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Abstract

This doctoral dissertation consists in a structured and organized presentation of three scientific
papers ([22], [23] and [25]) co-signed by the author, along with some new contributions. The
main focus of the discussion will be on several contributions to geometric analysis, specifically to
the field of harmonic maps between manifolds (in particular we will focus on pseudo-holomorphic
maps) and to analytical gauge theories in supercritical dimension.

In Chapter 2, the author discusses the uniqueness of tangent maps for weakly pseudo-holomorph-ic
and locally approximable maps from an almost complex manifold to projective algebraic varieties,
while also obtaining a new statement about uniqueness of tangent cones to a special class of non-
rectifiable semicalibrated cycles.

In Chapter 3, the author identifies the strong LP-closure of vector fields that have finitely many
integer topological singularities on a domain, and provides a useful characterization of this class
of objects in terms of the existence of a (minimal) connection for their singular set. Furthermore,
the author establishes that such strong closure is also the weak closure in LP of the same space.

Chapter 4 concerns the regularity of weak Yang-Mills fields in supercritical dimension, establishing

Coulomb gauge extraction and e-regularity type results for a special class of very weak L?2-
connections.






Sommario

Questa tesi di dottorato consiste in una presentazione strutturata e organizzata di tre articoli
scientifici ([22], [23] e [25]) co-firmati dall’autore, insieme ad alcuni nuovi risultati. Il focus
principale della discussione sara su diversi contributi all’analisi geometrica, pitl specificamente
nel campo delle mappe armoniche tra varieta (in particolare verranno trattate le mappe pseudo-
olomorfe) e riguardo le teorie di gauge in dimensione supercritica da un punto di vista analitico.

Nel capitolo 2, 'autore discute 1'unicita delle mappe tangenti per mappe debolmente pseudo-
olomorfe e localmente approssimabili da una varietda quasi complessa a varietd algebriche proi-
ettive, ottenendo anche un nuovo risultato sull’unicita dei coni tangenti a una classe speciale di
cicli semicalibrati non rettificabili .

Nel capitolo 3, 'autore identifica la chiusura forte in LP dei campi vettoriali che hanno un numero
finito di singolarita topologiche con grado intero su un dominio euclideo n-dimensionale e fornisce
un’utile caratterizzazione di questa classe di oggetti in termini dell’esistenza di un connessione
per il loro insieme singolare. Inoltre, 'autore stabilisce che tale chiusura forte & anche chiusura
debole in LP dello stesso spazio.

Il capitolo 4 verte sulla regolarita dei campi deboli di Yang-Mills in dimensione supercritica,
stabilendo risultati di tipo e-regolarita ed estrazione di Coulomb gauge per una classe speciale di
connessioni deboli.
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1. Introduction

1.1. Calculus of variations and the direct method

Calculus of variations is a branch of mathematics concerned with the existence, uniqueness, and
regularity of extremal points of functionals, which are real-valued maps % : X — R defined
on a topological function space X. The space X represents the set of configurations or states
that a given system can assume, while the functional .# represents the cost or profit that results
from the system being in a particular configuration. Without losing generality, throughout this
thesis we will assume that a functional represents a cost and our objective will be to minimize it.
Moreover, we will frequently use standard terminology from physics and refer to a cost function
% as a lagrangian on the configuration space X.

Calculus of variations is distinguished from discrete optimization, a method frequently used in
operations research, by the nature of the configuration space and the method of analysis. As the
name suggests, calculus of variations examines the response of the cost function to infinitesimal
variations in the system state with respect to a starting configuration u € X. Therefore, to apply
calculus of variations effectively, the problem must be formulated in a space X whose topology
permits infinitesimal variations. Real vector spaces, of either finite or infinite dimension, are
commonly used for this purpose, and in this thesis, we will exclusively analyze functionals defined
on real vector spaces of infinite dimension.

Optimization problems can be classified into two primary categories. In unconstrained optimiza-
tion, the objective is to find the minimum of the cost function over the entire state space. In
constrained optimization, the minimum is sought within a specific subspace K C X of the am-
bient space X. The subspace K is said to be a constraint for the problem. Linear constraints,
where K is a vector subspace of X, are particularly common. However, interesting more general
constraints are often given by convex subsets of the ambient space.

The most frequently used argument to prove the existence of extremal points is the so-called direct
method: if F' is sequentially lower semicontinuous and the subspace K where the minimization
is to be performed is compact, then Weierstrass theorem guarantees that F' will attain a global
minimum over K. It is worth noting that the two conditions required for the application of the
direct method are antagonistic to each other. In particular, as the topology of the configuration
space becomes stronger, ensuring the continuity of the cost function becomes easier, but it becomes
more challenging to ensure the compactness of the constraint. Thus, in the attempt of showing the
existence of minimizers for certain variational problems there is a need of enlarging the ambient
space X and of weakening its topology suitably in order to make the competition class weakly
sequentially compact. This process typically leads to a dramatic loss of regularity: weak solutions
to variational problems may a priori belong to very wild spaces containing functions that might
be even everywhere discontinuous. Nevertheless, if the ambient space X and its topology were
chosen carefully enough, then one could hope of exploiting the special properties of such weak



solutions to recover their partial of full regularity. Indeed, any extremal point © € K C X of
some smooth functional .# : X — R over the competition class K satisfies

d

&l Fom =0

for every smooth path v : [0,1] — K such that v(0) = u. The previous information is actually
equivalent to saying that u satisfies, in a suitable weak sense to be specified, a set of partial
differential equations (PDEs) known as Euler—Lagrange equations for the functional .# under the
constraint K. This is one of the main reasons why it is so important to develop a reqularity theory
for certain types of PDEs. The celebrated mathematician David Hilbert himself underlined the
great need of investigating such issues in the formulation of his 19th problem, eventually solved
by Ennio De Giorgi and John Forbes Nash independently.

Throughout our discussion, we will be concerned with minimizing functionals % = % (u,du)
depending just on a function w and on its first derivatives. The Euler-Lagrange equations for
such functionals will turn into a set of second order PDEs and either they will or we will try to
put them in the form

Lu = f(u,du)

where L represents an elliptic second order differential linear operator and f is a smooth function
(we address the reader to the classical references [5], [39] and [40] for a detailed description of
elliptic operators and their behavior). In this sense, all the issues that will be discussed further
in this dissertation could be described as elliptic regularity problems arising from the variational
analysis of some lagrangian .%.

1.2. The interface with geometry and the foundations of
geometric analysis

The connection between calculus of variations and geometry is highly intuitive because of the
inherent geometric content of partial differential equations that stem from variational principles.
In fact, significant geometric structures can often be defined as critical points of certain “geometric
functionals”. For example, Yang-Mills fields (essential objects in high-energy and particle physics)
can be characterized as critical points of the Yang—Mills lagrangian (see Section 4.1).

In light of all this, geometric analysis emerged as an interdisciplinary field that draws upon
tools and techniques from a variety of mathematical disciplines, including differential geometry,
geometric measure theory, partial differential equations and calculus of variations. Its aim is to
tackle a diverse range of geometric problems that arise in areas such as mathematical physics,
materials science, and other branches of mathematics. Key topics in geometric analysis include
the study of minimal surfaces, harmonic maps, geometric flows and gauge theories. Among
many significant achievements derived from the application of the methods of geometric analysis,
we highlight the the work by T. Rad6 and J. Douglas on minimal surfaces, the results by K.
Uhlenbeck and S. Donaldson in the 1980s about the Yang—Mills lagrangians in dimension 4 and
their applications to the study of the differential invariants of 4-manifolds, the foundations of
geometric measure theory and the development of essential tools such as currents and varifolds
as weak versions of k-surfaces and the proof of the Poincaré conjecture by G. Perelman in 2006.



