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Abstract

This doctoral dissertation consists in a structured and organized presentation of three scientific
papers ([22], [23] and [25]) co-signed by the author, along with some new contributions. The
main focus of the discussion will be on several contributions to geometric analysis, specifically to
the field of harmonic maps between manifolds (in particular we will focus on pseudo-holomorphic
maps) and to analytical gauge theories in supercritical dimension.
In Chapter 2, the author discusses the uniqueness of tangent maps for weakly pseudo-holomorph-ic
and locally approximable maps from an almost complex manifold to projective algebraic varieties,
while also obtaining a new statement about uniqueness of tangent cones to a special class of non-
rectifiable semicalibrated cycles.
In Chapter 3, the author identifies the strong Lp-closure of vector fields that have finitely many
integer topological singularities on a domain, and provides a useful characterization of this class
of objects in terms of the existence of a (minimal) connection for their singular set. Furthermore,
the author establishes that such strong closure is also the weak closure in Lp of the same space.
Chapter 4 concerns the regularity of weak Yang-Mills fields in supercritical dimension, establishing
Coulomb gauge extraction and ε-regularity type results for a special class of very weak L2-
connections.
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Sommario

Questa tesi di dottorato consiste in una presentazione strutturata e organizzata di tre articoli
scientifici ([22], [23] e [25]) co-firmati dall’autore, insieme ad alcuni nuovi risultati. Il focus
principale della discussione sarà su diversi contributi all’analisi geometrica, più specificamente
nel campo delle mappe armoniche tra varietà (in particolare verranno trattate le mappe pseudo-
olomorfe) e riguardo le teorie di gauge in dimensione supercritica da un punto di vista analitico.
Nel capitolo 2, l’autore discute l’unicità delle mappe tangenti per mappe debolmente pseudo-
olomorfe e localmente approssimabili da una varietà quasi complessa a varietà algebriche proi-
ettive, ottenendo anche un nuovo risultato sull’unicità dei coni tangenti a una classe speciale di
cicli semicalibrati non rettificabili .
Nel capitolo 3, l’autore identifica la chiusura forte in Lp dei campi vettoriali che hanno un numero
finito di singolarità topologiche con grado intero su un dominio euclideo n-dimensionale e fornisce
un’utile caratterizzazione di questa classe di oggetti in termini dell’esistenza di un connessione
per il loro insieme singolare. Inoltre, l’autore stabilisce che tale chiusura forte è anche chiusura
debole in Lp dello stesso spazio.
Il capitolo 4 verte sulla regolarità dei campi deboli di Yang-Mills in dimensione supercritica,
stabilendo risultati di tipo ε-regolarità ed estrazione di Coulomb gauge per una classe speciale di
connessioni deboli.
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1. Introduction

1.1. Calculus of variations and the direct method

Calculus of variations is a branch of mathematics concerned with the existence, uniqueness, and
regularity of extremal points of functionals, which are real-valued maps F : X → R defined
on a topological function space X. The space X represents the set of configurations or states
that a given system can assume, while the functional F represents the cost or profit that results
from the system being in a particular configuration. Without losing generality, throughout this
thesis we will assume that a functional represents a cost and our objective will be to minimize it.
Moreover, we will frequently use standard terminology from physics and refer to a cost function
F as a lagrangian on the configuration space X.
Calculus of variations is distinguished from discrete optimization, a method frequently used in
operations research, by the nature of the configuration space and the method of analysis. As the
name suggests, calculus of variations examines the response of the cost function to infinitesimal
variations in the system state with respect to a starting configuration u ∈ X. Therefore, to apply
calculus of variations effectively, the problem must be formulated in a space X whose topology
permits infinitesimal variations. Real vector spaces, of either finite or infinite dimension, are
commonly used for this purpose, and in this thesis, we will exclusively analyze functionals defined
on real vector spaces of infinite dimension.
Optimization problems can be classified into two primary categories. In unconstrained optimiza-
tion, the objective is to find the minimum of the cost function over the entire state space. In
constrained optimization, the minimum is sought within a specific subspace K ⊂ X of the am-
bient space X. The subspace K is said to be a constraint for the problem. Linear constraints,
where K is a vector subspace of X, are particularly common. However, interesting more general
constraints are often given by convex subsets of the ambient space.
The most frequently used argument to prove the existence of extremal points is the so-called direct
method : if F is sequentially lower semicontinuous and the subspace K where the minimization
is to be performed is compact, then Weierstrass theorem guarantees that F will attain a global
minimum over K. It is worth noting that the two conditions required for the application of the
direct method are antagonistic to each other. In particular, as the topology of the configuration
space becomes stronger, ensuring the continuity of the cost function becomes easier, but it becomes
more challenging to ensure the compactness of the constraint. Thus, in the attempt of showing the
existence of minimizers for certain variational problems there is a need of enlarging the ambient
space X and of weakening its topology suitably in order to make the competition class weakly
sequentially compact. This process typically leads to a dramatic loss of regularity: weak solutions
to variational problems may a priori belong to very wild spaces containing functions that might
be even everywhere discontinuous. Nevertheless, if the ambient space X and its topology were
chosen carefully enough, then one could hope of exploiting the special properties of such weak
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solutions to recover their partial of full regularity. Indeed, any extremal point u ∈ K ⊂ X of
some smooth functional F : X → R over the competition class K satisfies

d

dt

∣∣∣∣
t=0

F (γ(t)) = 0,

for every smooth path γ : [0, 1] → K such that γ(0) = u. The previous information is actually
equivalent to saying that u satisfies, in a suitable weak sense to be specified, a set of partial
differential equations (PDEs) known as Euler–Lagrange equations for the functional F under the
constraint K. This is one of the main reasons why it is so important to develop a regularity theory
for certain types of PDEs. The celebrated mathematician David Hilbert himself underlined the
great need of investigating such issues in the formulation of his 19th problem, eventually solved
by Ennio De Giorgi and John Forbes Nash independently.
Throughout our discussion, we will be concerned with minimizing functionals F = F (u, du)

depending just on a function u and on its first derivatives. The Euler-Lagrange equations for
such functionals will turn into a set of second order PDEs and either they will or we will try to
put them in the form

Lu = f(u, du)

where L represents an elliptic second order differential linear operator and f is a smooth function
(we address the reader to the classical references [5], [39] and [40] for a detailed description of
elliptic operators and their behavior). In this sense, all the issues that will be discussed further
in this dissertation could be described as elliptic regularity problems arising from the variational
analysis of some lagrangian F .

1.2. The interface with geometry and the foundations of
geometric analysis

The connection between calculus of variations and geometry is highly intuitive because of the
inherent geometric content of partial differential equations that stem from variational principles.
In fact, significant geometric structures can often be defined as critical points of certain “geometric
functionals”. For example, Yang–Mills fields (essential objects in high-energy and particle physics)
can be characterized as critical points of the Yang–Mills lagrangian (see Section 4.1).
In light of all this, geometric analysis emerged as an interdisciplinary field that draws upon
tools and techniques from a variety of mathematical disciplines, including differential geometry,
geometric measure theory, partial differential equations and calculus of variations. Its aim is to
tackle a diverse range of geometric problems that arise in areas such as mathematical physics,
materials science, and other branches of mathematics. Key topics in geometric analysis include
the study of minimal surfaces, harmonic maps, geometric flows and gauge theories. Among
many significant achievements derived from the application of the methods of geometric analysis,
we highlight the the work by T. Radó and J. Douglas on minimal surfaces, the results by K.
Uhlenbeck and S. Donaldson in the 1980s about the Yang–Mills lagrangians in dimension 4 and
their applications to the study of the differential invariants of 4-manifolds, the foundations of
geometric measure theory and the development of essential tools such as currents and varifolds
as weak versions of k-surfaces and the proof of the Poincarè conjecture by G. Perelman in 2006.
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The primary focus of this thesis will be on a number of issues related to geometric analysis.
Specifically, we will concentrate on investigating Yang–Mills fields and pseudo-holomorphic maps.
These maps can be regarded as a very special class of harmonic maps that solve a “first-order
version” of the non-linear harmonic maps equation.

1.3. Calibrated solutions to variational problems

Many of the the techniques that we will be utilizing in the following chapters belongs to the
framework of calibrated geometric analysis. This branch of the mathematics was developed in the
late 20th century to investigate geometric structures in higher dimensions is built upon the concept
of calibration and calibrated submanifolds, which we recall here for the reader’s convenience.

Definition 1.3.1 (Calibration). Let (Mn, g) be an n-dimensional Riemannian smooth manifold
and let 1 ⩽ k ⩽ n. A differential k-form ω is said to be a calibration on M if it is closed and its
comass equal to 1, i.e. dω = 0 and

∥ω∥∗ := sup
{
⟨ωx, ξ⟩ for every x ∈M, ξ ∈ ∧k

TxM with |ξ|g = 1
}
= 1.

Definition 1.3.2 (Calibrated currents and submanifolds). Let (Mn, g) be an n-dimensional Rie-
mannian manifold and let 1 ⩽ k ⩽ n. A normal k-current T ∈ Nk(M) for some k ∈ N is said to
be calibrated by a given calibration ω on M if one of the following equivalent conditions hold:
(1) the measure theoretic orientation T⃗ of T is a convex linear combination of k-vectors calibrated

by ω (i.e. such that their duality with ω is unitary), ||T ||-a.e. on M where ||T || stands for
the total variation of T ;

(2) M(T ) = ⟨T, ω⟩.
Let Σk ⊂M be an embedded, oriented k-submanifold ofM with finite k-area and whose boundary
has finite (k − 1)-area. We say that Σ is calibrated by ω if the normal k-current [Σ] is calibrated
by ω, i.e. if and only if

Area(Σ) = M([Σ]) =

ˆ
Σ
ω.

The notion of calibration has a long and rich history. The paper which gave its name to the
corresponding general mathematical notion is the famous work of Harvey and Lawson [45] but
complex analytic submanifolds and calibrated subvarieties had been introduced even before. We
invite the reader to consult the works of F. Morgan [58] and [59] for a more complete introduction
to this important object of geometry. The idea of calibration was first introduced in the context of
minimal surfaces, but it was later generalized to a broader range of geometric structures, including
special Lagrangian submanifolds.
One of the reasons why calibrated currents have been very much studied is that calibrated k-
cycles are homologically mass-minimizing. Indeed, let T ∈ Dk(M) be a cycle (i.e. ∂T = 0) which
is calibrated by some calibration ω. If we pick any other cycle T ′ ∈ Dk(M) in the same homology
class of T , i.e. such that T − T ′ = ∂S for some S ∈ Dk+1(M), we immediately get

M(T ) = ⟨T, ω⟩ =
〈
T ′ + ∂S, ω

〉
=
〈
T ′, ω

〉
⩽ M(T ′), (1.3.1)
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where we used Stokes theorem, dω = 0 and ∥ω∥∗ = 1. Unfortunately, it happens very often that
the closeness requirement in the definition of calibration is too strong to suit certain problems,
such as some of the ones we will be interested in. Therefore, as for example in [69], it is natural
to study semicalibrations and semicalibrated cycles, being simply currents that are calibrated (in
the sense of (1) or (2) in Definition 1.3.2) by possibily non-closed k-forms having unitary comass.

1.4. Organization of the thesis and main results

This doctoral dissertation is a structured elaboration of the results presented in three scientific
papers ([22], [23], and [25]) co-signed by the author, along with some new contributions. Here,
we provide a brief overview of the contents of each chapter. For more detailed explanations, we
refer the reader to the individual introductions of the chapters themselves.
Chapter 2 collects the results of [25], where we establish the uniqueness of tangent maps for
weakly pseudo-holomorphic and locally approximable maps from any almost complex manifold
to projective algebraic varieties. As a byproduct, we obtain the unique tangent cone property for
a special class of non-rectifiable semicalibrated pseudo-holomorphic cycles. This also provides a
new proof of the main result by C. Bellettini in [7] concerning the uniqueness of tangent cones
for positive integral (p, p)-cycles in any almost complex manifold.
Chapter 3 outlines the results of [22] and [23], where we identify the strong Lp-closure LpZ(D)

of vector fields that have finitely many integer topological singularities on a domain D, which is
either bi-Lipschitz equivalent to the open unit n-dimensional cube or to the boundary of the unit
(n + 1)-dimensional cube, for any p ∈ [1,+∞) and n ∈ N with n ⩾ 1. Additionally, we prove
that LpZ(D) is weakly sequentially closed for every p ∈ (1,+∞) and n ∈ N with n ⩾ 2, if D is
an open domain in Rn that is bi-Lipschitz equivalent to the open unit cube. As a result of this
analysis, we obtain a useful characterization of this class of objects in terms of the existence of a
(minimal) connection for their singular set.
Chapter 4 concerns the most recent contributions of the author and T. Rivière to the regularity
of weak Yang–Mills fields in supercritical dimension. In particular, Coulomb gauge extraction
and ε-regularity type results à la Uhlenbeck are established for a special class of very weak L2-
connections on the open unit cube Q5

1(0).
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2. The regularity of pseudo–holomorphic
maps into projective algebraic varieties

2.1. Introduction

2.1.1. Weakly pseudo-holomorphic and locally approximable maps

For the purposes of this introduction, we always denote by M a connected smooth manifold
without boundary and we will need to endow M with an arbitrarily chosen reference metric g.
Since our results are local, all our discussion will be totally independent or, in any case, not
essentially effected by such arbitrary choice.
Given a closed (i.e. connected, compact and without boundary) smooth manifold N and a smooth
isometric embedding N ↪→ Rk, for some k ∈ N large enough, we let

W 1,2
loc (M,N) :=

{
u ∈W 1,2

loc

(
M,Rk

)
s.t. u(x) ∈ N, for volg -a.e. x ∈M

}
.

Definition 2.1.1. Let M be any even-dimensional smooth manifold without boundary and let J
be a Lipschitz almost complex structure on M . Let (N, JN ) be any closed smooth almost complex
manifold. We say that a map u ∈W 1,2

loc (M,N) is weakly (J, JN )-holomorphic if

dux(JX) = JNdux(X), for volg -a.e. x ∈M, ∀X ∈ TxM.

Whenever we don’t need to specify which couple of complex structures is involved in the previous
definition, we simply say that the map u is weakly pseudo-holomorphic or even just weakly
holomorphic to lighten the notation.
Assume that M is any even-dimensional smooth manifold without boundary and let J be a
Lipschitz almost complex structure on M which admits a compatible symplectic form Ω, meaning
that the bilinear form (X,Y ) 7→ Ω(X, JY ) defines a Lipschitz Riemannian metric on M . We will
show (Lemma 2.3.2) that in this particular framework any weakly (J, JN )-holomorphic map taking
values into a closed smooth almost Kähler manifold N is weakly harmonic, i.e.

d

dt

ˆ
M

∣∣d(πN ◦ (Φ ◦ u+ tX)
)∣∣2
g
d volg

∣∣∣∣
t=0

= 0, ∀X ∈ C∞(M,Rk
)
,

where πN : W → N is the nearest-point projection into N , defined on a suitable tubular neigh-
bourhood W of N , and Φ : N ↪→ Rk denotes a smooth, isometric embedding of N into Rk.
Nevertheless, it is well-known that no regularity is ensured for weakly harmonic maps when the
dimension of the domain is larger than 2 (see [71]). Thus, we will need to prescribe some additional
condition in order to get that the map u is at least stationary harmonic, i.e.

d

dt

ˆ
M

|d(u ◦ Φt)|2g d volg
∣∣∣∣
t=0

= 0,
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for any smooth one-parameter family of diffeomorphisms Φt of M with compact support. We will
show (see Lemma 2.3.3) that imposing the following local, strong approximability property with
respect to the W 1,2-norm sufficies to our purposes.

Definition 2.1.2. Let M be a smooth manifold without boundary and N be a closed smooth
manifold. We say that a map u ∈ W 1,2

loc (M,N) is locally (strongly) approximable with respect to
the W 1,2-norm if for every open set U ⊂ M such that U is diffeomorphic to some euclidean ball
there exists a sequence of smooth maps {uj}j∈N ⊂ C∞(U,N) such that uj → u as j → +∞,
strongly in W 1,2(U,N).

If a map u is locally approximable, then the following cohomological condition follows easily:

d(u∗ω) = 0, distributionally on M, (2.1.1)

for every closed 2-form ω ∈ Ω2(N). We refer the reader to [11] for further reading concerning the
deep link between local approximability and (2.1.1).
In the most general case that we will address, i.e. when J doesn’t admit a compatible symplec-
tic form (even locally), weakly holomorphic and locally approximable maps are not stationary
harmonic. Nevertheless, they are almost stationary harmonic, in the sense that they satisfy a
perturbed version of the harmonic map equation and that there exists C > 0 such that

d

dt

ˆ
M

|d(u ◦ Φt)|2g d volg
∣∣∣∣
t=0

⩾ −C
ˆ
M
|X||du|2,

with X := ∂tΦt|t=0 for any smooth one-parameter family of diffeomorphisms Φt of M with
compact support. We underline that such maps were also studied before by C. Bellettini and G.
Tian in [9].

2.1.2. Statement of the main results and related literature

Section Given any ρ ∈ (0,+∞), we denote by Bρ := ρB2m ⊂ R2m the open unit ball in R2m

centred at the origin and having radius ρ. From now on, for every ρ ∈ (0, 1) we let Φρ : Bρ → B

be given by Φρ(x) := ρ−1x, for every x ∈ Bρ.
Let M be a smooth manifold without boundary and N be a closed smooth manifold. Consider
any map u ∈ W 1,2

loc (M,N). Given x0 ∈ M , pick any coordinate chart φ : U ⊂ M → B2m with
relatively compact domain U at x0, i.e. such that x0 ∈ U and φ(x0) = 0. The family of the blow-
ups of u at the point x0, denoted by {uρ}ρ∈(0,1) ⊂W 1,2(U,N), is given by uρ := u◦φ−1 ◦Φ−1

ρ ◦φ,
for every ρ ∈ (0, 1). If such family is bounded in W 1,2(U,N), by standard compactness arguments
it follows that for every sequence ρk → 0+ as k → +∞ there exists a subsequence {ρkj}j∈N such
that uρkj ⇀ u∞ ∈ W 1,2(U,N), weakly in W 1,2(U,N). We say that u∞ is a tangent map for u
at the point x0. Any tangent map at x0 is meant to represent a picture of the map u when one
gets closer and closer to x0. Such limiting configuration may very well depend on the sequence
{ρkj}j∈N that we have chosen to approach x0. If this is not the case, we say that the map u has
a unique tangent map at the point x0.
In the present chapter, we aim to give a complete and self-contained proof of the following theorem.

Theorem 2.1.1. Let m,n ∈ N0 be such that m ⩾ 2. Let M be a smooth 2m-dimensional manifold
without boundary and let J be any Lipschitz almost complex structure on M . Let N ⊂ CPn be
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a projective algebraic variety. Let u ∈ W 1,2
loc (M,N) be weakly (J, jn)-holomorphic and locally

approximable, where jn stands for the standard complex structure on CPn (restricted to N).
Then, u has a unique tangent map at every point.

As we have noted before, if J admits a compatible symplectic form then weakly holomorphic
and locally approximable maps are a special subclass in the much wider family of stationary
harmonic maps (see previous Section 2.1.1). Hence, our main result relates with the whole set of
well-know facts concerning stationary harmonic maps between manifolds (see e.g. [34], [14], [75]).
In particular, both the existence of tangent maps at every point and Theorem 2.3.1 are immediate
consequences of the general theory of stationary harmonic maps. However, nothing can be said
a priori about uniqueness of tangent maps to general stationary harmonic maps, since B. White
(see [94]) has shown that such property might fail even for energy-minimizing maps at their
singular points. Nevertheless, whenever the target manifold is analytic, uniqueness of tangent
maps was proved to hold for energy-minimizing harmonic maps by L. Simon in [84]. Hence,
since any projective algebraic variety is analytic, if weakly holomorphic and locally approximable
maps were energy-minimizing then Theorem 1.1 would be a direct consequence of Simon’s result.
Unfortunately, it’s not hard to build sequences of even holomorphic maps that converge weakly
but not strongly in W 1,2

loc (R
2m, N) (see Example 2.1.1). Since for energy-minimizing harmonic

maps weak convergence implies strong convergence (see [79]), this sufficies to convince ourselves
that weakly holomorphic and locally approximable maps are not energy-minimizing harmonic
maps in general.

Example 2.1.1. Let N = S2, equipped with the standard Kähler structure. Let S ∈ S2 be the
south-pole in and let pS : S2 → R2 be the stereographic projection from the south-pole. For
λ > 0, we define the map uλ : R2 → S2 as follows:

uλ(x) := p−1
S (λx) ∀x ∈ R2.

For every λ > 0, uλ is a finite-energy, orientation-preserving conformal map from R2 to S2.
Hence, {uλ}λ>0 is a family of holomorphic maps in W 1,2(R2,S2). An easy computation shows
that uλ ⇀ u∞ ≡ S weakly in W 1,2 as λ→ +∞. Nevertheless, the convergence cannot be strong
because ˆ

R2

|duλ|2 dL2 → 8π ̸= 0 =

ˆ
R2

|du∞|2 dL2 (λ→ +∞).

Theorem 2.1.1 was already proven when the almost complex structure J on the domain is inte-
grable by S. Sun and X. Chen in [28], thanks also to the previous contributions [49] and [46] who
established the optimal bound for the Hausdorff measure of the singular set, namely

H 2m−4
(
Sing(u) ∩K

)
< +∞, ∀K ⊂M compact. (2.1.2)

Nevertheless, the proof provided by S. Sun and X. Chen in the integrable case makes an extensive
use of complex holomorphic coordinates on the base manifold and of several algebraic tools that
are not available in case we work in the almost complex framework.
As far as we know, the only available result concerning the non-integrable case that can be found
in literature was achieved by the second author and G. Tian in [77]. In such paper, the case of
a 4-dimensional domain M is completely solved, providing also the optimal size (2.1.2) for the
singular set. Unfortunately, the proof that is given there strongly relies on positive intersection
arguments that cannot be reproduced when m > 2.
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2.1.3. Key ideas to face the non-integrable case in higher dimensions

In view of what we have seen in Section 2.1.2, we need to think of a completely new analytic
approach in order to prove Theorem 2.1.1 in its full generality. From now on, we will denote by
J0 the standard complex structure on R2m ∼= Cm.
Let M , N and u satisfy the hypotheses of Theorem 2.1.1. Given any point x0 ∈ M and a local
chart φ : U ⊂M → B2m with compact domain U at x0 such that J(0) = J0, it’s clear that u has a
unique tangent map at x0 if and only if the local representative ũ := u◦φ−1 ∈W 1,2(B2m, N) of u
has a unique tangent map at the origin. Notice that ũ is weakly (J̃ , jn)-holomorphic on B2m, where
J̃ := dφ ◦ J ◦ dφ−1 is a Lipschitz almost complex structure on B2m. Moreover, a straightforward
computation allows to conclude that ũ is locally approximable on B2m. Hence, Theorem 2.1.1 will
be proved if we just manage to show that the statement holds in case M = B2m ⊂ R2m, x0 = 0,
J(0) = J0 and u ∈W 1,2(B2m, N).
The fact that we have reduced to prove the statement on the unit open ball leads to a key advan-
tage. Since B2m is contractible, we can find a Lipschitz almost symplectic form Ω on B2m which
is compatible with J̃ , i.e. the symmetric bilinear form (X,Y ) 7→ g(X,Y ) := Ω(X, JY ) defines a
Lipschitz metric g on B2m. Here and throughout the whole chapter, by “almost symplectic form”
we mean any non-degenerate 2-form, even if not necessarily closed (the reader should be aware
that the term “almost Hermitian structure” can also be found in literature). From now on, we
will assume that the domain B2m is endowed with such special metric g and all the computations
involving scalar products will be referring to this specific choice.
Notice that Ωk/k! is a semicalibration on B2m with respect to the metric g, for every k = 1, ....,m

(see Definition 1.3.1. As we will see below, the proof of Theorem 2.1.1 will be further reduced
to the problem of showing uniqueness of tangent cones for a special class of non-rectifiable,
semicalibrated (2m − 2)-cycles on B2. Indeed, let u satisfy the assumptions of Theorem 2.1.1
with M = B2m. We can associate to the map u the (2m− 2)-current Tu ∈ D2m−2(B2m) given by

⟨Tu, α⟩ :=
ˆ
B2m

u∗ωCPn ∧ α, ∀α ∈ D2m−2(B2m).

We can show (see Section 2.2) that Tu satisfies the following properties:
1. Tu is a cycle, i.e. ∂Tu = 0 in the sense of currents.
2. Tu is normal, with

M(Tu) =

ˆ
B2m

∥u∗ωCPn∥∗ d volg =
1

2

ˆ
B2m

|du|2g d volg < +∞.

3. Tu is semicalibrated by
Ωm−1

(m− 1)!
.

For the reader’s convenience, we recall at this point that we say that a current T on B2m has a
unique tangent cone at the origin if given any two sequences {ρk}k∈N ⊂ (0, 1) and {ρ′k}k∈N ⊂ (0, 1)

such that
1. ρk → 0+ and ρ′k → 0+, as k → +∞,
2. (Φρk)∗T ⇀ C∞ and (Φρ′k)∗T ⇀ C ′

∞, as k → +∞,
it follows that C∞ = C ′

∞.
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Substantial work on the uniqueness of tangent cones was carried out for special classes of integral
semicalibrated cycles. In particular, such result was already obtained by C. Bellettini together
with the second author in [8] for special legendrian integral cycles in S5 and C. Bellettini in [7] has
proved uniqueness of tangent cone for positive integral (p, p)-cycles in arbitrary almost complex
manifolds. The case of positive integral (1, 1)-cycles in arbitrary almost Kähler manifolds was
previously covered by the main regularity result obtained by the second author and G. Tian in
[76]. Analogous results were obtained also by C. De Lellis, E. Spadaro and L. Spolaor in [29], by
exploiting the fact that any integral semicalibrated k-cycle T ∈ Dk(B2m) is almost homologically
mass-minimizing, i.e. for every x0 ∈ B2m there are constants C0, r0, α0 > 0 such that

M
(
T Bρ(x0)

)
⩽ M

(
(T + ∂S) Bρ(x0)

)
+ C0ρ

k+α0 , ∀ 0 < ρ < ρ0

and for all S ∈ Dk+1(B2m) such that spt(S) ⊂ Bρ(x0) (compare with the stronger property (1.3.1)
that holds for calibrated cycles).
Nevertheless, very little is known so far concerning uniqueness of tangent cone when the rectifia-
bility hypothesis is dropped. In general this is not true, counter-examples have been given initially
by C. O. Kiselman in [50] and then generalized in [16]. On the other hand, a positive result on
this matter was obtained by C. Bellettini in [6], where the author proves that the tangent cone
to normal positive (1, 1)-cycles is unique at any point where the density does not have a jump
with respect to all of its values in a neighborhood. Thus, the present chapter is meant to be a
contribution to this so far still fairly open class of problems.
In Section 2.6.3 we will show that uniqueness of tangent cone for the (2m− 2)-dimensional cycle
Tu and for its “localizations” in the target manifold can be used in order to achieve a full proof
of the uniqueness of the tangent map for u at the origin. Therefore, most of our efforts will be
devoted to the proof of the following statement.

Theorem 2.1.2. Let m,n ∈ N0 be such that m ⩾ 2. Let J be a Lipschitz almost complex structure
on B2m such that J(0) = J0. Assume that u ∈W 1,2(B2m,CPn) is weakly (J, jn)-holomorphic and
locally approximable, where jn stands for the standard complex structure on CPn.
Then, the (2m− 2)-cycle Tu ∈ D2m−2(B2m) has a unique tangent cone at the origin.

This last paragraph is dedicated to explain the main new ideas that we have introduced in order
to prove Theorem 2.1.2. The whole proof is based on the fact that the level sets of any weakly
(J, jn)-holomorphic and locally approximable map are rectifiable, J-holomorphic cycles. This fact
is proved in Section 2.5. By applying a slicing procedure on the right-hand-side of the monotonicity
formula (2.2.3) (see Appendix 2.A), we get a foliation of the region of integration into rectifiable,
almost J-holomorphic curves (see Definition 2.4.2 and Remark 2.4.1). By localizing properly in the
target, integrating what we call the fundamental Morrey type estimate for almost J-holomorphic
curves (see Section 2.4) and passing then to the limit as the localization sets invade the codomain,
we finally get uniqueness of tangent cone for the 2-dimensional current

(
Tu π∗ωm−2

CPm−1

)
/(m−2)!,

where π : Cm ∖ {0} → CPm−1 is the standard projection map (see the first paragraph of Section
2.2). Then, the statement of Theorem 2.1.2 follows as shown in the conclusion of Section 2.6.2.

2.1.4. Final comments and open problems

We would like to stress that our approach could also give an alternative proof of the uniqueness of
tangent cone for integral (p, p)-cycles on almost complex manifolds, which was previously obtained
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by C. Bellettini in [7]. This could be achieved by considering maps u that are more and more
concentrated on just one rectifiable pseudo-holomorphic set in the domain (see Remark 2.6.1).
We also believe that the method that we have developed in this work could be useful in order to
proceed further in the analysis of the singular set of weakly holomorphic and locally approximable
maps. In particular, we conjecture that the optimal bound (2.1.2) on the size of the singular
set of such maps could be achieved as a further development, also exploiting Theorem 2.1.1.
Furthermore, an interesting open problem concerns the generalization of our result to arbitrary
almost Kähler target manifolds.
Taking a wider look and abandoning the framework of weakly holomorphic maps, there are
plenty of other related problems that would deserve to be studied more deeply in view of recent
developments in the field. In particular, the aim is to invent new analytic techniques that are
robust enough to survive the non-availability of holomorphic coordinates in the almost complex
non-integrable setting. Among all these problems, for sake of brevity we just mention uniqueness
of tangent cone for triholomorphic maps in hyper-Kähler geometry (see e.g. [9]) and for Hermitian
Yang-Mills connections (see [27], [26]).

2.2. Almost monotonicity formula and tangent cones

First, let us fix the notation that we will use throughout the present chapter, whenever it won’t
be differently specified. We let J be a Lipschitz almost complex structure on B2m such that
J(0) = J0. We let Ω be a Lipschitz almost symplectic form on B2m which is compatible with J

and such that Ω(0) = Ω0, where Ω0 stands for the standard symplectic form on R2m ∼= Cm. We
denote by g the Lipschitz metric on B2m given by gx(v, w) := Ωx(v, Jw), for every x ∈ B2m and
v, w ∈ R2m. We indicate by | · |g the norm induced by g and by | · | the standard euclidean norm.
Whenever we use the musical isomorphisms ”♯” and ”♭” or the Hodge ∗-operator, we always take
as a reference metric g. Finally, π : B2m ∖ {0} → CPm−1 denotes the standard projection map
given by

π(x1, y1, ..., xm, ym) := [x1 + iy1 : ... : xm + iym]

for every (x1, y1, ..., xm, ym) ∈ B2m ∖ {0}.

Remark 2.2.1. Notice that the fact that g is Lipschitz on B2m guarantees that | · |g is equivalent
to the euclidean norm. Consider the function f : B2m × S2m−1 → (0,+∞) given by

f(x, v) := |v|2g(x),

where S2m−1 ⊂ R2m is the unit sphere in R2m with respect to the euclidean norm. Since f is
continuous on the compact set B2m× S2m−1, by Weierstrass theorem and by definition of S2m−1,
there exists a constant G > 0 such that

1

G
|v|2 ⩽ f(x, v) = |v|2g(x) ⩽ G|v|2, ∀x ∈ B2m, ∀ v ∈ S2m−1.

By 2-homogeneity of the squared norm, it follows that

1

G
|v|2 ⩽ |v|2g(x) ⩽ G|v|2, ∀x ∈ B2m, ∀ v ∈ R2m (2.2.1)
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and our claim follows.
Since | · |g and | · | are equivalent, when we refer to the Sobolev spaces on B2m we don’t need to
specify which of these two norms we use in order to define them. In fact, we will use both of them
according to what suits better in the context.

Lemma 2.2.1. Let V be a 2m-dimensional real vector space and J a linear complex structure on
V . Let Ω be a symplectic form on V which is compatible with J .
Then

Ωm−1

(m− 1)!
∧ ξ ∧ Jξ = |ξ|2g

Ωm

m!
, for every ξ ∈ V ∗,

where Jξ is given by (Jξ)(v) := −ξ(Jv), for every v ∈ V .

Proof. Fix an g-orthonormal basis {ej , Jej}j=1,...,m of V , so that

Ω =

m∑
j=1

e∗j ∧ Je∗j .

First of all, notice that

Ωm

m!
=

1

m!

m∑
j1,...,jm=1

(e∗j1 ∧ Je
∗
j1) ∧ ... ∧ (e∗jm ∧ Je∗jm)

= e∗1 ∧ Je∗1 ∧ ... ∧ e∗m ∧ Je∗m.

Fix any ξ ∈ V ∗ and decompose it along the g-orthonormal basis denoted by {e∗j , Je∗j}j=1,...,m as

ξ =

m∑
j=1

(ξj1e
∗
j + ξj2Je

∗
j ).

This in turn implies that

Jξ =
m∑
j=1

(ξj1Je
∗
j − ξj2e

∗
j )

and then

ξ ∧ Jξ =
m∑

j,k=1

(ξj1ξk1e
∗
j ∧ Je∗k − ξj1ξk2e

∗
j ∧ e∗k

+ ξj2ξk1Je
∗
j ∧ Je∗k − ξj2ξk2Je

∗
j ∧ e∗k).

Since

Ωm−1

(m− 1)!
=

m∑
j1,...,jm−1=1

(e∗j1 ∧ Je
∗
j1) ∧ ... ∧ (e∗jm−1

∧ Je∗jm−1
),

it’s easy to see that

Ωm−1

(m− 1)!
∧ e∗j ∧ e∗k =

Ωm−1

(m− 1)!
∧ Je∗j ∧ Je∗k = 0,
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for every j, k ∈ {1, ...,m}. Moreover, we notice that

Ωm−1

(m− 1)!
∧

m∑
j,k=1

ξj1ξk1e
∗
j ∧ Je∗k =

(
m∑
j=1

ξ2j1

)
e∗1 ∧ Je∗1 ∧ ... ∧ e∗m ∧ Je∗m

and

− Ωm−1

(m− 1)!
∧

m∑
j,k=1

ξj2ξk2Je
∗
j ∧ e∗k =

(
m∑
j=1

ξ2j2

)
e∗1 ∧ Je∗1 ∧ ... ∧ e∗m ∧ Je∗m.

By adding all the contributions, we get

Ωm−1

(m− 1)!
∧ ξ ∧ Jξ =

(
m∑
j=1

(ξ2j1 + ξ2j2)

)
e∗1 ∧ Je∗1 ∧ ... ∧ e∗m ∧ Je∗m

= |ξ|2ge∗1 ∧ Je∗1 ∧ ... ∧ e∗m ∧ Je∗m

and the statement follows.

Corollary 2.2.1. Let n ∈ N0 and let (N2n, JN , ωN ) be a compact almost Kähler manifold. As-
sume that u ∈W 1,2(B2m, N) is weakly (J, JN )-holomorphic. Then

u∗ωN ∧ Ωm−1

(m− 1)!
=

|du|2g
2

Ωm

m!
, L2m-a.e. on B2m. (2.2.2)

Proof. Let E ⊂ B2m be the set of Lebesgue points of du. If x ∈ E is such that dux = 0, then
equation (2.2.2) holds trivially. Assume then that du(x) ̸= 0. Fix an ωN -orthonormal basis
{ξi, JNξi}ni=1 of Tu(x)N , so that

(ωN )u(x) =
n∑
i=1

ξ∗i ∧ JNξ∗i .

Notice that, since u is weakly (J, JN )-holomorphic, it holds that

(u∗ωN )x =
n∑
i=1

u∗ξ∗i ∧ u∗JNξ∗i =
n∑
i=1

u∗ξ∗i ∧ Ju∗ξ∗i ,

since
(
u∗(JNξ

∗)
)
(v) =

(
J(u∗ξ∗)

)
(v) for every v ∈ TxB2m ∼= R2m follows from the definition of

JNξ
∗ and J(u∗ξ∗∗) (see Lemma 2.2.1). Thus in particular,

(u∗ωN )x ∧ Ωm−1
x =

n∑
i=1

u∗ξ∗i ∧ Ju∗ξ∗i ∧ Ωm−1
x .

By applying Lemma 2.2.1 with Ω = Ωx and ξ = u∗ξi for every i = 1, ..., n, we get that

(u∗ωN )x ∧
Ωm−1
x

(m− 1)!
=

(
n∑
i=1

|u∗ξ∗i |2g

)
Ωmx
m!

=
|dux|2g

2

Ωmx
m!

.

The statement follows immediately.
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Lemma 2.2.2. Let n ∈ N0 and let (N2n, JN , ωN ) be a closed almost Kähler smooth manifold.
Assume that u ∈W 1,2(B2m, N) is weakly (J, JN )-holomorphic and locally approximable.

Then, Tu is a normal (2m− 2)-cycle on B2m semicalibrated by
Ωm−1

(m− 1)!
.

Proof. First, we claim that Tu is a cycle, i.e. that ∂Tu = 0. Indeed, by Stokes theorem and
since d(u∗ωN ) = 0 holds distributionally on B2m by local approximability of u, for every fixed
α ∈ D2m−3(B2m) we get

⟨∂Tu, α⟩ = ⟨Tu, dα⟩ =
ˆ
B
u∗ωN ∧ dα = 0.

In order to conclude, we just need to show that〈
Tu,

Ωm−1

(m− 1)!

〉
= M(T ) < +∞.

Notice that, by Corollary 2.2.1, it holds that〈
Tu,

Ωm−1

(m− 1)!

〉
=

ˆ
B2m

u∗ωN ∧ Ωm−1

(m− 1)!
=

1

2

ˆ
B2m

|du|2g d volg < +∞,

since du ∈ L2(B2m;R2m ⊗ u∗TN). We claim that

M(Tu) =
1

2

ˆ
B2m

|du|2g d volg .

Indeed, fix a Lebesgue point x ∈ B2m for du and let {e1, Je1, ..., em, Jem}, {ξ∗1 , jξ∗1 , ..., ξ∗n, jξ∗n} be
orthonormal bases of TxB2m and Tu(x)N respectively. Then, we have

⟨(u∗ωN )x, ek ∧ Jeh⟩ =
n∑
i=1

(u∗ξ∗i ∧ Ju∗ξ∗i )(ek, Jeh)

=

n∑
i=1

(u∗ξ∗i )(ek)(Ju
∗ξ∗i )(Jeh)− (u∗ξ∗i )(Jeh)(Ju

∗ξ∗i )(ek)

=

n∑
i=1

(u∗ξ∗i )(ek)(u
∗ξ∗i )(eh) + (u∗ξ∗i )(Jeh)(u

∗ξ∗i )(Jek)

⩽
1

2

n∑
i=1

(
|u∗ξ∗i (ek)|2 + |u∗ξ∗i (eh)|2

+ |u∗ξ∗i (Jek)|2 + |u∗ξ∗i (Jeh)|2
)

⩽
1

2

n∑
i=1

m∑
j=1

(
|u∗ξ∗i (ej)|2 + |u∗ξ∗i (Jej)|2

)
=

|dux|2g
2

,

for every k, h = 1, ...,m. Moreover, by exactly the same computation we get

⟨(u∗ωN )x, ek ∧ eh⟩ = ⟨(u∗ωN )x, Jek ∧ Jeh⟩ = 0, ∀ k, h = 1, ...,m.

Thus, for every unit and simple 2-vector v1 ∧ v2 with v1, v2 ∈ TxB2m we have

⟨(u∗ωN )x, v1 ∧ v2⟩ ⩽
|dux|2g

2
.
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Consider the unit vector

v :=
1√
m

∑
i=1,...,m
i odd

ei +
1√
m

∑
i=1,...,m
i even

Jei ∈ TxB2m

and notice that

⟨(u∗ωN )x, v ∧ Jv⟩ =
〈
(u∗ωN )x,

Ωx
m

〉
= ∗
(
(u∗ωN )x,∧

Ωm−1
x

(m− 1)!

)
=

|dux|2g
2

,

By definition of comass norm and since x ∈ B2m was any arbitrary Lebesgue point of du, we
conclude that

∥u∗ωN∥∗ =
|du|2g
2

, volg -a.e. on B2m.

Moreover, since Tu is the integration current induced by u∗ωN , it holds that

M(Tu) =

ˆ
B2m

∥u∗ωN∥∗ d volg, for every open set U ⊂⊂ B2m.

The statement then follows.

Before stating the following fundamental proposition, we recall the following notation. Given any
x0 ∈ B2m, we define

Ωt,x0 := (dRx0 ∧ Ω) νx0

where Rx0 := |·−x0|, νx0 := (dRx0)
♯ and with ” ” we denote the interior product. We call Ωt,x0

the tangential part of Ω with respect to x0. Such notation is analogous to the one used in [69].

Proposition 2.2.1 (Almost monotonicity formula). Let n ∈ N0 and let (N2n, JN , ωN ) be a closed
almost Kähler smooth manifold. Let u ∈W 1,2(B2m, N) be weakly (J, JN )-holomorphic and locally
approximable.
Then, there exists A = A(Lip(Ω)) ⩾ 0 such that

eAρ(1 +Aρ)
M
(
Tu Bρ(x0)

)
ρ2m−2

− eAσ(1 +Aσ)
M
(
Tu Bσ(x0)

)
σ2m−2

⩾
ˆ
Bρ(x0)∖Bσ(x0)

1

| · −x0|2m−2
u∗ωN ∧

Ωm−1
t,x0

(m− 1)!
(2.2.3)

and

e−Aρ(1−Aρ)
M
(
Tu Bρ(x0)

)
ρ2m−2

− e−Aσ(1−Aσ)
M
(
Tu Bσ(x0)

)
σ2m−2

⩽
ˆ
Bρ(x0)∖Bσ(x0)

1

| · −x0|2m−2
u∗ωN ∧

Ωm−1
t,x0

(m− 1)!
, (2.2.4)

for every x0 ∈ B2m and 0 < σ < ρ ⩽ rx0 := dist(x0, ∂B2m).
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Proof. A direct computations leads immediately to(
Ωm−1

)
t,x0

= Ωm−1
t,x0

.

Hence, the statement follows directly by Lemma 2.2.2 and [69, Proposition 1] by simply noticing
that exactly the same proof works when Ω is just Lipschitz.

Remark 2.2.2. Fix any x0 ∈ B2m. Notice that

∗
(
u∗ωN (x) ∧

Ωt,x0(x)
m−1

(m− 1)!

)
=

〈
Ωt,x0(x)

m−1

(m− 1)!
, ∗u∗ωN

〉
=

1

2

∣∣∣∣ ∂u∂νx0

∣∣∣∣2
g

, for L2m-a.e. x ∈ B2m,

where νx0 := (dRx0)
♯ as above with Rx0 := |· − x0|. Hence, by equation (2.2.3) we conclude that

the function

(0, rx0) ∋ ρ 7→ eAρ(1 +Aρ)
M(Tu Bρ)

ρ2m−2

is non-decreasing. As

lim
ρ→0+

eAρ(1 +Aρ) = 1,

we conclude that the limit

θ(x0, u) := lim
ρ→0+

M
(
Tu Bρ(x0)

)
ρ2m−2

(2.2.5)

exists and is finite. We say that θ(x0, u) is the density of the map u at the point x0.

We conclude the section by discussing the existence and the structure of tangent cones for the
current Tu. Let’s pick any sequence ρk → 0+ as k → +∞ and the relative blow-up sequence
{Tρk := (Φρk)∗Tu}k∈N. Since Tρk is a cycle for every k ∈ N and

M(Tρk) =
M(Tu Bρk)

ρ2m−2
⩽ eA(1 +A)M(Tu) < +∞,

by Federer-Fleming compactness theorem we know that there exists a subsequence {ρkj}j∈N of
{ρk}k∈N such that Tρkj ⇀ C∞ as j → +∞ in the sense of currents. Moreover, by exploiting the
almost monotonicity formula, we get that any tangent cone C∞ is a (2m− 2)-cycle calibrated by
Ω0 and invariant under dilations, i.e. (Φρ)∗C∞ = C∞, for every ρ ∈ (0, 1) (see e.g. [69, Section
3]).

2.3. Smoothness at points with small density

In the present section, we will assume that Ω is a symplectic form and we prove that weakly holo-
morphic and locally approximable maps are stationary harmonic in this particular case. Therefore,
we conclude that such maps are smooth at points of small density via standard ε-regularity for
stationary harmonic maps (Theorem 2.3.1).
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The almost symplectic case is completely treated in [9, Propositions 1, 3, 4], where it is shown
that similar results hold in the almost stationary scenario. Hence, the conclusions of the present
section hold even if dΩ ̸= 0. We just present here a simplified case in order to deal with less
technicalities and draw some light on the key ideas and concepts.

Lemma 2.3.1 (Wirtinger’s inequality). Let n ∈ N0 and let (N2n, JN , ωN ) be a closed almost
Kähler smooth manifold.
Then, for every map v ∈W 1,2(B2m, N) it holds that

∗
(
v∗ωN ∧ Ωm−1

(m− 1)!

)
⩽

|dv|2g
2

, volg -a.e. on B2m (2.3.1)

Proof. Let E ⊂ B2m be the set of the Lebesgue points of dv. If x ∈ E is such that dvx = 0,
then (2.3.1) holds trivially. Assume then that x ∈ E is such that dvx ̸= 0. Fix a g-orthonormal
basis {e2k−1, e2k := Je2k−1}mk=1 of TxB2m and an ωN -orthonormal basis {ξ2i−1, ξ2i := jξ2i−1}ni=1

of Tv(x)N , so that

Ωx =

m∑
k=1

e∗2k−1 ∧ e∗2k

and

(ωN )v(x) =
n∑
i=1

ξ∗2i−1 ∧ ξ∗2i.

Then, we compute

∗
(
(v∗ωN )x ∧

Ωm−1
x

(m− 1)!

)
= ∗

m∑
k=1

n∑
i=1

v∗ξ∗2i−1 ∧ v∗ξ∗2i ∧ e∗1 ∧ e∗2 ∧ ... ∧ ê∗2k−1 ∧ e
∗
2k

∧

∧ ... ∧ e2m−1 ∧ e2m

=
m∑
k=1

n∑
i=1

(v∗ξ∗2i−1 ∧ v∗ξ∗2i)(e2k−1 ∧ e2k)

=
m∑
k=1

n∑
i=1

(v∗ξ∗2i−1 ∧ v∗ξ∗2i)(e2k−1, e2k)

⩽
m∑
k=1

n∑
i=1

∣∣(v∗ξ∗2i−1 ∧ v∗ξ∗2i)(e2k−1, e2k)
∣∣
g

=

m∑
k=1

n∑
i=1

∣∣v∗ξ∗2i−1(e2k−1)v
∗ξ∗2i(e2k)− v∗ξ∗2i−1(e2k)v

∗ξ∗2i(e2k−1)
∣∣
g

⩽
1

2

2m∑
k=1

n∑
i=1

(
|v∗ξ∗2i−1(ek)|2g + |v∗ξ∗2i(ek)|2g

)
=

|dvx|2g
2

.

Thus, the statement follows.
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Lemma 2.3.2 (Weakly holomorphic maps are weakly harmonic). Let n ∈ N0 and assume that
(N2n, JN , ωN ) is a closed almost Kähler smooth manifold.
If u ∈W 1,2(B2m, N) is weakly (J, JN )-holomorphic, then u is weakly harmonic.

Proof. Recall that we always identify N as a smooth submanifold of Rk, for k large enough,
through the smooth isometric embedding Φ : N ↪→ Rk (see Section 2.1).
Let the map πN : W ⊂ Rk → N be the nearest point projection from a tubular neighbourhood
W of Φ(N) onto N . Fix any vector field X ∈ C∞

c (B2m,Rk). As for every t ∈ R the map
πN ◦ (Φ ◦ u+ tX) belongs to W 1,2(B2m, N), by exploiting Lemma 2.3.1 we get that

ˆ
B2m

∣∣d(πN ◦ (Φ ◦ u+ tX)
)∣∣2
g
d volg ⩾ 2

ˆ
B2m

(Φ ◦ u+ tX)∗π∗NωN ∧ Ωm−1

(m− 1)!
, (2.3.2)

for t ∈ R such that |t| < δ with δ > 0 sufficiently small. Moreover, the equality holds for t = 0

by virtue of equation (2.2.2). We claim that
ˆ
B2m

(Φ ◦ u+ tX)∗π∗NωN ∧ Ωm−1

(m− 1)!
=

ˆ
B2m

u∗ωN ∧ Ωm−1

(m− 1)!
, (2.3.3)

for every |t| < δ. Indeed, it holds that

d

dt

(ˆ
B2m

(Φ ◦ u+ tX)∗π∗NωN ∧ Ωm−1

(m− 1)!

)

=

ˆ
B2m

d

dt

(
(Φ ◦ u+ tX)∗π∗NωN

)
∧ Ωm−1

(m− 1)!

=

〈
d
(
u∗(π∗NωN ) X

)
, ∗ Ωm−1

(m− 1)!

〉
= −

ˆ
B2m

u∗(π∗NωN ) X ∧ d
(

Ωm−1

(m− 1)!

)
= 0,

where " " stands for the interior product. Hence, equation (2.3.3) follows. By using together
equation (2.3.2) and (2.3.3), we getˆ

B2m

∣∣d(πN ◦ (Φ ◦ u+ tX)
)∣∣2
g
d volg ⩾

ˆ
B2m

|du|2g d volg for every |t| < δ,

and the equality holds for t = 0. Thus, t = 0 is a global minimum for the differentiable function

t 7→
ˆ
B2m

∣∣d(πN ◦ (Φ ◦ u+ tX)
)∣∣2
g
d volg .

Hence, we conclude that

d

dt

ˆ
B2m

∣∣d(πN ◦ (Φ ◦ u+ tX)
)∣∣2
g
d volg

∣∣∣∣
t=0

= 0.

Since our choice of X ∈ C∞
c (B2m,Rk) was arbitrary, the statement follows.

Lemma 2.3.3 (Weakly holomorphic and locally approximable maps are stationary harmonic).
Let n ∈ N0 and let (N2n, JN , ωN ) be a closed almost Kähler smooth manifold.
If u ∈W 1,2(B2m, N) is weakly (J, JN )-holomorphic and locally approximable, then u is stationary
harmonic.
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Proof. Fix any vector field X ∈ C∞
c (B2m,R2m). Notice that the map u ◦ (Id+tX) belongs to

W 1,2(B2m, N) for t ∈ R such that |t| < δ with δ > 0 sufficiently small. Then, by Lemma 2.3.1, it
holds that ˆ

B2m

∣∣d(u ◦ (Id+tX)
)∣∣2
g
d volg ⩾ 2

ˆ
B2m

(Id+tX)∗u∗ωN ∧ Ωm−1

(m− 1)!
(2.3.4)

for every |t| < δ and the equality holds for t = 0 by virtue of equation (2.2.2). We claim that
ˆ
B2m

(Id+tX)∗u∗ωN ∧ Ωm−1

(m− 1)!
=

ˆ
B2m

u∗ωN ∧ Ωm−1

(m− 1)!
, (2.3.5)

for every |t| < δ. Indeed, as d(u∗ωN ) = 0 distributionally on B, it holds that

d

dt

(ˆ
B2m

(Id+tX)∗u∗ωN ∧ Ωm−1

(m− 1)!

)
=

ˆ
B2m

d

dt

(
(Id+tX)∗u∗ωN

)
∧ Ωm−1

(m− 1)!

=

〈
LX(u∗ωN ), ∗

Ωm−1

(m− 1)!

〉
=

〈
d
(
u∗ωN X

)
, ∗ Ωm−1

(m− 1)!

〉
= −

ˆ
B2m

u∗ωN X ∧ d
(

Ωm−1

(m− 1)!

)
= 0.

Hence, equation (2.3.5) follows. By using together equation (2.3.4) and (2.3.5) we get thatˆ
B2m

∣∣d(u ◦ (Id+tX)
)∣∣2
g
d volg ⩾

ˆ
B2m

|du|2g d volg, for every |t| < δ. (2.3.6)

and the equality holds for t = 0. Thus, t = 0 is a global minimum for the differentiable function

t 7→
ˆ
B2m

∣∣d(u ◦ (Id+tX)
)∣∣2
g
d volg .

Hence, we conclude that

d

dt

ˆ
B2m

∣∣d(u ◦ (Id+tX)
)∣∣2
g
d volg

∣∣∣∣
t=0

= 0.

Since our choice of X ∈ C∞
c (B2m,Rk) was arbitrary, the statement follows.

The following ε-regularity statement follows immediately by Lemma 2.3.3 and [75, Theorem 2.1].

Theorem 2.3.1 (ε-regularity for weakly holomorphic and locally approximable maps). Let n ∈
N0 and let (N2n, JN , ωN ) be a closed almost Kähler smooth manifold.
Let u ∈ W 1,2(B2m,CPn) be weakly (J, JN )-holomorphic and locally approximable. Then, there
exists a threshold ε0 = ε0(m,n) > 0 such that whenever θ(x0, u) < ε0 there exists ball Bρ(x0) ⊂ B

such that u is Hölder continuous (and hence smooth) on Bρ(x0).

We define

Sing(u) := {x0 ∈ B2m s.t. θ(x0, u) ⩾ ε0}

and we say that Sing(u) is the singular set of u. Moreover, by stationarity of u, it follows that

H 2m−2
(
Sing(u)

)
= 0.
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2.4. The fundamental Morrey type estimate

We aim to collect here the proofs of the (mostly technical) tools and estimates that will be used in
Section 2.6. Throughout the present chapter, given any H k-rectifiable subset Σ ⊂ B2m equipped
with an orienting H k-measurable field of unit and simple k-vectors Σ⃗ we denote by [Σ] the current
of integration on Σ, i.e. the k-dimensional current given by

⟨[Σ], α⟩ :=
ˆ
Σ
⟨α, Σ⃗⟩ dH k, ∀α ∈ Dk(B2m).

2.4.1. Some technical lemmata

Definition 2.4.1 (J-holomorphic curves). A locally H 2-rectifiable subset Σ ⊂ B2m equipped
with an orienting H 2-measurable field of unit and simple 2-vectors Σ⃗ is a J-holomorphic curve
if Σ⃗(x) is J-invariant for H 2-a.e. x ∈ Σ.
Moreover, if ∂[Σ] = 0 we say that Σ is closed.

Definition 2.4.2 (Almost J-holomorphic curves). A locally H 2-rectifiable subset Σ ⊂ B2m

equipped with an orienting H 2-measurable field of unit and simple 2-vectors Σ⃗ is a almost J-
holomorphic curve if there exists some H 2-measurable and J-invariant field of 2-vectors Σ⃗J :

Σ → ∧2R2m such that for some γ ∈ (0, 1], ℓ ⩾ 0 it holds that

|Σ⃗(x)− Σ⃗J(x)| ⩽ ℓ|x|γ , for H 2- a.e. x ∈ Σ. (2.4.1)

Moreover, if ∂[Σ] = 0 we say that Σ is closed.

Remark 2.4.1. Given an almost J-holomorphic curve in B, we can build a 2-dimensional varifold
on B2m associated to it in the following way.
Let G2(B2m) := B2m ×Gr(2,R2m), where Gr(2,R2m) is the Grassmannian of the real 2-planes in
R2m. Notice that G2(B2m) can be given the structure of a smooth manifold, since it is the product
of two smooth manifolds. Following the notation by W.K. Allard and L. Simon (see [85, Chapter
8], [3]), a general 2-dimensional varifold on B2m is simply a Radon measure on G2(B2m). Then,
we may associate to an almost J-holomorphic curve Σ ⊂ B2m the Radon measure on G2(B2m)

given by

H 2 Σ⊗ δspan{Σ⃗J},

where by ⊗ we denote the usual tensor product of measures and span{Σ⃗J} denotes the field of
2-planes associated with the field of 2-vectors Σ⃗J .
Such objects are very close to being rectifiable varifolds but the almost tangent space of Σ is
“tilted”, conveniently with respect to the purposes that will be clear in the forthcoming discussion.
We point out explicitely that the form of these new objects is built (and therefore meaningful) just
to work around the origin. We would need to consider a “shifted” version of almost J-holomorphic
curves in order to work around an arbitrary point x0 ∈ B2m.

Remark 2.4.2. All the estimates and the results that will be presented in this section concerning
closed almost J-holomorphic curves in B are still valid for closed J-holomorphic curves. Indeed,

19



any J-holomorphic curve is trivially almost J-holomorphic (just pick Σ⃗J = Σ⃗, ℓ = 0 and γ = 1

in Definition 2.4.2).
Hence, in order to get the corresponding estimates for closed J-holomorphic curves it will always
be sufficient to set Σ⃗J = Σ⃗, ℓ = 0 and γ = 1 in what follows.

From now on, we will denote by ν0 the vector field on B2m∖{0} given by ν0(x) = x/|x|. Moreover,
we notice that since Ω is Lipschitz and Ω(0) = Ω0, there exists a constant L̃ > 0 depending only
on Lip(Ω) such that

|ν − ν0| ⩽ L̃| · |.

Proposition 2.4.1 (Almost monotonicity formula). Let Σ be a closed almost J-holomorphic curve
in B2m, according to Definition 2.4.2. Then, there exists a positive constant A ⩾ 0 depending
only on the Lipschitz constant of Ω such that

e
Aρ+ℓ ρ

γ

γ (1 +Aρ)
H 2(Σ ∩Bρ)

ρ2
− e

Aσ+ℓσ
γ

γ (1 +Aσ)
H 2(Σ ∩Bσ)

σ2

⩾
ˆ
Σ∩(Bρ∖Bσ)

1

| · |2
∣∣Σ⃗J ∧ ν

∣∣2
g
dH 2 (2.4.2)

and

e
−
(
Aρ+ℓ ρ

γ

γ

)
(1−Aρ)

H 2(Σ ∩Bρ)
ρ2

− e
−
(
Aσ+ℓσ

γ

γ

)
(1−Aσ)

H 2(Σ ∩Bσ)
σ2

⩽
ˆ
Σ∩(Bρ∖Bσ)

1

| · |2
∣∣Σ⃗J ∧ ν

∣∣2
g
dH 2, (2.4.3)

Proof. Throughout this proof, R will denote the smooth radial vector field on B2m given by
R(x) := x, for every x ∈ B2m. We denote by Ω0 the standard symplectic form on B2m and we
define Ω1 := Ω − Ω0. Moreover, given any arbitrary form α ∈ Ω2(B2m) we denote by αt the
tangential part of a form with respect to the vector field ν, given by

αt := (dr ∧ α) ν,

according to the notation used in Proposition 2.2.1.
Define the normal 2-current on B2m given by

⟨[Σ]J , α⟩ :=
ˆ
Σ
⟨α, Σ⃗J⟩ dH 2, ∀α ∈ D2(B).

As [Σ]J is semicalibrated by Ω, we will apply the same method that is used in [69, Proposition 1].
Nevertheless, we need to take into account the fact that the 2-current [Σ]J is not a cycle (though
not far from being one).
Let φ : [0,+∞) → [0,+∞) be smooth, non-increasing and such that:

1. φ ≡ 1 on [0, 1/2];
2. |φ′| ⩽ 4 on [0,+∞).
3. φ ≡ 0 on [1,+∞).
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For every 0 < ρ < 1, define φρ(x) := φ(|x|/ρ), for every x ∈ R2m. Notice that φρ ≡ 1 on Bρ/2,
φρ ≡ 0 on R2m ∖Bρ and |∇φρ| ⩽ 4/ρ on R2m. Define

I(ρ) :=

ˆ
Σ
φρ⟨Ω, Σ⃗J⟩ dH 2 =

ˆ
Σ
φρ dH

2,

J(ρ) :=

ˆ
Σ
φρ⟨Ωt, Σ⃗J⟩ dH 2.

Recall that LRΩ0 = 2Ω0 (where LRΩ0 denotes the Lie derivative of Ω0 with respect to the vector
field R) and compute

2I(ρ) = 2

ˆ
Σ
φρ⟨Ω0, Σ⃗J⟩ dH 2 + 2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2

=

ˆ
Σ
⟨φρd(Ω0 R), Σ⃗J⟩ dH 2 + 2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2

=

ˆ
Σ
⟨d
(
φρ(Ω0 R)

)
, Σ⃗J⟩ dH 2 −

ˆ
Σ
⟨dφρ ∧ (Ω0 R), Σ⃗J⟩ dH 2

+ 2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2

=

ˆ
Σ
⟨d
(
φρ(Ω0 R)

)
, Σ⃗− Σ⃗J⟩ dH 2

+ ρ

ˆ
Σ

∂φρ
∂ρ

⟨dr ∧ (Ω0 (ν0 − ν)), Σ⃗J⟩ dH 2

+ ρ

ˆ
Σ

∂φρ
∂ρ

⟨dr ∧ (Ω0 ν), Σ⃗J⟩ dH 2 + 2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2

=

ˆ
Σ
⟨d
(
φρ(Ω0 R)

)
, Σ⃗− Σ⃗J⟩ dH 2

+ ρ

ˆ
Σ

∂φρ
∂ρ

⟨dr ∧ (Ω0 (ν0 − ν)), Σ⃗J⟩ dH 2

+ ρ

ˆ
Σ

∂φρ
∂ρ

⟨Ω0 − (Ω0)t, Σ⃗J⟩ dH 2 + 2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2

=

ˆ
Σ
⟨d
(
φρ(Ω0 R)

)
, Σ⃗− Σ⃗J⟩ dH 2 + ρ

ˆ
Σ

∂φρ
∂ρ

⟨Ω− Ωt, Σ⃗J⟩ dH 2

+ ρ

ˆ
Σ

∂φρ
∂ρ

⟨dr ∧ (Ω0 (ν0 − ν)), Σ⃗J⟩ dH 2

+ 2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2 − ρ

ˆ
Σ

∂φρ
∂ρ

⟨Ω1 − (Ω1)t, Σ⃗J⟩ dH 2

= ρI ′(ρ)− ρJ ′(ρ) +

ˆ
Σ
⟨d
(
φρ(Ω0 R)

)
, Σ⃗− Σ⃗J⟩ dH 2

+ ρ

ˆ
Σ

∂φρ
∂ρ

⟨dr ∧ (Ω0 (ν0 − ν)), Σ⃗J⟩ dH 2

− ρ

ˆ
Σ

∂φρ
∂ρ

⟨Ω1 − (Ω1)t, Σ⃗J⟩ dH 2 + 2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2,

which leads to

−2
I(ρ)

ρ3
+
I ′(ρ)

ρ2
− J ′(ρ)

ρ2
= − 1

ρ3

ˆ
Σ
⟨d
(
φρ(Ω0 R)

)
, Σ⃗− Σ⃗J⟩ dH 2
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+
1

ρ2

ˆ
Σ

∂φρ
∂ρ

⟨dr ∧ (Ω0 (ν0 − ν)), Σ⃗J⟩ dH 2

+
1

ρ2

ˆ
Σ

∂φρ
∂ρ

⟨Ω1 − (Ω1)t, Σ⃗J⟩ dH 2

− 2

ρ3

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2.

Notice that ∣∣∣∣ 1ρ3
ˆ
Σ
⟨d
(
φρ(Ω0 R)

)
, Σ⃗− Σ⃗J⟩ dH 2

∣∣∣∣ ⩽ ℓργ−1

(
H 2(Σ ∩Bρ)

ρ2

)
,

∣∣∣∣ 1ρ2
ˆ
Σ

∂φρ
∂ρ

⟨Ω1 − (Ω1)t, Σ⃗J⟩ dH 2

∣∣∣∣ ⩽ 2Lip(Ω)

ρ

ˆ
Σ

∂φρ
∂ρ

dH 2 = 2Lip(Ω)
I ′(ρ)

ρ
,

∣∣∣∣ 1ρ2
ˆ
Σ

∂φρ
∂ρ

⟨dr ∧ (Ω0 (ν0 − ν)), Σ⃗J⟩ dH 2

∣∣∣∣ ⩽ L̃

ρ

ˆ
Σ

∂φρ
∂ρ

dH 2 = L̃
I ′(ρ)

ρ

and ∣∣∣∣ 2ρ3
ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2

∣∣∣∣ ⩽ 2Lip(Ω)

ρ2

ˆ
Σ
φρ⟨Ω1, Σ⃗J⟩ dH 2 = 2Lip(Ω)

I(ρ)

ρ2
.

Hence, we conclude∣∣∣∣ ddρ
(
I(ρ)

ρ2

)
− J ′(ρ)

ρ2

∣∣∣∣ = ∣∣∣∣− 2
I(ρ)

ρ3
+
I ′(ρ)

ρ2
− J ′(ρ)

ρ2

∣∣∣∣
⩽
(
2Lip(Ω) + L̃)

I ′(ρ)

ρ
+ 2Lip(Ω)

I(ρ)

ρ2

+ ℓργ−1

(
H 2(Σ ∩Bρ)

ρ2

)
⩽ A

I(ρ)

ρ2
+A

d

dρ

(
I(ρ)

ρ

)
+ ℓργ−1

(
H 2(Σ ∩Bρ)

ρ2

)
,

where A := 2Lip(Ω) + L̃. From the previous estimate, we immediately conclude that

d

dρ

(
I(ρ)

ρ2

)
+ (A+ ℓργ−1)

I(ρ)

ρ2
⩾
J ′(ρ)

ρ2
− d

dρ

(
Aρ

I(ρ)

ρ2

)
+ ℓργ−1

(
I(ρ)

ρ2
− H 2(Σ ∩Bρ)

ρ2

)
(2.4.4)

and

d

dρ

(
I(ρ)

ρ2

)
− (A+ ℓργ−1)

I(ρ)

ρ2
⩽
J ′(ρ)

ρ2
+

d

dρ

(
Aρ

I(ρ)

ρ2

)
+ ℓργ−1

(
H 2(Σ ∩Bρ)

ρ2
− I(ρ)

ρ2

)
. (2.4.5)
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By letting φ increase to the characteristic function of the interval [0, 1] in (2.4.4), the above
estimate passes to the limit in the sense of distributions and we obtain

d

dρ

(
H 2(Σ ∩Bρ)

ρ2

)
+ (A+ ℓργ−1)

H 2(Σ ∩Bρ)
ρ2

⩾
d

dρ

(ˆ
Σ∩Bρ

⟨Ωt, Σ⃗J⟩
| · |2

dH 2

)
− d

dρ

(
Aρ

H 2(Σ ∩Bρ)
ρ2

)
.

Multiplying both of the last inequality sides by the factor eAρ+ℓ
ργ

γ and taking into account the
fact that the first term on the right-hand-side is non-negative, we get

d

dρ

(
e
Aρ+ℓ ρ

γ

γ
H 2(Σ ∩Bρ)

ρ2

)
⩾

d

dρ

( ˆ
Σ∩Bρ

⟨Ωt, Σ⃗J⟩
| · |2

dH 2

)
− d

dρ

(
e
Aρ+ℓ ρ

γ

γ Aρ
H 2(Σ ∩Bρ)

ρ2

)
,

which turns into

d

dρ

(
e
Aρ+ℓ ρ

γ

γ (1 +Aρ)
H 2(Σ ∩Bρ)

ρ2

)
⩾

d

dρ

( ˆ
Σ∩Bρ

1

| · |2
⟨Ωt, Σ⃗J⟩ dH 2

)
.

By integration of the previous inequality, we get

e
Aρ+ℓ ρ

γ

γ (1 +Aρ)
H 2(Σ ∩Bρ)

ρ2
− e

Aσ+ℓσ
γ

γ (1 +Aσ)
H 2(Σ ∩Bσ)

σ2

⩾
ˆ
Σ∩(Bρ∖Bσ)

1

| · |2
⟨Ωt, Σ⃗J⟩ dH 2,

for every 0 < σ < ρ < 1. Since

⟨Ωt, Σ⃗J⟩ = |Σ⃗J ∧ ν|2g,

the estimate (2.4.2) follows.
By applying the same techniques to (2.4.5), we get (2.4.3) and the statement follows.

