R× R+ as being

EP =

∫

R

|m|(Ω, a) da . (2.5)

In the case of u being an entropy solution and hence in BV, the measure
m(x, t, a) and therefore the entropy production of u simplifies to

EP =

∫

Ω

∆(u+, u−)H1 Ju , (2.6)

where Ju denotes the rectifiable set of jump points of u, u+ and u− are
respectively the left and right approximate limits of u for some orientation
of Ju and

∆(a, b) =
(a− b)2

[

f(a)+f(b)
2

]

− (a− b)
∫ b
a f(s) ds

[(a− b)2 + (f(a)− f(b))2]
1
2

. (2.7)

It is natural to compare the different entropic productions of the weak solu-
tions to (2.1) - BV or not BV ! - and to ask the following questions : does
there exists a weak solution which minimizes the entropy production and, if
so, what properties does a minimizer of (2.5) have.
In this work we provide a partial answer to this question. We show a weak
solution of (2.1) whose entropy production increases in time less, than any
other weak solution’s entropy production, has to be the entropy solution.
Precisely: LetW denote the set of defect measures induced by a weak solution
of (2.1), i.e.

W :=

{

m(x, t, a) ∈Mloc s.t. m(x, t, a) = ∂tu ∧ a+ ∂xf(u ∧ a),
where u ∈ L∞ is a weak sol. of (2.1).

}

(2.8)

Our main result in the present work is the following.

Theorem 2.1. Let f ∈ C2(R) such that f ′′ ≥ c > 0 and

lim
|x|→∞

f(x) =∞ . (2.9)
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Moreover let u0 ∈ L∞(R) be compactly supported. Let u ∈ L∞(R× [0, T )) be
an arbitrary weak solution of (2.1), such thatm(x, t, a) = ∂tu∧a+∂xf(u∧a) is
locally a Radon measure in R× [0, T )×R . Assume the ”entropy production”
m satisfies
∫

R

|m| (R× (0, t̄), a) da ≤

∫

R

|q| (R× (0, t̄), a) da ∀ q ∈W and ∀t̄ ∈ (0, T ) .

(2.10)
Then u is the entropy solution, i.e. satisfies (2.2) and equivalently (2.3).

A similar criteria in a more restrictive setting is considered by Dafermos in
Chapter 9.7 of [Da]. He considers weak solutions u of (2.1) with initial data

u0(x) =

{

ul if x < 0 ,
ur if x > 0 .

(2.11)

Since the conservation law is invariant under Galilean transformations it is
reasonable in this case to consider weak solutions of the form

u(x, t) = v
(x

t

)

.

One can then define ω = x
t and consider v as a function only dependent of

ω, i.e. v = v(ω). Then v(ω) satisfies the ordinary differential equation

d

dω
(f(v(ω))− ωv(ω)) + v(ω) = 0

in the sense of distributions and has prescribed end states

lim
ω→−∞

v(ω) = ul and lim
ω→∞

v(ω) = ur .

Furthermore it is assumed that v is in BV and Jv denotes the set of jump
points ω for v. For a given entropy-entropy flux pair (η(u), ξ(u)) Dafermos
defines the combined entropy of the shocks in v by

Pv =
∑

ω∈Jv

{ξ(v(ω+))− ξ(v(ω−))− ω [η(v(ω+))− η(v(ω−))]} . (2.12)

Furthermore he introduces the rate of change of the total entropy production

Ḣv =
d

dt

∫ ∞

−∞

η(u(x, t)) dx =

∫ ∞

−∞

η(v(ω)) dω ,

for entropy-entropy flux pairs (η, ξ) such that η(ul) = η(ur) = 0.
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He shows that in this simple case the rate of change of the total entropy and
the entropy productions are related to each other by

Ḣv = Pv + ξ(ul)− ξ(ur) .

We can now relate the combined entropy Pv to our entropy productions:

−
1

T

∫

R

η′′(a)m(R× [0, T ], a) da = Pv (2.13)

Since T > 0 is arbitrary and Pv independent of T it follows from (2.13)

d

dt

∫

R

η′′(a)m(R× [0, t], a) da = Pv for all t > 0 , (2.14)

which finally relates (2.12) to (2.5).
Then a weak solution u = v

(

x
t

)

of (2.1) with initial data (2.11) is said
to satisfy the entropy rate admissibility criterion if it satisfies the following
optimality criterion of the entropy production

Pv ≤ Pṽ

or equivalently
Ḣv ≤ Ḣṽ

holds, for any other weak solution ũ = ṽ
(

x
t

)

of (2.1) with initial condition
(2.11).
Using (2.14) one can express in terms of the entropy production (2.5): A
solution u = v

(

x
t

)

with initial data (2.11) and defect measure m(x, t, a)
satisfies entropy rate admissibility criterion if

−
d

dt

∫

R

η′′(a)m(R×[0, t], a) da ≤ −
d

dt

∫

R

η′′(a)m̃(R×[0, t], a) da for all t > 0

(2.15)
for any other weak solution ũ = ṽ

(

x
t

)

of (2.1) with initial condition (2.11)
and defect measure m̃(x, t, a). One can also integrate (2.15) and obtains the
equivalent condition

−

∫

R

η′′(a)m(R× [0, t], a) da ≤ −

∫

R

η′′(a)m̃(R× [0, t], a) da for all t > 0 .

(2.16)
Therefore (2.15) and (2.16) show, that the entropy rate admissibility criterion
can be interpreted as a growth condition of the entropy production (2.5),
which is similar to the growth condition (2.10) in Theorem 2.1. In Chapter
9.5 of [Da] it is proved:
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Theorem. [Da] A weak solution u of (2.1) with initial data (2.11) satisfies
the entropy rate admissibility criterion for an entropy-entropy flux pair (η, ξ)
if and only if u satisfies the E-condition (2.2).

Again by (2.15) and (2.16) one sees, that this Theorem establishes, similar as
in Theorem 2.1, a connection between growth rate of the entropy production
(2.5) and entropy admissibility conditions (2.2) and (2.3). In Chapter 9.5
there is also an extension of this theorem in the case of strictly hyperbolic
systems. For further references in the case of systems we refer also to Chapter
9.12 in [Da].

Another results relating an optimality criterion to entropic solution is given
by A. Poliakovsky in [Po]. For u : Rn × [0, T ]→ Rk he considers a family of
energy functionals

Iε,f(u) =
1

2

∫ T

0

∫

Rn

(

ε|∇xu|
2 +

1

ε
|∇xH|2

)

dx dt+
1

2

∫

Rn

|u(x, T )|2 dx

(2.17)
where

∆xHu = ∂tu+ divx f(u) .

Under certain assumptions on the flux f he shows, that there exists a mini-
mizer to

inf {Iε,f(u) : u(x, 0) = u0(x)}

and this minimizer satisfies

∂tu+ divx f(u) = ε∆xHu ∀(x, t) ∈ Rn × (0, T ) ,
u(x, 0) = u0(x) ∀x ∈ Rn .

}

In the particular case k = 1, he calculates the Γ-limit of (2.17) as ε→ 0+ and
finds an alternative variational formulation of the admissibility criterion for
the particular solutions to the scalar conservation laws that can be achieved
by this relaxation procedure.

The result of A.Poliakovsky has been inspired by previous works establishing
a link between some variational optimality condition of a relaxed problem
and the entropy condition at the limit. Among these works we can quote
[RS1], [RS2] and [ALR]. Let us describe the results established in this 3
works here :

We consider for a bounded domain Ω ⊂ R2 the spaceMdiv(Ω), which consists
of unit vectorfields u such that u = eiϕ for a φ ∈ L∞(Ω,R) and div eiϕ∧a is a
Radon measure over Ω × R. This space Mdiv was introduced by S. Serfaty
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and the second author in [RS1] and [RS2] in connection to a problem related
to micromagnetism. We give here a brief description. Let Ω be a bounded
and simply connected domain, for u ∈ W 1,2(Ω, S1) and a ε > 0 we consider

Eε(u) = ε

∫

Ω

|∇u|2 +
1

ε

∫

R2

|H|2 , (2.18)

where H = ∇(G ∗ û) , û = u on Ω and û = 0 in Ωc and G is the kernel of the
Laplacian on R2.
It was proved in [RS1], [RS2] that from any sequence uεn ∈ W 1,2(Ω, S1)
such that ε → 0 and Eεn(uεn) < C one can extract a subsequence uεn′

such
that ϕεn′

converges strongly in Lp(Ω) for any p < ∞ to a limit ϕ such that
eiϕ = u ∈ Mdiv(Ω). Furthermore the authors are conjecturing that the
Γ-Limit should be given by the following functional E0 over Mdiv(Ω) :

E0(u) := 2

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da

Part of the Γ−convergence has been proved as they established in one hand
the following inequality

E0(u) := 2

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da ≤ lim inf Eεn′
(uεn′

)

and in the other hand that

lim
ε→0

inf
u∈W 1,2

Eε(u) = 2 inf
u∈Mdiv(Ω)

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da = 2|∂Ω| , (2.19)

where |∂Ω| is the perimeter of the set Ω. One can prove (see [RS1]), that
the infimum on the right hand side is achieved by u = −∇⊥ dist(·, ∂Ω) ∈
Mdiv(Ω). The function g = ∇⊥ dist(·, ∂Ω) is the viscosity solution of

|∇g|− 1 = 0 on Ω ,
g = 0 on ∂Ω .

}

(2.20)

A question, which was left open in [RS1] and [RS2] was to describe the
possible limits u of minimizing sequence of (2.18). It was conjectured that
u = ±∇⊥dist(·, ∂Ω) are the only possible limits of sequences of minimizers.
A positive answer to this conjecture has been given in [ALR]. Precisely, in
[RS2] it is proved that the limit u of a minimizing sequence of (2.18) satisfies
the entropy condition

div eiϕ∧a ≥ 0 for all a ∈ R (2.21)

or div eiϕ∧a ≤ 0 for all a ∈ R. Then in [ALR] the following result is
established
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Theorem. [ALR] Let u = −∇⊥g be a divergence free unit vector-field in
the space Mdiv(Ω). The entropy condition (2.21) holds if and only if g is a
viscosity solution of (2.20) and therefore g is locally semiconcave in Ω and
u ∈ BVloc(Ω, S1).

Therefore, as a conclusion, one deduces the following equivalences for this
particular problem

viscosity solution to (2.20) ⇐⇒ entropy condition (2.21)

⇐⇒ minimality of the entropy production (2.19) .

The paper is organized as follows: First, in section 2, we establish some
technical preliminary results. Then in Section 2.2.2 we will show, that the
measure

∫

R

m(x, t, a) da

has no points with strictly negative density, outside possibly a set of 1-
dimensional measure 0, i.e. we claim

lim
r→0+

1

r

∫

R

m (Br(x0, t0), a) da ≥ 0 for H1 a.e. (x0, t0) ∈ R×(0, T ). (2.22)

In the last section, using an argument similar to the one used to prove the
main result in [ALR], we deduce that the non negativity condition (2.22)
implies that u is entropic.
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2.2 Proof of Theorem 2.1

2.2.1 Preliminary results

In this section we define a notion of weak entropy solutions (see Definition
1) of scalar conservation laws on domain of trapezoidal shape (see (2.24).
Afterward we will prove Lemma 2.1, which roughly says that for that kind of
entropy solutions the same properties hold as in the classical case. We will
use this results in Section 2.2 and Section 2.3.
For 0 < t1 < t2 < T and a δ > 0 we define the set

Γt2
t1 := {(x, t)| t2 > t > γ(x, t1)} (2.23)

where

γ(x, t) :=















t− λ̂(x+ δ)) if x ≤ −δ ,

t if |x| ≤ δ ,

t+ λ̂(x− δ)) if x ≥ δ .

(2.24)

for a constant 0 < λ̂ ≤ 1. Further we set

Λt2
t1 := {(x, t)| (x, t) = (x, γ(x, t1)) and t1 ≤ t < t2} .

Γ
t2
t1

Λ
t2
t1

x

t

t2

−δ δ

Figure 2.1: The set Γt2
t1

As for mentioned we define now a notion of weak respective entropy solution
on the domain Γt2

t1

Definition 1. For a v1 ∈ L∞(Λt2
t1) we say that v ∈ L∞(Γt2

t1) is weak solution
of

∂tv + ∂xf(v) = 0 in Γt2
t1 ,

v = v1 on Λt2
t1 ,

}

(2.25)
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if for all ψ ∈ C∞
c (R× [0, t2))

∫

Γ
t2
t1

v∂tψ + f(v)∂xψ dx dt =

∫

Λ
t2
t1

ψ

(

f(v1)
v1

)

· n dσ . (2.26)

holds, where n is the outer unit normal of Γt2
t1. Furthermore we say that

v ∈ L∞(Γt2
t1) is an entropy solution of (2.25), if v additionally satisfies

q(x, t, a) := ∂tv ∧ a+ ∂xf(v ∧ a) ∈Mloc and q(x, t, a) ≥ 0 .

A priory it is unclear if, for an arbitrary boundary condition v1 ∈ L∞(Λt2
t1)

the conservation law (2.25) possess a weak solution or not. We can however
prove the following proposition.

Proposition 2.1. Let v1 ∈ L∞(R× [0, T )) be a weak solution of (2.1). Then
for all 0 < λ̂ < 1 and for almost every t1 ∈ (0, T ) and all t2 ∈ (t1, T ) the
problem

∂tv + ∂xf(v) = 0 in Γt2
t1 ,

v = v1 on Λt2
t1 ,

}

has an entropy solution in the sense of Definition 1.

The basic idea for proving Proposition 2.1 is to use the correspondence be-
tween weak solutions of (2.1) and viscosity subsolutions of

∂tg + f(∂xg) = 0 ,

g(x, 0) = g0(x) .

}

(2.27)

Before we are going to prove our assertion, we briefly repeat the definitions
of viscosity sub- and supersolutions. We say that g is a viscosity solution of
(2.27), if for any point (x0, t0) ∈ R× (0, T ) and for any ψ ∈ C1(R2) such that
g − ψ attains its maximum in (x0, t0) the following inequality holds

∂tψ(x0, t0) + f(∂xψ(x0, t0)) ≤ 0 .

Similarly we say, that g is a viscosity supersolution of (2.27), if for any point
(x0, t0) ∈ R× (0, T ) and for any for any ψ ∈ C1(R2) such that g − ψ attains
its minimum in (x0, t0) the following inequality holds

∂tψ(x0, t0) + f(∂xψ(x0, t0)) ≥ 0 .

We say that g is a viscosity solution of (2.27), if g is both a sub- and su-
persolution. Theorem 2 in [CH] establishes a correspondence between weak
solutions of (2.1) and viscosity subsolutions of (2.27).
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Theorem 2.2 (Conway, Hopf). Let u ∈ L∞(R× [0, t)) be a weak solution of
(2.1). Then there exists a g ∈ W 1,∞(R× [0, T )) which satisfies (2.27) almost
everywhere and is such that u(x, t) = ∂xg(x, t) and u0 = ∂xg(x, 0) for almost
every x ∈ R.

Proof of Proposition 2.1. Let v1 ∈ L∞(R × [0, T )) be a weak solution
of (2.1); then according to Theorem 2.2 there exists g1 ∈ W 1,∞(R × [0, T )),
which solves (2.27) almost everywhere. By Fubini’s Theorem we can choose
t1 such that both ∂tg1 and ∂xg1 are in L∞(Λt2

t1) and such that
∫

Λ
t2
t1

∂tg1 + f(∂xg1) dσ = 0 and v1 = ∂xg1 a.e. on Λt2
t1 . (2.28)

For t1 < t2 < T we want to show, that there exists a viscosity solution g of

∂tg + f(∂xg) = 0 in Γt2
t1 ,

g = g1 on Λt2
t1 .

}

(2.29)

Then we claim, that v = ∂xg is an entropy solution of (2.25), in the sense of
Definition 1. The existence of such a viscosity solution g will be guaranteed
by the existence result of Ishi (see Theorem 3.1 in [Is]). In order to be
able to apply that theorem we must find a viscosity subsolution g and a
viscosity supersolution g of (2.29), which satisfy pointwise g = g = g1 on
Λt2

t1 and g ≤ g in Γt2
t1 . According to Proposition 5.1 on page 77 in [BC], the

fact that g1 satisfies (2.27) almost everywhere implies, that g1 is a viscosity
subsolution of (2.27). Thus we can put g = g1 and it remains to find a
viscosity supersolution g such that g ≥ g1 and g = g1 on Λt2

t1 . For two
positive constants A, B we consider the function

gy(x, t) = g1(y, γ(y, t1)) + A|x− y|+B|t− γ(y)| .

We calculate for (x, t) ∈ Γt2
t1

∂tgy(x, t) + f(∂xgy(x, t)) = B sign(t− γ(y)) + f(A sign(x− y)) .

By (2.9) this is positive, if we choose A large enough. Thus

∂tgy(x, t) + f(∂xgy(x, t)) > 0 for (x, t) ∈ Γt2
t1 .

Proposition 5.1 on page 77 and Proposition 5.4 on page 78 in [BC] imply, that
g is a viscosity supersolution. Further we notice, since g1 ∈ W 1,∞(R× [0, T )),
that for all y and suitable choices of A and B

g1(x, t) ≤ g(y, γ(y)) + A|x− y|+B|t− γ(y)| .
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By Proposition 2.11 on page 302 in [BC]

g(x, t) = inf
y
gy(x, t)

is still a supersolution. Furthermore g satisfies by construction g = g1 on Λt2
t1

and g ≥ g in Γt2
t1 . Hence all assumptions of the existence result (Theorem

3.1) in [Is] are fulfilled. Therefore there exists a viscosity solution g of (2.29)
such that g1 ≤ g ≤ g. By Example 1 in [Is], the viscosity solution is Lipschitz
continuous, i.e. g ∈ W 1,∞(Γt2

t1). For (x, t) ∈ Γt2
t1 and (y, s) ∈ Λt2

t1 we notice
that

g1(x, t)− g(y, s) ≤ g(x, t)− g(y, s) ≤ g(x, t)− g1(y, s) .