The primary focus of this thesis will be on a number of issues related to geometric analysis.
Specifically, we will concentrate on investigating Yang—Mills fields and pseudo-holomorphic maps.
These maps can be regarded as a very special class of harmonic maps that solve a “first-order
version” of the non-linear harmonic maps equation.

1.3. Calibrated solutions to variational problems

Many of the the techniques that we will be utilizing in the following chapters belongs to the
framework of calibrated geometric analysis. This branch of the mathematics was developed in the
late 20th century to investigate geometric structures in higher dimensions is built upon the concept
of calibration and calibrated submanifolds, which we recall here for the reader’s convenience.

Definition 1.3.1 (Calibration). Let (M™, g) be an n-dimensional Riemannian smooth manifold
and let 1 < k < n. A differential k-form w is said to be a calibration on M if it is closed and its
comass equal to 1, i.e. dw =0 and

|w]l« == sup {{wg, &) for every z € M, £ € AT, M with ]y =1} =1.

Definition 1.3.2 (Calibrated currents and submanifolds). Let (M™, g) be an n-dimensional Rie-
mannian manifold and let 1 < k < n. A normal k-current T' € Ny (M) for some k € N is said to
be calibrated by a given calibration w on M if one of the following equivalent conditions hold:

(1) the measure theoretic orientation T of T is a convex linear combination of k-vectors calibrated
by w (i.e. such that their duality with w is unitary), ||7||-a.e. on M where ||T’|| stands for
the total variation of T

(2) M(T) = (T, w).
Let ¥ € M be an embedded, oriented k-submanifold of M with finite k-area and whose boundary

has finite (k — 1)-area. We say that X is calibrated by w if the normal k-current [¥] is calibrated
by w, i.e. if and only if

Area(X) = M([X]) = /Ew.

The notion of calibration has a long and rich history. The paper which gave its name to the
corresponding general mathematical notion is the famous work of Harvey and Lawson [45] but
complex analytic submanifolds and calibrated subvarieties had been introduced even before. We
invite the reader to consult the works of F. Morgan [58] and [59] for a more complete introduction
to this important object of geometry. The idea of calibration was first introduced in the context of
minimal surfaces, but it was later generalized to a broader range of geometric structures, including
special Lagrangian submanifolds.

One of the reasons why calibrated currents have been very much studied is that calibrated k-
cycles are homologically mass-minimizing. Indeed, let T' € Dy (M) be a cycle (i.e. 9T = 0) which
is calibrated by some calibration w. If we pick any other cycle 7' € Dy (M) in the same homology
class of T, i.e. such that T'—T" = 95 for some S € Dy1(M), we immediately get

M(T) = (T,w) = (T" + 0S,w) = (T",w) < M(T"), (1.3.1)



where we used Stokes theorem, dw = 0 and ||w||« = 1. Unfortunately, it happens very often that
the closeness requirement in the definition of calibration is too strong to suit certain problems,
such as some of the ones we will be interested in. Therefore, as for example in [69], it is natural
to study semicalibrations and semicalibrated cycles, being simply currents that are calibrated (in
the sense of (1) or (2) in Definition 1.3.2) by possibily non-closed k-forms having unitary comass.

1.4. Organization of the thesis and main results

This doctoral dissertation is a structured elaboration of the results presented in three scientific
papers ([22], [23], and [25]) co-signed by the author, along with some new contributions. Here,
we provide a brief overview of the contents of each chapter. For more detailed explanations, we
refer the reader to the individual introductions of the chapters themselves.

Chapter 2 collects the results of [25|, where we establish the uniqueness of tangent maps for
weakly pseudo-holomorphic and locally approximable maps from any almost complex manifold
to projective algebraic varieties. As a byproduct, we obtain the unique tangent cone property for
a special class of non-rectifiable semicalibrated pseudo-holomorphic cycles. This also provides a
new proof of the main result by C. Bellettini in |7] concerning the uniqueness of tangent cones
for positive integral (p, p)-cycles in any almost complex manifold.

Chapter 3 outlines the results of [22] and [23], where we identify the strong LP-closure L} (D)
of vector fields that have finitely many integer topological singularities on a domain D, which is
either bi-Lipschitz equivalent to the open unit n-dimensional cube or to the boundary of the unit
(n 4+ 1)-dimensional cube, for any p € [1,400) and n € N with n > 1. Additionally, we prove
that LY (D) is weakly sequentially closed for every p € (1,400) and n € N with n > 2, if D is
an open domain in R™ that is bi-Lipschitz equivalent to the open unit cube. As a result of this
analysis, we obtain a useful characterization of this class of objects in terms of the existence of a
(minimal) connection for their singular set.

Chapter 4 concerns the most recent contributions of the author and T. Riviére to the regularity
of weak Yang—Mills fields in supercritical dimension. In particular, Coulomb gauge extraction
and e-regularity type results a la Uhlenbeck are established for a special class of very weak L?-
connections on the open unit cube Q3(0).



2. The regularity of pseudo—holomorphic
maps into projective algebraic varieties

2.1. Introduction

2.1.1. Weakly pseudo-holomorphic and locally approximable maps

For the purposes of this introduction, we always denote by M a connected smooth manifold
without boundary and we will need to endow M with an arbitrarily chosen reference metric g.
Since our results are local, all our discussion will be totally independent or, in any case, not
essentially effected by such arbitrary choice.

Given a closed (i.e. connected, compact and without boundary) smooth manifold NV and a smooth
isometric embedding N < R¥, for some k € N large enough, we let

I/VliCz(M, N):={ue VV;S (M, Rk) s.t. u(z) € N, for volg-a.e. x € M}.
Definition 2.1.1. Let M be any even-dimensional smooth manifold without boundary and let J
be a Lipschitz almost complex structure on M. Let (N, Jy) be any closed smooth almost complex
manifold. We say that a map u € VVi)f(M, N) is weakly (J, Jn)-holomorphic if

duy, (JX) = Inydu,(X), for volg-a.e. z € M,V X € T, M.

Whenever we don’t need to specify which couple of complex structures is involved in the previous
definition, we simply say that the map wu is weakly pseudo-holomorphic or even just weakly
holomorphic to lighten the notation.

Assume that M is any even-dimensional smooth manifold without boundary and let J be a
Lipschitz almost complex structure on M which admits a compatible symplectic form €2, meaning
that the bilinear form (X,Y) — Q(X, JY) defines a Lipschitz Riemannian metric on M. We will
show (Lemma 2.3.2) that in this particular framework any weakly (J, Jn)-holomorphic map taking
values into a closed smooth almost Kéhler manifold N is weakly harmonic, i.e.

j/ ld(my o @out tX)) dvoly| =0, VX e C®(MR),

tJm g t=0

where 7w : W — N is the nearest-point projection into N, defined on a suitable tubular neigh-
bourhood W of N, and ® : N — RF denotes a smooth, isometric embedding of N into RF.
Nevertheless, it is well-known that no regularity is ensured for weakly harmonic maps when the
dimension of the domain is larger than 2 (see [71]). Thus, we will need to prescribe some additional
condition in order to get that the map wu is at least stationary harmonic, i.e.

d / 2
— | |d(uo @) dvol =0,
dt M g I t=0



for any smooth one-parameter family of diffeomorphisms ®; of M with compact support. We will
show (see Lemma 2.3.3) that imposing the following local, strong approximability property with
respect to the W2-norm sufficies to our purposes.

Definition 2.1.2. Let M be a smooth manifold without boundary and N be a closed smooth
manifold. We say that a map u € VVll’2

oc

the Wh2-norm if for every open set U C M such that U is diffeomorphic to some euclidean ball

(M, N) is locally (strongly) approzimable with respect to

there exists a sequence of smooth maps {u;};en C C*(U,N) such that u; — u as j — 400,
strongly in W12(U, N).