Remark 2.4.3. Proposition 2.4.1 immediately implies that the function

(0, 1) ∋ ρ 7→ e
Aρ+ℓ ρ

γ

γ (1 +Aρ)
H 2(Σ ∩Bρ)

ρ2

is non-decreasing. In particular, the limit

θ(0,Σ) := lim
ρ→0+

H 2(Σ ∩Bρ)
ρ2

= lim
ρ→0+

e
Aρ+ℓ ρ

γ

γ (1 +Aρ)
H 2(Σ ∩Bρ)

ρ2

exists and it is finite.

Lemma 2.4.1. Let Σ be a closed almost J-holomorphic curve in B2m, according to Definition
2.4.2. Then, there exist an H 2-measurable field of unit and simple 2-vectors Σ⃗0 ∈ ∧2R2m on
Σ and a constant L > 0 depending only on ℓ and on Lip(Ω) such that for H 2-a.e. x ∈ Σ the
following facts hold:
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(1) Σ⃗0(x) is a unit simple 2-vector calibrated by Ω0;
(2) |Σ⃗(x)− Σ⃗0(x)| ⩽ L|x|γ/2;
(3) if Σ⃗(x) is J0-invariant, then Σ⃗0(x) = Σ⃗(x);
(4) if Σ⃗(x) is not J0-invariant, then

|Σ⃗0(x) ∧ ν0(x) ∧ J0ν(x)| = max
v∈Sx

|v ∧ J0v ∧ ν0(x) ∧ J0ν0(x)|,

where Sx denotes the unit sphere in the approximate tangent space TxΣ.

Proof. Recall the definition of the vector field ν0, given at the beginning of the present section.
If x ∈ Σ is such that Σ⃗(x) is J0-invariant, we set Σ⃗0(x) := Σ⃗(x) and all the required properties
are satisfied. Otherwise, if x ∈ Σ is such that Σ⃗(x) is not J0-invariant, we first claim that there
exists some Ω0-orthonormal basis{

e1(x), J0e1(x), ..., em(x), J0em(x)
}

of R2m such that

|e1(x) ∧ J0e1(x) ∧ ν0(x) ∧ J0ν0(x)| = max
v∈Sx

|v ∧ J0v ∧ ν0(x) ∧ J0ν0(x)|

and we can write Σ⃗(x) as

Σ⃗(x) = cosϕ(x)e1(x) ∧ J0e1(x) + sinϕ(x)e1(x) ∧ e2(x).

for some angle ϕ(x) ∈ [0, 2π]. Indeed, since Sx is compact, there exists e1(x) ∈ Sx maximizing the
continuous function v 7→ |v ∧ J0v ∧ ν0(x) ∧ J0ν0(x)|. We complete {e1(x)} to an Ω0-orthonormal
basis {e1(x), ξ(x)} of TxΣ and we write Σ⃗(x) = e1(x) ∧ ξ(x).
Notice that the set {e1(x), J0e1(x), ξ(x)−J0e1(x)} is linearly independent, otherwise Σ⃗(x) would
be J0-invariant. We define e2(x) as the unique vector such that {e1(x), J0e1(x), e2(x)} is an
orthonormal set and

span{e1(x), J0e1(x), e2(x)} = span{e1(x), J0e1(x), ξ(x)− J0e1(x)}.

Moreover, notice that

Σ⃗(x) = e1(x) ∧ ξ(x) ∈ span
{
e1(x) ∧ J0e1(x), e1(x) ∧ e2(x)

}
and our initial claim follows since

|e1(x) ∧ J0e1(x)| = |e1(x) ∧ e2(x)| = 1.

Then, we define Σ⃗0(x) := e1(x)∧ J0e1(x). Clearly, Σ⃗0(x) satisfies (1) and (4). For what concerns
(2), notice that |Ωx −Ω0| ⩽ Lip(Ω)|x|. In particular, since ⟨Σ⃗J ,Ωx⟩ = 1 and |Σ⃗J − Σ⃗| ⩽ ℓ| · |γ , it
follows that |

〈
Ω0, Σ⃗(x)

〉
− 1| ⩽ C|x|γ , for some constant C > 0 depending only on ℓ and Lip(Ω).

Then,

1 + C|x|γ ⩾
〈
Ω0, Σ⃗(x)

〉
=
〈
Ω0, cosϕ(x) e1(x) ∧ J0e1(x) + sinϕ(x) e1(x) ∧ e2(x)

〉

24



= cosϕ(x) ⩾ 1− C|x|γ .

Hence, we eventually obtain∣∣Σ⃗(x)− Σ⃗0(x)
∣∣2 = (1− cosϕ(x))2 + sin2 ϕ(x) = 2(1− cosϕ) ⩽ 2C|x|γ

and the statement follows with L :=
√
2C.

For the purposed of the following lemma, we recall that with π : Cm ∖ {0} → CPm−1 we denote
the standard projection to the quotient (see Section 2.1.3).

Lemma 2.4.2. Under the same hypothesis and notation of Lemma 2.4.1, let r̃ ∈ (0, 1). Then,
there exists some constant Ξ = Ξ

(
m, r̃,Lip(Ω), ℓ, γ

)
> 0 such that

(1) for every 0 < ρ ⩽ r̃ and every open set U ⊂ Bρ it holds that∣∣∣∣M(π∗([Σ] U)
)
−
ˆ
Σ∩U

|∧2dπ(Σ⃗0)| dH 2

∣∣∣∣ ⩽ ΞH 2(Σ ∩Br̃)ργ/2.

(2) there exists constants G > 0 (depending only on the metric) and Km > 0 (obtained as C2m

in [69, Lemma 1]) such that in for every 0 < ρ ⩽ r̃, we have
ˆ
Σ∩Bρ

|∧2dπ(Σ⃗0)| dH 2 ⩽ 2KmG

(
e
Aρ+ℓ ρ

γ

γ (1 +Aρ)
H 2(Σ ∩Bρ)

ρ2
− θ(0,Σ)

)
+ ΞH 2(Σ ∩Br̃)ργ

Proof. First, we aim to prove (1). By Lemma 2.4.1 and by the definition of almost J-holomorphic
curve, it follows that∣∣|∧2dπx(Σ⃗(x))| − |∧2dπx(Σ⃗0(x))|

∣∣ ⩽ |∧2dπx(Σ⃗(x))−∧2dπx(Σ⃗0(x))|

⩽
1

|x|2
|Σ⃗(x)− Σ⃗0(x)| ⩽

L

|x|2−γ/2
,

for H 2-a.e. every x ∈ Σ∖ {0}. By integrating on U both sides in the previous inequality, we get∣∣∣∣M(π∗([Σ] U)
)
−
ˆ
Σ∩U

|∧2dπ(Σ⃗0)| dH 2

∣∣∣∣ ⩽ L

ˆ
Σ∩U

1

|x|2−γ/2
dH 2

⩽ L

ˆ
Σ∩Bρ

1

|x|2−γ/2
dH 2. (2.4.6)

Notice that, by exploiting (2.4.2), we get
ˆ
Σ∩(Bρ∖Bρ/2)

1

|x|2−γ/2
dH 2(x) ⩽ 22−γ/2

H 2(Σ ∩Bρ)
ρ2−γ/2

⩽ 4e
Aρ+ℓ ρ

γ

γ (1 +Aρ)
H 2(Σ ∩Bρ)

ρ2
ργ/2

2γ/2

⩽
4e
A+ ℓ

γ (1 +A)

r̃2
H 2(Σ ∩Br̃)

ργ/2

2γ/2
,
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for every 0 < ρ ⩽ r̃. By iteration, we obtain
ˆ
Σ∩(Bρ∖Bρ/2n )

1

|x|2−γ/2
dH 2(x)

⩽
4e
A+ ℓ

γ (1 +A)

r̃2
H 2(Σ ∩Br̃)

(
n−1∑
j=0

1

(2γ/2)j

)
ργ/2

and, by passing to the limit as n→ +∞, we have

ˆ
Σ∩Bρ

1

|x|2−γ/2
dH 2(x) ⩽

4e
A+ ℓ

γ (1 +A)

r̃2(1− 2−γ/2)
H 2(Σ ∩Br̃)ργ/2, (2.4.7)

for every 0 < ρ ⩽ r̃. By combining the previous estimate with (2.4.6), estimate (1) follows with

Ξ1 :=
4e
A+ ℓ

γ (1 +A)L

r̃2(1− 2−γ/2)
.

For what concerns (2), we simply notice that by (2.4.2), by point (2) in Lemma 2.4.1 and by [69,
Lemma 1], we get

ˆ
Σ∩Bρ

|∧2dπ(Σ⃗0)| dH 2 ⩽ Km

ˆ
Σ∩Bρ

1

| · |2
|Σ⃗0 ∧ ν0|2 dH 2

⩽ 4Km

ˆ
Σ∩Bρ

1

| · |2
|Σ⃗J ∧ ν|2 dH 2

+ 4Km

ˆ
Σ∩Bρ

1

| · |2
|ν − ν0|2 dH 2

+ 4Km

ˆ
Σ∩Bρ

1

| · |2
|(Σ⃗J − Σ⃗0) ∧ ν0|2 dH 2

⩽ 4KmG

(
eAρ+ℓρ

γ
(1 +Aρ)

H 2(Σ ∩Bρ)
ρ2

− θ(0,Σ)

)
+ 4KmL̃H 2(Σ ∩Bρ)

+ 4Km(ℓ
2 + L2)

ˆ
Σ∩Bρ

1

| · |2−γ
dH 2.

By using the same method that we have used in order to prove the decay in (2.4.7), we can show
that

ˆ
Σ∩Bρ

1

|x|2−γ
dH 2(x) ⩽

4e
A+ ℓ

γ (1 +A)

r̃2
H 2(Σ ∩Br̃)ργ , (2.4.8)

for very 0 < ρ ⩽ r̃. Moreover, we clearly have that

H 2(Σ ∩Bρ)
ργ

⩽
H 2(Σ ∩Bρ)

ρ2
⩽

4e
Aρ+ℓ ρ

γ

γ (1 +Aρ)

ρ2
H 2(Σ ∩Bρ)

⩽
4e
A+ ℓ

γ (1 +A)

r̃2
H 2(Σ ∩Br̃),
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for very 0 < ρ ⩽ r̃. Thus, we get that (2) holds with

Ξ2 :=
4Kme

A+ ℓ
γ (1 +A)(L̃+ ℓ2 + L2)

r̃2
.

Hence, the statement follows with Ξ := max{Ξ1,Ξ2}.

Remark 2.4.4. A first remarkable consequence of Lemma 2.4.2 and Proposition 2.4.1 is that

M
(
π∗([Σ] Bρ)

)
→ 0 as ρ→ 0+. (2.4.9)

Lemma 2.4.3 (Good slicing). Under the same hypotheses and notation of Lemma 2.4.1, let
r̃ ∈ (0, 1). Then, for every r ∈ (0, r̃] there exist ρ̃ ∈ [r/2, r] and Θ = Θ

(
m, r̃,Lip(Ω), ℓ, γ

)
> 0

such that:
(1) H 1(Σ ∩ ∂Bρ̃) ⩽ ΘH 2(Σ ∩Br̃)ρ̃;

(2)
ˆ
Σ∩∂Bρ̃

|∧2dπ(Σ⃗)| dH 1 ⩽
Θ

ρ̃

ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗)| dH 2;

(3) M
(
π∗∂([Σ] Bρ̃)

)
⩽ Θ

√
Km

 r

r/2

1

ρ

ˆ
Σ∩∂Bρ

|Σ⃗0 ∧ ν0| dH 1 dL1(ρ).

Proof. First, we notice that, by the coarea formula and the monotonicity formula (2.4.2), it holds
that

ˆ r

r/2

H 1(Σ ∩ ∂Bρ)
ρ

dL1(ρ) ⩽
2

r
H 2(Σ ∩Br)

⩽ 2e
Ar+ℓ r

γ

γ (1 +Ar)
H 2(Σ ∩Br)

r2
r

⩽
4e
A+ ℓ

γ (1 +A)

r̃2
H 2(Σ ∩Br̃)

r

2
.

Hence,
 r

r/2

1

Θ1H 2(Σ ∩Br̃)
H 1(Σ ∩ ∂Bρ)

ρ
dL1(ρ) ⩽ 1, (2.4.10)

with

Θ1 :=
4e
A+ ℓ

γ (1 +A)

r̃2
.

Moreover, again by the coarea formula, we get
 r

r/2
ρ

ˆ
Σ∩∂Bρ

|∧2dπ(Σ⃗)| dH 1 dL1(ρ)

⩽ 2

ˆ r

r/2

ˆ
Σ∩∂Bρ

|∧2dπ(Σ⃗)| dH 1 dL1(ρ)

= 2

ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗)| dH 2 =: a,
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which leads to
 r

r/2

1

a
ρ

ˆ
Σ∩∂Bρ

|∧2dπ(Σ⃗)| dH 1 dL1(ρ) ⩽ 1. (2.4.11)

Lastly, by [54, Lemma 7.6.1], we know that for a.e. ρ ∈ (0, 1) the slice Σ ∩ ∂Bρ is a 1-rectifiable
subset of B2m and the vector field Σ⃗ρ orienting its approximate tangent space at x belongs to
Sx (see notation of Lemma 2.4.1). Then, by [69, Lemma 1] and by points (3) and (4) of Lemma
2.4.1, it follows that∣∣Σ⃗ρ ∧ ν0 ∧ J0ν0∣∣2 = ∣∣Σ⃗ρ ∧ J0Σ⃗ρ ∧ ν0 ∧ J0ν0∣∣

⩽ |Σ⃗0 ∧ ν0 ∧ J0ν0
∣∣

⩽ Km

∣∣Σ⃗0 ∧ ν0
∣∣2, H 1-a.e. on Σ ∩ ∂Bρ.

Hence, we get

M
(
π∗∂([Σ] Bρ)

)
⩽
ˆ
Σ∩∂Bρ

∣∣dπ(Σ⃗ρ)∣∣ dH 1

=
1

ρ

ˆ
Σ∩∂Bρ

|Σ⃗ρ ∧ ν0 ∧ Jν0
∣∣ dH 1

⩽

√
Km

ρ

ˆ
Σ∩∂Bρ

∣∣Σ⃗0 ∧ ν0
∣∣ dH 1.

Thus, by averaging the previous inequality on [r/2, r], we obtain
 r

r/2
M
(
π∗∂([Σ] Bρ) dL1(ρ) ⩽

√
Km

 r

r/2

1

ρ

ˆ
Σ∩∂Bρ

∣∣Σ⃗0 ∧ ν0
∣∣ dH 1 =: b,

which leads to
 r

r/2

1

b
M
(
π∗∂([Σ] Bρ) dL1(ρ) ⩽ 1. (2.4.12)

By summing up the three inequalities (2.4.10), (2.4.11) and (2.4.12) we obtain

 r

r/2

(
1

Θ1H 2(Σ ∩Br̃)
H 1(Σ ∩ ∂Bρ)

ρ
+

1

a
ρ

ˆ
Σ∩∂Bρ

|∧2dπ(Σ⃗)| dH 1

+
1

b
M
(
π∗∂([Σ] Bρ)

)
dL1(ρ) ⩽ 3.

Then, we conclude that there exists ρ ∈ [r/2, r] such that

1

Θ1H 2(Σ ∩Br̃)
H 1(Σ ∩ ∂Bρ)

ρ
+

1

a
ρ

ˆ
Σ∩∂Bρ

|∧2dπ(Σ⃗)| dH 1

+
1

b
M
(
π∗∂([Σ] Bρ) ⩽ 3

and the statement follows with Θ := max{Θ1, 6}.
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Lemma 2.4.4 (Controlling the mass of the projected boundaries). Under the same hypotheses
and notation of Lemma 2.4.1, let r̃ ∈ (0, 1). Let r ∈ (0, r̃] be such that

M
(
π∗([Σ] Br)

)
< 2K2

mM
(
π∗([Σ] Br/2)

)
(2.4.13)

and
ˆ
Σ∩Br

|∧2dπ(Σ⃗0)| dH 2 > ζ−1ΞH 2(Σ ∩Br̃)rγ/2, (2.4.14)

for some ζ ∈ (0, 1). If ρj ∈ [r/2, r] is such that Σ ∩ ∂Bρj is a good slice of Σ in the sense of
Lemma 2.4.3, then

M
(
π∗∂([Σ] Bρj )

)
⩽ Λ

√
H 2(Σ ∩Br̃)

√
M
(
π∗([Σ] Bρj )

)
+ ΛH 2(Σ ∩Br̃)ργ/4j , (2.4.15)

for a constant Λ = Λ
(
m, r̃,Lip(Ω), ℓ, γ

)
> 0.

Proof. Let ρj ∈ [r/2, r] be such that Σ ∩ ∂Bρj is a good slice of Σ. We apply twice the Cauchy-
Schwarz inequality in the right-hand side of (3) in Lemma 2.4.3 and the coarea formula to get

M
(
π∗∂([Σ] Bρj )

)
⩽ Θ

√
Km

 r

r/2

1

ρ

ˆ
Σ∩∂Bρ

|Σ⃗0 ∧ ν0| dH 1 dL1(ρ)

= Θ
√
Km

 r

r/2

ˆ
Σ∩∂Bρ

1

ρ
|Σ⃗0 ∧ ν0| dH 1 dL1(ρ)

⩽ Θ
√
Km

 r

r/2

√
H 1(Σ ∩ ∂Bρ)

·
√ˆ

Σ∩∂Bρ

1

ρ2
|Σ⃗0 ∧ ν0|2 dH 1 dL1(ρ)

= Θ
√
Km

2

r

ˆ r

r/2

√
H 1(Σ ∩ ∂Bρ)

·
√ˆ

Σ∩∂Bρ

1

ρ2
|Σ⃗0 ∧ ν0|2 dH 1 dL1(ρ)

⩽ Θ
√
Km

2

r

√ˆ r

r/2
H 1(Σ ∩ ∂Bρ) dL1(ρ)

·
√ˆ r

r/2

ˆ
Σ∩∂Bρ

1

ρ2
|Σ⃗0 ∧ ν0|2 dH 1 dL1(ρ)

= Θ
√
Km

√
2

r

√ r

r/2
H 1(Σ ∩ ∂Bρ) dL1(ρ)

·
√ˆ

Σ∩(Br∖Br/2)

1

| · |2
|Σ⃗0 ∧ ν0|2 dH 2.
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We notice that, by point (1) in Lemma 2.4.2 and by our assumption (2.4.14), it holds that∣∣∣∣M(π∗([Σ] Br)
)
−
ˆ
Σ∩Br

|∧2dπ(Σ⃗0)| dH 2

∣∣∣∣ ⩽ ΞH 2(Σ ∩Br̃)rγ/2

< ζ

ˆ
Σ∩Br

|∧2dπ(Σ⃗0)| dH 2

which implies
ˆ
Σ∩Br

|∧2dπ(Σ⃗0)| dH 2 ⩽
1

1− ζ
M
(
π∗([Σ] Br)

)
Hence, by [69, Lemma 1] we have

ˆ
Σ∩(Br∖Br/2)

1

| · |2
|Σ⃗0 ∧ ν0|2 dH 2 ⩽ Km

ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2

⩽
Km

1− ζ
M
(
π∗([Σ] Br)

)
.

Moreover, by (2.4.10), it follows that√ r

r/2
H 1(Σ ∩ ∂Bρ) dL1(ρ) ⩽

√
r

√ r

r/2

H 1(Σ ∩ ∂Bρ)
ρ

dL1(ρ)

⩽
√
2Θ
√

H 2(Σ ∩Br̃)
√
r

2
.

Thus,

M
(
π∗∂([Σ] Bρj )

)
⩽

√
2Θ3/2Km√
1− ζ

√
H 2(Σ ∩Br̃)

√
M
(
π∗([Σ] Br)

)
.

By our hypothesis (2.4.13) and since ρj > r/2, we obtain that

M
(
π∗([Σ] Br)

)
< 2K2

mM
(
π∗([Σ] Br/2)

)
⩽ 2K2

mM
(
π∗([Σ] Bρj )

)
+ 4K2

mΞH 2(Σ ∩Br̃)ργ/2j .

We point out that the last inequality follows a direct application of point (1) in Lemma 2.4.2.
Then, the statement follows with

Λ := max

{
2Θ3/2K2

m√
1− ζ

,
2
√
2Θ2K2

m√
1− ζ

}
.

We recall the following general fact about integral 2-currents on CPm−1 with small mass which
are ζ-almost semicalibrated by ωCPm−1 , whose proof can be found in [69, Lemma 11]. Recall that
a current T ∈ D2(CPm−1) is said to be ζ-almost semicalibrated by ωCPm−1 for some constant
ζ ∈ (0, 1) if

(1− ζ)| ⟨T U, ωCPm−1⟩ | ⩽ M(T U) ⩽ (1 + ζ)| ⟨T U, ωCPm−1⟩ |,

for every open set U ⊂ CPm−1.
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Lemma 2.4.5. Let ζ ∈ (0, 1). Given any couple of constants Λ̃ > 0 and λ > 0, there exist δ > 0

and ε > 0 satisfying what follows. For every integral 2-current T ∈ D2(CPm−1) such that
1. T is ζ-almost semicalibrated by ωCPm−1 ,
2. M(T ) +M(∂T ) < δ,
3. M(∂T ) ⩽ Λ̃

√
M(T ),

there is a complex projective (m− 2)-hyperplane H ⊂ CPm−1 and a tubular neighbourhood Hε ⊂
CPm−1 of H with width ε such that

M(T Hε)

ε2
⩽ λM(T ). (2.4.16)

Lastly we need to establish that, given a complex projective (m−2)-hyperplane H ⊂ CPm−1 and
a tubular neighbourhood Hε ⊂ CPm−1 of H with width ε, we can approximate the symplectic
form ωCPm−1 on CPm−1 with an exact form dα that coincides with ωCPm−1 on the complement
of Hε and vanishes on Hε/2. We achieve this approximation through the following lemma, whose
proof is again in [69, Lemma 6].

Lemma 2.4.6. Let H ⊂ CPm−1 be any complex projective (m − 2)-hyperplane and let Hε ⊂
CPm−1 be a tubular neighbourhood of H with width ε. Then there exists a 1-form α ∈ Ω1(CPm−1)

and a universal constant κ > 0 such that:
1. ωCPm−1 = dα on CPm−1 ∖Hε;
2. α = 0 on Hε/2;
3. ||α||∗ ⩽ κ;

4. ||ωCPm−1 − dα||∗ ⩽
κ

ε2
.

2.4.2. Proof of the fundamental Morrey type estimate

Recall that κ,Ξ > 0 are positive constants introduced in Lemma 2.4.6 and Lemma 2.4.2 respec-
tively.
Fix any j0 ∈ N ∖ {0} and let ℓ ⩾ 0 be a constant depending only on Lip(Ω). Let δ > 0 and
ε > 0 be the constants given by applying Lemma 2.4.5 with Λ̃ = Λ

(
m, 2−j0 ,Lip(Ω), ℓ, 1/2

)
from

Lemma 2.4.4 and λ := 5(24κ)−1. Let δ′ > 0 be such that

Λ
√
δ′ +

δ′

2
+ δ′ < δ

and choose r̃ ∈
(
0,min{2−j0 , δ′(2Ξ)−1}

)
such that

max{Λ,Ξ}
(
eA+2ℓ(1 +A)

)−1
r̃1/4 <

δ′

2
.

Assume that F is a family of closed almost J-holomorphic curves in B2m such that every element
Σ ∈ F satisfies the following properties:
(1) |Σ⃗(x)− Σ⃗J(x)| ⩽ ℓ|x|1/2, for H 2-a.e. x ∈ Σ,
(2) H 2(Σ ∩B2−j0 ) <

(
eA+2ℓ(1 +A)

)−1,
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(3)
ˆ
Σ∩B

2−j0

|∧2dπ(Σ⃗0)| dH 2 <
δ′

2
.

Remark 2.4.5. For every Σ ∈ F , the hypotheses (2) and (3) combined with point (1) in Lemma
2.4.2 imply that:

1. M
(
π∗([Σ] Bρ)

)
+M

(
π∗∂([Σ] Bρ)

)
< δ,

2. M
(
π∗∂([Σ] Bρ)

)
⩽ Λ

√
M
(
π∗([Σ] Bρ)

)
,

for every good slice Σ ∩ ∂Bρ of Σ, where ρ ∈ [r/2, r] with r ∈ (0, r̃] satisfying the hypotheses
(2.4.13) and (2.4.14) of Lemma 2.4.4.

We want to show that for every Σ ∈ F there exist constants C > 0 and 0 < α < 1 depending on
m, j0, Lip(Ω) such that ∣∣∣∣ ˆ

Σ∩Bρ

π∗ωCPm−1 |Σ
∣∣∣∣ ⩽ Cρα, ∀ ρ ∈ (0, 2−j0). (2.4.17)

By definition of mass it holds that∣∣∣∣ ˆ
Σ∩Bρ

π∗ωCPm−1 |Σ
∣∣∣∣ = | ⟨π∗([Σ] Bρ), ωCPm−1⟩ |

⩽ M
(
π∗([Σ] Bρ)

)
, (2.4.18)

for every ρ ∈ (0, 1). Hence, in order to prove (2.4.17) it is enough to show that

M
(
π∗([Σ] Bρ)

)
⩽ Cρα, for every ρ ∈ (0, r̃). (2.4.19)

Moreover, by exploiting point (1) in Lemma 2.4.2, we realize that we if we show
ˆ
Σ∩Bρ

|∧2dπ(Σ⃗0)| dH 2 ⩽ C̃ρα̃, for every ρ ∈ (0, r̃), (2.4.20)

then (2.4.19) will follow with C := C̃ + Ξ and α := min{α̃, 1/4}. Thus, we just need to show
(2.4.20).
Fix any Σ ∈ F . Let

E(ρ) :=

ˆ
Σ∩Bρ

|∧2dπ(Σ⃗0)| dH 2, ∀ ρ ∈ (0, 1)

and define

I :=

{
j ∈ N s.t. 2−j ⩽ r̃ and E

(
2−(j+1)

)
⩽

1

2
E
(
2−j
)}
,

J :=
{
j ∈ N s.t. 2−j ⩽ r̃ and E

(
2−(j+1)

)
⩽ 5Ξ2−(j+1)/4

}
.

First, we claim that there exists θ = θ
(
m, j0,Lip(Ω)

)
∈ (0, 1) such that

E
(
2−(j+1)

)
⩽ θ
(
E
(
2−j
)
+ 2−j/4

)
, (2.4.21)
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for every j ∈ (I ∪ J)c. Fix j ∈ (I ∪ J)c and set r := 2−j . Pick a radius ρj ∈ [r/2, r] such that
Σ ∩ ∂Bρj is a good slice of Σ (see Lemma 2.4.3). By Lemma 2.4.2 and Lemma 2.4.4, it follows
that we can choose a sequence of radii {sk}k∈N ∈ (0, r/2) such that sk → 0+ as k → +∞ and

M
(
π∗∂([Σ] Bsk)

)
⩽ M

(
π∗([Σ] Br ∖Br/2)

)
, ∀ k ∈ N. (2.4.22)

Since Σ ∈ F , by Remark 2.4.5 and since j ∈ (I ∪ J)c it follows that T = π∗([Σ] Bρj ) satisfies
the hypotheses of Lemma 2.4.5 with ζ = 1/2. Thus, there exists a complex projective (m − 2)-
hyperplane H ⊂ CPm−1 and a tubular neighbourhood Hε ⊂ CPm−1 of H with width ε > 0 such
that

M
(
π∗([Σ] Bρj ) Hε

)
ε2

⩽ λM
(
π∗([Σ] Bρj )

)
.

We let α ∈ Ω1(CPm−1) be a smooth 1-form given by Lemma 2.4.6 relatively to H,Hε. Following
the proof of point (1) in Lemma 2.4.2, we notice that

ˆ
Σ∩(Br/2∖Bsk

)
|∧2dπ(Σ⃗0)| dH 2

⩽
ˆ
Σ∩(Bρj∖Bsk

)
|∧2dπ(Σ⃗0)| dH 2

= 2

∣∣∣∣ ˆ
Σ∩(Bρj∖Bsk

)

〈
π∗ωCPm−1 , Σ⃗

〉
dH 2

∣∣∣∣
= 2

∣∣∣∣ ˆ
Σ∩(Bρj∖Bsk

)

〈
π∗dα, Σ⃗

〉
dH 2

∣∣∣∣
+ 2

∣∣∣∣ ˆ
Σ∩(Bρj∖Bsk

)

〈
π∗(ωCPm−1 − dα), Σ⃗

〉
dH 2

∣∣∣∣. (2.4.23)

For what concerns the second term in the last sum, by Lemmas 2.4.5, 2.4.6 and (1) in Lemma
2.4.2 we see that ∣∣∣∣ ˆ

Σ∩(Bρj∖Bsk
)

〈
π∗(ωCPm−1 − dα), Σ⃗

〉
dH 2

∣∣∣∣
⩽ ||ωCPm−1 − dα||∗M

(
π∗([Σ] Bρj ) Hε

)
⩽ κ

M
(
π∗([Σ] Bρj ) Hε

)
ε2

⩽ κλM
(
π∗([Σ] Bρj )

)
⩽

1

4

ˆ
Σ∩Bρj

|∧2dπ(Σ⃗0)| dH 2 +
Ξ

4
H 2(Σ ∩Bρj )ρ

1/4
j

⩽
1

4

ˆ
Σ∩Br

|∧2dπ(Σ⃗0)| dH 2 + Ξ̃r1/4, (2.4.24)

with

Ξ̃ :=
Ξ

4

(
eA+2ℓ(1 +A)

)−1
.
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Now we want to estimate ˆ
Σ∩(Bρj∖Bsk

)

〈
π∗dα, Σ⃗

〉
dH 2.

Since π is a smooth map on Bρj ∖Bsk , by Stokes theorem we get that∣∣∣∣ˆ
Σ∩(Bρj∖Bsk

)

〈
π∗dα, Σ⃗

〉
dH 2

∣∣∣∣
=

∣∣∣∣ ˆ
Σ∩(Bρj∖Bsk

)
π∗dα|Σ

∣∣∣∣ = ∣∣∣∣ ˆ
Σ∩(Bρj∖Bsk

)
d(π∗α)|Σ

∣∣∣∣
=

∣∣∣∣ ˆ
Σ∩∂Bρj

π∗α|Σ∩∂Bρj
−
ˆ
Σ∩∂Bsk

π∗α|Σ∩∂Bsk

∣∣∣∣
⩽

∣∣∣∣∣
ˆ
Σ∩∂Bρj

π∗α|Σ∩∂Bρj

∣∣∣∣∣+
∣∣∣∣∣
ˆ
Σ∩∂Bsk

π∗α|Σ∩∂Bsk

∣∣∣∣∣ .
Since j ∈ (I ∪ J)c, by (2.4.22) we get that∣∣∣∣∣

ˆ
Σ∩∂Bsk

π∗α|Σ∩∂Bsk

∣∣∣∣∣ = |⟨π∗∂([Σ] Bsk), α⟩| ⩽ ||α||∗M
(
π∗∂([Σ] Bsk)

)
⩽ κM

(
π∗([Σ] (Br ∖Br/2))

)
⩽

3κ

2

ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2.

Thus, we have obtained∣∣∣∣ ˆ
Σ∩(Bρj∖Bsk

)

〈
π∗dα, Σ⃗

〉
dH 2

∣∣∣∣ ⩽
∣∣∣∣∣
ˆ
Σ∩∂Bρj

π∗α|Σ∩∂Bρj

∣∣∣∣∣
+

3κ

2

ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2 (2.4.25)

and we just need to bound ∣∣∣∣∣
ˆ
Σ∩∂Bρj

π∗α|Σ∩∂Bρj

∣∣∣∣∣ .
To do this, we write the 1-rectifiable closed curve Σ ∩ ∂Bρj as

Σ ∩ ∂Bρj =
∞⋃
i=0

Γi,

where Γi is a Lipschitz connected closed curve in B. We let γi : [0,H 1(Γi)] → B2m be the
parametrization of Γi through its arc-length, so that |γ′i| ≡ 1 a.e. on [0,H 1(Γi)]. First, fix i ∈ N
and notice that for every smooth function f : B2m ∖ {0} → R such that f̄ i = 0, where

f̄ i :=

ˆ
Γi

f dH 1,
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the following Poincaré type inequality holds for Γi:(ˆ
Γi

|f |2 dH 1

)1/2

=

(ˆ H 1(Γi)

0
|f ◦ γi|2|γ′i| dL1

)1/2

=

(ˆ H 1(Γi)

0
|f ◦ γi|2 dL1

)1/2

⩽ H 1(Γi)

(ˆ H 1(Γi)

0
|(f ◦ γi)′|2 dL1

)1/2

= H 1(Γi)

(ˆ H 1(Γi)

0
|dfγi(γ′i)|2 dL1

)1/2

= H 1(Γi)

(ˆ H 1(Γi)

0
|dfγi(Σ⃗ρj )|2|γ′i| dL1

)1/2

= H 1(Γi)

(ˆ
Γi

|df |Σρj
|2 dH 1

)1/2

. (2.4.26)

Secondly, since spt(α) ⊂ CPm−1 ∖ Hε/2 and CPm−1 ∖ Hε/2 is diffeomorphic to R2m−2 we can
write α in coordinates {y1, ...y2m−2} on CPm−1 as

α =

2m−2∑
a=1

αadya

in order to get the expansion

π∗α|Γi =
〈
π∗α, γ′i

〉
=

2m−2∑
a=1

(αa ◦ π) ⟨dya, dπ|Γi⟩ .

Moreover, we notice that∣∣d(αa ◦ π)|Σρj

∣∣ ⩽ ∣∣dαa ◦ π∣∣2∣∣dπ|Σρj

∣∣2 ⩽ ∣∣dα ◦ π
∣∣2∣∣dπ|Σρj

∣∣2
⩽ max

{
||ωCPm−1 ||∞,

κ

ε2

}∣∣dπ|Σρj

∣∣2
⩽ max

{
||ωCPm−1 ||∞,

κ

ε2

}∣∣dπ|Σρj

∣∣2
=Mm

∣∣dπ|Σρj

∣∣2,
where

Mm := max

{
||ωCPm−1 ||∞,

κ

ε2

}
depends only on m. Then, by (2.4.26), Hölder’s inequality and point (3) in Lemma 2.4.1, we
estimate ∣∣∣∣ˆ

Γi

π∗α|Γi

∣∣∣∣
=

∣∣∣∣∣
2m−2∑
a=1

ˆ
Γi

(αa ◦ π)
〈
dya, dπ(γ

′
i)
〉∣∣∣∣∣
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=

∣∣∣∣∣
2m−2∑
a=1

ˆ
Γi

(αa ◦ π − ᾱik ◦ π)
〈
dya, dπ(γ

′
i)
〉∣∣∣∣∣

⩽
2m−2∑
a=1

ˆ
Γi

∣∣αa ◦ π − ᾱik ◦ π
∣∣∣∣dπ|Γi

∣∣2
⩽

2m−2∑
a=1

( ˆ
Γi

∣∣αa ◦ π − ᾱik ◦ π
∣∣2 dH 1

)1/2(ˆ
Γi

∣∣dπ|Σρj

∣∣ dH 1

)1/2

⩽ H 1(Γi)
2m−2∑
a=1

(ˆ
Γi

∣∣d(αa ◦ π)|Σρj

∣∣2 dH 1

)1/2(ˆ
Γi

∣∣dπ|Σρj

∣∣2 dH 1

)1/2

⩽ M̃mH 1(Γi)

ˆ
Γi

∣∣dπ|Σρj

∣∣2 dH 1

⩽ M̃mH 1(Σ ∩ ∂Bρj )
ˆ
Γi

|∧2dπ(Σ⃗0)| dH 1,

where M̃m := (2m − 2)Mm and the last inequality follows by our choice of Σ⃗0 (see point (4) in
Lemma 2.4.1). Summing up over i ∈ N in the previous inequality, using the properties of good
slices established in Lemma 2.4.3 and since Σ ∈ F , we eventually get∣∣∣∣∣

ˆ
Σ∩∂Bρj

π∗α|Σ∩∂Bρj

∣∣∣∣∣
⩽ M̃mH 1(Σ ∩ ∂Bρj )

ˆ
Σ∩∂Bρj

|∧2dπ(Σ⃗0)| dH 1

⩽ M̃mΘ
2H 2(Σ ∩B2−j0 )

ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2

⩽ M̃mΘ
2
(
eA+j0(1 +A)

)−1
ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2 (2.4.27)

Plugging (2.4.27) in (2.4.25) we get∣∣∣∣ˆ
Σ∩(Bρj∖Bsk

)

〈
π∗dα, Σ⃗

〉
dH 2

∣∣∣∣
⩽

(
M̃mΘ

2
(
eA+2ℓ(1 +A)

)−1
+

3κ

2

) ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2. (2.4.28)

Combining (2.4.28), (2.4.24) and (2.4.23) and setting

Ĉ := max

{
2M̃mΘ

2

eA+2ℓ(1 +A)
+ 3κ, 1, 2Ξ̃

}
,

we obtain
ˆ
Σ∩(Br/2∖Bsk

)
|∧2dπ(Σ⃗0)| dH 2 ⩽ Ĉ

( ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2 + r1/4
)

+
1

2

ˆ
Σ∩Br

|∧2dπ(Σ⃗0)| dH 2.
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By letting k → +∞ in the previous inequality, we obtainˆ
Σ∩Br/2

|∧2dπ(Σ⃗0)| dH 2 ⩽ Ĉ

( ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2 + r1/4
)

+
1

2

ˆ
Σ∩Br

|∧2dπ(Σ⃗0)| dH 2.

and by subtracting from both sides the quantity
1

2

ˆ
Σ∩Br/2

|∧2dπ(Σ⃗0)| dH 2,

we get ˆ
Σ∩Br/2

|∧2dπ(Σ⃗0)| dH 2 ⩽ C̄

( ˆ
Σ∩(Br∖Br/2)

|∧2dπ(Σ⃗0)| dH 2 + r1/4
)
,

where C̄ > 0 is chosen big enough so that C̄ ⩾ 2Ĉ and

C̄

C̄ + 1
⩾ 2−1/4.

By the hole filling technique and recalling that r = 2−j , we obtainˆ
Σ∩B

2−(j+1)

|∧2dπ(Σ⃗0)| dH 2 ⩽ θ

ˆ
Σ∩B

2−j

|∧2dπ(Σ⃗0)| dH 2 + θj+1,

with θ ∈ (0, 1) given by θ := C̄/(C̄ + 1) ⩾ 2−1/4 and our claim (2.4.21) follows.
By (2.4.21) we obtain that

E
(
2−j
)
⩽ θE

(
2−(j−1)

)
+ θj ⩽ θ2E

(
2−(j−2)

)
+ 2θj

⩽ ... ⩽ θj0E
(
2−j0

)
θ−j +

(
(j − j0)θ

−j/2)θ−j/2
⩽ Ξ̂θ̃−j

with θ̃ := θ1/2 and

Ξ̂ :=
δ′θj0

2
+ sup
j⩾j0

{
(j − j0)θ̃

−j} < +∞.

In order to get (2.4.20), we notice that if j ∈ I ∪ J then either j ∈ I or j ∈ J ∖ I. In the first
case, we have ˆ

Σ∩B
2−(j+1)

|∧2dπ(Σ⃗0)| dH 2 ⩽
1

2

ˆ
Σ∩B

2−j

|∧2dπ(Σ⃗0)| dH 2

⩽ θ

ˆ
Σ∩B

2−j

|∧2dπ(Σ⃗0)| dH 2.

In the second case, by definition of J , it holds thatˆ
Σ∩B

2−(j+1)

|∧2dπ(Σ⃗0)| dH 2 ⩽ 5Ξ 2−(j+1)/4.

By setting α̃ = min{− log2 θ̃, 1/4} ∈ (0, 1), we getˆ
Σ∩B

2−j

|∧2dπ(Σ⃗0)| dH 2 ⩽ 5Ξ

(
1

2j

)α
,

which leads to (2.4.20) with C̃ := max{5θ1/4Ξ, Ξ̂}.
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2.5. Almost pseudo-holomorphic foliations

Lemma 2.5.1. Let m ⩾ 2 and let (X, JX , ωX) be a closed, almost Kähler, smooth (2m − 2)-
dimensional manifold. Assume that v ∈W 1,2(B2m, X) satisfies v∗ volX ∈ L1(B2m) and

d(v∗ volX) = 0

in D′(B2m). Then, there exists a representative of v such that the coarea formula holds. Moreover,
given such a representative, for volX-a.e. z ∈ X the following facts hold:

1. v−1(z) is a countably H 2-rectifiable subset of B2m;
2. (v∗ volX)x ̸= 0, for H 2-a.e. x ∈ v−1(z);
3. [v−1(z)] is a cycle of finite mass.

Proof. By [41, Theorem 11, Theorem 12] there exists a representative of v such that both (1) and
the co-area formula hold. Moreover, if we denote by E ⊂ B2m the set of all the x ∈ B2m such
that (v∗ volX)x = 0, by the coarea formula we get

0 =

ˆ
E
|v∗ volX |g d volg =

ˆ
X

H 2
(
v−1(z) ∩ E

)
d volX(z),

which implies that for volX -a.e. z ∈ X the set v−1(z) ∩E has vanishing H 2-measure. Thus, (2)
immediately follows.
We are just left to prove (3). By the coarea formula, it follows that

ˆ
X

H 2
(
v−1(z)

)
d volX(z) =

ˆ
B2m

|v∗ volX | dL2m < +∞.

Hence, the function X ∋ z
f7−→ H 2

(
v−1(z)

)
belongs to L1(X) and we know that a.e. z ∈ X is

a Lebesgue point for f such that f(z) < +∞. Fix any such point z ∈ X. By our choice of z,
it holds that M([v−1(z)]) = H 2

(
v−1(z)

)
= f(z) < +∞. Hence, just need to show that [v−1(z)]

is a cycle. Let expz : R2m−2 → X be the exponential map of X at the point z. Denote by
ρ0 ∈ (0,+∞) the injectivity radius of X at z and we define

Bε(z) := expz
(
Bε(0)

)
, for every ε ∈ (0, ρ0).

For every ε ∈ (0, ρ0), we let {φε,k}k∈N ⊂ C∞(X) be a sequence of smooth functions on X such
that:

1. φε,k ≡ 0 on X ∖Bε(z);

2. 0 < φε,k ⩽
(
volX(Bε(z))

)−1 on Bε(z);
3. it holds that

φε,k
k→∞−−−→ 1

volX
(
Bε(z)

)χBε(z), volX -a.e. on X.

Fix any α ∈ D1(B2m). By the coarea formula, it follows that
ˆ
B2m

dα ∧ v∗(φε,k volX) =
ˆ
X
φε,k(z)

( ˆ
v−1(z)

dα|v−1(z)

)
d volX(z).
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Hence, by dominated convergence, we get

lim
k→+∞

ˆ
B2m

dα ∧ v∗(φε,k volX) =
 
Bε(z)

( ˆ
v−1(z)

dα|v−1(z)

)
d volX(z).

Since z is a Lebesgue point for f , we obtain

lim
ε→0+

lim
k→+∞

ˆ
B2m

dα ∧ v∗(φε,k volX) =
ˆ
v−1(z)

dα|v−1(z) =: ⟨[v−1(z)], dα⟩ (2.5.1)

Moreover, since v is such that d
(
v∗ volX) = 0 distributionally on B2m and by the upper bound

on φε,k, it holds that∣∣∣∣ˆ
B2m

dα ∧ v∗(φε,k volX)
∣∣∣∣ = ∣∣∣∣ˆ

B2m

v∗φε,k
(
dα ∧ v∗ volX

)∣∣∣∣
⩽

1

volX(Bε(z))

∣∣∣∣ˆ
B2m

dα ∧ v∗ volX
∣∣∣∣ = 0, (2.5.2)

for every ε ∈ (0, ρ0) and k ∈ N.
By (2.5.1) and (2.5.2) we get that

〈
[v−1(x)], dα

〉
= 0 and, by arbitrariness of α ∈ D1(B2m), it

follows that ∂[v−1(x)] = 0 in the sense of currents. The statement follows.

Lemma 2.5.2. Let v ∈ W 1,2(B2m, X) be a weakly (J, JX)-holomorphic map such that we have
v∗ volX ∈ L1(B2m) and d(v∗ volX) = 0 in D′(B2m). Then, there exist a representative of u and a
full measure set RegVal(v) ⊂ X such that:

1. the coarea formula holds for v;
2. for every z ∈ RegVal(u), the level set v−1(z) is a closed J-holomorphic curve in B2m.

Proof. By Lemma 2.5.1, it follows immediately that there exists a representative of v such that
the coarea formula holds and, for such a representative, v−1(z) is an H 2-rectifiable subset of
B2m with ∂[v−1(z)] = 0, for volX -a.e. z ∈ X. Thus, we are just left to show that v−1(z) is
J-holomorphic, for a.e. z ∈ X. By the coarea formula and since v is weakly (J, JX)-holomorphic,
for volX -a.e. z ∈ X the form v∗ volX is non-vanishing on v−1(z) and dv(Jw) = JXdv(w) for every
w ∈ R2m, up to some H 2-negligible set. For such z ∈ X, the orienting vector field to v−1(z) is
given by

Σ⃗ :=
∗v∗ volX
|v∗ volX |g

.

We claim that Σ⃗ is J-invariant for H 2-a.e. x ∈ v−1(z). Indeed, given any x ∈ v−1(z) such
that (v∗ volX)x ̸= 0, we pick an orthonormal basis {ξ1, JXξ1, ..., ξm−1, JXξm−1} of T ∗

v(x)X and we
notice that

(v∗ volX)x =
1

(m− 1)!
v∗(ξ1 ∧ JXξ1 ∧ ... ∧ ξm−1 ∧ JXξm−1)

=
1

(m− 1)!
v∗ξ1 ∧ v∗JXξ1 ∧ ... ∧ v∗ξm−1 ∧ v∗JXξm−1

=
1

(m− 1)!
v∗ξ1 ∧ J(v∗ξ1) ∧ ... ∧ v∗ξm−1 ∧ J(v∗ξm−1).

This clearly implies that Σ⃗ is J-invariant and the statement follows.
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In the following lemma, which generalises the model situation presented in Lemma 2.5.2, we will
adopt the notation developed in Appendix 2.A Moreover, we will denote by X the product space
X := CP1 × CPm−2 and by p1 : X → CP1 and p2 : X → CPm−2 the canonical projections on
the first and on the second factor respectively. We will endow X with the complex structure
JX := p∗1j1 + p∗2jm−2 and with symplectic form ωX := p∗1ωCP1 + p∗2ωCPm−2 in order to obtain the
Kähler manifold (X, JX , ωX).

Lemma 2.5.3. Let m,n ∈ N0 be such that m ⩾ 3. Let u ∈ W 1,2(B2m,CPn) be weakly (J, jn)-
holomorphic and locally approximable. If n ⩾ 2, then for a.e. (q1, ..., qn−1, p) ∈ CPn × CPn−1 ×
...×CP2×CPm−1 the map vq1,...,qn−1,p :=

(
Fqn−1 ◦ ...◦Fq1 ◦u, Fp ◦π

)
: B2m → X has the following

properties:
(1) vq1,...,qn−1,p ∈W 1,2(B2m, X);
(2) v∗q1,...,qn−1,p volX ∈ L1(B2m);
(3) there exists a set RegVal(vq1,...,qn−1,p) ⊂ X such that

volX
(
(X ∖ RegVal(vq1,...,qn−1,p)

)
= 0

and for every (y, z) ∈ RegVal(vq1,...,qn−1,p) the H 2-rectifiable set v−1
q1,...,qn−1,p(y, z) is a closed

almost J-holomorphic curve in B2m, in the sense of Definition 2.4.2. Moreover, the constants
ℓ > 0 and γ ∈ (0, 1] can be chosen as ℓ = 2

√
2Lip(Ω) and γ = 1/2.

If n = 1, analogous properties hold for the map vp := (u, Fp ◦ π) : B2m → X and for a.e.
p ∈ CPm−1.

Proof. Since the techniques are identical both in the case n = 1 and n ⩾ 2, we just focus on the
second one.
Let Y := CPn × ... × CP2. First, we want to prove (1). By Lemma 2.A.1, we know that
p2 ◦ vq1,...,qn−1,p belongs to W 1,2(B2m,CPm−2), for every p ∈ CPm−1. We claim that the map

p1 ◦ v11,...,qn−1,p = Fqn−1 ◦ ... ◦ Fq1 ◦ u

belongs toW 1,2(B2m,CP1) for a.e. (q1, ..., qn−1) ∈ Y . Indeed, notice that the map Fqn−1◦...◦Fq1◦u
is weakly (J, j1)-holomorphic, for every (q1, ..., qn−1) ∈ Y . Thus, by Corollary 2.2.1 we have that

ˆ
B2m

|d(Fqn−1 ◦ ... ◦ Fq1 ◦ u)|2g d volg

= 2

ˆ
B2m

(Fqn−1 ◦ ... ◦ Fq1 ◦ u)∗ωCP1 ∧
Ωm−1

(m− 1)!
.

Hence, by Lemma 2.A.2 we obtain
ˆ
B2m

φ

( ˆ
Y
|d(Fqn−1 ◦ ... ◦ Fq1 ◦ u)|2g d volY (q1, ..., qn−1)

)
d volg

= 2

ˆ
B2m

φ

(ˆ
Y
(Fqn−1 ◦ ... ◦ Fq1 ◦ u)∗ωCP1 d volY (q1, ..., qn−1)

)
∧ Ωm−1

(m− 1)!

= 2D

ˆ
B2m

φu∗ωCPn ∧ Ωm−1

(m− 1)!
= D

ˆ
B2m

φ|du|2g d volg < +∞,

40



where D := Bn+1 · ... · B3 (be careful to the bad notation, the letter “B” in the definition of the
constant D refers to the constants that are determined by Lemma 2.A.2), for every φ ∈ C∞

c (B2m).
Thus, we get that

ˆ
Y
|d(Fqn−1 ◦ ... ◦ Fq1 ◦ u)|2g d volY (q1, ..., qn−1) = D|du|2g, (2.5.3)

for a.e. x ∈ B2m. By integrating both sides of (2.5.3) on B2m and by Fubini’s theorem, we get
ˆ
B2m

( ˆ
Y
|d(Fqn−1 ◦ ... ◦ Fq1 ◦ u)|2g d volY (q1, ..., qn−1)

)
dL2m

=

ˆ
Y

(ˆ
B2m

|d(Fqn−1 ◦ ... ◦ Fq1 ◦ u)|2g d volg
)
d volY (q1, ..., qn−1)

= D

ˆ
B2m

|du|2g d volg < +∞. (2.5.4)

Since (2.5.4) directly implies that
ˆ
B2m

|d(Fqn−1 ◦ ... ◦ Fq1 ◦ u)|2g d volg < +∞

for volY -a.e. (q1, ..., qn−1) ∈ Y , point (1) follows.
Next, we turn to show (2). By (2.5.3), Lemma 2.A.2, (2.2.1), (2.A.1) and by Fubini’s theorem,
we have ˆ

Y

(ˆ
B2m

∣∣v∗q1,...,qn−1,p volX
∣∣
g
d volg

)
d volY×CPm−1(q1, ..., qn−1, p)

⩽
ˆ
B2m

( ˆ
Y

∣∣d(Fqn−1 ◦ ... ◦ Fq1 ◦ u)
∣∣2
g
d volY×CPm−1(q1, ..., qn−1, p)

)
· |d(Fp ◦ π)|2m−4

g d volg

= DGm−2

ˆ
B2m

|du|2g · |d(Fp ◦ π)|2m−4 d volg

⩽ DGm−2

ˆ
B2m

|du|2g
dist( · , Lp)2m−4

d volg, (2.5.5)

where Lp is defined as in Appendix A. For any ρ ∈ (0, 1), define Lρp := (Lp +Bρ) ∩ B2m. By the
almost monotonicity formula (2.2.3), we get that

ˆ
Lρ
p∖L

ρ/2
p

|du|2g
dist( · , Lp)2m−4

d volg ⩽
22m−4

ρ2m−4

ˆ
Bρ

|du|2g d volg

⩽ 22m−2 e
Aρ(1 +Aρ)

ρ2m−2

ˆ
Bρ

|du|2g d volg
ρ2

4

⩽

(
22m−2eA(1 +A)

ˆ
B2m

|du|2g d volg
)
ρ2

4
,

for every ρ ∈ (0, 1). By iteration (see also the proof of Lemma 2.4.2) we get
ˆ
Lρ
p

|du|2g
dist( · , Lp)2m−4

d volg ⩽
22meA(1 +A)

3

(ˆ
B2m

|du|2g d volg
)
ρ2. (2.5.6)
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Combining (2.5.5) and (2.5.6), we obtain

ˆ
Y×CPm−1

( ˆ
B

∣∣v∗q1,...,qn−1,p volX
∣∣
g
d volg

)
d volY×CPm−1(q1, ..., qn−1, p)

⩽ C

ˆ
B2m

|du|2g d volg <∞, (2.5.7)

where C > 0 is a constant depending on m, n and Lip(Ω). Again, point (2) follows by Fubini’s
theorem.
We are left to prove (3). First, we claim that for a.e. (q1, ..., qn−1, p) ∈ Y × CPm−1 it holds that
d
(
v∗q1,...,qn−1,p volX) = 0 in the sense of distributions. Indeed, we already know that for volY -a.e.

(q1, ..., qn−1) ∈ Y the estimate (2.5.4) holds. Fix any α ∈ D1(B2m). Notice that by estimates
(2.5.4) and (2.5.6) we obtain∣∣∣∣ ˆ

B2m

v∗q1,...,qn−1,p volX ∧dα
∣∣∣∣ ⩽ C|dα|∗

ˆ
Lρ
p

|du|2g
dist( ·Lp)2m−4

d volg

⩽ C|dα|∗
(ˆ

B2m

|du|2g d volg
)
ρ2, ∀ ρ ∈ (0, 1),

where C > 0 is a constant depending only on m, n and Lip(Ω). By letting ρ→ 0+, we get

ˆ
Y×CPm−1

∣∣∣∣ ˆ
B
v∗q1,...,qn−1,p volX ∧dα

∣∣∣∣ d volY×CPm−1(q1, ..., qn−1, p) = 0.

By arbitrariness of α ∈ D1(B2m), our claim follows.
Let E ⊂ Y × CPm−1 be the set of all the n-tuples (q1, ..., qn−1, p) ∈ Y × CPm−1 such that

1. (1) and (2) hold;
2. d

(
v∗q1,...,qn−1,p volX) = 0 in the sense of distributions.

By what we have shown so far, we have volY×CPm−1(Ec) = 0. Fix any (q1, ..., qn−1, p) ∈ E. We
fix the representative of the map vq1,...,qn−1,p given by Lemma 2.5.1. Thus, we know that the
following facts hold for volX -a.e. (y, z) ∈ X:

1. the set v−1
q1,...,qn−1,p(y, z) is H 2-rectifiable;

2. (v∗q1,...,qn−1,p volX)x ̸= 0, for H 2-a.e. x ∈ v−1
q1,...,qn−1,p(y, z) and the rectifiable set v−1

q1,...,qn−1,p(y, z)

is oriented by the H 2-measurable and unitary field 2-vectors given by:

Σ⃗ :=

(
∗ (v∗q1,...,qn−1,p volX)

)♯∣∣v∗q1,...,qn−1,p volX
∣∣
g

3. ∂[v−1
q1,...,qn−1,p(y, z)] = 0.

Hence, we just need to show that v−1
q1,...,qn−1,p(y, z) is almost J-holomorphic according to Definition

2.4.2, i.e. we claim that there exists some J-invariant and H 2-measurable field of g-unitary 2-
vectors Σ⃗J : v−1

q1,...,qn−1,p(y, z) → ∧2R2m such that∣∣Σ⃗− Σ⃗J
∣∣ ⩽ ℓ| · |γ , (2.5.8)

42



for some ℓ > 0 and γ ∈ (0, 1]. In order to prove our claim, consider the following H 2-measurable
and g-unitary fields respectively of 2-vectors and 4-vectors on v−1

q1,...,qn−1,p(y, z):

Σ⃗1 :=
(p1 ◦ vq1,...,qn−1,p)

∗ωCP1

)♯∣∣(p1 ◦ vq1,...,qn−1,p)
∗ωCP1

∣∣
g

Σ⃗2 :=

(
∗ (p2 ◦ vq1,...,qn−1,p)

∗ volCPm−2

)♯∣∣(p2 ◦ vq1,...,qn−1,p)
∗ volCPm−2

∣∣
g

=

(
∗ (Fp ◦ π)∗ volCPm−2

)♯∣∣(Fp ◦ π)∗ volCPm−2

∣∣
g

.

Notice that such fields are both well defined H 2-a.e. on v−1
q1,...,qn−1,p(y, z), since

(v∗q1,...,qn−1,p volX)x ̸= 0

for H 2-a.e. x ∈ v−1
q1,...,qn−1,p(y, z). Fix x ∈ v−1

q1,...,qn−1,p(y, z) such that (v∗q1,...,qn−1,p volX)x ̸= 0,
so that the subspace W1 := span{Σ⃗1(x)} is a J-holomorphic 2-plane and W2 := span{Σ⃗2(x)}
is a J0-holomorphic 4-plane. Let W := span{Σ⃗(x)} and notice that we have W = W1 ∩ W2,
W2 = (W⊥

1 ∩W2)⊕W and dim(W ) = 2. Moreover,

4 = dim(W2) = dim(W⊥
1 ∩W2) + dim(W ) = dim(W⊥

1 ∩W2) + 2,

which implies dim(W⊥
1 ∩W2) = 2. We let {e1, e3} be an g-orthonormal basis of W and let {v, w}

be an g-orthonormal basis of W⊥
1 ∩W2. By construction, {e1, e3, v, w} is an Ω0-orthonormal basis

of W2 and we can write

Σ⃗2(x) := e1 ∧ e3 ∧ v ∧ w.

If Σ⃗2(x) is J-invariant, we set Σ⃗2
J(x) := Σ⃗2(x).

If not, notice that {e1, Je1, e3, Je3, v − Je1, w − Je3} is a linearly independent set. Let e2, e4 be
the unique unitary vectors such that {e1, Je1, e3, Je3, e2, e4} is an g-orthonormal set such that

span{e1, Je1, e3, Je3, v − Je1, w − Je3} = span{e1, Je1, e3, Je3, e2, e4}.

Exactly as in the proof of Lemma 2.4.1, it follows that there exist two angles ϕ1, ϕ2 ∈ [0, 2π] such
that

Σ⃗2(x) := e1 ∧ (cosϕ1Je1 + sinϕ1e2) ∧ e3 ∧ (cosϕ2Je3 + sinϕ2e4).

The same computation as in Lemma 2.4.1 leads to

1− Lip(Ω)|x| ⩽ cosϕ1 cosϕ2 ⩽ 1 + Lip(Ω)|x|.

We set

Σ2
J(x) = e1 ∧ cosϕ1Je1 ∧ e3 ∧ cosϕ2Je3

and we compute ∣∣Σ⃗2(x)− Σ⃗2
J(x)

∣∣2
g
= (1− cosϕ1 cosϕ2)

2 + sin2 ϕ1

= 1 + cos2 ϕ2 − 2 cosϕ1 cosϕ2
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⩽ 2(1− cosϕ1 cosϕ2) ⩽ 2Lip(Ω)|x|,

which leads to ∣∣Σ⃗2(x)− Σ⃗2
J(x)

∣∣
g
⩽
√
2Lip(Ω)|x|1/2. (2.5.9)

Eventually, we define

Σ⃗J := ∗
(
Σ⃗1 ∧ ∗Σ⃗2

J

)
.

By construction, Σ⃗J is an H 2-measurable and unitary field of 2-vectors on v−1
q1,...,qn−1,p(y, z).

Moreover, by (2.5.9), we have∣∣Σ⃗1 ∧ ∗Σ⃗2
∣∣
g
=
∣∣Σ⃗1 ∧ ∗(Σ⃗2 − Σ⃗2

J) + Σ⃗1 ∧ ∗Σ⃗2
J

∣∣
g

⩾
∣∣Σ⃗1 ∧ ∗Σ⃗2

J |g −
∣∣Σ⃗1 ∧ ∗(Σ⃗2 − Σ⃗2

J)|g
⩾ 1−

∣∣Σ⃗2 − Σ⃗2
J

∣∣
g
⩾ 1−

√
2Lip(Ω)| · |1/2,

which leads to

∣∣Σ⃗− Σ⃗J
∣∣ ⩽ G

∣∣Σ⃗− Σ⃗J
∣∣
g
= G

∣∣∣∣ Σ⃗1 ∧ ∗Σ⃗2∣∣Σ⃗1 ∧ ∗Σ⃗2
∣∣ − Σ⃗1 ∧ ∗Σ⃗2

J

∣∣∣∣
g

⩽ 2
√
2Lip(Ω)G| · |1/2.

Hence, (2.5.8) holds with ℓ = 2
√
2Lip(Ω)G and γ = 1/2. The statement follows.

2.6. Proof of the main theorem

This section is entirely devoted to proof Theorems 2.1.1 and 2.1.2, whose local versions will be
recalled now for the reader’s convenience.

Theorem. Let m,n ∈ N0 be such that m ⩾ 2. Assume that u ∈ W 1,2(B2m,CPn) is weakly
(J, jn)-holomorphic and locally approximable.
Then, u has a unique tangent map at the origin.

Theorem. Let m,n ∈ N0 be such that m ⩾ 2. Assume that u ∈ W 1,2(B2m,CPn) is weakly
(J, jn)-holomorphic and locally approximable.
Then, the (2m− 2)-cycle Tu ∈ D2m−2(B2m) has a unique tangent cone at the origin.

In the first two subsections, we treat the proof of Theorem 2.1.2. We will first address the easy
case m = 2, n = 1 in Section 2.6.1, in order to clarify which will be the main ideas in order
to proceed towards higher dimensions and codimensions. The general case will be discussed in
Section 2.6.2. Lastly, in Section 2.6.3 we will show how Theorem 2.1.1 can be obtained as a
consequence of Theorem 2.1.2.
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2.6.1. A model problem

Let u ∈ W 1,2(B4,CP1) be weakly (J, j1)-holomorphic and locally approximable. As usual, π :

B4 → CP1 denotes the Hopf map.
If θ(0, u) < ε0, then u is smooth in a neeighbourhood of 0 by Theorem 2.3.1 and the statement
follows. Assume then that θ(0, u) ⩾ ε0.
We use the same notations and labeling for the constants as in Sections 2.4 and 2.5. Since
u∗ωCP1 ∈ L1(B4), by using Lemma 2.5.2 with X = CP1, we get that there exists a representative
of u and a full measure set RegVal(u) ⊂ CP1 such that:

1. the coarea formula holds for u;
2. for every y ∈ RegVal(u), the level set u−1(y) is a closed J-holomorphic curve.

Hence, all the estimates in Section 2.4 will be used assuming Σ⃗J = Σ⃗, ℓ = 0 and γ = 1, as we
stressed out in Remark 2.4.2.
For every k ∈ N0, we consider the set Ek ⊂ CP1 given by all the points y in RegVal(u) such that
(1) H 2(u−1(y) ∩B2−k) <

(
(eA(1 +A)

)−1;

(2)
ˆ
u−1(y)∩B

2−k

|∧2dπ(Σ⃗
y
0)| dH

2 <
δ′

2
,

where δ′ > 0 is the constant introduced in Section 2.4.2 and Σ⃗y0 is built as shown in Lemma 2.4.1
starting from the J-holomorphic field of 2-vectors given by

Σ⃗y :=
∗(u∗ωCP1)♯

|u∗ωCP1 |g
,

which orients the closed J-holomorphic curve u−1(y) for every y ∈ RegVal(u). We notice that
Ek−1 ⊂ Ek for every k ∈ N0. Moreover, since RegVal(u) ⊂ CP1 has full measure in CP1, we get

volCP1

(
CP1 ∖

+∞⋃
k=1

Ek

)
= 0

For every k ∈ N0, we define the localized current Tk := Tu u−1(Ek), i.e.

⟨Tk, α⟩ :=
ˆ
u−1(Ek)

u∗ωCP1 ∧ α ∀α ∈ D2(B4).

Claim. We claim that every Tk has a unique tangent cone at the origin. First, notice that Tk
is a normal 2-cycle on B4 semicalibrated by Ω. By definition of Ek and by Proposition 2.4.1, for
every y ∈ Ek we get that

eAρ(1 +Aρ)
H 2

(
u−1(y) ∩Bρ

)
ρ2

− eAσ(1 +Aσ)
H 2

(
u−1(y) ∩Bσ

)
σ2

⩾
ˆ
u−1(y)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
〉
dH 2

and

e−Aρ(1−Aρ)
H 2

(
u−1(y) ∩Bρ

)
ρ2

− e−Aσ(1−Aσ)
H 2

(
u−1(y) ∩Bσ

)
σ2
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⩽
ˆ
u−1(y)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
J

〉
dH 2,

for every 0 < σ < ρ < 1. Since a direct computation leads to

M(Tk Bρ)

ρ2
=

1

ρ2

ˆ
Ek

H 2
(
u−1(y) ∩Bρ

)
d volCP1(y),

by integrating on Ek the two previous inequalities we get the following almost monotonicity
formulas for the current Tk:

eAρ(1 +Aρ)
M(Tk Bρ)

ρ2
− eAσ(1 +Aσ)

M(Tk Bσ)

σ2

⩾
ˆ
Ek

(ˆ
u−1(y)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
〉
dH 2

)
d volCP1(y), (2.6.1)

e−Aρ(1−Aρ)
M(Tk Bρ)

ρ2
− e−Aσ(1−Aσ)

M(Tk Bσ)

σ2

⩽
ˆ
Ek

(ˆ
u−1(y)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
〉
dH 2

)
d volCP1(y), (2.6.2)

for every 0 < σ < ρ < 1. Equation (2.6.1) immediately implies that function

(0, 1) ∋ ρ 7→ eAρ(1 +Aρ)
M(Tk Bρ)

ρ2

is monotonically non-decreasing. Thus, the density of the current Tk at zero, which is given by

θ(Tk, 0) := lim
ρ→0+

M(Tk Bρ)

ρ2
= lim

ρ→0+
eAρ(1 +Aρ)

M(Tk Bρ)

ρ2

exists and is finite. Moreover, by (2.6.2), the coarea formula, (2.4.17) and the estimate (2.4.8), it
follows that∣∣∣∣M(Tk Bρ)

ρ2
− θ(0, Tk)

∣∣∣∣
⩽ C

∣∣∣∣ˆ
u−1(Ek)∩Bρ

u∗ωCP1 ∧
Ωt
| · |2

∣∣∣∣
⩽ C

∣∣∣∣ˆ
u−1(Ek)∩Bρ

u∗ωCP1 ∧ π∗ωCP1

∣∣∣∣+ C

∣∣∣∣ˆ
u−1(Ej)∩Bρ

u∗ωCP1 ∧
(Ω− Ω0)t

| · |2

∣∣∣∣
⩽ C

ˆ
Ek

∣∣∣∣ˆ
u−1(y)∩Bρ

π∗ωCP1

∣∣∣∣ d volCP1(y)

+ C

ˆ
Ek

ˆ
u−1(y)∩Bρ

|Ω− Ω0|
| · |2

dH 2 d volCP1(y)

⩽ C volCP1(CP1)ρα + C

ˆ
Ek

ˆ
u−1(y)∩Bρ

1

| · |
dH 2 d volCP1(y)

⩽ C volCP1(CP1)ρα + C volCP1(CP1)ρ ⩽ C volCP1(CP1)ρα, (2.6.3)
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for every ρ ∈ (0, r̃), where the constant C > 0 and α, r̃ ∈ (0, 1) all depend just on k and on
Lip(Ω). From the Morrey decay (2.6.3), uniqueness of tangent cone for Tk follows by standard
arguments.
Conclusion. For every j ∈ N0, consider the residual current Rj := Tu − Tj . By the same
arguments that we have used in the proof of the previous claim, we conclude that Rj is a normal
2-cycle in B4 which is semicalibrated by Ω. In particular, the quantity

eAρ(1 +Aρ)
M(Rj Bρ)

ρ2
(2.6.4)

is non-decreasing in ρ ∈ (0, 1). Therefore, the limit as ρ → 0+ of the quantity (2.6.4) exists and
it is finite. Then, since the quantity (2.6.4) is also non-increasing in j ∈ N and going to 0 as
j → +∞, we are allowed to exchange the limits in the following chain of equalities and we get

lim
j→+∞

lim
ρ→0+

M(Rj Bρ)

ρ2
= lim

j→+∞
lim
ρ→0+

eAρ(1 +Aρ)
M(Rj Bρ)

ρ2

= lim
ρ→0+

eAρ(1 +Aρ) lim
j→+∞

M(Rj Bρ)

ρ2
= 0. (2.6.5)

Fix any ε > 0. By (2.6.5), we can pick j ∈ N0 sufficiently large so that

lim
ρ→0+

M(Rj Bρ)

ρ2
<
ε

2
. (2.6.6)

Now assume that {ρk}k∈N ⊂ (0, 1) and {ρ′k}k∈N ⊂ (0, 1) are two sequences converging to 0 as
k → +∞ and both

(Φρk)∗Tu ⇀ C∞,

(Φρ′k)∗Tu ⇀ C ′
∞,

where for every ρ ∈ (0, 1) the map Φρ is defined as in subsection 1.2. By further extracting
subsequences if needed, we assume also that the sequences {(Φρk)∗Tj}k∈N and {(Φρ′k)∗Tj}k∈N
converge weakly in the sense of currents. By our previous claim, they converge to the same limit
and then we have

C ′
∞ − C∞ = lim

k→+∞

(
(Φρ′k)∗Rj − (Φρk)∗Rj

)
+ lim
k→+∞

(Φρ′k)∗Tj

− lim
k→+∞

(Φρk)∗Tj

= lim
k→+∞

(
(Φρ′k)∗Rj − (Φρk)∗Rj

)
,

in the sense of currents. By sequential lower semicontinuity of mass with the respect to weak
convergence of currents, and by (2.6.6), we eventually get

M(C ′
∞ − C∞) ⩽ lim inf

k→+∞
M
(
(Φρ′k)∗Rj − (Φρk)∗Rj

)
⩽ lim inf

k→+∞
M
(
(Φρ′k)∗Rj

)
+ lim inf

k→+∞
M
(
(Φρk)∗Rj

)
= lim

k→+∞

M
(
Rj Bρ′k

)
(ρ′k)

2
+ lim
k→+∞

M
(
Rj Bρk

)
ρ2k

< ε.