Using the fact that g1 is Lipschitz continuous and the construction of g we
deduce from the previous line

−‖(x, t)− (y, s)‖C1 ≤ g(x, t)− g(y, s) ≤ C2‖(x, t)− (y, s)‖ ,

which means g ∈ W 1,∞(Γt2
t1 ∪ Λt2

t1).
Next we are going to show, that v = ∂xg is a weak solution of (2.25) in Γt2

t1 in
the sense of Definition 1. Since g satisfies (2.29) almost everywhere it follows
for a ψ ∈ C∞

c (R× [0, t2))
∫

Γ
t2
t1

∂tψ∂tg + f(∂xg)∂xψ dx dt = 0 . (2.30)

We denote the outer unit normal vector of Γt2
t1 by n. Integrating the first

term (2.30) twice by parts gives
∫

Γ
t2
t1

∂xψ∂tg dx dt =

∫

∂Γ
t2
t1

g

(

−∂tψ
∂xψ

)

· n dσ +

∫

Γ
t2
t1

∂tψ∂xg dx dt . (2.31)

Rewriting the boundary term in (2.31) and using the fact that ψ(x, t2) = 0
leads to

∫

∂Γ
t2
t1

g

(

−∂tψ
∂xψ

)

· n dσ =

∫

Λ
t2
t1

g1

(

−∂tψ
∂xψ

)

· n dσ

=

∫ s2

s1

g1(s, γ(s, t1)) [∂tψ(s, γ(s, t1))γ
′(s, t1) + ∂xψ(s, γ(s, t1))] ds . (2.32)

We integrate the right-hand side of (2.32) by parts
∫ s2

s1

g1(s, γ(s, t1)) [∂tψ(s, γ(s, t1))∂sγ(s, t1) + ∂xψ(s, γ(s, t1))] ds

=

∫ s2

s1

g1(s, γ(s, t1))
d

ds
ψ(s, γ(s, t1)) ds = −

∫ s2

s1

d

ds
g1(s, γ(s, t1)) · ψ ds .

(2.33)
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Therefore combining (2.32) and (2.33) we can rewrite the boundary term in
(2.31) as

∫

∂Γ
t2
t1

g1

(

−∂tψ
∂xψ

)

· n dσ =

∫ s2

s1

[∂xg1 + ∂tg1 · ∂sγ(s, t1)]ψ ds (2.34)

Using (2.28) the right-hand side of (2.34) simplifies to

∫

∂Γ
t2
t1

g1

(

−∂tψ
∂xψ

)

· n dσ =

∫ s2

s1

[∂xg1 − f(∂xg1) · ∂sγ(s, t1)]ψ ds

=

∫

Λ
t2
t1

ψ

(

−f(∂xg1)
∂xg1

)

· n dσ ,

where n is the unit normal to Γt2
t1 . We replace now the boundary term in

(2.31) using the above identity

∫

Γ
t2
t1

∂xψ∂tg dx dt =

∫

Λ
t2
t1

ψ

(

∂xg1
−f(∂xg1)

)

· τ dσ +

∫

Γ
t2
t1

∂tψ∂xg dx dt .

Finally this together with (2.30) gives

∫

Λ
t2
t1

ψ

(

∂xg1
−f(∂xg1)

)

· τ dσ +

∫

Γ
t2
t1

∂tψ∂xg + f(∂xg)∂xψ dx dt = 0 .

Since v1 = ∂xg1 and by putting v = ∂xg we see that v is a solution of (2.25)
in the sense of Definition 1. It remains to show that v is an entropy solution
in the sense that

∂tv ∧ a + ∂xf(v ∧ a) ≥ 0 D′ .

By Corollary 1.7.2 in [CS] v satisfies for all (x, t), (y, t) ∈ Γt2
t1 such that x < y

v(y, t)− v(x, t) ≤
y − x

ct
.

This immediately implies q(x, t, a) ≥ 0 (see Section 8.5 in [Da]).

Proposition 2.1 being proved, we now establish some properties for entropy
solutions to (2.25) analogous to those in the classical case (see [Da]). Precisely
we are going to show

Lemma 2.1. Let v1 ∈ L∞(R × (0, T )) be a weak solution of (2.1). Then
there exists a constant λ0 > 0, depending on f and ‖v1‖∞, such that, for any
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domain Γt2
t1 satisfying 0 < λ̂ ≤ λ0, the entropy solution v ∈ L∞(Γt2

t1) of (2.25)
with boundary condition v1 ∈ L∞(Λt2

t1) satisfies

lim
ε→0+

∫ s2−ε

s1

|v(s, γ(s, t1 + ε))− v1(s, γ(s, t1))| ds = 0 , (2.35)

where

s1 = −
t2 − t1

λ̂
− δ and s2 =

t2 − t1

λ̂
+ δ .

Moreover
‖v‖∞ ≤ ‖v1‖∞ (2.36)

and there exists a constant C > 0, depending only on ‖v‖1 and λ̂, such that

∫

Γ
t2
t1

q(x, t, a) da dx dt ≤ C(t2 − t1) . (2.37)

Let now w1, w2 ∈ L∞(R×(0, T )) be weak solutions of (2.1). Then there there
exists a constant λ1 > 0 depending on f and max{‖w1‖∞, ‖w2‖∞} such that,
for any domain Γt2

t1 satisfying 0 < λ̂ ≤ λ1 and any choice of two entropy so-
lutions respectively v1 ∈ L∞(Γt2

t1) with boundary condition w1 ∈ L∞(Λt2
t1)

and v2 ∈ L∞(Γt2
t1) with boundary condition w2 ∈ L∞(Λt2

t1) the following
holds : for any t ∈ (t1, t2) and a constant C > 0 depending on Γt2

t1 and
max{‖w1‖∞, ‖w2‖∞}:

∫ θ+(t)

θ−(t)

|v1(x, t)− v2(x, t)| dx ≤ C

∫

Λ
t2
t1

|w1 − w2| dσ , (2.38)

where

θ±(t) = ±
t− t1

λ̂
± δ .

Remark 1. Inequality (2.38) implies in particular the uniqueness of the en-
tropy solution for a given initial data w on Λt2

t1 issued from a weak solution
to (2.1).

Proof of Lemma 2.1. We start to prove (2.35). Let R > 0 such that

R + f(±R) ≥ 0 .

We choose λ0 such that

λ−1
0 = max {|f ′(R + 1 + ‖v1‖∞)| , |f ′(−R− 1− ‖v1‖∞)|} . (2.39)
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We consider now a domain Γt2
t1 such that λ̂ ≤ λ0 and an entropy solution

v ∈ L∞(Γt2
t1) of (2.25) exists. From Example 1 in [Is], we know, that

‖v‖∞ ≤ R + 1 . (2.40)

Let ψ ∈ C∞
c (R × [0, t2)). From Theorem 1.3.4 in [Da] we get for all ε > 0

such that t1 + ε < t2
∫

Γ
t2−ε
t1+ε

v∂tψ + f(v)∂xψ dx dt =

∫

∂Γ
t2−ε
t1+ε

(

f(v)
v

)

· nψ dσ . (2.41)

As ε→ 0+ the left-hand side of (2.41) converges to
∫

Γ
t2
t1

v∂tψ + f(v)∂xψ dx dt .

Since v is a weak solution of (2.25) and ψ(x, t2) = 0 the right-hand side of
(2.41) behaves like

lim
ε→0+

∫

Λ
t2−ε
t1+ε

(

f(v)
v

)

· nψ dσ =

∫

Λ
t2
t1

(

f(v1)
v1

)

· τψ dσ (2.42)

In order to keep the notation simple we introduce

γ̄(s) =

(

s
γ(s, t1)

)

and vε(x, t) = v(x, t+ ε)

and rewrite (2.42) as

lim
ε→0+

∫ s2−ε

s1+ε

{

v1(γ̄(s))− vε(γ̄(s)) + λ̂ [f(vε(γ̄(s)))− f(v1(γ̄(s)))]
}

ψ ds = 0 .

(2.43)
By (2.39) we obtain the existence of some constants C, c > 0 for which the
following holds

c ≤ 1± f(α) ≤ C for all α ∈ (−R − 1− ‖v1‖∞, R+ 1 + ‖v‖∞) .

Therefore we get from (2.43), that

lim
ε→0+

v(s, γ(s, t1 + ε)) = v1(s, γ(s)) for a.e. s ∈ [s1, s2] . (2.44)

By dominated convergence, we deduce the claim (2.35).
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To prove the remaining claims of our lemma, we need to introduce the ki-
netic formulation of conservation laws, we recommend the introduction to
this subject given in [Pe]. However we need here a slight modified version of
this formulation. We define for any v ∈ R

χ(v; a) := a≤v ,

where a≤v is the characteristic function of the set {a ∈ R : a ≤ v}. Then a
weak solution v ∈ L∞(Γt2

t1) of (2.25) satisfies in the distributional sense

∂tχ(v(x, t); a) + f ′(a)∂xχ(v(x, t); a) = ∂aq(x, t, a) in Γt2
t1 ,

χ(v; a) = χ(v1; a) on Λt2
t1 .

}

(2.45)

In other words this means that for all ψ ∈ C∞
c (R× [0, t2)× R)

∫

Γ
t2
t1

∫

R

χ(v; a)∂tψ + f ′(a)χ(v; a)∂xψ da dx dt

=

∫

Γ
t2
t1

ψ∂aq(x, t, a) +

∫

Λ
t2
t1

∫

R

ψ

(

f ′(a)χ(v1; a)
χ(v1; a)

)

· n da dσ . (2.46)

In order to prove (2.38), (2.36) and (2.37) we need to regularize our kinetic
equation (2.45). We choose ϕ1(x), ϕ2(t) ∈ C∞

c (R) non-negative functions
such that

supp ϕ1 ⊂ (−1, 1) , supp ϕ2 ⊂ [−1, 0]

and
∫

R

ϕ2 dx =

∫

R

ϕ1 dx = 1 .

We define the kernel

ϕε(x, t) =
1

ε2
ϕ1

(x

ε

)

ϕ2

(

t

ε

)

. (2.47)

For a constant C depending only from λ̂ we have

dist((x, t), ∂Γt2
t1) > ε for all (x, t) ∈ Γt2−Cε

t1+Cε .

Consequently for (x, t) ∈ Γt2−Cε
t1+Cε

ϕε(x− y, t− s) = 0 for (y, s) ∈ ∂Γt2
t1 . (2.48)

We define moreover the two mollified functions

χε(x, t, a) =

∫

Γ
t2
t1

ϕε(x− y, t− s)χ(v(y, s); a) dy ds
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and

qε(x, t, a) =

∫

Γ
t2
t1

ϕε(x− y, t− s)q(y, s, a) dy ds .

For qε and (x, t) ∈ Γt2−Cε
t1+Cε we compute

qε(x, t, a)− qε(x, t, b) =

∫

Γ
t2
t1

ϕε(x− y, t− s) [dq(y, s, a)− dq(y, s, b)]

= −

∫

Γ
t2
t1

∂tϕε(x− y, t− s) [v ∧ a− v ∧ b]

+ ∂xϕε(x− y, t− s) [f(v ∧ a)− f(v ∧ b)] dy ds ,

where we have made use of (2.48). Since

|v ∧ a− v ∧ b| ≤ ‖v‖∞|b− a|

it follows from above calculation

|qε(x, t, a)− qε(x, t, b)| ≤

∫

Γ
t2
t1

|∂tϕε| · ‖v‖∞|b− a|+ C |∂xϕε| · ‖v‖∞|b− a| dy ds

≤ C|b− a| .

Therefore qε is Lipschitz continuous with respect to the kinetic variable a
and we have for almost every a ∈ R in the classical sense

∂tχε + f ′(a)∂xχε = ∂aqε(x, t, a) in Γt2−Cε
t1+Cε . (2.49)

Notice that due to the convolution with ϕε both χε and qε are smooth with
respect to (x, t). Furthermore for (x, t) ∈ Γt2−Cε

t1+Cε the function qε satisfies

qε(x, t, a) = 0 if |a| ≥ ‖v‖∞ . (2.50)

This follows from the classical fact, that

q(x, t, a) = 0 for |a| ≥ ‖v‖∞ .

Indeed for |a| ≥ ‖v‖∞ and ψ ∈ C∞
c (Γt2

t1) we compute
∫

Γ
t2
t1

q(x, t, a)ψ(x, t) dx dt =

∫

Γ
t2
t1

[∂tv(x, t) ∧ a+ ∂xf(v(x, t) ∧ a)]ψ(x, t) dy ds

=

∫

Γ
t2
t1

[∂tv(x, t) + ∂xf(v(x, t))]ψ(x, t) dx dt

= −

∫

Γ
t2
t1

v(x, t)∂tψ(x, t) + f(v(x, t))∂xψ(x, t) dx dt

= 0 .
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We consider now a convex function η(a) in C2 which satisfies

lim
a→−∞

η(a) = 0

and define

ξ(a) :=

∫

η′(a)f ′(a) da .

We claim
Claim 1. For all (x, t) ∈ Γt2−Cε

t1+Cε the following equality holds

∂tηε(x, t) + ∂xξε(x, t) = −

∫

Γ
t2
t1

η′′(a)qε(x, t, a) da , (2.51)

where

ηε(x, t) =

∫

Γ
t2
t1

η(v(y, s))ϕε (x− y, t− s) dy ds

and

ξε(x, t) =

∫

Γ
t2
t1

ξ(v(y, s))ϕε (x− y, t− s) dy ds .

Later will make special choices of η in order to get (2.36) and (2.37).

Proof of claim 1. We multiply the regularized kinetic formulation (2.49)
by η′(a)

η′(a)∂tχε + η′(a)f ′(a)∂xχε = ∂aqε(x, t, a) .

Then integrating this equation with respect to a gives

∫

R

η′(a)∂tχε + η′(a)f ′(a)∂xχε da =

∫

R

η′(a)∂aqε(x, t, a) da . (2.52)

We observe
∫

R

η′(a)χε da =

∫

Γ
t2
t1

∫

R

η′(a)χ(v(y, s); a)ϕε (x− y, t− s) da dy ds

=

∫

Γ
t2
t1

η(v(y, s))ϕε (x− y, t− s) dy ds = ηε(x, t)

and
∫

R

η′(a)f ′(a)χε da =

∫

Γ
t2
t1

ξ(v(y, s))ϕε (x− y, t− s) dy ds = ξε(x, t) .
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Thus (2.52) reduces to

∂tηε(x, t) + ∂xξε(x, t) =

∫

R

η′(a)∂aqε(x, t, a) da . (2.53)

Integrating the right-hand side by parts gives

∫

R

η′(a)∂aqε(x, t, a) da = −

∫

R

η′′(a)q(x, t, a) da ,

where we have used the fact that qε is compactly supported in a. This gives
the result (2.51) and claim 1 is proved.

Next we integrate inequality (2.51) over the set Γt̄
t1+Cε, where t̄ ∈ (t1 +

Cε, t2 − Cε). We will abbreviate t1 + Cε by t̄1. We have

∫

Γt̄
t̄1

∂tηε(x, t) + ∂xξε(x, t) dx dt = −

∫

Γt̄
t̄1

∫

R

η′′(a)qε(x, t, a) da . (2.54)

Using Gauss’ Theorem for (2.54) gives

∫ θ+ε (t̄)

θ−ε (t̄)

ηε(x, t̄) dx = −

∫

Λt̄
t̄1

(

ξε
ηε

)

· n dσ −

∫

Γt̄
t̄1

∫

R

η′′(a)qε(x, t, a) da , (2.55)

where

θ±ε (t) = ±
t̄− t̄1

λ̂
± δ . (2.56)

For suitable choices of η this equality (2.55) will imply the first two claims
of Lemma 2.1.
First we prove (2.36). Let a0 be a real number being fixed later in this proof.
We choose

η(a) =

{

(a− a0) if a− a0 ≥ 0 ,
0 if a− a0 ≤ 0

and we aim to deduce

∫ θ+(t̄)

θ−(t̄)

|v(x, t̄)− a0|
+ dσ ≤ C

∫

Λt̄
t1

|v0(x)− a0|
+ dσ , (2.57)

from equality (2.55). The non-negativity of η′′(a) and qε implies

∫

Γt̄
t̄1

∫

R

η′′(a)qε(x, t, a) da ≥ 0 .
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Using this inequality in equality (2.55) we obtain the estimate

∫ θ+ε (t̄)

θ−ε (t̄)

ηε(x, t̄) dx ≤ −

∫

Λt̄
t̄1

(

ξε
ηε

)

· n dσ .

Letting ε→ 0+ we get

∫ θ+(t̄)

θ−(t̄)

η(x, t̄) dx ≤ −

∫

Λt̄
t1

(

ξ(v1)
η(v1)

)

· n dσ .

We observe
|ξ(a)| ≤ max

|b|≤‖v1‖∞
|f ′(b)| · η(a) , (2.58)

which implies
∫ θ+(t̄)

θ−(t̄)

η(x, t̄) dx ≤ C

∫

Λt̄
t1

η(v1) dx .

This is our desired result (2.57) and choosing a0 = ‖v1‖∞ in (2.57) gives

∫ θ+(t̄)

θ−(t̄)

|v(x, t̄)− a0|
+ dσ = 0

and thus (2.36) follows:

|v(x, t)| ≤ ‖v1‖∞ a.e. in Γt2
t1 .

In order to prove (2.37), we choose now

η(a) :=







2a2 if a ≥ −‖v‖∞ ,
(a+ ‖v‖∞) + 2‖v‖2∞ if −(‖v‖∞ + 2‖v‖2∞) ≤ a ≤ −‖v‖∞ ,

0 if a ≤ −(‖v‖∞ + 2‖v‖2∞) .

Since η is non-negative, we deduce from (2.55)

2

∫

Γ
t2−Cε
t1+Cε

∫

R

qε(x, t, a) da dx dt ≤ −

∫

Λt̄
t̄1

(

ξε
ηε

)

· n dσ . (2.59)

Since η(a) = 2a2 for a ∈ [−‖v‖∞, ‖v‖∞] we get

|ξ(a)| =

∫ a

−‖v‖∞

|η′(b)f ′(b)| db ≤ f ′(‖v‖∞)

∫ |a|

−‖v‖∞

|η′(b)| db .
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Hence by letting ε→ 0 in (2.59), we obain

∫

Γ
t2
t1

∫

R

q(x, t, a) da dx dt ≤ C(δ + t2 − t1) ,

as announced in (2.37).