If a map wu is locally approximable, then the following cohomological condition follows easily:
d(u*w) =0, distributionally on M, (2.1.1)
for every closed 2-form w € Q2(IN). We refer the reader to [11] for further reading concerning the

deep link between local approximability and (2.1.1).

In the most general case that we will address, i.e. when J doesn’t admit a compatible symplec-
tic form (even locally), weakly holomorphic and locally approximable maps are not stationary
harmonic. Nevertheless, they are almost stationary harmonic, in the sense that they satisfy a
perturbed version of the harmonic map equation and that there exists C' > 0 such that

>—C [ [X|jdu?
t=0 M

with X := 0,®|;—o for any smooth one-parameter family of diffeomorphisms ®; of M with
compact support. We underline that such maps were also studied before by C. Bellettini and G.
Tian in [9)].

d
7 /M |d(uo cI)t)\?] dvolg

2.1.2. Statement of the main results and related literature

Section Given any p € (0,+00), we denote by B, := pB*" C R*™ the open unit ball in R*™
centred at the origin and having radius p. From now on, for every p € (0,1) we let ®,: B, = B

be given by ®,(z) := p~!

x, for every x € B,.

Let M be a smooth manifold without boundary and N be a closed smooth manifold. Consider
any map u € I/V;CQ(M, N). Given zg € M, pick any coordinate chart ¢ : U C M — B*™ with
relatively compact domain U at zg, i.e. such that g € U and ¢(z9) = 0. The family of the blow-
ups of u at the point xg, denoted by {u,},e(0,1) C WL2(U, N), is given by u, := uop™! o@;l o,
for every p € (0,1). If such family is bounded in W2(U, N), by standard compactness arguments
it follows that for every sequence p, — 0" as k — +oo there exists a subsequence {pkj }jen such
that Upy,, = Uoo € WL2(U, N), weakly in WH2(U, N). We say that u is a tangent map for u
at the point xg. Any tangent map at x( is meant to represent a picture of the map u when one
gets closer and closer to zg. Such limiting configuration may very well depend on the sequence
{pkj }jen that we have chosen to approach xg. If this is not the case, we say that the map u has

a unique tangent map at the point zg.

In the present chapter, we aim to give a complete and self-contained proof of the following theorem.

Theorem 2.1.1. Let m,n € Ny be such that m > 2. Let M be a smooth 2m-dimensional manifold
without boundary and let J be any Lipschitz almost complex structure on M. Let N C CP" be



a projective algebraic variety. Let u € VVZLZ(M, N) be weakly (J, jn)-holomorphic and locally

oc
approximable, where j, stands for the standard complex structure on CP™ (restricted to N ).

Then, u has a unique tangent map at every point.

As we have noted before, if J admits a compatible symplectic form then weakly holomorphic
and locally approximable maps are a special subclass in the much wider family of stationary
harmonic maps (see previous Section 2.1.1). Hence, our main result relates with the whole set of
well-know facts concerning stationary harmonic maps between manifolds (see e.g. [34], [14], [75]).
In particular, both the existence of tangent maps at every point and Theorem 2.3.1 are immediate
consequences of the general theory of stationary harmonic maps. However, nothing can be said
a priori about uniqueness of tangent maps to general stationary harmonic maps, since B. White
(see [94]) has shown that such property might fail even for energy-minimizing maps at their
singular points. Nevertheless, whenever the target manifold is analytic, uniqueness of tangent
maps was proved to hold for energy-minimizing harmonic maps by L. Simon in [84]. Hence,
since any projective algebraic variety is analytic, if weakly holomorphic and locally approximable
maps were energy-minimizing then Theorem 1.1 would be a direct consequence of Simon’s result.
Unfortunately, it’s not hard to build sequences of even holomorphic maps that converge weakly
but not strongly in VV;’S(R%",N ) (see Example 2.1.1). Since for energy-minimizing harmonic
maps weak convergence implies strong convergence (see [79]), this sufficies to convince ourselves
that weakly holomorphic and locally approximable maps are not energy-minimizing harmonic
maps in general.

Example 2.1.1. Let N = S?, equipped with the standard Kéhler structure. Let S € S? be the
south-pole in and let pg : S> — R? be the stereographic projection from the south-pole. For
A > 0, we define the map uy : R? — S? as follows:

u(z) == pg'(\x) Ve R2

For every A > 0, u, is a finite-energy, orientation-preserving conformal map from R? to S?.
Hence, {uy}x>o is a family of holomorphic maps in W12(R?,S?). An easy computation shows
that uy — us = S weakly in W12 as A\ — +00. Nevertheless, the convergence cannot be strong
because

/|du,\|2d£2—>87r7é():/ |duso|? dL? (A — 400).
R2 R2

Theorem 2.1.1 was already proven when the almost complex structure J on the domain is inte-
grable by S. Sun and X. Chen in [28], thanks also to the previous contributions [49] and [46] who
established the optimal bound for the Hausdorff measure of the singular set, namely

%™ (Sing(u) N K) < +o0, VK C M compact. (2.1.2)

Nevertheless, the proof provided by S. Sun and X. Chen in the integrable case makes an extensive
use of complex holomorphic coordinates on the base manifold and of several algebraic tools that
are not available in case we work in the almost complex framework.

As far as we know, the only available result concerning the non-integrable case that can be found
in literature was achieved by the second author and G. Tian in [77]. In such paper, the case of
a 4-dimensional domain M is completely solved, providing also the optimal size (2.1.2) for the
singular set. Unfortunately, the proof that is given there strongly relies on positive intersection
arguments that cannot be reproduced when m > 2.



2.1.3. Key ideas to face the non-integrable case in higher dimensions

In view of what we have seen in Section 2.1.2, we need to think of a completely new analytic
approach in order to prove Theorem 2.1.1 in its full generality. From now on, we will denote by
Jo the standard complex structure on R?™ = C™,

Let M, N and u satisfy the hypotheses of Theorem 2.1.1. Given any point zg € M and a local
chart ¢ : U C M — B?™ with compact domain U at xq such that J(0) = Jy, it’s clear that u has a
unique tangent map at g if and only if the local representative @ := uo@~! € W12(B?>™ N) of u
has a unique tangent map at the origin. Notice that @ is weakly (j , jn)-holomorphic on B>™, where
J = dy o Jodp ! is a Lipschitz almost complex structure on B?™. Moreover, a straightforward
computation allows to conclude that  is locally approximable on B?”™. Hence, Theorem 2.1.1 will
be proved if we just manage to show that the statement holds in case M = B?*™ c R?>™ zy =0,
J(0) = Jo and u € WH2(B2™, N).

The fact that we have reduced to prove the statement on the unit open ball leads to a key advan-
tage. Since B?™ is contractible, we can find a Lipschitz almost symplectic form € on B?>™ which
is compatible with J, i.e. the symmetric bilinear form (X,Y) — ¢(X,Y) := Q(X, JY) defines a
Lipschitz metric g on B*™. Here and throughout the whole chapter, by “almost symplectic form”
we mean any non-degenerate 2-form, even if not necessarily closed (the reader should be aware
that the term “almost Hermitian structure” can also be found in literature). From now on, we
will assume that the domain B>™ is endowed with such special metric g and all the computations
involving scalar products will be referring to this specific choice.

Notice that QF/k! is a semicalibration on B?™ with respect to the metric g, for every k = 1,....,m
(see Definition 1.3.1. As we will see below, the proof of Theorem 2.1.1 will be further reduced
to the problem of showing uniqueness of tangent cones for a special class of non-rectifiable,
semicalibrated (2m — 2)-cycles on By. Indeed, let u satisfy the assumptions of Theorem 2.1.1
with M = B?™. We can associate to the map u the (2m — 2)-current T, € Dy, 2(B?*™) given by

(Ty,a) :== /IB2m wrwepn A @, Yo € D*™2(B2M).