By arbitrariness of ε > 0, we obtain that M(C ′
∞ − C∞) = 0 and the conclusion follows.
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2.6.2. The general case

Let m,n ∈ N0 be such that m ⩾ 3. Let u ∈ W 1,2(B2m,CPn) be weakly (J, jn)-holomorphic and
locally approximable. As usual, π : B2m → CPm−1 denotes the Hopf map.
If θ(0, u) < ε0, then u is smooth in a neeighbourhood of 0 by Theorem 2.3.1 and the statement
follows. Assume then that θ(0, u) ⩾ ε0. Moreover, since the case n = 1 can be done exactly using
the same method, we just focus on the case n ⩾ 2.
Let T ∈ D2(B2m) be the 2-current given by

⟨T, α⟩ := 1

(m− 2)!

ˆ
B2m

u∗ωCPn ∧ π∗ωm−2
CPm−1 ∧ α ∀α ∈ D2(B2m).

Notice that T is well-defined and normal, since

|⟨T, α⟩| ⩽ 1

(m− 2)!
|α|∗

ˆ
B2m

|du|2g|∧2dπ|2m−4
g d volg

⩽ C
1

(m− 2)!
|α|∗

ˆ
B2m

|du|2g
| · |2m−4

d volg

⩽ C
1

(m− 2)!
|α|∗

ˆ
B2m

|du|2g d volg < +∞, ∀α ∈ D2(B2m),

where C = C
(
Lip(Ω)

)
> 0 is a constant and the last inequality follows from (2.2.3) exactly in the

same way as estimate (2.5.6). Let Y := CPn× ...×CP2×CPm−1 and X := CP1×CPm−2. Notice
that by Lemma 2.A.2, Fubini’s theorem, Lemma 2.5.3 and the coarea formula, we can write the
action of T as

⟨T, α⟩ = 1

(m− 2)!

ˆ
Y

(ˆ
B2m

v∗y volX ∧α
)
d volY (y)

=
1

(m− 2)!

ˆ
Y

ˆ
X

(ˆ
v−1
y (z)

〈
α, Σ⃗y

〉
dH 2

)
d volX(z) d volY (y),

for every α ∈ D2(B2m), where y := (q1, ..., qn−1, p) ∈ Y is any point in Y such that (1), (2) and
(3) of Lemma 2.5.3 hold, vy := vq1,...,qn−1,p and

Σ⃗y :=

(
∗ (v∗y volX)

)♯
|v∗y volX |g

,

following the notation that is used in Lemma 2.5.3, is the g-unitary field of 2 vectors orienting
v−1
y (z), for every z ∈ RegVal(vy) ⊂ X. We define the “tilted current” TJ ∈ D2(B2m) by

⟨TJ , α⟩ =
1

(m− 2)!

ˆ
Y

ˆ
X

( ˆ
v−1
y (z)

〈
α, Σ⃗yJ

〉
dH 2

)
d volX(z) d volY (y),

for every α ∈ D2(B2m), where Σ⃗yJ is the J-holomorphic field of 2-vectors that we have built in
the proof of Lemma 2.5.3.
Step 1. We want to show that that TJ has a unique tangent cone at the origin. First, for every
k ∈ N we define the set Ek ⊂ Y ×X given by

1. points (1), (2) and (3) in Lemma 2.5.3 hold for the map vy and the level set v−1
y (z);
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2. H 2
(
v−1
y (z) ∩B2−k

)
<
(
eA+2ℓ(1 +A)

)−1;

3.
ˆ
v−1
y (z)∩B

2−k

|∧2dπ(Σ⃗
y
0)| dH

2 <
δ′

2
,

where we are using the notation of subsection 3.2 and ℓ = ℓ
(
Lip(Ω)

)
> 0 is the constant provided

in Lemma 2.5.3. Notice that, by Lemma 2.5.3, Lemma 2.4.2 and Fubini’s theorem, it holds that

volY×X

(
Y ×X ∖

⋃
k∈N

Ek

)
.

Fix any k ∈ N. Define the truncated current T kJ ∈ D2(B2m) by〈
T kJ , α

〉
=

ˆ
Ek

( ˆ
v−1
y (z)

〈
α, Σ⃗yJ

〉
dH 2

)
d volY×X(y, z), ∀α ∈ D2(B2m).

Notice that, by Proposition 2.4.1 and by definition of Ek, for every (y, z) ∈ Ek it holds that

eAρ+ℓρ
1/2

(1 +Aρ)
H 2

(
v−1
y (z) ∩Bρ

)
ρ2

− eAσ+ℓσ
1/2

(1 +Aσ)
H 2

(
v−1
y (z) ∩Bσ

)
σ2

⩾
ˆ
v−1
y (z)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
J

〉
dH 2

and

e−(Aρ+ℓρ1/2)(1−Aρ)
H 2

(
v−1
y (z) ∩Bρ

)
ρ2

− e−(Aσ+ℓσ1/2)(1−Aσ)
H 2

(
v−1
y (z) ∩Bσ

)
σ2

⩽
ˆ
v−1
y (z)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
J

〉
dH 2,

for every 0 < σ < ρ < 1. Since a direct computation leads to

M(TJ Bρ)

ρ2
=

1

ρ2

ˆ
Ek

H 2
(
v−1
y (z) ∩Bρ

)
d volY×X(y, z),

by integrating on Ek the two previous inequalities we get the following almost monotonicity
formulas for the current T kJ :

eAρ+ℓρ
1/2

(1 +Aρ)
M(T kJ Bρ)

ρ2
− eAσ+ℓσ

1/2
(1 +Aσ)

M(T kJ Bσ)

σ2

⩾
ˆ
Ek

(ˆ
v−1
y (z)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
J

〉
dH 2

)
d volY×X(y, z), (2.6.7)

e−(Aρ+ℓρ1/2)(1−Aρ)
M(T kJ Bρ)

ρ2
− e−(Aσ+ℓσ1/2)(1−Aσ)

M(T kJ Bσ)

σ2
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⩽
ˆ
Ek

(ˆ
v−1
y (z)∩(Bρ∖Bσ)

1

| · |2
〈
Ωt, Σ⃗

y
J

〉
dH 2

)
d volY×X(y, z), (2.6.8)

for every 0 < σ < ρ < 1. The inequality (2.6.7) immediately implies that the function

(0, 1) ∋ ρ 7→ eAρ+ℓρ
1/2

(1 +Aρ)
M(TJ Bρ)

ρ2

is monotonically non-decreasing. Thus, the density of T kJ at 0, given by

θ(T kJ , 0) := lim
ρ→0+

M(T kJ Bρ)

ρ2
= lim

ρ→0+
eAρ+ℓρ

1/2
(1 +Aρ)

M(T kJ Bρ)

ρ2

exists and is finite.
We claim that T kJ has a unique tangent cone at the origin, for every given k ∈ N. The fact that
TJ itself has a unique tangent cone at the origin will follow directly by the same method that is
used in the conclusion of the previous subsection. By using (2.6.8), the fact that Ω is Lipschitz,
point (3) in Lemma 2.5.3, the estimates (2.4.17) and (2.4.8), we get∣∣∣∣M(T kJ Bρ)

ρ2
− θ(T kJ , 0)

∣∣∣∣
⩽ C

ˆ
Ek

(ˆ
v−1
y (z)∩Bρ

1

| · |2
〈
Ωt, Σ⃗

y
J

〉
dH 2

)
d volY×X(y, z)

⩽ C

ˆ
Ej

ˆ
v−1
y (z)∩Bρ

|Ω− Ω0|
| · |2

dH 2 d volY×X(y, z)

+ C

ˆ
Ej

∣∣∣∣ ˆ
v−1
y (z)∩Bρ

|Σ⃗y − Σ⃗yJ |
| · |2

dH 2

∣∣∣∣ d volY×X(y, z)

+ C

ˆ
Ej

∣∣∣∣ ˆ
v−1
y (z)∩Bρ

π∗ωCPm−1 |Σy dH 2

∣∣∣∣ d volY×X(y, z)

⩽ C volY×X(Y ×X)ρα,

for every ρ ∈ (0, r̃), where the constant C > 0 and α, r̃ ∈ (0, 1) all depend just on k and on Lip(Ω).
The fact that T kJ has a unique tangent cone at the origin than follows by standard arguments and
step 1 is proved, due to the arbitrariness of k ∈ N.
Step 2. We claim T has a unique tangent cone at the origin. A direct computation using the
estimate in point (3) of Lemma 2.5.3 leads to

M
(
(T − TJ) Bρ

)
⩽
ˆ
Y

ˆ
X

ˆ
v−1
y (z)∩Bρ

| · |1/2 dH 2 d volX(z) volY (y).

Hence,

M
(
(T − TJ) Bρ

)
ρ2

⩽
ˆ
Y

ˆ
X

ˆ
v−1
y (z)∩Bρ

1

| · |3/2
dH 2 d volX(z) volY (y). (2.6.9)

By (2.4.8) (recall that γ = 1/2)), we get
ˆ
v−1
y (z)∩Bρ

1

| · |3/2
dH 2 ⩽ CH 2(v−1

y (z))ρ1/2,
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for every ρ ∈ (0, 1) and for volY×X -a.e. (y, z) ∈ Y ×X. By integrating the previous equality on
Y ×X, (2.6.9) and (2.5.7), we get that

M
(
(T − TJ) Bρ

)
ρ2

⩽ C

(ˆ
Y

ˆ
B2m

|v∗y volX |g d volg
)
ρ1/2

⩽ C

(ˆ
B2m

|du|2g d volg
)
ρ1/2,

where C > 0 is a constant depending only on m, n and Lip(Ω). This implies that the density of
T − TJ at 0, given by

θ(T − TJ , 0) := lim
ρ→0+

M
(
(T − TJ) Bρ

)
ρ2

= 0

and there is a Morrey decrease of the mass ratio to the limiting density zero. Thus, T − TJ has
a unique tangent cone at the origin. Since by step 1 we know that TJ has a unique tangent cone
at the origin and T = TJ + (T − TJ), our claim follows.
Conclusion. Notice that T = (m − 2)!Tu π∗ωm−2

CPm−1 and recall that π∗ωm−2
CPm−1 is invariant

under Φ∗
ρ. We address the reader to [54, Section 7.2] for the definition of the standard operations

" " and "∧" when the arguments are a current and a form. Pick any two sequences of radii
{ρk}k∈N ⊂ (0, 1) and {ρ′k}k∈N ⊂ (0, 1) such that ρk, ρ′k → 0+ as k → +∞ and

(Φρk)∗Tu ⇀ C∞,

(Φρ′k)∗Tu ⇀ C ′
∞.

Since

⟨(Φρ)∗T, α⟩ = ⟨T, (Φρ)∗α⟩ = (m− 2)!
〈
Tu π∗ωm−2

CPm−1 , (Φρ)
∗α
〉

= (m− 2)!
〈
Tu, π

∗ωm−2
CPm−1 ∧ (Φρ)

∗α
〉

= (m− 2)!
〈
Tu, (Φρ)

∗(π∗ωm−2
CPm−1 ∧ α)

〉
= (m− 2)!

〈
(Φρ)∗Tu, π

∗ωm−2
CPm−1 ∧ α

〉
,

for every α ∈ D2(B2m) and for every ρ ∈ (0, 1), we get that

(Φρk)∗T ⇀ (m− 2)!C∞ π∗ωm−2
CPm−1

(Φρ′k)∗T ⇀ (m− 2)!C ′
∞ π∗ωm−2

CPm−1 .

Since the tangent cone to T at the origin is unique, we conclude that

C∞ π∗ωm−2
CPm−1 = C ′

∞ π∗ωm−2
CPm−1 ,

which implies (
C∞ π∗ωm−2

CPm−1

)
∧ π∗ωm−2

CPm−1 =
(
C ′
∞ π∗ωm−2

CPm−1

)
∧ π∗ωm−2

CPm−1 . (2.6.10)

Notice that

C∞ =
(
C∞ π∗ωm−2

CPm−1

)
∧ π∗ωm−2

CPm−1 +
(
C∞ ∧ π∗ωm−2

CPm−1

)
π∗ωm−2

CPm−1 ,
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C ′
∞ =

(
C ′
∞ π∗ωm−2

CPm−1

)
∧ π∗ωm−2

CPm−1 +
(
C ′
∞ ∧ π∗ωm−2

CPm−1

)
π∗ωm−2

CPm−1 .

Since m ⩾ 3 we have, by dimensional considerations, that

π∗
((
C∞ ∧ π∗ωm−2

CPm−1

)
π∗ωm−2

CPm−1

)
= 0, (2.6.11)

π∗
((
C ′
∞ ∧ π∗ωm−2

CPm−1

)
π∗ωm−2

CPm−1

)
= 0. (2.6.12)

Thus, by (2.6.10), (2.6.11) and (2.6.12), we get π∗C∞ = π∗C
′
∞. Since C∞ and C ′

∞ are J0-
holomorphic cones, we get C∞ = C ′

∞ and the statement of Theorem 2.1.2 follows.

2.6.3. Recovering uniqueness of tangent maps for u

The case n = 1. Let m ⩾ 3 and let u ∈ W 1,2(B2m,CP1) be weakly (J, j1)-holomorphic and
locally approximable. By the methods that we have introduced in the previous subsection, it
follows that uniqueness of tangent cone holds for every (2m− 2)-dimensional current Tu,ψ of the
form

⟨Tu,ψ, α⟩ :=
ˆ
B2m

u∗(ψ ωCP1) ∧ α ∀α ∈ D2m−2(B),

with ψ ∈ C∞(CP1).
Pick any two sequences of radii {ρk}k∈N ⊂ (0, 1) and {ρ′k}k∈N ⊂ (0, 1) such that ρk, ρ′k → 0+ as
k → +∞ and

uρk ⇀ u∞,

uρ′k ⇀ u′∞,

weakly in W 1,2(B2m,CP1). By uniqueness of tangent cone for Tu,ψ we get immediately that
ˆ
B2m

u∗∞(ψ ωCP1) ∧ (φΩ0) =

ˆ
B2m

(u′∞)∗(ψ ωCP1) ∧ (φΩ0),

for every ψ ∈ C∞(CP1), φ ∈ C∞
c (B2m). As both u∞ and u′∞ are weakly (J0, j1)-holomorphic, by

the coarea formula and by Corollary 2.1 we get
ˆ
B2m

u∗∞(φωCP1) ∧ (φΩ0) =

ˆ
CP1

ψ(y)

(ˆ
B2m

φχu−1
∞ (y) dH

2m−2

)
volCP1(y)

ˆ
B2m

(u′∞)∗(φωCP1) ∧ (φΩ0) =

ˆ
CP1

ψ(y)

(ˆ
B2m

φχ(u′∞)−1(y) dH
2m−2

)
volCP1(y)

for every ψ ∈ C∞(CP1), φ ∈ C∞
c (B2m). Hence,

ˆ
CP1

ψ(y)

(ˆ
B2m

φ
(
χ
u−1
∞ (y) − χ

(u′∞)−1(y)

)
dH 2m−2

)
volCP1(y) = 0

for every ψ ∈ C∞(CP1), φ ∈ C∞
c (B2m). This implies that for volCP1-a.e. y ∈ CP1 the sets u−1

∞ (y)

and (u′∞)−1(y) coincide up to H 2m−2-negligible sets. We conclude that u∞ = u′∞ L2m-a.e. on
B2m and the statement of Theorem 2.1.1 follows.
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The case n > 1. Let m ⩾ 3, n ⩾ 2 and let u ∈ W 1,2(B2m,CPn) be weakly (J, jn)-holomorphic
and locally approximable. By the methods that we have introduced in the previous subsection, it
follows that uniqueness of tangent cone holds for every (2m − 2)-dimensional current T q1,...,qn−1

u,ψ

of the form

⟨T q1,...,qn−1

u,ψ , α⟩ :=
ˆ
B2m

(Fq1 ◦ ... ◦ Fqn−1 ◦ u)∗(ψ ωCP1) ∧ α ∀α ∈ D2m−2(B2m),

with ψ ∈ C∞(CPn) and for every choice of (q1, ..., qn−1) ∈ CP2 × ...× CPn.
Pick any two sequences of radii {ρk}k∈N ⊂ (0, 1) and {ρ′k}k∈N ⊂ (0, 1) such that ρk, ρ′k → 0+ as
k → +∞ and

uρk ⇀ u∞,

uρ′k ⇀ u′∞,

weakly in W 1,2(B2m,CP1). By using the technique that we have shown for the case n = 1, we
get that

Fq1 ◦ ... ◦ Fqn−1 ◦ u∞ = Fq1 ◦ ... ◦ Fqn−1 ◦ u′∞, L2m- a.e. on B2m,

for every choice of (q1, ..., qn−1) ∈ CP2 × ...×CPn. By using iteratively Lemma 2.A.3, we obtain
u∞ = u′∞ L2m-a.e. on B2m and the statement of Theorem 2.1.1 follows.

Remark 2.6.1. The advantage of the previous approach relies in the fact the we don’t get only
uniqueness of tangent cone for the current Tu but also for its "localizations" Tu,ψ (see the beginning
of subsection 6.3) through smooth functions ψ ∈ C∞(CPn). This allows more flexibility and we
would like to drag the attention of the reader on the fact we could exploit such flexibility in order
to get a new proof the result in [7]. Given an integer (p, p)-cycle Σ ⊂ B2m, we could consider
a weakly holomorphic and locally approximable map u ∈ W 1,2(B2m,CPm−p) such that u(Σ) =

{y} ∈ CPm−p. By localizing the associated cycle Tu through a sequence {ψε} ⊂ C∞(CPm−p)

such that ψε → δy in D′(CPm−p), we could exploit our techniques to get uniqueness of tangent
cone for Σ ultimately.
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Appendix to Chapter 2

2.A. Slicing through singular meromorphic maps

Let m ∈ N be such that m ⩾ 3 and fix any point p ∈ CPm−1. Let π : Cm ∖ {0} → CPm−1 be the
quotient map given by

π(z1, ..., zm) := [z1; ...; zm], ∀z ∈ Cm ∖ {0}.

Denote by Lp the complex line generated by p in CPm−1 and let Tp : Cm ∖ Lp → L⊥
p ∖ {0} be

given by the restriction to Cm ∖Lp of the standard orthogonal projection from Cm into L⊥
p . Fix

a complex orthonormal basis {ep1, ..., e
p
m−1} of L⊥

p and let φp : L⊥
p → Cm−1 be the following linear

isomorphism:

φp

(
m−1∑
j=1

αje
p
j

)
:= (α1, ..., αm), ∀ (α1, ..., αm−1) ∈ Cm−1.

Let πp : L⊥
p ∖ {0} → CPm−2 be the smooth submersion given by πp := π̃ ◦ φp, where

π̃(α1, ..., αm−1) := [α1; ...;αm−1], ∀ (α1, ...αm−1) ∈ Cm−1 ∖ {0}.

Eventually, notice that the map Fp : CPm−1 ∖ {p} → CPm−2 given by

Fp([z1; ...; zm]) = (πp ◦ Tp)(z1, ..., zm), ∀ [z1, ..., zm] ∈ CPm−1 ∖ {p},

is well-defined and smooth, since the map πp ◦ Tp is constant on the fibres of π.

Lemma 2.A.1. Let m ∈ N be such that m ⩾ 3. Then, for every p ∈ CPm−1 the following facts
hold:
(1) the map Fp ◦ π belongs to W 1,2m−4(B2m,CPm−2);
(2) Fp ◦ π is weakly (J0, jm−2)-holomorphic, where jm−2 is the standard complex structure on

CPm−2;
(3) Fp ◦ π is such that d

(
(Fp ◦ π)∗ volCPm−2

)
= 0, distributionally on B2m.

Proof. Fix any p ∈ CPm−1 and notice that the complex line Lp is indeed a real 2-plane in R2m.
Thus, H 2m−α(Lp∩B2m) = 0, for every α ∈ [1, 2m−2). Hence, Lp∩B2m has vanishing (2m−4)-
capacity. Since Fp ◦ π ∈ L∞(B2m) ∩ C∞(B2m ∖ Lp) and the classical differential of Fp ◦ π on
B2m ∖ Lp can be estimated by

|d(Fp ◦ π)| = |d(πp ◦ Tp)| ⩽ |∧2dπp ◦ Tp| ⩽
C

dist( · , Lp)
, (2.A.1)

we obtain that d(Fp ◦ π) ∈ L2m−4(B2m ∖ Lp). Point (1) immediately follows.
For what concerns (2), we know that the weak differential of Fp ◦ π coincides L2m-a.e. with its
classical differential on B2m∖Lp, where Fp ◦π is smooth. Moreover Fp ◦π = πp ◦ Tp on B2m∖Lp.
Since both πp and Tp are holomorphic maps, then Fp ◦π is holomorphic on B2m∖Lp. Then, since
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B2m ∖ Lp has full L2m-measure in B2m, the fact that the weak differential of Fp ◦ π commutes
with the complex structures J0 and jm−2 for L2m-a.e. x ∈ B2m follows and we have proved (2).
We are just left to prove (3). Fix any α ∈ D3(B2m). For every any ε > 0 we define

Lεp :=
(
Lp +Bε(0)

)
∩ B2m (2.A.2)

and we notice that∣∣∣∣ˆ
B2m

(Fp ◦ π)∗ volCPm−2 ∧dα
∣∣∣∣ =

∣∣∣∣∣
ˆ
Lε
p

(Fp ◦ π)∗ volCPm−2 ∧dα

∣∣∣∣∣
⩽
ˆ
Lε
p

∣∣dα∣∣∣∣(Fp ◦ π)∗ volCPm−2

∣∣ dL2m

⩽ ||dα||L∞

ˆ
Lε
p

|d(Fp ◦ π)|2m−4dL2m

⩽ ||dα||L∞ ||d(Fp ◦ π)||2m−4
L2m−3L2m(Lεp)

1/q′ → 0

as ε → 0+, where q := (2m − 3)/(2m − 4) and q′ = 2m − 3 is the conjugate exponent of q. By
arbitrariness of α ∈ D3(B2m), point (3) follows.

Lemma 2.A.2. For every m ⩾ 3, there exists a constant Bm > 0 such that

ωCPm−1 = Bm

ˆ
CPm−1

F ∗
pωCPm−2 dp.

Proof. Throughout this proof, given any m ⩾ 1 and a unitary matrix A ∈ U(m), we will denote
by Ā : CPm−1 → CPm−1 the map [z] 7→ [Az].
It is well known that, up to rescalings by constant factors, the Fubini-Study metric is the only
U(m)-invariant symplectic form on CPm−1, for every m ⩾ 2. Thus, it is enough to show that

Ā∗
( ˆ

CPm−1
F ∗
pωCPm−2 dp

)
=

ˆ
CPm−1

F ∗
pωCPm−2 dp, ∀A ∈ U(m).

Fix any A ∈ U(m).Given p ∈ CPm−1, define

Bp := φp ◦ Tp ◦A ◦ Sp ◦ φ−1
p : Cm−1 → Cm−1,

where Sp : L⊥
p → Cm is the left inverse of the orthogonal projection map Tp : Cm → L⊥

p . As
composition of linear and unitary maps, Bp ∈ U(m− 1). Moreover, by construction it holds that
Fp ◦ Ā = B̄p ◦ Fp.
Hence, by linearity of the integral and the definition of Fp, we have

Ā∗
(ˆ

CPm−1
F ∗
pωCPm−2 dp

)
=

ˆ
CPm−1

Ā∗F ∗
pωCPm−2 dp

=

ˆ
CPm−1

(Fp ◦ Ā)∗ωCPm−2 dp

=

ˆ
CPm−1

(B̄ ◦ Fp)∗ωCPm−2 dp

=

ˆ
CPm−1

F ∗
p B̄

∗ωCPm−2 dp
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=

ˆ
CPm−1

F ∗
pωCPm−2 dp

and the statement follows by arbitrariness of A ∈ U(m).

Lemma 2.A.3. Let m ⩾ 3 and pick any two points x, y ∈ CPm−1. For every j = 1, ...,m, let
ẽj := π(ej) ∈ CPm−1, where {e1, ..., em} denotes the standard complex euclidean basis of Cm.
Assume that

Fẽj (x) = Fẽj (y), ∀ j = 1, ...,m. (2.A.3)

Then, x = y.

Proof. Let x = [x1; ...;xm] and y = [y1; ...; ym]. Fix any j = 1, ...,m. By definition of Fẽj , the
condition Fẽj (x) = Fẽj (y) implies that there exists λj ∈ C∖ {0} such that

λjxi = yi, ∀ i = 1, ...,m with i ̸= j.

Hence, by enforcing (2.A.3) we get that there exists λ ∈ C∖ {0} such that

λxi = yi, ∀ i = 1, ...,m.

This implies x = y in CPm−1 and the statement follows.
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3. Vector fields with integer valued fluxes

3.1. Introduction

3.1.1. Motivation and statement of the results

Given a smooth map u : X → Y between closed, oriented and connected (n − 1)-dimensional
manifolds, the degree of u is a measure of how many times X wraps around Y under the action
of u. It can be defined as follows1:

deg(u) =
ˆ
X
u∗ω,

with ω ∈ Ωn(Y ) being a renormalized volume form on Y , i.e. ω is nowhere vanishing and
ˆ
Y
ω = 1.

Let D ⊂ Rn be an open and bounded Lipschitz domain and consider a map u ∈ W 1,p(D,Y )

for some p ⩾ 1 being smooth up to finitely many point singularities, which simply means that
u ∈ C∞(D ∖ Su, Y ) for some finite set Su ⊂ D. In this case we write u ∈ R1,p(D,Y ). We define
the degree of u at some singular point x ∈ Su as

deg(u, x) := deg(u|∂D′) =

ˆ
∂D′

u∗ω ∈ Z, (3.1.1)

where D′ ⊂⊂ D is any open, piecewise smooth domain in D such that D′ ∩ Su = {x}. Notice
that Definition (3.1.1) is independent from the choice of the set D′.
If deg(u, x) ̸= 0 for some x ∈ Su, then we say that x is a topological singularity of u and we refer
to the subset of Su made of the topological singularities of u as the topological singular set of u,
which we denote by Stopu .
Notice that if u ∈ R1,n−1(D) then u∗ω ∈ Ωn−1

1 (D), moreover by (3.1.1) we see that the u∗ω
“detects” the topological singularities of u, in the sense that

ˆ
∂D′

u∗ω =
∑

x∈Stop
u ∩D′

deg(u, x) (3.1.2)

for every open, piecewise smooth domain D′ ⊂⊂ D such that ∂D′ ∩ Su = ∅. From (3.1.2) one
can deduce that

∗d(u∗ω) =
∑

x∈Stop
u

deg(u, x)δx in D′(D).

1An alternative definition can be given in terms of the orientations of the preimages of regular points of u, see
for instance [10, Chapter 7]
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Remark 3.1.1. Sobolev maps that are smooth up to a finite set of topological singularities arise
frequently as solutions of variational problems in critical or supercritical dimension. For example,
this is the best regularity which is possible to guarantee for energy minimizing harmonic maps in
W 1,2(B3,S2) (see [79, Theorem II]). Again, quite recently the F. Gaia and T. Rivière considered
the following “weak S1-harmonic map equation”

div(u ∧∇u) = 0 in D′(B2)

and gave a completely variational characterization of the solutions in R1,p(B2, S1) with finite
“renormalized Dirichlet energy” for p > 1 (see [37, Theorem I.3] for further details).
We also remark that the presence of topological singularities is deeply linked to fundamental ques-
tions concerning the strongW 1,p-approximability through smooth maps of elements inW 1,p(D,Y )

(see [12], [43]).

The previous discussion motivates the following general definition.

Definition 3.1.1. Let p ∈ [1,∞]. Let F ∈ Ωn−1
p (D). We say that F has finitely many integer

singularities if there exists a finite set of points S ⊂ D such that F ∈ Ωn−1(D ∖ S) and

∗dF =
∑
x∈S

axδx,

where ax ∈ Z for every x ∈ S. The class of Lp integrable (n−1)-forms on D having finitely many
integer singularities will be denoted by Ωn−1

p,R (D).

As we have seen above, u∗ω ∈ Ωn−1
1,R (D) for every u ∈ R1,n−1(D,Y ), for any closed, oriented and

connected n− 1-manifold Y . Other simple examples of elements of Ωn−1
p,R (D) can be constructed

as follows. Let σ : D → R denote the fundamental solution of the Laplace equation, i.e.

σ(x) =


−|x| if n = 1,

− 1
2π log|x| if n = 2

1
n(n−2)α(n)

1
|x|n−2 if n ⩾ 3,

where α(n) denotes the volume of the unit ball in Rn. Then ∗dσ ∈ Ωn−1
p,R (D) for any p ∈ [1, n

n−1).
In fact ∗d(∗dσ) = ∆σ = δ0.
Clearly any finite linear combination with integer coefficients of translations of ∗dσ also belongs
to Ωn−1

p,R (D). In fact one can show that any element F of Ωn−1
p,R (D) can be decomposed as such

a linear combination plus some F̃ ∈ Ωn−1
p (D) with ∗dF̃ = 0. In particular, if p ⩾ n

n−1 then
∗dF = 0. Thus the class Ωn−1

p,R (D) is relatively simple from an analytical point of view and so it is
natural to ask which forms in Ωn−1

p (D) can be approximated by elements in Ωn−1
p,R (D). The main

purpose of the present chapter consists in giving a description of the strong and weak closure of
the class Ωn−1

p,R (D) for any open domain in Rn which is bi-Lipschitz equivalent to the open unit
n-cube Q1(0) ⊂ Rn.
First, we will address the strong closure in the case of the open, unit n-dimensional cube Q1(0) ⊂
Rn. To this end we introduce the class of (n− 1)-forms with integer-valued fluxes.
For any F ∈ Ωn−1

Lp
loc

, for any x0 ∈ Q1(0) let R̃F,x0 ⊂ (0, r0) be the set of radii ρ ∈ (0, r0) such that

1. the hypersurface ∂Qρ(x0) consists H n−1-a.e. of Lebesgue points of F ,
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2. there holds |F | ∈ Lp
(
∂Qρ(x0),H n−1

)
.

One can check that L1
(
(0, rx0)∖ R̃F,x0

)
= 0.

Definition 3.1.2. Let p ∈ [1,∞], let F ∈ Ωn−1
Lp
loc

∩Ωn−1
p (Q1(0), µ) for some Radon measure µ, for

any x0 ∈ Q1(0) let R̃F,x0 be defined as above. We say that F has integer-valued fluxes if for any
x0 ∈ Q1(0), for L1−a.e. ρ ∈ R̃F,x0 there holds2

ˆ
∂Qρ(x0)

i∗∂Qρ(x0)
F ∈ Z. (3.1.3)

The space of Lp(µ)-vector fields with integer valued fluxes will be denoted by Ωn−1
p,Z (Q1(0), µ).

The set of radii ρ ∈ R̃F,x0 for which (3.1.3) holds will be denoted by RF,x0

We will always write Ωn−1
p,Z (Q1(0)) for Ωn−1

p,Z (Q1(0),Ln), where Ln denotes the n-dimensional
Lebesgue measure.
First of all we observe that (3.1.2) implies that Ωn−1

p,R (Q1(0)) ⊂ Ωn−1
p,Z (Q1(0)). More general

examples of forms in Ωn−1
p,Z (Q1(0)) can be constructed as follows. Let again Y be a smooth, closed,

oriented and connected (n − 1)-dimensional manifold. Let u ∈ W 1,n−1(Q1(0), Y ). Then for any
x0 ∈ Q1(0), for a.e. ρ ∈ (0, 2 dist∞(x0, ∂Q1(0))), u

∣∣
∂Qρ(0)

∈ W 1,n−1(∂Qρ(0), Y ). Therefore for
any such ρ

ˆ
∂Qρ(0)

i∗∂Qρ(x0)
(u∗ω) = deg

(
u
∣∣
∂Qρ(x0)

)
∈ Z (3.1.4)

Notice that deg
(
u
∣∣
∂Qρ(x0)

)
is well defined (by means of approximation by functions inW 1,∞(∂Qρ(x0), Y ),

see [21, Section I.3]).
We will show that in fact the closure of Ωn−1

p,R (Q1(0)) in Ωn−1
p (Q1(0)) is exactly Ωn−1

p,Z (Q1(0)).
More precisely, we have

Theorem 3.1.1. Let n ∈ N and let p ∈ [1,∞). Let F ∈ Ωn−1
p,Z (Q1(0), µ). Then we have

1. if q ∈ [0, 1] and p ∈
[
1,

n

n− 1

)
, then there exists a sequence {Fk}k∈N in Ωn−1

p,R (Q1(0)) such

that Fk → F in Ωn−1
p (Q1(0)) as k → ∞.

2. if q ∈ (−∞, 0] and p ∈
[ n

n− 1
,+∞

)
, then ∗dF = 0.

The reason why we have introduced the weighted measures µ = f Ln for q ̸= 0 is that forms
belonging to Ωn−1

p,Z (Q1(0), µ) appear naturally in the proof of Corollary 3.2.2. Nevertheless, we
advise the reader to assume q = 0 (i.e. µ = Ln) throughout Section 3.2 at a first reading of the
present chapter. This allows to skip many technicalities without losing formality, since all the
results of this chapter are independent on Corollary 3.2.2.
With the help of Theorem 3.1.1 we will get another characterization of the Lp-closure of Ωn−1

p,R (Q1(0)).
For this we recall the following definition (compare with [19, Section II]):

2Notice that for the associated vector field V = (∗F )♭ condition (3.1.3) reads
ˆ
∂Qρ(x0)

V · ν∂Qρ(x0)dH
n−1 ∈ Z.
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Definition 3.1.3 (Connection and minimal connection). LetM ⊂ Rn be any embedded Lipschitz
m-dimensional submanifold of Rn (with or without boundary) such that M is compact as a subset
of Rn.
A 1-dimensional current I ∈ R1(M) is said to be a connection for (the singular set of) F if
M(I) < +∞ and ∂I = ∗dF in (W 1,∞

0 (M))∗.
A 1-dimensional current L ∈ R1(M) is said to be a minimal connection for (the singular set of)
F if it is a connection for F and

M(L) = inf
T∈D1(M)
∂T=∗dF

M(T ).

We will see in Corollary 3.2.1 that F admits a connection if and only if it admits a minimal
connection.
Here is the characterization of Ωn−1

p,Z (Q1(0)) in terms of minimal connections:

Theorem 3.1.2. Let n ∈ N>0, let p ∈ [1,+∞). Let F ∈ Ωn−1
p (Qn1 (0)). Then, the following are

equivalent:
1. there exists L ∈ R1(Q1(0)) such that ∂L = ∗dF in (W 1,∞

0 (Q1(0)))
∗.

2. for every Lipschitz function f : Q1(0) → [a, b] ⊂ R such that f |∂Q1(0) ≡ b, we have
ˆ
f−1(t)

i∗f−1(t)F ∈ Z, for L1-a.e. t ∈ [a, b];

3. F ∈ Ωn−1
p,Z (Q1(0)).

In other words, F ∈ Ωn−1
p,Z (Q1(0)) if and only if F admits a (minimal) connection. This character-

ization allows to generalize the definition of the class Ωn−1
p,Z (Q1(0)) to general Lipschitz domains:

Definition 3.1.4. Let M ⊂ Rn be any embedded Lipschitz m-dimensional submanifold of Rn
(with or without boundary). We define

Ωn−1
p,Z (M) := {F ∈ Ωn−1

p (M) s.t. ∃L ∈ R1(M) connection for F}.

Notice that if M = Q1(0), Definition 3.1.2 and Definition 3.1.4 coincide by Theorem 3.1.2.
We will deduce from the previous results that the approximation result can be extended to any
open domain which is bi-Lipschitz equivalent to Q1(0) of ∂Q1(0) (see Theorem 3.2.3).
We mention here two other corollaries of Theorem 3.1.1.

Corollary 3.1.1. Let n ∈ N. Let I ∈ R1(Q
n
1 (0)) be an integer rectifiable 1-current. Then

there exists a 1-form ω ∈ Ωn−1
1,Z (Qn1 (0)) such that ∗dω = ∂I and ∂I can be approximated in

(W 1,∞
0 (Qn1 (0)))

∗ by finite sums of Dirac-deltas with integer coefficients. More precisely, there
exist sequences (Pi)i∈N and (Ni)i∈N of points in Qn1 (0) such that

∂I =
∑
i∈N

(δPi − δNi) in (W 1,∞
0 (Qn1 (0)))

∗ and
∑
i∈N

|Pi −Ni| <∞.

Moreover if I is supported on a Lipschitz submanifold M of Rn compactly contained in Q1(0), the
points in the sequences (Pi)i∈N and (Ni)i∈N can be chosen to belong to M .
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The next corollary was obtained first by R. Schoen and K. Uhlenbeck ([78, Section 4]) and F.
Bethuel and X. Zheng ([13, Theorem 4]).

Corollary 3.1.2. Let Q1(0) ⊂ R2 be the unit cube in R2. Let u ∈ W 1,p(Q1(0), S1) for some
p ∈ (1,∞).
If p ⩾ 2, then u can be approximated in W 1,p be a sequence of functions in C∞(Q1(0),S1).
If p < 2, then u can be approximated in W 1,p by a sequence of functions in

R :=
{
v ∈W 1,p(Q1(0),S1); v ∈ C∞(Q1(0)∖A,S1), where A is some finite set

}
.

In the second part of the chapter we turn our attention to the weak closure of the space Ωn−1
p,R (D)

for a domain D ⊂ Rn which is bi-Lipschitz equivalent to Q1(0) (or equivalently of Ωn−1
p,Z (D)). We

will show the following.

Theorem 3.1.3 (Weak closure). Let n ∈ N⩾2, p ∈ (1,+∞) and D ⊂ Rn be any open and bounded
domain in Rn which is bi-Lipschitz equivalent to the n-dimensional unit cube Qn1 (0). Then, the
space Ωn−1

p,Z (D) is weakly sequentially closed in Ωn−1
p (D).

Notice that, by Theorem 3.1.1 (or more generally by Theorem 3.2.3), the statement of Theorem
3.1.3 is trivial for p ∈ [n/(n − 1),+∞). Thus, we just need to provide a proof in case p ∈
(1, n/(n− 1)).
We first treat the case of the open unit n-cube Q1(0) ⊂ Rn by exploiting the characterization of
Ωn−1
p,Z (Q1(0)) given by Theorem 3.1.2 and a suitable slice distance à la Ambrosio-Kirchheim (see

[4] and [42]). We then address the general case by standard arguments (see Remark 3.3.8).
We remark that the case n = 1 is different. In fact for any interval I ⊂ R there holds

Ω0
p,R(I)

Ω0
p(I)

= Ω0
p(I) (see Lemma 3.3.3).

Our main motivation to look at forms (instead of maps) with finitely many integer topological
singularities is the need of developing geometric measure theory for principal bundles in order
to face the still deeply open questions arising in the study of p–Yang-Mills lagrangians. As it is
described in the introduction to Chapter 4 and in [48], [65], the reason why we aim to extend the
set of the (by now classical) Sobolev connections is purely analytic and justified by issues arising
in the application of the direct method of calculus of variations to p–Yang-Mills lagrangians. On
the other hand, the need to extend the notion of bundles in order to allow singularities to appear
has already been faced in many geometric applications, which brought to the introduction of
coherent and reflexive sheaves in the analysis of Yang-Mills fields over complex manifolds (see
[51],[52]). However, such tools are insufficient to deal with the phenomenon of accumulation of
singularities that can’t be excluded a priori in the real framework. Thus, new ways to describe
the behaviour of very singular Yang-Mills connections need to be investigated.
Notice that all results mentioned above can be formulated in terms of vector fields: for any
F ∈ Ωn−1

p (D) we can consider the associated vector field VF := (∗F )♭. In fact for the proof of
some of the results we preferred to work with vector fields instead of (n− 1)-forms.
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3.1.2. Related literature and open problems

Theorem 3.1.1 was firstly announced to hold for a 3-dimensional domain in [48] and a full proof of
the 3-dimensional case was eventually given by the author in [22]. Some form of the 2-dimensional
case was treated in [61], where M. Petrache proved that a strong approximability result holds for
1-forms admitting a connection both on the 2-dimensional disk and on the 2-sphere. In both cases,
the proof that we give here is more general and simple. The 3-dimensional version of Theorem
3.1.3 was already treated by M. Petrache and T. Rivière in [63]. Nevertheless, here we took the
opportunity to present the arguments in a more detailed and complete way. Both Theorem 3.1.1
and Theorem 3.1.3 in dimension n ̸= 2, 3 are instead completely new.
The first open problems that relate directly to our results are linked to the celebrated Yang-Mills
Plateau problem. Indeed, the weak sequential closedness of the class Ω2

p,Z(B3) implies that such
forms behave well-enough to be considered as suitable “very weak” curvatures for the resolution
of the p–Yang-Mills Plateau problem for U(1)-bundles on B3 (see the introduction of [63] for
further details). The question to address would be if and how we can exploit the same kind of
techniques in order to face the existence and regularity issues linked to the so called “non abelian
case” (i.e. the case of bundles having a non abelian structure group) in supercritical dimension.
An interesting proposal in this sense is due to M. Petrache and T. Rivière and can be found in
[62], where a suitable class of weak connections in the supercritical dimension 5 is introduced. In
Chapter 4 we will describe how these methods can be used in order to establish ε-regularity for
stationary Yang-Mills connections belonging to such class of weak objects in dimension 5.
One could also hope that the technique presented in this chapter could be adapted to show
Lp-closeness (weak and strong) of classes of differential forms exhibiting "integer fluxes" prop-
erties similar to the one described in Definition 3.1.2. As an example we define here the class
Ωnp,H(Q

2n
1 (0)) of differential forms with "Hopf singularities".

Recall that for any n ∈ N⩾1, for any smooth map f : S2n−1 → Sn the Hopf invariant of f is
defined as follows: let ω be the standard volume form on Sn. Let α ∈ Ωn−1(S2n−1) be such that
f∗ω = dα. Then the Hopf invariant of f is given by

H(f) :=

ˆ
S2n−1

α ∧ dα.

One can show that H(f) ∈ Z and that it is independent of the choice of α (see [17], Propo-
sition 17.22). In the spirit of Definition 3.1.2 we say that a form F ∈ Ωnp (Q

2n
1 (0)) belongs to

Ωnp,H(Q
2n
1 (0)) for some p ⩾ 2− 1

n
if there exists A ∈ Ωn−1

W 1,p(Q
2n
1 (0)) such that dA = F and if for

every x0 ∈ Q2n
1 (0) there exists a set RF,x0 ⊂ (0, rx0), with rx0 := 2 dist∞(x0, ∂Q

2n
1 (0)) such that:

1. L1
(
(0, rx0)∖RF,x0

)
= 0;

2. for every ρ ∈ RF,x0 , the hypersurface ∂Q2n
ρ (x0) consists H 2n−1-a.e. of Lebesgue points of

F , A and ∇A (the matrix of all the partial derivatives of the components of A);
3. for every ρ ∈ RF,x0 we have |F |, |A|, |∇A| ∈ Lp

(
∂Q2n

ρ (x0),H n−1
)
;

4. for every ρ ∈ RF,x0 it holds thatˆ
∂Q2n

ρ (x0)
i∗∂Q2n

ρ (x0)
(A ∧ F ) ∈ Z.

Notice that if u ∈W 1,2n−1(Q2n
1 (0), Sn), then u∗ω ∈ Ωnp,H(Q

2n
1 (0)).
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3.1.3. Organization of the Chapter

The chapter is organized as follows. Section 3.2 is dedicated to the strong Lp-closure of the
space Ωn−1

p,Z (Q1(0), µ). First we present some preliminary and rather technical lemmata (Sections
3.2.1–3.2.3), then we give a proof of Theorem 3.1.1 (Section 3.2.4). In Section 3.2.5 we show the
characterization of Ωn−1

p,Z (Q1(0)) in terms of (minimal) connections (Theorem 3.1.2). In Section
3.2.6 we exploit this result to extend the approximation result to other Lipschitz manifolds, and
in particular to ∂Qn1 (0). Lastly, in Section 3.2.7 we prove Corollary 3.1.1 and Corollary 3.1.2.
In Section 3.3 we discuss the weak Lp closure of Ωn−1

p,R (Q1(0)). First, we will introduce a slice
distance à la Ambrosio-Kirchheim, first on spheres (Section 3.3.1) and then on cubes (Section
3.3.2). In Section 3.3.3 we discuss some of the properties of the slice distance and in Section 3.3.4
we use it to obtain a proof of Theorem 3.1.3. We will also discuss briefly the special case n = 1.

3.1.4. Notation

Let Mm ⊂ Rn be any m-dimensional, embedded Lipschitz submanifold of Rn (with or without
boundary) such that M is compact as a subset of Rn.
We always assume that M is endowed with the L∞-Riemannian metric given by gM := ι∗Mge,
where ge denotes the standard euclidean metric on Rn.
For every p ∈ [1,+∞], we denote by Ωkp(M) and ΩkW 1,p(M) the completions of Ωk(M) with respect
to the usual Lp-norm and W 1,p-norm respectively. We call Ωkp(M) the space of Lp k-forms on M
and ΩkW 1,p(M) the space of W 1,p k-forms on M .
By the symbol "∗", we denote the Hodge star operator associated with the metric gM on M . By
"♭" and "♯" we denote the usual musical isomorphisms associated with the metric gM . Recall
that, under this notation, the map

Ωn−1
p (M) ∋ ω 7→ (∗ω)♯ ∈ Lp(M,Rn) (3.1.5)

gives an isomorphism onto its image. Exploiting this fact, we frequently identify (n − 1)-forms
with vector fields on M .
Given any F ∈ Ωk1(M) we define the (m− k)-current associated to F by

⟨TF , ω⟩ :=
ˆ
M
F ∧ ω, ∀ω ∈ Dm−k(M).

3.2. The strong Lp-approximation Theorem

In this section we provide a proof of Theorem 3.1.1. In an attempt to make the proof more
accessible, we reformulate the Theorem in terms of vector fields. For any Radon measure µ := fLn
with f =

(
1
2 − ∥ · ∥∞

)q, with q ∈ (−∞, 1] let

LpR(Q1(0), µ) := {V ∈ Lp(Q1(0), µ) vector field s.t. ∗V ♭ ∈ Ωn−1
p,R (Q1(0))}

and let

LpZ(Q1(0), µ) := {V ∈ Lp(Q1(0), µ) vector field s.t. ∗ V ♭ ∈ Ωn−1
p,Z (Q1(0))}.

We will sometime write LpZ(Q1(0)) for LpZ(Q1(0),Ln), where Ln denotes the n-dimensional Lebesgue
measure.
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Theorem 3.2.1. Let V ∈ LpZ(Q
n
1 (0), µ). The following facts hold:

1. if q ∈ [0, 1] and p ∈
[
1, n/(n − 1)

)
, then there exists a sequence {Vk}k∈N ⊂ LpR(Q1(0), µ)

such that Vk → V strongly in Lp(Qn1 (0), µ);
2. if q ∈ (−∞, 0] and p ∈

[
n/(n− 1),+∞

)
, then div(V ) = 0 distributionally on Qn1 (0).

The case n = 1 is particularly easy and is treated in Lemma 3.2.6. For the proof in the case
n ⩾ 2 we follow the ideas of [61] and [22]. We present here a plan of the proof, reducing to the
case q = 0 for simplicity and without losing generality.
First of all we show that for any ε > 0 it is possible to decompose Q1(0) into cubes Q of size ε
(plus a negligible rest) so that ˆ

∂Q
V · ν∂Q dH n−1 ∈ Z

and so that the number of cubes where the integral is different from zero is controlled (Section
3.2.1). We will then show that V can be approximated on the boundaries of the small cubes Q
by smooth vector fields (Vε)ε>0 with similar properties (Section 3.2.2). In Section 3.2.3 we show
that the vector fields Vε can be extended inside the cubes Q in such a way that the extension
Ṽε has a finite number of singularities in Q (more precisely Ṽε|Q ∈ LpR(Q)) and is close to V in
Lp(Q). In Section 3.2.4 we will combine the previous elements to show that the approximating
fields constructed above (up to some shifting and smoothing) satisfy the claim of the Theorem.

3.2.1. Choice of a suitable cubic decomposition

Fix any ε ∈ (0, 1/4) and a ∈ Qε(0). Let

qε := max {q ∈ N s.t. εq ⩽ 1− ε},

Cε :=

{(
j +

1

2

)
ε− 1

2
, with j = 1, ..., qε − 1

}n
,

Cε,a :=
{
Qε(x) + a, with x ∈ Cε

}
.

We say that Cε,a is the cubic decomposition of Q1(0) with origin in a and mesh thickness ε.
Let

Fε,a :=
{
F |F is an (n− 1)-dimensional face of ∂Q, for some open cube Q ∈ Cε,a

}
,

Sε,a :=
⋃

F∈Fε,a

F.

We say that Sε,a is the (n− 1)-skeleton of the cubic decomposition Cε,a.

Lemma 3.2.1 (Choice of the cubic decomposition). Let n ∈ N>0. Let V ∈ LpZ(Q1(0), µ) where
µ := fLn with

f :=

(
1

2
− ∥ · ∥∞

)q
for some q ∈ (−∞, 1]. Then, there exists a subset EV ⊂ (0, 1) satisfying the following properties:

1. L1
(
(0, 1)∖ EV

)
= 0;
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2. for every ε ∈ EV , there exists aε ∈ Qε(0) such that ε ∈ RV,cQ for every Q ∈ Cε,aε and

lim
ε∈EV

ε→0+

ε

( ∑
Q∈Cε,aε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1

)
= 0, (3.2.1)

where (V )Q =

 
Q
V dLn.

Proof. For any x ∈ Q1(0) let RV,x := RV ♭,x (see Definition 3.1.2). By assumption

ˆ 1

0

ˆ
Q1−ρ(0)

1ρ∈RV,x
dLn dρ =

ˆ
Q1(0)

L1(RV,x) dLn =

ˆ
Q1(0)

2 dist(x, ∂Q1(0)) dLn (3.2.2)

=

ˆ 1

0
Ln(Q1−ρ(0)) dρ.

For any ρ ∈ (0, 1) let

Xρ = {x ∈ Q1−ρ(0) : ρ /∈ RV,x},

then by (3.2.2) Ln(Xρ) = 0 for a.e. ρ ∈ (0, 1). Now notice that for any ρ ∈ (0, 1)

Ln(Xρ) ⩾
∑
c∈Cρ

ˆ
Qρ(0)

1Xρ(x+ c) dLn =

ˆ
Qρ(0)

∑
c∈Cρ

1Xρ(x+ c) dLn,

thus for a.e. ρ ∈ (0, 1) we have that for a.e. aρ ∈ Qρ(0) there holds ρ ∈ RV,cQ for any Q ∈ Cρ,aρ .
Let EV be the set of all such ρ ∈ (0, 1).
Now let ε ∈ EV . We claim that

Iε :=

ˆ
Qε(0)

∑
Q∈Cε,a

ˆ
∂Q

|V (x)− (V )Q|pf(cQ) dH n−1(x) dLn(a) = o
(
εn−1

)
, (3.2.3)

as ε→ 0+ in EV . Indeed, let F be the set of the faces of the cube Q1(0) ⊂ Rn and notice that

Iε =

ˆ
Qε(0)

∑
F0∈F

∑
c∈Cε

ˆ
εF0

∣∣∣∣V (x+ c+ a)−
 
Qε(c+a)

V

∣∣∣∣pf(c+ a) dH n−1(x) dLn(a)

=
∑
F0∈F

∑
c∈Cε

ˆ
εF0

ˆ
Qε(0)

∣∣∣∣V (x+ c+ a)−
 
Qε(c+a)

V

∣∣∣∣pf(c+ a) dLn(a) dH n−1(x)

=
∑
F0∈F

∑
c∈Cε

ˆ
εF0

ˆ
Qε(c)

∣∣∣∣V (x+ y)−
 
Qε(y)

V

∣∣∣∣pf(y) dLn(y) dH n−1(x).

Observe that for any c ∈ Cε, x ∈ ∂Qε(0)

ˆ
Qε(c)

∣∣∣∣∣V (x+ y)−
 
Qε(y)

V (z)

∣∣∣∣∣
p

f(y)dLn(y)

⩽
 
Qε(0)

ˆ
Qε(c)

|V (x+ y)− V (z + y)|pf(y)dLn(y)dLn(z).
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Thus for any F0 ∈ F∑
c∈Cε

ˆ
εF0

ˆ
Qε(c)

∣∣∣∣V (x+ y)−
 
Qε(y)

V

∣∣∣∣pf(y) dLn(y) dH n−1(x)

⩽
ˆ
εF0

 
Qε(0)

ˆ
Q1−2ε(0)

|V (x+ y)− V (z + y)|pf(y)dLn(y)dLn(z)dH n−1(x)

⩽ 2p−1

ˆ
εF0

ˆ
Q1−2ε(0)

|V (x+ y)− V (y)|pf(y)dLn(y)dH n−1(x)

+ 2p−1εn−1

 
Qε(0)

ˆ
Q1−2ε(0)

|V (z + y)− V (y)|pf(y)dLn(y)dLn(z)

⩽ 2pεn−1 sup
α∈Qε(0)

∥V − V (· − α)∥pLp(Q1−2ε,µ)
.

Since C0
c (Q1(0)) is dense in Lp(Q1(0), µ) (see [56, Theorem 4.3]), given any δ > 0 we can find

Ṽ ∈ C0
c (Q1(0)) such that

ˆ
Q1(0)

|V − Ṽ |p dµ ⩽ δ.

Notice that by Taylor’s Theorem∣∣∣∣f(x+ α)− f(x)

f(x)

∣∣∣∣ =
∣∣∣∣∣(12 − ∥x+ α∥∞)q − (12 − ∥x∥∞)q

(12 − ∥x∥)q

∣∣∣∣∣ ⩽ q∥α∥∞
(12 − ∥x∥∞ − ε

2)
q−1

(12 − ∥x∥∞)q
(3.2.4)

⩽qε21−q
(
1

2
− ∥x∥∞

)−1

⩽ C

for every x ∈ Q1−ε(0), α ∈ Qε(0) and for some constant C > 0 depending only on q. Thus

∥V − V (· − α)∥pLp(Q1−ε(0),µ)
⩽ 4p−1

( ˆ
Q1−ε(0)

|V − Ṽ |p dµ+

ˆ
Q1−ε(0)

|Ṽ − Ṽ (· − α)|p dµ

+

ˆ
Q1−ε(0)

|Ṽ (· − α)− V (· − α)|p dµ
)

= 4p−1

(
2

ˆ
Q1(0)

|V − Ṽ |p dµ+

ˆ
Q1−ε(0)

|Ṽ − Ṽ (· − α)|p dµ

+

ˆ
Q1−ε(−α)

|Ṽ − V |p f(·+ α)− f

f
dµ

)
⩽ 4p−1(2 + C)δ + 4p−1

ˆ
Q1−ε(0)

|Ṽ − Ṽ (· − α)|p dµ.

As Ṽ ∈ C0
c (Q1(0))

sup
α∈Qε(0)

∥Ṽ − Ṽ (· − α)∥pLp(Q1−ε(0),µ)
→ 0 as ε→ 0+,

we have

lim sup
ε→0+

sup
α∈Qε(0)

∥V − V (· − α)∥pLp(Q1−ε(0),µ)
⩽ 4p−1(2 + C)δ.
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By letting δ → 0+ in the previous inequality we get

sup
α∈Qε(0)

∥V − V (· − α)∥pLp(Q1−ε(0),µ)
→ 0 as ε→ 0+, (3.2.5)

and claim (3.2.3) follows.
By Fubini’s theorem, for every fixed ε ∈ EV there exists some non-negligible subset Tε ⊂ Qε(0)

such that for any a ∈ Tε ε ∈ RV,cQ for any Q ∈ Cε,a and∑
Q∈Cε,a

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1 ⩽
1

εn

ˆ
Qε(0)

∑
Q∈Cε,a

ˆ
∂Q

|V − (V )Q|p f(cQ)dH n−1 dLn(a)

=
1

εn
Iε.

By (3.2.3), for every a ∈ Tε we have∑
Q∈Cε,a

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1 = o(ε−1)

as ε→ 0+ in EV . The statement follows.

Fix any V ∈ LpZ(Q1(0)) and ε ∈ EV . From now on, we will denote simply by Cε the cubic
decomposition Cε,aε provided by Lemma 3.2.1. Accordingly, the subscript "aε" will be omitted
in any writing referring to such a cubic decomposition.
Given any Q ∈ Cε, we say that Q is a good cube if

ˆ
∂Q
V · ν∂Q = 0

and that Q is a bad cube otherwise. We denote by C g
ε the subfamily of Cε made of all the good

cubes and by C b
ε the one made of all the bad cubes. Moreover, we let

Ωε :=
⋃
Q∈Cε

Q, Ωgε :=
⋃

Q∈C g
ε

Q, Ωbε :=
⋃
Q∈C b

ε

Q,

Sε :=
⋃
Q∈Cε

∂Q, Sgε :=
⋃

Q∈C g
ε

∂Q, Sbε :=
⋃
Q∈C b

ε

∂Q.

Lemma 3.2.2. Assume that n ⩾ 2. Then, we have

lim
ε∈EV

ε→0+

εn
∑
Q∈Cε

f(cQ) = 0.

In particular if q = 0 (and thus µ = Ln) we have

lim
ε∈EV

ε→0+

Ln(Ωbε) = 0.

Proof. Notice that by estimate (3.2.4)

|f − f(cQ)|
f

⩽ C on Q for every Q ∈ Cε (3.2.6)
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for some universal constant C > 0. For every bad cube Q ∈ C b
ε , it holds that

1 ⩽

∣∣∣∣ ˆ
∂Q
V · ν∂Q dH n−1

∣∣∣∣ ⩽ ˆ
∂Q

|V | dH n−1.

By multiplying the previous inequality by f(cQ) and summing over all the bad cubes, we get∑
Q∈C b

ε

f(cQ) ⩽
∑
Q∈C b

ε

ˆ
∂Q

|V |f(cQ) dH n−1

⩽

( ∑
Q∈C b

ε

ˆ
∂Q

|V |pf(cQ) dH n−1

) 1
p
( ∑
Q∈C b

ε

ˆ
∂Q
f(cQ) dH

n−1

) 1
p′

= (2n)
1
p′ ε

n−1
p′

( ∑
Q∈C b

ε

ˆ
∂Q

|V |pf(cQ) dH n−1

) 1
p
( ∑
Q∈C b

ε

f(cQ)

) 1
p′

,

which is equivalent to∑
Q∈C b

ε

f(cQ) ⩽ (2n)p−1ε(p−1)(n−1)
∑
Q∈C b

ε

ˆ
∂Q

|V |pf(cQ) dH n−1.

Hence, by the triangle inequality, we get∑
Q∈C b

ε

f(cQ) ⩽ (4n)p−1ε(p−1)(n−1)−1

(
ε
∑
Q∈C b

ε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1

+ 2n
∑
Q∈C b

ε

ˆ
Q
|V |pf(cQ) dLn

)

⩽ (4n)p−1ε(p−1)(n−1)−1

(
ε
∑
Q∈Cε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1

+ 2n
∑
Q∈C b

ε

ˆ
Q
|V |pf dLn + 2n

∑
Q∈C b

ε

ˆ
Q
|V |p

f(cQ)− f

f
f dLn

)

⩽ (4n)p−1ε(p−1)(n−1)−1

(
ε
∑
Q∈Cε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1 (3.2.7)

+ 2n(1 + C)

ˆ
Ωb

ε

|V |pf dLn
)
.

Therefore

εn
∑
Q∈C b

ε

f(cQ) ⩽ (4n)p−1εp(n−1)

(
ε
∑
Q∈Cε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1

+ 2n(1 + C)

ˆ
Q1(0)

|V |pf dLn
)

and the statement follows from (3.2.1) (here we need the assumption n > 1).
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Remark 3.2.1. Assume that p ∈
[
n/(n− 1),+∞

)
. In this case ε(p−1)(n−1)−1 remains bounded as

ε→ 0+. Now by Lemma 3.2.1

ε
∑
Q∈Cε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1 → 0 as ε→ 0+ in EV .

Moreover, by Lemma 3.2.2, we have
ˆ
Ωb

ε

f dLn = (1 + C)εn
∑
Q∈C b

ε

f(cQ) → 0 as ε→ 0+ in EV .

This implies Ln(Ωbε) → 0 as ε→ 0+ in EV , therefore
ˆ
Ωb

ε

|V |pf dLn → 0 as ε→ 0+ in EV

by absolute continuity of the integral. Thus it follows from (3.2.7) that∑
Q∈C b

ε

f(cQ) → 0+ as ε→ 0+ in EV .

Let N b
ε be the number of bad cubes in Cε. Notice that for q ⩽ 0, we have f ⩾ 2−q on Q1(0). This

implies

N b
ε ⩽ 2q

∑
Q∈C b

ε

f(cQ) → 0+ as ε→ 0+ in EV .

Since N b
ε ∈ Z for any ε ∈ EV , N b

ε = 0 for every ε ∈ EV small enough. Hence, whenever
p ∈

[
n/(n− 1),+∞

)
and q ⩽ 0 we will assume, without losing generality, that there are no bad

cubes in our chosen decomposition.

3.2.2. Smoothing on the (n− 1)-skeleton of the cubic decomposition

Lemma 3.2.3. Let Q ⊂ Rn be an n-dimensional cube with side length R. Let V ∈ Lp(Q,Rm).
Let ε > 0. There exists Vε ∈ C∞

c (Q,Rm) such that
ˆ
Q
Vε dLn =

ˆ
Q
V dLn

and

∥Vε − V ∥Lp(Q) < ε.

Proof. Without loss of generality, we will assume that Q is centered in the origin of Rn. Let
ψ ∈ C∞

c (12Q) and r0 ∈ (1/2, 1) such that
ˆ
Q
ψ dLn = 1 and Rn(1− rn0 ) <

ε

∥ψ∥Lp(Q)
.
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Let r ∈ (r0, 1) be such that

∥V ∥Lp(Q∖rQ) ⩽ min

{(
ε

∥ψ∥Lp(Q)

) 1
p

, ε

}
.

Set

s :=

ˆ
Q∖rQ

V dLn, Ṽ := χrQV + sψ ∈ Lp(Q,Rm).

Then
ˆ
Q
Ṽ dLn =

ˆ
rQ
V dLn +

(ˆ
Q∖rQ

V dLn
) ˆ

Q
ψ dLn =

ˆ
Q
V dLn.

Moreover

|s| =
∣∣∣∣ˆ
Q∖rQ

V dLn
∣∣∣∣ ⩽ |Q∖ rQ|

1
p′ ∥V ∥Lp(Q∖rQ)

⩽ (Rn(1− rn))
1
p′

(
ε

∥ψ∥Lp(Q)

) 1
p

⩽
ε

∥ψ∥Lp(Q)
.

Therefore

∥sψ∥Lp(Q) = ∥ψ∥Lp(Q)|s| ⩽ ε

and, by choice of Ṽ ,

∥V − Ṽ ∥Lp(Q) ⩽ ∥sψ∥Lp(Q) + ∥V ∥Lp(Q∖rQ) ⩽ 2ε.

Notice that Ṽ
∣∣
Q∖rQ ≡ 0.

Let η ∈ C∞
c (B1(0)) with

´
B1(0)

η dLn = 1. For any δ > 0 let

ηδ(x) :=
1

δn
η
(x
δ

)
∀x ∈ Rn.

Choose δ0 > 0 such that

2δ0 < dist
(
∂Q, ∂(rQ)

)
and ∥Ṽ − Ṽ ∗ ηδ0∥Lp(Q) ⩽ ε.

Set Vε := Ṽ ∗ ηδ0 . Then Vε ∈ C∞
c (Q),

ˆ
Q
Vε dLn =

ˆ
Rn

ηδ0 dLn
ˆ
Q
Ṽ dLn =

ˆ
Q
Ṽ dLn =

ˆ
Q
V dLn

and

∥V − Vε∥Lp(Q) ⩽ ∥V − Ṽ ∥Lp(Q) + ∥Ṽ − Vε∥Lp(Q) ⩽ 3ε.
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3.2.3. Extensions on good and bad cubes

Lemma 3.2.4 (Extension on the good cubes). Let Ω ⊂ Rn be a bounded, connected Lipschitz
domain and p ∈ [1,∞). Let f ∈ Lp(∂Ω) withˆ

∂Ω
f dH n−1 = 0 (3.2.8)

There exists a vector field V ∈ Lp(Ω) such thatˆ
Ω
V · ∇φdLn =

ˆ
∂Ω
fφ dH n−1 ∀φ ∈ C∞(Rn) (3.2.9)

and ˆ
Ω
|V |p dLn ⩽ C(p,Ω)

ˆ
∂Ω

|f |p dH n−1 (3.2.10)

for some constant C(p,Ω) depending only on p and Ω.
Moreover if p = 1, then V ∈ Lq(Ω) for any q ∈

[
1, n

n−1

)
.