Finally we are going to prove (2.38). We choose the domain Γt2
t1 in such a

way that
0 < λ̂ ≤ λ1 ,

where
λ1 =

1
2

(

maxa∈[−α,α] |f ′(a)|
)−1

and

α = max{‖w1‖∞, ‖w2‖∞} .

(2.60)

For the two entropy solutions v1, v2 with boundary conditions w1 and w2 we
consider the kinetic equations

∂tχi + f ′(a)∂xχi = ∂aqi in D′(Γt2
t1 × R)

χi = χ(wi; a) on Λt2
t1

}

where χi = χ(vi(x, t); a) for i = 1, 2 . Then, as before, we can regularize our
kinetic equations with the kernel defined in (2.47)

∂tχεi + f ′(a)∂xχεi = ∂aqεi (x, t, a) in Γt2−Cε
t1+Cε

where

χεi (x, t, a) =

∫

Γ
t2
t1

χ(vi(x, t); a)ϕε(x− y, t− s) dx dt for i = 1, 2

and C > 0 is again chosen such that for (x, t) ∈ Γt2−Cε
t1+Cε

ϕε(x− y, t− s) = 0 for (y, s) ∈ ∂Γt2
t1 .

The function (χε1 − χε2)
2 satisfies for (x, t) ∈ Γt2−Cε

t1+Cε and almost every a ∈ R

∂t (χ
ε
1 − χε2)

2 + f ′(a)∂x (χ
ε
1 − χε2)

2

= χε1∂aq
ε
1 + χε2∂aq

ε
2 − χε2∂aq

ε
1 − χε1∂aq

ε
2 . (2.61)
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We use again the following abbreviation: t1+Cε = t̄1. Let t̄ ∈ (t̄1,+t2−Cε)
then we integrate (2.61) in Γt̄

t̄1
× R which leads to

∫

Γt̄
t̄1

∫

R

∂t (χ
ε
1 − χε2)

2 + f ′(a)∂x (χ
ε
1 − χε2)

2 da dx dt

=

∫

Γt̄
t̄1

∫

R

χε1∂aq
ε
1 + χε2∂aq

ε
2 − χε2∂aq

ε
1 − χε1∂aq

ε
2 da dx dt . (2.62)

We recall, that χ(v; a) = a≤v and

q1(x, t, a) = q2(x, t, a) = 0 for |a| ≥ max{‖v1‖∞, ‖v2‖∞} .

Therefore we can calculate for (x, t) ∈ Γt̄
t̄1
and i, j ∈ {1, 2}

∫

R

χεi∂aq
ε
j da =

∫

R

∫

Γ
t2
t1

χ(vi(y, s); a)ϕε(x− y, t− s)qεj (x, t, a) dy ds da

=

∫

Γ
t2
t1

qεj (x, t, vi(y, s))ϕε(x− y, t− s) dy ds .

Since ϕε and qε are non-negative we obtain

∫

R

χε2∂aq
ε
1 da ≥ 0 and

∫

R

χε1∂aq
ε
2 da ≥ 0 ,

which we apply in (2.62) and gives the inequality

∫

Γt̄
t̄1

∫

R

∂t (χ
ε
1 − χε2)

2 + f ′(a)∂x (χ
ε
1 − χε2)

2 da dx dt

≤

∫

Γt̄
t̄1

∫

R

χε1∂aq
ε
1 + χε2∂aq

ε
2 da dx dt . (2.63)

For the left hand-side of (2.63) we compute

∫

R

∫

Γt̄
t̄1

∂t (χ
ε
1 − χε2)

2 + f ′(a)∂x (χ
ε
1 − χε2)

2 dx dt da

=

∫

R

∫ θ+ε (t̄)

θ−ε (t̄)

(χε1 − χε2)
2 (x, t̄) dx da+

∫

Λt̄
t̄1

∫

R

(

f ′(a) (χε1 − χε2)
2

(χε1 − χε2)
2

)

· n da dσ ,

(2.64)
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where θ±ε are defined in (2.56). Using identity (2.64) in (2.63) gives

∫

R

∫ θ+ε (t̄)

θ−ε (t̄)

(χε1 − χε2)
2 (x, t̄) dx da

≤

∫

Γt̄
t̄1

∫

R

χε1∂aq
ε
1 + χε2∂aq

ε
2 da dx dt−

∫

Λt̄
t̄1

∫

R

(

f ′(a) (χε1 − χε2)
2

(χε1 − χε2)
2

)

· n da dσ .

(2.65)

We claim
Claim 2. For i ∈ {1, 2} we have

lim
ε→0+

∫

Γt̄
t1

∫

R

χεi∂aq
ε
i da dx dt = 0 . (2.66)

Proof of Claim 2. We consider the function χεi − (χεi )
2 which satisfies

satisfies pointwise for (x, t) ∈ Γt2−Cε
t1+Cε and almost every a ∈ R

∂t
[

χεi − (χεi )
2]+ f ′(a)∂x

[

χεi − (χεi )
2] = ∂aq

ε
i + 2χεi∂aq

ε
i .

Integrating this in Γt̄
t̄1
× R leads to

∫

R

∫

Γt̄
t̄1

∂t
[

χεi − (χεi )
2]+ f ′(a)∂x

[

χεi − (χεi )
2] dx dt da

=

∫

R

∫

Γt̄
t̄1

2χεi∂aq
ε
i dx dt da , (2.67)

where we made use of the fact, that qεi is compactly supported in a. For the
left-hand side of (2.67) one can compute with the divergence Theorem

∫

R

∫

Γt̄
t̄1

∂t
[

χεi − (χεi )
2]+ f ′(a)∂x

[

χεi − (χεi )
2] dx dt da

=

∫

R

∫ θ+ε (t̄)

θ−ε (t̄)

[

χεi − (χεi )
2] (x, t̄) dx da+

∫

Λt̄
t̄1

∫

R

(

f ′(a)[χεi − (χεi )
2]

χεi − (χεi )
2

)

·n da dσ .

(2.68)

For the right-hand side of (2.68) we observe

lim
ε→0+

∫

R

∫ θ+ε (t̄)

θ−ε (t̄)

[

χεi − (χεi )
2] (x, t̄) dx da

=

∫

R

∫ θ+(t̄)

θ−(t̄)

[

χi − (χi)
2] (x, t̄) dx da (2.69)



34 CHAPTER 2. A MINIMALITY PROPERTY

and

lim
ε→0+

∫

Λt̄
t̄1

∫

R

(

f ′(a)[χεi − (χεi )
2]

χεi − (χεi )
2

)

· n da dσ

=

∫

Λt̄
t1

∫

R

(

f ′(a)[χi − (χi)
2]

χi − (χi)
2

)

· n da dσ . (2.70)

Since
χi = (χi)

2

the right-hand side of (2.69) and (2.70) are zero. Thus

lim
ε→0+

∫

R

∫ θ+ε (t̄)

θ−ε (t̄)

[

χεi − (χεi )
2] (x, t̄) dx da+

∫

Λt̄
t̄1

∫

R

(

f ′(a)[χεi − (χεi )
2]

χεi − (χεi )
2

)

·n da dσ

= 0 . (2.71)

With (2.68) one concludes

lim
ε→0+

∫

R

∫

Γt̄
t̄1

∂t
[

χεi − (χεi )
2]+ f ′(a)∂x

[

χεi − (χεi )
2] dx dt da = 0 .

Finally taking limits on both sides of (2.67) we get

lim
ε→0+

∫

Γt̄
t1

∫

R

χεi∂aq
ε
i da dx dt = 0 for i ∈ {1, 2} ,

as announced.
Letting ε→ 0+ in (2.65) and using (2.66) leads to
∫

R

∫ θ+(t̄)

θ−(t̄)

(χ1 − χ2)
2 (x, t̄) dx da ≤ −

∫

Λt̄
t1

∫

R

(

f ′(a) (χ1 − χ2)
2

(χ1 − χ2)
2

)

· n da dσ .

(2.72)
We compute

∫

R

(χ(v1(x, t); a)− χ(v2(x, t); a))
2 da = |v1(x, t)− v2(x, t)| , (2.73)

and
(

(χ1 − χ2)
2

f ′(a) (χ1 − χ2)
2

)

· n = (χ1 − χ2)
2 · (1± λ̂f ′(a)) (2.74)

Applying (2.73) and (2.74) in (2.72) gives
∫ θ+(t̄)

θ−(t̄)

|v1(x, t̄)−v2(x, t̄)| dx ≤ C

∫

Λt̄
t1

|w1(s, γ(s, t1))−w2(s, γ(s))| dσ (2.75)

as claimed.
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2.2.2 Blow up at the points of negative density.

In this section we aim to prove the following lemma

Lemma 2.2. Let u ∈ L∞(R × [0, T )) be a weak solution of (2.1), which
satisfies (2.10). Then for every (x0, t0) ∈ R× (0, T )

lim sup
r→0+

1

r

∫

R

m (Br(x0, t0), a) da ≥ 0 .

A useful lemma that will be used to prove Lemma 2.2 is the following.

Lemma 2.3. Let u ∈ L∞(R × (0, T )) be a weak solution of (2.1), which
satisfies (2.10). Let rn → 0+. For (x0, t0) ∈ R× (0, T ) define

un(x, t) := (D−1
n )

∗
u(x, t)

and

µn :=
1

rn

∫

R

(Dn)∗mda ,

where

Dn(x, t) =

(

x− x0

rn
,
t− t0
rn

)

. (2.76)

Then there exists for every (x0, t0) ∈ R× (0, T ) a subsequence rk such that

uk → u∞ in L1
loc(R

2) .

And furthermore
µk ⇁

∗ µ∞ in Mloc(R
2) .

Which means in other words
∫

R2

ψ dµk →

∫

R2

ψ dµ∞ for all ψ ∈ C0
c (R

2) .

Lemma 2.3 will be a consequence of of the following proposition, which is
proved in Appendix A of [Le2].

Proposition 2.2. For any constant M ≥ 0, for any bounded set Ω, the set
{

u ∈ L∞(Ω) : ‖u‖∞ +

∫

R

|m|(Ω, a) ≤M

}

is compact in L1(Ω) with respect to the strong topology.
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Proof of Lemma 2.3. By construction we already have

‖un‖∞ ≤ ‖u‖∞ . (2.77)

For this reason it remains to show that for all R > 0 and for every (x0, t0) ∈
R× (0, T ) there exists a constant C > 0 depending on R, such that

lim sup
n→∞

|µn|(BR(0, 0)) ≤ C . (2.78)

We consider a domain Γt2
t1 such that, 2R < t2 − t1 < 3R, δ > 2R, λ̂ < λ0,

where λ0 is given by Lemma 2.1 and

∂tvn + ∂xf(vn) = 0 in Γt2
t1 ,

vn = un on Λt2
t1

}

(2.79)

admits an entropy solution vn in the sense of Definition 1. Then we define

Γn = Dn(Γ
t2
t1)

and

ṽn(x, t) =

{

(Dn)∗v(x, t) (x, t) ∈ Γn ,
u(x, t) (x, t) ∈ R× [0, t0 + rnt2)\Γn .

(2.80)

We claim that:
Claim 1. The function ṽn(x, t) defined in (2.80) is a weak solution of (2.1).
Proof of claim 1. We observe that un itself solves (2.79) and compute

∫

Γn

ṽn∂tψ + f(ṽn)∂xψ dx dt = r2
∫

Γ
t2
t1

vn∂tψ + f(vn)∂xψ dx dt

= −r2n

∫

Λ
t2
t1

ψ

(

un

−f(un)

)

· τ dσ

= r2n

∫

Γ
t2
t1

un∂tψ + f(un)∂xψ dx dt

=

∫

Γn

u∂tψ + f(u)∂xψ dx dt .
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Using this equality we see

∫

R×[0,t0+rnt2]

ṽn∂tψ + f(ṽn)∂xψ dx dt =

∫

Γn

ṽn∂tψ + f(ṽn)∂xψ dx dt

+

∫

R×(0,t0+rnt2)\Γn

u∂tψ + f(u)∂xψ dx dt

=

∫

Γn

u∂tψ + f(u)∂xψ dx dt

+

∫

R×(0,t0+rnt2)\Γn

u∂tψ + f(u)∂xψ dx dt

=

∫

R×[0,t0+rnt2]

u∂tψ + f(u)∂xψ dx dt

=

∫

R

u0(x)ψ(x, 0) dx ,

which means, that ṽn is indeed a weak solution of (2.1) and the proof of claim
1 is concluded.
Let q̃ denote the defect measure of ṽn. By construction we have

m(x, t, a) = q̃n(x, t, a) on R× (0, t0 + rnt2)\Γ̄n

and therefore the minimality property (2.10) of u implies

∫

R

|m|(Γn ∪ Λn, a) da ≤

∫

R

|q̃n|(Γn ∪ Λk, a) da , (2.81)

where Λn = Dn(Λ
t2
t1).

We claim now
Claim 2. For all n ∈ N

|q̃n|(Λn, a) = 0 for all n ∈ N . (2.82)

Proof of claim 2. We define the domain Λε such that

∂Λε = Λt2
t1+ε ∪ Λt2

t1−ε ∪ Il ∪ Ir (2.83)

and
Λt2

t1 ⊂ Λε ,

where

Il =

[

t2 − (t1 + ε)

λ̂
+ δ,

t2 − (t1 − ε)

λ̂

]
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and

Ir =

[

−
t2 − (t1 − ε)

λ̂
− δ,−

t2 − (t1 + ε)

λ̂
− δ

]

Then for Λε
n := D−1

n (Λε) and ψ ∈ C∞
c (R×(0, t0+t2rn)) it follows by Theorem

1.3.4 in [Da]
∫

Λε
n

ṽ ∧ a ∂tψ + f(u ∧ a)∂xψ dx dt =

∫

∂Λε
n

(

f(ṽ)
ṽ

)

· nψ dσ +

∫

Λε
n

ψ dq̃(x, t, a) ,

(2.84)
where n is the outer unit normal of Λε

n. The boundary term can be separated
in three parts
∫

∂Λε
n

(

f(ṽ)
ṽ

)

· nψ dσ =

∫

D−1
n (Λ

t2
t1−ε)

(

f(u)
u

)

· nψ dσ −

∫

D−1
n (Λ

t2
t1+ε)

(

f(ṽ)
ṽ

)

· nψ dσ

+

∫

D−1
n (Il)

ṽ(x, t0 + rnt2) dx+

∫

D−1
n (Ir)

ṽ(x, t0 + rnt2) dx

(2.85)

As ε→ 0+ the two last quantities in the right-hand side of in (2.85) vanish.
For the first expression on the right hand side of (2.85) one concludes

lim
ε→0+

∫

D−1
n (Λ

t2
t1−ε)

(

f(u)
u

)

· nψ dσ =

∫

D−1
n (Λ

t2
t1
)

(

f(u)
u

)

· nψ dσ . (2.86)

With a change of variable and with Lemma 2.1 it follows

lim
ε→0+

∫

D−1
n (Λ

t2
t1+ε)

(

f(ṽ)
ṽ

)

· nψ dσ = lim
ε→0+

rn

∫

Λ
t2
t1+ε

(

f(v)
v

)

· nψ dσ

= rn

∫

Λ
t2
t1+ε

(

f(un)
un

)

· nψ dσ

=

∫

D−1
n (Λ

t2
t1
)

(

f(u)
u

)

· nψ dσ .

(2.87)

From (2.85), (2.86) and (2.87) we conclude

lim
ε→0+

∫

∂Λε
n

(

f(ṽ)
ṽ

)

· nψ dσ = 0 .

Therefore we can conclude from (2.84)

lim
ε→0+

∫

Λε
n

ψ dq̃(x, t, a) = 0 for ψ ∈ C∞
c (R× (0, t0 + rnt2)) .
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From this it follows,
|q̃n|(Λn, a) = 0

as claimed.

From (2.81) and (2.82) we conclude

∫

R

|m|(BRrn(x0, t0), a) da ≤

∫

R

|m|(Γn ∪ Λn, a) da ≤

∫

R

|q̃n|(Γn, a) da .

Since q̃ ≥ 0 in Γn we get

1

rn

∫

R

m(BRrn(x0, t0), a) da ≤
1

rn

∫

R

q̃n(Γn, a) da . (2.88)

We recall, that vn is an entropy solution of (2.79) and we denote its defect
measure by qn. Then we get from (2.88) by a change of variable and Lemma
1

|µn|(BR(0, 0)) ≤
1

rn

∫

R

q̃n(Γn, a) da =

∫

R

qn(Γ
t2
t1 , a) da ≤ C(R) . (2.89)

Therefore we proved (2.78). Since (2.77) and (2.78) hold, the assumptions of
Proposition 2.2 are fulfilled and we can extract a subsequence rk′ such that

uk′ → u∞ in L1
loc(R

2) .

Additionally we have by the weak∗-compactness of measures (see Theorem
1.59 in [AFP]) that possibly after extracting a further subsequence rk,

µk ⇁ µ∞ in Mloc(R
2) ,

Altogether we have for the sequence rk

uk → u∞ in L1
loc(R

2) .

and
µk ⇁

∗ µ∞ in Mloc(R
2) ,

which is what we aimed to prove.

Proof of Lemma 2.2. We argue by contradiction. Therefore we assume
that there exists a point (x0, t0) such that

lim sup
r→0+

1

r

∫

R

m(Br(x0, t0), a) da < 0 . (2.90)
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For a sequence rn → 0+ we define

un(x, t) := (D−1
n )

∗
u(x, t)

and

µn :=
1

rn

∫

R

(Dn)∗mda .

Let uk and µk be the subsequences given by Lemma 2.3 with limits u∞, µ∞.
Then we have by strong convergence that u∞ is a weak solution of

∂tu∞ + ∂xf(u∞) = 0

and by the uniqueness of the distributional limit we conclude

µ∞ =

∫

R

∂t(u∞ ∧ a) + ∂xf(u∞ ∧ a) da .

From (2.90) we want to conclude now that
Claim 1. For all R > 0

µ∞(BR(0, 0)) < 0 . (2.91)

Proof of claim 1. For the sake of contradiction, we assume, that there
exists a R0 such that

µ∞(BR0(0, 0)) ≥ 0 .