We can show (see Section 2.2) that T, satisfies the following properties:
1. Ty is a cycle, i.e. 9Ty, = 0 in the sense of currents.

2. T, is normal, with
. 1 )
M(T,) = |u*wepn ||« dvoly = = |dul}, dvol, < 4-o00.
B2m 2 B2m

m—1

(m—1)I
For the reader’s convenience, we recall at this point that we say that a current 7" on B?™ has a

3. T, is semicalibrated by

unique tangent cone at the origin if given any two sequences {pj }ren C (0,1) and {p} }ren C (0,1)
such that

1. pp = 0" and p|, — 0T, as k — +o0,
2. (2, )T = Coo and (@ )T — CL, as k — +o0,
it follows that Coo = CL_.



Substantial work on the uniqueness of tangent cones was carried out for special classes of integral
semicalibrated cycles. In particular, such result was already obtained by C. Bellettini together
with the second author in [8] for special legendrian integral cycles in S® and C. Bellettini in [7] has
proved uniqueness of tangent cone for positive integral (p, p)-cycles in arbitrary almost complex
manifolds. The case of positive integral (1,1)-cycles in arbitrary almost K&hler manifolds was
previously covered by the main regularity result obtained by the second author and G. Tian in
[76]. Analogous results were obtained also by C. De Lellis, E. Spadaro and L. Spolaor in [29], by
exploiting the fact that any integral semicalibrated k-cycle T € Dy, (B?™) is almost homologically
mass-minimizing, i.e. for every zog € B2™ there are constants Cp, 7o, ag > 0 such that

M(T'L By(x0)) < M((T 4 dS)L By(x0)) + Cop™ @, Y0 < p < po

and for all S € D1 (B?™) such that spt(S) C B,(xo) (compare with the stronger property (1.3.1)
that holds for calibrated cycles).

Nevertheless, very little is known so far concerning uniqueness of tangent cone when the rectifia-
bility hypothesis is dropped. In general this is not true, counter-examples have been given initially
by C. O. Kiselman in [50] and then generalized in [16]. On the other hand, a positive result on
this matter was obtained by C. Bellettini in [6], where the author proves that the tangent cone
to normal positive (1,1)-cycles is unique at any point where the density does not have a jump
with respect to all of its values in a neighborhood. Thus, the present chapter is meant to be a
contribution to this so far still fairly open class of problems.

In Section 2.6.3 we will show that uniqueness of tangent cone for the (2m — 2)-dimensional cycle
T, and for its “localizations” in the target manifold can be used in order to achieve a full proof
of the uniqueness of the tangent map for u at the origin. Therefore, most of our efforts will be
devoted to the proof of the following statement.

Theorem 2.1.2. Let m,n € Ny be such that m > 2. Let J be a Lipschitz almost complex structure
on B?™ such that J(0) = Jo. Assume that u € W12(B?™ CP") is weakly (J, jn)-holomorphic and
locally approzimable, where j, stands for the standard complex structure on CP™.

Then, the (2m — 2)-cycle T, € Dapm—_2(B*™) has a unique tangent cone at the origin.

This last paragraph is dedicated to explain the main new ideas that we have introduced in order
to prove Theorem 2.1.2. The whole proof is based on the fact that the level sets of any weakly
(J, jn)-holomorphic and locally approximable map are rectifiable, J-holomorphic cycles. This fact
is proved in Section 2.5. By applying a slicing procedure on the right-hand-side of the monotonicity
formula (2.2.3) (see Appendix 2.A), we get a foliation of the region of integration into rectifiable,
almost J-holomorphic curves (see Definition 2.4.2 and Remark 2.4.1). By localizing properly in the
target, integrating what we call the fundamental Morrey type estimate for almost J-holomorphic
curves (see Section 2.4) and passing then to the limit as the localization sets invade the codomain,
we finally get uniqueness of tangent cone for the 2-dimensional current (Tul_ﬂ*wglp_"?_l) /(m—2)!,
where 7 : C™ ~. {0} — CP"™ ! is the standard projection map (see the first paragraph of Section
2.2). Then, the statement of Theorem 2.1.2 follows as shown in the conclusion of Section 2.6.2.

2.1.4. Final comments and open problems

We would like to stress that our approach could also give an alternative proof of the uniqueness of
tangent cone for integral (p, p)-cycles on almost complex manifolds, which was previously obtained



by C. Bellettini in [7]. This could be achieved by considering maps u that are more and more
concentrated on just one rectifiable pseudo-holomorphic set in the domain (see Remark 2.6.1).

We also believe that the method that we have developed in this work could be useful in order to
proceed further in the analysis of the singular set of weakly holomorphic and locally approximable
maps. In particular, we conjecture that the optimal bound (2.1.2) on the size of the singular
set of such maps could be achieved as a further development, also exploiting Theorem 2.1.1.
Furthermore, an interesting open problem concerns the generalization of our result to arbitrary
almost Kahler target manifolds.

Taking a wider look and abandoning the framework of weakly holomorphic maps, there are
plenty of other related problems that would deserve to be studied more deeply in view of recent
developments in the field. In particular, the aim is to invent new analytic techniques that are
robust enough to survive the non-availability of holomorphic coordinates in the almost complex
non-integrable setting. Among all these problems, for sake of brevity we just mention uniqueness
of tangent cone for triholomorphic maps in hyper-Kéhler geometry (see e.g. [9]) and for Hermitian
Yang-Mills connections (see [27], [26]).

2.2. Almost monotonicity formula and tangent cones

First, let us fix the notation that we will use throughout the present chapter, whenever it won’t
be differently specified. We let J be a Lipschitz almost complex structure on B?™ such that
J(0) = Jo. We let © be a Lipschitz almost symplectic form on B?™ which is compatible with J
and such that Q(0) = Q, where ) stands for the standard symplectic form on R*™ = C™. We
denote by g the Lipschitz metric on B?™ given by g.(v,w) := Q. (v, Jw), for every x € B?™ and
v, w € R We indicate by ||, the norm induced by g and by |- | the standard euclidean norm.
Whenever we use the musical isomorphisms 74" and ”b” or the Hodge *-operator, we always take
as a reference metric g. Finally, m : B®™ < {0} — CP™ ! denotes the standard projection map
given by

(XL, YLy ey Ty Ym) 2= [T1 F Y1 ¢ ooe t Ty + Y]

for every (21,91, .-, Tm, Ym) € B>~ {0}.

Remark 2.2.1. Notice that the fact that g is Lipschitz on B*™ guarantees that | - | ¢ 1s equivalent
to the euclidean norm. Consider the function f : B2m x S$?~1 — (0, +-00) given by

f(@,v) = lge),

where $?7~1 C R?™ is the unit sphere in R?™ with respect to the euclidean norm. Since f is
continuous on the compact set B2 x S?™~1 by Weierstrass theorem and by definition of S*™~1,
there exists a constant G > 0 such that

1 R
5'”‘2 < fla,0) = o2, <G, VzeBm, Voe s

By 2-homogeneity of the squared norm, it follows that
1 _
E|v|2 < |v|3(x) < Gv)?, Vz e B2, Yoy e R™M™ (2.2.1)

10



and our claim follows.

Since | - |4 and | - | are equivalent, when we refer to the Sobolev spaces on B*™ we don’t need to
specify which of these two norms we use in order to define them. In fact, we will use both of them
according to what suits better in the context.

Lemma 2.2.1. Let V be a 2m-dimensional real vector space and J a linear complex structure on
V. Let Q be a symplectic form on V which is compatible with J.