Remark 3.2.2. Observe that (3.2.9) implies that V is a distributional solution of the following
Neumann problem {

div(V ) = 0 in Ω

V · ν∂Q = f on ∂Ω.

Proof.
Step 1: First we consider the case p ∈ (1,∞).
Let p′ :=

p

p− 1
. For any u ∈W 1,p′(Ω) let

Ep(u) =
1

p′

ˆ
Ω
|∇u|p′ dLn −

ˆ
∂Ω
fu dH n−1.

Recall that any function u ∈ W 1,p′(Ω) has a trace in Lp
′
(∂Ω), and that the trace operator is

continuous. Thus for any v ∈W 1,p′(Ω) with
ˆ
Ω
v = 0 by Poincaré Lemma there holds∣∣∣∣ˆ

∂Ω
fv dH n−1

∣∣∣∣ ⩽ ∥f∥Lp(∂Ω)∥v∥Lp′ (∂Ω) ⩽ C(p,Ω)∥f∥Lp(∂Ω)∥∇v∥Lp′ (Ω)

for some constant C(p,Ω) depending only on p and Ω. In particular the energy Ep is well defined
on W 1,p′(Ω).
Let

Ẇ 1,p′(Ω) :=

{
v ∈W 1,p′(Ω),

ˆ
Ω
v dLn = 0

}
and observe that Ep is strictly convex on Ẇ 1,p′(Ω). Let u be the unique minimizer of Ep in
Ẇ 1,p′(Ω). Then3

ˆ
Ω
|∇u|p′−2∇u · ∇φdLn =

ˆ
∂Ω
fφ dH n−1, ∀φ ∈ C∞(Rn). (3.2.11)

3The argument above shows that (3.2.11) holds for any φ ∈ C∞(Rn) with
´
Ω
φdLn = 0, but assumption (3.2.8)

implies that (3.2.11) remains valid for any φ ∈ C∞(Rn).
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Moreover, as u is a minimizer of Ep, Ep(u) ⩽ Ep(0) = 0. It follows that

1

p′

ˆ
Ω
|∇u|p′ dLn ⩽

ˆ
∂Ω
fu dH n−1 ⩽ ∥f∥Lp(∂Ω)∥u∥Lp′ (∂Ω) ⩽ C(p,Ω)∥f∥Lp(∂Ω)∥∇u∥Lp′ (Ω).

Thus
ˆ
Ω
|∇u|p′ dLn ⩽

(
p′C(p,Ω)

)p ˆ
∂Ω

|f |p dH n−1.

Set V := |∇u|p′−2∇u in Ω. Then by (3.2.11)
ˆ
Ω
V · ∇φdLn =

ˆ
∂Ω
fφ dH n−1 ∀φ ∈ C∞(Rn)

and
ˆ
Ω
|V |p dLn =

ˆ
Ω
|∇u|p′ dLn ⩽

(
p′C(p,Ω)

)p ˆ
∂Ω

|f |p dH n−1.

Step 2: Next we consider the case p = 1.
Let s > n. For any u ∈W 1,s(Ω) let

Es(u) =
1

s

ˆ
Ω
|∇u|s dLn −

ˆ
∂Ω
fu dH n−1.

Notice that Es is well defined and strictly convex in Ẇ 1,s(Ω).
Recall the Sobolev embedding

W 1,s(Ω) ↪→ C0,α(Ω)

for α = 1− n
s . Then for any u ∈W 1,s(Ω) the trace of u on ∂Ω lies in C0,α(∂Ω) and if

´
Ω u dL

n = 0.
Poincaré inequality implies

∥u∥L∞(∂Ω) ⩽ C(s,Ω)∥∇u∥Ls(Ω)

for some constant C(s,Ω) depending only on s and Ω.
Let u be the unique minimizer of Es in Ẇ 1,s(Ω). Then since Es(u) ⩽ Es(0) = 0 there holds

1

s

ˆ
Ω
|∇u|s dLn ⩽

ˆ
∂Ω
fu dH n−1

⩽ ∥f∥L1(∂Ω)∥u∥L∞(∂Ω) ⩽ C(s,Ω)∥f∥L1(∂Ω)∥∇u∥Ls(Ω).

Therefore (ˆ
Ω
|∇u|s dLn

) s−1
s

⩽ sC(s,Ω)

ˆ
∂Ω

|f | dH n−1.

Moreover, since u is a minimizer of Es,
ˆ
Ω
|∇u|s−2∇u · ∇φdLn =

ˆ
∂Ω
fφ dH n−1 ∀φ ∈ C∞(Rn).
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Similarly as before set V := |∇u|s−2∇u in Ω. Then

ˆ
Ω
|V | dLn =

ˆ
Ω
|∇u|s−1 dLn ⩽ Ln(Ω)

1
s

(ˆ
Ω
|∇u|s dLn

) s−1
s

⩽ sC(s,Ω)Ln(Ω)
1
s

ˆ
∂Ω

|f | dH n−1.

Moreover ˆ
Ω
|V |

s
s−1 dLn =

ˆ
Ω
|∇u|s dLn <∞

Remark 3.2.3. Let Q ⊂ Rn be the unit cube and let C(p,Q) be the corresponding constant in
(3.2.10). By an easy scaling argument one sees that for any ε > 0 one can choose C(p, εQ) =

εC(p,Q).

Lemma 3.2.5 (Extension on the bad cubes). Let Q := Qε(cQ) ⊂ Rn and r(x) := ∥x − cQ∥∞,
for every x ∈ Rn.
Consider any vector field V : Q→ Rn having the form

V (x) :=
1

2n−1
f

(
ε

2

x− cQ
r(x)

+ cQ

)
x− cQ
r(x)n

∀x ∈ Q,

for some f ∈ L∞(∂Q). Then, the following facts hold:
1. V ∈ Lp(Q) for every p ∈

[
1, n/(n− 1)

)
;

2. for some constant C(n, p) > 0 depending only on n and p we have
ˆ
Q
|V |p dLn ⩽ εC(n, p)

ˆ
∂Q

|f |p dH n−1, (3.2.12)

3. for every φ ∈ C∞(Rn) we have
ˆ
Q
V · ∇φdLn =

ˆ
∂Q
fφ dH n−1 −

( ˆ
∂Q
f dH n−1

)
φ(cQ). (3.2.13)

Proof. Without losing generality, we assume that ε = 1 and cQ = 0. First, notice that r : Rn → R
is a Lipschitz map such that |∇r(x)| = 1, for a.e. x ∈ Rn. Moreover, since all the norms are
equivalent on Rn there exists a constant C̃(n) > 0 depending only on n such that |x| ⩽ C̃r(x),
for a.e. x ∈ Rn. Now choose any p ∈

[
1, n/(n− 1)

)
. By coarea formula we have

ˆ
Q
|V |p dLn ⩽

C̃p

2(n−1)p

ˆ 1
2

0

1

ρ(n−1)p

ˆ
∂Q2ρ(0)

∣∣∣∣f( x

2ρ

)∣∣∣∣p dH n−1(x) dρ

=
C̃p

2(n−1)(p−1)

(ˆ 1
2

0

1

ρ(n−1)(p−1)
dρ

)( ˆ
∂Q

|f(y)|p dH n−1(y)

)
= C

ˆ
∂Q

|f |p dH n−1,
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with

C = C(n, p) :=
C̃p

2(n−1)(p−1)

ˆ 1
2

0

1

ρ(n−1)(p−1)
dρ < +∞.

Hence, 1. and 2. follow in once. We remark that the condition p ∈
[
1, n/(n − 1)

)
is needed in

order to guarantee the convergence of the integral in ρ.
We still need to prove 3. Pick any φ ∈ C∞(Rn). By the coarea formula we have

ˆ
Q
V · ∇φdLn =

1

2n−1

ˆ 1
2

0

1

ρn

ˆ
∂Q2ρ(0)

f

(
x

2ρ

)(
x · ∇φ(x)

)
dH n−1(x) dρ

= 2

ˆ 1
2

0

ˆ
∂Q
f(y)

(
y · ∇φ(2ρy)

)
dH n−1(y) dρ

=

ˆ
∂Q
f(y)

ˆ 1
2

0

d

dρ

(
φ(2ρy)

)
dρ dH n−1(y)

=

ˆ
∂Q
fφ dH n−1 −

(ˆ
∂Q
f dH n−1

)
φ(0)

and 3. follows.

3.2.4. Proof of Theorem 3.2.1

We are finally ready to prove Theorem 3.2.1.

Proof. Let V ∈ LpZ(Q1(0)) and let ε ∈ EV (constructed in Lemma 3.2.1). First, we notice that
by using Lemma 3.2.3 separately on every face F ∈ Fε we can build a vector field Vε ∈ C∞(Sε)

such that
ˆ
∂Q
Vε · ν∂Q dH n−1 =

ˆ
∂Q
V · ν∂Q dH n−1 ∀Q ∈ Cε

and ∑
Q∈Cε

ˆ
∂Q

|Vε − V |pf(cQ)dH n−1 < ε.

Let Ṽε be the vector field defined Ln-a.e. on Ωε as follows:
1. if Q ∈ Cε is a good cube, then we let Ṽε := Wε + (V )Q on Q, where Wε is the extension

of the datum f :=
(
Vε − (V )Q

)
· ν∂Q given by Lemma 3.2.4 (notice that for any good cube

condition (3.2.8) is satisfied by our choice of f);
2. if Q ∈ Cε is a bad cube, then we let

Ṽε :=
1

2n−1
f

(
ε

2

x− cQ
∥x− cQ∥∞

+ cQ

)
x− cQ

∥x− cQ∥n∞
, ∀x ∈ Q,

with f := Vε
∣∣
∂Q

· ν∂Q ∈ L∞(∂Q).
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We recall that no bad cubes will appear in the cubic decomposition in case p ∈
[
n/(n− 1),+∞

)
(see Remark 3.2.1).
Claim 1. We claim that

div(Ṽε) =
∑
Q∈C b

ε

dQδcQ distributionally on Ωε,

where

dQ :=

ˆ
∂Q
Vε · ν∂Q dH n−1 =

ˆ
∂Q
V · ν∂Q dH n−1 ∈ Z ∖ {0}, ∀Q ∈ C b

ε .

Indeed, pick any φ ∈ C∞
c (Ωε). Let Q ∈ Cε be a good cube. By the properties of the extension

given by Lemma 3.2.4 and the divergence theorem we have
ˆ
Q
Ṽε · ∇φdLn =

ˆ
∂Q

(
Vε − (V )Q

)
· ν∂QφdH n−1 +

ˆ
∂Q

(
(V )Q · ν∂Q

)
φdH n−1

=

ˆ
∂Q

(Vε · ν∂Q)φdH n−1.

On the other hand, let Q ∈ Cε be a bad cube. By (3.2.13), we have
ˆ
Q
Ṽε · ∇φdLn =

ˆ
∂Q

(Vε · ν∂Q)φdH n−1 − dQ⟨δcQ , φ⟩.

Hence we conclude thatˆ
Ωε

Ṽε · ∇φdLn =
∑
Q∈Cε

ˆ
∂Q

(Vε · ν∂Q)φdH n−1 −
∑
Q∈C b

ε

dQ⟨δcQ , φ⟩

= −
∑
Q∈C b

ε

dQ⟨δcQ , φ⟩.

The claim follows.
Claim 2. We claim that ∥Ṽε − V ∥Lp(Ωε,µ) → 0 as ε→ 0+ in EV .
Recall estimate (3.2.6) and notice that

∥Ṽε − V ∥pLp(Ωε,µ)
⩽ (1 + C)(Aε +Bε),

with

Aε :=
∑
Q∈C g

ε

ˆ
Q
|Ṽε − V |pf(cQ) dLn,

Bε :=
∑
Q∈C b

ε

ˆ
Q
|Ṽε − V |pf(cQ) dLn.

By triangle inequality and by the estimate in Lemma 3.2.4, we have that

Aε ⩽ 2p−1

( ∑
Q∈C g

ε

ˆ
Q
|Ṽε − (V )Q|pf(cQ) dLn +

∑
Q∈C g

ε

ˆ
Q
|V − (V )Q|pf(cQ) dLn

)
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⩽ 2p−1

( ∑
Q∈C g

ε

ˆ
Q
|Wε|pf(cQ) dLn +

∑
Q∈C g

ε

ˆ
Q
|V − (V )Q|pf(cQ) dLn

)

⩽ 2p−1

(
εCp

∑
Q∈C g

ε

ˆ
∂Q

|Vε − (V )Q|p f(cQ)dH n−1 +
∑
Q∈C g

ε

ˆ
Q
|V − (V )Q|pf(cQ) dLn

)
,

where Cp := C(p,Q) (see Remark 3.2.3). Again by triangle inequality and because of our choice
of Vε, we have

ε
∑
Q∈C g

ε

ˆ
∂Q

|Vε − (V )Q|pf(cQ) dH n−1 ⩽ 2p−1

(
ε
∑
Q∈C g

ε

ˆ
∂Q

|Vε − V |pf(cQ) dH n−1

+ ε
∑
Q∈C g

ε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1

)

⩽ C

(
ε2 + ε

∑
Q∈C g

ε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1

)
.

Thus by Lemma 3.2.1 it follows that

ε
∑
Q∈Cε

ˆ
∂Q

|Vε − (V )Q|pf(cQ) dH n−1 → 0 as ε→ 0+ in EV .

Moreover, by (3.2.6) we have∑
Q∈C g

ε

ˆ
Q
|V − (V )Q|pf(cQ) dLn ⩽ 2p(1 + C)

∑
Q∈C g

ε

 
Qε(0)

ˆ
Q
|V (x+ y)− V (y)|pf(y) dLn

⩽ 2p(1 + C)

 
Qε(0)

∥V (x+ · )− V ∥pLp(Ωε,µ)
→ 0

as ε→ 0+ in EV . Hence, Aε → 0 as ε→ 0+ in EV .
On the other hand, by (3.2.12) we have

Bε ⩽ 2p−1

( ∑
Q∈C b

ε

ˆ
Q
|Ṽε|pf(cQ) dLn +

∑
Q∈C b

ε

ˆ
Q
|V |pf(cQ) dLn

)

⩽ 2p−1

(
Cε

∑
Q∈C b

ε

ˆ
∂Q

|Vε|pf(cQ) dH n−1 +

ˆ
Ωb

ε

|V |pf(cQ) dLn
)
.

We notice that

ε
∑
Q∈C b

ε

ˆ
∂Q

|Vε|pf(cQ) dH n−1 ⩽ 2p−1

(
ε
∑
Q∈C b

ε

ˆ
∂Q

|Vε − V |pf(cQ) dH n−1

+ ε
∑
Q∈C b

ε

ˆ
∂Q

|V |pf(cQ) dH n−1

)

⩽ 4p−1

(
2nε2 + ε

∑
Q∈C b

ε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1
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+ ε
∑
Q∈C b

ε

ˆ
∂Q

|(V )Q|pf(cQ) dH n−1

)
.

Moreover, by (3.2.6) we have

ε
∑
Q∈C b

ε

ˆ
∂Q

|(V )Q|pf(cQ) dH n−1 ⩽ ε
∑
Q∈C b

ε

ˆ
∂Q

( 
Q
|V |pf(cQ) dLn

)
dH n−1

⩽
∑
Q∈C b

ε

ε

(  
Q
|V |pf(cQ) dLn

) ˆ
∂Q

dH n−1

⩽ 2n
∑
Q∈C b

ε

ˆ
Q
|V |pf(cQ) dLn = 2n

ˆ
Ωb

ε

|V |pf(cQ) dLn

⩽ (1 + C)2n

ˆ
Ωb

ε

|V |pf dLn.

Thus, we have obtained

Bε ⩽ C

(
ε2 + ε

∑
Q∈C b

ε

ˆ
∂Q

|V − (V )Q|pf(cQ) dH n−1 +

ˆ
Ωb

ε

|V |pf dLn
)
,

for some constant C > 0 which does not depend on ε ∈ EV . By Lemma 3.2.1 and Remark 3.2.1
we get that Bε → 0 as ε→ 0+ in EV . Hence, the claim follows.
Next we show that by rescaling Vε we obtain a vector field with similar properties defined on the
whole Q1(0). Let

αε := sup{α ∈ [1/2, 1) s.t. Q1(0) ⊂ α−1Ωε}, ∀ ε ∈ EV .

Notice that αε → 1− as ε→ 0+ in EV . Define the vector field V ε := αn−1
ε Ṽε(αε ·) : Q1(0) → Rn.

It’s straightforward that V ε ∈ Lp(Q1(0), µ) in case p > 1 and V ε ∈ Ls(Q1(0), µ) for some s > 1

in case p = 1, for every given ε ∈ EV . A direct computation also shows that the distributional
divergence of V ε on Q1(0) is given by

div(V ε) =
∑
Q∈C b

ε

dQδα−1
ε cQ

,

with

dQ′ =

{
dQ′ if α−1

ε cQ′ ∈ Q1(0),

0 otherwise.

We claim that V ε → V in Lp(Q1(0), µ). Indeed, we have
ˆ
Q1(0)

|V ε − V |pf dLn =

ˆ
Q1(0)

|αn−1
ε Ṽε(αεx)− V (x)|p f(x)dLn(x)

= αp(n−1)−n
ε

ˆ
αεQ1(0)

|Ṽε(y)− α−(n−1)
ε V (α−1

ε y)|pf(α−1
ε y) dLn(y)

= αp(n−1)−n
ε

( ˆ
Ωε

|Ṽε(y)− α−(n−1)
ε V (α−1

ε y)|pf(y) dLn(y)
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+

ˆ
Ωε

|Ṽε(y)− α−(n−1)
ε V (α−1

ε y)|p f(α
−1
ε y)− f(y)

f(y)
f(y) dLn(y)

)
⩽ Cn,p

( ˆ
Ωε

|Ṽε − V |pf dLn +
ˆ
Ωε

|V − Pα−1
ε
V |pf dLn

)
,

(see Lemma 3.C.2 for the definition of Pα−1
ε
V ). By Lemma 3.C.2 and since Ṽε → V in Lp(Ωε, µ),

our claim follows.
Thus, we have built a vector field V ε such that:

1. V ε ∈ Lp(Q1(0), µ) and V ε ∈ Ls(Q1(0),Ln) for s = p if p > 1 and s > 1 if p = 14;
2. the distributional divergence of V ε on Q1(0) is given by a finite sum of delta distributions

supported on a finite set Xε ⊂ Q1(0) with integer weights {dx s.t. x ∈ Xε};
3. ∥V ε − V ∥Lp(Q1(0),µ) → 0 as ε→ 0+ in EV .

Now we are ready to reach the conclusions 1 and 2 of Theorem 3.2.1.

1. If q ∈ [0, 1] and p ∈
[
1, n

n−1

)
we possibly have Xε ̸= ∅, since bad cubes can appear in the

cubic decompositions. Since V ε always belongs to Ls(Q1(0)) for some s > 1 (with s = p if
p itself is already greater than 1), we can Hodge-decompose V ♭

ε as V ♭
ε = dφ+ d∗A for some

A ∈ Ω2
W 1,s(Q1(0)) and some φ ∈ W 1,s(Q1(0)). Applying d∗ to the previous decomposition

we obtain

∆φ = d∗(V
♭
ε) = div(V ε) =

∑
x∈Xε

dxδx.

By standard elliptic regularity, φ ∈ C∞(Q1(0) ∖ Xε). Choose Aε ∈ Ω2(Q1(0)) such that
∥Aε − A∥Ω2

W1,s (Q1(0)) ⩽ ε. Then ∥d∗Aε − d∗A∥Ω1
Lp(µ)

(Q1(0)) ⩽ ε. Let υε := dφ+ d∗(Aε) and

let Uε := υ#ε . Then Uε ∈ LpR(Q1(0), µ) for every ε ∈ EV and Uε → V in Lp(Q1(0), µ).
2. If q ∈ (−∞, 0] and p ∈

[
n
n−1 ,+∞

)
no bad cubes are allowed in the cubic decomposition,

thus (V ε)ε∈EV
is a sequence of divergence-free vector fields converging to V in Lp(Q1(0), µ)

as ε→ 0+ in EV . Hence V itself is divergence-free.

Remark 3.2.4. Notice that if p = 1, Vk ∈ Ls(Qn1 (0)) for any k ∈ N and for any s ∈
[
1, n

n−1

)
.

Remark 3.2.5. Observe that this proof can be used to show that the analogous approximation
result holds if we assume that V satisfies the first three conditions of Definition 3.1.2 and in
addition we require that for every ρ ∈ RF,x0 we have that

ˆ
∂Qρ(x0)

i∗∂Qρ(x0)
F ∈ S

for a set S ⊂ R such that 0 ∈ S and 0 is an isolated point in S. In this case the vector field V

can be approximated in Lp by a sequence of vector fields (Vn)n∈N smooth outside a finite set of
points and such that for any n ∈ N, div(Vn) is a finite sum of deltas with coefficients in S.

4In fact even when µ is different from Ln, Ṽε is constructed through Lemmata 3.2.4 and 3.2.5 as extension of a
smooth boundary datum, thus Ṽε lies in Lr(Ωε) for any r ∈ [1, n

n−1
) if p < n and in Lr(Ωε) for any r ∈ [1,∞)

if p ⩾ n
n−1

. It follows that V ε ∈ Lr(Ωε) for any r ∈ [1, n
n−1

) if p < n and V ε ∈ Lr(Ωε) for any r ∈ [1,∞) if
p ⩾ n

n−1
.
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Lemma 3.2.6. Let I ⊂ R be a connected interval and p ∈ [1,+∞). Then

LpR(I)
Lp

= Lp(I,Z) + R = LpZ(I).

Proof. We start by showing the first equality. Notice that

LpR(I) =

V = c+
∑
j∈J

ajχIj : (Ij)j∈J is a finite partition of I, aj ∈ Z∀ j ∈ J, c ∈ [0, 1)

 .

In other words, LpR(I) consists of all integer-valued step functions and their translations by a
constant.
First we show the inclusion ” ⊃ ”: let f = g + a with g ∈ Lp(I,Z) and a ∈ [0, 1) and let ε > 0.
For any k ∈ N set gk := 1|g|⩽kg. Then there exists K ∈ N such that ∥gK − g∥Lp(I) <

ε
2 .

Now for any j ∈ {−K, ...,K} g−1
K (j) = g−1(j) is a measurable set, therefore there exists a finite

collection of disjoint intervals (Iji )i∈Jj such that L
(⋃

i∈Jj I
j
i△g−1(j)

)
⩽ ε

2(2K+1)2
.

For any j ∈ {−K, ...,K} set Aj :=
⋃
i∈Jj I

j
i ∖

(⋃
j′ ̸=j

⋃
i∈Jj′ I

j′

i

)
. Then Aj is a finite union of

intervals and

L(Aj△g−1(j)) ⩽ L(Aj ∖ g−1(j)) +
∑
j′ ̸=j

L

⋃
i∈Jj

Ij
′

i ∩ g−1(j)

 ⩽
ε

2(2K + 1)
.

Set

g̃K =

{
j if x ∈ Aj

0 otherwise

Then by construction g̃K ∈ LpR(I) and ∥g̃K − g∥Lp(I) ⩽ ε. We conclude that any g ∈ Lp(I,Z) lies
in the closure of LpR(I). This shows ” ⊃ ”. As Lp(I,Z) +R = Lp(I,Z) + [0, 1) is closed in Lp(I),
the inclusion "⊂" holds as well.
Next we show the second equality. Let’s start with "⊂". Let g ∈ Lp(I,Z), a ∈ R and f = g+a. Let
x0 ∈ I, then for a.e. r ∈ (0,dist(x0, ∂I)) we have f(x0+r)−f(x0−r) = g(x0+r)−g(x0−r) ∈ Z.
Let R̃F,x0 denote the set of all such r. Set RR,x0 to be the intersection of R̃F,x0 with the set of
Lebesgue points of f . Then f satisfies Definition 3.1.2 and thus f ∈ LpZ(I).
To show "⊃" let f ∈ LpZ(I). Set F : I → S1, x 7→ ei2πf(x). Then F is a measurable bounded
function. Notice that for any x0 ∈ I, for a.e. r ∈ (0,dist(x0, ∂I)) there holds F (x0−r) = F (x0+r).
This implies that F is constant: this can be seen for instance approximating F by smooth functions
with the same symmetry properties away from ∂I (convolving with a symmetric mollifier with
small support), which then have to be constant. Choose a ∈ R such that F ≡ ei2πa, then
f − a ∈ Lp(I,Z). This completes the proof.

Remark 3.2.6. From Theorem 3.2.1 it follows immediately that

LpR(Q1(0))
Lp

= LpZ(Q1(0)).

To see this it is enough to check that LpZ(Q1(0)) is closed in Lp, which can be shown by simple
application of the coarea formula.
Notice that in case p ∈ [n/(n− 1),+∞) we can approximate V strongly in Lp with smooth and
divergence free vector fields. This is a straightforward consequence of Hodge decomposition.
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3.2.5. A characterization of Ωn−1
p,Z

First of all we apply the Strong approximation Theorem to obtain a useful characterization of
the class F ∈ Ωn−1

p,Z (Q1(0)).

Theorem 3.2.2. Let n ∈ N>0, p ∈ [1,+∞). Let F ∈ Ωn−1
p (Qn1 (0)). Then, the following are

equivalent:
1. there exists L ∈ R1(Q1(0)) such that ∂L = ∗dF in (W 1,∞

0 (Q1(0)))
∗ and

M(L) = sup
φ∈D(Q1(0)),
||dφ||L∞⩽1

ˆ
Q1(0)

F ∧ dφ.

2. for every Lipschitz function f : Q1(0) → [a, b] ⊂ R such that f |∂Q1(0) ≡ b, we have
ˆ
f−1(t)

i∗f−1(t)F ∈ Z, for L1-a.e. t ∈ [a, b];

3. F ∈ Ωn−1
p,Z (Q1(0)).

Proof. We just need to show that 1 ⇒ 2, 2 ⇒ 3 and 3 ⇒ 1. We prove these implications
separately.
1 ⇒ 2. Assume 1. Let L ∈ R1(Q1(0)) be given by

⟨L, ω⟩ =
ˆ
Γ
θ⟨ω, L⃗⟩ dH 1, ∀ω ∈ D1(Q1(0)),

where Γ ⊂ Q1(0) is a locally 1-rectifiable set, L⃗ is a Borel measurable unitary vector field on Γ

and θ ∈ L1(Γ,H 1) is a Z-valued function. Pick any Lipschitz function f : Q1(0) → R and let
φ ∈ C∞

c ((−∞, b)) be such that
´
R φdL

1 = 0. By the coarea formula we have
ˆ
Q1(0)

F ∧ f∗(φ volR) =

ˆ +∞

−∞
φ(t)

( ˆ
f−1(t)

i∗f−1(t)F

)
dt.

At the same time, by the coarea formula for countably 1-rectifiable sets, we have

⟨L, f∗(φ volR)⟩ =
ˆ
Γ
θ⟨f∗(φ volR), L⃗⟩ dH 1 =

ˆ +∞

−∞
φ(t)

( ˆ
Γ∩f−1(t)

θ̃

)
dt,

where θ̃ : Γ → Z is given by θ̃ := sgn(⟨f∗ volR, L⃗⟩)θ. Let Φ ∈ C∞
c ((−∞, b)) satisfy dΦ = φ volR.

Notice that since f is proper f∗Φ ∈W 1,∞
0 (Q1(0)). Then, by hypothesis, we have

ˆ
Q1(0)

F ∧ f∗(φ volR) =

ˆ
Q1(0)

F ∧ df∗Φ = ⟨∗dF, f∗Φ⟩ = ⟨∂L, f∗Φ⟩

= ⟨L, d(f∗Φ)⟩ = ⟨L, f∗(dΦ)⟩ = ⟨L, f∗(φ volR)⟩.

Thereforeˆ ∞

−∞
φ(t)

(ˆ
f−1(t)

i∗f−1(t)F −
ˆ
Γ∩f−1(t)

θ̃

)
dt = 0, ∀φ ∈ C∞

c ((−∞, b)) s.t.
ˆ
R
φ = 0.

80



We conclude that
ˆ
f−1(t)

i∗f−1(t)F −
ˆ
Γ∩f−1(t)

θ̃ = c, for L1-a.e. t ∈ [a, b],

for some constant c ∈ R. We claim that c = 0. In fact let m ∈ N ∖ {0}. Integrating both sides
on (−m,m) we get

ˆ
{|f |<m}

F ∧ f∗ volR−
ˆ
Γ∩{|f |<m}

θ⟨f∗ volR, L⃗⟩ = 2mc. (3.2.14)

Since f∗ volR = df , we have
ˆ
Q1(0)

F ∧ f∗ volR−
ˆ
Γ
θ⟨f∗ volR, L⃗⟩ =

ˆ
Q1(0)

F ∧ df − ⟨L, df⟩ = ⟨∗dF − ∂L, f⟩ = 0.

Thus, by letting m → +∞ in (3.2.14), we get that the left-hand-side converges to 0 whilst the
right-hand-side diverges to +∞, unless c = 0. Hence we conclude that c = 0, i.e.

ˆ
f−1(t)

i∗f−1(t)F =

ˆ
Γ∩f−1(t)

θ̃ ∈ Z, for L1-a.e. t ∈ [a, b],

since Γ ∩ f−1(t) consists of finitely many points for L1-a.e. t ∈ R.
2 ⇒ 3. Assume 2. Given x0 ∈ Q1(0), let fx0 := min

{
∥· − x0∥∞,

rx0
2

}
. We claim that we can find

RF,x0 as in Definition 3.1.2. Indeed, let L ⊂ Q1(0) be the set of the Lebesgue points of F . Let
rx0 := 2 dist∞(x0, ∂Q1(0)). Then, by the coarea formula, we have

0 = Ln
(
Qrx0 (x0)∖ L

)
=

1

2n

ˆ rx0

0
H n−1

(
(Q1(0)∖ L) ∩ ∂Qρ(x0)

)
dρ,

which implies that there exists a set Ex0 ⊂ (0, rx0) such that
1. L1

(
(0, rx0)∖ Ex0

)
= 0;

2. for every ρ ∈ Ex0 , H n−1-a.e. x ∈ ∂Qρ(x0) is a Lebesgue point for F .
Hence, for every ρ ∈ Ex0 it makes sense to consider the pointwise restriction of F to ∂Qρ(x0).
Notice that, by the coarea formula, we have

ˆ
Ex0

( ˆ
∂Qρ(x0)

∣∣F ∣∣p dH n−1

)
dρ = 2n

ˆ
Qrx0

(x0)
|F |p dLn < +∞,

which implies
ˆ
∂Qρ(x0)

∣∣F ∣∣p dH n−1 < +∞, for L1-a.e. ρ ∈ (0, Ex0).

Moreover, by Statement 2., we have
ˆ
f−1
x0

(ρ)
i∗
f−1
x0

(ρ)
F =

ˆ
∂Qρ(x0)

i∗∂Qρ(x0)
F ∈ Z, for L1-a.e. ρ ∈ (0, Ex0).

Our claim follows immediately.
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3 ⇒ 1. Assume 3. By Theorem 3.1.1, we can find a sequence {Fk}k∈N ⊂ Ωn−1
p,R (Q1(0)) such that

Fk → F strongly in Lp. Since the estimate

|⟨TFk
− TF , ω⟩| ⩽ C||Fk − F ||Lp

holds for every ω ∈ D1(Q1(0)) such that ||ω||L∞ ⩽ 1 and for every k ∈ N, we conclude that

sup
φ∈W 1,∞

0 (Q1(0)),
∥dφ∥L∞⩽1

⟨∗dFk − ∗dF, φ⟩ ⩽ C||Fk − F ||Lp → 0 as k → ∞. (3.2.15)

Fix any ε ∈ (0, 1). By (3.2.15) we can find a subsequence
{
Fkj(ε)

}
j∈N ⊂ Ωn−1

p,R (Q1(0)) such that

∥∗dFkj(ε) − ∗dFkj+1(ε)∥(W 1,∞
0 (Q1(0)))∗

⩽
ε

2j
, for every j ∈ N.

For every h ∈ N, let Lεh be a minimal connection for the singular set of Fkh(ε) (the existence of
such a minimal connection is proved in Proposition 3.A.1. Analogously, for every j ∈ N, let Lεj,j+1

be the minimal connection for the singular set of Fkj(ε) − Fkj+1(ε). Define the following sequence
of integer 1-currents on Q1(0):

L̃εh :=


Lε0 if h = 0,

Lε0 −
h−1∑
j=0

Lεj,j+1 if h > 0,
for every h ∈ N.

Clearly

∂L̃εh = ∂Lε0 −
h−1∑
j=0

∂Lεj,j+1 = ∂Lε0 −
h−1∑
j=0

(∂Lεj − ∂Lεj+1) = ∂Lεh = ∗dFkh(ε).

Moreover, since Lεj,j+1 is a minimal connection, it holds that

M(Lεj,j+1) = ∥∗dFkj(ε) − ∗dFkj+1(ε)∥(W 1,∞
0 (Q1(0)))∗

⩽
ε

2j
, for every j ∈ N.

Thus,

M(L̃εh+1 − L̃εh) = M(Lεh,h+1) ⩽
ε

2h
, for every h ∈ N,

which amounts to saying that the sequence {L̃εh}h∈N is a Cauchy sequence in mass. Hence, by
the closure of integer currents under mass convergence (see Lemma 3.C.1), there exists an integer
1-current L̃ε ∈ R1(Q1(0)) such that

M(L̃εh − L̃ε) → 0 as h→ ∞,

Notice that

∂L̃ε = lim
h→∞

∂L̃εh = lim
h→∞

∗dFkh(ε) = ∗dF in (W 1,∞
0 (Q1(0)))

∗.

The family of integer 1-cycles {L̃ε − L̃1/2}0<ε<1 ⊂ R1(Q1(0)) is uniformly bounded in mass.
Indeed, first we notice that by (2.10) it holds that

M(Lεh) = ∥∗dFkh(ε)∥(W 1,∞
0 (Q1(0)))∗

⩽ C, ∀h ∈ N, ∀ ε ∈ (0, 1),
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where C > 0 is a constant independent on h and ε. Thus, we have

M(L̃εh) ⩽ M(Lε0) +
h−1∑
j=0

M(Lεj,j+1) ⩽ C +
+∞∑
j=0

ε

2j
⩽ C + ε ⩽ C + 1 ∀h ∈ N, ∀ ε ∈ (0, 1).

Since L̃εh → L̃ε in mass as h→ +∞ for every ε ∈ (0, 1), we have

M(L̃ε − L̃1/2) ⩽ M(L̃ε) +M(L̃1/2) ⩽ 2(C + 1).

Hence, by standard compactness arguments for currents (see for instance [53], Theorem 7.5.2),
we can find a sequence εk → 0 and an integer 1-cycle L̃ ∈ R1(Q1(0)) with finite mass such that
L̃εk − L̃1/2 → L̃ weakly in D1(Q1(0)) as k → +∞. If we let L := L̃1/2 + L̃ then we get L̃εk → L

weakly in D1(Q1(0)). By construction, L is again an integer 1-current with finite mass such that
∂L = ∂L̃1/2 = ∗dF in (W 1,∞(Q1(0)))

∗. We claim that

M(L) = inf
T∈M1(Q1(0)),

∂T=∗dF

M(T ).

By contradiction, assume that we can find T ∈ M1(Q1(0)) such that ∂T = ∗dF and

M(T ) <M(L) ⩽ lim inf
k→∞

M(L̃εk),

where the last inequality follows by weak convergence and lower semicontinuity of the mass. Then,
we can find some h ∈ N such that

M(T ) <M(L̃εh)− 2εh.

Moreover, since M(Lε0 − L̃ε) ⩽ 2ε for every 0 < ε < 1, it holds that

M(Lεh0 − L̃εh) ⩽ 2εh.

We define T̃ := T + Lεh0 − L̃εh and we notice that ∂T̃ = ∗dFk0(εh). Moreover, by the minimality
of Lεh0 , we conclude that

M(Lεh0 ) ⩽ M(T̃ ) ⩽ M(T ) +M(Lεh0 − L̃εh) <M(Lεh0 ),

which is a contradiction. Thus, our claim follows.
Since L ∈ R1(Q), we get that

M(L) = inf
T∈R1(Q1(0)),
∂T=∗dF

M(T ) = inf
T∈M1(Q1(0)),

∂T=∗dF

M(T )

and, by Lemma 3.A.2, we have

inf
T∈M1(Q1(0)),

∂T=∗dF

M(T ) = sup
φ∈D(Q1(0)),
||dφ||L∞⩽1

ˆ
M
F ∧ dφ.

Hence, 1. follows.

83



Remark 3.2.7. We notice that in the proof of Theorem 3.2.2 we have never used the minimality
property of L while showing that 1 ⇒ 2. Hence whenever F ∈ Ωn−1

p (Qn1 (0)) admits a connection
we have F ∈ Ωn−1

p,Z (Qn1 (0)) in the sense of Definition 3.1.2 and the conclusions of Theorem 3.1.1
hold for F .

By the previous remark we can deduce the following result from the proof of Theorem 3.2.2.

Corollary 3.2.1. Let F ∈ Ωn−1
p (Qn1 (0)) and assume that there exists an integer 1-current of finite

mass I ∈ R1(Q1(0)) such that ∂I = ∗dF . Then there exists an integer 1-current L ∈ R1(Q1(0))

of finite mass such that ∂L = ∗dF and

M(L) = inf
T∈R1(Q1(0))
∂T=∗dF

M(T ).

In other words, whenever there exists a connection for F , then there exists a minimal connection
for F .

3.2.6. The case of ∂Qn+1
1 (0)

In order to extend the previous result to more general manifolds we introduce the following
definition.

Definition 3.2.1. Let M be a Lipschitz m-manifold embedded in Rn. Let p ∈ [1,∞). Set

Ω1
p,R,∞(M) :=

{
α ∈ Ω1

p(M) ∩ Ω1
L∞
loc
(M ∖ S) : ∗dα =

∑
i∈I

diδpi

}
,

where I is a finite index set, di ∈ Z, pi ∈ S for any i ∈ I and F := {pi}i∈I .

The previous definition is motivated by the following observation: let M be a Lipschitz m-
manifold, N a smooth m-manifold, φ : M → N a bi-Lipschitz map. Let F ∈ Ω1

p,R(N). Then
φ∗F ∈ Ω∞

p,R,∞ (see Lemma 3.2.7).

Corollary 3.2.2. Let n ∈ N⩾2. Assume that F ∈ Ωn−2
p,Z (∂Qn1 (0)) admits a connection. Then, the

following facts hold:
1. if p ∈

[
1, (n − 1)/(n − 2)

)
, then there exists a sequence {Fk}k∈N ⊂ Ωn−2

p,R,∞(∂Qn1 (0)) such
that Fk → F strongly in Lp;

2. if p ∈
[
(n− 1)/(n− 2),+∞

)
, then ∗dF = 0 distributionally on ∂Qn.

Proof. Let N = (0, ..., 0, 12) be the north pole in ∂Qn1 (0) ⊂ Rm and let

U :=
{
(x1, ..., xn−1, xn) ∈ ∂Qn1 (0) s.t. xn =

1

2

}
be the upper face of ∂Qn1 (0). Let q := (n− 1)− (n− 2)p. For every x = (x1, ..., xn) ∈ Rn, we let
x′ := (x1, ..., xn−1) ∈ Rn−1. Define Φ : ∂Qn1 (0)∖N ⊂ Rn → Qn−1

1 (0) by

Φ(x) :=


(
1

2
−

√
2

4
∥x′∥

1
2∞

)
x′

∥x′∥∞
on U ∖N,

g(x) on ∂Qn1 (0)∖ U,
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where the map g : ∂Qn1 (0)∖ U → Qn−1
1/2 (0) is any bi-Lipschitz homeomorphism such that g ≡(

1
2 −

√
2
4 ∥x′∥

1
2∞

)
x′

∥x′∥∞ on ∂U . Notice that Φ is an homeomorphism from ∂Qn1 (0)∖N to Qn−1
1 (0).

We denote its inverse map by Ψ.
We have that Ψ is Lipschitz on Qn−1

1 (0) and Φ is Lipschitz on every compact set K ⊂ ∂Qn1 (0)∖N ,
since there exists C > 0 such that

|dΦ(x)| ⩽ C

∥x−N∥
1
2∞

, ∀x ∈ ∂Qn1 (0)∖N,

|dΨ(y)| ⩽ C

(
1

2
− ∥y∥∞

)
, ∀ y ∈ Qn−1

1 (0).

Define F̃ := Ψ∗F and fix any ε ∈ (0, 1/4). Notice that

ˆ
Qn−1

1 (0)

(
1

2
− ∥ · ∥∞

)q
|F̃ |p dH n−1 ⩽ C

ˆ
Qn−1

1 (0)

(
1

2
− ∥ · ∥∞

)n−1

|F ◦Ψ|p dH n−1

⩽ C

ˆ
∂Qn

1 (0)
|F |p dH n−1 < +∞.

Moreover if I ∈ R1(∂Q
n
1 (0)) and ∗dF = ∂I, then Φ∗I ∈ R1(∂Q

n−1
1 (0)) and ∗dF̃ = ∂Φ∗I (see

Lemma 3.2.7). This implies that F̃ ∈ Ωn−2
p,Z (Qn−1

1 (0), µ) with µ := (12 − ∥·∥∞)q Ln−1 in the sense
of Definition 3.1.2.
Let’s consider first the case p ∈

[
1, (n− 1)/(n− 2)

)
. Notice that in this case q > 0.

By Theorem 3.2.1 with f := (12 − ∥·∥∞)q there exists a (n− 2)-form F̃ε ∈ Ωn−2
p,R (Ωε,aε) such that

∥F̃ε − F̃∥Lp(Sε,aε )
⩽ ε and

∥F̃ε − F̃∥pLp(Ωε,aε ,µ)
→ 0 (3.2.16)

as ε→ 0+ in EF̃ .
Define Fε := Φ∗

aεF̃ε on ∂Qn1 (0)∖ Uε, with Φaε := Φ + aε and Uε := Φ−1
aε (Q

n−1
1 (0)∖ Ωε,aε).

Notice that

∥Fε − F∥pLp(∂Qn
1 (0)∖Uε)

⩽ C

ˆ
∂Qn

1 (0)∖Uε

1

∥· −N∥(n−2)p
∞

|F̃ε ◦ Φaε − F̃ ◦ Φaε |p dH n−1

+ C

ˆ
∂Qn

1 (0)∖Uε

1

∥· −N∥(n−2)p
∞

|F̃ ◦ Φaε − F̃ ◦ Φ|p dH n−1

⩽ C

(ˆ
Ωε,aε

|F̃ε − F̃ |pf dH n−1

+

ˆ
Qn−1

1−ε (0)
|F̃ (· − aε)− F̃ |pf dH n−1

)
.

The first term tends to zero as ε → 0+ in EF̃ by (3.2.16), while the second tends to zero as
ε→ 0+ by (3.2.5). Therefore we have

∥Fε − F∥pLp(∂Qn
1 (0)∖Uε)

→ 0
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as ε→ 0+ in EF̃ .
Now we notice thatˆ

∂Uε

i∗∂Uε
Fε = −

ˆ
∂(∂Qn

1 (0)∖Uε)
i∗∂(∂Qn

1 (0)∖Uε)
Fε

=

ˆ
∂Ωε,aε

i∗∂Ωε,aε
F̃ε =

ˆ
∂Ωε,aε

i∗∂Ωε,aε
F̃ =: bε ∈ Z.

If bε = 0, then we use Lemma 3.2.4 to extend Fε inside Uε. If bε ̸= 0, then we use Lemma 3.2.5
to extend Fε inside Uε (notice that Uε is an (n − 1)-cube of side-length 8ε2 contained in U and
centered at N , for ε sufficiently small). In both cases, the following estimate holds:ˆ

Uε

|Fε|p dH n−1 ⩽ Cε2
ˆ
∂Uε

|Fε|p dH n−2

⩽ Cε2
(ˆ

∂Uε

|F − Fε|pdH n−2 +

ˆ
∂Uε

|F |pdH n−2

)
.

Notice that the first term on the right hand side tends to zero as ε → 0+ in EF̃ , since ∥F̃ε −
F̃∥Lp(Sε,aε )

⩽ ε for any ε ∈ EF̃ . In order to control the second term, pick any δ > 0 sufficiently
small and notice that, by coarea formula, we have δ

0
ε2
ˆ
∂Uε

|F |p dH n−2 dL1(ε) ⩽
ˆ δ

0
ε

ˆ
Qn−1

8ε2
(N)

|F |p dH n−2 dL1(ε)

⩽
1

16

ˆ 8δ2

0

ˆ
∂Qn−1

ζ (N)
|F |p dH n−2 dL1(ζ)

⩽
2n−1

16

ˆ
Qn−1

8δ2
(N)

|F |p dH n−1 → 0+

as δ → 0+. This implies that we can pick a sequence {εj}j∈N ⊂ EF̃ such that εj → 0+ and

ε2j

ˆ
∂Uεj

|F |p dH m−1 → 0+

as j → +∞. Thus

∥Fεj − F∥pLp(Uεj )
⩽ 2p−1

(
∥Fεj∥

p
Lp(Uεj )

+ ∥F∥pLp(Uεj )

)
→ 0

as j → +∞, since H n−1
(
Uεj
)
→ 0+ as εj → 0+. Hence, we conclude that

∥Fεj − F∥pLp(∂Qn
1 (0))

→ 0

as j → +∞. Moreover, by construction we have that ∗dFεj is a finite sum of Dirac-deltas with
integer coefficients, for any j ∈ N. Thus arguing as in the final step of the proof of Theorem
3.2.1 (i.e. by Hodge decomposition), for any j ∈ N we can find F̂εj ∈ Ω1

p,R,∞(∂Qn1 (0)) such that
∥Fεj − F̂εj∥Lp(∂Qn

1 (0))
< εj . The sequence {F̂j}j∈N then has the desired properties. This concludes

the proof in the case p ∈
[
1, (n− 1)/(n− 2)

)
.

If p ∈
[
(n− 1)/(n− 2),+∞

)
notice that q ⩽ 0. Therefore by Remark 3.2.1 we may assume, up to

passing to a subsequence, that no bad cube appears in the construction of F̃ε. Hence repeating
the first part of the proof as in the previous case, we get bεj = 0 and ∗dFεj = 0 on ∂Qn1 (0) for
any j ∈ N. Thus we obtain that F can be approximated in Ωn−1

p (∂Qn1 (0)) by a sequence (Fεj )j∈N
such that for any j ∈ N there holds ∗dFεj = 0, and this property passes to the limit.
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Remark 3.2.8. Notice that if p = 1, for any k ∈ N we have that Fk ∈ Ωn−1
q (∂Qn1 (0)) for some

q > 1 which does not depend on k (compare with Remark 3.2.4).

Lemma 3.2.7. Let M,N ⊂ Rn be Lipschitz m-manifolds in Rn. Let φ :M → N be a bi-Lipschitz
map.
Let F ∈ Ωm−1

p (M) and assume that there exists a 1-rectifiable current I ∈ R1(M) of finite mass
such that ∗dF = ∂I in (W 1,∞

0 (M))∗. Then φ∗F ∈ Ωm−1
p (N) and ∗d(φ∗F ) = ∂φ∗I.

If (Fk)k∈N is a sequence in Ωm−1
R,p,∞(M) and Fk → F in Ωm−1

p (M) as k → ∞, then (φ∗Fk)k∈N is
a sequence in Ωm−1

p,R,∞(N) and φ∗Fk → φ∗F in Ωm−1
p (N) as k → ∞.

If in addition we assume that N is smooth and closed or a bounded simply connected Lipschitz
domain and for any k ∈ N we have Fk ∈ Ωm−1

q (N) for some q > 1 (possibly dependent on k),
then φ∗F can be approximated in Ωm−1

p (N) by (m− 1)-forms in Ωm−1
p,R (N).

Proof. Assume that ∗dF = ∂I holds in (W 1,∞
0 (M))∗. Then for any f ∈ W 1,∞

0 (N) φ∗f ∈
W 1,∞

0 (M) and thus

⟨∗d(φ∗F ), f⟩ =
ˆ
N
φ∗F ∧ df =

ˆ
M
F ∧ dφ∗f = ⟨∂I, φ∗f⟩ = ⟨I, φ∗df⟩ = ⟨∂φ∗I, f⟩,

therefore ∗d(φ∗F ) = ∂φ∗I in (W 1,∞
0 (N))∗.

Now assume that (Fk)k∈N is a sequence in Ωm−1
R (M) such that Fk → F in Ωm−1

p (M) as k → ∞.
Then for any k ∈ N there exists Ik ∈ R1(M) of finite mass and so that ∂Ik supported in
a finite subset of M such that ∗dFk = ∂Ik. As we saw above, ∗d(φ∗Fk) = ∂φ∗Ik, therefore
φ∗Fk ∈ Ωm−1

p,R,∞(N). Moreover we have φ∗Fk → φ∗F in Ωm−1
p (N) as k → ∞.

Finally if N is smooth and closed or a bounded Lipschitz domain and for any k ∈ N we have that
Fk ∈ Ωm−1

q (N) for some q > 1, we can improve the approximating sequence (φ∗Fk)k∈N as follows:
for any k ∈ N, let αk ∈ Ωm−2

W 1,q(N), βk ∈ ΩmW 1,q(N) and hk ∈ Ωm−1
h (N) (the space of harmonic

(m− 1)-forms on N) such that φ∗Fk = dαk + d∗βk + hk. Then ∗∆β = ∗dφ∗Fk = ∗φ∗dFk. Since
φ∗dFk = ∂φ∗Ik, φ∗dFk is supported in a finite set of points, thus β is smooth in N outside
of a finite number of points. Now let α̃k ∈ Ωm−2(N) such that ∥αk − α̃k∥W 1,p ⩽ 1

2k
and set

F̃k := dα̃k + dβk + hk. Then by construction F̃k ∈ Ωm−1
R (N) and F̃k → φ∗F in Ωm−1

p (N) as
k → ∞.

Theorem 3.1.1, Corollary 3.2.2, Lemma 3.2.7 and Remark 3.2.7 can be combined to obtain the
following general statement.

Theorem 3.2.3. Let M ⊂ Rn be any embedded m-dimensional Lipschitz submanifold of Rn which
is bi-Lipschitz equivalent either to Qm1 (0) or ∂Qm+1

1 (0). Then:

Ωm−1
p,R,∞(M)

Lp

=

{
Ωm−1
p,Z (M) if p ∈ [1,m/(m− 1)),{
F ∈ Ωm−1

p (M) s.t. ∗dF = 0
}

if p ∈ [m/(m− 1),+∞).

Moreover, if M is smooth we have Ωm−1
p,R (M)

Lp

= Ωm−1
p,R,∞(M)

Lp

.
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3.2.7. Corollaries of Theorem 3.1.1

Finally we present a couple of Corollaries of Theorem 3.1.1.
First we show that the boundary of any I ∈ R1(D) having finite mass can be approximated
strongly in (W 1,∞

0 (D))∗ by finite sums of deltas with integer coefficients.

Corollary 3.2.3. Let D ⊂ Rn be any open and bounded domain in Rn which is bi-Lipschitz
equivalent to Qn1 (0). Let I ∈ R1(D) with finite mass. Then, there exists a vector field V ∈ L1(D)

such that

div(V ) = ∂I in (W 1,∞
0 (D))∗.

Thus ∂I can be approximated strongly in (W 1,∞
0 (D))∗ by finite sums of deltas with integer coeffi-

cients. More precisely there exist sequences of points (Pi)i∈N and (Ni)i∈N in D such that

∂I =
∑
i∈N

(δPi − δNi) in (W 1,∞
0 (D))∗ and

∑
i∈N

|Pi −Ni| <∞. (3.2.17)

Proof. By Lemma 3.2.7, it is enough to consider the case D = Q1(0). Let I be as above. By [2,
Theorem 5.6] there exists a map u ∈W 1,n−1(Q1(0), Sn−1) such that

∗d

 1

n

n∑
i=1

(−1)i−1ui
∧
j ̸=i

duj

 = αn−1∂I,

where αn−1 denotes the volume of the (n− 1)-dimensional ball.
Set

ω :=
1

nαn−1

n∑
i=1

(−1)i−1ui
∧
j ̸=i

duj

Notice that ω ∈ Ωn−1
1 (Q1(0)) and ∗dω = ∂I. Now let V := (∗ω)♯. Then V ∈ L1(Q1(0)) and

div(V ) = ∂I.

By Theorem 3.1.1, there exists a sequence (Vk)k∈N in L1
R(Q1(0)) such that Vk → V in L1. Then

div(Vk) → div(V ) = ∂I in (W 1,∞
0 (Q1(0)))

∗.

As for any k ∈ N we have that div(Vk) is a finite sum of deltas with integer coefficients, by [68,
Proposition A.1]5 (3.2.17) holds.

Corollary 3.2.4. Let M be a complete Lipschitz m-manifold, with or without boundary, compactly
contained in the open cube Q2(0). Let I ∈ R1(Q2(0)) be a rectifiable current of finite mass
supported on M . Then there exist two sequences of points (pi)i∈N and (ni)i∈N in M such that

∂I =
∑
i∈N

(δpi − δni) in (W 1,∞(Q2(0)))
∗ and

∑
i∈N

|pi − ni| <∞.

5Here Proposition A.1 in [68] is applied to the following metric space: for any x, y ∈ Q1(0) let d(x, y) =

min{d(x, y), dist(x, ∂Q1(0))+ dist(y, ∂Q1(0)}, where d denotes the Euclidean distance in Q1(0). Let (Q̃1(0), d)

denote the completion of Q1(0) with respect to the distance d. Then Lipschitz functions on (Q̃1(0), d) corre-
sponds to functions in W 1,∞

0 (Q1(0)) (with same Lipschitz constant) modulo additive constants.
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Proof. Let I ∈ R1(M) be a rectifiable 1-current of finite mass supported in M ⊂ Q2(0). By
Corollary 3.2.3 there exists a vector field V ∈ L1(Q2(0)) such that div(V ) = ∂I. Thus we can
apply the arguments of the proof of Theorem 3.2.1 to V . For any ε ∈ EV this yields a vector field
Ṽε ∈ L1(Ωaε,ε) with the following properties: all bad cubes Q ∈ Caε,ε are such that Q ∩M ̸= ∅,
therefore the topological singularities of Ṽε lie at a distance of at most

√
nε from M . Moreover

notice that if ε is sufficiently small,
´
Q2(0)

div(Ṽε) dLn = 0 (one can see this by testing div(Ṽε)

against a function φ ∈ C∞
c (Q2(0)) such that φ ≡ 1 in a neighbourhood of M). Thus div(Ṽε) can

represented by

div(Vε) =

Qε∑
i=1

(δpεi − δnε
i
)

for some Qε ∈ N and points pεi and nεi (possibly repeated) in a
√
nε-neighbourhood of M . By

the argument of Lemma 3.2.2 (with Q2(0) in place of Q1(0)) we have εQε → 0 as ε→ 0+ in EV .
Now for any i ∈ {1, ..., Qε} let p̃εi and ñεi in M such that |pεi − p̃εi | < 2

√
nε and |nεi − ñεi | < 2

√
nε.

Let Ipεi ∈ R1(Q2(0)) be the rectifiable current given by integration on the segment joining pεi and
p̃εi oriented from pεi to p̃εi and let Inε

i
∈ R1(Q2(0)) be the rectifiable current given by integration

on the segment joining nεi and ñεi oriented from ñεi to nεi . Let Iε ∈ R1(Q2(0)) be a rectifiable
1-current of finite mass such that div(Ṽε) = ∂Iε. Set Ĩε = Iε +

∑Qε

i=1(Ipεi + Inε
i
). Then

∂Ĩε =

Qε∑
i=1

(δp̃εi − δñε
i
)

is supported in M . Moreover we have

∥∂I − ∂Ĩε∥(W 1,∞(M))∗ ⩽ ∥∂I − ∂Iε∥(W 1,∞(Q2(0)))∗ + ∥∂Iε − ∂Ĩε∥(W 1,∞(Q2(0)))∗

(here M is endowed with the euclidean distance in Q2(0); notice that we are making use of the
fact that any Lipschitz function on M can be extended to a Lipschitz function on Q2(0) with same
Lipschitz constant). Now since ∥Ṽε − V ∥Lp(Ωaε,ε)

→ 0 as ε→ 0 in EV and ∂I, ∂Iε are supported
in a compact subset of Q2(0), the first term on the right hand side tends to zero as ε→ 0+ in EV .
Moreover the second term is bounded by 4

√
nεQε (see for instance Lemma 2 in [18]) and thus

tends to 0 as ε→ 0+ in EV . This shows that ∂I belongs to the (strong) (W 1,∞(M))∗ closure of
the class of 0-currents T on M such that

T =
∑
j∈J

(δpj − δnj ) in (W 1,∞(M))∗ and
∑
j∈J

|pj − nj | <∞ (3.2.18)

for a countable set J and points pj , nj in M . By [68, Proposition A.1] applied to the complete
metric space (M,d) (where d denotes the Euclidean distance in Q2(0)) this space is closed in
(W 1,∞(M))∗, therefore ∂I is also of this form. Since any Lipschitz function φ ∈ W 1,∞(Q2(0))

has a Lipschitz trace φ
∣∣
M

on M and ⟨∂I, φ⟩Q2(0) = ⟨∂I, φ
∣∣
M
⟩M , we conclude that ∂I can be

represented as in 3.2.18 also as an element of (W 1,∞(Q2(0))
∗.

Theorem 3.1.1 could also be useful to obtain approximation results for Sobolev maps with values
into manifolds. For instance we can use it to recover the following result, due to R. Schoen and
K. Uhlenbeck (for p = 2, see [78, Section 4]) and F. Bethuel and X. Zheng (for p > 2, see [13,
Theorem 4]).
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Corollary 3.2.5. Let u ∈W 1,p(Q1(0),S1) for some p ∈ (1,∞).
If p ⩾ 2, then

div(u ∧∇⊥u) = 0 in D′(Q1(0))

and u can be approximated in W 1,p by a sequence of functions in C∞(Q1(0),S1).
If p < 2, then

1

2π
div(u ∧∇⊥u) = ∂I, (3.2.19)

where I ∈ R1(Q1(0)) is a 1-rectifiable current of finite mass, and u can be approximated in W 1,p

by a sequence of functions in

R :=
{
v ∈W 1,p(Q1(0),S1); v ∈ C∞(Q1(0)∖A,S1), where A is some finite set

}
.

Proof. First we claim that the vector field u∧∇⊥u belongs to LpZ(Q1(0)). In fact notice that for
any x0 ∈ Q1(0), for a.e. ρ ∈ (0, 2 dist∞(x0, ∂Q1(0))) ∂Qρ(x0) consists H n−1-a.e. of Lebesgue
points of u ∧∇⊥u. Moreover for almost any such ρ we have

1

2π

ˆ
∂Qρ(x0)

(u ∧∇⊥u) · ν∂Qρ(x0) = deg
(
u
∣∣
∂Qρ(x0)

)
∈ Z.

Hence the vector field 1
2πu ∧∇⊥u belongs to LpZ(Q1(0)).

Thus if p ⩾ 2 by Theorem 3.1.1 there holds div(u ∧ ∇⊥u) = 0 in D′(Q1(0)), while if p < 2 there
exists a sequence of vector fields (Vn)n∈N in LpR(Q1(0)) such that

Vn → 1

2π
u ∧∇⊥u in Lp(Q1(0)) as n→ ∞.

For any n ∈ N by Hodge decomposition there exist an ∈ W 1,p(Q1(0)), bn ∈ W 1,p
0 (Q1(0)) such

that

2πVn = ∇⊥an +∇bn.

For any n ∈ N let ãn ∈ C∞(Q1(0)) be such that ∥ãn − an∥Lp ⩽ 1
n . Moreover notice that there

exists dn ∈W 1,p(Q1(0),S1) ∩ C∞(Q1(0)∖A), where A is a finite set, such that

∇bn = dn ∧∇⊥dn.

In fact

∆bn = 2π div(Vn) = 2π

Qn∑
i=1

dni δpni

for some Qn ∈ N, pni ∈ Q1(0) and dni ∈ Z, thus bn = −
∑Qn

i=1 log|x− pni |d
n
i + hn for an harmonic

function hn. Then dn can be chosen to be

dn(x) = e−ih̃n
Qn∏
i=1

(
x− pni
|x− pni |

)dn
,
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where h̃n is the harmonic conjugate of hn (the product has to be understood as complex multi-
plication in C ≃ R2).
For any n ∈ N set un := eiãndn. Then by construction un ∈ R and

un ∧∇⊥un → u ∧∇⊥u in Lp(Q1(0)) as n→ ∞.

Therefore there is c ∈ [0, 2π) so that up to a subsequence

eicun → u in Lp(Q1(0)) as n→ ∞.

Remark 3.2.9. Equation (3.2.19) was obtained in [20, Theorem 3’] with the help of the approxi-
mation result of F. Bethuel and X. Zheng.

3.3. The weak Lp-closure of Ωn−1
p,Z (Qn

1(0))

In the present section we follow the ideas presented in [63] in order to prove that the space
Ωn−1
p,Z (Qn1 (0)) is weakly sequentially closed for every n ⩾ 2 and p ∈ (1,+∞). The main reason

why such techniques couldn’t be used before in this context for n ̸= 3 was the lack of a strong
approximation theorem like Theorem 3.1.1 for general dimension n. Such result is needed in order
to define a suitable notion of distance between the cubical slices of a form F ∈ Ωn−1

p,Z (Qn(0)), given
by (x 7→ x0 + ρx)∗i∗∂Qρ(x0)

F for L1-a.e. ρ (see Section 3.3.1 and 3.3.2 for the precise definition).
Once we have turned the space of the cubical slices of F into a metric space, we will show that
the “slice function” associated to F , given by ρ 7→ (x 7→ x0 + ρx)∗i∗∂Qρ(x0)

F , is locally 1
p′−Hölder

continuous (see Section 3.3.3). Moreover we will see that if {Fk}k∈N ⊂ Ωn−1
p,Z (Q1(0)) converges

weakly in Lp, then the sequence of the slice functions associated to each Fk is locally uniformly
1
p′−Hölder continuous. Lastly, we will use the previous facts together with some technical lemmata
to conclude the proof of Theorem 3.1.3 for D = Qn1 (0). Notice that by Theorem 3.1.1 the result
is clear if p ∈

[
n/(n− 1),∞), here we will focus on the case p ∈

(
1, n/(n− 1)

)
.

3.3.1. Slice distance on Sn−1

Throughout the following section, we will assume that p ∈
(
1, n/(n − 1)

)
. Moreover, we will

denote by “∗” the Hodge star operator associated with the standard round metric on Sn−1. We
will denote by Z the linear subspace of Ωn−1

p (Sn−1) given by

Z :=

{
h ∈ Ωn−1

p (Sn−1) s.t.
ˆ
Sn−1

h ∈ Z
}
.

Remark 3.3.1. It’s clear that Z is weakly (and thus strongly) Lp closed in Ωn−1
p (Sn−1). Indeed,

let {hk}k∈N ⊂ Z be any sequence such that hk ⇀ h weakly in Ωn−1
p (Sn−1), i.e.

ˆ
Sn−1

φhk →
ˆ
Sn−1

φh, ∀φ ∈ Lp
′
(Sn−1).

Then, the statement follows by picking φ ≡ 1 and noticing that a convergent sequence of integer
numbers is definitively constant.
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Fix any arbitrary point q ∈ Sn−1. We define the functions d, d̃ : Z × Z → [0,+∞] by

d(h1, h2) := inf

{
||α||Lp s.t. ∗(h1 − h2) = d∗α+ ∂I +

( ˆ
Sn−1

h1 − h2

)
δq

}
,

with α ∈ Ω1
p(Sn−1), I ∈ R1(Sn−1), and

d̃(h1, h2) := inf

{
||α||Lp s.t. ∗(h1 − h2) = d∗α+ ∂I +

(ˆ
Sn−1

h1 − h2

)
δq

}
,

with α ∈ Ω1
p(Sn−1), I ∈ R1(Sn−1) ∩N1(Sn−1).

Remark 3.3.2 (d and d̃ are always finite on Z). We claim that d, d̃ < +∞. Since obviously
d(h1, h2) ⩽ d̃(h1, h2), it is enough to show that d̃(h1, h2) < +∞, for every h1, h2 ∈ Z. This just
amounts to saying that given any h1, h2 ∈ Z we can always find α ∈ Ω1

p(Sn−1), I ∈ R1(Sn−1) ∩
N1(Sn−1) satisfying

∗(h1 − h2) = d∗α+ ∂I +

( ˆ
Sn−1

h1 − h2

)
δq.

Indeed, let

a :=

ˆ
Sn−1

h1 − h2 ∈ Z.

Consider the following first order differential system on Sn−1:{
d∗ω = ∗(h1 − h2)− aδq =: F,

dω = 0.

Since p ∈
(
1, n/(n − 1)

)
, F ∈ L(W 1,p′(Sn−1)). Moreover, ⟨F, 1⟩ = 0. Hence, by Lemma 3.B.2,

we know that the previous differential system has a solution α ∈ Ω1
p(Sn−1) and the statement

follows.

Remark 3.3.3. As observed above, it is clear that d(h1, h2) ⩽ d̃(h1, h2), for every h1, h2 ∈ Z. We
claim that actually d(h1, h2) = d̃(h1, h2), for every h1, h2 ∈ Z. In order to prove the remaining
inequality, fix any h1, h2 ∈ Z and let {αk}k∈N ⊂ Ω1

p(Sn−1), {Ik}k∈N ⊂ R1(Sn−1) be such that{
∗(h1 − h2) = d∗αk + ∂Ik + aδq, ∀ k ∈ N,
||αk||Lp → d(h1, h2) as k → ∞,

with

a :=

ˆ
Sn−1

h1 − h2.

By Corollary 3.B.1, the linear differential equation

∆u = ∗(h1 − h2)− aδq

has a weak solution ψ ∈ Ẇ 1,p(Sn−1). Let ωk := dψ − αk, for every k ∈ N. Notice that

d∗ωk = ∂Ik, ∀ k ∈ N.
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By Theorem 3.2.3, for every k ∈ N there exists a sequence {ωjk}j∈N ⊂ Ω1
p,R(Sn−1) such that

rjk := ωk − ωjk → 0 strongly in Lp as j → ∞. By construction, it follows that

∗(h1 − h2) = d∗(αk + rjk) + d∗ωjk + aδq, ∀ k, j ∈ N.

We observe that by Proposition 3.A.1 for every k, j ∈ N there exist Ijk ∈ R1(Sn−1) ∩ N1(Sn−1)

such that d∗ωjk = ∂Ijk. This implies that

d̃(h1, h2) ⩽ ||αk + rjk||Lp ⩽ ||αk||Lp + ||rjk||Lp , ∀ k, j ∈ N.

By letting first j → ∞ and then k → ∞ in the previous inequality, our claim follows.

Proposition 3.3.1. (Z, d) is a metric space.

Proof. We need to check symmetry, triangular inequality and non-degeneracy.
Symmetry. This is clear since both the Lp-norm and the space R1(Sn−1) are invariant under sign
change.
Triangular inequality. Let h1, h2, h3 ∈ Z. By definition of infimum, for every ε > 0 we can write

∗(h1 − h2) = d∗αε + ∂Iε +

(ˆ
Sn−1

h1 − h2

)
δq,

∗(h2 − h3) = d∗α′
ε + ∂I ′ε +

(ˆ
Sn−1

h2 − h3

)
δq,

with αε, α′
ε ∈ Ω1

p(Sn−1) and Iε, I ′ε ∈ R1(Sn−1) satisfying{
||αε||Lp ⩽ d(h1, h2) + ε

||α′
ε||Lp ⩽ d(h2, h3) + ε.