In [Le2] it is proved, that there exits a set K, which is either a line, or a
half-line, or the empty set, such that

∂tu∞ ∧ a+ ∂xf(u∞ ∧ a) =
[

(X(u+
∞ ∧ a)−X(u−

∞ ∧ a)
]

· ωK H1 K , (2.92)

where

X(u) =

(

f(u)
u

)

and ωK =
|u+

∞ − u−
∞|

|X(u+
∞)−X(u−

∞)|

(

1

−f(u+
∞)−f(u−

∞)

u+
∞−u−

∞

)

.

(2.93)
Moreover therein it is proved, that u∞ is H1-a.e. approximately continuous
in Kc and has H1-a.e. constant approximate jump points u±

∞ on K .
A short calculation reveals

∫

R

(

(X(u+
∞ ∧ a)−X(u−

∞ ∧ a)
)

· ωK

= sign(u−
∞ − u+

∞)

∫ max{u+
∞,u−

∞}

min{u+
∞,u−

∞}

f(u+
∞) + f(u−

∞)

2
− f(a) da . (2.94)
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The convexity of f implies that the integral on the right-hand side of (2.94)
is non-negative and henceforth the sign of µ∞ is completely determined by
sign(u−

∞ − u+
∞). Hence

µ∞(BR0(0, 0)) ≥ 0

can only be fulfilled, if
u−
∞ ≥ u+

∞ .

But this implies that the measure is µ∞ has a sign, i.e.

µ∞ ≥ 0 .

Let µ±
k be the positive respective negative part of µk, i.e. µ

±
k are non-negative

measures such that
µk = µ+

k − µ−
k .

After extracting a further subsequence k′

µ+
k′ ⇁

∗ ν+ and µ−
k′ ⇁

∗ ν− in Mloc(R
2) .

For R > 0 and non-negative ψ ∈ C∞
c (BR(0, 0)) we get

∫

BR(0,0)

ψ dµ∞ = lim
k′→∞

∫

BR(0,0)

ψ dµk′ =

∫

BR(0,0)

ψ dν+ −

∫

BR(0,0)

ψ dν− .

Since µ∞ is non-negative we get for all non-negative ψ ∈ C∞
c (BR(0, 0))

∫

BR0 (0,0)

ψ dν− ≤

∫

BR(0,0)

ψ dν+ .

Hence
ν−(BR(0, 0)) ≤ ν+(BR(0, 0)) (2.95)

By Theorem 1.2 in [Le2] (see also Theorem 1.1 in [AKLR]) we have for a
rectifiable set Ju and an H1 measurable function h : Ju → R

∫

R

|m|(x, t, a) da = h · H1 Ju + δu , (2.96)

where δu satisfies

∀ B Borel H1(B) <∞ =⇒ δu(B) = 0 .

Therefore we can choose R1, such that for all k′

µ−
k′(∂BR1(0, 0)) ≤

1

rk′

∫

D−1
k′

(∂BR1 (0,0))

h dH1 Ju = 0 .
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Hence
ν−(∂BR1(0, 0)) = lim

k′→∞
µ−
k′(∂BR1(0, 0)) = 0 .

This and (2.95) imply

lim sup
k′→∞

µ−
k′(BR1(0, 0) ≤ ν−(B̄R1(0, 0)) = ν−(BR1(0, 0))

≤ ν+(BR1(0, 0)) ≤ lim inf
k′→∞

µ+
k′(BR1(0, 0)) .

lim sup
k′→∞

µk′(BR1(0, 0)) ≥ lim inf
k′→∞

µ+
k′BR1(0, 0))− lim sup

k′→∞
µ−
k′(BR1(0, 0)) ≥ 0 ,

which obviously contradicts (2.90) and we get claim 1 is proved.

Inequality (2.91) implies that the set K in (2.92) is non-empty and

µ∞ < 0 ,

which gives again from above considerations

u−
∞ < u+

∞ .

Moreover the convexity of f implies for every a ∈ (u−
∞, u+

∞)

∂tu∞ ∧ a+ ∂xf(u∞ ∧ a)

=

(

f(a)− f(u−
∞)

a− u−
∞

−
f(u+

∞)− f(u−
∞)

u+
∞ − u−

∞

)

(

a− u−
∞

)

H1 K ≤ 0 .

For P = (xp, tp) ∈ R2 let K = P + Rω⊥
K if K is a line or K = P + R+ω⊥

K if
K is a halfline. Define

H+ := {(x, t) : ((x, t)− P ) · ωK > 0}

and

H− := {(x, t) : ((x, t)− P ) · ωK < 0}

if K is a line and

H+ := {(x, t) : (x, t)− P ) · ωK > 0 and x > f ′(u+
∞)(t− tp) + xp}

H− := {(x, t) : (x, t)− P ) · ωK < 0 and x < f ′(u−
∞)(t− tp) + xp} ,
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if K is a half-line. From the proof of Proposition 3.3 in [Le2] (see also
Theorem 6.2 in [AKLR] for a similar proof) we get that

u∞(x, t) = u−
∞ on H− and u∞(x, t) = u+

∞ on H+ .

Now we choose t̄ ∈ R and δ > 0 in the definition of the sets Λt̄+1
t̄ and Γt̄+1

t̄
(see (2.23)), in such a way that

[

−
δ

2
,
δ

2

]

× {t} ∩K 3= ∅ ∀ t ∈ (t̄, t̄+ 1) .

Furthermore Γt̄+1
t̄ is defined such that the conclusions of Lemma 2.1 applies

to this trapeze. In particular the strong convergence of uk in L1
loc(R

2) implies

uk → u∞ in L1
(

Γt̄+1
t̄

)

,

which directly implies by a change of variable

∫ t̄+1

t̄

∫

Λt̄+1
t′

|uk − u∞| dσ dt′ → 0 .

Thus for almost every t1 ∈ (t̄, t̄+ 1) we get
∫

Λt̄+1
t1

|uk − u∞| dσ→ 0 (2.97)

and moreover by (2.96)

µk(Λ
t̄+1
t1 ) =

∫

D−1
k (Λt̄+1

t1
)

hH1 Ju = 0 . (2.98)

We set t2 := t̄ + 1, then according to Proposition 2.1 we can choose a t1 ∈
(t̄, t̄+ 1) such that for all k ∈ N (2.97) and (2.98) hold and for k ∈ N ∪ {∞}
there exists an entropy solution wk of

∂twk + ∂xf(wk) = 0 in Γt2
t1 ,

wk = uk on Λt2
t1 .

}

(2.99)

By Lemma 2.1 we have for all t1 ≤ t < t2

∫ θ+(t)

θ−(t)

|wk(x, t)− w∞(x, t)| dx ≤

∫

Λ
t2
t1

|uk − u∞| dσ .
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Together with (2.97) this implies

wk → w∞ in L1
(

Γt2
t1

)

.

By our choice of t1, we have for an x1 ∈
[

− δ
2 ,

δ
2

]

u∞(x, t1) =

{

u−
∞ if x < x1

u+
∞ if x > x1 .

This structure of u∞ at the time t1 allows us to compute w∞ explicitly. Since
u−
∞ < u+

∞ the two states u−
∞ and u+

∞ are connected by a rarefaction wave

w∞(x, t) :=











u−
∞ if x− x1 < f ′(u−

∞)(t− t1) ,

(f ′)−1
(

x−x1
t−t1

)

if f ′(u−
∞)(t− t1) < x− x1 < f ′(u+

∞)(t− t1) ,

u+
∞ if x− x1 > f ′(u∞)+(t− t1) .

We observe, that w∞ is a Lipschitz function and this implies pointwise almost
everywhere in Γt2

t1

∂tw∞ + ∂xf(w∞) = 0 .

Hence

q∞(x, t, a) = ∂t(w∞ ∧ a) + ∂xf(w∞ ∧ a)

= w≤a [∂tw∞ + f ′(w∞ ∧ a)∂xw∞] = 0 in Γt2
t1 .

Furthermore the strong convergence of wk in L1(Γt2
t1) implies

qk ⇁ q∞ in Mloc(R
2) ,

where
qk = ∂twk ∧ a+ ∂xf(wk ∧ a) .

To simplify notations, we define

Γk :=
{

(x, t) ∈ R× (0, T ) : Dk(x, t) ∈ Γt2
t1

}

and

Λk :=
{

(x, t) ∈ R× (0, T ) : Dk(x, t) ∈ Λt2
t1

}

,

where the map Dk is defined in (2.76). Then we define the rescaled function

w̃k(x, t) =

{

(Dk)
∗wk if (x, t) ∈ Γk ,

u if (x, t) ∈ R× (0, t0 + rkt2)\Γk .
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and claim, that wk ∈ L∞(R× (0, t0 + rkt2)) is a weak solution of (2.1) for all
k ∈ N. This is the same situation as in the proof of Lemma 2.3 and hence
the same steps as in the proof of claim (2.80) gives, that wk is indeed a weak
solution of (2.1). Therefore the minimality condition (2.10) of u applies and
we deduce
∫

R

|m|(R× (0, t0 + rkt2), a) da ≤

∫

R×(0,t0+rkt2)×R

|q̃k|(R× (0, t0 + rkt2, a)| da .

But since

m(x, t, a) = q̃k(x, t, a) on R× (0, t0 + rkt2)\Γ̄k

we get
∫

R

|m|(Γk ∪ Λk, a) da ≤

∫

R

|q̃k|(Γk ∪ Λk, a) da . (2.100)

By the same arguments as in the proof of claim (2.82) we can show

|q̃k|(Λk, a) = 0 for all k ∈ N . (2.101)

In a next step we show, that (2.101) induces

lim
k→∞

∫

R

qk(Γ
t2
t1 , a) da =

∫

R

q∞(Γt2
t1 , a) da . (2.102)

Proof of (2.102). Since wk is an entropy solution we deduce from (2.101)
that |q̃k|(∂Γk, a) = 0 and therefore

1

rk

∫

R

(Dk)∗ |q̃k|(∂Γ
t2
t1 , a) da = 0 . (2.103)

Lemma 2.1 and (2.103) imply for a constant C > 0

1

rk

∫

R

(Dk)∗ |q̃k|(Γ̄
t2
t1 , a) da =

1

rk

∫

R

(Dk)∗ |q̃k|(∂Γ
t2
t1 , a) da+

∫

R

qk(Γ
t2
t1 , a) da

=

∫

R

qk(Γ
t2
t1 , a) da < C .

Hence one gets for a positive measure ν ∈M(Γ̄t1
t1) after possibly extracting

a subsequence
1

rk

∫

R

(Dk)∗ |q̃k| ⇁ ν in M(Γ̄t1
t1) .
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Then Proposition 1.62 in [AFP] and (2.103) imply

lim
k→∞

1

rk

∫

R

(Dk)∗ |q̃k|(∂Γ
t2
t1 , a) da = ν(∂Γt2

t1) = 0 . (2.104)

But ν(∂Γt2
t1) = 0 and Proposition 1.62 in [AFP] gives

lim
k→∞

1

rk

∫

R

(Dk)∗ |q̃k|(Γ
t2
t1 , a) da = lim

k→∞

∫

R

qk(Γ
t2
t1 , a) da =

∫

R

q∞(Γt2
t1 , a) da .

Since (2.98) and (2.101) holds we deduce from (2.100)

|µk|(Γ
t2
t1) ≤

∫

R

qk(Γ
t1
t1 , a) da .

Taking the limit on both sides and applying (2.102) gives

|µ∞|(Γt2
t1) ≤ lim inf

k→+∞
|µk|(Γ

t2
t1) ≤ lim inf

k→+∞

∫

R

qk(Γ
t2
t1 , a) da

=

∫

R

q∞(Γt2
t1 , a) da = 0 .

But
|µ∞|(Γt2

t1) = 0

is contradiction to (2.91). Therefore

lim sup
r→0+

1

r

∫

R

m(Br(x0, t0), a) da ≥ 0 ,

which is what we aimed to prove.

2.2.3 Proving that u is entropic

In this last section we are going to prove

Lemma 2.4. Let u ∈ L∞(R×[0, T ) be a weak solution of (2.1). Let m(x, t, a)
its entropy defect measure. If for every (x0, t0) ∈ R× (0, T )

lim sup
r→0+

1

r

∫

R

m(Br(x0, t0), a) da ≥ 0 , (2.105)

then u is the entropy solution of (2.1).
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Proof of Lemma 2.4. We follow closely [ALR]. Without loss of generality
we can assume f(0) = 0 and f ≥ 0. According to Theorem 2.2 there exists
a g ∈ W 1,∞(R× [0, T )) such that u = ∂xg and it satisfies almost everywhere

∂tg + f(∂xg) = 0 ,
∂xg(x, 0) = u0(x) .

}

(2.106)

We want to show, that g is a viscosity solution of (2.106), i.e. we want
to prove, that g is a sub- and supersolution of (2.106). This immediately
implies by Corollary 1.7.2 in [ALR], that u is an entropy solution. We already
now, that g satisfies (2.106) almost everywhere, then Proposition 5.1 in [BC]
implies, that g is a subsolution. Therefore it remains to show, that g is a
supersolution of (2.106). Let ψ ∈ C1(R × R+) such that g − ψ has a local
minimum in (x0, t0). Without loss of generality we can assume g(x0, t0) =
ψ(x0, t0). We want to show that

∂tψ(x0, t0) + f (∂xψ(x0, t0)) ≥ 0 .

We argue by contradiction, therefore we assume

∂tψ(x0, t0) + f (∂xψ(x0, t0)) < 0 .

Since f ≥ 0 this immediately implies

∂tψ(x0, t0) < 0 . (2.107)

For a sequence rn → 0+ we introduce

un(x, t) = u(x0 + rnx, t0 + rnt),

ψn(x, t) =
1

rn
(ψ(x0 + λrnx, t0 + rnt)− ψ(x0, t0)) ,

gn(x, t) =
1

rn
(g(x0 + rnx, t0 + rnt)− g(x0, t0)) ,

where 0 < λ < 1 is a constant, which we choose later. According to Lemma
2.3 we can extract a subsequence rk such that

uk → u∞ in L1(B1)

Since ∂xgk = uk and ∂tgk = f(uk) we have by Arzela-Ascoli, that gk converges
uniformly to a Lipschitz function g∞ such that ∂xu∞ = g∞ and g∞ fulfills
(2.106) almost everywhere. Furthermore we have for ψ∞ := ∇ψ(x0, t0) ·
(λx, t)T

lim
k→∞

ψk(x, t) = ψ∞ .



48 CHAPTER 2. A MINIMALITY PROPERTY

We notice, that for all 0 < λ< 1 and for all k the functions gk − ψk have
a local minimum in (0, 0) . By uniform convergence the function g∞ − ψ∞

admits also a local minimum in (0, 0) . Moreover

µk =
1

rk

∫

R

(Dk)∗mda⇁ µ∞ in M(B1) .

Similar as in Section 2.2.2 from

lim
k→∞

∫

B1(0,0)

µk(B1(0, 0)) ≥ 0 ,

we can conclude

m∞(x, t, a) := ∂tu∞ ∧ a+ ∂xf(u∞ ∧ a) ≥ 0 .

Let δ > 0, then the function

hδ(x, t) := g∞ − ψ∞ +
δ

2

[

(1− λ)x2 + t2
]

is defined on B1 and has a strict minimum in (0, 0). Notice that hδ(0, 0) = 0
and h ≥ 0 in B1. We claim that

|∇hδ| > 0 a.e. in B1 . (2.108)

Proof of (2.108). Let (x, t) ∈ B1 such that hδ is differentiable in (x, t) and
∇hδ(x, t) = 0. It follows since g∞ solves (2.106)

0 = ∂tg∞ + f(∂xg∞)

= ∂tψ(x0, t0)− δt+ f(λ∂xψ(x0, t0) + (1− λ)δx)

≤ ∂tψ(x0, t0) + λf(∂xψ(x0, t0)) + ((1− λ)f(δx)− δt) .

Since (2.107) holds, we can choose δ and λ small enough the expression

∂tψ(x0, t0) + λf(∂xψ(x0, t0)) + δ(f(δx)− t)

becomes strictly negative, which is a contradiction. Therefore the claim
(2.108) is proved.
Further we choose δ and λ small enough such that

|∂tψ(x0, t0)| > λ ∂xψ(x0, t0) · sup
s∈[−‖u‖∞,‖u‖∞]

f ′(s) + δ((1− λ)x+ t) . (2.109)

By τ > 0 we denote the minimum of hδ on ∂B1 and by a the essential
supremum of u∞ on {hδ < τ}. If a > 0 let a be close to a such that
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0 < a < a. Let A := {hδ < τ} ∩ {a < u∞}. The set A has positive Lebesgue
measure. Therefore by the Coarea Formula and by |∇hδ| > 0 it follows for
Es := {hδ = s}

0 <

∫

A

|∇hδ(x, t)| dx dt =

∫ τ

0

H1(A ∩ Es) ds .

Hence the set

S :=
{

s ∈ (0, τ) : H1({a < u∞} ∩ Es) > 0, H1({u∞ > a} ∩ Es) = 0
}

has positive Lebesgue measure. For a vector v = (v1, v2) we define v⊥ :=
(−v2, v1) and for a s ∈ S the function

s→ l(s) :=

∫

Es

[

X(u∞ ∧ a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
]

· ν

where ν = ∇hδ
|∇hδ|

and the X is the vectorfield from (2.93). We choose s ∈ S
such that

lim
ε→0

1

ε

∫ s

s−ε

l(s′)ds′ = l(s) .

We define ζε(x, t) := 1 ∧ (s− hδ)+/ε and calculate

∇ζε =

{

0 if hδ > s or hδ < s− ε
−1

ε∇hδ if s− ε < hδ < s .

The choice of s ∈ S an the Coarea Formula implies

lim
ε→0

∫

B1

[

X(u∞ ∧ a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
]

·∇ζε

= − lim
ε→0

1

ε

∫ s

s−ε

l(s′)ds′ = l(s) .

The sign of m∞ gives

0 ≤ −

∫

B1

[

X(u∞ ∧ a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
]

·∇ζε .