Then

m—1 om
- _ 27 *
(m_l)!/\f/\Jﬁ—lélgm!, for every £ € V*,

where JE is given by (JE&)(v) := —=&(Jv), for every v € V.

Proof. Fix an g-orthonormal basis {ej, Jej}j—1.. m of V, so that

_ * *
Q= e; N Jej.
j=1
First of all, notice that
am 1 “
* * * *
’ TGl im=1

=eNJelN...Ney, A Jey,.
Fix any £ € V* and decompose it along the g-orthonormal basis denoted by {e;f, Je; }i=1,...m as
m
£= Z(fjle; + &jaJe€).
j=1

This in turn implies that

JE =D (el — &oe))

j=1
and then
m
ENTE= D (Enkmes A Jep — Enéuael A ek
Jik=1
+ fjgflie; A Je}; — §j2€k2J€; AN 6}2)
Since
Qm—l m
* * * *
(m—l)' = Z (6]-1/\Jej1)/\.../\(6jm_l/\Jejm_l),
T Jleedme1=1
it’s easy to see that
Qm_l m—1
* * * *
(m—]_)' /\Cj/\ek:m/\Jej/\Jek:O,

11



for every j, k € {1,...,m}. Moreover, we notice that

Qm—l m m
m=1) A Z Einérie; N Jey, = <Z§]21> etNJel AN Ner, NJey,
Tjk=1 j=1
and
_1 AZ&]Z&]CQJ@ /\ek—<z 2>€1AJ€1/\ /\6 /\J@jn
7,k=1

By adding all the contributions, we get

Qm—l m . . ) )
m—1)! NENJTE = (Z(Sfl +£§2)>e1 ANJEE N . Aek A Jek,
! =
= |§]_(2]e’{ ANJeTA ... Ner NJer,
and the statement follows. B

Corollary 2.2.1. Let n € Ny and let (N?", Jy,wn) be a compact almost Kihler manifold. As-
sume that u € WH2(B2™ N) is weakly (J, Jy)-holomorphic. Then

@ e
(m-1! 2 ml’

uwrwn A L*_q.e. on B>, (2.2.2)

Proof. Let E C B> be the set of Lebesgue points of du. If x € E is such that du, = 0, then

equation (2.2.2) holds trivially. Assume then that du(z) # 0. Fix an wpy-orthonormal basis
{é’l?JNé"L =1 OfT( )N, so that

(W )u( Z & N INE

Notice that, since u is weakly (J, Jn)-holomorphic, it holds that

(W'wn)g = Zu*fz* AU JINE = Zu*fz* A Ju s,

=1 =1

since (u*(JnE*))(v) = (J(u*€))(v) for every v € T,B*™ = R?™ follows from the definition of
JNE* and J(u*E**) (see Lemma 2.2.1). Thus in particular,

(uwn )z A QTE Zu{l/\Ju gaQmt
=1

By applying Lemma 2.2.1 with Q = Q, and & = u*¢§; for every ¢ = 1,...,n, we get that

Qm duy
(wron)e h (D m?)  ldualy 22

The statement follows immediately. O
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Lemma 2.2.2. Let n € Ny and let (N*", Jy,wn) be a closed almost Kihler smooth manifold.
Assume that u € WH2(B?™, N) is weakly (J, Jy)-holomorphic and locally approzimable.

m—1

(m—1)I"

Proof. First, we claim that T, is a cycle, i.e. that 97T, = 0. Indeed, by Stokes theorem and
since d(u*wy) = 0 holds distributionally on B?™ by local approximability of u, for every fixed
a € D*M3(B?™) we get

Then, T, is a normal (2m — 2)-cycle on B*™ semicalibrated by

(0T, ) = (T, da)y = / w'wy Ada = 0.
B
In order to conclude, we just need to show that

<Tu, (gm__ll)'> =M(T') < +o0.

Notice that, by Corollary 2.2.1, it holds that

Qm—l Qm—l 1
Ty ) = "y A e = - dul? dvol
< ’(m—1)!> /Egm““N (m—1)! Q/BM‘ ulg dvoly < +oc,

since du € L*(B*™; R?" @ u*TN). We claim that

1
M(T,) = 2/Bzm |dul? dvoly .

Indeed, fix a Lebesgue point x € B®™ for du and let {eq, Je1, ..., em, Jem}, {5, 5&F, ., &5, 5ER} be
orthonormal bases of T,B*™ and Ty(z)N respectively. Then, we have

M:

(Wwon)e,en N Jen) = ) (W& A Ju'EE) (er, Jen)

@
I
-

I
M:

(u &) (er) (Ju &) (Jen) — (u&) (Jen) (Ju™&F) (ex)

@
Il
—

(u*€7) (ex) (uE) (en) + (w&) (Jen) (uE) (Jex)

I
M:

=1
1 n
<3 (lu*&f (er)? + [u*&; (en)]?
i=1
+ |ug (Jer)” + [ug; (Jen)|?)
1 n o m d x2
I (e + e e = T

7

15=1

for every k,h = 1,...,m. Moreover, by exactly the same computation we get
(W'wn)z, ex Aen) = (Wwn)z, Jex A Jep) =0, Vk,h=1,..,m

Thus, for every unit and simple 2-vector vy A ve with vy, ve € TpB?™ we have

]du$|§

(W*'wN)g, v1 Avg) < 5

13



Consider the unit vector

1 1
Vi= —— e+ — E Je; € T,B>™"
VA LU Vo
i=1,....,m i=1,....m
i odd i even

and notice that

Qy

((wen)ar n 0) = {(Wrin)a, 52 ) = o (wn)ang :

m—1)!

Qm-1 ) _ |du,|?

By definition of comass norm and since x € B?”™ was any arbitrary Lebesgue point of du, we

conclude that

\dulg

vol, -a.e. on B2™.
2 g

[w*wnll« =
Moreover, since T, is the integration current induced by u*wy, it holds that
M(T,) = / |[u*wn ||« d volg, for every open set U cC B*™.
B2m

The statement then follows.

O

Before stating the following fundamental proposition, we recall the following notation. Given any

zo € B?", we define

Qt@o = (deo A Q) L Vgo

where Ry, := |- — x|, Vs, := (dRy,)* and with ” " we denote the interior product. We call €; 4,
the tangential part of Q with respect to xy. Such notation is analogous to the one used in [69].

Proposition 2.2.1 (Almost monotonicity formula). Let n € Ng and let (N?", Jy,wn) be a closed
almost Kihler smooth manifold. Let u € WH2(B?™ N) be weakly (J, Jn)-holomorphic and locally

approximable.
Then, there exists A = A(Lip(R2)) = 0 such that

M(T, L B,(x M(T, | By(x
1 ;”_1
> Wy A BT
Lp(xo)\Bg(xo) | : _x0|2m—2 (m - 1)'
and
_ M(T, L B,(x0) Ao M(T,, L By (z0)
e4P(1 — Ap) ( s ) 4 (1— Ao) ( -5, )
p o
m—1
1 * tiEO
< ———ufwoy A ——,
/;p(xo)\Bcr(zO) ‘ : _m0|2m—2 (m — 1)'

for every xo € B*™ and 0 < o < p < 1y := dist(xg, IB?™).

14
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Proof. A direct computations leads immediately to

(Qm—l) — Qm—l.

t,zo t,xzo
Hence, the statement follows directly by Lemma 2.2.2 and [69, Proposition 1| by simply noticing
that exactly the same proof works when € is just Lipschitz. O

Remark 2.2.2. Fix any z € B?™. Notice that

(wavtor n Femho ) = (B o)

1| ou |?
i ) for £L2™-a.c. z € B?™,
2 [Ovgy |,
where vy, := (dRy,)* as above with R, := |- — x¢|. Hence, by equation (2.2.3) we conclude that
the function
M(T, L B
(0,720) 3 p = e (1 + AP)W

is non-decreasing. As

lim e??(1+4 Ap) =1,
p—0t

we conclude that the limit

M(T,L B (w0)
me—Q

(2.2.5)

exists and is finite. We say that 0(xo, u) is the density of the map u at the point xy.