We notice that

∗(h1 − h3) = d∗(αε + α′
ε) + ∂(Iε + I ′ε) +

( ˆ
Sn−1

h1 − h3

)
δq, ∀ ε > 0.

Then, by definition of d, we have

d(h1, h3) ⩽ ||αε + α′
ε||Lp ⩽ ||αε||Lp + ||α′

ε||Lp ⩽ d(h1, h2) + d(h2, h3) + 2ε, ∀ ε > 0.

By letting ε→ 0+ in the previous inequality, we get our claim.
Non-degeneracy. Assume that d(h1, h2) = 0, for some h1, h2 ∈ Z. Let

a :=

ˆ
Sn−1

h1 − h2 ∈ Z.

Then, since d = d̃ (see Remark 3.3.3) and by definition of d̃, there exist {αk}k∈N ⊂ Ω1
p(Sn−1) and

{Ik}k∈N ⊂ R1(Sn−1) ∩N1(Sn−1) such that

∗(h1 − h2) = d∗αk + ∂Ik + aδq

and αk → 0 strongly in Lp as k → ∞. Observe that

∂Ik → ∗(h1 − h2)− aδq in (W 1,∞(Sn−1))∗.
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Now for any k ∈ N, ∂Ik can be represented as

∂Ik =

Jk∑
j=1

(δpkj
− δnk

j
)

for some Jk ∈ N and points pkj , n
k
j in Sn−1. But the space of distributions of the form∑

j∈J
(δpj − δnj ) such that

∑
j∈J

|pj − nj | <∞ (3.3.1)

(for a countable set J and points pj , nj in Sn−1) is closed with respect to the (strong) topology of
(W 1,∞(Sn−1))∗ (see Proposition A.1 in [68]), thus there exists a distribution T as in (3.3.1) such
that

∗ (h1 − h2) = T − aδq. (3.3.2)

But this implies that ∗ (h1 − h2) = 0, since the left-hand-side in (3.3.2) is in Lp whilst the
right-hand-side is in Lp if and only if it is equal to zero.

Remark 3.3.4. Notice that the proof above relies on the fact that d = d̃, which was proved using
Corollary 3.2.2. As the proof of the Corollary 3.2.2 was rather cumbersome, we remark here that
there is a way to skip that passage. Indeed, in the proof of the non-degeneracy of d it is not
necessary to assume that {Ik}k∈N lies in N1(Sn−1). In fact, it follows from Corollary 3.2.4 that
∂Ik is of the form (3.3.1), and thus the limit of {Ik}k∈N in (W 1,∞(Sn−1))∗ will also be of that
form.

Proposition 3.3.2. Let {hk}k∈N ⊂ Z and h ∈ Z. Then the following are equivalent:
1. {hk}k∈N ⊂ Z is uniformly bounded w.r.t. the Lp-norm and d(hk, h) → 0 as k → ∞;
2. hk ⇀ h weakly in Lp as k → ∞.

Proof. We prove separately the two implications.
2 ⇒ 1. Pick any subsequence of {hk}k∈N (not relabelled). For every k ∈ N, let

ak := ⟨hk − h, 1⟩ =
ˆ
Sn−1

hk − h.

Since hk ⇀ h weakly in Lp as k → ∞, it follows that ak → 0 as as k → ∞. Since {ak}k∈N ⊂ Z,
there exists K ∈ N such that ak = 0 for every k ⩾ K. Fix any k ⩾ K. By Lemma 3.B.2, the
linear differential system {

d∗ω = ∗(hk − h)

dω = 0,

respectively (if n = 2) 
d∗ω = ∗(hk − h)

dω = 0ˆ
S1
ω = 0,
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has a unique weak solution αk ∈ Ω1
p(Sn−1). By Remark 3.B.3 we have

||αk||W 1,p ⩽ C
(
||dαk||Lp + ||d∗αk||Lp

)
= C||hk − h||Lp .

Since {hk}k∈N is weakly convergent, we know that it is also uniformly bounded w.r.t the Lp-
norm. Then {αk}k⩾K is uniformly bounded w.r.t the W 1,p-norm. Hence, by weak compactness
in W 1,p, there exists a subsequence {αkl}l∈N ⊂ {αk}k⩾K and a one-form α ∈ Ω1

W 1,p(Sn−1) such
that αkl ⇀ α weakly in W 1,p. By Rellich-Kondrakov theorem, it follows that αkl → α strongly
in Lp. We claim that α = 0. Indeed,

⟨α, ω⟩Lp−Lp′ = lim
l→∞

⟨αkl , dφ+ d∗β⟩Lp−Lp′

= lim
l→∞

−⟨d∗αkl , φ⟩Lp−Lp′

= lim
l→∞

−
ˆ
Sn−1

(hkl − h) ∧ φ = 0, ∀ω = dφ+ d∗β ∈ Ω1(Sn−1),

respectively (if n = 2)

⟨α, ω⟩Lp−Lp′ = lim
l→∞

⟨αkl , dφ+ d∗β + η⟩Lp−Lp′

= lim
l→∞

⟨αkl , dφ+ d∗β⟩Lp−Lp′

= lim
l→∞

−⟨d∗αkl , φ⟩Lp−Lp′

= lim
l→∞

−
ˆ
Sn−1

(hkl − h) ∧ φ = 0, ∀ω = dφ+ d∗β + η ∈ Ω1(S1),

where η ∈ Ω1(S1) is a harmonic 1-form on S1 (hence a constant 1-form) and the second equality
follows because αkl is distributionally closed.
Hence, we have shown that αkl → 0 strongly in Lp as l → ∞. As ∗(hkl − h) = d∗αkl , for every
l ∈ N, we have

d(hkl , h) ⩽ ||αkl ||Lp → 0, as l → ∞.

We have just proved that any subsequence of {hk}k∈N has a further subsequence converging to h
with respect to d, therefore 1. follows.
1 ⇒ 2. Pick any subsequence of {hk}k∈N (not relabelled). Since {hk}k∈N ⊂ Z is uniformly
bounded w.r.t. the Lp-norm, by weak Lp-compactness there exists a subsequence {hkl}l∈N of
{hk}k∈N and a hw ∈ Z such that hkl ⇀ hw weakly in Lp. Since we have just shown that 2 ⇒ 1,
we know that d(hkl , hw) → 0 as l → ∞. By uniqueness of the limit, we get hw = h. We have just
proved that any subsequence of {hk}k∈N ⊂ Z has a further subsequence converging to h weakly
in Lp, hence, 2. follows.

3.3.2. Slice distance on ∂Qn
1 (0)

Let Q1(0) ⊂ Rn be the unit cube in Rn centered at the origin and let Ψ : Sn−1 → ∂Q1(0) be a
bi-Lipschitz homeomorphism. We let Y be the linear subspace of Ωn−1

p (∂Q1(0)) given by

Y :=

{
h ∈ Ωn−1

p (∂Q1(0)) s.t.
ˆ
∂Q1(0)

h ∈ Z
}
.
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Remark 3.3.5. Notice that h ∈ Y if and only if Ψ∗h ∈ Z. Indeed, given any h ∈ Z we have

C−1
Ψ

ˆ
∂Q1(0)

|h|p dH n−1 ⩽
ˆ
Sn−1

|Ψ∗h|p dH n−1 ⩽ CΨ

ˆ
∂Q1(0)

|h|p dH n−1,

with CΨ :=
(
max{∥dΨ∥L∞ , ∥dΨ−1∥L∞}

)(n−1)(p−1), and

ˆ
Sn−1

Ψ∗h =

ˆ
∂Q1(0)

h.

Thus, the functions dΨ, d̃Ψ : Y × Y → [0,+∞) given by

dΨ(h1, h2) := d(Ψ∗h1,Ψ
∗h2) ∀h1, h2 ∈ Y,

d̃Ψ(h1, h2) := d̃(Ψ∗h1,Ψ
∗h2) ∀h1, h2 ∈ Y,

are well-defined and coincide on Y ×Y by Remarks 3.3.2 and 3.3.3. Moreover, (Y, dΨ) is a metric
space as a direct consequence of Proposition 3.3.1 and the following statement is a corollary of
Proposition 3.3.2.

Corollary 3.3.1. Let {hk}k∈N ⊂ Y and h ∈ Y . Then, the following are equivalent:
1. {hk}k∈N ⊂ Y is uniformly bounded w.r.t. the Lp-norm and dΨ(hk, h) → 0 as k → ∞;
2. hk ⇀ h weakly in Lp as k → ∞.

Remark 3.3.6. Let Ψ1,Ψ2 : Sn−1 → ∂Q1(0) be bi-Lipschitz homeomorphisms. We claim that the
distances dΨ1 and dΨ2 induced on Y by Ψ1 and Ψ2 respectively are equivalent. Indeed notice
that given any bi-Lipschitz map Λ : Sn−1 → Sn−1 we have

d(Λ∗h1,Λ
∗h2) ⩽ ∥dΛ∥n−2

L∞ ∥dΛ−1∥
n−1
p

L∞ d(h1, h2), ∀h1, h2 ∈ Z. (3.3.3)

To see this notice that if α ∈ Ω1
p(Sn−1) is a competitor in the definition of d(h1, h2) then the form

given by (−1)n−2 ∗ Λ∗(∗α) ∈ Ω1
p(Sn−1) is a competitor in the definition of d(Λ∗h1,Λ

∗h2). Hence

d(Λ∗h1,Λ
∗h2) ⩽ ∥∗Λ∗(∗α)∥Lp ⩽ ∥dΛ∥n−2

L∞ ∥dΛ−1∥
n−1
p

L∞ ∥α∥Lp ,

for every competitor α in the definition of d(h1, h2). By taking the infimum on all the competitors
in the previous inequality, (3.3.3) follows. By applying (3.3.3) we obtain

dΨ2(h1, h2) = d(Ψ∗
2h1,Ψ

∗
2h2) = d

(
(Ψ−1

1 ◦Ψ2)
∗Ψ∗

1h1, (Ψ
−1
1 ◦Ψ2)

∗Ψ∗
1h2
)

⩽ CΨ1Ψ2d(Ψ
∗
1h1,Ψ

∗
1h2) = CΨ1Ψ2dΨ1(h1, h2) ∀h1, h2 ∈ Y,

Analogously, we get

dΨ1(h1, h2) ⩽ CΨ1Ψ2dΨ2(h1, h2) ∀h1, h2 ∈ Y,

with CΨ1Ψ2 := max
{
∥d(Ψ−1

2 ◦Ψ1)∥L∞ , ∥d(Ψ−1
1 ◦Ψ2)∥L∞

}n−2+n−1
p .
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3.3.3. Slice functions and their properties

Definition 3.3.1 (Slice functions). Let F ∈ Ωn−1
p,Z (Q1(0)). Given any arbitrary x0 ∈ Q1(0), we

let ρ0 := 2 dist∞(x0, ∂Q1(0)).
We call the slice function of F at x0 the map s : Dom(s) ⊂ (0, ρ0) → Y given by

s(ρ) := (x 7→ ρx+ x0)
∗i∗∂Qρ(x0)

F, ∀ ρ ∈ Dom(s),

where Dom(s) is the subset of (0, ρ0) defined as follows: ρ ∈ Dom(s) if and only if the following
conditions hold:

1. H n−1-a.e. point in ∂Qρ(x0) is a Lebesgue point for F ,
2. |F | ∈ Lp(∂Qρ(x0),H n−1),
3. ρ is a Lebesgue point for the Lp-function

(0, ρ0) ∋ ρ 7→
ˆ
∂Qρ(x0)

i∗∂Qρ(x0)
F,

4. (x 7→ ρx+ x0)
∗i∗∂Qρ(x0)

F ∈ Y .

Remark 3.3.7. Notice that Dom(s) has L1 full measure in (0, ρ0) and s ∈ Lp
(
(0, ρ0);Y

)
, in the

following sense: letting jρ : x 7→ ρx+ x0, we have

∥s(ρ)∥pLp =

ˆ
∂Q1(0)

|j∗ρF |p dH n−1 =

ˆ
∂Qρ(x0)

|F |pρ(n−1)(p−1) dH n−1

and thus
ˆ ρ0

0
||s(ρ)||pLp dρ ⩽

ˆ ρ0

0

ˆ
∂Qρ

|F |pρ(n−1)(p−1) dH n−1dρ ⩽ 2n
ˆ
Qρ0 (x0)

|F |pdH n

Proposition 3.3.3. Let x0 ∈ Q1(0) and set ρ0 := 2 dist(x0, ∂Q1(0)). Fix any (n − 1)-form
F ∈ Ωn−1

p,Z (Q1(0)) and let s ∈ Lp
(
(0, ρ0), Y

)
be the slice function of F at x0. Let K ⊂ (0, ρ0) be

compact. Then, there exists a subset E ⊂ K such that L1(K ∖ E) = 0 and a representative s̃ of
s defined pointwise on E such that

dΨ
(
s̃(ρ1), s̃(ρ2)

)
⩽ Cp,K,Ψ||F ||Lp |ρ1 − ρ2|

1
p′ , ∀ ρ1, ρ2 ∈ E, (3.3.4)

with

Cp,K,Ψ := Cp,Ψmax
ρ∈K

ρ1−n

Proof. Denote by TF ∈ D1(Q1(0)) the 1-current on Q1(0) given by

⟨TF , ω⟩ =
ˆ
Q1(0)

F ∧ ω, ∀ω ∈ D1(Q1(0)).

Since F ∈ Ωn−1
p,Z (Q1(0)), by Theorem 3.2.2 there exists I ∈ R1(Q1(0)) such that M(I) < +∞ and

∗dF = ∂I. By definition of integral 1-current, there exist a locally 1-rectifiable set Γ ⊂ Q1(0), a
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Borel measurable unitary vector field I⃗ on Γ and a positive Z-valued H 1 Γ-integrable function
θ ∈ L1(Γ,H 1) such that

⟨I, ω⟩ =
ˆ
Γ
θ⟨ω, I⃗⟩ dH 1, ∀ω ∈ D1(Q1(0)).

By the coarea formula, there exists G ⊂ K such that L1(K ∖G) = 0 and such that Γ ∩ ∂Qρ(x0)
is a finite set for every ρ ∈ G.
Let Ψ : Sn−1 → ∂Q1(0) be the bi-Lipschitz map given by

Ψ(x) :=
x

2∥x∥∞
, ∀x ∈ Sn−1.

Consider the map Φ : Sn−1 × [0, ρ0] → Im(Φ) = Qρ0(x0) ⊂ Q1(0) given by

Φ(y, t) := x0 + tΨ(y), ∀ (y, t) ∈ Sn−1 × [0, ρ0].

Notice that Φ
∣∣
Sn−1×[ρ1,ρ2]

is a bi-Lipschitz homeomorphism onto its image for every ρ1, ρ2 ∈ (0, 1).

We claim that estimate (3.3.4) holds on a full-measure subset of G. Indeed, fix any ρ1, ρ2 ∈ G.
Without loss of generality, assume that ρ2 > ρ1. Let Φ̂ := Φ

∣∣
Sn−1×[ρ1,ρ2]

. Define π := pr1 ◦ Φ−1 :

Qρ0(x0) → Sn−1, where pr1 : Sn−1 × [0, ρ0] → Sn−1 is the canonical projection on the first factor,
and notice that π is a Lipschitz and proper map. Then, π∗

(
TF Im(Φ̂)

)
∈ D1(Sn−1) can be

expressed as follows: for any ω ∈ Ω1(Sn−1)

⟨π∗
(
TF Im(Φ̂)

)
, ω⟩ = ⟨TF Im(Φ̂), π∗ω⟩ =

ˆ
Im(Φ̂)

F ∧ π∗ω

=

ˆ
Im(Φ̂)

(Φ−1)∗(Φ∗F ∧ Φ∗π∗ω)

=

ˆ
Sn−1×[ρ1,ρ2]

Φ∗F ∧ pr∗1ω

=

ˆ
Sn−1×[ρ1,ρ2]

pr∗1ω ∧ ∗(∗Φ∗F )

=

ˆ
Sn−1×[ρ1,ρ2]

⟨pr∗1ω, ∗Φ∗F ⟩ d volSn−1×[ρ1,ρ2](y, t)

=

ˆ ρ2

ρ1

( ˆ
Sn−1

⟨pr∗1ω, ∗Φ∗F ⟩ d volSn−1(y)

)
dt

=

ˆ ρ2

ρ1

( ˆ
Sn−1

⟨ω, i∗Sn−1×{t} ∗ Φ
∗F ⟩ d volSn−1(y)

)
dt

=

ˆ ρ2

ρ1

( ˆ
Sn−1

ω ∧
(
∗ i∗Sn−1×{t} ∗ Φ

∗F
))

dt

=

ˆ
Sn−1

ω ∧
(ˆ ρ2

ρ1

(
∗ i∗Sn−1×{t} ∗ Φ

∗F
)
dt

)
= (−1)n−1

ˆ
Sn−1

ω ∧ α,

where

α := (−1)n−1

ˆ ρ2

ρ1

(
∗ i∗Sn−1×{t} ∗ Φ

∗F
)
dt ∈ Ωn−2

p (Sn−1).
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In particular,

⟨∂π∗
(
TF Im(Φ̂)

)
, φ⟩ = ⟨π∗

(
TF Im(Φ̂)

)
, dφ⟩

= (−1)n−1

ˆ
Sn−1

dφ ∧ α = ⟨d∗(∗α), φ⟩, ∀φ ∈ C∞(Sn−1).

Recall that the restriction of an integral current to a measurable set is still an integral current.
Moreover, the push-forward of an integral current through a Lipschitz and proper map remains
an integral current (see [53, Chapter 7, §7.5]). Then, Ĩ := −π∗

(
I Im(Φ̂)

)
∈ R1(Sn−1).

So far, we have shown that

∂π∗
(
(TF − I) Im(Φ̂)

)
= ∂π∗

(
TF Im(Φ̂)

)
− ∂π∗

(
I Im(Φ̂)

)
= d∗(∗α) + ∂Ĩ.

Let ζ ∈ C∞
c ((−1, 1)) such that

ˆ
R
ζ = 1. For any ε ∈ (0,min{ρ1, ρ0 − ρ2}) set ζε =

1

ε
ζ
( ·
ε

)
and

let χε be the unique solution of{
χ′
ε(x) = ζε(x− ρ1)− ζε(x− ρ2)

χε(0) = 0.

Let ψ ∈ C∞(Sn−1 × [0, ρ0]) and let pr2 : Sn−1 × [0, ρ0] → [0, ρ0] be the projection on the second
factor. We compute

⟨(Φ−1)∗I, ψ d(χε ◦ pr2)⟩ =
ˆ
Φ−1(Γ)

θ(Φ−1)∗Iψ(
χ′
ε ◦ pr2)⟨dpr2, I⃗(Φ−1)∗I⟩ dH

1

=

ˆ ρ1+ε

ρ1−ε
ζε(t)

( ˆ
Φ−1(Γ)∩(Sn−1×{t})

ψθ̃ dH 0

)
dL1(t)

−
ˆ ρ2+ε

ρ2−ε
ζε(t)

( ˆ
Φ−1(Γ)∩(Sn−1×{t})

ψθ̃ dH 0

)
dL1(t)

with θ̃ = θ(Φ−1)∗Isgn(⟨dpr2, I⃗(Φ−1)∗I⟩) ∈ L1(Φ−1(Γ),Z). Moreover

⟨(Φ−1)∗TF , ψ d(χε ◦ pr2)⟩ =
ˆ
Sn−1×[0,ρ0]

ψ(χ′
ε ◦ pr2)Φ

∗F ∧ dpr2

=

ˆ ρ1+ε

ρ1−ε
ζε(t)

(ˆ
Sn−1×{t}

ψ(Φ
∣∣
Sn−1×{t})

∗
F

)
dL1(t)

−
ˆ ρ2+ε

ρ2−ε
ζε(t)

(ˆ
Sn−1×{t}

ψ(Φ
∣∣
Sn−1×{t})

∗
F

)
dL1(t).

Now observe that

⟨(Φ−1)∗(TF − I), (χε ◦ pr2) dψ⟩ → ⟨((Φ−1)∗(TF − I)) (Sn−1 × [ρ1, ρ2]), dψ⟩

as ε→ 0+, by dominated convergence. On the other hand, since ∂(TF − I) = 0, we have

⟨(Φ−1)∗(TF − I), (χε ◦ pr2) dψ⟩ = ⟨(Φ−1)∗I, ψ d(χε ◦ pr2)⟩ − ⟨(Φ−1)∗TF , ψ d(χε ◦ pr2)⟩.
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Therefore for almost every ρ1, ρ2 ∈ (0, ρ0) (depending on ψ) we have

⟨∂((Φ−1)∗(TF − I) (Sn−1 × [ρ1, ρ2])), ψ⟩ =
ˆ
Φ−1(Γ)∩(Sn−1×{ρ1})

ψθ̃ dH 0

−
ˆ
Φ−1(Γ)∩(Sn−1×{ρ2})

ψθ̃ dH 0 (3.3.5)

−
ˆ
Sn−1×{ρ1}

ψ(Φ
∣∣
Sn−1×{ρ1})

∗
F

+

ˆ
Sn−1×{ρ2}

ψ(Φ
∣∣
Sn−1×{ρ2})

∗
F.

Now let {ψk}k∈N ⊂ C∞(Sn−1 × [0, ρ0]) be a countable sequence dense in C1(Sn−1 × [0, ρ0]). For
every k ∈ N, let Ek ⊂ G be the set such that (3.3.5) holds with ψ = ψk (i.e. the set of the ρ ∈ G

wich are "ζε-Lebesgue points" of the integrands in (3.3.5), with ψ = ψk) and define

E :=
⋂
k∈N

Ek.

Then L1(E) = L1(K) and for every ρ1, ρ2 ∈ E estimate (3.3.5) holds with ψ = ψk for every k ∈ N.
By density of {ψk}k∈N in C1(Sn−1 × [0, ρ0]), we can pass to the limit in (3.3.5) and get that for
any given couple of parameters ρ1, ρ2 ∈ Ẽ such estimate holds for every ψ ∈ C∞(Sn−1 × [0, ρ0]).
In particular, for every ρ1, ρ2 ∈ E, φ ∈ C∞(Sn−1) we have

⟨∂π∗((TF − I) Im(Φ̂)), φ⟩ =
∑
x∈Γρ1

θ̃(x, ρ1)φ(x)−
∑
x∈Γρ2

θ̃(x, ρ2)φ(x)

−
ˆ
Sn−1

φΨ∗s(ρ1) +

ˆ
Sn−1

φΨ∗s(ρ2),

where

Γρ1 := pr1(Φ
−1(Γ) ∩ (Sn−1 × {ρ1})) ⊂ Sn−1,

Γρ2 := pr1(Φ
−1(Γ) ∩ (Sn−1 × {ρ2})) ⊂ Sn−1

are finite set for any ρ1, ρ2 ∈ G.
Gathering together what we have proved so far, we have

∗
(
Ψ∗s(ρ2)−Ψ∗s(ρ1)

)
= d∗(∗α) + ∂I ′ +

( ˆ
Sn−1

Ψ∗s(ρ2)−Ψ∗s(ρ1)

)
δq,

where I ′ ∈ R1(Sn−1) is any rectifiable one-current of finite mass such that

∂I ′ =
∑
x∈Γρ2

θ̃(x, ρ2)δx −
∑
x∈Γρ1

θ̃(x, ρ1)δx + ∂Ĩ +

 ∑
x∈Γρ1

θ̃(x, ρ1)−
∑
x∈Γρ2

θ̃(x, ρ2)

 δq,

i.e. ∗α is a competitor in the definition of d
(
Ψ∗s(ρ2),Ψ

∗s(ρ1)
)
. Hence, in order to estimate

d
(
Ψ∗s(ρ2),Ψ

∗s(ρ1)
)

we just need to find an upper bound for ||∗α||Lp .
Notice that |dΦ| ⩽ t|dΨ|+

√
n
2 . Moreover since

Φ−1(x) =

(
Ψ−1

(
x− x0

2∥x− x0∥∞

)
, 2∥x− x0∥∞

)
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we have |JΦ−1(x)| ⩽ 2−(n−2)
(
∥dΨ−1∥L∞
∥x−x0∥∞

)n−1
. Therefore

∥∗α∥pLp ⩽
ˆ
Sn−1

∣∣∣∣ˆ ρ2

ρ1

|Φ∗F |dt
∣∣∣∣p dH n−1 ⩽ |ρ1 − ρ2|

p
p′

ˆ
Sn−1×[ρ1,ρ2]

|Φ∗F |pdH n−1dt

⩽

(
2−(n−2)

(
∥dΨ∥L∞ +

√
n

2

)p(n−1) ∥dΨ−1∥n−1
L∞

ρn−1
1

)
|ρ1 − ρ2|

p
p′ ∥F∥pLp(Q1(0))

and our claim follows.

3.3.4. Proof of Theorem 3.1.3 for Qn
1 (0)

For the proof of Theorem 3.1.3 we need two technical Lemmas.

Lemma 3.3.1. Let {fk}k∈N ⊂ L1(0, 1) be such that ||fk||L1 ⩽ C for any k ∈ N. Then there
exist a sequence of compact subsets {Wh}h∈N⩾2

of (0, 1) such that for every h ∈ N⩾2 the following
properties hold:

1. L1(Wh) = 1− C + 2

h
;

2. Wh ⊂ (1/h, 1);
3. for almost every ρ ∈Wh and every k ∈ N there exists k′ > k such that |fk′(ρ)| ⩽ h.

Proof. Let h ∈ N⩾2. For any l ∈ N let

Ahl :=
∞⋂
k=l

f−1
k ([−h, h]c).

Notice that for any l ∈ N Ahl ⊂ Ahl+1 and set

Ih =
∞⋃
l=1

Ahl .

Let m ∈ N and let k ⩾ m. Notice that

C ⩾
ˆ 1

0
|fk(ρ)| dρ ⩾

ˆ
Ah

m

|fk(ρ)| dρ > hL1(Ahm).

By letting m→ ∞ in the previous inequality, be obtain

L1(Ih) ⩽
C

h
.

Then, by defining Eh := Ich ∩ (1/h, 1), we clearly get

L1(Eh) = L1((Ih ∪ (0, 1/h])c) = 1− L1(Ih ∪ (0, 1/h]) ⩾ 1− C + 1

h
.

Moreover, Eh and any of its subsets satisfy the properties 2. and 3.. Finally, since Eh is measur-
able, we can find a compact set Wh ⊂ Eh such that

L1(Wh) = 1− C + 2

h
.

By construction, Wh satisfies 1, 2 and 3.
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Since we do not know if the space (Y, d) is complete, we will also need the following lemma.

Lemma 3.3.2. Let K ⊂ [0, 1] be compact and let S ⊂ K be dense and countable. Let {fk}k∈N ⊂
C0(K,Y ) be such that

1. {fk}k∈N is uniformly Cauchy from K to (Y, d) (i.e. it is a Cauchy sequence w.r.t. uniform
convergence);

2. for some C > 0,

sup
ρ∈S

sup
k∈N

||fk(ρ)||Lp ⩽ C;

3. for some A > 0 and some α ∈ (0, 1], we have

d
(
fk(ρ), fk(ρ

′)
)
⩽ A|ρ− ρ′|α, ∀ ρ, ρ′ ∈ S.

Then, there exists f ∈ C0(K,Y ) such that fk → f uniformly.

Proof. Fix any ρ ∈ S. By hypothesis 2, {fk(ρ)}k∈N is bounded in Lp and therefore it has a
subsequence converging weakly in Lp to a limit f(ρ) ∈ Y (recall that Y is closed with respect
to the weak Lp convergence). By Corollary 3.3.1, such a subsequence converges in (Y, d) to the
same limit f(ρ). Since {fk}k∈N is uniformly Cauchy from K to (Y, d), we have that {fk(ρ)}k∈N
is Cauchy in (Y, d), therefore fk(ρ)

d−→ f(ρ) and, by Corollary 3.3.1, fk(ρ)⇀ (ρ) weakly in Lp.
Fix any ρ ∈ K and let {ρi}i∈N ⊂ S be such that ρi → ρ. We claim that there exists fρ ∈ Y such
that f(ρi) → fρ w.r.t. d and fρ doesn’t depend on the choice of the sequence {ρi}i∈N. Indeed by
lower semicontinuity of the Lp norm w.r.t. the weak Lp convergence, we have

||f(ρi)||Lp ⩽ lim inf
k→∞

||fk(ρi)||Lp ⩽ C,

for every i ∈ N. Then there exists a subsequence {ρij}j∈N and a fρ ∈ Lp such that f(ρij ) ⇀ fρ
weakly in Lp. Since Y is weakly closed in Lp we have fρ ∈ Y . By Corollary 3.3.1 we also have
f(ρij ) → fρ w.r.t. d.
Relabel the subsequence as {ρi}i∈N. To see that fρ doesn’t depend on the subsequence (and thus
it doesn’t depend on {ρi}i∈N), assume that {ρ̃i}i∈N is another sequence in S with ρ̃i → ρ and
f(ρ̃i) → f̃ρ w.r.t. d. To see that fρ = f̃ρ, first notice that by hypothesis 3. and by triangle
inequality we have

d
(
f(ρi), f(ρ̃i)

)
⩽ d
(
f(ρi), fk(ρi)

)
+ d
(
fk(ρi), fk(ρ̃i)

)
+ d
(
fk(ρ̃i), f(ρ̃i)

)
⩽ d
(
f(ρi), fk(ρi)

)
+A|ρi − ρ̃i|α + d

(
fk(ρ̃i), f(ρ̃i)

)
.

for every i ∈ N. Hence, passing to the limit as k → ∞ in the previous inequality, we get

d
(
f(ρi), f(ρ̃i)

)
⩽ A|ρi − ρ̃i|α.

Thus we finally obtain

d(fρ, f̃ρ) ⩽ d
(
fρ, f(ρi)

)
+ d
(
f(ρi), f(ρ̃i)

)
+ d
(
f(ρ̃i), f̃ρ

)
⩽ d
(
fρ, f(ρi)

)
+A|ρi − ρ̃i|α + d

(
f(ρ̃i), f̃ρ

)
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and, passing to the limit as i→ ∞, we get d(fρ, f̃ρ) = 0, i.e. fρ = f̃ρ.
For any ρ ∈ K let

f(ρ) := lim
i→∞

f(ρi),

where {ρi}i∈N ⊂ S is any sequence such that ρi → ρ and the limit is understood w.r.t. d. Then
f is a well-defined function on K.
To see that fk → f uniformly, let ε > 0 and let K ∈ N such that for any m,n ∈ N⩾K

sup
ρ∈S

d(fm(ρ), fn(ρ)) < ε.

Let ρ ∈ K and let {ρi}i∈N be a sequence in S such that ρi → ρ. Then for any k ∈ N⩾K we have

d(fk(ρ), f(ρ)) = lim
i→∞

d(fk(ρi), f(ρi)) = lim
i→∞

lim
m→∞

d(fk(ρi), fm(ρi)) ⩽ ε.

This shows that f is the uniform limit of {fk}k∈N in K, with respect to d. As fk ∈ C0(K,Y ) for
any k ∈ N, we have that f ∈ C0(K,Y ) (this also follows directly from the construction of f).

Theorem 3.3.1 (Weak closure for Qn1 (0)). Fix any n ∈ N⩾2 and assume that p ∈
(
1, n/(n− 1)

)
.

Then Ωn−1
p,Z (Qn1 (0)) is weakly sequentially closed.

Proof. Assume that F ∈ Ωn−1
p (Q1(0)) belongs to the weak Lp-closure of Ωn−1

p,Z (Q1(0)), i.e.

there exists {Fk}k∈N ⊂ Ωn−1
p,R (Q1(0)) such that Fk

Lp

−⇀ F . What we need to show is that
F ∈ Ωn−1

p,Z (Q1(0)), which amounts to saying that
ˆ
∂Qρ(x0)

i∗∂Qρ(x0)
F ∈ Z, (3.3.6)

for every x0 ∈ Q1(0) and for a.e. ρ ∈
(
0, 2 dist∞(x0, ∂Q1(0))

)
. Without losing generality, we will

just show (3.3.6) for x0 = 0.
Step 1. For any k ∈ N let sk be the slice function of Fk at 0. Fix any h ∈ N⩾2 and
let Wh ⊂ (1/h, 1) be the compact set given by applying Lemma 3.3.1 with fk = ∥sk∥Lp and
C = 2

n
p supk∈N∥Fk∥Lp (see Remark 3.3.7). Let Ekh ⊂Wh denote the subset associated to Wh and

sk by Proposition 3.3.3, let Ẽh =
⋂
k∈NE

k
h and let sk denote its 1

p′ -Hölder representative on Ẽh,
for any k ∈ N. By property 3. in Lemma 3.3.1, for almost every ρ ∈ Ẽh we can find a subsequence
{skρ(ρ)}kρ∈N ⊂ {sk(ρ)}k∈N such that skρ(ρ) is uniformly bounded in Lp by h. Denote by Eh
the set of all such ρ and observe that L1(Eh) = L1(Wh) = 1 − C+2

h . Then for any ρ ∈ Eh,
{skρ(ρ)}kρ∈N has a subsequence that converges weakly in Lp or, equivalently, with respect to dΨ
(see Corollary 3.3.1).
Let Sh ⊂ Eh be a countable dense subset. By a diagonal extraction argument, we find a subse-
quence {skl}l∈N such that {skl(ρ)}l∈N is convergent with respect to dΨ and weakly in Lp, and is
uniformly bounded in Lp by h, for every ρ ∈ Sh.
Step 2. Next we claim that for any l ∈ N, skl can be extended to a 1

p′ -Hölder continuous function
on Eh (with the same Hölder constant, which is bounded uniformly in l).
In fact let f ∈ {skl}l∈N, let ρ ∈ Eh ∖ Eh, let {ρi}i∈N be a sequence in Sh such that ρi → ρ as
i → ∞ (observe that such a sequence exists, since Sh is dense in Eh, which in turn is dense in
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Eh). Since {f(ρi)}i∈N ⊂ Y is uniformly bounded in Lp, by weak Lp-compactness there exists a
subsequence {f(ρij )}j∈N of {f(ρi)}i∈N such that f(ρij ) ⇀ fρ weakly in Lp for some fρ ∈ Y . By
Corollary 3.3.1, we know that dΨ

(
f(ρij ), fρ

)
→ 0. Since f is 1

p′ -Hölder continuous on Eh, fρ does
not depend on the sequence {ρi}i∈N. Hence, the function

f̃(ρ) :=

{
f(ρ) if ρ ∈ Eh

fρ if ρ ∈ Eh ∖ Eh

is well-defined on Eh and satisfies (3.3.4) on Eh.
In the following, in order to simplify the notation, we will denote again by skl the 1

p′ -Hölder
extension of skl to Eh, for any l ∈ N.
Step 3. We show that {skl}l∈N converges uniformly on Eh to some s ∈ C0(Eh, Y ).
Fix any ε > 0. By Step 2. we know that the sequence {skl}l∈N is equicontinuous from Eh to
(Y, dΨ). Therefore we can choose δ > 0 such that

dΨ
(
skl(ρ), skl(ρ

′)) < ε, ∀ ρ, ρ′ ∈ Eh s.t. |ρ− ρ′| < δ and ∀ l ∈ N.

Notice that {(ρ− δ, ρ+ δ)}ρ∈Sh
is an open cover of Eh. Since Eh is compact, we can find a finite

set {ρ1, ..., ρm} ⊂ Sh such that {(ρj − δ, ρj + δ)}j=1,...,m is a finite open cover of Eh.
Now let ρ ∈ Eh. Observe that there exists a point ρj ∈ {ρ1, ..., ρm} such that ρ ∈ (ρj − δ, ρj + δ),
i.e. |ρ − ρj | < δ. By our choice of δ, this implies d

(
skl(ρ), skl(ρj)) < ε, for every l ∈ N. By

triangle inequality, we have

dΨ
(
skl(ρ), skm(ρ)) ⩽ dΨ

(
skl(ρ), skl(ρj)) + dΨ

(
skl(ρj), skm(ρj)) + dΨ

(
skm(ρj), skm(ρ))

< 2ε+ dΨ
(
skl(ρj), skm(ρj)).

But since ρj ∈ Sh, we know that there exists Lj > 0 such that

dΨ
(
skl(ρj), skm(ρj)) < ε, ∀ l,m ⩾ Lj .

Hence, by letting L := max
j=1,...,m

Lj , we have that

dΨ
(
skl(ρ), skm(ρ)) < 3ε, ∀ l,m ⩾ L,∀ ρ ∈ Eh.

Here we have just proved that the sequence {skl}l∈N is uniformly Cauchy on Eh. Since {skl}l∈N
satisfies all the hypotheses of Lemma 3.3.2, we get that there exists s ∈ C0(Eh, Y ) such that
skl → s uniformly on Eh w.r.t. dΨ.
Notice that since ∥skl(ρ)∥Lp ⩽ h for any l ∈ N, for any ρ ∈ Eh, and since skl(ρ) → s(ρ) w.r.t. dΨ
for any ρ ∈ Eh, by Corollary 3.3.1 there holds skl(ρ)⇀ s(ρ) in Lp for any ρ ∈ Eh.
Step 4. Let s0 : Eh → Y be the restriction to Eh of the slice function of F at 0. We claim that
s = s0 a.e. in Eh. To show this we will prove that

ˆ
Eh

φ(ρ)

ˆ
∂Q1(0)

ψ
(
skl(ρ)− s0(ρ)

)
dρ→ 0, as l → ∞,

for every φ ∈ C∞
c ((0, 1)) and for every ψ ∈ Lip(∂Q1(0)). Indeed, an explicit computation gives

ˆ
Eh

φ(ρ)

ˆ
∂Q1(0)

ψ
(
skl(ρ)− s0(ρ)

)
dρ
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=

ˆ
Eh

φ(ρ)

( ˆ
∂Qρ(0)

ψ

(
·
ρ

)
i∗∂Qρ(0)

Fkl −
ˆ
∂Qρ

ψ

(
·
ρ

)
i∗∂Qρ(0)

F

)
dρ

= 2n
ˆ
Q1(0)

1Eh
(2r)φ(2| · |)ψ

(
·
| · |

)
dr ∧ (Fkl − F ) → 0 as l → ∞,

since

1Eh
(2r)φ(2| · |)ψ

(
·
| · |

)
dr ∈ Ω1

p′(Q1(0))

and Fkl
Lp

−⇀ F . On the other hand, since skl(ρ)⇀ s(ρ) in Lp for any ρ ∈ Eh,

ˆ
Eh

φ(ρ)

ˆ
∂Q1(0)

ψ
(
skl(ρ)− s(ρ)

)
dρ→ 0 as l → ∞

for every φ ∈ C∞
c ((0, 1)) and for every ψ ∈ Lip(∂Q1(0)), we obtain

ˆ
Eh

φ(ρ)

ˆ
∂Q1(0)

ψ
(
s(ρ)− s0(ρ)

)
dρ = 0, ∀φ ∈ C∞

c ((0, 1)), ∀ψ ∈ Lip(∂Q1(0)).

This means that s0(ρ) = s(ρ) ∈ Y for a.e. ρ ∈ Eh.
Step 5. Finally we show that (3.3.6) holds for almost any ρ ∈ (0, 1).
In fact for any ρ ∈ Eh such that s0(ρ) = s(ρ) we have

ˆ
∂Qρ(0)

i∗∂Qρ
F =

ˆ
∂Q1(0)

s0(ρ) =

ˆ
∂Q1(0)

s(ρ) = lim
kl→∞

ˆ
∂Q1(0)

skl(ρ) ∈ Z,

since skl(ρ) ⇀ s(ρ) in Lp. Thus (3.3.6) holds for L1-a.e. ρ ∈ Eh. Since the previous step can be
repeated for any h ∈ N⩾2, and since

lim
h→+∞

L1(Eh) = lim
h→+∞

1− C + 1

h
= 1,

we conclude that (3.3.6) holds for L1-a.e. ρ ∈ (0, 1).

Remark 3.3.8. Let D ⊂ Rn be any open and bounded domain which is bi-Lipschitz equivalent to
Q1(0). From Theorem 3.3.1 follows that Ωn−1

p,Z (D) (see Definition 3.1.4) is a weakly sequentially
closed subspace of Ωn−1

p (D). Indeed, let φ : Q1(0) → D be any bi-Lipschitz homeomorphism

and let {Fk}k∈N ⊂ Ωn−1
p,Z (D) be such that Fk

Lp

−⇀ F on D. Then, by Lemma 3.2.7 we have

{φ∗Fk}k∈N ⊂ Ωn−1
p,Z (Q1(0)) and as φ is bi-Lipschitz we have φ∗Fk

Lp

−⇀ φ∗F on Q1(0). By the
Weak Closure Theorem (Theorem 3.3.1), φ∗F ∈ Ωn−1

p,Z (Q1(0)). Thus F ∈ Ωn−1
p,Z (D) (again by

Lemma 3.2.7). This shows that Theorem 3.1.3 holds true.

Observe that Theorem 3.1.3 does not hold if n = 1. In fact in this case the following holds.

Lemma 3.3.3. Let I be a bounded connected interval in R. Let p ∈ [1,∞).
The weak closure of LpZ(I) in Lp(I) is Lp(I).
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Proof. Since C0(I) is dense in Lp(I), it is enough to show that any function f ∈ C0(I) can be
approximated weakly in Lp(I) by functions in LpZ(I). Without loss of generality we can assume
that I = [0, 1). For any n ∈ N let’s define fn : I → R as follows:
for any k ∈ {1, ..., 2n} let Ink := [k−1

2n ,
k
2n ), for any k ∈ {1, ..., 2n} let ck :=

ffl
Ink
f(x)dx and for any

x ∈ Ink set

fn(x) :=

{
⌈ck⌉ if x− k−1

2n ⩽ ck
2n⌈ck⌉

0 otherwise.

Then fn ∈ Lp(I,Z) and
´
Ink
fn(x)dx =

´
Ink
f(x)dx for any k ∈ {1, ..., 2n}, for any n ∈ N.

Moreover notice that since f is bounded, the sequence (fn)n∈N is bounded in Lp(I). Therefore if
p > 1 (fn)n∈N converges weakly in Lp(I), up to a subsequence, to a function f̃ ∈ Lp(I). Testing
against continuous functions on I it is easy to check that f = f̃ .
If p = 1 we have to check that, up to a subsequence,

lim
n→∞

ˆ
I
fng =

ˆ
I
fg ∀ g ∈ L∞(I). (3.3.7)

Since L∞(I) ⊂ Lq(I) for any q > 1, (3.3.7) follows from the case p > 1 (with p = q′).

Remark 3.3.9. Let n ⩾ 2 and let D ⊂ Rn be any open, bounded and Lipschitz domain in Rn. It
is still unknown if the space L1

Z(D) is weakly sequentially closed. Surely it is not weakly-∗ closed,
a proof this fact can be easily achieved by generalising the arguments in [63, Section 8].
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Appendix to Chapter 3

3.A. Minimal connections for forms with finitely many integer
singularities

Throughout this appendix, we will denote by Mm ⊂ Rn some arbitrary embedded Lipschitz and
connected m-dimensional submanifold of Rn. Let p ∈ [1,∞]. We will denote by Ω1

p,R,∞(M) the
space introduced in Definition 3.2.1.

Lemma 3.A.1. Let F ∈ Ωm−1
p,R,∞(M). Then, there exists a connection for F .

Proof. Throughout the following proof, given any couple of points x, y ∈ M we will denote
by (x, y) an arbitrarily chosen oriented Lipschitz curve with finite length joining x and y. By
assumption, it holds that

∗dF =
N∑
j=1

djδxj , for some d1, ..., dN ∈ Z ∖ {0} and x1, ..., xN ∈M.

We define

{i1, ..., ip} :=
{
j ∈ {1, ..., N} s.t. dj > 0

}
,

{j1, ..., jq} :=
{
j ∈ {1, ..., N} s.t. dj < 0

}
,

d :=
N∑
j=1

dj ∈ Z.

We build a family F = {Iα}α∈A of oriented Lipschitz curves in M as follows. If there is no point
xj such that dj < 0, then we set F = ∅. Else, we start from xi1 and we add to the family F the
curves

(
xj1 , xi1

)
, ...,

(
xjk1 , xi1

)
, until we reach the condition k1 = q or the condition

r1 := di1 +

k1∑
l=1

djl ⩽ 0.

If k1 = q, then we stop. Else, we move to the point xi2 .
If r1 = 0, then we add to F the segments

(
xjk1+1

, xi2
)
, ...,

(
xjk2 , xi2

)
, where k2 ∈ {1, ..., q} is the

smallest value such that

r2 := di2 +

k2∑
l=k1+1

djl ⩽ 0.

If there is no k ∈ {1, ..., q} such that

di2 +

k∑
l=k1+1

djl ⩽ 0,

then we add to F the segments
(
xjk1+1

, xi2
)
, ...,

(
xjq , xi2

)
and we set k2 = q.

107



If r1 < 0, then we add to F the segments
(
xjk1 , xi2

)
and

(
xjk1+1

, xi2
)
, ...,

(
xjk2 , xi2

)
, where

k2 ∈ {1, ..., q} is the smallest value such that

r2 := di2 + r1 +

k2∑
l=k1+1

djl ⩽ 0.

If there is no k ∈ {1, ..., q} such that

di2 + r1 +
k∑

l=k1+1

djl ⩽ 0,

then we add to F the segments
(
xjk1 , xi2

)
and

(
xjk1+1

, xi2
)
, ...,

(
xjq , xi2

)
and we set k2 = q.

We proceed iteratively in this way, moving on to the subsequent points xis until ks = q or s = p.
Then, the construction of the family F is complete. We let xih be the last node that is visited
before the iteration stops and, for every Iα = (xj , xi) ∈ F , we define its multiplicity mα as

mα :=


|dj | − |rl| if i = il and j = ikl ,

min{|di|, |rl−1|} if i = il and j = ikl−1
,

min{|dj |, |di|} else.

Finally, we divide three cases:
1. Case d = 0. Notice that this is always the case if M has no boundary. We define the integer

1-current I ∈ R1(M) given by

⟨I, ω⟩ :=
∑
α∈A

mα

ˆ
Iα

ω, for every ω ∈ D1(M).

2. Case d > 0. We fix a point x0 ∈ ∂M and we let Ips := (x0, xis), for every s = h, ..., p. We
define the integer 1-current I ∈ R1(M) given by

⟨I, ω⟩ :=
∑
α∈A

mα

ˆ
Iα

ω + rh

ˆ
Ibh

ω +

p∑
s=h+1

dis

ˆ
Ibs

ω, for every ω ∈ D1(M).

3. Case d < 0. We fix a point x0 ∈ ∂M and we let Ins := (xjs , x0), for every s = kh, ..., q We
define the integer 1-current I ∈ R1(M) given by

⟨I, ω⟩ :=
∑
α∈A

mα

ˆ
Iα

ω + |rh|
ˆ
Ibh

ω +

q∑
s=kh+1

|dis |
ˆ
Ibs

ω, for every ω ∈ D1(M).

By direct computation, we verify that I has the desired properties and the statement follows.

Lemma 3.A.2. Let F ∈ Ωm−1
p,Z (M) (see Definition 3.1.4). Then,

inf
T∈D1(M),
∂T=∗dF

M(T ) = inf
T∈M1(M),
∂T=∗dF

M(T ) = sup
φ∈W 1,∞

0 (M),
||dφ||L∞⩽1

ˆ
M
F ∧ dφ < +∞, (3.A.1)

where M1(M) denotes the set of all the 1-currents with finite mass on M . Moreover, the infimum
on the left-hand-side of the previous chain of equalities is achieved.

108



Proof. By definition, there exists an integer 1-current I ∈ R1(M) with finite mass such that
∂I = ∗dF . Hence

inf
T∈D1(M),
∂T=∗dF

M(T ) ⩽ M(I) < +∞.

The first equality in (3.A.1) is clear.
Notice that for every T ∈ M1(M) such that ∂T = ∗dF it holds thatˆ

M
F ∧ dφ = ⟨∗dF, φ⟩ = ⟨∂T, φ⟩ = ⟨T, dφ⟩ ⩽ M(T )||dφ||L∞(M), ∀φ ∈W 1,∞

0 (M).

Hence,

inf
T∈M1(M),
∂T=∗dF

M(T ) ⩾ sup
φ∈W 1,∞

0 (M),
||dφ||L∞⩽1

ˆ
M
F ∧ dφ. (3.A.2)

To prove that the former inequality is actually an equality, it suffices to show that the supremum
on its right-hand-side is greater than the mass of some 1-current with finite mass T on M such
that ∂T = ∗dF . Define the vector subspace X ⊂ Ω1

∞(M) given by

X := {ω ∈ Ω1
∞(M) s.t. ω = dφ, for some φ ∈W 1,∞

0 (M)}.

Consider the linear functional ϕ : X ⊂ (Ω1(M), ∥·∥L∞) → R given by

⟨ϕ, ω⟩ =
ˆ
M
F ∧ ω, ∀ω ∈ X.

By (3.A.2) we get that ϕ is continuous on X, i.e.

||ϕ||L(X) = sup
ω∈X,

||ω||L∞⩽1

ˆ
M
F ∧ ω = sup

φ∈W 1,∞
0 (M),

||dφ||L∞⩽1

ˆ
M
F ∧ dφ ⩽ inf

T∈M1(M),
∂T=∗dF

M(T ) < +∞.

By Hahn-Banach theorem, we can extend ϕ to a linear functional T : Ω1(M) → R such that

||T ||L(Ω1
∞(M)) = ||ϕ||L(X) = sup

φ∈W 1,∞
0 (M),

||dφ||L∞⩽1

ˆ
M
F ∧ dφ

But then, T is a 1-current on M having finite mass and such that

M(T ) ⩽ ||T ||L(Ω1
∞(M)) = sup

φ∈W 1,∞
0 (M),

||dφ||L∞⩽1

ˆ
M
F ∧ dφ.

Moreover,

⟨∂T, φ⟩ = ⟨T, dφ⟩ = ⟨ϕ, dφ⟩ =
ˆ
M
F ∧ dφ = ⟨∗dF, φ⟩, ∀φ ∈W 1,∞

0 (M).

Hence,

M(T ) = inf
T̃∈D1(M),

∂T̃=∗dF

M(T̃ ) = inf
T̃∈M1(M),

∂T̃=∗dF

M(T̃ ) = sup
φ∈W 1,∞

0 (M),
||dφ||L∞⩽1

ˆ
M
F ∧ dφ < +∞

and the statement follows.
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Proposition 3.A.1. Let F ∈ Ωm−1
p,R (M). Then, there exists an integer 1-current L ∈ R1(M)

such that ∂L = ∗dF and

M(L) = inf
T∈D1(M),
∂T=∗dF

M(T ) = sup
φ∈W 1,∞

0 (M),
||dφ||L∞⩽1

ˆ
M
F ∧ dφ.

In particular,

M(L) ⩽ C||F ||Lp .

Proof. Notice that by [38, Chapter 1, Section 3.4, Theorem 8], we have

inf
T∈R1(M),
∂T=∗dF

M(T ) = inf
T∈D1(M),
∂T=∗dF

M(T ).

Since the mass M( · ) is lower semicontinuous with respect to the weak convergence in D1(M)

and since M-bounded subsets of the competition class R1(M) ∩ {T ∈ D1(M) s.t. ∂T = ∗dF}
are weakly sequentially compact (for a reference, see e.g. [53, Equation (7.5), Theorem 7.5.2]),
by the direct method of calculus of variations we conclude that there exists an integer 1-current
L ∈ R1(M) such that ∂L = ∗dF and

M(L) = inf
T∈R1(M),
∂T=∗dF

M(T ) = inf
T∈D1(M),
∂T=∗dF

M(T ) = sup
φ∈W 1,∞

0 (M),
||dφ||L∞⩽1

ˆ
M
F ∧ dφ,

where the last equality follows from Lemma 3.A.2. The statement follows.

3.B. Laplace equation on spheres

Let n ∈ N be such that n ⩾ 2 and fix any p ∈ (1,+∞). We let

Ẇ 1,p(Sn−1) :=

{
u ∈W 1,p(Sn−1) s.t. ū :=

ˆ
Sn−1

u d volSn−1 = 0

}
.

We can endow the space Ẇ 1,p(Sn−1) with the usual W 1,p-norm induced by W 1,p(Sn−1), given by

||u||W 1,p := ||u||Lp + ||du||Lp , ∀u ∈ Ẇ 1,p(Sn−1).

Lemma 3.B.1 (Poincaré inequality on Ẇ 1,p). There exists a constant C > 0 such that
ˆ
Sn−1

|u|p d volSn−1 ⩽ C

ˆ
Sn−1

|du|p d volSn−1 , ∀u ∈ Ẇ 1,p(Sn−1).

Proof. By contradiction, assume that for every k > 0 there exists uk ∈ Ẇ 1,p(Sn−1) such that
||uk||Lp = 1 and

1 > k

ˆ
Sn−1

|duk|p d volSn−1 .
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This implies immediately that ||duk||Lp → 0 as k → ∞. In particular, the sequence {uk}k∈N
is bounded with respect to the W 1,p-norm. Hence, by weak compactness of W 1,p(Sn−1), there
exists a subsequence {ukj}j∈N of {uk}k∈N such that ukj ⇀ u in W 1,p(Sn−1). Moreover, by Rellich-
Kondrakov theorem, we have ukj → u strongly in Lp(Sn−1). Since dukj → 0 strongly in Lp we
get du = 0. Then, u is constant on Sn−1. Since ukj ⇀ u in Lp(Sn−1), it follows that

0 = lim
j→∞

ˆ
Sn−1

ukj d volSn−1 =

ˆ
Sn−1

u d volSn−1

and this leads to u = 0. But this is absurd, since by strong Lp-convergence of {ukj}j∈N to u we
obtain ||u||Lp = 1.

Remark 3.B.1. By Lemma 3.B.1, we conclude that we can endow Ẇ 1,p with the following much
more convenient norm:

||u||Ẇ 1,p := ||du||Lp , ∀u ∈ Ẇ 1,p(Sn−1).

Moreover, such a norm is equivalent to W 1,p-norm.

Remark 3.B.2. Notice that a linear functional onW 1,p(Sn−1) restricts to an element of (Ẇ 1,p′(Sn−1))∗

if and only if it is W 1,p-continuous and ⟨F, 1⟩ = 0.

Lemma 3.B.2. Let F ∈ (W 1,p′(Sn−1))∗ be such that ⟨F, 1⟩ = 0. Then, the following facts hold.
1. If n ⩾ 3 the linear differential system {

d∗ω = F

dω = 0

has a unique weak solution α ∈ Ω1
p(Sn−1).

2. If n = 2 the linear differential system 
d∗ω = F

dω = 0ˆ
S1
ω = 0

has a unique weak solution α ∈ Ω1
p(S1).

In both cases, α satisfies the following estimate:

||α||Lp ⩽ C||F ||L(Ẇ 1,p′ (Sn−1)),

for some constant C > 0 depending only n.

Proof. Observe that, by Remark 3.B.2, F restricts to an element of (Ẇ 1,p′(Sn−1))∗. Consider the
linear functional ϕ : Ω1(Sn−1) → R given by

⟨ϕ, ω⟩ = ⟨F, u⟩, ∀ω = du+ d∗β + η ∈ Ω1(Sn−1),
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where η is a harmonic 1-form on Sn−1. Since ϕ is continuous and linear on Ω1(Sn−1) w.r.t.
the Lp′-norm, by Hahn-Banach theorem there exists a unique (recall that Lp-spaces are strictly
convex) extension Φ ∈ (Ω1

p′(S
n−1))∗ of ϕ such that

||Φ||(Ω1
p′ (S

n−1))∗ = ||ϕ||(Ω1(Sn−1))∗ ⩽ C||F ||L(Ẇ 1,p′ (Sn−1)).

By Riesz representation theorem, there exists a unique α ∈ Ω1
p(Sn−1) such that

⟨α, ω⟩Lp−Lp′ :=

ˆ
Sn−1

α ∧ ∗ω = ⟨Φ, ω⟩, ∀ω ∈ Ω1
p′(S

n−1) (3.B.1)

and

||α||Lp = ||Φ||(Ω1
p′ (S

n−1))∗ ⩽ C||F ||(Ẇ 1,p′ (Sn−1))∗ .

Finally, by applying equation (3.B.1) with get

⟨α, du⟩Lp−Lp′ = ⟨Φ, du⟩ = ⟨ϕ, du⟩ = ⟨F, u⟩, ∀u ∈ C∞(Sn−1),

and

⟨α, d∗β⟩Lp−Lp′ = ⟨Φ, d∗β⟩ = ⟨ϕ, d∗β⟩ = 0, ∀β ∈ Ω2(Sn−1).

The two previous equations are exactly the weak forms of the equations d∗α = F and dα = 0

respectively. Moreover, in case n = 2, we have
ˆ
S1
α =

ˆ
S1
α ∧ ∗1 = ⟨α, ∗1⟩Lp−Lp′ = ⟨Φ, ∗1⟩ = ⟨F, 1⟩ = 0.

This concludes about the existence of a solution to the differential systems given in points 1 and 2.
For what concerns uniqueness, assume that α and α′ are two solutions of the differential system
given in point 1 (resp. 2) and define β = α− α′. Then, we distinguish the two cases:
Case n ⩾ 3. In this case, β satisfies {

d∗β = 0

dβ = 0.

Hence, β is a harmonic 1-forms on Sn−1 for n ⩾ 1, which implies β = 0.
Case n = 2. In this case, β satisfies 

d∗β = 0

dβ = 0ˆ
S1
β = 0.

Hence, β is a harmonic 1-forms on S1, which implies β = c volS1 for some c ∈ R. But since β has
vanishing integral on S1, we get β = 0.
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Definition 3.B.1 (Sobolev spaces of differential forms). Fix any k ∈ N ∖ {0}. We define the
Sobolev space of W 1,p-regular differential k-forms on Sn−1 by

ΩkW 1,p(Sn−1) :=
{
ω ∈ Ωkp(Sn−1) s.t. dω, d∗ω ∈ Lp

}
.

We endow such space with the norm

||ω||W 1,p := ||ω||Lp + ||dω||Lp + ||d∗ω||Lp , ∀ω ∈ ΩkW 1,p(Sn−1).

Remark 3.B.3. It can be shown (see [80, §3 and §4]) that such Sobolev spaces are completely
equivalent to the usual ones, namely the space of k-forms having local coefficients in W 1,p. More-
over, in case n ⩾ 3 there exists C > 0 such that

||ω||W 1,p ⩽ C
(
||dω||Lp + ||d∗ω||Lp

)
, ∀ω ∈ Ω1

W 1,p(Sn−1). (3.B.2)

Indeed, let

X := {dα s.t. α ∈ Ω1
W 1,p(Sn−1)},

Y := {d∗β s.t. β ∈ Ω1
W 1,p(Sn−1)}.

By [80, Proposition 7.1], both X and Y are closed linear subspaces respectively of Ω2
p(Sn−1)

and Ẇ 1,p(Sn−1). Then, X ⊕ Y is a Banach space with respect to the standard norm on the
direct sum of two Banach spaces. We claim that the liner operator T : Ω1

W 1,p(Sn−1) → X ⊕ Y

given by Tω = (dω, d∗ω), for every ω ∈ Ω1
W 1,p(Sn−1) is a continuous linear bijection between

Banach spaces. Indeed, the fact that T is injective follows form the fact that there no non-zero
harmonic forms on Sn−1 for n ⩾ 3. Hence, we just need to show that T is surjective. Pick any
(dα, d∗β) ∈ X ⊕ Y . By Lemma 3.B.2, the linear differential system{

d∗ω = d∗(β − α)

dω = 0

has a unique weak solution ω̃ ∈ Ω1
p(Sn−1). Since by construction we have dω̃, d∗ω̃ ∈ Lp, we

conclude that ω̃ ∈ Ω1
W 1,p(Sn−1). Then, by letting ω := ω̃ + α ∈ Ω1

W 1,p(Sn−1) we see that

Tω = (dω, d∗ω) = (dω̃ + dα, d∗ω̃ + d∗α) = (dα, d∗β)

and we have proved our claim. This proves that T has a continuous inverse and the statement
follows with C = ||T−1||L(X⊕Y,Ω1

W1,p (Sn−1)).

In case n = 2, the estimate (3.B.2) still holds for every ω ∈ Ω1
W 1,p(S1) such that

ˆ
S1
ω = 0.

The proof is completely analogous.

Remark 3.B.4 (Lp-Hodge decomposition). Let

X := {dφ s.t. φ ∈ Ẇ 1,p(Sn−1)},
Y := {d∗β s.t. β ∈ Ω2

W 1,p(Sn−1)},
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Z := {η ∈ Ω1(Sn−1) s.t. ∆η = (dd∗ + d∗d)η = 0}.

Then, as a particular consequence of the Lp-Hodge decomposition theorem (see e.g. [80, Propo-
sition 6.5]), the operator T : X ⊕ Y ⊕ Z → Ω1

p(Sn−1) given by

T (dφ, d∗β, η) := dφ+ d∗β + η

is a continuous and linear isomorphism between Banach spaces. Hence, T has a continuous
inverse. We let

CH := ||T−1||L(Ω1
p(Sn−1),X⊕Y ).

We conclude that for every ω ∈ Ω1
p(Sn−1) there exist φ ∈ Ẇ 1,p(Sn−1), β ∈ Ω2

W 1,p(Sn−1) and
η ∈ Z such that ω = dφ+ d∗β + η and

||dφ||Lp + ||d∗β||Lp + ||η||Lp ⩽ CH ||ω||Lp . (3.B.3)

Lemma 3.B.3 (A weak version of Poincarè lemma). Let n ⩾ 3 and let α ∈ Ω1
p(Sn−1) be such

that dα = 0 weakly on Sn−1. Then, there exists a Sobolev function φ ∈ Ẇ 1,p(Sn−1) such that
dφ = α weakly on Sn−1.

Proof. We follow the notation of Remark 3.B.4 and we notice that, since n ⩾ 3 we have Z = {0}.
Hence, we write α = dφ+ d∗β, for φ ∈ Ẇ 1,p(Sn−1) and β ∈ Ω2

W 1,p(Sn−1). We observe that

⟨d∗β, ω⟩Lp−Lp′ = ⟨d∗β, dψ + d∗γ⟩Lp−Lp′

= ⟨d∗β, d∗γ⟩Lp−Lp′

= ⟨α− dφ, d∗γ⟩Lp−Lp′

= ⟨α, d∗γ⟩Lp−Lp′ = 0, ∀ω = dψ + d∗γ ∈ Ω1(Sn−1).

This implies d∗β = 0 and the statement follows.

Corollary 3.B.1 (Laplace equation on spheres). Let F ∈ L(W 1,p′(Sn−1)) such that ⟨F, 1⟩ = 0.
Then, the linear differential equation

∆u = F

has a unique weak solution φ ∈ Ẇ 1,p(Sn−1) satisfying

||φ||W 1,p ⩽ C||F ||(Ẇ 1,p′ (Sn−1))∗ .

Proof. First, we face the case n ⩾ 3. By Lemma 3.B.2 we can find α ∈ Ω1
p(Sn−1) satisfying{

d∗α = F

dα = 0

and

||α||Lp ⩽ C||F ||(Ẇ 1,p′ (Sn−1))∗ .
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Since dα = 0, by Lemma 3.B.3 there exists φ ∈ Ẇ 1,p(Sn−1) such that α = dφ. Hence, we get

∆φ = d∗dφ = d∗α = F.

Moreover, by Lemma 3.B.1, we have

||φ||W 1,p ⩽ C||dφ||Lp = C||α||Lp ⩽ C||F ||(Ẇ 1,p′ (Sn−1))∗ .

This concludes the proof in case n ⩾ 3.
If n = 2, then by Lemma 3.B.2 we can find α ∈ Ω1

p(Sn−1) satisfying
d∗α = F

dα = 0ˆ
S1
α = 0

and

||α||Lp ⩽ C||F ||(Ẇ 1,p′ (Sn−1))∗ .

By setting φ := ∗α, the statement follows.

3.C. Some technical lemmata

In this section we will make use of the following notation: let T be an m-rectifiable current in
Rn, then T can be represented as follows:

⟨T, ω⟩ =
ˆ
Rn

θ⟨ω, ξ⟩dH m
∣∣
Σ

∀ω ∈ Ωm(Rn),

where Σ is a locally m-rectifiable set,

θ : Σ → Z

is a locally H m-integrable, non-negative function and

ξ : Σ → ΛmRn

is an H m-measurable function such that for H m-almost every point x ∈ Σ, ξ(x) is a simple unit
m-vector in TxΣ.
In this case we write

T = τ(Σ, θ, ξ).

Lemma 3.C.1. For any k ∈ N let

Tk = τ(Σk, θk, ξk)

be an m-rectifiable current on Rn of finite mass. Assume that (Tk)k∈N is a Cauchy sequence with
respect to the convergence in mass.
Then there exists an m-rectifiable current

T = τ(Σ, θ, ξ)

such that

Tk → T (k → ∞) in mass.
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Proof. Replacing the original sequence by a subsequence if necessary, we may assume that for
any k ∈ N

M(Tk − Tk+1) ⩽ 2−k.

Now for any k ∈ N let

T̃k :=

{
T1 if k = 1

Tk − Tk−1 if k > 1.

Then for any k ∈ N we have

Tk =

k∑
i=1

T̃i.

For any k ∈ N write

T̃k = ⟨Σ̃k, θ̃k, ξ̃k⟩.

Notice that
k∑
i=1

θ̃iξ̃i = θkξk H m- a.e. on Σ,

for every k ∈ N. Set

Σ :=
⋃
k∈N

(
Σ̃k ∖ θ̃−1

k (0)
)
.

Then Σ is m-rectifiable as countable union of m-rectifiable sets. Moreover H m(Σ) <∞. In fact

H m(Σ) ⩽
∑
k∈N

H m
(
Σ̃k ∖ θ̃−1

k (0)
)
⩽
∑
k∈N

ˆ
Rn

|θ̃k| dH m Σ̃k =
∑
k∈N

M(T̃k) <∞.

Next let

θ =
∑
k∈N

θ̃k,

where θ̃k is extended by zero on Σ∖ Σ̃k for any k ∈ N .
By Beppo-Levi Theorem

ˆ
Rn

|θ| dH m Σ =
∑
k∈N

ˆ
Rn

|θ̃k| dH m Σ

=
∑
k∈N

ˆ
Rn

|θ̃k| dH m Σ̃k =
∑
k∈N

M(T̃k) <∞. (3.C.1)

Therefore θ is finite H m-a.e. in Σ, i.e. for H m-a.e. x ∈ Σ there are only finitely many k ∈ N so
that θk(x) ̸= 0. In particular the sum ∑

k∈N
θ̃k(x)ξk(x)
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is well defined and finite for H m-a.e. x ∈ Σ (again ξk is extended by zero on Σ ∖ Σ̃k for any
k ∈ N) and we can write

θ(x)ξ(x) =
∑
k∈N

θ̃k(x)ξk(x)

for some θ(x) ∈ Z⩾0 and for some simple unit m-vector ξ(x) in TxΣ, for H m-a.e. x ∈ Σ.
Observe that θ is an H m-measurable function on Σ as the absolute value of the a.e.-limit of
H m-measurable functions. Analogously, ξ is an H m-measurable map on Σ as the a.e.-limit of
H m-measurable maps. We set

T := τ(Σ, θ, ξ)

and we claim that

Tk → T (k → ∞) in mass.

In fact we know that since the space of m-currents is complete under the convergence in mass (as
a dual space), there exists an m-current T ′ such that

Tk → T ′ (k → ∞) in mass.

To see that T = T ′ observe that for any ω ∈ Dm(Rn)

θk⟨ω, ξk⟩ =
k∑
i=1

θ̃i⟨ω, ξ̃i⟩ → θ⟨ω, ξ⟩ H m-a.e. in Σ,

thus by (3.C.1) and Dominated Convergence Theorem we conclude that

⟨Tk, ω⟩ → ⟨T, ω⟩ (k → ∞).