As ε→ 0 this implies

0 ≤

∫

Es

[

X(u∞ ∧ a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
]

· ν .

Now define E+
s := Es∩{u∞ > a} and E−

s := Es∩{u∞ ≤ a}. For (x, t) ∈ E−
s

we notice
[

X(u∞ ∧ a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
]

· ν = ∇⊥hδ ·∇hδ = 0 .
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Therefore it follows

0 ≤

∫

E+
s

[

X(a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
]

·∇hδ .

In order to get a contradiction we claim
(

X(a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
)

·∇hδ < 0 . (2.110)

We rearrange terms

[

X(a)−∇⊥ψ∞ + δ((1− λ)x, t)⊥
]

·∇hδ

= X(a) ·∇g∞ + (∇ψ∞ − δ((1− λ)x, t))
(

∇⊥g∞ −X(a)
)

. (2.111)

We show (2.110), by proving that each term on the right hand side of (2.111)
is negative respectively strictly negative. Firstly we treat the first term and
claim

X(a) ·∇g∞ < 0 . (2.112)

A short calculation reveals

X(a) ·∇g∞ = f(a)u∞ − f(u∞)a

= f(a)(u∞ − a) + (f(a)− f(u∞))a

= a(u∞ − a)

(

f(a)− f(0)

a
−

f(u∞)− f(a)

u∞ − a

)

.

By convexity of f we have in the case a < u∞ < a < 0

f(u∞)− f(a)

u∞ − a
<

f(a)− f(a)

a− a
<

f(a)− f(0)

a
.

This implies

a

(

f(a)− f(0)

a
−

f(u∞)− f(a)

u∞ − a

)

≤ 0

and henceforth (2.112), if a ≤ 0. On the other hand if 0 < a < a, we get for
ξ ∈ (0, a), α ∈ (a, u∞)

f(a)− f(0)

a
= f ′(ξ) < f ′(a) < f ′(α) =

f(u∞)− f(a)

u∞ − a
,

which implies (2.112). Hence the first term of (2.111) is non-positive and it
remains to treat the second term. A short calculation gives

(∇ψ∞ − δ((1− λ)x, t))
(

∇⊥g∞ −X(a)
)

= (u∞ − a)

[

∂tψ(x0, t0) + λ∂xψ(x0, t0)
f(u∞)− f(a)

u∞ − a
+ δ((1− λ)x+ t)

]

.
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Our choice of δ and λ (see (2.109)) imply, that

(∇ψ∞ − δ((1− λ)x, t))
(

∇⊥g∞ −X(a)
)

< 0

and thus (2.110). Finally (2.110) implies

∫

E+
s

(

X(a)− λ∇⊥ψ(x0, t0) + (1− λ)δ(x, t)⊥
)

·∇hδ = 0 .

Since
(

X(a)− λ∇⊥ψ(x0, t0) + (1− λ)δ(x, t)⊥
)

·∇hδ < 0

it follows H1(E+
s ) = 0, which is a contradiction to our choice of s ∈ S. Thus

∂tψ(x0, t0) + f (∂xψ(x0, t0)) ≥ 0

as claimed. Henceforth g is the viscosity solution of (2.106) and u = ∂xg the
entropy solution of (2.1) as claimed.

Proof of Theorem 1 Thanks to Lemma 2.2 and Lemma 2.4 we can conclude
the proof of Theorem 2.1. Indeed, we see that a weak solution u ∈ L∞(R×
[0, T )) satisfying the assumptions of Theorem 2.1, has by Lemma 2.2 only
points of positive density, i.e.

lim sup
r→0+

1

r

∫

R

m(Br(x0, t0), a) da dx dt ≥ 0 for all (x0, t0) ∈ R× (0, T ) .

By Lemma 2.4 we know then, that u has to be entropic.
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Chapter 3

Control of Oscillation of
Entropic Solutions to Scalar
Conservation Laws in 1 + 1

Dimensions

This chapter is submitted to Calc. Var. and PDE

53
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3.1 Introduction

For f ∈ C2(R) we consider solutions to the scalar conservation law

∂tu+ ∂xf(u) = 0 in R+ × R ,
u(x, 0) = u0(x) ,

}

(3.1)

for initial data u0 ∈ L∞(R). It is well known that even for smooth initial
data, the classical solution can cease to exist in finite time, due to the possible
formation of shocks (see Chapter 4.2 in [Da]). Therefore one has to consider
weak solutions of (3.1), i.e. solutions, which satisfy (3.1) in the distributional
sense. However it turned out that for given initial data, the space of weak
solutions is large (see Chapter 4.4 in [Da]). Therefore additional conditions
have to be imposed to single out the physical relevant weak solutions in some
models.
An approach was given by Kruzhkov in [Kr], where he introduces a family
of integral inequalities. More precisely, for u0 ∈ L∞ he proved existence and
uniqueness of weak solutions satisfying the entropy condition: He considers
the family of convex entropy flux pairs (ηa, ξa)a∈R, where

ηa(u) = |u− a| and ξa(u) = sign(u− a)(f(u)− f(a)) . (3.2)

Then an entropy solution is a bounded function u, which satisfies (3.1) in
the sense of distributions and

∂tηa(u) + ∂xξa(u) ≤ 0 . (3.3)

One can also replace the one parameter family (ηa, ξa)a∈R and assume, that
(3.3) is fulfilled for all convex η with corresponding entropy flux ξ, which
satisfies

ξ =

∫

η′f ′ . (3.4)

As a consequence of this, one can show if the initial data u0 is in BV u is in
BV for all later times.
A different approach to scalar conservation laws is introduced by Lions,
Perthame and Tadmor in [LPT]: The kinetic formulation of a scalar con-
servation law (3.1). A comprehensive introduction is found in [Pe]. For a
weak solution u ∈ L∞ of (3.1) one considers the set

Ea = {(x, t) : a ≤ u(x, t)}

and we will denote the characteristic function of Ea by

a≤u(x,t) .

Then one can show
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Theorem 3.1 ([LPT]). A bounded measurable function u on R×R+, which
satisfies

∂t a≤u + f ′(a)∂x a≤u = ∂am(x, t, a) in D′(R× R+ × R) (3.5)

for a non-negative measure m(x, t, a) together with initial condition

a≤u(x,0) = a≤u0(x) ,

is the admissible solution of (3.1).

One can relate the measure m in (3.5) with (3.3) as follows:

∂t|u−a|+∂x[sign(u−a)(f(u)−f(a))] = −m(x, t, a) in D′(R×R+) (3.6)

or equivalently
∂u ∧ a + ∂xf(u ∧ a) = m(x, t, a) , (3.7)

where u ∧ a = min{u, a}.
Instead of (3.5) one can consider the general Cauchy-Problem

∂tχ(x, t, a) + b(a)∂xχ(x, t, a) = g(x, t, a) in D′(Rn × R+ × R
n) (3.8)

with initial condition
χ(x, 0, a) = χ0(x, a) . (3.9)

In [GLPS] it was observed that that compactness and regularity results exist,
not for the solution χ of (3.8), but for velocity averages of χ. For any φ ∈ C∞

c ,
the velocity average of χ associated to φ is defined by

ρ(x, t) =

∫

R

f(x, t, a)φ(a) da . (3.10)

In the case of (3.5), ρ(x, t) is exactly the entropy solution u(x, t) of (3.1),
if we choose φ ∈ C∞

c such that φ = 1 on [−‖u‖∞, ‖u‖∞]. The main result
in [GLPS] is then as follows: if χ, g ∈ L2(Rn × R × Rn) and satisfy (3.8)
with b(a) = a, then any average ρ(x, t) of χ is in H

1
2 (Rn × R). Such results

are called ’kinetic averaging lemmas’. For a survey in this topic we refer to
[BGP]. Usually one assumes some regularity for χ and g to prove kinetic
averaging lemmas and there are only a few results concerning χ only to be in
L1
loc. This is however the case if one deals with scalar conservation laws. In

[Le1] a result in this direction is shown for the case n = 1 and the following
non-degeneracy condition for b(a)

∀M > 0 ∃C > 0 s.t. ∀ξ , u ∈ R ∀ε > 0
L1 ({a ∈ [−M,M ] : |b(a)ξ − u| < ε}) ≤ Cε .

(3.11)

Then the main theorem in [Le1] reads as follows
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Theorem 3.2 ([Le1]). Let χ ∈ L1
loc(R×R+×R) satisfy (3.8) with zero initial

condition. If b(a) ∈ C∞(R,R) satisfies (3.11) and g ∈ L1(Rx×R
+
t , BV (Ra)),

then any velocity average ρ is in L2,∞ and satisfies

‖ρ‖L2,∞ ≤ C‖g‖L1
x,tBVa

. (3.12)

A motivation for regularity results like Theorem 3.2 or compactness results
comes from studying blow up limits of solutions u of (3.1). Considering
sequences u(x0 + rx, t0 + rx) and 1

rm(Br(x0, t0)× R) as r → 0+, one would
expect, that the singular set of entropy solutions u of (3.1) coincides with
the set of points of R × R+, where the upper 1-dimensional density of m is
strictly larger than zero (see [Le2] and [DOW]).
However, so far there were no estimates available which compare the local
behavior of u(x, t) to the behavior ofm(x, t, a). In this work we present a new
Poincaré-type inequality, where we control the local oscillation of an entropic
solution u of (3.1) in terms of the defect measure m(x, t, a) given by (3.7).
Before we can state our main result, we need to introduce the following two
definitions: For (x0, t0) ∈ R×R+ and r > 0 we denote the average of u over
the ball Br(x0, y0) by

ur =
1

πr2

∫

Br(x0,t0)

u(y, s) dy ds . (3.13)

Furthermore

Definition 2. For an entropy solution u of (3.1) let m(x, t, a) be the defect
measure given by the kinetic formulation (3.7). Then we define the (x, t)-
marginal as

µ(A) = m(A× Ra) ∀ A Borel. (3.14)

We can now state our main result:

Theorem 3.3. Let f ∈ C2(R,R) be such that |{u ∈ R : f ′′(u) = 0}| < ∞.
For an entropy solution u ∈ L∞ ∩ L1(R× R+) of (3.1) there exist constants
C > 0 and δ0 > 0 such that for all ε, δ ∈ (0, δ0) and for all (x0, t0), r ∈
(0, t0/4)

1

π(δr)2

∫

Bδr(x0,t0)

|u(x, t)− uδr| dx dt

≤ C

[

1

δr
µ(Br(x0, t0))

]
1
2

+
C

ρ(ε)4/3

[

1

r
µ(Br(x0, t0))

]
1
3

+ C

(

δ

ρ(ε)
+ ε

)

, (3.15)



3.1. INTRODUCTION 57

where ρ(ε) is defined as

ρ(ε) = min
a∈{f ′′=0}

min
ε≤|u−a|≤2ε

|f ′′(u)| .

We want to emphasize the fact that the inequality (3.15) is local and there
is no further regularity assumption needed for u. Moreover, one can see
that (3.15) immediately implies that u(x, t) has vanishing mean oscillation
at points where the upper 1-dimensional density of µ is zero, as expected
from BV theory. Naturally one expects that Theorem 3.3 is not restricted
to entropy solutions, it should be considered as a first step towards a similar
estimate for weak solutions v ∈ L1 of (3.1) such that ∂tv ∧ a + ∂xf(v ∧ a)
is a measure. Also it is reasonable to conjecture that (3.15) holds for more
general fluxes f , i.e. fluxes f ∈ C1 such that, f ′ satisfies (3.11).

From BV-theory one expects, that µ is H1-dimensional and rectifiable. In
[DOW] it is shown for scalar conservation laws in n space dimensions, that
the Hn-dimensional part of µ is rectifiable. The control of oscillation (3.15)
should then provide a tool for dealing with 0-density points of the measure
µ, in order to establish that µ has no higher dimensional parts. For scalar
conservation laws in 1 + 1-dimensions with strictly non-linear flux, this is
shown in [DR] by De Lellis and Rivière, i.e. they prove that for entropy
solutions u of (3.1) the measure µ is H1-dimensional and rectifiable. Un-
fortunately we are not able to deduce the main result in [DR] completely.
Nevertheless we will give in Section 3.3 some applications of Theorem 3.3.

Estimate (3.15) is also desirable in the case of Γ-limits in micromagnetism
(see [RS1], [RS2] and [DO] and references therein). One would like to show,
that entropy-measures of limit configurations are H1-dimensional and recti-
fiable. In [AKLR] and [DO] it is shown that the H1-dimensional part of such
entropy-measures is rectifiable. Then the control of oscillation might provide
a tool for dealing with 0-density-points.

This work is organized as follows. In Section 3.2.1 we proof a version of
Theorem 3.3 in the case of convex respective concave fluxes f . In Section
3.2.2 we are going to prove the general Theorem 3.3, which builds upon
the work done in the previous sections. In the last section we will give
applications of Theorem 3.3.
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3.2 Control of Oscillation

3.2.1 The Strictly Convex and Concave Case

We consider the case where the flux f in (3.1) is strictly convex. Our aim in
this section is to prove:

Theorem 3.4. Let f be a strictly convex flux, i.e there exists a ρ > 0 such
that f ′′(u) ≥ ρ for all u ∈ R. Then for an entropy solution u of (3.1) with
initial data u0 ∈ L∞(R) there exists constants C > 0 and δ0 > 0 depending
on u0 and f , such that for all (x0, t0) ∈ R× R+ and all 0 < δ ≤ δ0

1

π(δr)2

∫

Bδr(x0,t0)

|u(x, t)− uδr| dx dt ≤
C

ρ4/3

[

1

r
µ(Br(x0, t0))

]
1
3

+ C
δ

ρ
(3.16)

for all 0 < r < t0
4 .

Before we proof Theorem 3.4, we need a few preliminary results about en-
tropy solutions u of (3.1) in the particular case of convex fluxes.

An entropy solution u of (3.1) with initial data u0 ∈ L∞ has in this case
striking features. According to Theorem 11.2.2 in [Da] u is in BVloc(R ×
R+). This yields the following structure of an entropy solution u: One can
decompose R× R+ in three disjoint sets Cu, Ju and Iu, such that

• for any open set Ω ⊂ Cu the solution u is continuous on Ω (see Theorem
11.3.2 in [Da]),

• the set Ju is H1 rectifiable and u has strong traces on Ju (see Theorem
11.3.3 in [Da]),

• the set of irregular points Iu is at most countable (see Theorem 11.3.4
in [Da]).

Therefore one can apply the method of characteristics. For every (x, t) ∈
R× R+ one can define the extremal backward characteristics as follows:

Definition 3. A generalized characteristics for (3.1) associated with a weak
solution u of (3.1) on the time interval [σ, τ ] ⊂ [0,∞) is a Lipschitz function
ξ : [σ, τ ]→ (−∞,∞), which satisfies the differential inclusion

ξ̇(t) ∈ Λ(ξ(t), t) a.e. on [σ, τ ] , (3.17)

where

Λ(x, t) :=
⋂

ε>0

[essinf [x−ε,x+ε] f
′(u(x, t)), esssup[x−ε,x+ε] f

′(u(x, t))] . (3.18)
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We recall the following Theorem out of [Da]:

Theorem 3.5 (Theorem 10.2.2 in [Da]). Through any fixed point (x, t) ∈ R×
R+ pass two (not necessarily distinct) generalized characteristics associated
with u and defined on [0,∞), namely the minimal ξ− and the maximal ξ+,
with ξ−(t) ≤ ξ+(t) for t ∈ [0,∞).

Furthermore one can show that generalized characteristics have the following
properties:

Theorem 3.6 (Theorem 10.2.3 in [Da]). Let ξ be a generalized characteristic
associated with an entropy solution u of (3.1) and defined on [σ, τ ]. The
following holds for almost all t ∈ [σ, τ ]: When (ξ(t), t) ∈ Cu, then ξ̇(t) =
f ′(u(ξ(t)±, t)). When (ξ(t), t) ∈ Ju, then

ξ̇(t) =
f(u(ξ(t)+, t))− f(u(ξ(t)−, t))

f(u(ξ(t)+, t))− f(u(ξ(t)−, t))
.

Finally one can show that the minimal and maximal backward characteristics
don’t intersect.

Theorem 3.7 (Theorem 11.1.3 in [Da]). Let ξ− and ξ+ denote the minimal
and maximal backward characteristics associated with some entropy solution
u of (3.1) emanating from any point (x, t) ∈ R× R+. Then

u(ξ−(t)−, t) = u(x−, t) = u(ξ−(t)+, t)
u(ξ+(t)−, t) = u(x+, t) = u(ξ+(t)+, t)

(3.19)

for all t ∈ (0, t). Moreover

u0(ξ−(0)) ≤ u(x−, t) ≤ u0(ξ−(0)+) ,
u0(ξ+(0)) ≤ u(x+, t) ≤ u0(ξ+(0)+) .

(3.20)

From Theorem 3.5 and Theorem 3.7 one can conclude that

Corollary 3.1. For any point (x, t) ∈ R× R+ the extremal backward char-
acteristics ξ± are straight lines with constant speed ξ̇± = f ′(u(x±, t)). Fur-
thermore different backward characteristics ξ±1 and ξ±2 , which originate from
different points, don’t intersect.

The fact that an entropy solution u is in BV has also a useful consequence for
the defect measure m(x, t, a), which we summarize in the following lemma.
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Lemma 3.1. Let m(x, t, a) be the defect measure of an entropy solution
u ∈ L∞ of (3.1) with strictly convex flux f , f ′′ ≥ ρ > 0. Then there exists a
constant C > 0 such that

µ(A) =

∫

A

∆(u+, u−) dH1 Ju ≥ Cρ

∫

A

|u+ − u−|3 dH1 Ju , (3.21)

for all A Borel, where

∆(a, b) =
f(a)+f(b)

2 (b− a)−
∫ b

a f(s) ds
√

1 + [(f(b)− f(a))/(b− a)]2
.

Proof of Lemma 3.1. The explicit formula for the measure µ follows from
Vol’perts chain-rule (see Theorem 3.96 in [AFP]). The error estimate

f(a) + f(b)

2
(b− a)−

∫ b

a

f(s) d ≥
1

12
min
ξ∈[a,b]

|f ′′(ξ)|(b− a)3 (3.22)

is given in equation 5.1.7 in [At]. Since f ′′ ≥ ρ (3.21) follows.