We conclude the section by discussing the existence and the structure of tangent cones for the
current T,. Let’s pick any sequence pp — 07 as k — +o0o0 and the relative blow-up sequence
{T,, == (®,,)«Tu}ren. Since T}, is a cycle for every k € N and

M(T, L By,)

M(Tpk ) = pgm_g

<M1+ AM(T,) < +o0,

by Federer-Fleming compactness theorem we know that there exists a subsequence {py; }jen of

{pr}ren such that T, — C as j — +o0 in the sense of currents. Moreover, by exploiting the
J

almost monotonicity formula, we get that any tangent cone Co, is a (2m — 2)-cycle calibrated by

Qo and invariant under dilations, i.e. (®,).Co = Cx, for every p € (0,1) (see e.g. [69, Section

3)).

2.3. Smoothness at points with small density

In the present section, we will assume that §2 is a symplectic form and we prove that weakly holo-
morphic and locally approximable maps are stationary harmonic in this particular case. Therefore,
we conclude that such maps are smooth at points of small density via standard e-regularity for
stationary harmonic maps (Theorem 2.3.1).

15



The almost symplectic case is completely treated in |9, Propositions 1, 3, 4|, where it is shown
that similar results hold in the almost stationary scenario. Hence, the conclusions of the present
section hold even if d€2 £ 0. We just present here a simplified case in order to deal with less
technicalities and draw some light on the key ideas and concepts.

Lemma 2.3.1 (Wirtinger’s inequality). Let n € Ng and let (N*", Jx,wn) be a closed almost
Kahler smooth manifold.

Then, for every map v € WH2(B2™ N) it holds that

x| v'wn A o < ’dv,ﬁ vol, -a.e. on B*™ (2.3.1)
N (m—l)! ~ 2 bl g -G J.

Proof. Let E C B?™ be the set of the Lebesgue points of dv. If € E is such that dv, = 0,
then (2.3.1) holds trivially. Assume then that x € E is such that dv, # 0. Fix a g-orthonormal
basis {eaj_1, e := Jeap_1}p, of T,B*™ and an wy-orthonormal basis {€2;—1, & = jé2i—1}",
of TN, so that

m
* *
Qp = E €ok—1 "\ €2k
k=1

and
(WN)o(z) = ngiq N &5
i=1

Then, we compute

*
//_\\
S

*
&
NP
8
>

Vs g NV NeT ANey N ANes  Nesp N A eam—1 A ean

I
M
M=

—_
—_

S e
Il

I
MSW

(v*E€5_1 NV™Es;) (ear—1 A eax)

x~
I
—_
.
Il
—

I
NE
M=

(V€31 Nv"E5;) (ear—1, €ar)

B
Il
—
~
Il
—_

M:

(V&1 A 7€) (ear—1, ear) ‘g

B
Il
—
-
—

s

I
NE

’U*€§i—1(€2k—1)v*€>2ki(€2k) - U*Si—1(€2k)v*f§i(€2k—1)’

g
k=1 i=1
2m n )
1 * ok o |dvx|
< 2 Z (!v §2i—1(€k)‘3 + |v fQi(ek)]g) = Tg_
k=1 i=1
Thus, the statement follows. -
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Lemma 2.3.2 (Weakly holomorphic maps are weakly harmonic). Let n € Ny and assume that
(N?", Jn,wn) is a closed almost Kihler smooth manifold.

If w € WH2(B2™, N) is weakly (J, Jn)-holomorphic, then u is weakly harmonic.

Proof. Recall that we always identify N as a smooth submanifold of R*, for k large enough,
through the smooth isometric embedding ® : N < R¥ (see Section 2.1).

Let the map mn : W C R¥ — N be the nearest point projection from a tubular neighbourhood
W of ®(N) onto N. Fix any vector field X € CX®(B?™,R¥). As for every t € R the map
7n o (®ou+tX) belongs to WH2(B*™, V), by exploiting Lemma 2.3.1 we get that

Qm—l

/ |d(7rNo(CI>ou+tX))‘§ dvolg>2/ (Pou+tX) mTywn A
B2m

B2m (m — 1)" (232)

for t € R such that |t| < § with 6 > 0 sufficiently small. Moreover, the equality holds for t = 0
by virtue of equation (2.2.2). We claim that

Qm—1 Qm—1
o tX )y = * —_— 2.3.
/IBQm( out ) 7T]V(A)]V/\(77’5*]-)| /]}BQMUu)]\[/\('rnf1)'7 ( 33)
for every |t| < 6. Indeed, it holds that
d Qm—l
— i) tX ) Ty A ——
(L ewserrsionn @)
d Qm—l

= —((® tX)* A N ———

/BQm gi (B ou+tX) mywy) (m—1)!

— <d(u*(7r}‘VWN)|—X)7*(gn_i)!>

= —/BQmu (ﬂ'NwN)I_X/\d<(m_1)!> =0,

where "L" stands for the interior product. Hence, equation (2.3.3) follows. By using together
equation (2.3.2) and (2.3.3), we get

/ |d(mn o ((IJou—i—tX))‘j dvoly > / \dulgdvolg for every |t| < 6,
B2m B2m
and the equality holds for ¢ = 0. Thus, t = 0 is a global minimum for the differentiable function
trs [ d(mn o (®ou+tX))|> dvoly.
B2m

Hence, we conclude that

d
it Jo, 4y o (@ou+ X)) 2 dvol, _ =0
Since our choice of X € C°(B?™, R¥) was arbitrary, the statement follows. O

Lemma 2.3.3 (Weakly holomorphic and locally approximable maps are stationary harmonic).
Let n € Ny and let (N?", Jn,wn) be a closed almost Kéihler smooth manifold.

Ifu € WH2(B2™, N) is weakly (.J, Jn)-holomorphic and locally approzimable, then u is stationary
harmonic.
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Proof. Fix any vector field X € C°(B*™,R?*™). Notice that the map u o (Id +tX) belongs to
WL2(B2™ N) for t € R such that |t| < § with § > 0 sufficiently small. Then, by Lemma 2.3.1, it
holds that

Qm—l
/ |d(uo (Id+tX)) }3 dvoly > 2/ (Id +tX)*u*wyn A (2.3.4)
B2m

for every |t| < ¢ and the equality holds for ¢ = 0 by virtue of equation (2.2.2). We claim that

mel mel
Id +tX)"uw'wy N —— = N N ——— 2.3.5
for every |t| < 6. Indeed, as d(u*wy) = 0 distributionally on B, it holds that

4 / (Id +tX)"u*w /\Qmi_1 —/ i((ld—i—tX)*u*w )/\L—I
dt \ Jgem N =) T Jpem dt NI m = 1)

— <d(u*w1v|—X)v*(n~Lml_1l)!>

Qm—l
= — * LXAd]l — ) =0.
/Bm“ wN ((m— 1)!)

Hence, equation (2.3.5) follows. By using together equation (2.3.4) and (2.3.5) we get that

/ \d(uo(1d+tX))\§dvolg>/
B2m

]EQ

]du|§ dvoly, for every |t| <. (2.3.6)

and the equality holds for ¢ = 0. Thus, t = 0 is a global minimum for the differentiable function

ts [ |d(uo (Id+tX))|? dvol,.
B2m 9
Hence, we conclude that
L o @) dvoly| =0
dt B2m 9 g t=0
Since our choice of X € C°(B?™, R¥) was arbitrary, the statement follows. O

The following e-regularity statement follows immediately by Lemma 2.3.3 and |75, Theorem 2.1].