In particular T = T ′.

Lemma 3.C.2. Let α ∈ (1,+∞), q ∈ (−∞, 1], ε ∈ (0, 1) and let Ω ⊂ Qn1−ε(0) be open, Lipschitz
and bounded. For any p ∈ [1,+∞) and µ := fLn with f = (12 − ∥ · ∥∞)q, consider the continuous
linear operator Pα : Lp(Ω, µ;Rn) → Lp(Ω, µ;Rn) given by

(PαV )(x) :=

{
αn−1V (αx) if x ∈ α−1Ω,

0 on Ω∖ α−1Ω.

Then:
1. For every α ∈ (1,+∞) such that |1− α−1| ⩽ ε holds that

∥PαV ∥Lp(µ) ⩽ Cα
n−1−n

p ∥V ∥Lp(µ),

for some constant C > 0 depending only on q and p.
2. For every V ∈ Lp(Ω, µ;Rn) we have that PαV → V in Lp(Ω, µ;Rn) as α→ 1+.
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Proof. Fist we prove 1. Fix any V ∈ Lp(Ω, µ;Rn) and compute
ˆ
Ω
|PαV |p dµ = αp(n−1)

ˆ
α−1Ω

|V (αx)|p dµ(x)

⩽ αp(n−1)−n
(ˆ

Ω
|V (y)|p dµ(y) +

ˆ
Ω
|V (y)|p f(α

−1y)− f(y)

f(y)
dµ(y)

)
.

As in (3.2.4) we can estimate∣∣∣∣f(α−1y)− f(y)

f(y)

∣∣∣∣ ⩽ q

(
1

2
− ∥y∥∞

)−1

∥y∥∞(1− α−1) ⩽ C

for any y ∈ Q1−ε(0) and any α ⩾ 1 such that |1− α−1| ⩽ ε, for some constant C depending only
on q. Therefore

ˆ
Ω
|PαV |p dµ ⩽ (C + 1)αp(n−1)−n

ˆ
Ω
|V (y)|p dµ(y).

Hence 1. follows. We are left to prove 2.. Fix any δ > 0 and let Vδ ∈ C0
c (Ω;Rn) be such that

∥Vδ − V ∥Lp(µ) ⩽ δ.

By 1, we have

∥PαV − V ∥Lp(µ) ⩽ ∥Pα(V − Vδ)∥Lp(µ) + ∥PαVδ − Vδ∥Lp(µ) + ∥Vδ − V ∥Lp(µ)

⩽ (Cα
n−1−n

p + 1)δ + ∥PαVδ − Vδ∥Lp(µ),

for every α ∈ (1,+∞) such that |1− α−1| ⩽ ε. Since Vδ is continuous and compactly supported,
it follows from dominated convergence that ∥PαVδ − Vδ∥Lp(µ) → 0 as α → 1+. Hence, by letting
α→ 1+ in the previous inequality we get

lim sup
α→1+

∥PαV − V ∥Lp(µ) ⩽ (C + 1)δ.

As δ > 0 was arbitrary, 2 follows.
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4. Coulomb gauges and regularity for
Yang–Mills fields in supercritical
dimension

4.1. Introduction

The study of the variations of the Yang–Mills Lagrangian has known a spectacular development
since the very first analytical works by K. Uhlenbeck, which have been central in producing new
invariants of differential structures on topological 4-manifolds. In particular, S. Donaldson proved
his celebrated result on the existence of non-smoothable topological 4-manifolds by studying
properties of the the moduli space of the anti-self-dual instantons1 over such manifolds (see [30],
[31]). Examples of these manifolds had already been constructed by Freedman in [36]. Moreover,
Taubes proved the existence of uncountably many fake R4’s by means of gauge theoretic methods
in [87]. For a complete discussion of these topics, we refer the reader to [32] or [35].
Due to the successful use of the Yang–Mills energy in dimension 4, it is natural to explore its
behavior in higher dimensions, specifically in the supercritical regime. In fact, S. Donaldson and
R. Thomas outlined a research program in this direction in [33], [88]. However, analyzing the
Yang–Mills Lagrangian becomes increasingly challenging in dimensions higher than 4, where we
are led to considersingular solutions, which naturally emerge in this more complicated context.
Locally, the Yang–Mills Lagrangian is defined as follows. Let A be a 1-form on the flat n-
dimensional unit ball Bn taking values into the Lie Algebra g of a compact matrix Lie group G.
The Yang–Mills energy of this “connection 1-form” is given by

YM(A) :=

ˆ
Bn

|dA+A ∧A|2 dLn, (4.1.1)

where Ln denotes the Lebesgue measure on Rn, A ∧A is the g-valued 2-form given by

A ∧A(X,Y ) := [A(X), A(Y )] ∀X,Y ∈ Rn (4.1.2)

is the Lie Algebra bracket on g. The curvature FA := dA+A∧A is the sum of a linear operation
on A (i.e. dA) and a bilinear one (i.e. A ∧ A). One of the main difficulties in the analysis of
the Yang–Mills functional is to understand which one of the two is “taking over” the other along
sequences with uniformly bounded Yang–Mills energy. As we will see shortly, the general answer
to this question strongly depends on the dimension n of the base manifold.
The Yang–Mills Lagrangian is conformally invariant in dimension 4. This makes the 4-dimen-
sional case critical from a purely analytic perspective, as we are explaining in the forthcoming

1 Instantons in dimension 4 are very special critical points of the Yang–Mills functional solving a first order PDE,
in a similar fashion as holomorphic functions are very special critical points of the Dirichlet energy in dimension
2.
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paragraphs. The Yang–Mills Lagrangian is invariant under the following gauge change operation:

YM(Ag) = YM(A), where Ag := g−1 dg + g−1Ag (4.1.3)

for any choice of map g from Bn into G. These maps are called local gauge transformations or
simply local gauges and they realize the so called local gauge group. The equality between the
Yang–Mills energy of A and the Yang–Mills energy of Ag is a direct consequence of the following
identity2

FAg = g−1FAg ⇒ |FAg | = |FA|. (4.1.4)

This huge invariance group is both a source of difficulties and a big advantage in studying this
Lagrangian.
Our starting point consists in considering the space of connection forms modulo this gauge group
action. One of the main challenges in the field consists in proving the existence of a gauge g
in which the connection form Ag is “optimally” controlled3 by its Yang–Mills energy YM(Ag) =

YM(A). For instance, in order to make the functional YM as much coercive as possible, a
reasonable quest suggested by the abelian case (G = U(1)) in electromagnetism consists in looking
for the Coulomb condition to be fulfilled. This amounts to finding a local gauge g such that{

d∗Ag = 0 in Bn

⟨Ag, x⟩ = 0 on ∂Bn.
(4.1.5)

This condition is equivalent to the following non-linear elliptic PDE{
−div

(
g−1∇g

)
= div(g−1Ag) in Bn

−g−1∂νg = g−1 ⟨A, x⟩ g on ∂Bn.
(4.1.6)

We shall come back to the difficulty of solving (4.1.6) later in this introduction but, assuming
such a g has been obtained, we control

C−1∥Ag∥2W 1,2(Bn) ⩽
ˆ
B4

|dAg|2 + |d∗Ag|2 dLn ⩽ YM(A) +

ˆ
Bn

|Ag ∧Ag|2 dLn. (4.1.7)

From the Sobolev embedding theorem, for n > 2 we have4

W 1,2(Bn) ↪→ L
2n
n−2 (Bn). (4.1.8)

In dimension n = 3, 4, Hölder inequality implies that L
2n
n−2 (Bn) ↪→ L4(Bn). Hence, for n ⩽ 4 we

obtain the bound ˆ
Bn

|Ag ∧Ag|2 dLn ⩽ ∥Ag∥4L4(Bn) ⩽ C∥Ag∥4W 1,2(Bn), (4.1.9)

2 The action of the local gauge group on a given connection — i.e. an equivariant horizontal plane distribution
in the principal G-bundle which is represented in a local trivialization by a g valued 1-forms A in the base —
is converted into the adjoint action of G on g at the level of the curvature which is itself measuring the lack
of integrability of this plane distribution (recall that the curvature is the vertical projection of the bracket of
horizontal lifts of vector fields in the base).

3The adjective “optimally” refers to the smallest possible classical function space that Ag belongs to.
4For n = 2, we have

W 1,2(Bn) ↪→
+∞⋂
p=1

Lp(Bn).
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and finally

∥Ag∥2W 1,2(Bn) ⩽ C YM(A) + C∥Ag∥4W 1,2(Bn). (4.1.10)

Assuming now that a smallness condition of the form C∥Ag∥2W 1,2(Bn) ⩽ 2−1 is known, one gets in
return the “a priori” estimate

∥Ag∥2W 1,2(Bn) ⩽ C YM(A). (4.1.11)

One of the main achievements of [90] is to convert the a priori estimate (4.1.11) into an existence
result for (4.1.6) such that (4.1.11) eventually holds, provided YM(A) is small enough.
This achievement is not straightforward at all in dimension n ⩾ 4. A first attempt would be to use
the variational nature of the problem. Indeed, equation (4.1.6) happens to be the Euler–Lagrange
equation of

∥Ag∥2L2(Bn) =

ˆ
B4

|dg +Ag|2 dLn. (4.1.12)

Hence, independently of dimension, a solution to (4.1.6) can be obtained by a direct minimization
of (4.1.12) and by applying the fundamental principles of the calculus of variations. Nevertheless,
this variational strategy is hitting a serious regularity issue in the sense that, for a generic A ∈
L2(Bn), a minimizer g of (4.1.12) is a priori only in W 1,2 and in general (4.1.11) is not satisfied
by any of these minimizers5

Here, another dichotomy appears within the low dimensions n ⩽ 4. For n < 4, because of the
Sobolev embedding

W 2,2(Bn) ↪→ C0(Bn), (4.1.13)

the group multiplication

M :W 2,2(Bn, G)2 →W 2,2(Bn, G)

(g, h) 7→ gh
(4.1.14)

is smooth between the two Banach manifolds W 2,2(Bn, G)2 and W 2,2(Bn, G). This allows to
implement an argument based on the local inversion theorem in order to prove that any A ∈
W 1,2(∧1Bn ⊗ g) satisfying YM(A) < ε admits a local gauge g ∈ W 2,2(Bn, G) solving (4.1.6) and
(4.1.11).
Coming now to the critical dimension 4, the group multiplication map M is still well-defined, since
the group G is assumed to be compact, but M ceases to be continuous. Moreover, W 2,2(Bn, G)
looses its natural Banach manifold structure. These facts prevent implementing the strategy
involving the direct use of the local inversion theorem. K. Uhlenbeck instead developed a very
clever continuity argument leading to a W 1,2 controlled representative satisfying (4.1.11), under
small YM-energy assumption.
To summarize, the balance between the linear part dA and the bilinear part A∧A of the curvature
form can be settled in favor of the linear and more regularizing part dA as long as YM(A) is small

5Even for a smooth data A, minimizers to the Dirichlet energy for maps from B4 into G are known to be at most
in W 2,( 3

2
,∞)(B4, G) (see [79]) and are certainly not automatically in W 2,2(B4, G), which must be the case if Ag

is in W 1,2.
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enough and up to dimension 4. This enables to implement classical variational strategies for YM
within the framework of Sobolev connections6 on smooth principal G-bundles (see e.g. [81] for
minimization procedures).
In dimension larger than 4, the Sobolev embedding W 1,2 ↪→ L4 does not hold anymore. This
fundamental fact compromises Uhlenbeck’s procedure to extract controlled gauges. Even worse,
one can produce a sequence of smooth su(2)-valued 1 forms {Ak}k∈N on B5 such that

Ak ⇀ A∞ weakly in L2(B5)

dAk +Ak ∧Ak ⇀ F∞ weakly in L2(B5)

d∗Ak = 0 in B5.

(4.1.16)

and

Spt d (tr(F∞ ∧ F∞)) = B5. (4.1.17)

Assume that there exists B ∈W 1,2(∧1B5 ⊗ su(2)) such that

F∞ = dB +B ∧B = FB. (4.1.18)

Then, for any smooth function φ compactly supported in B5 the coarea formula gives
ˆ
B5

dφ ∧ tr(FB ∧ FB) =
ˆ +∞

−∞
dL1(s)

ˆ
φ−1(s)

tr(FB ∧ FB). (4.1.19)

Thanks to Sard’s theorem and Fubini’s theorem, for H 1-a.e. s ∈ R, φ−1(s) is a smooth
closed 4-dimensional manifold and the restriction of B to this submanifold is in W 1,2. On
such a 4-dimensional manifold, by a straightforward strong approximation procedure for B in
W 1,2(∧1φ−1(s)⊗ su(2)), we can derive the following identity from the classical expression of the
transgression form for the second Chern class:

tr(FB ∧ FB) = d

[
tr
(
B ∧ dB +

1

3
B ∧ [B,B]

)]
. (4.1.20)

This implies that
ˆ
φ−1(s)

tr(FB ∧ FB) = 0 for H 1-a.e. s ∈ R. (4.1.21)

Combining (4.1.19) and (4.1.21), we get

d (tr(FB ∧ FB)) = 0 in D′(B5). (4.1.22)

This fact is contradicting (4.1.17) and we conclude that the weak limit of the smooth curvatures
FAk

on B5 cannot be, even locally, the curvature of a Sobolev W 1,2-connection. For sequences
6A Sobolev W k,p-connection on a smooth principal G-bundle π : P → M4 is given by a collection of W k,p

g-valued 1-forms AU on each open set U over which P is trivial (i.e. π−1(U) ≃ U × G as principal G-bundle
isomorphism) and related to each other by the classical gauge equivalence relations

AV := g−1
UV dgUV + g−1

UV AU gUV on U ∩ V (4.1.15)

where gUV are the G-valued transition functions defining the smooth bundle P (see for instance [35]).
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of smooth Yang–Mills fields (smooth critical points of YM) with uniformly bounded energy, the
possibility for their weak limits7 not to satisfy (4.1.22) is not excluded at all. In fact, we believe
that it is possible to produce such sequences where (4.1.22) is violated.

These facts left the variational geometric analysis community in some perplexity and the following
question arose naturally:

What is the space of weak limits of curvatures of smooth Yang–Mills connections
in supercritical dimension?

The above considerations are excluding the space of the curvatures of Sobolev connections, which
has been the unique framework adopted so far to approach the variational issues related to the
Yang–Mills lagrangian in subcritical and critical dimension.
The work in [66] was motivated by this question and brought an answer to it in the abelian case.
In this framework, a 2-form F on a closed oriented connected surface Σ is the curvature of some
complex line bundle E over Σ if and only if

ˆ
Σ
F ∈ 2πZ and then c1(E) =

ˆ
Σ
F. (4.1.23)

The authors introduced on B3 the space of weak Lp-curvatures

Fp
Z :=

{
F ∈ Lp(B3) : ∀φ ∈ Lipc(B3) and for H 1-a.e. s ∈ R,

ˆ
φ−1(s)

F ∈ 2πZ

}
. (4.1.24)

The main result in [66] establishes that for every p > 1 the space Fp
Z is sequentially closed for

the weak convergence in Lp. This statement and some complementary results were made more
precise and extended to higher dimensions in [22] and [23].
Inspired by the abelian case, M. Petrache and the second author introduced the space of weak
connections on a n-dimensional manifold Nn. The first main idea consists first, for the dimensions
n ⩽ 4, in “wrapping together” the space of principal G-connections for any possible principal G-
bundles in a single definition. We define

AG(Nn) :=



∇ := (Ui, Ai)i∈I ; (Ui)i∈I realizes an open cover of Nn

Ai ∈W 1,2(∧1Ui ⊗ g), ∀ i ̸= j ∃ gij ∈W 2,2(Ui ∩ Uj , G) s. t.

Aj = A
gij
i := g−1

ij dgij + g−1
ij Ai gij on Ui ∩ Uj

∀ i ̸= j ̸= k gij gjk gki ≡ idG on Ui ∩ Uj ∩ Uk
|F∇| ∈ L2(Nn)


. (4.1.25)

This is the definition of Sobolev connections considered in the classical analytical works on gauge
theory since the early eighties ([32], [35]). In order to implement analysis arguments, we need to
find some natural generalization of Sobolev connections to higher dimension that enjoys a good
closure property. Aiming to do so, it is tempting to work with a single form to represent the
connection. The problem of constructing a global gauge to any Sobolev connection in dimension
at most 4 was considered for the first time in [64].

7These objects are called admissible Yang–Mills connections in [89].
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Theorem 4.1.1 ([64]). Let ∇ ∈ ASU(2)(N
n) be a Sobolev connection of some principal SU(2)-

bundle over a closed oriented Riemannian manifold Nn of dimension n ⩽ 4. Then there exists
A ∈ L4,∞(∧1Nn⊗ su(2)) such that, about every point, there exists locally a W 1,(4,∞) trivialization
in which

∇ = d+A, (4.1.26)

where L4,∞ is the weak Marcinkiewicz space

L4,∞(Nn) :

{
f is measurbale and sup

λ>0
λ |{x ∈ Nn ; |f(x)| > λ}|

1
4 < +∞

}
(4.1.27)

with | · | being the measure induced by the volume form of Nn.

Representing a smooth connection on a non trivial bundle by a global 1-form is obviously im-
possible if one does not give up regularity. In fact, for instance, if the bundle is a non trivial
SU(2)-bundle over the 4-sphere, one can prove that no smooth connection ∇ has a global repre-
sentative in L4. Hence, the regularity L4,∞ is optimal in that sense8.
Theorem 4.1.1 is leading naturally to the following definition

AG(N
n) :=

{
A ∈ L2(∧1Nn ⊗ g) : FA ∈ L2(Nn) and ∃ locally g ∈W 1,2 s.t. Ag ∈W 1,2

}
.

(4.1.28)

Thanks to this theorem, for n ⩽ 4 we have

ASU(2)(N
n) = ASU(2)(N

n) (4.1.29)

Finally, again for n ⩽ 4, one can consider the following apparently weaker definition

aG(N
n) :=

{
A ∈ L2(∧1Nn ⊗ g) : FA ∈ L2(Nn) and ∃ locally g ∈W 1,2 s.t. Ag ∈ L4

}
. (4.1.30)

This definition more flexible than the definition of AG, because it extends to spaces Xn which
are bi-Lipschitz homeomorphic to a smooth Riemannian oriented closed manifold Nn and n ⩽ 4.
Moreover, we prove in the Appendix A of the present paper that for any Riemannian manifold of
dimension less or equal than 4 and for any compact Lie group G

AG(N
n) = aG(N

n). (4.1.31)

In [74], a proof of the sequential weak closure of aG(M
4) under Yang–Mills energy control is

given for every closed oriented 4-dimensional Riemannian manifold N4. The proof is based on
the analysis mostly developed by K. Uhlenbeck during the 80s in [90], [91] and [92], combined
with some more recent arguments involving the use of interpolation spaces introduced in this
context by the second author in [72].
Coming now to the supercritical dimensions, as underlined earlier one would also wish to produce
a class of “objects” containing smooth connections and which is weakly sequentially closed under
Yang–Mills energy control exclusively. In order to do so, the main idea in [66] is to propose

8In [64], the authors were asking the question whether a global gauge in the optimal space L4,∞(∧1Nn ⊗ su(2))

and satisfying simultaneously the Coulomb condition d∗A = 0. A partial answer to this question which is still
open as such is given in [93].

124



an inductive definition by mean of generic slicing. Let n > 4 and denote by L(Nn) the space
of Lipschitz functions whose level sets are almost always bi-Lipschitz equivalent to a smooth
manifold. We introduce the following space:

aG(N
n) :=


A ∈ L2(∧1Nn ⊗ g) : FA ∈ L2(Nn)

s.t. ∀φ ∈ L(Nn) and for H 1-a.e. s ∈ R

ι∗φ−1(s)A ∈ aG(φ
−1(s))

 , (4.1.32)

where ιφ−1(s) is the canonical inclusion of φ−1(s) in Mm.

In [65], a proof of the sequential weak closure of aG(M
5) under Yang–Mills energy control is

proposed9. More precisely, the authors show that
∀ {Ak}k∈N ⊂ aG(N

5) s.t. lim sup
k→+∞

YM(Ak) < +∞

∃{Akn}n∈N, A ∈ aG(N
5) and {gn}n∈N ⊂W 1,2(N5, G)

s.t. Agnkn ⇀ A in L2(N5) and YM(A) ⩽ lim inf
k→+∞

YM(Akn).

(4.1.33)

The proof of (4.1.33) uses a strong approximation property of elements in aG(B5) by connection
forms which are smooth away from finitely many points, modulo gauge transformations. More
specifically, in [65] the authors show that for any A ∈ aG(B5) there exists a sequence of {Ak}k∈N ⊂
aG(B5) such that each Ak is gauge equivalent to a connection form in B5 which is smooth away
from finitely many points and

Ak → A strongly in L2(B5),

FAk
⇀ FA weakly in L2(B5),

tr (FAk
∧ FAk

)⇀ tr (FA ∧ FA) weakly in D′(B5).

(4.1.34)

The space FG(B5) of smooth connections away from isolated points is the smallest space such that
the strong approximation property (4.1.34) holds true. This makes FG(B5) a natural subspace in
aG(B5), in the same way as the space R∞(B3, S2) of maps in the Sobolev space W 1,2(B3, S2) that
are smooth away from finitely many isolated topological singularities is the smallest subspace in
W 1,2(B3, S2) being sequentially dense with respect to the W 1,2-norm (see [13, Theorem 4]).
Because of the sequential weak closure property (4.1.33), aG(N5) is a space in which variational
problems related to the Yang–Mills lagrangian on N5 are well-posed. We can then define the
notion of weak Yang–Mills connections.

Definition 4.1.1 (Weak Yang–Mills connections). Let G be a compact matrix Lie group. We

9The proof of the sequential weak closure in [65] is based on the Proposition 2.1 in the same paper. As discussed
in Remark 4.2.1, [65, Proposition 2.1] has the missing term ∥A∥2L2 on the right-hand-side of the inequality
(2.2). This was first noticed by S. Sil. Our Proposition 4.2.1 below is a suitable replacement of [65, Proposition
2.1] as explained in section II. We give a complete and detailed proof of the sequential weak closure of aG(M5)

under controlled Yang–Mills energy in [24]
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say that A ∈ aG(B5) is a weak Yang–Mills connection on B5 if

d∗AFA = 0 ⇐⇒
5∑
i=1

∂xi(FA)ij + [Ai, (FA)ij ] ∀ j = 1 · · · 5 distributionally on B5,

(4.1.35)

i.e. ˆ
B5

⟨FA, dAφ⟩ = 0 ∀φ ∈ C∞
c (∧1B5 ⊗ g), (4.1.36)

where we have

dAφ := dφ+ [A ∧ φ] = dφ+A ∧ φ+ φ ∧A, ∀φ ∈ C∞
c (∧1B5 ⊗ g).

and ⟨ · , · ⟩ denotes the scalar product on ∧2B5 ⊗ g.

Among weak Yang–Mills connections, we shall be particularly interested with the ones that sat-
isfy the following stationarity condition (which is automatically satisfied by smooth solutions to
(4.1.35) or by YM-energy minimizers for instance).

Definition 4.1.2 (Stationary weak Yang–Mills connections). Let G be a compact matrix Lie
group. We say that a weak Yang–Mills connection A ∈ aG(B5) on B5 is stationary if

d

dt

∣∣∣∣
t=0

YM(Φ∗
tA) = 0, (4.1.37)

for every smooth 1-parameter group of diffeomorphisms Φt of B5 with compact support.

If A is a stationary Yang–Mills connection, by standard methods it can be shown that the following
monotonicity property holds true: for every given x ∈ B5, the function(

0,dist(x, ∂B5)
)
∋ ρ→ ecΛρ

ρ

ˆ
Bρ(x)

|FA|2 dL5 (4.1.38)

is non-decreasing, where c > 0 is a universal constant and Λ depends on B1(x). In particular, we
have

sup
x∈B 1

2
(0),

0<ρ< 1
4

1

ρ

ˆ
Bρ(x)

|FA|2 dL5 ⩽ C

ˆ
B5

1(0)
|FA|2 dL5,

for some constant C > 0 independent on A. We then naturally introduce the following spaces
which are known as Morrey-Sobolev space for any domain Ω ⊂ Rn

M0
p,q(Ω) :=

{
f ∈ Lp(Ω) : |f |p

M0
p,q(Ω)

:= sup
x∈Ω,
ρ>0

1

ρn−pq

ˆ
Bρ(x)∩Ω

|f |p dLn
}
. (4.1.39)

It is strongly motivated by the analysis of weak stationary Yang–Mills Fields to ask whether
Uhlenbeck’s Coulomb gauge extraction extends in the higher dimension 5 to weak connections
having a curvature with small Morrey M0

2,2-norm. The following theorem answers positively to
this question and is one of the main results of the present work.
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Theorem 4.1.2. Let G be a compact matrix Lie group. There exists εG > 0 such that for every
weak connection A ∈ aG(B5) satisfying

|FA|2M0
2,2(B5) = sup

x∈B5,
ρ>0

1

ρ

ˆ
Bρ(x)∩B5

|FA|2 dL5 < εG (4.1.40)

there exists g ∈W 1,2(B5, G) such that

d∗Ag = 0, (4.1.41)

and

|∇Ag|2M0
2,2(B5) = sup

x∈B5,
ρ>0

1

ρ

ˆ
Bρ(x)∩B5

5∑
i=1

|∂xiAg|2 dL5 ⩽ CG|FA|2M0
2,2(B5), (4.1.42)

where CG > 0 is a constant depending only on G.

This result has been conjectured to hold in [65]. Such a Coulomb gauge extraction theorem has
been first established in [89] for smooth connections and in [57] under the assumption that the
connection can be approximated strongly by smooth connections with curvatures having small
Morrey norm (4.1.40). Later on, the same statement was proved in a particular case assuming
that the connection is a weak limit of smooth Yang–Mills fields (see [86]). Such weak limits are
smooth away from a closed codimension 4 rectifiable set and and referred to as admissible Yang–
Mills connections. We also remark that energy identities and bubbling analysis for Yang–Mills
fields in supercritical dimension are due to the subsequent works of the second author and A.
Naber–D. Valtorta, in [73] and [60] respectively.
In [86], the authors prove a strong approximability property of admissible Yang–Mills connections
by smooth connections with small Morrey norm (see [86, Proposition 4.4]). In [83, Theorem 34],
the author shows the existence of Morrey norm controlled local Coulomb gauges in supercritical
dimension by exploiting an approximation procedure, in the same spirit as in [57]. However,
approximating connections in the (stronger) Morrey norm requires additional assumptions10 which
are not available in our context.
The main achievement of the present chapter is to prove that any weak connection satisfying
(4.1.40) (which includes all the previous cases) can be approximated by smooth connections with
small Morrey norms.
Combining Theorem 4.1.2 and the main result in [57] we can derive the following ε-regularity
statement by using the same arguments presented in [57, Section 4].

Theorem 4.1.3 (ε-regularity). Let G be a compact matrix Lie group. There exists εG ∈ (0, 1)

such that for every stationary weak Yang–Mills A ∈ aG(B5) satisfying

YM(A) =

ˆ
B5

|FA|2 dL5 < εG

there exist g ∈W 1,2(B 1
2
(0), G) such that Ag ∈ C∞(B 1

2
(0)).

10In particular, in [83, Theorem 34] the author exploits a “vanishing Morrey norm” condition.
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Finally, standard covering arguments give the following bound on the singular set of stationary
weak Yang–Mills connections, which is the main result of the present chapter.

Theorem 4.1.4. Let G be a compact matrix Lie group and let A ∈ aG(B5) be a stationary weak
Yang–Mills connection on B5. Then

H 1(Sing(A)) = 0,

where H 1 is the 1-dimensional Hausdorff measure in R5 and Sing(A) ⊂ B5 is the singular set of
A, given by Sing(A) := B5 ∖ Reg(A) where

Reg(A) :=
{
x ∈ B5 s.t. ∃ ρ > 0, g ∈W 1,2(Bρ(x), G) s.t. Ag ∈ C∞(Bρ(x))

}
.

Organization of the chapter

As mentioned above, the proof of the main Theorem 4.1.2 consists in approximating strongly
in L2 every weak connection A (i.e. every A ∈ aG(B5)) whose curvature has a small Morrey
M0

2,2-norm by a sequence of smooth g-valued 1-forms Aj having small Morrey M0
2,2-norms.

Section 4.2 is devoted to the construction of the building blocks. It contains two main results,
explaining how to extend in an “optimal way” inside a cube a given connection at its boundary.
We propose two ways of extending this connection. First, we assume some smallness condition
on the L2-norms both of the curvature and of the connection at the boundary (Corollary 4.2.1).
Then, we assume smallness of the L2-norm of the curvature only (Corollary 4.2.2).
In Section 4.3 we introduce some terminology. We say that a cube is good if on its boundary
both the L2-norms of the curvature and of the connection are small. We call a cube bad if on its
boundary just the L2-norm of the curvature is small.11 Then, in a second step, by the mean of
the coarea formula and the mean value theorem we prove the existence of a so called admissible
covers by small cubes of comparable sizes, so that the L2-norm of the curvature is small on the
boundary of each of the cubes.
Section 4.4 is devoted to what is called the “first smoothification”. In the first smoothification,
we replace the initial connection in every cube of a chosen admissible cover by mean of the
extensions introduced in the previous section. When the cube is good, we use Corollary 4.2.1
whilst, if the cube is bad, we exploit by Corollary 4.2.2. The main result in Section IV is Theorem
4.4.1. The consequence of the “first smoothification” is that the newly obtained connection forms
Ai,Λ converging strongly in the L2-norm to A as i → +∞ and Λ → +∞, still having a small
Morrey norm of the curvature, enjoys the following property: every trace on a generic cube of
size comparable to the size of the admissible covering satisfies the small L2-condition.
In Section 4.5 we shall proceed to the “second smoothification”, that is, the L2 strong approxi-
mation of the initial weak connection A by a sequence Ai of smooth connections whose curvature
has small Morrey M0

2,2-norm (Theorem 4.5.1). The proof of the second smoothification goes as

11This terminology in the dichotomy between good and bad cubes is reminiscent of the one introduced in the
framework of the strong approximation of weak connections in B5 ([65] and [24]). Nevertheless, the meaning
that we associate to it is different, in the sense that assuming the smallness condition of the Morrey norm
allows us to decompose the domain into cubes at the boundary of which the L2-norm of the curvature is always
small. The dichotomy between good and bad cubes is made on the base of the smallness of L2-norm of the
connection only.
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follows. Starting from the approximating sequences Ai,Λ given by the first smoothification, we
take a grid of size comparable to the size of the admissible cover associated to Ai,Λ and we apply
the replacement results of Section II (the building blocks Corollary 4.2.1 and Corollary 4.2.2) on
each of the disjoint cubes of the grid iteratively in such a way that, in the procedure, each cube
to be replaced is facing at least one cube which has not been replaced yet.
In Section 4.6, we combine the approximation given by the second smoothification with the main
result in [57] in order to prove our main theorem (Theorem 4.1.2).

4.2. The building blocks for the approximation theorems

4.2.1. Extension of weak connections

In this subsection we build the fundamental statements that will be used in Section 4.4 in order to
prove the strong L2-approximation theorems for weak connections (Theorem 4.4.1 and Theorem
4.5.1) under Morrey norm control. In particular, we will need Corollaries 4.2.1 and 4.2.2 to
extend weak connections from the boundary of 5-cubes to their interior. If we can assume the
L2-smallness of both the connection and its curvature on the boundary of the cube, then we
will use Corollary 4.2.1. In case we can only assume the L2-smallness of the curvature of the
connection on the boundary, we will exploit Corollary 4.2.2.

Extension under L2-smallness of the connection and its curvature

To ease the reading, throughout this subsection we will denote by “dR5” and “dS4” the standard
differential of k-forms respectively on R5 and on the round sphere S4. More precisely we have

dS4 := ι∗S4dR5 ,

where ιS4 is the canonical embedding of S4 into R5. The following proposition is one of the
building blocks of our approximation procedure.

Proposition 4.2.1 (Harmonic extension under smallness condition on FA and A). Let G be
a compact matrix Lie group and let f : R5 → R5 be a bi-Lipschitz homeomorphism such that
f ∈W 1,∞

loc (R5,R5) and

⟨dS4fi, dS4fj⟩L2(S4) = 0, ∀ i, j = 1, ..., 5 s.t. i ̸= j. (4.2.1)

Let

Cf :=

√√√√ 5∑
i=1

1

∥dS4fi∥2L2(S4)
. (4.2.2)

There are constants ε(G, f) ∈ (0, 1) and C(G, f) depending only on G, Cf and on ∥dR5f∥L∞(B5)

such that for any A ∈ aG(S4) satisfying

∥FA∥L2(S4) + ∥A∥L2(S4) < ε(G, f) (4.2.3)

the following facts hold.
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(i) There exist g ∈W 1,2(S4, G) and a g-valued 1-form Ã ∈ L5(∧1B5 ⊗ g) such that

ι∗S4Ã = Ag

and

∥Ag∥L4(S4) ⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥L2(S4)
)
,

∥dS4g∥L2(S4) ⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
, (4.2.4)

∥FÃ∥L 5
2 (B5)

⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A∥L2(S4)

∥∥A− ι∗S4f
∗Ā
∥∥
L2(S4) + ∥A∥3L2(S4)

)
,

(4.2.5)

for every constant g-valued 1-form Ā on R5.
(ii) There exists g̃ ∈W 1,2(B5, G) satisfying

∥g̃ − idG ∥L4(B5) + ∥dg̃∥L2(B5) ⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
,

(4.2.6)

for every constant g-valued 1-form Ā on R5, such that the g-valued 1-form Â := Ãg̃
−1 ∈

L2(B5) satisfies the following properties.
(a) FÂ ∈ L2(B5).
(b) ι∗S4Â = A ∈ L2(S4).
(c) Let Ω ⊂ R5 be an open set such that Ω ∩ B5 has a 4-dimensional compact Lipschitz

boundary which can be included in a union of N submanifolds of B5 of class C2. Then
we have

∥FÂ∥L2(∂Ω∩B5)) ⩽ KG

(
∥FA∥L2(S4) + ∥A∥L2(S4)

∥∥A− ι∗S4f
∗Ā
∥∥
L2(S4) + ∥A∥3L2(S4)

)
(4.2.7)

and

∥Ã∥L4(∂Ω∩B5) ⩽ KG

(
∥FA∥L2(S4) + ∥A∥L2(S4)

∥∥A− ι∗S4f
∗Ā
∥∥
L2(S4) + ∥A∥L2(S4)

)
,

(4.2.8)
for every constant g-valued 1-form Ā on R5, where KG = KG(Ω∩B5) > 0 depends only
on G and on Ω∩B5 (that is, on the number N of submanifolds containing ∂(Ω∩B5) as
well as their C2 norms), on Cf and on ∥dR5f∥L∞(B5).

Moreover,∥∥Ã− f∗Ā
∥∥
L5(B5)

⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
, (4.2.9)∥∥dÃ∥∥

L
5
2 (B5)

⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
, (4.2.10)∥∥Â− f∗Ā

∥∥
L2(B5)

⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
, (4.2.11)

for every constant g-valued 1-form Ā on R5.
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Proof of Proposition 4.2.1. Notice that since f = (f1, ..., f5) is a bi-Lipschitz homeomor-
phism, we have that ∥dS4fi∥L2(S4) ̸= 0 for every i = 1, ..., 5. Let ξ be the constant g-valued 1-form
on R5 given by

ξ :=
5∑
i=1

1

∥dS4fi∥2L2(S4)
⟨A, dS4fi⟩L2(S4)dR5xi, (4.2.12)

where {xi}i=1,...,5 represent the standard euclidean coordinates on R5. We have

|ξ| =

√√√√ 5∑
i=1

|ξi|2 ⩽

√√√√ 5∑
i=1

1

∥dS4fi∥2L2(S4)
∥A∥L2(S4) = Cf∥A∥L2(S4), (4.2.13)

with

Cf :=

√√√√ 5∑
i=1

1

∥dS4fi∥2L2(S4)
. (4.2.14)

Let η ∈ L2(S4) be given by

η := A− ι∗S4f
∗ξ = A−

5∑
i=1

〈
A,

dS4fi
∥dS4fi∥L2(S4)

〉
L2(S4)

dS4fi
∥dS4fi∥L2(S4)

. (4.2.15)

Notice that, since η is the L2-orthogonal projection of A on the linear subspace {dS4fi}⊥i=1,...,5 ⊂
L2(S4), we have

∥η∥L2(S4) ⩽ ∥A− ι∗S4f
∗Ā∥L2(S4), (4.2.16)

for every constant g-valued 1-form Ā on R5. Moreover,

dS4η = dS4A− dS4(ι
∗
S4f

∗ξ) = dS4A− ι∗S4f
∗(dR5ξ) = dS4A.

For future reference, we record the simple bound

∥f∗ξ∥L∞(B5) ⩽ C∥dR5f∥L∞(B5) |ξ| ⩽ C∥dR5f∥L∞(B5)Cf∥A∥L2(S4) = CC̃f∥A∥L2(S4), (4.2.17)

where Cf > 0 is given by (4.2.14) and we let C̃f := ∥dR5f∥L∞(B5)Cf .

Since dR5(f∗ξ ∧ f∗ξ) = 0 and f∗ξ ∈ L∞(B5), for every exponent p ∈ [1,+∞) there exists a
unique12 α ∈W 1,p(∧1B5 ⊗ g) such that

dR5α = f∗ξ ∧ f∗ξ in B5,

d∗R5α = 0 in B5,

α(∂r) = 0 in B5.

12 The form α can be obtained variationally by minimizing
ˆ
B5

|α|2 dL5

among any form satisfying dR5α = f∗ξ ∧ f∗ξ.
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Moreover, from [47], for any p ∈ [1,+∞) we have

∥α∥W 1,p(B5) ⩽ Cp ∥f∗ξ∥2L2p(B5) ⩽ Cp ∥f∗ξ∥2L∞(B5) ⩽ CpC̃
2
f ∥A∥2L2(S4), (4.2.18)

where Cp > 0 depends only on p ∈ [1,+∞). In particular, we deduce

∥α∥L∞(B5) ⩽ CC̃2
f∥A∥2L2(S4). (4.2.19)

We define

ω := η + ι∗S4α = A− ι∗S4f
∗ξ + ι∗S4α ∈ L2(S4).

Observe that

Fω = Fη+ι∗
S4
α = dS4η + ι∗S4(f

∗ξ ∧ f∗ξ) + η ∧ η + η ∧ ι∗S4α ∧+ι∗S4α ∧ η + ι∗S4(α ∧ α)

=
(
Fη + ι∗S4(f

∗ξ ∧ f∗ξ)
)
+ η ∧ ι∗S4α ∧+ι∗S4α ∧ η + ι∗S4(α ∧ α).

(4.2.20)

Since d(f∗ξ) = 0, we also have

FA = Fη+ι∗
S4
f∗ξ = Fη + η ∧ ι∗S4f

∗ξ + ι∗S4f
∗ξ ∧ η + ι∗S4(f

∗ξ ∧ f∗ξ)

=
(
Fη + ι∗S4(f

∗ξ ∧ f∗ξ)
)
+ η ∧ ι∗S4f

∗ξ + ι∗S4f
∗ξ ∧ η.

(4.2.21)

Combining (4.2.20) and (4.2.21) we obtain

Fω = FA − η ∧ ι∗S4f
∗ξ − ι∗S4f

∗ξ ∧ η + η ∧ ι∗S4α ∧+ι∗S4α ∧ η + ι∗S4(α ∧ α). (4.2.22)

Thus,

∥Fω∥L2(S4) ⩽ C
(
∥FA∥L2(S4) + ∥dR5f∥L∞(B5)|ξ|∥η∥L2(S4) + ∥α∥L∞(S4)∥η∥L2(S4) + ∥α∥2L∞(S4)

)
⩽ C

(
∥FA∥L2(S4) + C̃f∥A∥L2(S4)∥η∥L2(S4) + C̃2

f∥A∥2L2(S4)∥η∥L2(S4) + C̃4
f∥A∥4L2(S4)

)
⩽ C

(
∥FA∥L2(S4) + C̃f (1 + C̃fεG)∥A∥L2(S4)∥η∥L2(S4) + C̃4

f∥A∥4L2(S4)

)
(4.2.23)

⩽ C
(
∥FA∥L2(S4) + C̃f (1 + C̃fεG + C̃3

fε
2
G)∥A∥2L2(S4)

)
⩽ C

(
εG + C̃f (1 + C̃fεG + C̃3

fεG)ε
2
G

)
,

for some universal constant C > 0. By assumption, since A ∈ aG(S4) and since the curvature of
A is small enough in L2-norm, there exists ĝ ∈W 1,2(S4, G) such that Aĝ ∈W 1,2(S4). We observe
that

ωĝ = ĝ−1dS4 ĝ + ĝ−1(η + ι∗S4α)ĝ

= ĝ−1dS4 ĝ + ĝ−1(A− ι∗S4f
∗ξ + ι∗S4α)ĝ = Aĝ + ĝ−1ι∗S4(α− f∗ξ)ĝ ∈ L4(S4).

and

∥Fωĝ∥L2(S4) = ∥Fω∥L2(S4) ⩽ C
(
εG + C̃f (1 + C̃fεG + C̃3

fε
2
G)ε

2
G

)
.

If εG in (4.2.3) is small enough, we can apply Proposition 4.A.3 to ωĝ and we get the existence
of a gauge h ∈W 1,4(S4, G) such that, by letting g := ĝh ∈W 1,2(S4, G), we have d∗S4ω

g = 0 and

ωg = Ag − g−1ι∗S4f
∗ξ g + g−1 ι∗S4α g. (4.2.24)
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Moreover,

∥ωg∥W 1,2(S4) ⩽ C∥Fω∥L2(S4)

⩽ C
(
∥FA∥L2(S4) + C̃f (1 + C̃fεG)∥A∥L2(S4)∥η∥L2(S4) + C̃4

f∥A∥4L2(S4)

)
,

(4.2.25)

where C > 0 only depends on G. We have

∥Ag∥L4(S4) ⩽ ∥ωg∥L4(S4) + ∥α− f∗ξ∥L4(S4)

⩽ C(G, f)
(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥L2(S4)
)
.

Observe that by substituting g with g g0 for some g0 ∈ G we still have d∗S4ω
g = 0 and (4.2.25)

with the constant C > 0 being unchanged. Since we have dS4g = gωg −ωg, recalling that εG < 1

by assumption, we get

∥dS4g∥L2(S4) ⩽ C
(
∥ωg∥L2(S4) + ∥ω∥L2(S4)

)
⩽ C

(
∥Fω∥L2(S4) + ∥η∥L2(S4) + ∥α∥L2(S4)

)
⩽ C

(
∥FA∥L2(S4) + C̃f (1 + C̃fεG + C̃3

fε
2
G)∥A∥2L2(S4)

)
(4.2.26)

+ C∥η∥L2(S4) + CC̃2
f ∥A∥2L2(S4)

⩽ C
(
∥FA∥L2(S4) + ∥η∥L2(S4) + Ĉf∥A∥2L2(S4)

)
,

where Ĉf := C̃f (1 + 2C̃f + C̃3
f ). Sobolev–Poincaré inequality gives the existence of C > 0

(independent on A) such that

∥g − ḡ∥L4(S4) ⩽ C∥dS4g∥L2(S4), (4.2.27)

where ḡ is the average of g on S4. Thus, we deduce the existence of x0 ∈ S4 such that

|g(x0)− ḡ| ⩽ C∥dS4g∥L2(S4). (4.2.28)

Replacing g by gg−1(x0) and combining (4.2.27) and (4.2.28) we obtain

∥g − idG ∥L4(S4) ⩽ C ∥dS4g∥L2(S4) (4.2.29)

⩽ C
(
∥FA∥L2(S4) + ∥η∥L2(S4) + Ĉf∥A∥2L2(S4)

)
.

We denote g̃ := g(x/|x|) ∈ W 1,2(B5) the radial extension of g in B5. A straightforward estimate
gives

∥g̃ − idG ∥L4(B5) =

(ˆ
B5

∣∣∣∣g( x

|x|

)
− idG

∣∣∣∣4 dL5(x)

) 1
4

⩽

(ˆ 1

0
r4 dL1(r)

ˆ
S4
|g − idG|4 dH 4

) 1
4

⩽ ∥g − idG ∥L4(S4) (4.2.30)

⩽ C
(
∥FA∥L2(S4) + ∥η∥L2(S4) + Ĉf∥A∥2L2(S4)

)
.
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Moreover, using (4.2.26), we get

(ˆ
B5

|dg̃|2 dL5

) 1
2

⩽ C

(ˆ
B5

∣∣∣∣dg( x

|x|

)∣∣∣∣2 1

|x|2
dL5(x)

) 1
2

⩽ C

(ˆ 1

0
r2 dL1(r)

) 1
2
(ˆ

S4
|dS4g2| dH 4

) 1
2

(4.2.31)

⩽ C
(
∥FA∥L2(S4) + ∥η∥L2(S4) + Ĉf∥A∥2L2(S4)

)
.

Let ω̃ be the unique minimizers of

inf

{ˆ
B5

(
|dR5C|2 + |d∗R5C|2

)
dx5 : ι∗S4C = ωg

}
. (4.2.32)

Classical analysis for differential forms gives that ω̃ solves
d∗R5ω̃ = 0 in B5,

d∗R5dR5ω̃ = 0 in B5,

ι∗S4ω̃ = ωg = Ag + g−1ι∗S4(α− f∗ξ)g on ∂B5

(4.2.33)

and that ω̃ ∈ (W
3
2
,2 ∩ C∞)(B5). By classical elliptic regularity theory and Sobolev embedding

theorem, we have the estimates

∥ω̃∥
W 1, 52 (B5)

⩽ C∥ω̃∥
W

3
2 ,2(B5)

⩽ C∥ωg∥W 1,2(S4)

⩽ C
(
∥FA∥L2(S4) + ∥A∥L2(S4)∥η∥L2(S4) + ∥A∥4L2(S4)

)
,

(4.2.34)

for some constant C > 0 depending only on G and on f (notice that the last inequality follows
from (4.2.25)). Recall the continuous linear embedding

W 1, 5
2 (B5) ↪→ L5(B5). (4.2.35)

Hence, in particular

∥ω̃∥L5(B5) ⩽ C∥ω̃∥
W 1, 52 (B5)

⩽ C∥ω̃∥
W

3
2 ,2(B5)

⩽ C∥ωg∥W 1,2(S4)

⩽ C
(
∥FA∥L2(S4) + ∥A∥L2(S4)∥η∥L2(S4) + ∥A∥4L2(S4)

)
.

(4.2.36)

We let Ã ∈ L5(∧1B5 ⊗ g) be given by

Ã = η̃ + f∗ξ = ω̃ − α+ ζ + f∗ξ, (4.2.37)

where we denote

η̃ := ω̃ − α+ ζ (4.2.38)

and ζ is constructed as follows. We apply Proposition 4.B.1 toG and we find a smooth Riemannian
manifold MG and a measurable map

Ext(g) : MG −→W 1, 5
2 (B5, G) (4.2.39)
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p 7−→ gp (4.2.40)

such that (4.B.1), (4.B.4) and (4.B.6) hold. We then choose

ζ := α− f∗ξ −
 
MG

g−1
p (α− f∗ξ)gp d volMG

(p) (4.2.41)

=

 
MG

(
idG−g−1

p

)
(α− f∗ξ)gp d volMG

(p) +

 
MG

(α− f∗ξ) (idG−gp) d volMG
(p). (4.2.42)

We notice that ι∗S4ζ = 0 and ι∗S4ω̃ = Ag+ g−1 ιS4(α− f∗ξ) g, so that ι∗S4Ã = Ag by construction13.

We have also

dζ := f∗ξ ∧ f∗ξ −
 
MG

g−1
p f∗ξ ∧ f∗ξ gp dp−

 
MG

dg−1
p ∧ (α− f∗ξ) gp d volMG

(p)

+

 
MG

g−1
p (α− f∗ξ) ∧ dgp d volMG

(p)

=

 
MG

(
idG−g−1

p

)
f∗ξ ∧ f∗ξ gp d volMG

(p) +

 
MG

f∗ξ ∧ f∗ξ (idG−gp) d volMG
(p)

−
 
MG

dg−1
p ∧ (α− f∗ξ) gp d volMG

(p) +

 
MG

g−1
p (α− f∗ξ) ∧ dgp d volMG

(p).

(4.2.43)

Using (4.B.3), we have

∥dζ∥
L

5
2 (B5)

⩽ C ∥f∗ξ∥2L∞(B5)

∥∥∥∥ 
MG

|gp − idG| d volMG
(p)

∥∥∥∥
L

5
2 (B5)

+ C ∥α− f∗ξ∥L∞(B5)

∥∥∥∥ 
MG

|dxgp| d volMG
(p)

∥∥∥∥
L

5
2 (B5)

⩽ Cf ∥A∥L2(S4) ∥dg∥L2(S4)

⩽ C ∥A∥L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
(4.2.44)

and, by Poincaré–Sobolev inequality,

∥ζ∥L5(B5) ⩽ ∥α− f∗ξ∥∞
∣∣∣∣ 
MG

ˆ
B5

|gp − idG|5 dL5 d volMG
(p)

∣∣∣∣ 15
⩽ Cf,G ∥A∥L2(S4)

∣∣∣∣ 
MG

ˆ
B5

|gp − idG|5 dL5 d volMG
(p)

∣∣∣∣ 15
⩽ Cf,G ∥A∥L2(S4)

∣∣∣∣ 
MG

ˆ
B5

|dxgp|
5
2 dL5 d volMG

(p)

∣∣∣∣ 25
⩽ Cf ∥A∥L2(S4) ∥dg∥L2(S4)

⩽ C ∥A∥L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
.

(4.2.45)

13At this stage, in order to control the L2-norm of FÃ in B5 it could be tempting to estimate separately ∥dÃ∥L2(B5)

and ∥Ã ∧ Ã∥L2(B5). This however is not going to lead to the expected estimate because each of the terms
require to estimate respectively ∥dα∥L2(B5) and ∥f∗ξ ∧ f∗ξ∥L2(B5) which would give in the r.h.s of (4.2.5)
a term proportional to ∥A∥2L2(B5) as in [65, Proposition 2.1] but which is preventing to prove the desired
approximability property 4.1.34. While in the combination dÃ + Ã ∧ Ã these two contributions fortunately
cancel each other which is one of the main advantage of this construction.
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Hence,

∥dζ + ζ ∧ ζ∥
L

5
2 (B5)

⩽ C ∥A∥L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
. (4.2.46)

We now explicitly compute

FÃ = dR5Ã+ Ã ∧ Ã = dR5(ω̃ + f∗ξ − α+ ζ) + (ω̃ + f∗ξ − α+ ζ) ∧ (ω̃ + f∗ξ − α+ ζ)

= Fω̃ + Fζ − f∗ξ ∧ f∗ξ + ω̃ ∧ f∗ξ − ω̃ ∧ α+ ω̃ ∧ ζ + f∗ξ ∧ ω̃ + f∗ξ ∧ f∗ξ − f∗ξ ∧ α
+ f∗ξ ∧ ζ +−α ∧ ω̃ − α ∧ f∗ξ + α ∧ α+ ζ ∧ ω̃ + ζ ∧ f∗ξ − ζ ∧ α

= Fω̃ + Fζ + (ω̃ ∧ f∗ξ + f∗ξ ∧ ω̃)− (ω̃ ∧ α+ α ∧ ω̃) + (ω̃ ∧ ζ + ζ ∧ ω̃)
− (f∗ξ ∧ α+ α ∧ f∗ξ) + (f∗ξ ∧ ζ + ζ ∧ f∗ξ)− (α ∧ ζ + ζ ∧ α) + α ∧ α.

(4.2.47)

Hence, we obtain

∥FÃ∥L 5
2 (B5)

⩽ C ∥dω̃∥
L

5
2 (B5)

+ ∥ω̃∥2L5(B5) + ∥Fζ∥
L

5
2 (B5)

+ C ∥α∥L∞(B5) ∥f∗ξ∥L∞(B5)

+ C ∥ζ∥
L

5
2 (B5)

(
∥f∗ξ∥L∞(B5) + ∥α∥∞

)
+ C ∥α∥2∞

⩽ C
(
∥FA∥L2(S4) + ∥A∥L2(S4) ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥3L2(S4)

)
.

(4.2.48)

Observe that

Ã− f∗Ā = η̃ + f∗ξ − f∗Ā = η̃ + f∗(ξ − Ā), (4.2.49)

where η̃ := ω̃ − α+ ζ. We have

∥η̃∥L5(B5) ⩽ ∥ω̃∥L5(B5) + ∥α∥L5(B5) + ∥ζ∥L5(B5)

⩽ C
(
∥FA∥L2(S4) + ∥A∥L2(S4)∥η∥L2(S4) + ∥A∥4L2(S4)

)
+ CC̃2

f∥A∥2L2(S4)

+ CC̃f∥A∥L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + Ĉf∥A∥2L2(S4)

)
+ CC̃2

f∥A∥2L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + Ĉf∥A∥2L2(S4)

)
.

(4.2.50)

We have also

∥f∗(ξ − Ā)∥L5(B5) ⩽ C∥dR5f∥L∞(B5)∥ξ − Ā∥L5(B5)

⩽ C∥dR5f∥L∞(B5)|ξ − Ā| = C∥dR5f∥L∞(B5)

( 5∑
i=1

|ξi − Āi|2
) 1

2

,
(4.2.51)

where C > 0 is a universal constant. Notice that, by Cauchy–Schwarz inequality, we have

|ξi − Āi|2 =
|⟨A− ι∗S4f

∗Ā, dS4fi⟩L2(S4)|2

∥dS4fi∥4L2(S4)
⩽

∥A− ι∗S4f
∗Ā∥2L2(S4)

∥dS4fi∥2L2(S4)
, ∀i = 1, ..., 5, (4.2.52)

which by (4.2.51) implies

∥f∗(ξ − Ā)∥L5(B5) ⩽ CC̃f∥A− ι∗S4f
∗Ā∥L2(S4), (4.2.53)
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for some universal constant C > 0. We now need an estimate on L2-norm of η̃. Using (4.2.49),
(4.2.16), (4.2.38) and (4.2.53), we have

∥Ã− f∗Ā∥L5(B5) ⩽ ∥η̃∥L5(B5) + ∥f∗(ξ − Ā)∥L5(B5)

⩽ C
[
∥FA∥L2(S4) + ∥A∥L2(S4)∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥4L2(S4)

]
+ CC̃2

f∥A∥2L2(S4)

+ CC̃f∥A∥L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + Ĉf∥A∥2L2(S4)

)
(4.2.54)

+ CC̃2
f∥A∥2L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + Ĉf∥A∥2L2(S4)

)
+ CC̃f∥A− ι∗S4f

∗Ā∥L2(S4),

where C only depends on G. Thus, we get (4.2.9) for B := Ã. We have

∥dÃ∥
L

5
2 (B5)

⩽ ∥dω̃∥
L

5
2 (B5)

+ ∥dα∥
L

5
2 (B5)

+ ∥dζ∥
L

5
2 (B5)

⩽ C
(
∥FA∥L2(S4) + ∥A∥L2(S4)∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥4L2(S4)

)
+ CC̃2

f∥A∥2L2(S4)

+ C ∥A∥L2(S4)

(
∥FA∥L2(S4) + ∥A− ι∗S4f

∗Ā∥L2(S4) + ∥A∥2L2(S4)

)
.

(4.2.55)

Hence, we obtain (4.2.10).

We now prove (4.2.11). Notice that

FÂ = dR5Â+ Â ∧ Â = dR5(Ãg̃
−1
) + Ãg̃

−1 ∧ Ãg̃−1

= g̃ FÃ g̃
−1 ∈ L2(B5)

(4.2.56)

and

ι∗S4Â = ι∗S4(g̃dR5(g̃−1) + g̃Ãg̃−1) = ι∗S4(−dR5 g̃g̃−1 + g̃Ãg̃−1)

= −dS4gg−1 + gAgg−1 = −dS4gg−1 + g(g−1dS4g + g−1Ag)g−1

= A ∈ L2(S4).
(4.2.57)

We have

∥Â− f∗Ā∥L2(B5) ⩽ ∥Â− Ã∥L2(B5) + ∥Ã− f∗Ā∥L2(B5)

⩽ ∥g̃ Ã g̃−1 − Ã∥L2(B5) + ∥g̃ dg̃−1∥L2(B5) + ∥Ã− f∗Ā∥L2(B5)

⩽ ∥g̃ − idG ∥L4(B5) ∥Ã∥L4(B5) + ∥dg̃∥L2(B5) + ∥Ã− f∗Ā∥L2(B5).

(4.2.58)

Combining (4.2.31), (4.2.54), (4.2.58) and (4.2.54), we obtain (4.2.11).
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Coming now to the trace estimates

∥ζ∥L4(∂Ω∩B5) ⩽ 2 ∥α− f∗ξ∥L∞(B5)

∥∥∥∥ 
MG

|gp − idG| d volMG
(p)

∥∥∥∥
L4(∂Ω∩B5)

⩽ 2 ∥α− f∗ξ∥L∞(B5)

∥∥∥∥ 
MG

|gp − idG| d volMG
(p)

∥∥∥∥ 1
2

L2(∂Ω∩B5)

∥∥∥∥ 
MG

|gp − idG| d volMG
(p)

∥∥∥∥ 1
2

L∞(∂Ω∩B5)

⩽ C(G) ∥α− f∗ξ∥L∞(B5)

∥∥∥∥ 
MG

|gp − idG| d volMG
(p)

∥∥∥∥ 1
2

L2(∂Ω∩B5)

⩽ C(G) ∥α− f∗ξ∥L∞(B5)

(  
MG

∥gp − idG∥L2(∂Ω∩B5) d volMG
(p)

) 1
2

⩽ C(G) ∥α− f∗ξ∥L∞(B5)

( 
MG

∥gp − idG∥2L2(∂Ω∩B5) d volMG
(p)

) 1
4

⩽ C(G,Ω) ∥α− f∗ξ∥L∞(B5) ∥g − idG∥
1
2

W 1,2(S4)

⩽ C(G,Ω)
(
C̃f∥A∥L2(S4) + C̃2

f∥A∥2L2(S4)

)(
∥FA∥L2(S4) + ∥η∥L2(S4) + Ĉf∥A∥2L2(S4)

) 1
2
.

(4.2.59)

We have also using (4.2.43)

∥dζ∥L2(∂Ω∩B5) ⩽ C ∥f∗ξ∥2L∞(B5)

∥∥∥∥ 
MG

|gp − idG| d volMG
(p)

∥∥∥∥
L2(∂Ω∩B5)

+ C ∥α− f∗ξ∥L∞(B5)

∥∥∥∥ 
MG

|dgp| d volMG
(p)

∥∥∥∥
L2(∂Ω∩B5)

⩽ C ∥f∗ξ∥2L∞(B5)

 
MG

∥gp − idG∥L2(∂Ω∩B5) d volMG
(p)

+ C ∥α− f∗ξ∥L∞(B5)

 
MG

∥dgp∥L2(∂Ω∩B5) d volMG
(p)

⩽ C ∥f∗ξ∥2L∞(B5)

( 
MG

∥gp − idG∥2L2(∂Ω∩B5) d volMG
(p)

) 1
2

+ C ∥α− f∗ξ∥L∞(B5)

( 
p∈MG

∥dgp∥2L2(∂Ω∩B5) d volMG
(p)

) 1
2

. (4.2.60)

Using Proposition 4.B.1 together with (4.2.17) and (4.2.19), we finally get

∥dζ∥L2(∂Ω∩B5) ⩽ CG(Ω)
(
C̃f∥A∥L2(S4) + C̃2

f∥A∥2L2(S4)
)(
∥FA∥L2(S4) + ∥η∥L2(S4) + Ĉf∥A∥2L2(S4)

)
.

(4.2.61)

Moreover, thanks to the continuous embedding W
3
2
,2(B5) ↪→W 1,2(∂Ω ∩ B5), we have

∥ω̃∥L4(∂Ω∩B5) + ∥d∂Ωω̃∥L2(∂Ω∩B5) ⩽ C(Ω) ∥ω̃∥
W

3
2 ,2(B5)

⩽ C(Ω) ∥ωg∥W 1,2(S4)

⩽ C(Ω)
(
∥FA∥L2(S4) + ∥A∥L2(S4)∥η∥L2(S4) + ∥A∥4L2(S4)

)
,

(4.2.62)
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where C(Ω) depends only on the C2-norm of the C2 components of ∂(Ω ∩ B5), G, Cf and
∥df∥L∞(B5). Combining now (4.2.17), (4.2.19), (4.2.59), (4.2.61), (4.2.62) and (4.2.47), we obtain
(4.2.7).

Combining (4.2.59), (4.2.62), (4.2.19) and the definition of ξ, we obtain

∥Âg̃∥L4(∂Ω∩B5) = ∥Ã∥L4(∂Ω∩B5) ⩽ KG

(
∥FA∥L2(S4) + ∥A∥L2(S4)

∥∥A− ι∗S4f
∗Ā
∥∥
L2(S4) + ∥A∥L2(S4)

)
.

(4.2.63)

This concludes the proof of Proposition 4.2.1.

From now on, we will use the following notation:

|x|∞ := sup
i=1,...,5

|xi|,

|x| :=
( 5∑
i=1

x2i

) 1
2

,

for every x = (x1, ..., x5) ∈ R5. We have obviously
√
5
−1 |x| ⩽ |x|∞ ⩽ |x| ∀x ∈ R5.

Let φ ∈W 1,∞
loc (R5,R5) be the bi-Lipschitz homeomorphism given by

φ(x) :=


|x|
|x|∞

x if x ∈ R5 ∖ {0}

0 if x = 0.

Corollary 4.2.1. Let G be a compact matrix Lie group. Let Q ⊂ R5 be any open cube with
edge-length kε, where k > 0 is a universal constant. There are constants εG ∈ (0, 1) and CG > 0

depending only on G such that for any A ∈ aG(∂Q) satisfying

∥FA∥L2(∂Q) + ε−1∥A∥L2(∂Q) < εG (4.2.64)

the following facts hold.
(i) There exist g ∈ W 1,2(∂Q,G) and a g-valued 1-form Ã ∈ L5(Q) such that for every 4-

dimensional face F of ∂Q we have{
∥Ag∥W 1,2(F ) ⩽ CG

(
∥FA∥L2(∂Q) + ε−1∥A∥L2(∂Q)

)
,

ι∗F Ã = Ag
(4.2.65)

and

∥FÃ∥L 5
2 (Q)

⩽ CG

(
∥FA∥L2(∂Q) + ε−2 ∥A∥L2(∂Q) ∥A− ι∗∂QĀ∥L2(∂Q) + ε−3∥A∥3L2(∂Q)

)
,

(4.2.66)

∥dg∥L2(∂Q) ⩽ CG

(
ε∥FA∥L2(∂Q) + ∥A− ι∗∂QĀ∥L2(∂Q) + ε−1∥A∥2L2(∂Q)

)
, (4.2.67)

for every constant g-valued 1-form Ā on R5.
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(ii) There exists g̃ ∈ W 1,2(Q,G) such that the g-valued 1-form given by Â := Ãg̃
−1 ∈ L2(Q)

satisfies the following properties.
a) FÂ ∈ L2(Q).
b) ι∗S4Â = A ∈ L2(∂Q).
c) Let Q′ ⊂ R5 be an open cube such that Q′ ∩ Q is a rectangle of minimum edge-length

αε > 0 where α > 0 is a universal constant. Then, we have

∥FÂ∥
2
L2(∂Q′∩Q) ⩽ CG

(
∥FA∥2L2(∂Q) + ε−4∥A∥2L2(∂Q)∥A− ι∗∂QĀ∥2L2(∂Q) + ε−6∥A∥6L2(∂Q)

)
,

(4.2.68)

∥Ã∥L4(∂Q′∩Q) ⩽ CG

(
∥FA∥L2(∂Q) + ε−2 ∥A∥L2(∂Q)

∥∥A− ι∗∂QĀ
∥∥
L2(∂Q)

+ ε−1 ∥A∥L2(∂Q)

)
,

(4.2.69)

for every constant g-valued 1-form Ā on R5.
Moreover, we have the estimates

∥Ã− Ā∥L5(Q) ⩽ CG

(
∥FA∥L2(∂Q) + ε−1 ∥A− ι∗∂QĀ∥L2(∂Q) + ε−2 ∥A∥2L2(∂Q)

)
, (4.2.70)

∥dÃ∥
L

5
2 (Q)

⩽ CG

(
∥FA∥L2(∂Q) + ε−1 ∥A− ι∗∂QĀ∥L2(∂Q) + ε−2 ∥A∥2L2(∂Q)

)
, (4.2.71)

∥Â− Ā∥L2(Q) ⩽ CG
√
ε
(
∥FA∥L2(∂Q) + ε−1 ∥A− ι∗∂QĀ∥L2(∂Q) + ε−2 ∥A∥2L2(∂Q)

)
, (4.2.72)

for every constant g-valued 1-form Ā on R5.

Proof of Corollary 4.2.1. Corollary 4.2.1 is deduced by applying Proposition 4.2.1 with f = φ

to the 1-form
(
(ε · + cQ) ◦ φ

)∗
A, where cQ denotes the center of the cube Q, and then pulling

the resulting data back on Q by
(
(ε · + cQ) ◦ φ

)−1.

Extension under L2-smallness of the curvature only

Proposition 4.2.2 (Harmonic extension under smallness condition on FA only). Let G be a
compact matrix Lie group. There are constants εG ∈ (0, 1) and CG > 0 depending only on G such
that for any A ∈ aG(S4) satisfying

∥FA∥L2(S4) < εG (4.2.73)

the following facts hold.
(i) There exist g ∈W 1,2(S4, G) and a g-valued 1-form Ã ∈ (W

3
2
,2 ∩ C∞)(B5) satisfying

∥Ã∥
W

3
2 ,2(B5)

⩽ CG∥FA∥L2(S4),

∥Ag∥W 1,2(S4) ⩽ CG∥FA∥L2(S4),

ι∗S4Ã = Ag,

(4.2.74)

and

∥dg∥L2(S4) ⩽ CG
(
∥FA∥L2(S4) + ∥A∥L2(S4)

)
. (4.2.75)
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(ii) There exists g̃ ∈ W 1,2(B5, G) such that the g-valued 1-form Â := Ãg̃
−1 ∈ L2(B5) satisfies

the following properties.
(1) FÂ ∈ L2(B5).
(2) ι∗S4Â = A ∈ L2(S4).
(3) ˆ

B5

|Â|2 dL5 ⩽ C(G)
(
∥FA∥2L2(S4) + ∥A∥2L2(S4)

)
. (4.2.76)

(4) Let Ω ⊂ R5 be an open set such that Ω ∩ B5 has a 4-dimensional compact Lipschitz
boundary which can be included in a union of N submanifolds of B5 of class C2. Then
we have

∥FÂ∥L2(∂Ω∩B5) ⩽ KG∥FA∥L2(S4), (4.2.77)

and
∥Ã∥L4(∂Ω∩B5) ⩽ KG∥FA∥L2(S4), (4.2.78)

where KG = KG(Ω ∩ B5) > 0 depends only on G and on Ω ∩ B5 (that is the number N
of submanifolds containing ∂Ω as well as their C2 norms).