After these preliminaries, we are able to show Theorem (3.16).

Proof of Theorem 3.4. We fix a point (x0, t0) ∈ R × R+ and define for
any s > 0

Qs(x0, t0) = {(x, t) : (x− x0, t− t0) ∈ [−r, r]× [−r, r]} . (3.23)

Let Qδr(x0, t0), where

δ ≤ δ0 := min

{

(

max
|α|≤‖u‖∞

|f ′(α)|

)−1

,
1

3

}

(3.24)

and 0 < r < t0
4 . From the choice of δ we deduce that there exists for almost

all (x, t) ∈ Qδr(x0, t0) a (x, t) ∈ Qr((x0, t0)) such that for an extremal back-
ward characteristic ξ emanating at (x, t) we have (ξ(t), t) = (x, t).

For two different points (x, t) and (y, s) in Qδr(x0, t0) let ξ denote an extremal
backward characteristic starting at (x, t) ∈ Ju and going through (x, t) and
let ζ denote the extremal backward characteristic starting at (y, s) ∈ Ju and
going through (y, s). Then we claim

Claim 1. If t− t0 ≥
r
2 and s− t0 ≥

r
2 we have

|u(x, t)− u(y, s)| ≤ C
δ

ρ
. (3.25)
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Proof of Claim 1. Without loss of generality, we can assume y < x. By
Corollary 3.1 backward characteristics don’t intersect, which implies

0 < ξ(τ)− ζ(τ) ∀0 < τ < min{t, s} . (3.26)

Moreover by Corollary 3.1 we know that backward characteristics are straight
lines and that u is constant along such characteristics. Thus for tm :=
min{t, s} we find

ξ(τ) = f ′(u(x, t))(τ − tm) + ξ(tm)

and

ζ(τ) = f ′(u(y, s))(τ − t) + ζ(tm) .

(3.27)

From (3.26) and (3.27) we deduce

ξ(t)− ζ(t) = f ′(u(x, t))(t− tm) + ξ(tm)− f ′(u(y, s))(t− tm)− ζ(tm)

≥ f ′(u(x, t))(t− tm)− f ′(u(y, s))(t− tm)

and hence

f ′(u(y, s))− f ′(u(x, t)) ≤
ξ(t)− ζ(t)

tm − t
. (3.28)

Since (x, t) , (y, s) ∈ Qδr(x0, t0) we observe

0 < x− y = ξ(t)− ζ(s) ≤ δr and |t− s| ≤ δr . (3.29)

Thus (3.27) and (3.29) yields

ξ(t)− ζ(t) ≤ (1 + 2λ)δr , (3.30)

where
λ := max

|α|≤‖u‖∞
|f ′(α)| .

Combining (3.28) and (3.30) results in

f ′(u(y, s))− f ′(u(x, t)) ≤
(1 + 2λ)δr

tm − t
,

which implies

f ′(u(y, s))− f ′(u(x, t)) ≤
1 + 2λ
1
2 − δ0

δ , (3.31)
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since tm − t ≥ (12 − δ0)r. But on the other hand from (3.26) we have for
t̃ = t0 − r

ξ(t)− ζ (t) = f ′(u(x, t))
(

t− t̃
)

+ ξ(t̃)− f ′(u(y, s))
(

t− t̃
)

− ζ(t̃)

≥ [f ′(u(x, t))− f ′(u(y, s))](t− t̃)

and thus from (3.30)

f ′(u(x, t))− f ′(u(y, s)) ≤
ξ(t)− ζ (t)

t− t̃
≤

(1 + 2λ)δr

t− t̃

≤
1 + 2λ

1− δ0
δ .

(3.32)

Putting (3.31) together with (3.32) gives

−
1 + 2λ
1
2 − δ0

δ ≤ f ′(u(x, t))− f ′(u(ys)) ≤
1 + 2λ

1− δ0
δ .

Hence
|f ′(u(x, t))− f ′(u(y, s))| ≤ Cδ . (3.33)

From (3.33) and strict convexity of f we obtain

|u(x, t)− u(y, s)| ≤ C
δ

ρ
, (3.34)

which is exactly what what we claimed in (3.25).
Let (x, t) ∈ Qδr(x0, t0) and (x, t) ∈ Ju be such that t ≤ t0+

r
2 and (x, t) lies on

an extremal backward characteristics originating at (x, t). Since (x, t) ∈ Ju

according to Theorem 11.1.5 in [Da] there exists a Lipschitz curve (χ(τ), τ)
such that (χ(τ), τ) ∈ Ju for all τ ≥ t. We fix a point (χ(t1), t1) such that t1 ≥
t0 +

3
4r and consider the minimal and maximal backward characteristics ξ−,

ξ+ starting from (χ(t1), t1). Similar let ζ+ , ζ− be the extremal characteristics
emanating from (x, t).
Claim 2. For a C > 0 depending on f ′ and ‖u‖∞ we have

|u(x, t)− u(χ(t1)−, t1)| ≤
C

ρ
|u(χ(t1)+, t1)− u(χ(t1)−, t1)| . (3.35)

Proof of Claim 2. By Corollary 3.1 the backward characteristics don’t
intersect each other. Therefore

ξ−(τ) ≤ ζ±(τ) ≤ ξ+(τ) ∀τ ≤ t . (3.36)
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The fact that backward characteristics are straight lines implies

ζ̇− =
ζ−(τ)− x

τ − t
∀τ < t . (3.37)

From (3.37) we conclude

ζ̇− − ξ̇− =
ζ−(t0 − r)− x

t0 − r − t
− ξ̇− . (3.38)

Then (3.36) implies

ξ−(t0 − r)− ξ+(t) ≤ ζ−(t0 − r)− ζ+(t) = ζ−(t0 − r)− x . (3.39)

Since t0 − r − t is strictly negative (3.39) applied to (3.38) implies

ζ̇− − ξ̇− ≤
ξ−(t0 − r)− ξ+(t)

t0 − r − t
− ξ̇− . (3.40)

A quick calculation reveals

ξ−(t0 − r)− ξ+(t) = ξ̇−(t0 − r − t) + ξ−(t)− ξ+(t)

= ξ̇−(t0 − r − t) +
[

ξ̇− − ξ̇+
]

(t− t1) .
(3.41)

Using (3.41) in (3.40) gives

ζ̇− − ξ̇− ≤
t− t1

t0 − r − t

(

ξ̇− − ξ̇+
)

. (3.42)

Since
0 ≤ t1 − t ≤ r and (1− δ)r < t− (t0 − r) ,

the previous inequality (3.42) implies

ξ−(t0 − r)− ξ+(t) ≤
1

1− δ

(

ξ̇− − ξ̇+
)

. (3.43)

On the other hand we have also by (3.36) and (3.37)

ζ̇− − ξ̇− =
ζ−(t0 − r)− x

t0 − r − t
− ξ̇− ≥

ξ+(t0 − r)− ξ−(t)

t0 − r − t
− ξ̇−

=

(

1 +
t− t1

t0 − r − t

)

(

ξ̇+ − ξ̇−
)
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and since t1 − t ≥ 1
2r we get

ζ̇− − ξ̇− ≥
3

2

(

ξ̇+ − ξ̇−
)

(3.44)

Hence (3.38) and (3.44) together result in
∣

∣

∣
ζ̇− − ξ̇−

∣

∣

∣
≤ C

∣

∣

∣
ξ̇+ − ξ̇−

∣

∣

∣
. (3.45)

By Theorem 3.6 inequality (3.45) is equivalent to

|f ′(u(x, t))− f ′(u(χ(t1)−, t1))| ≤ C |f ′(u(χ(t1)+, t1))− f ′(u(χ(t1)−, t1))| .

Using that f is strictly convex gives

|u(x, t)− u(χ(t1)−, t1)| ≤
C

ρ
|u(χ(t1)+, t1)− u(χ(t1)−, t1)| (3.46)

which is what we claimed (3.35).

From Claim 1 and Claim 2 we want now to conclude the Theorem 3.4. We
claim

Claim 3. Let (x, t), (y, s) ∈ Qδr(x0, t0), then

|u(x, t)− u(y, s)|3 ≤
C

ρ4
1

r
µ(Qr(x0, t0)) + C

δ3

ρ3
. (3.47)

Proof of Claim 3. For (x, t), (y, s) ∈ Qδr(x0, t0) we assume without loss
of generality x < y. Again let (x, t), (y, s) ∈ Ju such that (x, t) lies on an
extremal backward characteristic emanating from (x, t) and (y, s) lies on a
backward characteristic of (y, s). If t− t0 ≥ r

2 and s− t0 ≥ r
2 , we can apply

(3.25) from Claim 1 and (3.47) immediately follows.

We consider the case where t − t0 ≤
r
2 and s − t0 ≤

r
2 . Then let (α(τ), τ)

be the shock-curve starting at (x, t) and (β(τ), τ) the shock-curve starting at
(y, s). We deduce with (3.35) from Claim 2 for all t1 ≥ t0 + 3/4r

|u(x, t)− u(y, s)| ≤ |u(x, t)− u(α(t1)−, t1)|+ |u(α(t1)+, t1)− u(α(t1)−, t1)|

+ |u(α(t1)+, t1)− u(β(t1)−, t1)|

+ |u(y, s)− u(β(t1)−, t1)|

≤
C

ρ

{

|u(α(t1)+, t1)− u(α(t1)−, t1)|

+ |u(β(t1)+, t1)− u(β(t1)−, t1)|
}

+ |u(α(t1)+, t1)− u(β(t1)−, t1)| .
(3.48)
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It remains to handle the term |u(α(t1)+, t1)− u(β(t1)−, t1)|. Let ξ+ be the
maximal backward characteristic starting at (α(t1), t1) and ζ− be the minimal
backward characteristic starting at (β(t1), t1). Necessarily we have

x < ξ+(t) < ζ−(t) and ξ+(s) < ζ−(s) < y . (3.49)

Therefore there exits t3, t4 ∈ [t0 − δr, t0 + δr] such that

(ξ+(t3), t3), (ζ
−(t4), t4) ∈ Qδr(x0, t0) .

From (3.25) in Claim 1 we get

|u(ξ+(t3), t3)− u(ζ−(t4), t4)| ≤ C
δ

ρ

and since u is constant along extremal backward characteristics we discover

|u(α(t1)+, t1)− u(β(t1)−, t1)| = |u(ξ+(t3), t3)− u(ζ−(t4), t4)| ≤ C
δ

ρ
. (3.50)

Applying (3.50) in (3.48) gives for t1 ∈ [t0 + 3/4r, t0 + r]

|u(x, t)− u(y, s)| ≤
C

ρ
{|u(α(t1)+, t1)− u(α(t1)−, t1)|}

+
C

ρ
{|u(β(t1)+, t1)− u(β(t1)−, t1)|+ δ} . (3.51)

From (3.51) and lemma 3.1 we deduce by integrating in t1 over [t0+3/4r, t0+r]

|u(x, t)− u(y, s)|3 ≤
C

ρ3
1

r

∫ t0+r

t0+
3
4 r

|u(χ(t1)−, t1)− u(χ(t1)−, t1)|
3 dt1 + C

δ3

ρ3

≤
C

ρ4
1

r
µ(Qr(x0, t0)) + C

δ3

ρ3
,

which is our claim (3.47).

Finally from Claim 3 the conclusion of Theorem 3.4 is straightforward.

Corollary 3.2. Let f be a strictly concave flux, i.e there exists a ρ > 0
such that f ′′(u) ≤ −ρ for all u ∈ R. Then for an entropy solution u of
(3.1) with initial condition u0 ∈ L∞(R) there exist constants C > 0 and
δ0 > 0 depending on u0 and f and such that for all (x0, t0) ∈ R×R+ and all
0 < δ ≤ δ0

1

πr2

∫

Bδr(x0,t0)

|u(x, t)− uδr| dx dt ≤
C

ρ4/3

[

1

r
µ(Br(x0, t0))

]
1
3

+
Cδ

ρ
(3.52)

for all 0 < r < t0
4 .
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Proof of Corollary 3.2. We define g(s) = −f(−s) and for an entropy
solution u of (3.1) we define v = −u. Then v is a weak solution of

∂tv + ∂xg(v) = 0 in R× R+ ,
v(x, 0) = −u0(x) .

}

(3.53)

We claim that

Claim 1. The weak solution v is an entropy solution of (3.53).
Proof of Claim 1. For ψ ∈ C∞

c (R× R+) and a ∈ R we compute

∫

R×R

v ∧ (−a)∂tψ + g(v ∧ (−a))∂xψ dx dt

= −

∫

R×R

u ∨ a∂tψ + f(u ∨ a)∂xψ dx dt ,

where v ∨ a = max{v, a}. This implies

∂tv ∧ (−a) + ∂xg(v ∧ (−a)) = −[∂tu ∨ a+ ∂xf(u ∨ a)] in D′ . (3.54)

Since u ∈ BVloc we compute with Vol’pert’s chain rule (see Theorem 3.96 in
[AFP])

∂tu ∨ a+ ∂xf(u ∨ a)

= f(u+ ∨ a)− f(u− ∨ a)− σ[u+ ∨ a− u− ∨ a] dH1 Ju , (3.55)

where σ is the jump-speed given by the Rankine-Hugoniot condition

σ =
f(u+)− f(u−)

u+ − u−
.

Since u is an entropy solution it satisfies the Lax E-condition: f ′(u−) >
f ′(u+). Thus the concavity of f gives u+ > u−. For a /∈ [u−, u+] we compute

f(u+ ∨ a)− f(u− ∨ a)− σ[u+ ∨ a− u− ∨ a] = 0

and for a ∈ [u−, u+]

f(u+)− f(a)− σ(u+ − a)

= (u+ − a)

(

f(u+)− f(a)

u+ − a
−

f(u+)− f(u−)

u+ − u−

)

. (3.56)
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Since f is concave, the right-hand side of (3.56) is non-positive and therefore
also right-hand side of (3.55) is non-positive. Thus by (3.54) we get that

∂tv ∧ (−a) + ∂xf(v ∧ (−a))

is a non-negative measure and hereby v is indeed an entropy solution of (3.53)
and Claim 1 is proven.

Since g is strictly convex, we can apply Theorem 3.4 for v and get

π

r2

∫

Bδr(x0,t0)

|v(x, t)− vδr| dx dt ≤
C

ρ4/3

(

1

r
ν(Br(x0, t0))

)
1
3

+
Cδ

ρ
(3.57)

for all 0 < r < t0
4 and ν =

∫

R
∂tv ∧ a + g(v ∧ a) da. For the measure ν we

compute

ν =

∫

R

∂tv ∧ a + ∂xg(v ∧ a) da = −

∫

R

∂tu ∨ a + ∂xf(u ∨ a) da

= −

(

∫ u+

u−

f(u+)− f(a)− σ[u+ − a] da

)

dH1 Ju

=

∫ u+

u−

f(a) da−
f(u+) + f(u−)

2
(u+ − u−)dH1 Ju .

(3.58)

In a similar way we compute

µ =

{

∫ u+

u−

f(a) da−
f(u+) + f(u−)

2
(u+ − u−)

}

dH1 Ju . (3.59)

Hence combining (3.58) and (3.59) gives

ν = µ . (3.60)

Therefore using (3.60) and v = −u in (3.57) concludes the proof.

3.2.2 The Strictly Non-linear Case

In this section we are going to show a similar estimate as in Theorem 3.4,
but for more general conservation laws. We consider the scalar conservation
law (3.1), where f ∈ C2(R) is strictly non-linear, i.e.

|{u ∈ R : f ′′(u) = 0}| <∞ . (3.61)

We define
ρ(ε) = min

a∈{f ′′=0}
min

ε≤|u−a|≤2ε
|f ′′(u)| . (3.62)

Our main result is, as already mentioned in Section, 3.1:
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Theorem. Let f ∈ C2(R,R) be such that |{u ∈ R : f ′(u) = 0}| < ∞. For
an entropy solution u ∈ L∞∩L1(R×R+) of (3.1) there exist constants C > 0
and δ0 > 0 such that for all ε, δ ∈ (0, δ0) and for all (x0, t0), r ∈ (0, t0/4)

[15]
1

π(δr)2

∫

Bδr(x0,t0)

|u(x, t)− uδr| dx dt

≤ C

[

1

δr
µ(Br(x0, t0))

]
1
2

+
C

ρ(ε)4/3

[

1

r
µ(Br(x0, t0))

]
1
3

+ C

(

δ

ρ(ε)
+ ε

)

,

where ρ(ε) is defined as

ρ(ε) = min
a∈{f ′′=0}

min
ε≤|u−a|≤2ε

|f ′′(u)| .

The main idea for the proof of Theorem 3.3 is to compare the entropy solution
u with solutions v of (3.1) which take only values in the convex resp. concave
parts of f .

Proof of Theorem 3.3

For a0 ∈ R we consider the problem

∂tv + ∂xf(v) = 0 in R+ × R ,
v(x, 0) = u0(x) ∧ a0 .

}

(3.63)

Our goal is to compare entropy solutions v of (3.63) to entropy solutions u
of (3.1)

Lemma 3.2. For initial data u0 ∈ L∞(R), let v be an entropy solution of
(3.63) with defect measure q(x, t, a) and let u be an entropy solution of (3.1)
with defect measure m(x, t, a). We define for any (x0, t0) ∈ R× R+

Γr
(x0,t0) = {(x, t) : 0 ≤ t ≤ t0 , |x− x0| ≤ r + λ(t0 − t)} , (3.64)

where λ = max|α|≤‖u0‖∞ |f ′(α)|. Then

q(Γr
(x0,t0) × {a}) ≤ m(Γr

(x0,t0) × {a}) ∀a ≤ a0 (3.65)

and
∫

|x−x0|≤r

|u(x, t0) ∧ a− v(x, t0) ∧ a|2 dx ≤ µ(Γr
(x0,t0)) ∀a ≤ a0 , (3.66)

where µ is the marignal of m(x, t, a).
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Proof of Lemma 3.2. By definition of the defect measure we have for all
ψ ∈ C∞

c (R× [0,∞)) and all a ∈ R
∫

R×[0,∞)

(u ∧ a− v ∧ a)∂tψ + (f(u ∧ a)− f(v ∧ a))∂xψ dx dt

+

∫

R

(u(x, 0) ∧ a− v(x, 0) ∧ a)ψ(x, 0) dx

= −

∫

R×[0,∞)

ψ dm(x, t, a) +

∫

R×[0,∞)

ψ dq(x, t, a) .