Theorem 2.3.1 (e-regularity for weakly holomorphic and locally approximable maps). Let n €
No and let (N?", Jn,wn) be a closed almost Kéihler smooth manifold.

Let u € WH2(B?™ CP™) be weakly (J, Jy)-holomorphic and locally approzimable. Then, there
exists a threshold eg = eo(m,n) > 0 such that whenever 0(xo,u) < eq there exists ball B,(xg) C B
such that u is Holder continuous (and hence smooth) on B,(xo).

We define
Sing(u) := {xg € B* s.t. 0(xo,u) > &0}
and we say that Sing(u) is the singular set of u. Moreover, by stationarity of u, it follows that

™2 (Sing(u)) = 0.
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2.4. The fundamental Morrey type estimate

We aim to collect here the proofs of the (mostly technical) tools and estimates that will be used in
Section 2.6. Throughout the present chapter, given any .#*-rectifiable subset ¥ C B?™ equipped
with an orienting .*-measurable field of unit and simple k-vectors ¥ we denote by [X] the current
of integration on ¥, i.e. the k-dimensional current given by

(3], ) ::/E<a,i> %, YaeDNBM™).

2.4.1. Some technical lemmata

Definition 2.4.1 (J-holomorphic curves). A locally .7#?-rectifiable subset ¥ C B?™ equipped
with an orienting .##2-measurable field of unit and simple 2-vectors ¥ is a J-holomorphic curve
if ¥(z) is J-invariant for s#2-a.e. x € .

Moreover, if 9[X] = 0 we say that ¥ is closed.

Definition 2.4.2 (Almost J-holomorphic curves). A locally J#?-rectifiable subset ¥ C B?™
equipped with an orienting .7#?-measurable field of unit and simple 2-vectors Y is a almost J-
holomorphic curve if there exists some .#%-measurable and J-invariant field of 2-vectors ) J
¥ — AoR?™ such that for some v € (0,1], £ > 0 it holds that

15(x) — Sy (x)] < Oz, for #2% ae. xeX. (2.4.1)
Moreover, if [X] = 0 we say that ¥ is closed.

Remark 2.4.1. Given an almost J-holomorphic curve in B, we can build a 2-dimensional varifold
on B?™ associated to it in the following way.

Let % (B?™) := B?™ x Gr(2,R?™), where Gr(2,R?™) is the Grassmannian of the real 2-planes in
R?™. Notice that % (B?™) can be given the structure of a smooth manifold, since it is the product
of two smooth manifolds. Following the notation by W.K. Allard and L. Simon (see [85, Chapter
8], [3]), a general 2-dimensional varifold on B?™ is simply a Radon measure on % (B*™). Then,
we may associate to an almost J-holomorphic curve ¥ C B*™ the Radon measure on % (B?™)
given by

2
HATLI® 5Span{iﬂ”
where by ® we denote the usual tensor product of measures and span{i s} denotes the field of
2-planes associated with the field of 2-vectors X ;.

Such objects are very close to being rectifiable varifolds but the almost tangent space of ¥ is
“tilted”, conveniently with respect to the purposes that will be clear in the forthcoming discussion.

We point out explicitely that the form of these new objects is built (and therefore meaningful) just
to work around the origin. We would need to consider a “shifted” version of almost J-holomorphic
curves in order to work around an arbitrary point o € B?™.

Remark 2.4.2. All the estimates and the results that will be presented in this section concerning
closed almost J-holomorphic curves in B are still valid for closed J-holomorphic curves. Indeed,
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any J-holomorphic curve is trivially almost J-holomorphic (just pick 5 J= f], f=0and y=1
in Definition 2.4.2).

Hence, in order to get the corresponding estimates for closed J-holomorphic curves it will always
be sufficient to set ¥; =X, £ = 0 and v = 1 in what follows.

From now on, we will denote by 1 the vector field on B2™~ {0} given by vo(z) = x/|z|. Moreover,
we notice that since 2 is Lipschitz and Q(0) = g, there exists a constant L > 0 depending only
on Lip(§2) such that

lv—w| < L|-|.
Proposition 2.4.1 (Almost monotonicity formula). Let ¥ be a closed almost J-holomorphic curve

in B®™, according to Definition 2.4.2. Then, there exists a positive constant A > 0 depending
only on the Lipschitz constant of Q) such that

Pad H2(ENB il H%(2N B,
APHts (14 Ap) (p2 p) _ Aot (1+ Ao) ( . )
g
1 =
>/ —|Es Av|Pdn? (2.4.2)
. g
¥N(B,~Bs) ’ |
and
_ Pl 2(¥NB _ o 2(¥NB,
e (Ap+f”7 )(1 . AP)% ( 2ﬂ P) —e (Ao‘+f ~ )(1 _ AO’)% ( 2ﬂ )
p o
1 =
</ —|Es Av|Pdr?, (2.4.3)
. g
N(B,~Bs) ‘ ’

Proof. Throughout this proof, R will denote the smooth radial vector field on B?™ given by
R(z) := =, for every z € B*™. We denote by €y the standard symplectic form on B*™ and we
define ©; := Q — Qg. Moreover, given any arbitrary form a € Q?(B?™) we denote by «a; the
tangential part of a form with respect to the vector field v, given by

ar = (dr Na)Lv,

according to the notation used in Proposition 2.2.1.

Define the normal 2-current on B?™ given by
(B, ) = / (,%;)d#?, ~— VaeDXB).
b

As [¥] s is semicalibrated by 2, we will apply the same method that is used in [69, Proposition 1].
Nevertheless, we need to take into account the fact that the 2-current [X] is not a cycle (though
not far from being one).

Let ¢ : [0,400) — [0,400) be smooth, non-increasing and such that:
1. ¢ =1on[0,1/2];
2. |¢'| <4 on [0, +00).
3. ¢ =0on[1,400).
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For every 0 < p < 1, define ¢, () := ¢(|z|/p), for every z € R*™. Notice that ¢, =1 on B,
¢, =0on R* < B, and |V,| < 4/p on R*™. Define

I(p) = /E ol 5 5) A = /E oy A,
70) = [ eplot Sy aon,

Recall that Ly = 2Qy (where Ly denotes the Lie derivative of ¢ with respect to the vector
field R) and compute

21(p) :2/23<pp<ﬂo,iJ>d%”2+2/z;<pp<ﬂl,iJ>dji”2
- / (pd( QL R), 55 dA” +2 / (0,55
> )
:/(d(gop(Qol_R)),iJ) d%Q—/<d¢pA(QOLR),iJ> d#?
> >

+ 2/ (82, ) dA?
b

:/(d( J(QLR)), S — S, dn?

o)
). o
'),

% (dr A (oL (vo — v)), S5) dA?
¢y

(dr A (QoLv), 2J>djf2+2/ 0p(, ) dA?

_|_

/ p(QLR)),E—5,)da?

T %dm QoL (v — 1)), 5 dA#?

6i Qo— Qo)t,zj>d%2+2/(pp<Ql,ij>d%2
= Op

“of,
S! 2 dep S| 2
/ QQLR) ZJ>d<9f +p 7<Q_Qt,zj>d%
+ / 2 dr A QL (vp — ), ) dA?

0 -
/ .Sy dr?—p [ L — () E) drt?
x Op

= 0T'p) = () + [ (dln(L ). 5 - 5 dor?

B .

+p/ #MM(QOL(W—V)),EJM%Z
x Op

— [ G20 — () S 2 [ o0, 5 an?,
s Op by

which leads to

I r J’ L
2 ;g) + [EQp) - p(2p) :_/E<d(<ﬁp(90|—R))vz—EJ>d%2
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+ L[99 Lldr A (Qol (vo — v)), %) dot?

s Op
0 o
+ (;0" Q1 — (), Sy) dA”
p
2 — 2
—p3/2¢p<91,2J>d% .