Proof of Proposition 4.2.2. To ease the reading, throughout this proof we will denote by “dR5"
and “dS4" the standard differential of k-forms on R5 and on the round sphere S4 respectively. First,
notice that since A ∈ aG(S4), by definition there exists locally ĝ ∈W 1,2 such that Aĝ ∈W 1,2. For
εG in (4.2.73) small enough the existence of such a g is global and A has a representative globally
on S4 which is in W 1,2(∧1S4). We can apply Uhlenbeck’s Coulomb gauge extraction theorem (see
Proposition 4.A.1) to Aĝ and we get the existence of a gauge h ∈ W 1,4(S4, G) such that, letting
g := ĝh ∈W 1,2(S4, G), we have d∗S4A

g = 0 and

∥Ag∥W 1,2(S4) ⩽ C(G)∥FA∥L2(S4), (4.2.79)

where C(G) > 0 depends only on G. Observe that by changing g into g g0 we still have a solution
of (4.2.25) with the constant C(G) > 0 being unchanged. We have dS4g = g Ag −Ag, hence

∥dS4g∥L2(S4) ⩽ C(G)
(
∥Ag∥L2(S4) + ∥A∥L2(S4)

)
⩽ C(G)

(
∥FA∥L2(S4) + ∥A∥L2(S4)

)
.

(4.2.80)

Poincaré inequality gives the existence of C > 0 (independent on A) such that

∥g − ḡ∥L2(S4) ⩽ C ∥dS4g∥L2(S4), (4.2.81)

where ḡ is the average of g on S4. Thus, we deduce the existence of x0 ∈ S4 such that

|g(x0)− ḡ| ⩽ C ∥dS4g∥L2(S4). (4.2.82)

Replacing g by gg−1(x0) and combining (4.2.81) and (4.2.82) we obtain

∥g − idG ∥L2(S4) ⩽ C ∥dg∥L2(S4) ⩽ C(G)
(
∥FA∥L2(S4) + ∥A∥L2(S4)

)
. (4.2.83)
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We denote g̃ := g(x/|x|) the radial extension of g in B5 (here “| · |” stands for the standard
Euclidean norm of x). A straightforward estimate gives

∥g̃ − idG ∥L2(B5) ⩽ ∥g − idG ∥L2(S4) ⩽ C(G)
(
∥FA∥L2(S4) + ∥A∥L2(S4)

)
. (4.2.84)

Moreover, by the coarea formula we have
ˆ
B5

|dg̃|2 dL5 =

ˆ 1

0
ρ−2

ˆ
∂Br(0)

∣∣∣∣dg( x

|x|

)∣∣∣∣2 dH 4(x) dL1(ρ) ⩽ C ∥dg∥2L2(S4)

⩽ C(G)
(
∥FA∥2L2(S4) + ∥A∥2L2(S4)

)
.

(4.2.85)

We now extend Ag by Ã that we choose to be the unique minimizer of

inf

{ˆ
B5

(
|dR5G|2 + |d∗R5G|2

)
dL5 : ι∗S4G = Ag

}
. (4.2.86)

Classical analysis for differential forms gives that Ã ∈ (W
3
2
,2 ∩ C∞)(B5) solves

d∗R5Ã = 0,

d∗R5dR5Ã = 0,

ι∗S4Ã = Ag.

(4.2.87)

Moreover, the following estimate holds:

∥Ã∥
W 1, 52 (B5)

⩽ C ∥Ã∥
W

3
2 ,2(B5)

⩽ C ∥Ag∥W 1,2(S4) ⩽ C(G) ∥FA∥L2(S4). (4.2.88)

Thus, (i) follows. Let Â := Ãg̃
−1 ∈ L2(B5). Notice that

FÂ = dR5Â+ Â ∧ Â = dR5(Ãg̃
−1
) + Ãg̃

−1 ∧ Ãg̃−1
= g̃FÃg̃

−1 ∈ L2(B5) (4.2.89)

and

ι∗S4Â = ι∗S4(g̃dR5(g̃−1) + g̃Ãg̃−1) = ι∗S4(−dR5 g̃g̃−1 + g̃Ãg̃−1) (4.2.90)

= −dS4gg−1 + gAgg−1 = −dS4gg−1 + g(g−1dS4g + g−1Ag)g−1 = A ∈ L2(S4). (4.2.91)

We have alsoˆ
B5

|Â|2 dL5 =

ˆ
B5

|g̃Ãg̃−1 + g̃ dg̃−1|2 dL5 ⩽ 2

ˆ
B5

|Ã|2 dL5 + 2

ˆ
B5

|dg̃|2 dL5

⩽ C(G)
(
∥FA∥2L2(S4) + ∥A∥2L2(S4)

)
.

(4.2.92)

Lastly, fix any open set Ω ⊂ R5 such that Ω ∩ B5 has Lipschitz boundary which can be included
in a union of N submanifolds of B5 of class C2. Recalling that εG < 1 by assumption, we have

∥FÂ∥L2(X) = ∥FÃ∥L2(X) ⩽ C
(
∥∇Ã∥L2(X)) + ∥Ã∥2L2(X)

)
⩽ C(Ω)∥Ã∥

W
3
2 ,2(B5)

⩽ C(Ω, G) ∥FA∥L2(S4),
(4.2.93)

where C(Ω, G) > 0 depends only onG and on Ω∩B5. This concludes the proof of Proposition 4.2.2.
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Completely analogously to the way we proved Corollary 4.2.1, by exploiting Proposition 4.2.2 one
derives from proposition 4.2.2 the following statement.

Corollary 4.2.2. Let G be a compact matrix Lie group. Let Q ⊂ R5 be any open cube with
edge-length kε, where k > 0 is a universal constant. There are constants εG ∈ (0, 1) and CG > 0

depending only on G such that for any A ∈ aG(∂Q) satisfying

∥FA∥L2(∂Q) < εG (4.2.94)

the following facts hold.
(i) There exist a gauge g ∈ W 1,2(∂Q,G) and a 1-form Ã ∈ W 1, 5

2 (Q) such that for every 4-
dimensional face F of ∂Q we have

∥dÃ∥
L

5
2 (Q)

+ ∥Ã∥L5(Q) ⩽ CG ∥FA∥L2(∂Q),

∥Ag∥W 1,2(F ) ⩽ CG∥FA∥L2(∂Q),

ι∗F Ã = Ag

(4.2.95)

and

∥FÃ∥L 5
2 (Q)

⩽ CG ∥FA∥L2(∂Q), (4.2.96)

∥dg∥L2(∂Q) ⩽ CG
(
ε∥FA∥L2(∂Q) + ∥A∥L2(∂Q)

)
. (4.2.97)

(ii) There exists g̃ ∈ W 1,2(Q,G) such that the g-valued 1-form Â := Ãg̃
−1 ∈ L2(Q) satisfies the

following properties.
(a) FÂ ∈ L2(Q).
(b) ι∗S4Â = A ∈ L2(∂Q).
(c) Let Q′ ⊂ R5 be an open cube such that Q′ ∩ Q is a rectangle of minimum edge-length

αε > 0 where α > 0 is a universal constant. Then, we have

∥FÂ∥L2(∂Q′∩Q) ⩽ KG∥FA∥L2(∂Q), (4.2.98)

and
∥Ã∥L4(∂Q′∩Q) ⩽ KG∥FA∥L2(∂Q), (4.2.99)

where KG > 0 depends only on G.

Remark 4.2.1. [65, Proposition 2.1], has a missing term on the right-hand-side of equation (2.2).
This has been noticed by S. Sil. Proposition 4.2.1 is a suitable replacement of [65, Proposition
2.1].

4.2.2. Construction of optimally regular gauges on the boundary of cubes

We start by recalling the following optimal extension theorem, whose proof can be found in [67,
Theorem 2].

Proposition 4.2.3. Let n ∈ N be such that n ⩾ 1 and let N ↪→ Rk be a closed embed-
ded submanifold of Rk. Then, for every u ∈ W

n
n+1

,n+1(Sn, N) there exists an extension ũ ∈
W 1,(n+1,∞)(Bn+1, N) such that ũ|Sn = u in the sense of traces.
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Next, we leverage on the Proposition 4.2.3 to prove the following gluing lemma.

Lemma 4.2.1. Let G be a compact matrix Lie group and let n ∈ N be such that n ⩾ 2. Let

Sn+ := {x = (x1, ..., xn+1) ∈ Sn : xn+1 > 0}. (4.2.100)

Then, for every g ∈W 1,n(Sn+, G) there exists g̃ ∈W 1,(n+1,∞)(Bn+1, G) such that g̃|Sn+ = g.

Proof of Lemma 4.2.1. Let

Sn− := {x = (x1, ..., xn+1) ∈ Sn : xn+1 < 0}. (4.2.101)

and define h ∈W 1,n(Sn−, G) by

h(x1, ..., xn+1) := g(x1, ...,−xn+1) ∀x = (x1, ..., xn+1) ∈ Sn−. (4.2.102)

Let ĝ ∈W 1,n(Sn, G) be given by

ĝ :=

{
g on Sn+
h on Sn−

(4.2.103)

SinceW 1,n(Sn, G) ↪→W
n

n+1
,n+1(Sn, G), by Proposition 4.2.3 there exists g̃ ∈W 1,(n+1,∞)(Bn+1, N)

such that g̃|Sn = ĝ in the sense of traces. Since ĝ = g on Sn+, this concludes the proof of Lemma
4.2.1.

Corollary 4.2.3. Let G be a compact matrix Lie group. There exist constants εG ∈ (0, 1) and
CG > 0 depending only in G such that the following holds. Let Q ⊂ R5 be an open cube in R5

and let F be any non-empty proper subset of 4-dimensional faces of ∂Q. Let

Ω :=
⋃
F∈F

F. (4.2.104)

Then, for every g ∈ W 1,4(Ω, G) there exists an extension g̃ ∈ W 1,5(Q,G) such that g̃|Ω = g in
the sense of traces.

Proof of Corollary 4.2.3. Let Φ : Q→ B5 be a bi-Lipschitz homeomorphism such that

Ω = S4+, ∂Ω = Γ, ∂Q∖ Ω = S4−. (4.2.105)

By apply Lemma 4.2.1 to (Φ−1)∗g ∈ W 1,4(S4+, G) and pullback the resulting extension on B5 by
Φ we get the desired g̃. This concludes the proof of Corollary 4.2.3.

4.3. The notion of admissible covers and good and bad cubes

4.3.1. The notion of admissible cubic εi-covers

From now on, for every c ∈ R5 and ε > 0 we let

Qε(c) :=

(
− ε

2
,
ε

2

)5

+ c

be the open cube with center c, edge-length ε > 0 and faces parallel to the coordinate planes. We
shall be using the following definition.
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Definition 4.3.1. Let A ∈ aG(B5), c ∈ R5 and ρ > 0. We say that A ∈ AG(Qρ(c)) if there exists
an L2 1-form that we denote ι∗∂Qρ(c)

A such that
(i)

lim
ε→0

1

ε

ˆ ρ+ε

ρ−ε

ˆ
∂Qρ(c)

∣∣∣ι∗Dr
ι∗∂Qr(c)

A− ι∗∂Qρ(c)
A
∣∣∣2 dH 4 dL1(r) = 0,

where Dr(x) :=
ρ
r (x− c) + c.

(ii)

ι∗∂Qρ(c)
A ∈ aG(∂Qρ(c)).

As a direct consequence of Fubini and Lebesgue theorems, we have the following proposition.

Proposition 4.3.1. Let A ∈ aG(B5) and c ∈ B5, then for L1-a.e. ρ > 0 such that Qρ(c) ⊂ B5

there holds A ∈ AG(∂Qρ(c)). A positive number ρ such that A ∈ AG(∂Qρ(c)) is called an
admissible edge-length for A.

For the purposes of the present subsection, given any ε ∈
(
0, 14
)

we let

Cε := εZ5 ∩Q1−2ε(0).

Note that

#{c′ ∈ Cε : Q2ε(c) ∩Q2ε(c
′) ̸= ∅} ⩽ N ∀ c ∈ Cε, (4.3.1)

where N ∈ N is independent on ε.

Lemma 4.3.1 (Choice of an admissible cubic cover). Let A ∈ aG(Q
5
1(0)). There exists a universal

constant K > 0 such that for a sequence {εi}i∈N ∈
(
0, 14
)

satisfying εi → 0 for i → +∞, for i
large enough we can find a family of admissible edge-lengths {ρi,c}c∈Cεi

⊂
(
3
2εi, 2εi

)
for which the

following facts hold.
(i) A ∈ AG(∂Qρi,c(c)) for every c ∈ Cεi .
(ii) For every c ∈ Cεi we have

ˆ
∂Qρi,c (c)

|FA|2 dH 4 ⩽
K

2εi

ˆ
Q2εi

(c)
|FA|2 dL5 (4.3.2)

and
ˆ
∂Qρi,c (c)

|A|2 dH 4 ⩽
K

2εi

ˆ
Q2εi

(c)
|A|2 dL5. (4.3.3)

(iii) It holds that

lim
i→+∞

εi
∑
c∈Cεi

ˆ
∂Qρi,c (c)

∣∣A− (A)Q2εi
(c)

∣∣2 dH 4 = 0, (4.3.4)
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lim
i→+∞

∑
c∈Cεi

ˆ
Qρi,c (c)

∣∣A− (A)Q2εi
(c)

∣∣2 dL5 = 0 (4.3.5)

and

lim
i→+∞

εi
∑
c∈Cεi

ˆ
∂Qρi,c (c)

∣∣FA − (FA)Q2εi
(c)

∣∣2 dH 4 = 0, (4.3.6)

where we have used the following notation:

(A)Q2εi
(c) :=

 
Q2εi

(c)
AdL5 and (FA)Q2εi

(c) :=

 
Q2εi

(c)
FA dL5.

Proof of Lemma 4.3.1. Fix any ε ∈
(
0, 14
)
. By assumption, for every c ∈ Cε there exists a full

L1-measure set RA,c ⊂
(
3
2ε, 2ε

)
such that ι∗∂Qρ(c)

A ∈ aG(∂Qρ(c)) for every ρ ∈ RA,c. Given a
constant K > 0 (to be fixed), for any c ∈ Cε we define the set

Eε,K,c :=

{
ρ ∈

(
3

2
ε, 2ε

)
s.t. A /∈ aG(∂Qρ(c)) or

ˆ
∂Qρ(c)

|FA|2 dH 4 >
K

2ε

ˆ
Q2ε(c)

|FA|2 dL5

}
.

(4.3.7)

By integration on Eε,K,c and Fubini together with mean value theorem we get

K

2ε

( ˆ
Q2ε(c)

|FA|2 dL5

)
L1(Eε,K,c) <

ˆ
Eε,K,c

ˆ
∂Qρ(c)

|FA|2 dH 4 dL1(ρ) (4.3.8)

⩽
ˆ 2ε

0

ˆ
∂Qρ(c)

|FA|2 dH 4 dL1(ρ) (4.3.9)

=

ˆ
Q2ε(c)

|FA|2 dL5. (4.3.10)

This implies that

L1(Eε,K,c) <
2ε

K
, ∀ c ∈ Cε. (4.3.11)

Fix i ∈ N and let Ai ∈ C∞
c (∧1Q5

1(0)⊗ g) be such that
ˆ
Q5

1(0)
|Ai −A|2 dL5 ⩽ 2−i. (4.3.12)

Let

Gε,K,i :=

{
ρ ∈

(
3

2
ε, 2ε

)
s.t. ε

∑
c∈Cε

ˆ
∂Qρ(c)

|Ai −A|2 dH 4 > K

ˆ
Q5

1(0)
|Ai −A|2 dL5

}
, (4.3.13)

Hε,K,i :=

{
ρ ∈

(
3

2
ε, 2ε

)
s.t. fi(ρ) > K

 2ε

3
2
ε
fi(ρ) dL1(ρ)

}
, (4.3.14)

with

fi(ρ) :=
∑
c∈Cε

ˆ
∂Qρ(c)

∣∣Ai − (Ai)Q2ε(c)

∣∣2 dH 4. (4.3.15)
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Notice that, again by Fubini theorem together with mean value theorem and integration as above,
we get

L1(Gε,K,i) ⩽
Cε

K

L1(Hε,K,i) ⩽
ε

K

(4.3.16)

for every i ∈ N, where C > 0 is a universal cover. By Fubini theorem, the mean value theorem
and Poincaré inequality, we have

ˆ 2ε

3
2
ε

∑
c∈Cε

ˆ
∂Qρ(c)

∣∣Ai − (Ai)Q2ε(c)

∣∣2 dH 4 dL1(ρ) ⩽
∑
c∈Cε

ˆ
Q2ε(c)

∣∣Ai − (Ai)Q2ε(c)

∣∣2 dL5 (4.3.17)

⩽
∑
c∈Cε

CP
(
Q2ε(c)

) ˆ
Q 3ε

4
(c)
|∇Ai|2 dL5 (4.3.18)

⩽ 4CP (Q
5
1(0))ε

2
∑
c∈Cε

ˆ
Q2ε(c)

|∇Ai|2 dL5 (4.3.19)

⩽ Cε2
ˆ
Q5

1(0)
|∇Ai|2 dL5, (4.3.20)

where we denote CP (Ω) > 0 for the open and bounded domain Ω ⊂ R5 and C > 0 is universal.
Hence for any ρ ∈ (Gε,K,i ∪Hε,K,i)

c (where the superscript “c” denotes the complement of the set
in (ε, 2ε)) one deduces

∑
c∈Cε

ˆ
∂Qρ(c)

∣∣Ai − (Ai)Q2ε(c)

∣∣2 dH 4 ⩽ K

 2ε

3
2
ε

∑
c∈Cε

ˆ
∂Qρ(c)

|Ai − (Ai)Q2ε(c)|
2 dH 4 dL1(ρ) (4.3.21)

⩽ KCε

ˆ
Q5

1(0)
|∇Ai|2 dL5. (4.3.22)

Moreover, for every ρ ∈ (ε, 2ε) we have

ε
∑
c∈Cε

ˆ
∂Qρ(c)

∣∣(Ai)Q2ε(c) − (A)Q2ε(c)

∣∣2 dH 4 ⩽ ε
∑
c∈Cε

|∂Qρ(c)|

( 
Q2ε(c)

|A−Ai| dL5

)2

(4.3.23)

⩽ C
∑
c∈Cε

ˆ
Q2ε(c)

|A−Ai|2 dL5 ⩽ C 2−i. (4.3.24)

Hence, by triangle inequality, we get that for every ρ ∈ (Gε,K,i ∪Hε,K,i)
c we have

ε
∑
c∈Cε

ˆ
∂Qρ(c)

∣∣A− (A)Q2ε(c)

∣∣2 dH 4 ⩽
(
K + C

)
2−i +KCε

ˆ
Q5

1(0)
|∇Ãi|2 dL5. (4.3.25)

Analogously, we consider Fi ∈ C∞
c (∧2Q5

1(0)⊗ g) such that
ˆ
Q5

1(0)
|Fi − FA|2 dx5 ⩽ 2−i (4.3.26)
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and we get that for every ε ∈
(
0, 14
)

and for every i ∈ N there are two L1-measurable sets
G′
ε,K,i, H

′
ε,K,i ⊂

(
3
2ε, 2ε

)
satisfying

L1(G′
ε,K,i) ⩽

Cε

K

L1(H ′
ε,K,i) ⩽

ε

K

(4.3.27)

such that for every ρ ∈ (G′
ε,K,i ∪H ′

ε,K,i)
c we have

ε
∑
c∈Cε

ˆ
∂Qρ(c)

∣∣FA − (FA)Q2ε(c)

∣∣2 dH 4 ⩽
(
K + C

)
2−i +KCε

ˆ
Q5

1(0)
|∇Fi|2 dL5. (4.3.28)

Now, first we let K̃ > 0 be big enough (independent on ε and i) so that

L1(Gε,K̃,i ∪Hε,K̃,i ∪G
′
ε,K̃,i

∪H ′
ε,K̃,i

) ⩽
ε

2
. (4.3.29)

Then, we notice that for every i ∈ N there exists εi < 2−(i+1) small enough so that

K̃Cεi

(ˆ
Q5

1(0)
|∇Ai|2 dL5 +

ˆ
Q5

1(0)
|∇Fi|2 dL5

)
⩽ 2−(i+1). (4.3.30)

Then, for every i ∈ N and for every c ∈ Cεi we pick ρi,c > 0 in the non-empty set

(Gεi,K̃,i ∪Hεi,K̃,i
∪G′

εi,K̃,i
∪H ′

εi,K̃,i
)c ∩RA,c ∩ Eεi,K̃,c. (4.3.31)

Notice that, for such admissible edge-lengths, we have

εi
∑
c∈Cεi

ˆ
∂Qρi,c (c)

∣∣A− (A)Q2εi
(c)

∣∣2 dH 4 ⩽
(
K + C

)
2−i + 2−(i+1) (4.3.32)

and

εi
∑
c∈Cεi

ˆ
∂Qρi,c (c)

∣∣FA − (FA)Q2εi
(c)

∣∣2 dH 4 ⩽
(
K + C

)
2−i + 2−(i+1). (4.3.33)

This concludes the proof of Lemma 4.3.1.

Definition 4.3.2. Let A ∈ aG(Q
5
1(0)). Under the same notation that we have used in the

previous Lemma 4.3.1, for every εi ∈
(
0, 14
)

we say that εi is an admissible scale for A and that
the collection of cubes {Qρi,c(c)}c∈Cεi

is a admissible cubic εi-cover relative to A.

Remark 4.3.1. Let A ∈ aG(Q
5
1(0)). Let ε ∈

(
0, 14
)

and let Qε be an admissible cubic ε-cover
relative to A. For every Q ∈ Qε, denote by ĀQ the constant 2-form given by (A)Q2ε(cQ), where
cQ denotes the center of Q. Notice that, by Jensen inequality, we have

|ĀQ|2 ⩽
 
Q2ε(cQ)

|A|2 dL5, ∀Q ∈ Qε. (4.3.34)

We have∑
Q∈Qε

ˆ
∂Q

|A|2 dH 4 ⩽ 2
∑
Q∈Qε

( ˆ
∂Q

|A− ĀQ|2 dH 4 +

ˆ
∂Q

|ĀQ|2 dH 4

)
(4.3.35)
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⩽ C
∑
Q∈Qε

(ˆ
∂Q

|A− ĀQ|2 dH 4 + ε4|ĀQ|2
)

(4.3.36)

⩽ C
∑
Q∈Qε

(ˆ
∂Q

|A− ĀQ|2 dH 4 + ε4
 
Q2ε(cQ)

|A|2 dL5

)
(4.3.37)

⩽ C

( ∑
Q∈Qε

ˆ
∂Q

|A− ĀQ|2 dH 4 +
1

ε

ˆ
Q5

1(0)
|A|2 dL5

)
, (4.3.38)

where C > 0 is independent on ε. By (4.3.4), for ε small enough we have

ε
∑
Q∈Qε

ˆ
∂Q

|A− ĀQ|2 dH 4 ⩽
ˆ
Q5

1(0)
|A|2 dL5. (4.3.39)

This implies that for such small values of the parameter ε it holds that

ε
∑
Q∈Qε

ˆ
∂Q

|A|2 dH 4 ⩽ C

ˆ
Q5

1(0)
|A|2 dL5, (4.3.40)

where C > 0 is independent on ε. Exactly by the same procedure, we get that

ε
∑
Q∈Qε

ˆ
∂Q

|FA|2 dH 4 ⩽ C

ˆ
Q5

1(0)
|FA|2 dL5 (4.3.41)

5 for ε > 0 sufficiently small.

4.3.2. The notion of good and bad cubes

Definition 4.3.3 (Good and bad cubes). Let A ∈ aG(Q
5
1(0)). Let ε ∈

(
0, 14
)

be an admissible
scale for A and let Qε be an admissible cubic ε-cover relative to A. Given any Λ > 0, we say that
Q ∈ Qε is a Λ-good cube if the following conditions hold:

(1)
1

ε3

ˆ
∂Q

|FA|2 dH 4 ⩽ ε
1
2

ˆ
Q5

1(0)
|FA|2 dL5,

(2)
1

ε3

ˆ
∂Q

|A|2 dH 4 ⩽ ε
1
2

ˆ
Q5

1(0)
|FA|2 dL5,

(3)
ˆ
∂Q

|A− ĀQ|2 dH 4 ⩽
1

ε

ˆ
Q2ε(cQ)

|A|2 dL5,

(4)
1

ε4

ˆ
∂Q

|A− ĀQ|2 dH 4 ⩽ Λ−1

ˆ
Q5

1(0)
|FA|2 dL5,

(5)
 
Q2ε(cQ)

|A|2 dL5 ⩽ Λ.

Otherwise, we say that Q is a Λ-bad cube. We denote by Qg
ε,Λ the set of all the Λ-good cubes

and Qb
ε,Λ := Qε ∖Qg

ε,Λ.

The following technical lemma is important for our argument. Given a sequence of admissible
scales {εi}i∈N, the lemma states that as i ∈ N increases, asymptotically, the L2-norm of A on
the Λ-bad cubes is controlled by the L2 norm of A on the union of cubes where property (5) in
Definition 4.3.3 fails.
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Lemma 4.3.2. Let A ∈ aG(Q
5
1(0)) and let {εi}i∈N ⊂

(
0, 14
)

be a sequence of admissible scales for
A. Let Λ > 0 and let Qεi be an admissible cubic εi-cover relative to A and Λ, for every i ∈ N.
Then, for some universal constant C > 0 (depending on the intersection property of the cubic
cover) there holds

lim
i→+∞

∑
Q∈Qb

εi,Λ

ˆ
Q2εi

(cQ)
|A|2 dL5 ⩽ C lim

i→+∞

ˆ
Ωi,Λ,A

|A|2 dL5, (4.3.42)

where Ωi,Λ,A ⊂ Q5
1(0) is given by

Ωi,Λ,A :=
⋃{

Q ∈ Qεi s.t.
 
Q2εi

(cQ)
|A|2 dL5 > Λ

}
. (4.3.43)

Proof of Lemma 4.3.2. Observe the following.
• If Q ∈ Qεi is such that (1) fails, we have

εi

ˆ
∂Q

|FA|2 dH 4 > ε
9
2
i

ˆ
Q5

1(0)
|FA|2 dL5. (4.3.44)

• If Q ∈ Qεi is such that (2) fails, we have

εi

ˆ
∂Q

|A|2 dH 4 > ε
9
2
i

ˆ
Q5

1(0)
|FA|2 dL5, (4.3.45)

• If Q ∈ Qεi is such that (3) fails, we have

εi

ˆ
∂Q

|A− ĀQ|2 dH 4 >

ˆ
Q2εi

(cQ)
|A|2 dL5. (4.3.46)

• If Q ∈ Qεi is such that (4) fails, we have

εi

ˆ
∂Q

|A− ĀQ|2 dH 4 > ε5iΛ
−1

ˆ
Q5

1(0)
|FA|2 dL5. (4.3.47)

Summing up over the appropriate cubes and by Remark 4.3.1, for εi > 0 small enough we get the
following set of estimates:

card({Q ∈ Qεi s.t. (1) fails}) < Cε
− 9

2
i , (4.3.48)

card({Q ∈ Qεi s.t. (2) fails}) < C

( ˆ
Q5

1(0)
|A|2 dL5

)( ˆ
Q5

1(0)
|FA|2 dL5

)−1

ε
− 9

2
i , (4.3.49)

∑
Q∈Qεi

s.t. (3) fails

ˆ
Q2εi

(cQ)
|A|2 dL5 < εi

∑
Q∈Qεi

ˆ
∂Q

|A− ĀQ|2 dH 4, (4.3.50)

card({Q ∈ Qεi s.t. (4) fails}) < Λ

(ˆ
Q5

1(0)
|FA|2 dL5

)−1

ε−5
i

(
εi
∑
Q∈Qεi

ˆ
∂Q

|A− ĀQ|2 dH 4

)
.

(4.3.51)
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In particular, we note that the L5-measure of the union of the cubes in Qεi such that (1),(2),(4)
fail vanishes at the limit i→ +∞. Thus,

lim
i→+∞

∑
Q∈Qεi s.t.
(1),(2),(3),(4)

fail

ˆ
Q2εi

(cQ)
|A|2 dL5 = 0. (4.3.52)

Finally, we get

lim
i→+∞

∑
Q∈Qb

εi,Λ

ˆ
Q2εi

(cQ)
|A|2 dL5 ⩽ lim

i→+∞

∑
Q∈Qεi

s.t. (5) fails

ˆ
Q2εi

(cQ)
|A|2 dL5 (4.3.53)

and the statement follows by the intersection properties of the cubic cover. This concludes the
proof of Lemma 4.3.2.

Remark 4.3.2. Let A ∈ aG(Q
5
1(0)). Let ε ∈

(
0, 14
)

be a good scale for A and let Qε be an admissible
cubic ε-cover relative to A. Notice that the property (3) in Definition 4.3.3 immediately implies
thatˆ

∂Q
|A|2 dH 4 ⩽

ˆ
∂Q

|A− ĀQ|2 dH 4 +

ˆ
∂Q

|ĀQ|2 dH 4 (4.3.54)

⩽
1

ε

ˆ
Q2ε(cQ)

|A|2 dL5 + Cε4
1

ε5

ˆ
Q2ε(cQ)

|A|2 dL5 ⩽
C

ε

ˆ
Q2ε(cQ)

|A|2 dL5 (4.3.55)

for every good Λ-good cube Q ∈ Qε, where C > 0 depends only on the dimension.

4.4. The first smoothification

The goal of this section is to approximate in L2-norm any weak connection A whose curvature is
small in Morrey norm by forms Ai,Λ whose curvature is suitably controlled in L2-norm on a set
of good slices at the same scale ρ.

Lemma 4.4.1. Let Q = Qρ(c) ⊂ R5 be an open cube in R5. Fix any g-valued 1-form A ∈ L2(∂Q)

with FA ∈ L2(∂Q). Let {Qi}i=0,...,k−1 be a collection of open cubes such that ∂Q is transversal to
∂Qi for all i and assume that ∂Q ⊂

⋃k−1
i=0 Qi, A ∈ aG(∂Q ∩Qi)) for every i = 0, ..., k − 1. Then,

there exists εG ∈ (0, 1) depending only on G such that if
ˆ
∂Q

|FA|2 dH 4 < εG (4.4.1)

we can find a global gauge g ∈W 1,2(∂Q,G) such that Ag ∈ L4(∂Q).

Proof of Lemma 4.4.1. Since A ∈ aG(∂Q∩Qi)) and since ∂Q∩Qi is bi-Lipschitz homeomorphic
to the 4-dimensional ball, there exists hi ∈ W 1,2(∂Q ∩Qi, G) such that Ahi ∈ L4(∂Q ∩Qi). We
consider ψc,ρ := (ρ · + c) ◦ φ which realizes a bi-Lipschitz homeomorphism from S4 into ∂Q and
we denote Ui the Lipschitz open subset of S4 given by Ui := ψ−1

c,ρ (∂Q ∩Qi). Let (ωi)i=0···k−1 be
an open cover of S4 such that ωi ⊂ Ui. We then cover each ωi by finitely many smooth convex
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geodesic balls (Vij)j∈Ii of S4 with Vil ⊂ Ui so that the whole cover given by the Vij is a good
cover of S4 (i.e. the intersections of the Vijs are again diffeomorphic to balls) by convex geodesic
balls. To simplify the notations we re-index the cover (Vij)i∈{0···k−1},j∈Ii by (Ol)l=1···L and we
denote by il the index i ∈ {0 · · · k − 1} such that Ol ⊂ Ui. Observe that

∥ψ∗
c,ρFA∥L2(S4) ⩽ C ∥dφ∥2L∞(S4) ∥FA∥L2(∂Q) ⩽ C ∥dφ∥2∞

√
εG. (4.4.2)

We first choose εG > 0 in (4.4.1) such that we can apply Proposition 4.A.2 to ψ∗
c,ρ(A

hil ) on the
geodesic ball Ol. Let gl ∈W 1,2(Ol, G) given by Proposition 4.A.2 such that

Bl :=
(
ψ∗
c,ρ(A

hil )
)gl

(4.4.3)

satisfies

∥Bl∥W 1,2(Ol) ⩽ C ∥ψ∗
c,ρFA∥L2(S4) ⩽ C ∥dφ∥2L∞(S4) ∥FA∥L2(∂Q) (4.4.4)

and

d∗S4Bl = 0. (4.4.5)

Using the same argument as in [74, proof of Theorem V.5], we have that the transition functions
σmn := g−1

n (hin ◦ψ−1
c,ρ )

−1him ◦ψ−1
c,ρ gm are continuous on On ∩Om. and the co-cycle generated by

(σmn)m,n∈{1···L} is C0 approximable by a sequence of smooth ones. Hence, σmn are the transition
functions of a smooth bundle and ψ∗

c,ρA defines a W 1,2−Sobolev connection on this G−bundle.
Using [92], for εG small enough the bundle is trivial and there exists a global W 1,2 representative
of ψ∗

c,ρA. Pulling back this representative by ψ−1
c,ρ we have the existence of g ∈W 1,2(∂Q,G) such

that Ag ∈ L4(∂Q). This concludes the proof of Lemma 4.4.1.

We recall the definition of the Morrey seminorms in Ω ⊂ Rn:

|f |Ms
p,q(Ω) := sup

x∈Ω
ρ>0

(
1

ρn−pq

ˆ
Qρ(x)

∑
s1+···+sn=s

∣∣∂s1x1 · · · ∂snxnf ∣∣p (x) dLn
) 1

p

,

for every s ∈ N, 1 ⩽ p < +∞, 0 < q < n
p .

Definition 4.4.1. Given an admissible cubic ε-cover Qε, we say that a cube Q ⊂ R5 is uniformly
transversal to Qε if there are universal constants 0 < α ⩽ k such that for every Q′ ∈ Qε we have
that Q ∩ Q′ is either empty or a rectangle with minimum edge length αε and maximum edge
length kε.

Theorem 4.4.1 (Approximation under controlled traces of the curvature). Let G be a compact
matrix Lie group and let Λ > 0. There exist εG ∈ (0, 1) and CG > 0 depending only on G such
that for every A ∈ aG(Q

5
1(0)) satisfying

|FA|2M0
2,2(Q

5
1(0))

:= sup
x∈Q5

1(0)
ρ>0

1

ρ

ˆ
Qρ(x)

|FA|2 dL5 < εG

we can find a set {εi}i∈N ⊂
(
0, 14
)

of admissible scales for A (with associated admissible cubic
εi-covers Qεi) and a family of g-valued 1-forms {Ai,Λ}i∈N ⊂ L2(Q5

1(0)) such that the following
facts hold.
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(i) For every i ∈ N, FAi,Λ
∈M0

2,2(Q
5
1(0)) with

|FAi,Λ
|M0

2,2(Q
5
1(0))

< CG |FA|M0
2,2(Q

5
1(0))

.

(ii) There exist a universal integer N ∈ N and a non-negative f ∈M0
1,4(Q

5
1(0)) satisfying

|f |M0
1,4(Q

5
1(0))

⩽ |FA|2M0
2,2(Q

5
1(0))

such that for every i ∈ N, for every x ∈ Q5
1(0) and for every ρ > 0 for which Qρ(x) is

uniformly transversal to Qεi and ∂Qρ(x) ⊂ Q1− εi
2
(0) we have

ˆ
∂Qρ(x)

|FAi,Λ
|2 dH 4 ⩽

CG
εi

N∑
k=1

ˆ
Q2εi

(xk)
f dL5, (4.4.6)

for an N -tuple of points {xk = xk(i, x, ρ)}k=1,...,N ⊂ Q5
1(0).

Moreover, for every i ∈ N, for every x ∈ Q5
1(0) and for L1-a.e. ρ > 0 for which Qρ(x) is

uniformly transversal to Qεi and ∂Qρ(x) ⊂ Q1− εi
2
(0) we have ι∗∂Qρ(x)

Ai,Λ ∈ aG(∂Qρ(x)).

(iii) We have

lim
i→+∞

∥Ai,Λ −A∥2L2(Q5
1(0))

⩽ CG lim
i→+∞

ˆ
Ωi,Λ,A

|A|2 dL5,

where Ωi,Λ,A ⊂ Q5
1(0) is defined as in Lemma 4.3.2.

Remark 4.4.1. It is not claimed in Theorem 4.4.1 that the elements Ai,Λ are in aG(Q
5
1(0)). It

could very well be that this is the case and that it could be checked out of the construction given
in the proof but, since it is not needed in the sequel, this property is left open.

Before proving Theorem 4.4.1, we shall need the following lemma, which will be used at several
steps of the proof of Theorem 4.4.1 and deserves to be stressed separately.

Lemma 4.4.2. Let A ∈ L2(Q5
1(0)), let Qρ(c) ⊂ Q5

1(0) and let p ∈ [1,+∞) and q ∈ [1,+∞].
Assume moreover that the following facts hold.

(i) FA := dA+A ∧A ∈ Lp,q(Qρ(c)) ∩ Lp,q(Q5
1(0)∖Qρ(c)).

(ii) There exists an L2 1-form ι∗∂Qρ(c)
A on ∂Qρ(c) such that

lim
ε→0

1

ε

ˆ ρ+ε

ρ−ε

ˆ
∂Qρ(c)

∣∣∣D∗
r ι

∗
∂Qr(c)

A− ι∗∂Qρ(c)
A
∣∣∣2 dH 4 dL1(r) = 0, (4.4.7)

where Dr(x) :=
r
ρ (x− c) + c.

Then, FA := dA+A ∧A ∈ Lp,q(Q5
1(0)) .

Proof of Lemma 4.4.2. Since the proof is identical for q ̸= p, to fix the ideas we assume that
q = p, i.e. Lp,q(Q5

1(0)) = Lp(Q5
1(0)). We first claim that FA ∈ L1(Q5

1(0)). Since A ∈ L2(Q5
1(0)),

automatically we have A∧A ∈ L1(Q5
1(0)) and it suffices to show that the distributional differential

of A is a 2-form in L1(Q5
1(0)). We claim that the distributional differential of A on Q5

1(0) is exactly
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dA ∈ L1(Q5
1(0)). Let φ ∈ C∞

c (Q5
1(0)) be any smooth and compactly supported 3-form on Q5

1(0).
Fix any ε > 0 and let ηε ∈ C∞

c (Q5
1(0)) a cut-off function that vanishes on ∂Qρ(c) and satisfies

ηε ≡ 1 on
(
Q5

1(0)∖Qρ+ε(c)
)
∪Qρ−ε(c), (4.4.8)

0 ⩽ ηε ⩽ 1 on Q5
1(0) (4.4.9)

and

∥dηε∥L∞(Q5
1(0))

⩽
C

ε
. (4.4.10)

Notice that ηεφ ∈W 1,1
0 (Q5

1(0)∖ ∂Qρ(c)). Hence,
ˆ
Q5

1(0)
A ∧ d(ηεφ) =

ˆ
Q5

1(0)
ηε(dA ∧ φ). (4.4.11)

Moreover,

d(ηεφ) = dηε ∧ φ+ ηεdφ. (4.4.12)

Thus,
ˆ
Q5

1(0)
A ∧ d(ηεφ) =

ˆ
Q5

1(0)
ηε(A ∧ dφ) +

ˆ
Q5

1(0)
A ∧ dηε ∧ φ. (4.4.13)

This implies that
ˆ
Q5

1(0)
ηε(A ∧ dφ) =

ˆ
Q5

1(0)
ηε(dA ∧ φ)−

ˆ
Q5

1(0)
A ∧ dηε ∧ φ. (4.4.14)

By assumption (ii), we have
ˆ
Q5

1(0)
A ∧ dηε ∧ φ→ 0 (4.4.15)

as ε→ 0. Hence, by passing to the limit as ε→ 0 in (4.4.14) we get
ˆ
Q5

1(0)
A ∧ dφ =

ˆ
Q5

1(0)
dA ∧ φ, (4.4.16)

which implies that dA ∈ L1(Q5
1(0)) is the distributional differential of A on Q5

1(0) and our claim
follows.
Let φ ∈ C∞

c (Q5
1(0)) a smooth and compactly supported 2-form on Q5

1(0) such that ∥φ∥Lp′ (Q5
1(0))

⩽
1. Fix any ε > 0 and let

ˆ
Q5

1(0)
FA ∧ ∗φ =

ˆ
Q5

1(0)∖Qρ+ε(c)
FA ∧ ∗φ+

ˆ
Qρ+ε(c)∖Qρ−ε(c)

FA ∧ ∗φ+

ˆ
Qρ−ε(c)

FA ∧ ∗φ

⩽
ˆ
Q5

1(0)∖Qρ(c)
FA ∧ ∗φ+

ˆ
Qρ+ε(c)∖Qρ−ε(c)

FA ∧ ∗φ+

ˆ
Qρ(c)

FA ∧ ∗φ

⩽ ∥FA∥Lp(Q5
1(0)∖Qρ(c)) + ∥FA∥Lp(Qρ(c)) +

ˆ
Qρ+ε(c)∖Qρ−ε(c)

FA ∧ ∗φ.
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Since we have already shown that FA ∈ L1(Q5
1(0)), by taking the limit as ε → 0+ in the above

inequality we have
ˆ
Q5

1(0)
FA ∧ ∗φ ⩽ ∥FA∥Lp(Q5

1(0)∖Qρ(c)) + ∥FA∥Lp(Qρ(c)).

By taking the supremum over φ ∈ C∞
c (Q5

1(0)) a smooth and compactly supported 2-form on
Q5

1(0) such that ∥φ∥L2(Q5
1(0))

⩽ 1, we finally get

∥FA∥Lp(Q5
1(0))

⩽ ∥FA∥Lp(Q5
1(0)∖Qρ(c)) + ∥FA∥Lp(Qρ(c)).

This concludes the proof of Lemma 4.4.2.

Proof of Theorem 4.4.1. Let {εi} ⊂
(
0, 14
)

be a set of admissible scales for A with associated
admissible cubic εi-cover Qεi . We subdivide the family of cubes Qεi into a uniformly bounded
number N of disjoint subfamilies

Q1
εi , ...,Q

N
εi . (4.4.17)

We denote by C s
εi the set of centers of the cubes in Qs

εi . The subfamilies Qs
εi are chosen such that

the union of the cubes in Qj
εi with same centers and radii multiplied by 2 have no intersections

with the union of the cubes in Qk
εi with same centers and radii multiplied by 2 whenever j ̸= k.

We claim that for every s = 0, ..., N we can build a g-valued 1-form Asi,Λ ∈ L2(Q5
1(0)) and we can

choose a family of radii ρsi ∈
(
3
2εi, 2εi

)
for each center c ∈ C s

εi in the family of cubes in Qs
εi such

that for some constant Cs > 0 depending only on G we have the following.
(a) We have

∀ c ∈ C s
εi As−1

i,Λ ∈ aG(∂Qρsi (c)), (4.4.18)

and the estimates
ˆ
∂Qs

ρi,c
(c)
|FAs−1

i,Λ
|2 dH 4 ⩽

Cs
2εi

ˆ
Qs

2εi
(c)
|FAs−1

i,Λ
|2 dL5, (4.4.19)

ˆ
∂Qs

ρi,c
(c)
|As−1

i,Λ |2 dH 4 ⩽
Cs
2εi

ˆ
Qs

2εi
(c)
|As−1

i,Λ |2 dL5. (4.4.20)

(b) FAs
i,Λ

∈M0
2,2(Q

5
1(0)) with

|FAs
i,Λ
|M0

2,2(Q1−3εi
(0)) < Cs |FA|M0

2,2(Q
5
1(0))

. (4.4.21)

(c) There exist Ns ∈ N and a real-valued, non-negative function fs ∈M0
2,2(Q

5
1(0)) satisfying

|fs|M0
1,4(Q

5
1(0))

⩽ |FA|2M0
2,2(Q

5
1(0))

(4.4.22)
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such that, for every x ∈ Q5
1(0) and for every ρ > 0 for which Qρ(x) is uniformly transversal

to Qεi , we have

ˆ
∂Qρ(x)∩Ωs

i

|FAi,Λ
|2 dH 4 ⩽

Cs
εi

Ns∑
k=1

ˆ
Q2εi

(xk)
fs dL5 (4.4.23)

for a family of Ns points {xsk = xsk(i, x, ρ)}k=1,...,Ns ⊂ Q5
1(0), where Ωsi ⊂ Q5

1(0) is the open
set given by

Ωsi := int

( s⋃
k=1

⋃
Q∈Qk

εi

Q

)
. (4.4.24)

(d) It holds that

lim
i→+∞

∥Asi,Λ −A∥2L2(Q5
1(0))

⩽ Cs lim
i→+∞

ˆ
Ωi,Λ,A

|A|2 dL5, (4.4.25)

where Ωi,Λ,A ⊂ Q5
1(0) is as in Lemma 4.3.2.

Base of the induction. For s = 0, since Ω0
i = ∅ we have that A0

i,Λ := A satisfies (a), (b), (c) and
(d).

Induction step. Let s ⩾ 1. Using one more time Fubini theorem combined with the mean value
theorem we adjust the radii ρi,c ∈

(
3
2εi, 2εi

)
in Qs

εi such that As−1
i,Λ satisfies the properties in (a).

From now on, in the induction procedure, the family Qs
εi is fixed.

By assumptions (1) and (2) in Definition 4.3.3, if εG > 0 is small enough then ι∗∂QA
s−1
i,Λ ∈ aG(∂Q)

satisfies the hypotheses of Corollary 4.2.1 for every Λ-good cube Q ∈ Qs,g
εi . Moreover, by our

choice of the cubic cover (see Lemma 4.3.1-(i)), we have that ι∗∂QA
s−1
i,Λ ∈ aG(∂Q) satisfies the

hypotheses of Corollary 4.2.2 for every Q ∈ Qs
εi .

For every Q ∈ Qs
εi , if Q is Λ-good then we let AsQ be the g-valued 1-form given by applying

Corollary 4.2.1–(ii) to ι∗∂QA
s−1
i,Λ . On the other hand, if Q is Λ-bad we let AsQ be the g-valued

1-form given by applying Corollary 4.2.2–(ii) to ι∗∂QA
s−1
i,Λ .

Let Asi,Λ be defined on Q5
1(0) by

Asi,Λ :=

{
AsQ on Q for every Q ∈ Qs

εi ,

As−1
i,Λ otherwise.

By construction and using Lemma 4.4.2, it is clear that Asi,Λ, FAs
i,Λ

∈ L2(Q5
1(0)). First, we show

that Asi,Λ satisfies (b). Fix any point x ∈ Q5
1(0) and let ρ ∈

(
0,dist(x, ∂Q5

1(0))
)
. First we

assume that ρ ⩽ εi. Then, Qρ(x) intersects at most Ñ cubes in Qs
εi , say Q1, ..., QÑ , with Ñ ∈ N

depending only on the choice of the cubic cover and independent on i, x and ρ. Hence, by Hölder
inequality, by the estimates (4.2.66) for the good Qℓs and (4.2.96) for the bad ones for each AsQ,
as well as (4.3.2) and the inductive assumption (b) on As−1

i,Λ , we get

1

ρ

ˆ
Qρ(x)∩(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dL5 ⩽ ∥FAs

i,Λ
∥2
L

5
2 (Qρ(x)∩(Ωs

i∖Ωs−1
i ))
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⩽ C
Ñ∑
ℓ=1

∥∥∥FAs
i,Λ

∥∥∥2
L

5
2 (Qℓ)

= C
Ñ∑
i=1

∥FAs
Qℓ
∥2
L

5
2 (Qℓ)

⩽ C
∑

Qℓ∈Qg
εi,Λ

(
∥FAs−1

i,Λ
∥2L2(∂Qℓ)

+ ε−2
i ∥As−1

i,Λ ∥2L2(∂Qℓ)

)
+

∑
Qℓ∈Qb

εi,Λ

∥FAs−1
i,Λ

∥2L2(∂Qℓ)

⩽ C |FAs−1
i,Λ

|2M0
2,2(Q

5
1(0))

⩽ C |FA|2M0
2,2(Q

5
1(0))

, (4.4.26)

for some constant C > 0 depending only on G.
Assume now that εi < ρ < 1. Then there exists a universal constant k > 1 such that Qρ(x) ∩
(Ωsi ∖ Ωs−1

i ) can be covered with a finite number of cubes {Qℓ}ℓ=1,...,Ni,x,ρ
in Qs

εi such that

Ni,x,ρ⋃
ℓ=1

Q2εi(cQℓ
) ⊂ Qkρ(x).

Notice that now the number of cubes Ni,x,ρ may depend on i, x and ρ. Then, by the estimates
(4.2.66) and (4.2.96) we obtain

ˆ
Qρ(x)∩(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dL5 ⩽

Ni,x,ρ∑
ℓ=1

ˆ
Qℓ

|FAs
i,Λ
|2 dL5 =

Ni,x,ρ∑
ℓ=1

ˆ
Qℓ

|FAQℓ
|2 dL5

⩽ C
∑

Qℓ∈Qg
εi,Λ

ε−4
i

ˆ
∂Qℓ

|As−1
i,Λ − (As−1

i,Λ )Qℓ
|2 dH 4 εi

ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4 (4.4.27)

+ C
∑

Qℓ∈Qg
εi,Λ

εi

(
ε−2
i

ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4

)3

+ Cεi

Ni,x,ρ∑
ℓ=1

ˆ
∂Qℓ

|FAs−1
i,Λ

|2 dH 4,

for some constant C > 0 depending only on G. By property (4) in Definition 4.3.3, by Remark
4.3.2 and by inductive hypothesis (a) on As−1

i,Λ , we get∑
Qℓ∈Qg

εi,Λ

ε−4
i

ˆ
∂Qℓ

|As−1
i,Λ − (As−1

i,Λ )Qℓ
|2 dH 4 εi

ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4

⩽ CΛ−1
∣∣∣FAs−1

i,Λ

∣∣∣2
M2,2(Q5

1(0))

∑
Qℓ∈Qg

εi,Λ

ˆ
Q2εi

(cQℓ
)
|As−1

i,Λ |2 dL5,

⩽ CΛ−1 |FA|2M0
2,2(Q

5
1(0))

∑
Qℓ∈Qg

εi,Λ

ˆ
Q2εi

(cQℓ
)
|As−1

i,Λ |2 dL5,

for some constant C > 0 depending only on G. By property (5) in Definition 4.3.3 and by our
choice of k > 0, we get∑

Qℓ∈Qg
εi,Λ

ˆ
Q2εi

(cQℓ
)
|As−1

i,Λ |2 dL5 ⩽ CΛ
∑

Qℓ∈Qg
εi,Λ

(2εi)
5 ⩽ CΛ(kρ)5,

for some constant C > 0 depending only on G. Hence, since by assumption ρ ∈ (0, 1), we have
obtained the estimate∑
Qℓ∈Qg

εi,Λ

ε−4
i

ˆ
∂Qℓ

|As−1
i,Λ − (As−1

i,Λ )Qℓ
|2 dH 4 εi

ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4 ⩽ C k5ρ |FA|2M0

2,2(Q
5
1(0))

, (4.4.28)
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for some constant C > 0 depending only on G. By Remark 4.3.2 and by property (5) in Definition
4.3.3, provided i ⩾ i0 is large enough so that εi < Λ−3 |FA|2M0

2,2(Q
5
1(0))

, we obtain

∑
Qℓ∈Qg

εi,Λ

εi

(
ε−2
i

ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4

)3

⩽
∑

Qℓ∈Qg
εi,Λ

εi

(
ε−3
i

ˆ
Q2εi

(cQℓ
)
|As−1

i,Λ |2 dL5

)3

⩽
∑

Qℓ∈Qg
εi,Λ

εi(ε
−3
i Λε5i )

3 (4.4.29)

⩽ ε2i Λ
3

∑
Qℓ∈Qg

εi,Λ

ε5i ⩽ Cε2i Λ
3 ⩽ Cρ |FA|2M0

2,2(Q
5
1(0))

,

for some constant C > 0 depending only on G. By (4.3.2) and the inductive hypothesis (a) on
As−1
i,Λ , we get

εi

Ni,xρ∑
ℓ=1

ˆ
∂Qℓ

|FAs−1
i,Λ

|2 dH 4 ⩽ C

Ni,xρ∑
ℓ=1

ˆ
Q2εi

(cQℓ
)
|FAs−1

i,Λ
|2 dL5

⩽ C

ˆ
Qkρ(x)

|FAs−1
i,Λ

|2 dL5 ⩽ C k ρ
∣∣∣FAs−1

i,Λ

∣∣∣2
M0

2,2(Q
5
1(0))

⩽ C k ρ |FA|2M0
2,2(Q

5
1(0))

,

(4.4.30)

for some constant C > 0 depending only on the choice of the cubic cover. Hence, provided
i ⩾ i0 is sufficiently large, combining (4.4.27), (4.4.28), (4.4.29) and (4.4.30) we get this time for
εi < ρ < 1

1

ρ

ˆ
Qρ(x)∩(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dL5 ⩽ C |FA|2M0

2,2(Q
5
1(0))

, (4.4.31)

for some constant C > 0 depending only on G. Since

1

ρ

ˆ
Qρ(x)

|FAs
i,Λ
|2 dL5 =

1

ρ

ˆ
Qρ(x)∩(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dL5 +

1

ρ

ˆ
Qρ(x)∖(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dL5

⩽
1

ρ

ˆ
Qρ(x)∩(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dL5 +

1

ρ

ˆ
Qρ(x)

|FAs−1
i,Λ

|2 dL5,

property (b) for Asi,Λ follows by (4.4.31) and inductive hypothesis b) for As−1
i,Λ .

Now we turn to show property (c) for Asi,Λ. Notice that

∥Asi,Λ −A∥2L2(Q5
1(0))

⩽ ∥Asi,Λ −As−1
i,Λ ∥2L2(Q5

1(0))
+ ∥As−1

i,Λ −A∥2L2(Q5
1(0))

⩽
∑
Q∈Qs

εi

ˆ
Q
|AsQ −As−1

i,Λ |2 dL5 + ∥As−1
i,Λ −A∥2L2(Q5

1(0))

⩽
∑

Q∈Qs
εi
∩Qg

εi,Λ

ˆ
Q
|AsQ −As−1

i,Λ |2 dL5 + ∥As−1
i,Λ −A∥2L2(Q5

1(0))
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+
∑

Q∈Qs
εi
∩Qb

εi,Λ

ˆ
Q
|AsQ −As−1

i,Λ |2 dL5

⩽ 2 Ii,Λ,s + 2 Ji,Λ,s +Ki,Λ,s + ∥As−1
i,Λ −A∥2L2(Q5

1(0))
,

with

Ii,Λ,s :=
∑

Q∈Qs
εi
∩Qg

εi,Λ

ˆ
Q
|AsQ − (As−1

i,Λ )Q|2 dL5,

Ji,Λ,s :=
∑

Q∈Qs
εi
∩Qg

εi,Λ

ˆ
Q
|As−1

i,Λ − (As−1
i,Λ )Q|2 dL5,

Ki,Λ,s :=
∑

Q∈Qs
εi
∩Qb

εi,Λ

ˆ
Q
|AsQ −As−1

i,Λ |2 dL5.

By using (4.2.70) with Ā = (As−1
i,Λ )Q for every good cube Q, by Lemma 4.3.1 (in particular (4.3.4))

and by properties (1),(2) in Definition 4.3.3, we have

Ii,Λ,s =
∑

Q∈Qs
εi
∩Qg

εi,Λ

ˆ
Q
|AsQ − (As−1

i,Λ )Q|2 dL5

⩽ C εi
∑

Q∈Qg
εi,Λ

ˆ
∂Q

|As−1
i,Λ − (As−1

i,Λ )Q|2 dL5 + ε3i
∑

Q∈Qg
εi,Λ

ˆ
∂Q

|FAs−1
i,Λ

|2 dH 4

+ ε−1
i

∑
Q∈Qg

εi,Λ

∥As−1
i,Λ ∥4L2(∂Q)

⩽ C εi
∑

Q∈Qg
εi,Λ

ˆ
∂Q

|As−1
i,Λ − (As−1

i,Λ )Q|2 dL5 + C ε
6+1/2
i

∑
Q∈Qg

εi,Λ

|FAs−1
i,Λ

|2M0
2,2(Q1(0))

+ C ε6i
∑

Q∈Qg
εi,Λ

|FAs−1
i,Λ

|4M0
2,2(Q1(0))

⩽ C εi
∑

Q∈Qg
εi,Λ

ˆ
∂Q

|As−1
i,Λ − (As−1

i,Λ )Q|2 dL5 +O(εi) −→ 0 (4.4.32)

as εi → 0+ for a fixed Λ. Now, we estimate Ji,Λ,s. We write

Ji,Λ,s ⩽ 3
∑

Q∈Qs
εi
∩Qg

εi,Λ

ˆ
Q
|As−1

i,Λ −A|2 dL5 + 3
∑

Q∈Qs
εi
∩Qg

εi,Λ

ˆ
Q
|A− (A)Q|2 dL5

+ 3
∑

Q∈Qs
εi
∩Qg

εi,Λ

ˆ
Q
|(As−1

i,Λ )Q − (A)Q|2 dL5 (4.4.33)

⩽ 6 ∥As−1
i,Λ −A∥2L2(Q1(0))

+ 3
∑
Q∈Qs

εi

ˆ
Q
|A− (A)Q|2 dL5.

Using the induction hypothesis together with (4.3.5) we obtain that

lim
i→+∞

Ji,Λ,s ⩽ C lim
i→+∞

ˆ
Ωs−1

i,Λ,A

|A|2 dL5. (4.4.34)
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Finally, we bound Ki,Λ,s. Using respectively (4.2.76) together with the induction hypothesis on
(Qsεi , A

s−1
i,Λ ) (4.4.19) and (4.4.20), we obtain

Ki,Λ,s ⩽
∑

Q∈Qs,b
εi,Λ

(ˆ
Q
|AsQ|2 dL5 +

ˆ
Q
|As−1

i,Λ |2 dL5

)

⩽ C
∑

Q∈Qs,b
εi,Λ

(
εi

ˆ
∂Q

|As−1
i,Λ |2 dH 4 + ε3i

ˆ
∂Q

|FAs−1
i,Λ

| dH 4 +

ˆ
Q
|As−1

i,Λ |2 dL5

)

⩽ C
∑

Q∈Qs,b
εi,Λ

ˆ
Q2εi

(cQ)
|As−1

i,Λ |2 dL5 + C ε2i
∑

Q∈Qs
εi
∩Qb

εi,Λ

ˆ
Q
|FAs−1

i,Λ
| dL5

⩽ C
∑

Q∈Qs,b
εi,Λ

ˆ
Q2ε(cQ)

|As−1
i,Λ |2 dL5 + C ε2i

ˆ
Q5

1(0)
|FAs−1

i,Λ
|2 dL5

⩽ C
∑

Q∈Qs,b
εi,Λ

ˆ
Q2ε(cQ)

|A|2 dL5 + ∥As−1
i,Λ −A∥2L2(Q5

1(0))
+ oεi(1). (4.4.35)

Hence, by Lemma 4.3.2 and by inductive hypothesis (d) on As−1
i,Λ , property (d) for Asi,Λ follows.

We are just left to show property (c) for Asi,Λ. Fix any x ∈ Q5
1(0) and ρ > 0 such that Qρ(x) is

uniformly transversal to Ql
εi for l ⩽ s. Notice that,

∥FAs
i,Λ
∥2L2(∂Qρ(x)∩Ωs

i )
= ∥FAs

i,Λ
∥2
L2(∂Qρ(x)∩Ωs−1

i )
+ ∥FAs

i,Λ
∥2
L2(∂Qρ(x)∩(Ωs

i∖Ωs−1
i ))

= ∥FAs−1
i,Λ

∥2
L2(∂Qρ(x)∩Ωs−1

i )
+ ∥FAs

i,Λ
∥2
L2(∂Qρ(x)∩(Ωs

i∖Ωs−1
i ))

. (4.4.36)

By inductive hypothesis (c) on As−1
i,Λ , there exists Ns−1 ∈ N independent on x, ρ and i such that

ˆ
∂Qρ(x)∩Ωs−1

i

|FAs−1
i,Λ

|2 dH 4 ⩽
Cs−1

εi

Ns−1∑
k=1

ˆ
Q2εi

(xk)
fs−1 dL5, (4.4.37)

for Cs−1 > 0 depending only on G, for an Ns−1-tuple {xs−1
k = xs−1

k (x, ρ, i)}k=1,...,Ns−1 ⊂ Q5
1(0)

and for a real-valued, non-negative fs−1 ∈M0
1,4(Q

5
1(0)) independent on i such that

|fs−1|M0
1,4(Q

5
1(0))

⩽ |FA|2M0
2,2(Q

5
1(0))

.

Hence, in order to prove property (c) for Asi,Λ, it remains to control ∥FAs
i,Λ
∥2
L2(∂Qρ(0)∩(Ωs

i∖Ωs−1
i ))

.

Notice that, since ρ ∈
(
3
2εi,

7
4εi
)
, there exists N̂ depending only on the choice of the cubic cover

such that ∂Qρ intersects just N̂ cubes in Qs
εi , say {Q1, ..., QN̂}. Then, by construction, we have

FAs
i,Λ
1∂Qρ(x)∩(Ωs

i∖Ωs−1
i ) =

∑
Q∈Qs

εi

FAs
Q
1∂Qρ(x)∩Q =

N̂∑
ℓ=1

FAQℓ
1∂Qρ(x)∩Qℓ

.

Thus, by (4.2.68) and (4.2.98) we get

ˆ
∂Qρ(x)∩(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dH 4 ⩽

N̂∑
ℓ=1

ˆ
∂Qρ(x)∩Qℓ

|FAs
Qℓ
|2 dH 4
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⩽ C
N̂∑
ℓ=1

ˆ
∂Qℓ

|FAs−1
i,Λ

|2 dH 4 + C ε−6
i

∑
Qℓ∈Qg

εi,Λ

(ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4

)3

+ C
∑

Qℓ∈Qg
εi,Λ

ε−4
i

ˆ
∂Qℓ

|As−1
i,Λ − (As−1

i,Λ )Qℓ
|2 dH 4

ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4. (4.4.38)

Fix any ℓ ∈ {1, ..., N̂}. Notice that we have have chosen Qsεi so that (4.4.19) holds. Then, we
have ˆ

∂Qℓ

|FAs−1
i,Λ

|2 dH 4 ⩽
C

εi

ˆ
Q2εi

(cQℓ
)
|FA|2 dL5, (4.4.39)

for some constant C > 0 independent of εi. Moreover, by properties (2), (4)and (5) in Definition
4.3.3 (characterizing good cubes), by Remark 4.3.2 and by (4.4.20), we obtain the estimates

ε−6
i

(ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4

)3

⩽ ε−6
i

(
ε
3+1/2
i

ˆ
Q5

1(0)
|FAs−1

i,Λ
|2 dL5

)3

(4.4.40)

⩽ ε
3+3/2
i |FAs−1

i,Λ
|6M0

2,2(Q
5
1(0))

⩽ C
1

εi

ˆ
Qℓ

ε
1/2
i |FAs−1

i,Λ
|6M0

2,2(Q
5
1(0))

dL5 (4.4.41)

and

ε−4
i

ˆ
∂Qℓ

|As−1
i,Λ − (As−1

i,Λ )Qℓ
|2 dH 4

ˆ
∂Qℓ

|As−1
i,Λ |2 dH 4

⩽ Λ−1 |FAs−1
i,Λ

|2M0
2,2(Q

5
1(0))

ε4i Λ |FAs−1
i,Λ

|2M0
2,2(Q

5
1(0))

⩽
Cs−1

εi

ˆ
Q2ε(cQℓ

)
|FA|4M0

2,2(Q
5
1(0))

dL5. (4.4.42)

By combining (4.4.38), (4.4.39), (4.4.40) and (4.4.42), we get

ˆ
∂Qρ(x)∩(Ωs

i∖Ωs−1
i )

|FAs
i,Λ
|2 dH 4 ⩽

C

εi

N̂∑
ℓ=1

ˆ
Q2εi

(cQℓ
)
gs dL5 (4.4.43)

with gs := |FA|2 + |FA|4M0
2,2(Q

5
1(0))

+ ε
1/2
i |FA|6M0

2,2(Q
5
1(0))

. The required estimate (4.4.23) for FAs
i,Λ

then follows by (4.4.36), (4.4.37) and (4.4.43), letting

fs := max{gs, fs−1}.

Finally, let Ai,Λ := ANi,Λ ∈ L2(Q5
1(0)). By construction, FAi,Λ

∈ L2(Q5
1(0)) and Ai,Λ satisfies the

properties (i) and (iii). Moreover, notice that ΩNi ⊃ Q1− εi
2
(0). In particular, ∂Qρ(x) ⊂ ΩNi .

Hence, by property (c) for ANi,Λ, there exists Ñ ∈ N independent on x, ρ and i such that

ˆ
∂Qρ(x)

|FAi,Λ
|2 dH 4 ⩽

C

εi

Ñ∑
k=1

ˆ
Q2εi

(xk)
f dL5, (4.4.44)
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for C > 0 depending only on G, for an N -tuple of points {xk = xk(x, ρ, i)}k=1,...,N ⊂ Q5
1(0) and

for some real-valued, non-negative f ∈M0
1,4(Q

5
1(0)) independent on i such that

|f |M0
1,4(Q

5
1(0))

⩽ |FA|2M0
2,2(Q

5
1(0))

(4.4.45)

We are just left to check that, given any x ∈ Q5
1(0), for L1-a.e. choice of ρ > 0 such that Qρ(x)

is uniformly transversal to Qεi and ∂Qρ(x) ⊂ Q1− εi
2
(0) we have ι∗∂Qρ(x)

Ai,Λ ∈ aG(∂Qρ(x)). First,
note that for L1-a.e. ρ > 0 we have ι∗∂Qρ(x)

Ai,Λ ∈ L2(∂Qρ(x)). Moreover, by (4.4.44), we get
ˆ
∂Qρ(x)

|Fι∗
∂Qρ(x)

Ai,Λ
|2 dH 4 =

ˆ
∂Qρ(x)

|ι∗∂Qρ(x)
FAi,Λ

|2 dH 4

⩽
ˆ
∂Qρ(x)

|FAi,Λ
|2 dH 4 ⩽ CεG, (4.4.46)

for some constant C > 0 depending only on G. By construction, we can find a covering
(Rl)ℓ=1,...,Nρ,x of ∂Qρ(x) where Rℓ is a rectangle included in some Ql ∈ Qs(l)

εi for some s(l) ∈
{0 · · ·N} depending on l such that

Ai,Λ = A
s(ℓ)
Qℓ

on Rℓ

By the properties of the extensions on good and bad cubes implying that we have respectively
(4.2.69) and (4.2.99), if (4.4.46) holds there exist gℓ ∈W 1,2(Rℓ, G) such that

(ι∗∂Qρ(x)
Ai,Λ)

gℓ ∈ L4(∂Qρ(x) ∩Rℓ).

Then, we can apply Lemma 4.4.1 to conclude there exists g ∈W 1,2(∂Qρ(x), G) such that

(ι∗∂Qρ(x)
Ai,Λ)

g ∈ L4(∂Qρ(x)). (4.4.47)

Hence, ι∗∂Qρ(x)
Ai,Λ ∈ aG(∂Qρ(x)). This concludes the proof of Theorem 4.4.1.

4.5. The second smoothification: strong L2-approximation by
smooth connections

The goal of this section is to prove that any weak connection with curvature having a small
Morrey norm is strongly approximable in L2 by smooth connections with small Morrey norm of
the curvature as well. More precisely the main result obtained in this section is to prove the
following theorem.

Theorem 4.5.1 (Smooth approximation under controlled Morrey norm). Let G be a compact
matrix Lie group. There exists εG ∈ (0, 1) such that for every A ∈ aG(Q

5
1(0)) satisfying

|FA|2M0
2,2(Q

5
1(0))

< εG

there exists a sequence of g-valued 1-forms {Ai}i∈N ⊂ C∞
c (Q5

1(0)) such that:
(i) for every i ∈ N we have

|FAi |M0
2,2(Q 1

2
(0)) ⩽ CG |FA|M0

2,2(Q
5
1(0))

.

for some constant CG > 0 depending on G;
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(ii) ∥Ai −A
∥∥
L2(Q 1

2
(0))

→ 0 as i→ +∞.