(3.67)

For a ≤ a0 it follows since v is a solution of (3.63)

u(x, 0) ∧ a− v(x, 0) ∧ a = u0(x) ∧ a− u0(x) ∧ a ∧ a0 = 0 . (3.68)

Hence in the case a ≤ a0 equation (3.67) simplifies to
∫

R×[0,∞)

(u ∧ a− v ∧ a)∂tψ + (f(u ∧ a)− f(v ∧ a))∂xψ dx dt

= −

∫

R×[0,∞)

ψ dm(x, t, a) +

∫

R×[0,∞)

ψ dq(x, t, a) . (3.69)

We introduce

ωε(t) =























1 0 ≤ t ≤ t0 ,

ε−1(t0 − t) + 1 t0 ≤ t ≤ t0 + ε ,

0 t0 + ε ≤ t <∞

(3.70)

and

κε(x, t) =























1 |x− x0|− r − λ(t0 − t) < 0 ,

ε−1[r + λ(t0 − t)− |x− x0|] + 1 0 ≤ |x− x0|− r − λ(t0 − t) < ε ,

0 |x− x0|− r − λ(t0 − t) ≥ ε .
(3.71)

Then putting ψε(x, t) = κε(x, t)ωε(t) in (3.69) leads to

−
1

ε

∫ t0+ε

t0

∫

|x−x0|≤r

(u ∧ a− v ∧ a) dx dt

−
1

ε

∫

Γr+ε
(x0,t0)

λ(u ∧ a− v ∧ a) + [f(u ∧ a)− f(v ∧ a)] sign(x− x0) dx dt

= −

∫

R×[0,∞)

ψ dm+

∫

R×[0,∞)

ψ dq(x, t, a) .

(3.72)



70 CHAPTER 3. CONTROL OF OSCILLATION

From Theorem 6.2.3 in [Da] we know that

u0 ≥ v0 = u0 ∧ a0

implies
u(x, t) ≥ v(x, t) for a.e. (x, t) ∈ R× [0,∞)

and hence

u(x, t)∧ a ≥ v(x, t)∧ a ∀a ≤ a0 and for a.e. (x, t) ∈ R× [0,∞) . (3.73)

Therefore by (3.73) we get

u ∧ a− v ∧ a = |u ∧ a− v ∧ a| . (3.74)

We observe that (3.74) and the choice of λ imply

0 ≤ λ(u ∧ a− v ∧ a) + [f(u ∧ a)− f(v ∧ a)] sign(x− x0) . (3.75)

Using (3.75) in (3.72) gives the estimate

−
1

ε

∫ t0+ε

t0

∫

|x−x0|≤r

(u ∧ a− v ∧ a) dx dt

≥ −

∫

R×[0,∞)

ψε dma +

∫

R×[0,∞)

ψε dqa .

and thus

1

ε

∫ t0+ε

t0

∫

|x−x0|≤r

|u ∧ a− v ∧ a| dx dt ≤

∫

R×[0,∞)

ψε dma −

∫

R×[0,∞)

ψε dqa .

(3.76)
Letting ε→ 0+ in (3.76) gives for all a ≤ a0

∫

|x−x0|≤r

|u(x, t0) ∧ a− v(x, t0) ∧ a| dx

≤ m(Γr
(x0,t0) × {a})− q(Γr

(x0,t0) × {a}) . (3.77)

Since the left-hand side of (3.77) is non-negative (3.65) follows immediately.
It remains to show (3.66). Integrating (3.77) with respect to a over (−∞, a1)
for a1 ≤ a0 gives

∫

|x−x0|≤r

|u(x, t0) ∧ a1 − v(x, t0) ∧ a1|
2 dx ≤ Cµ(Γr

(x0,t0)) ,

which is the desired result (3.66).
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We now consider a similar case as in Lemma 3.2. For a a0 ∈ R, let v be an
entropy solution of

∂tv + ∂xf(v) = 0 in R+ × R ,
v(x, 0) = u0(x) ∨ a0 .

}

(3.78)

As before we compare solutions of (3.78) to an entropy solution of (3.1).

Lemma 3.3. For initial data u0 ∈ L∞(R), let v be an entropy solution of
(3.78) with defect measure q(x, t, a) and let u be an entropy solution of (3.1)
with defect measure m(x, t, a). We define for any (x0, t0) ∈ R× R+

Γr
(x0,t0) = {(x, t) : 0 ≤ t ≤ t0 , |x− x0| ≤ r + λ(t0 − t)} , (3.79)

where λ = max|α|≤‖u0‖∞ |f ′(α)|. Then

q(Γr
(x0,t0) × {a}) ≤ m(Γr

(x0,t0) × {a}) ∀a ≥ a0 (3.80)

and
∫

|x−x0|≤r

|u(x, t0) ∨ a− v(x, t0) ∨ a|2 dx ≤ µ(Γr
(x0,t0)) ∀a ≥ a0 , (3.81)

where µ is the marignal of m(x, t, a).

Proof of Lemma 3.3. Let ϕ(x, t) = ϕ1(x)ϕ2(t), where ϕ1, ϕ2 ∈ C∞
c (R)

are such that suppϕ1 ⊂ (0, 1), suppϕ2 ⊂ (−1, 0] and
∫

R ϕ1(x) dx =
∫

R
ϕ2(t) dt =

1. Define the convolution kernel ϕε(x, t) =
1
εϕ(

(x,t)
ε ). Then we introduce the

regularized functions:

χε(x, t, a) = a≤u ∗ ϕε(x, t) and θε(x, t, a) = a≤v ∗ ϕε(x, t)

and the regularized defect measures

mε(x, t, a) =

∫

R×R+

ϕε(x− y, t− s) dm(y, s, a) (3.82)

and

qε(x, t, a) =

∫

R×R+

ϕε(x− y, t− s) dq(y, s, a) . (3.83)

Let ψ ∈ C∞
c (R×R+). Then by the kinetic formulation (3.5) we get pointwise

in (x, t) and for almost every a

[χε − θε]∂tψ + f ′(a)[χε − θε]∂xψ = −ψ∂a[mε − qε] . (3.84)
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For δ > 0 and a ≥ a0 we define

S ′(a) =



















1 a + δ ≤ a ,

1

δ
(a− a) a ≤ a ≤ a+ δ ,

0 a ≤ a .

(3.85)

Multiplying (3.84) with S ′(a) and integrating with respect of a gives

∫

R

S ′(a)[χε − θε]∂tψ + S ′(a)f ′(a)[χε − θε]∂xψ da

= −

∫

R

S ′(a)ψ∂a[mε − qε] da . (3.86)

We integrate the right-hand side of (3.86) by parts, which gives

∫

R

S ′(a)ψ∂a[mε − qε] da = −
1

δ

∫ a+δ

a

mε(x, t, a)− qε(x, t, a) da . (3.87)

As mε and qε are uniformly Lipschitz continuous in a, we notice that

1

δ

∫ a+δ

a

mε(x, t, a)− qε(x, t, a) da→ m(x, t, a)− qε(x, t, a) as δ → 0+ .

(3.88)
For a function g(a) ∈ W 1,∞(R) we compute
∫

R

g′(a)S ′(a)χε(x, t, a) da =

∫

R×R+

∫

R

g′(a)S ′(a) a≤u(y,s)ϕε(x− y, t− s) da dx dt

=

∫

R×R+

Sg
δ (u(y, s))ϕε(x− y, t− s) dx dt ,

(3.89)

where

Sg
δ (a) =



























0 a ≤ a ,

g(a)−
1

δ

∫ a

a

g′(α) dα a ≤ a ≤ a+ δ ,

g(a)−
1

δ

∫ a+δ

a

g(α) dα+ g(a)− g(a) a+ δ ≤ a .

(3.90)

We notice that

Sg
δ (a)→ g(a ∨ a)− g(a) in L∞

loc(R) as δ → 0+ . (3.91)
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Applying identities (3.87) and (3.89) in (3.86) results in

[

SId
δ (u)− SId

δ

]

∗ ϕε∂tψ +
[

Sf
δ (u)− Sf

δ

]

∗ ϕε∂xψ

=
1

δ

∫ a+δ

a

mε(x, t, a)− qε(x, t, a) da . (3.92)

Recalling (3.88) and (3.91) gives as we let δ → 0+ in (3.92)

[u ∨ a− v ∨ a] ∗ ϕε∂tψ + [f(u ∨ a)− f(v ∨ a)] ∗ ϕε∂xψ

= [mε(x, t, a)− qε(x, t, a)]ψ . (3.93)

Integrating (3.93) over R× R+ and letting ε→ 0+ gives

∫

R×R+

[u ∨ a− v ∨ a]∂tψ + [f(u ∨ a)− f(v ∨ a)] ∂xψ dx dt

=

∫

R×R+

ψ dma −

∫

R×R+

ψ dqa . (3.94)

If we choose ψ(x, t) = ψε := ωε(t)κε(x, t) in (3.94) where ωε(t) is as in (3.70)
and κε(x, t) as in (3.71), we compute similar to (3.72)

−
1

ε

∫ t0+ε

t0

∫

|x−x0|≤r

u ∨ a− v ∨ a dx dt

−
1

ε

∫

Γr+ε
(x0,t0)

λ(u ∨ a− v ∨ a) + [f(u ∨ a)− f(v ∨ a)] sign(x) dx dt

=

∫

R×R+

ψε dma −

∫

R×R+

ψε dqa .

(3.95)

By Theorem 6.2.3 in [Da] we get that v0 = u0 ∨ a0 ≥ u0 implies

v(x, t) ≥ u(x, t) a.e. in R× R+

and thus

v(x, t) ∨ a ≥ u(x, t) ∨ a a.e. in R× R+ . (3.96)

Therefore (3.96) implies

−(u ∨ a− v ∨ a) = |u ∨ a− u ∨ a| . (3.97)
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Applying (3.97) in (3.95) gives

1

ε

∫ t0+ε

t0

∫

|x−x0|≤r

|u ∨ a− v ∨ a| dx dt

1

ε

∫

Γr+ε
(x0,t0)

λ|u ∨ a− v ∨ a|− [f(u ∨ a)− f(v ∨ a)] sign(x− x0) dx dt

=

∫

R×R+

ψε dma −

∫

R×R+

ψε dqa .

(3.98)

By choice of λ we deduce

λ|u∨a−v∨a|−[f(u∨a)−f(v∨a)] sign(x−x0) ≥ 0 a. e. in R×R+ . (3.99)

We use (3.99) in (3.98) and receive

1

ε

∫ t0+ε

t0

∫

|x−x0|≤r

|u ∨ a− v ∨ a| dx dt

≤

∫

R×R+

ψε dm(x, t, a)−

∫

R×R+

ψε dq(x, t, a) . (3.100)

Letting ε→ 0+ in (3.100) gives
∫

|x−x0|≤r

|u(x, t0)∨a−v(x, t0)∨a| dx ≤ m(Γr
(x0,t0), a)−q(Γr

(x0,t0), a) . (3.101)

Since the left-hand side of (3.101) is non-negative (3.81) follows. Integrating
(3.101) with respect to a over (a,∞) for a ≥ a0 concludes the claim (3.81)

∫

|x−x0|≤r

|u(x, t0) ∨ a− v(x, t0) ∨ a|2 dx ≤ µ(Γr
(x0,t0)) .

After these preliminaries we are no able to show Theorem 3.3.

Proof of Theorem 3.3. Let

N := | {u ∈ R : f ′′(u) = 0} |

and
a1, . . . , aN ∈ {u ∈ R : f ′′(u) = 0}
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such that

a1 < a2 < . . . < aN .

Further we define

ρj(ε) = min
x∈[aj−1+ε,aj−ε]

|f ′′(s)|

and

ρ(ε) = min
1≤j≤N

ρj . (3.102)

For j ∈ {1, . . . , N} and

0 < ε ≤
1

4
min

1≤j≤N−1
|aj+1 − aj| .

Let vj be the entropy solution of

∂tvj + ∂xf(vj) = 0 in R+ × R ,
vj(x, 0) = u(x, t0 − 2r) ∧ (aj − ε) ,

}

(3.103)

with defect measure

mj(x, t, a) = ∂tvj ∧ a + ∂xf(vj ∧ a)

and (x, t)-marginal

µj = mj(·× R) .

Similarly for j ∈ {1, . . . , N − 1} let wj be the entropy solution of

∂twj + ∂xf(wj) = 0 in R+ × R ,
wj(x, 0) = u(x, t0 − 2r) ∨ (aj + ε) ∧ (aj+1 − ε) ,

}

(3.104)

with defect measure

qi(x, t, a) = ∂twi ∧ a+ ∂xf(wi ∧ a)

and (x, t)-marginal νi. Furthermore let wN be the entropy solution of

∂twN + ∂xf(wN) = 0 in R+ × R ,
wN(x, 0) = u(x, t0 − 2r) ∨ (aN + ε)

}

(3.105)

and we denote by qN(x, t, a) its defect measure and by νN the (x, t)-marginal.
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Claim 1. There exist constants C > 0 and δ0 > 0 such that for all 1 ≤ j ≤ N
the entropy solution vj of (3.103) satisfies for (x0, t0) ∈ R× R+

1

(δr)4

∫

Bδr(x0,2r)

|vj(x, t)− vδrj | dx dt

≤ Cj

[

1

δr
µj(Γ

r
(x0,3r))

]
1
2

+
2Cj

ρ(ε)4/3

[

1

r
µj(Γ

r
(x0,3r))

]
1
3

+ Cj

(

δ

ρ(ε)
+ ε

)

. (3.106)

for all 0 < δ < δ0 and 0 < r < t0/2.

Proof of Claim 1. We are going to show (3.106) by induction.
Base case. For the entropy solution v2 of (3.103) we claim that there exist
constants C > 0 and δ0 > 0 such that for all (x0, t0) ∈ R× R+

1

π(δr)2

∫

Bδr(x0,2r)

|v2(x, t)− vδr2 | dx dt

≤ 2

[

1

δr
µ2(Γ

r
(x0,3r))

]
1
2

+
2C

ρ(ε)4/3

[

1

r
µ2(Γ

r
(x0,3r))

]
1
3

+
Cδ

ρ
+ 4ε (3.107)

for all 0 < δ < δ0 and 0 < r < t0/2.

Firstly we notice for any v, a ∈ R

v = v ∧ a1 + v ∨ a1 − a1 . (3.108)

We write
Bδr = Bδr(x0, 2r)× Bδr(x0, 2r)

and we deduce from (3.108)

1

(δr)4

∫

Bδr

|v2(x, t)− v2(y, s)| dx dt dy ds

≤
1

(δr)4

∫

Bδr

|v2(x, t) ∧ a1 − v2(y, s) ∧ a1| dx dt dy ds

+
1

(δr)4

∫

Bδr

|v2(x, t) ∨ a1 − v2(y, s) ∨ a1| dx dt dy ds .

(3.109)
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With

|v2(x, t) ∧ a1 − v2(y, s) ∧ a1|

≤ |v2(x, t) ∧ (a1 − ε)− v2(y, s) ∧ (a1 − ε)|+ 2ε

and

|v2(x, t) ∨ a1 − v2(y, s) ∨ a1|

≤ |v2(x, t) ∨ (a1 + ε)− v2(y, s) ∨ (a1 + ε)|+ 2ε

we obtain from (3.109)

1

π2(δr)4

∫

Bδr

|v2(x, t)− v2(y, s)| dx dt dy ds

≤
1

π2(δr)4

∫

Bδr

|v2(x, t) ∧ (a1 − ε)− v2(y, s) ∧ (a1 − ε)| dx dt dy ds

+
1

π2(δr)4

∫

Bδr

|v2(x, t) ∨ (a1 + ε)− v2(y, s) ∨ (a1 + ε)| dx dt dy ds

+ 4ε . (3.110)

Foremost we deal with the first term on the right-hand side of (3.110). We
consider the entropy solution v1 of (3.104) Since

v1(x, 0)− u(x, t0 − 2r) ∧ (a1 − ε) ≤ a1 − ε

we get by Theorem 6.2.3 in [Da] that

v(x, t) ≤ a1 − ε a.e.

and therefore

v1(x, t) ∧ (a1 − ε) = v1(x, t) a. e. in R× R+ . (3.111)

We deduce from (3.111)

1

(δr)4

∫

Bδr

|v2(x, t) ∧ (a1 − ε)− v2(y, s) ∧ (a1 − ε)| dx dt dy ds

≤ 2
1

(δr)2

∫

Bδr(x0,2r)

|v2(x, t) ∧ (a1 − ε)− v1(x, t) ∧ (a1 − ε)| dx dt

+
1

(δr)4

∫

Bδr

|v1(x, t)− v1(y, s)| dx dt dy ds .

(3.112)



78 CHAPTER 3. CONTROL OF OSCILLATION

Since v1 is an entropy solution and |f ′′(a)| ≥ ρ(ε) for a ∈ [−‖v1‖∞, ‖v1‖∞]
the assumptions of Theorem 3.4 (resp. Corollary 3.2) are fulfilled and we get

1

π2(δr)4

∫

Bδr

|v1(x, t)− v1(y, s)| dx dt dy ds

≤
C

ρ(ε)4/3

[

1

r
µ1(Br(x0, 2r))

]
1
3

+ C
δ

ρ(ε)
(3.113)

for all 0 < δ < δ0. Applying (3.113) in (3.112) leads to

1

(δr)4

∫

Bδr

|v2(x, t) ∧ (a1 − ε)− v2(y, s) ∧ (a1 − ε)| dx dt dy ds

≤ 2
1

(δr)2

∫

Bδr(x0,2r)

|v2(x, t) ∧ (a1 − ε)− v1(x, t) ∧ (a1 − ε)| dx dt

+
C

ρ(ε)4/3

[

1

r
µ1(Br(x0, 2r))

]
1
3

+ C
δ

ρ(ε)
(3.114)

Lemma 3.2 aloud us to estimate the right-hand side of (3.114) in terms of µ2

1

(δr)4

∫

Bδr

|v2(x, t) ∧ (a1 − ε)− v2(y, s) ∧ (a1 − ε)| dx dt dy ds

≤ 2

[

1

δr
µ2(Γ

r
x0,3r)

]
1
2

+
C

ρ(ε)4/3

[

1

r
µ2(Br(x0, 2r))

]
1
3

+ C
δ

ρ(ε)
(3.115)

Next we consider the second term in (3.110). As (3.112) we deduce for w1

instead of v1

1

(δr)4

∫

Bδr

|v2(x, t) ∨ (a1 + ε)− v2(y, s) ∨ (a1 + ε)| dx dt dy ds

≤ 2
1

(δr)2

∫

Bδr(x0,2r)

|v2(x, t) ∨ (a1 + ε)− w1(x, t) ∧ (a1 + ε)| dx dt

+
1

(δr)4

∫

Bδr

|w1(x, t)− w1(y, s)| dx dt dy ds .

(3.116)

Since w1 is an entropy solution and |f ′′(a)| ≥ ρ(ε) for a ∈ [−‖w1‖∞, ‖w1‖∞]
the assumptions of Theorem 3.4 (resp. Corollary 3.2) are fulfilled and there-
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fore

1

π2(δr)4

∫

Bδr

|w1(x, t)− w1(y, s)| dx dt dy ds

≤
C

ρ(ε)4/3

[

1

r
ν1(Br(x0, 2r))

]
1
3

+ C
δ

ρ(ε)
(3.117)

Then we use (3.113) and Lemma 3.3 in (3.116) and achieve similar to (3.115)

1

(δr)4

∫

Bδr

|v2(x, t) ∨ (a1 + ε)− v2(y, s) ∨ (a1 + ε)| dx dt dy ds

≤ 2

[

1

δr
µ2(Γ

r
x0,3r)

]
1
2

+
C

ρ(ε)4/3

[

1

r
µ2(Br(x0, 2r))

]
1
3

+ C
δ

ρ(ε)
(3.118)

Bringing (3.115) and (3.118) together in (3.110) concludes the base step.

For the inductive step we assume

1

(δr)4

∫

Bδr

|vj−1(x, t)− vj−1(y, s)| dx dt dy ds

≤ C(j − 1)

[

1

δr
µj−1(Γ

r
(x0,3r))

]
1
2

+
C(j − 1)

ρ(ε)4/3

[

1

r
µj−1(Γ

r
(x0,3r))

]
1
3

+ C(j − 1)

(

δ

ρ(ε)
+ ε

)

. (3.119)

We compute for the entropy solution vj of (3.103)

1

π2(δr)4

∫

Bδr

|vj(x, t)− vj(y, s)| dx dt dy ds

≤
1

π2(δr)4

∫

Bδr

|vj(x, t) ∧ (aj−1 − ε)− vj(y, s) ∧ (aj−1 − ε)| dx dt dy ds

+
1

π2(δr)4

∫

Bδr

|vj(x, t) ∨ (aj−1 + ε)− vj(y, s) ∨ (aj−1 + ε)| dx dt dy ds

+ 4ε . (3.120)
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The first term on the right-hand side of (3.120) can be estimated by

1

(δr)4

∫

Bδr

|vj(x, t) ∧ (aj−1 − ε)− vj(y, s) ∧ (aj−1 − ε)| dx dt dy ds

≤ 2
1

(δr)2

∫

Bδr(x0,2r)

|vj(x, t) ∧ (aj−1 − ε)− vj−1(x, t) ∧ (aj−1 − ε)| dx dt

+
1

(δr)4

∫

Bδr

|vj−1(x, t)− vj−1(y, s)| dx dt dy ds . (3.121)

Then we use Lemma 3.2 for the first term on the right-hand side of (3.121)
and we use assumption (3.119) for the second terms

1

(δr)4

∫

Bδr

|vj(x, t) ∧ (aj−1 − ε)− vj(y, s) ∧ (aj−1 − ε)| dx dt dy ds

≤ Cj

[

1

δr
µj(Γ

r
(x0,3r))

]
1
2

+
Cj

ρ(ε)4/3

[

1

r
µj(Γ

r
(x0,3r))

]
1
3

+ Cj

(

δ

ρ(ε)
+ ε

)

. (3.122)

For the second term in (3.120) we can argue step by step as in (3.116). Thus
Claim 1 follows.

We want now to conclude the proof of Theorem 3.3. Let ũ be the entropy
solution of

∂tũ+ ∂xf(ũ) = 0 in R+ × R ,
ũ(x, 0) = u(x, t0 − 2r) ,

}

(3.123)

with defect measure m̃(x, t, a) = ∂tũ ∧ a + ∂xf(ũ ∧ a). With Claim 1 for
j = N we conclude in exact the same as in the proof of (3.106):

1

π2(δr)4

∫

Bδr(x0,2r)×Bδr(x0,2r)

|ũ(x, t)− ũ(y, s)| dx dt dy ds

≤ C

[

1

δr
µ̃(Γr

(x0,3r))

]
1
2

+
C

ρ(ε)4/3

[

1

r
µ̃(Γr

(x0,3r))

]
1
3

+ C

(

δ

ρ(ε)
+ ε

)

. (3.124)
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Since ũ(x, t) = u(x, t+ t0 − 2r) (3.124) gives for a c > 0

1

π(δr)2

∫

Bδr(x0,t0)

|u(x, t)− uδr| dx dt

≤ C

[

1

δr
µ(Bcr(x0, t0))

]
1
2

+
C

ρ(ε)4/3

[

1

r
µ(Bcr(x0, t0))

]
1
3

+ C

(

δ

ρ(ε)
+ ε

)

(3.125)

and therefore Theorem 3.3 follows.

3.3 Applications of Theorem 3.3

Our goal in this section is to deduce b) and c) of the following proposition
from Theorem 3.3.

Proposition 3.1. Let f ∈ C2(R) such that |{u ∈ R : f ′(u) = 0}| < ∞ and
for a p > 0 ρ(ε) = O(εp) for ρ defined as in (3.62). We consider an entropy
solution u ∈ L1 ∩ L∞(R) of (3.1). Then there exists a rectifiable set Ju and
a H1-dim. set V0 ⊂ R× R+\Ju such that

a) u has approx. jump-points on Ju,

b) u is approximate continuous on R× R+\(Ju ∪ V0) and µ(V0) = 0,

c) for BR(x0, t0) such that µ(BR(x0, t0)) = 0 one has

u ∈ C0,1/(2+p)(BR/2(x0, t0)) .

Before we show Proposition 3.1 we prove a reversed estimate as in Theorem
3.3, i.e. the entropy production is controlled by the oscillation

Proposition 3.2. For f Lipschitz, let u be a solution of (3.1) with initial
condition u0 ∈ L∞. Then there exist constants C, c > 0 depending on u0 and
f such that for any (x0, t0) ∈ R×R and 0 < r < t0/2 the following estimate
holds

µ(Bcr(x0, t0)) ≤ C

∫

Br(x0,t0)

|u(x, t)− ur| dx dt . (3.126)

Proof of Proposition 3.2. Let

λ := sup
|α|≤‖u0‖∞

|f ′(α)| .
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For (x0, t0) and 0 < r < t0/(2λ) and a0 ∈ R let

ũ0(x) =

{

u(x, t0 − r/2) if |x− x0| ≤ λr ,
a0 else.

(3.127)

Then let ũ be the entropy solution of

∂tũ+ ∂xf(ũ) = 0 in R× R+ ,
ũ(x, 0) = ũ0

}

(3.128)

with defect measure m̃(x, t, a). We notice that by the contraction principle
(see Theorem 6.2.3 in [Da]) we have on

Γ := {(x, t) : 0 ≤ t ≤ r , |x− x0| ≤ λ(r − t)}

that

ũ(x, t) = u(x, t+ t0 − r/2) . (3.129)

As in the proof of Lemma 3.3 we consider the regularized kinetic formulation
for the solution ũ

∂tχε(x, t, a) + f ′(a)∂xχε(x, t, a) = ∂am̃ε(x, t, a) (3.130)

Since one has ũ(x, t) = 0 for |x− x0| ≥ r + λt, we get

χε(x, t, a) = a≤a0 for |x− x0| ≥ λ(r + t) + ε . (3.131)

For a0 ∈ R we consider S ′(a) = 2(a − a0). Multiplying (3.130) with S ′(a)
and integrating in R× [0, r] gives with (3.131)

∫

R

S ′(a)χε(x, r, a)− S ′(a)χε(x, 0, a) dx

=

∫

R×[0,r]

S ′(a)∂am̃ε(x, t, a) dx dt . (3.132)

Integrating (3.132) also with respect to a over R leads to

∫

R

(ũ− a0)
2 ∗ ϕε(x, r)− (ũ− a0)

2 ∗ ϕε(x, 0) dx

=

∫

R×[0,r]×R

S ′(a)∂am̃ε(x, t, a) dx dt da . (3.133)
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We integrate the right-hand side of (3.133) by parts
∫

R

(ũ− a0)
2 ∗ ϕε(x, r)− (ũ− a0)

2 ∗ ϕε(x, 0) dx

= −2

∫

R×[0,r/λ]×R

m̃ε(x, t, a) dx dt da . (3.134)

From (3.134) we get the inequality
∫

R×[0,r]×R

m̃ε(x, t, a) dx dt da ≤ 2

∫

R

(ũ− a0)
2 ∗ ϕε(x, 0) dx (3.135)

We let ε→ 0+ in (3.134) and obtain

µ̃(R× [0, r]) ≤

∫

R

|ũ(x, 0)− a0|
2 dx . (3.136)

We recall the definition of ũ (3.127) and obtain from (3.136)

µ̃(R× [0, r]) ≤

∫

|x−x0|≤λr

|u(x, t0 − r/2)− a0|
2 dx . (3.137)

Therefore

µ̃(R× [0, r]) ≤ (‖u‖∞ + a0)

∫

|x−x0|≤λr

|u(x, t0 − r/2)− a0| dx . (3.138)

We observe that (3.129) implies

µ̃(R× [0, r]) ≥ µ̃(Γ) = µ(Γ) . (3.139)

Thus from (3.138) and (3.139) we conclude

µ(Γ) ≤ (‖u‖∞ + a0)

∫

|x−x0|≤λr

|u(x, t0 − r/2)− a0| dx . (3.140)

By the contraction principle for scalar conservation laws (see Theorem 6.2.3
in [Da]) we get
∫

|x−x0|≤λr

|u(x, t0 − r/2)− a0| dx ≤

∫

|x−x0|≤λ(r+s

|u(x, t0 − r/2− s)− a0| dx

for all 0 < s ≤ t0 − r/2 and thus

1

λr

∫

|x−x0|≤λr

|u(x, t0 − r/2)− a0| dx

≤
2

λr2

∫ r/2

0

∫

|x−x0|≤λ(r+s)

|u(x, t0 − r/2− s)− a0| dx ds . (3.141)
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We apply (3.141) in (3.140) and receive

1

r
µ(Γ) ≤

2

λr2

∫ r/2

0

∫

|x−x0|≤λ(r+s)

|u(x, t0 − r/2− s)− a0| dx ds . (3.142)

We can find a c̃ ∈ R, depending on λ such that Bc̃r(x0, t0) ⊂ Γ. Hence we
get from (3.142)

1

r
µ(Bc̃r(x0, t0)) ≤ (‖u‖∞ + a0)

C

r2

∫

B3/2λr(x0,t0)

|u(x, t)− a0| dx dt . (3.143)

We put a0 = u3/2λr in (3.143) and our claim (3.126) follows.

We prove now Proposition 3.1:

Proof of Proposition 3.1. First we define the set

Ju :=

{

(x, t) ∈ R× R+ : lim sup
r→0+

r−1µ(Br(x, t)) > 0

}

. (3.144)

By Theorem 2.4 in [DOW] we know that Ju is rectifiable and also that a) is
satisfied. In a next step our aim is to show b). For α ∈ (0, 1) we define the
set

Vα =

{

(x, t) ∈ R× R+\Ju : α = sup
γ∈(0,1)

{lim sup
r→0+

r−1−γµ(Br(x, t)) <∞}

}

.

(3.145)
By construction we get, that

H1+α(Vα) <∞ . (3.146)

Choosing ε > 0 such that ρ(ε) = δ
1
2 we get from Theorem 3.3

1

(δr)2

∫

Bδr(x,t)

|u(y, s)− uδr| dy ds ≤
C

δ
2
3

[

1

r
µ(Br(x, t))

]
1
3

+ Cδ
1
2 (3.147)

For (x, t) ∈ Vα we choose δ = rα/2 and ε = rα/(8p) and obtain from Theorem
3.3

1

r2(1+α/2)

∫

B
r1+α/2 (x,t)

|u(y, s)− ur1+α/2
| dy ds ≤ Crγα , (3.148)

where
γ := min{1/6, 1/(8p)} .
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Thus after rescaling we deduce from (3.148)

1

r2

∫

Br(x,t)

|u(y, s)− ur| dy ds ≤ Crθ , (3.149)

where
θ = 2γα/(2 + α) . (3.150)

We claim now

Claim 1. For (x0, t0) ∈ Vα and 0 < r < R we have

|uR − ur| ≤ CRθ , (3.151)

where θ is defined in (3.150).

Proof of Claim 1. for R > 0 we set Rk = 2−kR. Then we obtain from
(3.149)

|uR − uRk | ≤
k−1
∑

j=0

|uRj − uRj+1 |

≤
k−1
∑

j=0

4

R2
j

∫

BRj
(x0,t0)

|u(y, s)− uRj | dy ds

≤ 4Rθ
k−1
∑

j=0

2−jθ ≤ CRθ ,

(3.152)

and the claim follows.

From Claim 1 one easily gets that for any (x, t) ∈ Vα and (rn)n∈N such that
rn → 0+ the sequence urn is a Cauchy-sequence and therefore converges.
Hence u is approximate continuous for (x, t) ∈ Va and it remains to consider
points (x, t) such that

(x, t) ∈ V0 = R× R+\(Ju ∪
⋃

0<α<1

Vα) .

This set can be characterized as

V0 =

{

(x, t) ∈ R× R+ : 0 = sup
γ∈(0,1)

{lim sup
r→0+

r−1−γµ(Br(x, t)) <∞}

}

(3.153)
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From (3.153) we deduce that H1(V0) < ∞. Therefore we have to show
µ(V0) = 0 to complete the proof b). Let ε > 0. For k ∈ N we define the set

Ek =

{

(x, t) ∈ V0 :
c2

πr2

∫

Brc(x0,t0)

|u(y, s)− ur| dy ds ≤ ε ∀r ∈ (0, 1/k)

}

.

(3.154)
For every (x, t) ∈ Ek we have by Proposition 3.2

µ(Br(x, t)) ≤ εr ∀0 < r < 1/k . (3.155)

Let (Ci)i∈N be a covering of Ek such that diamCi =: ri < 1/k and Ci ∩ Ek

contains at least one point (xi, ti) and

∑

i

ri ≤ H1
1/k(Ek) +

1

k
. (3.156)

Then B2ri(xi, ti) is still a covering of Ek and we get together with (3.155)
and (3.156)

µ(Ek) ≤
∑

i

µ(B2ri(xi, ti)) ≤ ε
∑

i

2ri ≤ 2ε

(

H1(V0) +
1

k

)

. (3.157)

Since Ek is an increasing sequence and its union is V0 we get by letting k →∞
in (3.157)

µ(V0) ≤ 2εH1(E) .

Since ε was arbitrary we get
µ(V0) = 0

as claimed and therefore b) is shown.

Let BR(x0, t0) be an open set such that µ(BR(x0, t0)) = 0, then for every
(x, t) ∈ BR(x0, t0) and r > 0 such that Br(x, t) ⊂ BR(x0, t0) we obtain from
Theorem 3.3

1

(δr)2

∫

Bδr(x,t)

|u(y, s)− uδr| dy ds ≤ C(
δ

εp
+ ε) . (3.158)

From (3.158) we obtain for suitable choices of δ and ε that for all (x, t) ∈
BR(x0, t0) and r > 0 such that Br(x, t) ⊂ BR(x0, t0) we have

1

r2

∫

Br(x,t)

|u(y, s)− ur| dy ds ≤ Cr2+p . (3.159)
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Similar as Claim 1 we deduce for any (x, t) ∈ BR(x0, t0) and 0 < r < r1 <
diam((x, t), ∂BR(x0, t0))

|ur
(x,t) − ur1

(x,t)| ≤ CR1/(2+p) (3.160)

Especially we obtain by letting r → 0+ in (3.160)

|ur1
(x,t) − u(x, t)| ≤ Cr1/(2+p)

1 . (3.161)

Let (x, t), (y, s) ∈ BR/2(x0, t0), then for r1 = |(x, t) − (y, s)| it follows with
(3.161)

|u(x, t)− u(y, s)| ≤ |u(x, t)− u2r1
(x,t)|+ |u(y, s)− u2r1

(y,s)|+ |u2r1
(x,t) − u2r1

(y,s)|

≤ Cr1/(2+p)
1 = |(x, t)− (y, s)|1/(2+p)

(3.162)

and therefore our claim follows.



88 CHAPTER 3. CONTROL OF OSCILLATION



Bibliography

[AFP] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation
and free discontinuity problems, Oxford Mathematical Monographs, New
York, (2000).

[ALR] L. Ambrosio, M. Lecumberry, T. Rivière, A viscosity property of mini-
mizing micromagnetic configurations, Comm. Pure Appl. Math., 56, No.
6, (2003), 681-688.

[AKLR] L. Ambrosio, B. Kirchheim, M. Lecumberry, T. Rivière, On the rec-
tifiability of defect measures arising in a micromagnetics model, Nonlin-
ear problems in mathematical physics and related topics, II, Int. Math.
Ser. (N. Y.), 2, 29-60, Kluwer/Plenum, New York (2002).

[At] K.A Atkinson, An Introduction to Numerical Analysis (2nd ed.), New
York, John Wiley & Sons

[BC] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellmann equations, Birkhäuser Boston Inc, Boston
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