In order to prove Theorem 4.5.1 we shall need some preliminary results. Recall that we have
defined

Cε := (εZ)5 ∩Q1−2ε(0)

for every ε ∈
(
0, 14
)

(see the beginning of Section 3). Under the same assumption and notation of
Theorem 4.4.1, for every i ∈ N and for every t ∈ Q εi

8
(0) the cubes in the grid {Qεi(c + t)}c∈Cεi

are uniformly transverse to the cubes in Qεi and such that ∂Qεi(c + t) ⊂ Q1− εi
2
(0) for every

c ∈ Cεi . Since uniform transversality is stable by small perturbations, there exists α > 0 small
enough and independent of εi so that for every r ∈

(
(1−α)εi, (1+α)εi

)
and every t ∈ Q r

8
(0) the

cubes in the grid {Qr(c+ t)}c∈Cr are still uniformly transverse to the cubes in Qεi and such that
∂Qr(c+ t) ⊂ Q1− εi

2
(0) for every c ∈ Cr.

Lemma 4.5.1 (Choice of an admissible cubic grid). Under the same assumption and notation of
Theorem 4.4.1, for every i ∈ N there exist ri ∈

(
(1−α)εi, (1+α)εi

)
and a translation ti ∈ Q ri

8
(0)

for which the following facts hold.
1. ι∗∂Qri (c+ti)

Ai,Λ ∈ aG(∂Qri(c+ ti)) for every c ∈ Cri .

2. There exist N ∈ N and a real-valued, non-negative f ∈M0
1,4(Q

5
1(0)) satisfying

|f |M0
1,4(Q

5
1(0))

⩽ |FA|2M0
2,2(Q

5
1(0))

such that for every c ∈ Cri we have

ˆ
∂Qri (c+ti)

|FAi,Λ
|2 dH 4 ⩽

CG
εi

N∑
k=1

ˆ
Q2εi

(xk)
f dL5,

for an N -tuple of points {xk = xk(i, x, ri)}k=1,...,N ⊂ Q5
1(0).

3. It holds that

lim
i→+∞

ri
∑
c∈Cri

ˆ
∂Qri (c+ti)

|Ai,Λ − (Ai,Λ)Qri (c+ti)
|2 dH 4 = 0, (4.5.1)

lim
i→+∞

ri
∑
c∈Cri

ˆ
∂Qri (c+ti)

|FAi,Λ
− (FAi,Λ

)Qri (c+ti)
|2 dH 4 = 0. (4.5.2)

Proof of Lemma 4.5.1. By our assumption on α and by Theorem 4.4.1-(ii), arguing exactly as
in the proof of [23, Lemma 2.1] (with p = 2 and q = 1) or [22, Lemma 3.1] we can show that there
exists a full measure subset E ⊂

(
(1−α)εi, (1+α)εi

)
such that for every r ∈ E we have that for

a.e. translation t ∈ Q r
8
(0) 1. and 2. in the statement hold. We fix ri ∈ E and again, exactly as

in the proof of [23, Lemma 2.1] (with p = 2 and q = 1) or [22, Lemma 3.1] we have that

Iri :=

ˆ
Q ri

8
(0)

∑
c∈Cri

ˆ
∂Qri (c+t)

|Ai,Λ − (Ai,Λ)Qri (c+t)
|2 dH 4 dL5 = o

(
r4i
)

(4.5.3)

Jri :=

ˆ
Q ri

8
(0)

∑
c∈Cri

ˆ
∂Qri (c+t)

|FAi,Λ
− (FAi,Λ

)Qri (c+t)
|2 dH 4 dL5 = o

(
r4i
)

(4.5.4)
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as ri → 0+. Consider the sets

Tri,K,1 :=

{
t ∈ Q ri

8
(0) s.t. φ1(t) ⩾ K

 
Q ri

8
(0)
φ1(t) dL5

}

Tri,K,2 :=

{
t ∈ Q ri

8
(0) s.t. φ2(t) ⩾ K

 
Q ri

8
(0)
φ2(t) dL5

}
,

with

φ1(t) :=
∑
c∈Cri

ˆ
∂Qri (c+t)

|Ai,Λ − (Ai,Λ)Qri (c+t)
|2 dH 4 ∀ t ∈ Q ri

8
(0),

φ2(t) :=
∑
c∈Cri

ˆ
∂Qri (c+t)

|FAi,Λ
− (FAi,Λ

)Qri (c+t)
|2 dH 4 ∀ t ∈ Q ri

8
(0).

By integration on Tri,K,1 and Tri,K,2 we get

L5(Tri,K,1) ⩽
r5i
K

L5(Tri,K,2) ⩽
r5i
K
.

Moreover, for every t ∈ Q ri
8
(0)∖ (Tri,K,1 ∪ Tri,K,2) it holds that

ri
∑
c∈Cri

ˆ
∂Qri (c+t)

|Ai,Λ − (Ai,Λ)Qri (c+t)
|2 dH 4 < riK

 
Qri (0)

φ1 dL5 = K
Iri
r4i
, (4.5.5)

ri
∑
c∈Cri

ˆ
∂Qri (c+t)

|FAi,Λ
− (FAi,Λ

)Qri (c+t)
|2 dH 4 < riK

 
Qri (0)

φ2 dL5 = K
Jri
r4i
. (4.5.6)

Now, we notice that

L5(Tri,4,1 ∪ Tri,4,2) ⩽
r5i
2
,

which implies

L5(Tri,A) ⩾
r5i
2
> 0.

with Tri := T cri,4,1 ∩ T
c
ri,4,2

. Hence, we fix ti ∈ Tri . By (4.5.3)-(4.5.4) and (4.5.5)-(4.5.6), we have

lim
ri→0+

ri
∑
c∈Cri

ˆ
∂Qri (c+tri )

|Ai,Λ − (Ai,Λ)Qri (c+tri )
|2 dH 4 = 0,

lim
ri→0+

ri
∑
c∈Cri

ˆ
∂Qri (c+tri )

|FAi,Λ
− (FAi,Λ

)Qri (c+tri )
|2 dH 4 = 0.

The statement follows. This concludes the proof of Lemma 4.5.1.

Definition 4.5.1. Under the same notation that we have used in the previous Lemma 4.5.1, we
say that the collection of cubes Qri := {Qri(c+ ti)}c∈Cri

is a admissible cubic ri-grid relative to
Ai,Λ.
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Definition 4.5.2 (Good and bad cubes). Under the same notation that we have used in the
previous Lemma 4.5.1, given an admissible cubic ri-grid relative to Ai,Λ we say that Q ∈ Qri is
a Λ-good cube if all the following conditions hold:

(1)
1

r3i

ˆ
∂Q

|FAi,Λ
|2 dH 4 ⩽ r

1
2
i

ˆ
Q5

1(0)
|FAi,Λ

|2 dL5,

(2)
1

r3i

ˆ
∂Q

|Ai,Λ|2 dH 4 ⩽ r
1
2
i

ˆ
Q5

1(0)
|FAi,Λ

|2 dL5,

(3)
ˆ
∂Q

|Ai,Λ − (Ai,Λ)Q|2 dH 4 ⩽
1

ri

ˆ
Q
|Ai,Λ|2 dL5,

(4)
1

r4i

ˆ
∂Q

|Ai,Λ − (Ai,Λ)Q|2 dH 4 ⩽ Λ−1

ˆ
Q5

1(0)
|FAi,Λ

|2 dL5,

(5)
 
Q
|Ai,Λ|2 dL5 ⩽ Λ.

Otherwise, we say that that Q is a Λ-bad cube. We denote by Qg
ri,Λ

the set of all the Λ-good
cubes and Qb

ri,Λ
:= Qri ∖Qg

ri,Λ
.

Lemma 4.5.2. Under the same notation that we have used in the previous Lemma 4.5.1, let Qri

be a good ri-grid relative to Ai,Λ. We have

lim
i→+∞

∑
Q∈Qb

ri,Λ

ˆ
Q
|Ai,Λ|2 dL5 ⩽ C lim

i→+∞

ˆ
Ωi,Λ,Ai,Λ

|Ai,Λ|2 dL5,

where Ωi,Λ,Ai,Λ
⊂ Q5

1(0) is given by

Ωi,Λ,Ai,Λ
:=
⋃{

Q ∈ Qri s.t.
 
Q
|Ai,Λ|2 dL5 > Λ

}
.

Proof of Lemma 4.5.2. The proof is identical to the one of Lemma 4.3.2.

Remark 4.5.1. Notice that we have

ri

ˆ
Q∈Qb

ri,Λ

ˆ
∂Q

|Ai,Λ|2 dH 4 ⩽ ri
∑

Q∈Qri,Λ

ˆ
∂Q

|Ai,Λ − (Ai,Λ)Q|2 dH 4

+ ri
∑

Q∈Qb
ri,Λ

ˆ
∂Q

|(Ai,Λ)Q|2 dH 4

⩽ ri
∑

Q∈Qri,Λ

ˆ
∂Q

|Ai,Λ − (Ai,Λ)Q|2 dH 4 +
∑

Q∈Qb
ri,Λ

ˆ
Q
|Ai,Λ|2 dL5.

Thus, by (4.5.1) and by Lemma 4.5.2 we have

lim
i→+∞

ri

ˆ
Q∈Qb

ri,Λ

ˆ
∂Q

|Ai,Λ|2 dH 4 ⩽ C lim
i→+∞

ˆ
Ωi,Λ,Ai,Λ

|Ai,Λ|2 dL5,

where Ωi,Λ,Ai,Λ
⊂ Q5

1(0) is given as in Lemma 4.5.2.
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We now have all the tools that are needed to prove the following strong L2-approximation result
by smooth connections under controlled Morrey norm of their curvatures.

Proof of Theorem 4.5.1. We assume that εG > 0 is small enough so that we can apply The-
orem 4.4.1 to A. Hence, we find a sequence of admissible scales {εi}i∈N such that εi → 0+ as
i→ +∞ and a sequence {Ai,Λ}i∈N⊂L2(Q5

1(0))
satisfying (i), (ii) and (iii) in Theorem 4.4.1.

Let Qri be an admissible cubic ri-grid relative to Ai,Λ in the sense of Definition 4.5.1. Recall that
by definition ri ∈

(
(1− α)εi, (1 + α)εi

)
, for some fixed α ∈

(
0, 12
)

sufficiently small. We fix i ∈ N
big enough so that

Q 1
2
(0) ⊂

⋃
Q∈Qri

Q.

Step 1: construction of the approximating 1-forms.

Let Ni be the number of cubes in Qri . We first enumerate the family

Qri =
{
Q1, ..., QNi

}
in such a way that for every for every n ∈ {1, ..., Ni} we have

Ωni := int

( n⋃
k=1

Qk

)
.

satisfies ∅ ̸= Hn
i := ∂Ωni ∩ ∂Qn+1 ̸= ∂Qn+1 and Ωni is bi-Lipschitz equivalent to a 5-dimensional

ball, for every n = 1, ..., Ni.14

If εG > 0 is small enough, by 1. and 2. in Lemma 4.5.1 we have that ι∗∂QAi,Λ satisfies the
assumptions of Corollary 4.2.2 on ∂Q, for every Q ∈ Qri . Moreover, if Q ∈ Qri is Λ-good then
ι∗∂QAi,Λ satisfies the assumptions of Corollary 4.2.1 on ∂Q. For every k ∈ {1, ..., Ni} we denote by
AQk

∈ L5(Qk) the extension given by applying Corollary 4.2.1–(i) (if Qk is Λ-good) or Corollary
4.2.2–(i) (if Qk is Λ-bad) to ι∗∂Qk

Ai,Λ. Hence, for every k ∈ {1, ..., Ni} such that Qk is Λ-good
there exists gk ∈W 1,2(∂Qk, G) such that for every 4-dimensional face F of ∂Qk we have{

∥(ι∗∂Qk
Ai,Λ)

gk∥W 1,2(F ) ⩽ C
(
∥FAi,Λ

∥L2(∂Qk) + r−1
i ∥Ai,Λ∥L2(∂Qk)

)
ι∗FAQk

= (ι∗FAi,Λ)
gQk

(4.5.7)

and the estimates

∥FAQk
∥2
L

5
2 (Qk)

⩽ C(∥FAi,Λ
∥2L2(∂Qk)

+ r−2
i ∥Ai,Λ∥2L2(∂Qk)

∥Ai,Λ − (Ai,Λ)Qk
∥2L2(∂Qk)

(4.5.8)

+ r−4
i ∥Ai,Λ∥6L2(∂Qk)

)

∥AQk
− Ā∥2L2(Qk)

⩽ C
(
ri∥FAi,Λ

∥2L2(∂Qk)
+ r−1

i ∥Ai,Λ − (Ai,Λ)Qk
∥2L2(∂Qk)

+ r−3
i ∥Ai,Λ∥2L2(∂Qk)

)
(4.5.9)

14Notice that, by construction, Hi
n is always non-empty and bi-Lipschitz equivalent to a 4-dimensional closed ball.
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for every constant g-valued 1-form Ā on R5, where C > 0 is a constant depending only on G. On
the other hand, for every k ∈ {1, ..., Ni} such that Qk is Λ-bad there exists gk ∈ W 1,2(∂Qk, G)

such that for every 4-dimensional face F of ∂Qk we have{
∥(ι∗∂Qk

Ai,Λ)
gk∥W 1,2(F ) ⩽ C∥FAi,Λ

∥L2(∂Qk)

ι∗FAQk
= (ι∗FAi,Λ)

gQk ,
(4.5.10)

and the estimate

∥FAQk
∥2
L

5
2 (Qk)

⩽ C∥FAi,Λ
∥2L2(∂Qk)

, (4.5.11)

where C > 0 is again a constant depending only on G. Lastly, for every k = 1, ..., Ni, let
g̃k ∈W 1,2(Qk, G) be the extension of gk given by Corollary 4.2.1-(ii), if Qk is Λ-good, or Corollary
4.2.2-(ii), if Qk is Λ-bad.

In order to construct the approximating 1-forms, we proceed by induction on n = 1, ..., Ni. In par-
ticular, for every n = 1, ..., Ni we build a g-valued 1-form Ãni,Λ ∈ L5,∞(Ωni ) with FÃn

i,Λ
∈ L

5
2
,∞(Ωni )

such that there exists a gauge transformation σn ∈W 1,2(Ωni , G) ∩W 1,2(∂Ωni , G) satisfying

ι∗∂Ωn
i
Ãni,Λ = (ι∗∂Ωn

i
Ai,Λ)

σn ∈ L4(∂Ωni )

Base of the induction. At the initial step n = 1, we have Ω1
i = Q1 and we set Ã0

i,Λ := AQ1 ∈
L5(Ω1

i ). By (4.5.8) (if Q1 is Λ-good) or (4.5.11) (if Q1 is Λ-bad) we get FÃ1
i,Λ

∈ L
5
2 (Ω1

i ). Let

σ1 := g̃1 ∈W 1,2(Ω1
i , G) ∩W 1,2(∂Ω1

i , G),

we have

ι∗∂Ω1
i
Ã1
i,Λ = ι∗∂Ω1

i
AQ1 = (ι∗∂Ω1

i
Ai,Λ)

g1 = (ι∗∂Ω1
i
Ai,Λ)

σ1 .

Hence, we have proved our claim for n = 1.

Induction step. Let ηn := g−1
n σn−1 ∈ W 1,4(Hn−1

i , G) and notice that, by the inductive assump-
tion, we have (

(ι∗
Hn−1

i
Ai,Λ)

gn
)ηn = (ι∗

Hn−1
i

Ai,Λ)
σn−1 = ι∗

Hn−1
i

Ãn−1
i,Λ ∈ L4(Hn−1

i ). (4.5.12)

Hence, we have

dηn = ηn
(
ι∗
Hn−1

i
Ai,Λ

)gn −
(
ι∗
Hn−1

i
Ãn−1
i,Λ

)
ηn ∈ L4(Hn−1

i ). (4.5.13)

Thus, by Corollary 4.2.3, if εG > 0 is small enough we can find an extension hn ∈W 1,(5,∞)(Qn, G)

of ηn. Let Ãni,Λ ∈ L5,∞(Ωni ) and σn ∈W 1,2(Ωni , G) ∩W 1,2(∂Ωni , G) be given by

Ãni,Λ :=

{
Ãn−1
i,Λ on Ωn−1

i

(AQn)
hn on Qn

(4.5.14)
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and

σn :=

{
σn−1 on Ωn−1

i

g̃nhn on Qn.
(4.5.15)

By construction and by Lemma 4.4.2, we have FÃn
i,Λ

∈ L
5
2
,∞(Ωni ). Moreover, since ∂Ωni ∖∂Ω

n−1
i ⊂

∂Qn and we have

ι∗Hn
i
Ãni,Λ = ι∗Hn

i
(AhnQn

) = (ι∗Hn
i
Ai,Λ)

gnhn = (ι∗Hn
i
Ai,Λ)

σn ,

we conclude that

ι∗∂Ωn
i
Ãni,Λ = (ι∗∂Ωn

i
Ai,Λ)

σn ∈ L4(∂Ωni ).

This concludes the proof of the induction step and of our claim at once.

Now, to lighten the notation let Ωi := ΩNi
i and define

Ãi,Λ := ÃNi
i,Λ ∈ L5,∞(Ωi).

σi,Λ := σNi ∈W 1,2(Ωi, G).

Step 2: Morrey norm control on the curvatures.

Note that, by construction, we have Q 1
2
(0) ⊂ Ωi. Fix any point x ∈ Q 1

2
(0) and let r ∈(

0,dist(x, ∂Q 1
2
(0))

)
. Assume that r ⩽ εi. Then, Qr(x) intersects at most Ñ cubes in Qs

ri ,

say Q1, ..., QÑ , with Ñ ∈ N depending only on the choice of the cubic cover. Hence, by Hölder
inequality, by the estimates (4.2.65), (4.2.95) for each AQ, by the property (1) of Λ-good cubes
and by the property (i) of Ai,Λ given by Theorem 4.4.1, we get

1

r

ˆ
Qr(x)

|FÃi,Λ
|2 dL5 ⩽ ∥FÃi,Λ

∥2
L

5
2 (Qr(x))

⩽ C
Ñ∑
ℓ=1

∥FÃi,Λ
∥2
L

5
2 (Qℓ)

= C
Ñ∑
i=1

∥FAQℓ
∥2
L

5
2 (Qℓ)

⩽ C
∑

Qℓ∈Qg
ri,Λ

(
∥FAi,Λ

∥2L2(∂Qℓ)
+ ε−2

i ∥Ai,Λ∥2L2(∂Qℓ)

)
+

∑
Qℓ∈Qb

ri,Λ

∥FAi,Λ
∥2L2(∂Qℓ)

< C|FAi,Λ
|2M0

2,2(Q
5
1(0))

⩽ C|FA|2M0
2,2(Q

5
1(0))

,

for some constant C > 0 depending only on G.
Assume now that εi < r < 1. Then there exists a universal constant k > 1 such that Qr(x) can
be covered with a finite number of cubes {Qℓ}ℓ=1,...,Ni,x,r

in Qs
ri such that

Ni,x,r⋃
ℓ=1

Q2εi(cQℓ
) ⊂ Qkr(x).
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Notice that now the number of cubes Ni,x,r may depend on i, x and r. Then, by the estimates
(4.2.66) and (4.2.96) we obtain

ˆ
Qr(x)

|FÃi,Λ
|2 dL5 ⩽

Ni,x,r∑
ℓ=1

ˆ
Qℓ

|FÃi,Λ
|2 dL5 =

Ni,x,r∑
ℓ=1

ˆ
Qℓ

|FAQℓ
|2 dL5

⩽ C
∑

Qℓ∈Qg
ri,Λ

(
ε−4
i

ˆ
∂Qℓ

|Ai,Λ − (Ai,Λ)Qℓ
|2 dH 4

)(
εi

ˆ
∂Qℓ

|Ai,Λ|2 dH 4

)

+ εi

(
ε−2
i

ˆ
∂Qℓ

|Ai,Λ|2 dH 4

)3)
+ Cεi

Ni,x,r∑
ℓ=1

ˆ
∂Qℓ

|FAi,Λ
|2 dH 4,

for some constant C > 0 depending only on G. By property (4) in Definition 4.5.2 and by the
property (i) of Ai,Λ given by Theorem 4.4.1 we get

∑
Qℓ∈Qg

ri,Λ

((
ε−4
i

ˆ
∂Qℓ

|Ai,Λ − (Ai,Λ)Qℓ
|2 dH 4

)(
εi

ˆ
∂Qℓ

|Ai,Λ|2 dH 4

)

⩽ CΛ−1[FAi,Λ
]2M0

2,2(Q
5
1(0))

∑
Qℓ∈Qg

ri,Λ

ˆ
Q2εi

(cQℓ
)
|Ai,Λ|2 dL5,

⩽ CΛ−1|FA|2M0
2,2(Q

5
1(0))

∑
Qℓ∈Qg

εi,Λ

ˆ
Q2εi

(cQℓ
)
|Ai,Λ|2 dL5,

for some constant C > 0 depending only on G. By property (5) in Definition 4.5.2 and by our
choice of k > 0, we get∑

Qℓ∈Qg
ri,Λ

ˆ
Q2εi

(cQℓ
)
|Ai,Λ|2 dL5 ⩽ CΛ

∑
Qℓ∈Qg

ri,Λ

(2εi)
5 ⩽ CΛ(kr)5,

for some constant C > 0 depending only on G. Hence, since by assumption r ∈ (0, 1), we have
obtained the estimate∑

Qℓ∈Qg
ri,Λ

((
ε−4
i

ˆ
∂Qℓ

|Ai,Λ − (Ai,Λ)Qℓ
|2 dH 4

)(
εi

ˆ
∂Qℓ

|Ai,Λ|2 dH 4

)
⩽ Ck5r|FA|2M0

2,2(Q
5
1(0))

,

for some constant C > 0 depending only on G. By property (5) in Definition 4.5.2, provided
i ⩾ i0 is large enough so that εi < Λ−3|FA|2M0

2,2(Q
5
1(0))

we obtain

∑
Qℓ∈Qg

εi,Λ

εi

(
ε−2
i

ˆ
∂Qℓ

|Ai,Λ|2 dH 4

)3

⩽
∑

Qℓ∈Qg
ri,Λ

εi

(
ε−3
i

ˆ
Q2εi

(cQℓ
)
|Ai,Λ|2 dL5

)3

⩽
∑

Qℓ∈Qg
εi,Λ

εi(ε
−3
i Λε5i )

3 ⩽ ε2iΛ
3

∑
Qℓ∈Qg

εi,Λ

ε5i

⩽ Cε2iΛ
3 ⩽ Cr|FA|2M0

2,2(Q
5
1(0))

,
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for some constant C > 0 depending only on G. By Lemma 4.5.1–(ii) and by the property (i) of
Ai,Λ given by Theorem 4.4.1 we get

εi

Ni,xr∑
ℓ=1

ˆ
∂Qℓ

|FAi,Λ
|2 dH 4 ⩽ C

Ni,x,r∑
ℓ=1

ˆ
Q2εi

(cQℓ
)
|FAi,Λ

|2 dL5

⩽ C

ˆ
Qkr(x)

|FAi,Λ
|2 dL5 ⩽ Ckr|FAi,Λ

|2M0
2,2(Q

5
1(0))

⩽ Ckr|FA|2M0
2,2(Q

5
1(0))

,

for some constant C > 0 depending only on the choice of the cubic cover. Hence, provided i ⩾ i0
i sufficiently large we get

1

r

ˆ
Qr(x)

|FÃi,Λ
|2 dL5 ⩽ C|FA|2M0

2,2(Q
5
1(0))

, (4.5.16)

for some constant C > 0 depending only on G.

Step 3: strong L2-convergence of the connections.

Notice that, by construction, we have

∥∥∥Ãσ−1
i,Λ

i,Λ −A
∥∥∥2
L2(Ωi)

=

Ni∑
n=1

∥∥∥Ag̃−1
n

Qn
−A

∥∥∥2
L2(Qn)

⩽ C

( Ni∑
n=1

∥∥∥Ag̃−1
n

Qn
−Ai,Λ

∥∥∥2
L2(Qn)

+

Ni∑
n=1

∥∥Ai,Λ −A
∥∥2
L2(Qn)

)

⩽ C

( Ni∑
n=1

∥∥∥Ag̃−1
n

Qn
−Ai,Λ

∥∥∥2
L2(Qn)

+
∥∥Ai,Λ −A

∥∥2
L2(Q1(0))

)
for some constant C > 0 depending on G and A. By the same procedure that we have used in
the proof of Theorem 4.4.1, we get

lim
i→+∞

Ni∑
n=1

∥∥∥Ag̃−1
n

Qn
−Ai,Λ

∥∥∥
L2(Qn)

⩽ C lim
i→+∞

ˆ
Ωi,Λ,Ai,Λ

|Ai,Λ|2 dL5,

where C > 0 is a universal constant depending only on G and Ωi,Λ,Ai,Λ
⊂ Q5

1(0) is given as in
Lemma 4.5.2. Now we notice that

L5(Ωi,Λ,Ai,Λ
) = r5i card

({
Q ∈ Qri s.t.

 
Q
|Ai,Λ|2 dx5 > Λ

})
⩽ r5i card

({
Q ∈ Qri s.t.

 
Q
|A−Ai,Λ|2 dx5 +

 
Q
|A|2 dL5 > Λ

})
⩽
C

Λ

and, recalling the definition of Ωi,Λ,A from Lemma 4.3.2, we have

L5(Ωi,Λ,A) ⩽
C

Λ
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for every given i, where C > 0 is independent on i. Thus, by Theorem 4.4.1-(iii), we get that for
every j ∈ N there exists i(j) > 0 big enough so that be letting Ãj := Ãi(j),j and σj := σ−1

i(j),j ∈
W 1,2(Ωi(j)) we have∥∥∥Ãσ−1

j

j −Ai(j),j

∥∥∥2
L2(Ωi(j))

⩽ C

ˆ
Ωi(j),j,Ai(j),j

|Ai(j),j |2 dL5

⩽ C

( ˆ
Ωi(j),j,Ai(j),j

|A|2 dL5 +

ˆ
Q5

1(0)
|Ai(j),j −A|2 dL5

)
⩽ C

ˆ
Ωi(j),j,Ai(j),j

|A|2 dL5 +

ˆ
Ωi(j),j,A

|A|2 dL5,

where C > 0 doesn’t depend on j. Finally, we get∥∥∥Ãσ−1
j

j −A
∥∥∥2
L2(Ωi(j))

⩽ C

ˆ
Ωi(j),j,Ai(j),j

|A|2 dL5 → 0

as j → +∞.

Notice that, by assumption, Ωi(j) ⊃ Q 1
2
(0) for every j ∈ N. Since π2(G) = 0, we can find a

sequence {σ̃j}j∈N ⊂ C∞(Q 1
2
(0)
)

such that

∥σ̃j − σj∥W 1,2(Q 1
2
(0)) → 0

and σ̃j − σj → 0 pointwise L5-a.e. on Q 1
2
(0) as j → +∞. Moreover, since we have the improved

integrability properties A ∈ L5,∞(Q 1
2
(0)) and FA ∈ L

5
2
,∞(Q 1

2
(0)), by standard convolution with

a smooth mollifying kernel we can find a sequence {Âj}j∈N ∈ C∞
c

(
Q 1

2
(0)
)

such that

|FÂj
|2M0

2,2(Q 1
2
(0)) ⩽ 2|FÃj

|2M0
2,2(Q 1

2
(0)) ⩽ 2C|FA|2M0

2,2(Q
5
1(0))

∀ j ∈ N,

∥Âj − Ãj∥L2(Q 1
2
(0)) → 0

and Âj − Ãj → 0 pointwise L5-a.e. on Q 1
2
(0) as j → +∞. Now define

Aj := Â
σ̃−1
j

j ∈ C∞(Q 1
2
(0)
)

∀ j ∈ N.

By construction and Ad-invariance of the norm on g, we have

|FÃj
|2M0

2,2(Q 1
2
(0)) ⩽ 2|FÂj

|2M0
2,2(Q 1

2
(0)) ⩽ 2C|FA|2M0

2,2(Q
5
1(0))

∀ j ∈ N.

By construction and dominated convergence, we have

∥Aj −A∥L2(Q 1
2
(0)) ⩽

∥∥Aj − Ã
σ−1
j

j

∥∥
L2(Q 1

2
(0))

+
∥∥Ãσ−1

j

j −A
∥∥
L2(Q 1

2
(0))

→ 0

as j → +∞. This concludes the proof of Theorem 4.5.1.
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4.6. Partial regularity for stationary weak Yang–Mills fields

In this section we prove our main result about the partial regularity of stationary weak Yang–Mills
fields on the unit cube Q5

1(0). In order to get that, we first use Theorem 4.5.1 and the main result
in [57] to obtain the following Coulomb gauge extraction theorem for weak connections whose
curvature has sufficiently small Morrey norm.

Theorem 4.6.1 (Coulomb gauge extraction under small Morrey norm assumption). Let G be
a compact matrix Lie group. There exists εG ∈ (0, 1) such that for every weak connection A ∈
aG(Q

5
1(0)) satisfying

|FA|2M0
2,2(Q

5
1(0))

< εG

there exist g ∈W 1,2(Q 1
2
(0), G) such that Ag ∈ (M1

2,2 ∩M0
4,1)(Q 1

2
(0)) satisfies


d∗Ag = 0,

ι∗
∂Q5

1(0)
(∗Ag) = 0,

|∇Ag|M0
2,2(Q 1

2
(0)) + |Ag|M0

4,1(Q 1
2
(0)) ⩽ CG|FA|M0

2,2(Q 1
2
(0)),

for some constant CG > 0 depending only on G.

Proof of Theorem 4.6.1. By Theorem 4.5.1, if εG > 0 is small enough we can find a sequence
of g-valued 1-forms {Ai}i∈N ⊂ C∞

c (Q 1
2
(0)) such that

1. for every i ∈ N we have

|FAi |2M0
2,2(Q 1

2
(0)) ⩽ KG|FA|2M0

2,2(Q
5
1(0))

.

for some constant KG > 0 depending on G;
2. ∥Ai −A

∥∥
L2(Q 1

2
(0))

→ 0 as i→ +∞.

By choosing εG > 0 possibly smaller, we can make sure that
√
KGεG is smaller than the constant

given by [57, Theorem 1.3] and we can apply such statement to conclude that for every i ∈ N
there exists a gauge gi such that d∗Agii = 0 on Q 1

2
(0), ι∗

∂Q5
1(0)

(∗Ag) = 0 and

|∇Agii |M0
2,2(Q 1

2
(0)) + |Agii |M0

4,1(Q 1
2
(0)) ⩽ CG|FAi |M0

2,2(Q 1
2
(0)), (4.6.1)

for some constant CG > 0 depending only on G. By standard Sobolev embedding theorems, there
exists a subsequence (not relabeled) such that Agii ⇀ Ã ∈M0

4,1 weakly in L4 and ∇Agii ⇀ ∇Ã ∈
M0

2,2 weakly in L2. Clearly, we have d∗Ã = 0. Notice that

dgi = giA
gi
i −Aigi.

By (4.6.1) and 1, we get that {gi}i∈N is uniformly bounded in W 1,2(Q 1
2
(0), G). Hence, there

exists a subsequence (not relabeled) such that gi ⇀ g weakly in W 1,2. By Sobolev embedding
theorems, we have gi → g strongly in L2. Thus, since Ai → A strongly in L2 and G is bounded
we conclude that Ag = Ã on Q 1

2
(0). This concludes the proof of Theorem 4.6.1.
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Definition 4.6.1 (Weak Yang–Mills connections). Let G be a compact matrix Lie group. We
say that A ∈ aG(Q

5
1(0)) is weak Yang–Mills connection on Q5

1(0) if

d∗AFA = 0 distrubutionally on Q5
1(0),

i.e. ˆ
Q5

1(0)
FA · dAφ = 0 for every φ ∈ C∞

c (∧1Q5
1(0)⊗ g).

Definition 4.6.2 (Stationary weak Yang–Mills connections). Let G be a compact matrix Lie
group. We say that a weak Yang–Mills connection A ∈ aG(Q

5
1(0)) on Q5

1(0) is stationary if

d

dt

∣∣∣∣
t=0

YM(Φ∗
tA) = 0, (4.6.2)

for every smooth 1-parameter group of diffeomorphisms Φt of Q5
1(0) with compact support.

Remark 4.6.1. Note that if A is a stationary weak Yang–Mills connection and Ã ∈ W 1,2 ∩ L4

is another g-valued 1-form on Q5
1(0) such that Ã = Ag for some g ∈ W 1,2(Q5

1(0), G), then Ã

is a stationary weak Yang–Mills connection as well. The proof of such fact follows by direct
computation exploiting the gauge invariance of the Yang–Mills functional.

If A is a stationary Yang–Mills connection, it can be shown that the following monotonicity
property holds true: for every given x ∈ Q5

1(0) the function

(
0,dist(x, ∂Q5

1(0)
)
∋ ρ→ ecΛρ

ρ

ˆ
Qρ(x)

|FA|2 dL5 (4.6.3)

is non-decreasing, where c > 0 is a universal constant and Λ depends on Q1(x). In particular, we
have

|FA|M0
2,2(Q

5
1(0))

⩽ C∥FA∥L2(Q5
1(0))

,

for some constant C > 0 independent on A. Thanks to (4.6.3) and to Theorem 4.6.1, we can derive
the following ε-regularity statement by using the same arguments presented in [57, Section 4].
This is a crucial initial step in building a regularity theory for YM-energy minimizers, following
the same path that R. Schoen and K. Uhlenbeck walked in their work on energy-minimizing
harmonic maps in general supercritical dimension n > 2 (as documented in [79]).

Theorem 4.6.2 (ε-regularity). Let G be a compact matrix Lie group. There exists εG ∈ (0, 1)

such that for every stationary weak Yang–Mills A ∈ aG(Q
5
1(0)) satisfying

YM(A) =

ˆ
Q5

1(0)
|FA|2 dL5 < εG

there exist g ∈W 1,2(Q 1
2
(0), G) such that Ag ∈ C∞(Q 1

2
(0)).

Standard covering arguments (see e.g. [39, Proposition 9.21]) together with Theorem 4.6.2 and
(4.6.3) give the following bound on the singular set of stationary weak Yang–Mills connections,
which is the main result of the present paper.
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Theorem 4.6.3. Let G be a compact matrix Lie group and let A ∈ aG(Q
5
1(0)) be a stationary

weak Yang–Mills connection on Q5
1(0). Then

H 1(Sing(A)) = 0,

where H 1 is the 1-dimensional Hausdorff measure on Q5
1(0) and Sing(A) ⊂ Q5

1(0) is the singular
set of A, given by Sing(A) := Q5

1(0)∖ Reg(A) where

Reg(A) := {x ∈ Q5
1(0) s.t. ∃ρ > 0, g ∈W 1,2(Bρ(x), G) s.t. Ag ∈ C∞(Bρ(x))}.

4.A. Adapted Coulomb gauge extraction statements in critical
dimension

Proposition 4.A.1. Let G be any compact matrix Lie group. There exist constants εG, CG > 0

depending only on G such that for every g-valued 1-form A ∈W 1,2(S4) on S4 such that
ˆ
S4
|FA|2 dH 4 < εG

we can find a gauge g ∈W 1,4(S4, G) satisfying Ag ∈W 1,2(S4), d∗Ag = 0 and

∥Ag∥W 1,2(S4) ⩽ CG∥FA∥L2(S4)

Proof of Proposition 4.A.1. Let π be the stereographic projection from S4 ∖ {N} into R4

which is sending the north pole N of S4 to infinity and which is conformally invariant. Introduce

D := (π−1)∗A

Because of conformal invariance of the Hodge operator on 2-forms one has
ˆ
R4

|FD|2dL4 = −
ˆ
R4

tr(FD ∧ ∗FD) = −
ˆ
R4

(π−1)∗(tr(FA ∧ ∗FA)

= −
ˆ
S4
tr(FA ∧ ∗FA) =

ˆ
S4
|FA|2dH 4 < ε0.

For every R > 0, on BR(0) one chooses the Uhlenbeck Coulomb gauge DR := (D)gR (see [90])
that satisfies

d∗DR = 0

and

∥DR∥L4(BR(0)) + ∥dDR∥L2(BR(0)) ⩽ CG ∥FDR
∥L2(BR(0)) ⩽ CG ∥FA∥L2(S4).

What is crucial here is that all the norms involved are scaling invariant and then the constant
CG > 0 is independent of R.
Consider now on π−1(BR(0)) = S4∖BρR(N) where ρR ≃ R/(1+R2) → 0 as R→ +∞ the 1-form

π∗(DR) = AhR
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where hR := gR ◦π. Using the conformal invariance of the L4 norms on 1-forms as well as the L2

norms on 2-forms one has

∥AhR∥L4(π−1(BR(0)) + ∥d(AhR)∥L2(π−1(BR(0)) ⩽ CG ∥FA∥L2(S4) (4.A.1)

There exists obviously a sequence Rk → +∞ such that for some Ω ∈ L4
loc(S4 ∖ {N}) we have

AhRk ⇀ Ω weakly in L4
loc(S4 ∖ {N})

and

hRk
⇀ h∞ weakly in W 1,4

loc (S
4 ∖ {N}).

Moreover

d(AhRk )⇀ dΩ weakly in L2
loc(S4 ∖ {N})

By (4.A.1) we have in particular that

∥Ω∥L4(S4) ⩽ CG∥FA∥L2(S4) and Ω = Ah∞ ∈ L4(S4) (4.A.2)

Following Uhlenbeck continuity type argument introduced in [70] and adapted in [55] to the
4-dimensional case we construct g ∈W 1,4(S4, G) such that

d∗(g−1dg + g−1Ωg) = 0 and ∥dg∥L4(S4) ⩽ CG ∥Ω∥L4(S4).

Hence we have the existence of g ∈W 1,4(S4, G) such that (Ah∞)g = Ωg satisfies

d∗((Ah∞)g) = 0 and ∥(Ah∞)g∥L4(S4) ⩽ CG∥FA∥L2(S4)

which gives

∥(Ah∞)g∥W 1,2(S4) ⩽ CG∥FA∥L2(S4)

This proves the existence of a controlled global Coulomb gauge g̃ := h∞g ∈ W 1,4(S4, G) under
small curvature assumption. This concludes the proof of Proposition 4.A.1.

We recall here the main statement that we will use to extract Coulomb gauges in critical dimen-
sion. This is an adaptation of the main Theorem in [90].

Proposition 4.A.2. Let G be a compact matrix Lie group. There exist constants εG, CG > 0

depending only on G such that for every g-valued 1-form A ∈ L4(B4) on B4 such that

∥FA∥L2(S4) < εG

we can find a gauge g ∈W 1,4(B4, G) satisfying Ag ∈W 1,2(B4), d∗Ag = 0 and

∥Ag∥W 1,2(B4) ⩽ CG∥FA∥L2(B4)
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Proof of Proposition 4.A.2. Fix any 4 < p < 8. For every ε, C > 0, we define

X := {A ∈ Lp(B4,∧1B4 ⊗ g) s.t. dA ∈ L
p
2 (B4,∧2B4 ⊗ g)}

U ε := {A ∈ X with ∥FA∥L2(B4) < ε}

V ε
C := {A ∈ U ε : ∃ g ∈W 1,p

idG
(B4, G) : d∗Ag = 0, ∥Ag∥

W 1,
q
2 (B4)

⩽ C∥FA∥L q
2 (B4)

, q = 4, p}.

On X, we consider the topology induced by the following norm:

∥A∥X := ∥A∥Lp(B4) + ∥dA∥
L

p
2 (B4)

, ∀A ∈ X.

Notice that X is a Banach vector space with respect to such norm.

Claim. We claim that there exist ε, C > 0 such that V ε
C = U ε. In order to achieve such result,

we prove separately the following facts.
• U ε is path-connected. Notice that 0 ∈ U ε. Given any A ∈ U ε, we define

A(t) := tA(t · ), ∀ t ∈ [0, 1].

Notice that A(0) = 0 and A(1) = A. Moreover,

FA(t) = dA(t) +A(t) ∧A(t) = t2dA(t · ) + t2A(t · ) ∧A(t · ) = t2FA(t · )

which implies that
ˆ
B4

|FA(t)|
p
2 dL4 =

ˆ
B4

tp|FA(t · )|
p
2 dL4 = tp−4

ˆ
tB4

|FA|
p
2 dL4

⩽ tp−4

ˆ
B4

|FA|
p
2 dL4 < +∞ (4.A.3)

and
ˆ
B4

|FA(t)|2 dL4 =

ˆ
B4

t4|FA(t · )|2 dL4 =

ˆ
tB4

|FA|2 dL4 ⩽
ˆ
B4

|FA|2 dL4 < ε.

Hence, A(t) ∈ U ε for every t ∈ [0, 1]. At the same time we have
ˆ
B4

|A(t)|p dL4 =

ˆ
B4

tp|A(t · )|4 dL4 ⩽ tp−4

ˆ
B4

|A|4 dL4 → 0

as t→ 0+. Hence, A(t) → 0 in Lp(B4). As a byproduct, we have A(t)∧A(t) → 0 in L
p
2 (B4).

Moreover, by (4.A.3) we have FA(t) → 0 in L
p
2 (B4). This implies dA(t) → 0 in L

p
2 (B4).

It follows that [0, 1] ∋ t→ A(t) is a continuous path in U ε joining A and 0.
• For every ε, C > 0, V ε

C is closed in U ε. Let {Ak}k∈N ⊂ V ε
C be such that Ak → A ∈ Uε.

We want to show that A ∈ V ε
C .

Notice that, by assumption, we have FAk
→ FA strongly in L

p
2 (B4). Moreover, for every

k ∈ N there exists gk ∈W 1,p
idG

(B4, G) such that d∗Agkk = 0 and

∥Agkk ∥
W 1,

q
2 (B4)

⩽ C∥FAk
∥L2(B4) ⩽ Cε
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for q = p, 4. Since {Agkk }k∈N is bounded in W 1, p
2 , there exists a subsequence (not relabeled)

such that Agkk ⇀ A∞ in W 1, p
2 . Hence, for q = p, 4, we have

∥A∞∥
W 1,

q
2 (B4)

⩽ lim inf
k→+∞

∥Agkk ∥
W 1,

q
2 (B4)

⩽ C lim
k→+∞

∥FAk
∥
L

q
2 (B4)

= C∥FA∥L q
2 (B4)

.

Notice that d∗A∞ = 0 and that, by Sobolev embedding theorem, we have Agkk → A∞
strongly in Lp. Since

dgk = gkA
gk
k −Akgk, (4.A.4)

we get that {gk}k∈N is bounded in W 1,p
idG

(B4, G). Thus, there exists a subsequence (not
relabeled) such that gk ⇀ g in W 1,p

idG
(B4, G). This is enough to pass to the limit in (4.A.4)

and we get A∞ = Ag. Since g is a gauge satisfying all the required properties for A, we
conclude that A ∈ V ε

C .
• For some choice of ε, C > 0, V ε

C is open in U ε. Let A ∈ V ε
C . It is clear that if we find an

open neighborhood of its Coulomb gauge Ag for the topology of X in V ε
C , then A posses

also such a neighborhood. So we can assume right away that d∗A = 0 and

∥A∥
W 1,

q
2 (B4)

⩽ C∥FA∥L q
2 (B4)

< Cε.

Notice that, in such a way, automatically we have A ∈W 1, p
2 (B4).

Y :=

{
U ∈W 1,p(B4, g) :

ˆ
B4

U dL4 = 0

}
. (4.A.5)

Z :=

{
(f, α) ∈W−1,p(B4, g)×W

1− 1
p
,p
(∂B4,∧3T ∗∂B4 ⊗ g) :

ˆ
Bn

f dL4 = −
ˆ
∂B4

α

}
.

(4.A.6)

Notice that Y and Z are Banach spaces, as they are closed subspaces of W 1,p(B4, g) and of
the product W−1,p(Bn, g)×W

− 1
p
,p
(∂B4,∧3T ∗∂B4 ⊗ g) respectively. We introduce the map

FA : X × Y → Z

given by

FA(ω,U) :=
(
d∗
(
(A+ ω)exp(U)

)
, ι∗∂Bn

(
∗(A+ ω)exp(U)

))
By direct computation we can show that FA is a C1-map between Banach spaces. The
partial derivative ∂UFA(0, 0) : Y → Z is the following linear and continuous operator
between Banach spaces:

∂UFA(0, 0)[V ] =
(
∆V + d∗(AV − V A), ∂rV

)
=
(
∆V + d∗([A, V ]), ∂rV

)
, ∀V ∈ Y.

In order to apply the implicit function theorem to FA we need to show that ∂UFA(0, 0)

is invertible. First we show that it is injective. Indeed, by standard Lp-theory for the
Laplacian and since A is in a controlled Coulomb gauge, for every V ∈ Y we get

∥V ∥Y ⩽ C̃
(
∥∆V ∥W−1,p(B4) + ∥∂rV ∥

W
− 1

p ,p
(∂B4)

)
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⩽ C̃
(
∥∂UFA(0, 0)[V ]∥W−1,p(B4) + ∥d∗([A, V ])∥W−1,p(B4)

)
⩽ C̃

(
∥∂UFA(0, 0)[V ]∥W−1,p(B4) + ∥[A, V ]∥Lp(B4)

)
⩽ C̃

(
∥∂UFA(0, 0)[V ]∥W−1,p(B4) + ∥A∥Lp(B4)∥V ∥L∞(B4)

)
⩽ C̃

(
∥∂UFA(0, 0)[V ]∥

L
p
2 (B4)

+ Cε∥V ∥W 1,p(B4)

)
,

for some constant C̃ > 0 which just depends on G. By choosing ε, C > 0 in such a way that
Cε < 1

2C̃
, we obtain

∥V ∥Y ⩽ 2C̃∥∂UFA(0, 0)[V ]∥W−1,p(B4).

which implies that ∂UFA(0, 0) has trivial kernel. Classical Calderon-Zygmund theory as-
serts that the operator L0 : Y → Z given by

L0(V ) := ∆V, ∀V ∈ Y

is invertible and therefore it has zero index. For every t ∈ [0, 1] we define the operator
Lt : Y → Z by

Lt(V ) := ∆V − t(∗[∗A, dV ]), ∀V ∈ Y.

and we notice that [0, 1] ∋ t→ Lt is a continuous path of bounded operators joining L0 and
L1 = ∂UFA(0, 0). By continuity of the Fredholm index, we conclude that ∂UFA(0, 0) has
zero index. This, together with ker

(
∂UFA(0, 0)

)
= 0, implies that ∂UFA(0, 0) is invertible.

Hence, we can apply the implicit function theorem in order to get that there exist an open
neighbourhood O of 0 in Y and δ > 0 such that for every ω ∈ X such that ∥ω∥X < δ there
exists Uω ∈ O such that

0 = FA(ω,Uω) = d∗
(
(A+ ω)gω

)
,

where we have set gω := exp(Uω) ∈W 1,p(B4, G). We just need to establish the bounds

∥(A+ ω)gω∥
L

q
2 (B4)

⩽ C∥FA+ω∥L q
2 (B4)

for q = 4, p. Notice that, by triangular inequality and Sobolev embedding theorem, we get

∥(A+ ω)gω∥
W 1,

q
2 (B4)

= ∥(A+ ω)gω∥
L

q
2 (B4)

+ ∥d((A+ ω)gω)∥
L

q
2 (B4)

⩽ Ĉ
(
∥FA+ω∥L q

2 (B4)
+ ∥(A+ ω)gω∥2Lq(B4)

)
⩽ Ĉ

(
∥FA+ω∥L q

2 (B4)
+ ∥(A+ ω)gω∥Lq(B4)∥(A+ ω)gω∥

W 1,
q
2 (B4)

)
.

for some constant Ĉ > 0 depending only on G. Now we see that

∥(A+ ω)gω∥Lq(B4) ⩽ K∥A∥Lq(B4) +K
(
∥ω∥Lq(B4) + ∥dgω∥Lq(B4)

)
⩽ K∥A∥

W 1,
q
2 (B4)

+K
(
∥ω∥Lq(B4) + ∥dgω∥Lq(B4)

)
,
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where again K > 0 depends only on G. Notice that by possibly reducing δ > 0 and the
size of the neighbourhood O we bring the quantity ∥ω∥Lq(B4) + ∥dgω∥Lq(B4) to be arbitrary
small. Then, we choose such parameters possibly depending on A in such a way that

∥ω∥Lq(B4) + ∥dgω∥Lq(B4) ⩽ ∥A∥
W 1,

q
2 (B4)

which implies

∥(A+ ω)gω∥Lq(B4) ⩽ 2K∥A∥
W 1,

q
2 (B4)

⩽ 2KCε

and finally

∥(A+ ω)gω∥
W 1,

q
2 (B4)

⩽ Ĉ∥FA+ω∥L q
2 (B4)

+ 2ĈKCε∥(A+ ω)gω∥
W 1,

q
2 (B4)

)
.

Assuming that ε, C > 0 are such that 2ĈKCε ⩽ 1
2 and C ⩾ 2Ĉ we get

∥(A+ ω)gω∥
W 1,

q
2 (B4)

⩽ C∥FA+ω∥L q
2 (B4)

and it follows that

BX
δ (A) :=

{
A+ ω : ∥ω∥X < δ

}
⊂ V ε

C .

This concludes the proof of the openness of V ε
C in Uε and our claim follows.

Now that the previous claim is proved, we proceed by approximation in the following way. Let A
satisfy the hypothesis of the statement and let {Ak}k∈N ⊂ C∞

c (B4) be such that Ak → A strongly
in L4 and dAk → dA strongly in L2. Hence, we have that FAk

→ FA strongly in L2 and, for
k ∈ N large enough, we get ˆ

B4

|FAk
|2 dL4 < ε.

Hence, for k ∈ N large enough we have Ak ∈ U ε. We choose ε, C > 0 so that V ε
C = U ε. Thus,

we get that for every k ∈ N large enough there exists gk ∈W 1,p(B4, G) such that d∗Agkk = 0 and

∥Agkk ∥
W 1,

q
2 (B4)

⩽ C∥FAk
∥
L

q
2 (B4)

for q = 4, p. Hence we find a subsequence (not relabeled) such that Agkk ⇀ A∞ weakly in W 1, p
2 .

Clearly, we have d∗A∞ = 0. Moreover, Agkk ⇀ A∞ weakly in W 1,2 and we get

∥A∞∥W 1,2(B4) ⩽ lim inf
k→+∞

∥Agkk ∥W 1,2(B4) ⩽ C lim
k→+∞

∥FAk
∥L2 = C∥FA∥L2(B4).

Since p > 4, the weak convergence of Agkk in W 1, p
2 implies that Agkk → A∞ strongly in L4. In

particular, by

dgk = gkA
gk
k −Akgk,

we get that {gk}k∈N is uniformly bounded in W 1,4(B4). Thus, there exists a subsequence (not
relabeled) such that gk ⇀ g ∈ W 1,4(B4) weakly in W 1,4. By passing to the limit in the previous
equality, we eventually get

dg = gA∞ −Ag,

i.e. A∞ = Ag. This concludes the proof of Proposition 4.A.2.
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Remark 4.A.1. A statement that is completely equivalent to Proposition 4.A.2 also applies to
every open and bounded domain D contained in R4 with a sufficiently smooth boundary. This is
necessary to use the standard tools from elliptic regularity theory in the proof. For the purposes of
this chapter, it suffices to note that all the elliptic regularity theory can be applied to cubes using
standard reflection methods. As a result, Proposition 4.A.2 can be extended to open 4-cubes in
R4.

Finally we extend Proposition 4.A.2 to the sphere case following the same proof of Proposition
4.A.1.

Proposition 4.A.3. Let G be any compact and connected Lie group. There exist constants
εG, CG > 0 depending only on G such that for every g-valued 1-form A ∈ L4(S4) on S4 such thatˆ

S4
|FA|2 dH 4 < εG

we can find a gauge g ∈W 1,4(S4, G) satisfying Ag ∈W 1,2(S4), d∗Ag = 0 and

∥Ag∥W 1,2(S4) ⩽ CG∥FA∥L2(S4).

4.B. G-valued map extensions of traces in W 1,2(∂B5, G)

The aim of the present appendix is to show the following extension result for general compact Lie
groups.

Proposition 4.B.1. Let G be a compact Lie group. We can find a smooth Riemannian manifold
MG such that for every g ∈W 1,2(∂B5, G) there exists a measurable map

Ext(g) : MG −→W 1, 5
2 (B5, G)

p 7−→ gp

such that for volMG
-a.e. p ∈MG we have

gp = g on S4 = ∂B5 (4.B.1)

and for g ≡ g0 ∈ G

gp ≡ g0 (4.B.2)

We have ˆ
MG

ˆ
B5

|dxgp|
5
2dL5 d volMG

(p) ⩽ ∥dg∥
5
2

L2(S4) (4.B.3)

and ˆ
MG

( ˆ
∂Ω∩B5

|dxgp|2 dH 4

)
d volMG

(p) ⩽ CG(Ω) ∥dg∥2L2(S4) (4.B.4)

for every C2-domain Ω ⊂ R5 of R5.
Moreover, for every C2-domain Ω ⊂ R5 of R5, Ext is continuous from H

1
2 (S4, G) into L2(∂Ω×

MG). More precisely, for every pair of maps (g1, g2) ∈ H
1
2 (S4, G)×H

1
2 (S4, G) we have

ˆ
MG

(ˆ
∂Ω∩B5

|g1p − g2p|2 dH 4

)
d volMG

(p) ⩽ CG(Ω) ∥g1 − g2∥2
H

1
2 (S4)

, (4.B.5)
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where CG(Ω) only depend on G and the C2-norm of the domain Ω. In particular for any g ∈
H

1
2 (S4, G) there holdsˆ

MG

( ˆ
∂Ω∩B5

|gp − idG|2 dH 4

)
d volMG

(p) ⩽ CG(Ω)∥g − idG ∥2
H

1
2 (S4)

, (4.B.6)

where CG(Ω) only depend on G and the C2-norm of the domain Ω.

Remark 4.B.1. Notice that, for every compact Lie group, we can write G is

G =
n⊔
i=1

Gi (4.B.7)

where the Gi are connected, compact Lie groups themselves and the one above is a disjoint union.
Hence, up to working on each connected component Gi of G separately, without losing generality
we can assume that G is compact and connected in the statement of Proposition 4.B.1.

Lemma 4.B.1. Let G1 and G2 be Lie groups. Assume that we have proved Proposition 4.B.1 for
G1 and G2. Then, Proposition 4.B.1 holds also for G1 ×G2 with MG1×G2 :=MG1 ×MG2.

Proof. Let g = (g1, g2) ∈W 1,2(S4, G1 ×G2). Applying Proposition 4.B.1 to g1 and g2 separately
we find the two maps

Ext(g1) : MG1 −→W 1, 5
2 (B5, G1)

p1 7−→ g1p1

and

Ext(g2) : MG2 −→W 1, 5
2 (B5, G2)

p2 7−→ g2p2

and we define

Ext(g) : MG1×G2 :=MG1 ×MG2 −→W 1, 5
2 (B5, G1 ×G2)

p := (p1, p2) 7−→ gp := (g1p1 , g
2
p2).

Straightforward computations show that Ext(g) satisfies (4.B.1), (4.B.4) and (4.B.6).

Lemma 4.B.2. Let G,H be Lie groups and let π : G → H be a smooth covering map. Assume
that we have proved Proposition 4.B.1 for G. Then, Proposition 4.B.1 holds also for H with
MH :=MG.

Proof. Let g ∈ W 1,2(S4, H). By [15, Theorem 1], we can find a lift g̃ ∈ W 1,2(S4, G) such that
π ◦ g̃ = g. Now we use Proposition 4.B.1 to find the map

Ext(g̃) : MG −→W 1,2(B5, G)

p 7−→ g̃p

We define

Ext(g) : MG −→W 1,2(B5, H)

p 7−→ gp := π ◦ g̃p.

Straightforward computations show that Ext(g) satisfies (4.B.1), (4.B.4) and (4.B.6).
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We recall the following structure theorem for compact Lie groups, whose proof can be found in
[82, §5.2.2 and §5.2.4].

Theorem 4.B.1. Let G be a compact and connected Lie group. Then, G is diffeomorphic (G′ ×
Tn)/F , where:

• G′ is a simply connected compact Lie group.
• Tn = U(1)× ...× U(1) is an n-dimensional torus, called the abelian component of G.
• F is a finite abelian normal subgroup of G′ × Tn.

Recall that if H is a discrete normal subgroup of G, then the projection map π : G → G/H is
a covering map. Hence, by Lemma 4.B.1 and Lemma 4.B.2, Theorem 4.B.1 implies that if we
can show Proposition 4.B.1 for any simply connected compact Lie group and for the group U(1),
then we have proved it for every compact and connected Lie group.

We start by facing the case G = U(1).

Proposition 4.B.2. Proposition 4.B.1 holds for G = U(1).

Proof. Let g ∈W 1,2(S4, U(1)). For every u = u1+ iu2 ∈W 1,2(S4,C), by standard approximation
results we get the identity{

d(ūdu) = dū ∧ du = 2i(du1 ∧ du2) distributionally on S4

d|u|2 = 2u1du1 + 2u2du2 in L2(S4).
(4.B.8)

Notice that (4.B.8) immediately implies that ūdu is always a purely imaginary 1-form on S4.
Since g = g1 + ig2 ∈ W 1,2(S4, U(1)) ⊂ W 1,2(S4,C), by using (4.B.8) and the constraint |g|2 ≡ 1,
we get

0 = g1dg1 + g2dg2 = 2(dg1 ∧ dg2) = d(ḡdg) distributionally on S4.

Hence, ḡdg is a purely imaginary closed 1-form on S4. Since H1
dR(S4) = 0, standard L2-Hodge

decomposition on S4 (see for instance ) gives the existence of φ ∈W 1,2(S4,R) such that

idφ = ḡdg.

Vol’pert chain rule in W 1,2(S4,R) gives

d(e−iφ) = −ie−iφdφ = −e−iφḡdg ∈ L2(S4, U(1)). (4.B.9)

By Leibniz rule in the algebra (L∞ ∩W 1,2)(S4,C) and by (4.B.9) we get

d(e−iφg) = d(e−iφ)g + e−iφdg = −e−iφḡdgg + e−iφdg = −e−iφ|g|2dg + e−iφdg = 0,

where in the last equality we have used that |g|2 ≡ 1. Hence, there exists a constant g0 ∈ U(1)

such that

g = g0e
iφ a.e. on S4.

182



Now let φ̃ ∈ W
3
2
,2(B5,C). be the standard harmonic extension of φ, i.e. the solution of the

following PDE {
∆φ̃ = 0 in B5

φ̃ = φ on S4.
(4.B.10)

Let MU(1) = {p} and gp := g0e
iφ̃. By construction, (4.B.1) and (4.B.3) are satisfied. Moreover,

by standard trace theory for Sobolev functions W
3
2
,2(B5,C), the estimates (4.B.4), (4.B.6) and

hence the statement follow immediately.

We now tackle the case of a general simply-connected compact Lie group G. Recall the following
lemma, whose prove can be found in [44, Lemma 6.1].

Lemma 4.B.3. Let N ⊂ Rk be an n-dimensional smooth submanifold of Rk such that

π0(N) = π1(N) = π2(N) = 0.

Then, there exists a compact (k− 4)-dimensional Lipschitz polyhedron X ⊂ Rk such that a locally
Lipschitz retraction Q : Rk ∖X → N such that

ˆ
Br(0)

|dQ|p dLk < +∞, (4.B.11)

for every p ∈ (1, 4) and r ∈ (0,+∞). Moreover, the projection map Q is smooth of constant rank
n near the manifold G ⊂ Rk and coincides with the identity on N .

Lastly, we use Lemma 4.B.3 to prove the following.

Proposition 4.B.3. Proposition 4.B.1 holds if G is a simply connected, compact Lie group.

Proof. Notice that π2(G) = 0 for every compact Lie group and moreover, by Nash embedding
theorem, there exists k ∈ N such that G is isometrically embedded in Rk. Hence, without losing
generality, we can assume that G ⊂ Rk is a smooth submanifold of Rk satisfying the assumptions
of Lemma 4.B.3. We denote by Q : Rk ∖X → G the projection map given by applying Lemma
4.B.3 to G. Recall that both G and X are compact subsets of Rk and let B ⊂ Rk be any open
ball in Rk containing G ∪ X. Exactly as in the proof of [44, Theorem 6.2], for a small positive
number σ ∈ (0, dist(G, ∂B)) chosen so that Q is smooth on G + Bk

σ(0) and any arbitrary point
p ∈ Bk

σ(0) ⊂ Rk we define Xp := X + p = {y + a : y ∈ X} and the translated projection
Qp : Rk ∖Xa → G given by

Qp(y) := Q(y − p) ∀ y ∈ Rk ∖Xp. (4.B.12)

For such a sufficiently small σ,

Λ := sup
p∈Bk

σ(0)

Lip(Qp|G)−1

is, by the inverse function theorem, a finite number depending only on G.
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Fix any g ∈W 1,2(S4, G) and let g̃ ∈W
3
2
,2(B5,Rk) be the solution of the following PDE:{
∆g̃ = 0 in B5,

g̃ = g on S4.

Notice that, by standard elliptic regularity, g̃ ∈ C∞(B5,Rk) and it satisfies the estimate

∥g̃ − g0∥
W

3
2 ,2(B5)

⩽ C∥g − g0∥W 1,2(S4), (4.B.13)

where g0 ∈ G is any constant in G. Define

ḡ :=

 
S4
g dH 4

and notice that, for every C2-domain Ω ⊂ R5 the trace theorem for C2-domains (see [1, Chapter
1, Section 5.1]) (4.B.13) with g0 = ḡ and Poincaré–Wirtinger inequality give the estimateˆ

∂Ω∩B5

|ι∗∂Ωdg̃|2 dH 4 =

ˆ
∂Ω∩B5

|ι∗∂Ωd(g̃ − ḡ)|2 dH 4 (4.B.14)

⩽ C∥g̃ − ḡ∥2
W

3
2 ,2(B5)

⩽ C∥g − ḡ∥2W 1,2(S4) ⩽ C(Ω)∥dg∥2L2(S4), (4.B.15)

for a constant C(Ω) > 0 depending only on the C2-norm of the domain Ω. We have also obviously
using classical Sobolev embeddings

∥dg̃∥
L

5
2 (B5)

⩽ C ∥g̃ − g∥
W

3
2 ,2(B5)

⩽ C ∥dg∥L2(S4). (4.B.16)

For every p ∈ Bk
σ(0), we define

gp := Qp ◦ g̃ : B5 → G

and we notice that, by the area formula and chain rules in Sobolev Spaces gp ∈ W 1, 5
2 (B5, G) for

Lk-a.e. p ∈ Bk
σ(0) moreover there holds gp|S4 = g for for Lk-a.e. p ∈ Bk

σ(0). Using the fact that
by the maximum principle ∥g̃∥∞ ⩽ ∥g∥∞ ⩽ diam(G), we haveˆ

p∈Bk
σ(0)

ˆ
B5

|dgp|
5
2 dL5 dLk(p) ⩽

ˆ
B5

|dg̃(x)|
5
2

ˆ
Bk

σ(0)
|dQ(g̃(x)− p)|

5
2 dLk(p) dL5(x)

⩽
ˆ
B5

|dg̃(x)|
5
2

ˆ
Bk

σ+∥g∥∞
(0)

|dQ(y)|
5
2 dLk(y) dL5(x)

⩽ CG

ˆ
B5

|dg̃(x)|
5
2 dL5(x)

⩽ CG ∥dg∥
5
2

L2(S4).

(4.B.17)

Given now any C2-domain Ω ⊂ R5, by using Fubini’s theorem, the chain rule and (4.B.14) we
infer thatˆ

Bk
σ(0)

ˆ
∂Ω∩B5

|ι∗∂Ωdgp|2 dH 4 dLk ⩽
ˆ
∂Ω∩B5

|ι∗∂Ωdg̃(x)|2
ˆ
Bk

σ(0)
|dQp(g̃(x))|2 dLk(p) dH 4(x)

⩽
ˆ
∂Ω∩B5

|ι∗∂Ωdg̃(x)|2
ˆ
Bk

σ(0)
|dQ(g̃(x)− p)|2 dLk(p) dH 4(x)

⩽
ˆ
∂Ω∩B5

|ι∗∂Ωdg̃(x)|2
(ˆ

B
|dQ(y)|2 dLk(y)

)
dH 4(x)

⩽ C

ˆ
∂Ω∩B5

|ι∗∂Ωdg̃(x)|2 dH 4 ⩽ C(Ω)

ˆ
S4
|dg|2 dH 4,

(4.B.18)
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and we have shown (4.B.4). It remains to prove the continuity of Ext from H
5
2 (S4, G) into

L2(∂Ω×Bk
σ(0)). Let g1 and g2 in W 1,2(S4, G), we first have

∥g̃1 − g̃2∥W 1,2(B5) ⩽ C ∥g1 − g2∥
H

1
2 (S4)

(4.B.19)

We write using again Fubini’s theorem
ˆ
Bk

σ(0)

( ˆ
∂Ω∩B5

|g1p − g2p|2 dH 4

)
dLk(p)

⩽
ˆ
∂Ω∩B5

ˆ
Bk

σ(0)
|Q(g̃1(x)− p)−Q(g̃2(x)− p)|2 dLk(p) dH 4(x)

(4.B.20)

Recall the Lusin–Lipschitz inequality

|Q(g̃1(x)− p)−Q(g̃2(x)− p)|2
⩽ C |g̃1(x)− g̃2(x)|2

[
M(|dQ|)2(g̃1(x)− p) +M(|dQ|)2(g̃2(x)− p)

] (4.B.21)

where M(|dQ|) denotes the Hardy–Littlewood maximal function of dQ. Combining (4.B.20),
(4.B.21) and the trace theorem we get

ˆ
Bk

σ(0)

(ˆ
∂Ω∩B5

|g1p − g2p|2 dH 4

)
dLk(p)

⩽ C

ˆ
∂Ω∩B5

|g̃1(x)− g̃2(x)|2 dH 4(x) ∥dQ∥2L2(Bk
σ(0))

⩽ C ∥g̃1 − g̃2∥2W 1,2(B5) ⩽ C∥g1 − g2∥2
H

1
2 (S4)

.

(4.B.22)

Hence, the statement follows by letting MG := Bk
σ(0).
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General notation

Bn
Bρ
Bρ(x)

Qρ(x)

Sn
Ωk(M)

Dk(M)

∥ω∥∗
Dk(M)

M(T )

∂T

Mk(M)

Nk(M)

Rk(M)

ιM
∥ · ∥∞
Lp(M)

Lploc(M)

W 1,p(M)

W 1,p
loc (M)

C∞
c (M)

D′(M)

[Σ]

open, unit n-dimensional ball in Rn
open, n-dimensional ball in Rn of radius ρ centered at the origin
open, n-dimensional ball in Rn of radius ρ centered at x
open, n-dimensional cube in Rn of edge-length ρ centered at x
open, unit n-dimensional sphere in Rn+1

smooth differential k-forms on the manifold M
smooth and compactly supported differential k-forms on the manifold M
comass of the differential form ω

general k-currents on the manifold M
mass of the current T
boundary of the current T
k-currents with finite mass on the differentiable manifold M
normal k-currents on the differentiable manifold M
integer-multiplicity rectifiable k-current on the differentiable manifold M
standard inclusion map ιM :M → Rn, for any M ⊂ Rn.
L∞-norm on Rn.
real-valued, Lp-integrable functions on the Riemannian manifold M .
real-valued, locally Lp-integrable functions on the Riemannian manifold M .
real-valued, W 1,p-Sobolev functions on the Riemannian manifold M .
real-valued, locally W 1,p-Sobolev functions on the Riemannian manifold M .
real-valued, compactly supported smooth functions on the manifold M .
distributions on the manifold M .
current of integration on some oriented k-submanifold Σ ⊂M of the mani-
fold M .
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