Notice that

L / (d(pp(QLR)), S — %) dr”
by

< 11 <%2(E N Bp))
p3 ~ b))

2

!
9010, — (1), 55 d?| < QLIP / 00 432 — 2L1p(Q)IE)p),

= Op

/0% A — ~I’(p)
)

1 Oy 2
pz/zapp(dr/\(ﬁol_(vo—u)) 5y

and

I(p)

2 Lip(Q2 - .
;;( )/Z%(Ql,m A = 2Lip(Q) =22

p

2 .
3/90/)(91:2J>d%”2 <
P s

Hence, we conclude

Ci)<1(p)> B J’(p)‘ _ ’ 1) I'(p) J’(p)’

< Aff)g) + Ajp <I(;)> g1 (ff{"(i;”’%))

where A := 2Lip(Q) + L. From the previous estimate, we immediately conclude that

d<l(p)> bt o) d<API(§)>

2

dp\ p 2T 2 dp\" p
_(Ilp) AAENB,)
+lp 1( o 7 . > (2.4.4)
and
d (1lp) -1y L) Jp) ([, I(p)
dp< p2> A+t )pQ op? +dp<Ap p2>
2
+€,07_1<<%ﬂ <§2”Bp>_ff)g>>. (2.4.5)
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By letting ¢ increase to the characteristic function of the interval [0, 1] in (2.4.4), the above
estimate passes to the limit in the sense of distributions and we obtain

2 2
d <% (i2ﬁ BP)) _I_(A_i_gp’y—l)‘%ﬂ (i;j BP)

S 2
S ([ OB )4 (OB
dp\Jsnp, |- dp p

N
Multiplying both of the last inequality sides by the factor AP and taking into account the

fact that the first term on the right-hand-side is non-negative, we get
9 -
(ot PEOB)) S ([ 0T )
dp P dp\ Jsrp, ||

— i eApM%Ape%pZ(E N Bp) 7
dp p?

dp

which turns into

d ( Apree %Q(EOBP)) d (/ 1 - 2)
— (T (1 4+ Ap)——— ) = — (Y, S y) dAH? ).
d,0< ( 2 p? dp \ JenB, "‘2< n 2]

By integration of the previous inequality, we get

H*(ENB,) Ao H%(X N By)

,
AP (1 + Ap) > v (1+ Ao) —

1 -
> [ (5 dn,
SA(BBo) | |
for every 0 < o < p < 1. Since
(Q, %) =S5 AvlZ,

the estimate (2.4.2) follows.
By applying the same techniques to (2.4.5), we get (2.4.3) and the statement follows. O

Remark 2.4.3. Proposition 2.4.1 immediately implies that the function

ik H*(ENB

is non-decreasing. In particular, the limit

H?(XN B,) A?*(X N By)

,
= lim eAp#ﬂT(l + Ap) 5
p

p—0+t
exists and it is finite.

Lemma 2.4.1. Let ¥ be a closed almost J-holomorphic curve in B?™, according to Definition
2.4.2. Then, there exist an H%-measurable field of unit and simple 2-vectors Sg € NaR?™ on

Y and a constant L > 0 depending only on £ and on Lip(Q) such that for s€?-a.e. x € ¥ the
following facts hold:
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(1) So(z) is a unit simple 2-vector calibrated by Qo;
(2) |£(x) = So(x)| < Llx[72;
(3) if S(x) is Jo-invariant, then So(z) = S(z);

5

x) 1s not Jo-invariant, then

150(2) A vg(z) A Jov(z)] = max lv A Jov A vo(x) A Jovo(z)],
VESE
where S, denotes the unit sphere in the approximate tangent space T,.3.

Proof. Recall the definition of the vector field vy, given at the beginning of the present section.
If 2 € ¥ is such that 3(z) is Jo-invariant, we set $o(z) := $(z) and all the required properties
are satisfied. Otherwise, if £ € ¥ is such that i(w) is not Jy-invariant, we first claim that there
exists some Qp-orthonormal basis

{ei(x), Joer(x), ..., em(x), Joem(z) }
of R2™ gsuch that

ler(x) A Joer(x) Avg(x) A Jovp(x)| = max lv A Jov A vg(x) A Jovo ()|
VES,

and we can write $(z) as

S (x) = cos p(x)er (x) A Joer () + sin ¢p(x)er (@) A ea().

for some angle ¢(z) € [0,27]. Indeed, since S, is compact, there exists ej(x) € S; maximizing the
continuous function v — |v A Jov A vp(z) A Jovp(z)|. We complete {e1(z)} to an Qg-orthonormal
basis {e1(z),£(z)} of T, and we write $(z) = ey () A &(x).

Notice that the set {e1(z), Joe1(z),&(x) — Joei ()} is linearly independent, otherwise %(z) would
be Jo-invariant. We define es(x) as the unique vector such that {ej(x), Joei(z),ea(z)} is an
orthonormal set and

span{ey (), Joe1 (z), e2(x)} = span{e1 (z), Joe1(z), £(x) — Joer ()}
Moreover, notice that
S(x) = e1(x) A &(x) € spanfer(z) A Joer (), e1(z) A ea(z)}
and our initial claim follows since
le1(x) A Joer(z)| = |er(z) A ea(z)| = 1.

Then, we define S (z) := e1(z) A Joey (). Clearly, So(x) satisfies (1) and (4). For what concerns
(2), notice that |, — Qo] < Lip(Q)|z|. In particular, since (5;,Q) =1 and |57 — 5| < |-, it
follows that [{(€, X(z)) — 1| < C|z|", for some constant C' > 0 depending only on ¢ and Lip(Q2).
Then,

1+ Cla|” > (0 >
= (Qo, cos ¢(x) e1(x) A Joer(z) + sin(z) e1(x) A ea(z))
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=coso(z) =2 1—Clz|".

Hence, we eventually obtain
‘i(:z;) - Zo(a:)’ = (1 —cos ¢(x))? + sin’ ¢(x) = 2(1 — cos ¢) < 2C|z|”

and the statement follows with L := v/2C. O

For the purposed of the following lemma, we recall that with 7 : C™ ~ {0} — CP™ ! we denote
the standard projection to the quotient (see Section 2.1.3).

Lemma 2.4.2. Under the same hypothesis and notation of Lemma 2.4.1, let 7 € (0,1). Then,
there exists some constant = = E(m,f,Lip(Q),E,*y) > 0 such that

(1) for every 0 < p < 7 and every open set U C B, it holds that

‘M(w*([Z] LU)) - /m] | Agdr(So)| dt

< EAE N Br)p2,

(2) there exists constants G > 0 (depending only on the metric) and K, > 0 (obtained as Cop,
in [69, Lemma 1]) such that in for every 0 < p < 7, we have

— Y 2
/ |/\2d71'(20)‘ djf2 < 2KmG<eAP+€’;(1 + Ap)w — (9(0, E))
¥nB, P

+ Z5%(2 N By)p?

Proof. First, we aim to prove (1). By Lemma 2.4.1 and by the definition of almost .J-holomorphic
curve, it follows that

[ Aadra (S())| ~ | Aadrea (So(@)| < [Aadrs (S(2)) — Aadra ()
S e

for 7#%-a.e. every x € ¥\ {0}. By integrating on U both sides in the previous inequality, we get

‘M(m([Z] L)) - /m] Andr(So)| d?

1
<L / BRI
snu |z|2777?

< L/ L i (2.4.6)
X

NB, |z|2=7/2

Notice that, by exploiting (2.4.2), we get
2
/ L) <22 ED B
SA(Bp~B, ) 121277/ p2=/

1 2(2 N B,) p1/?
<46Ap+€%(1+Ap)=%ﬂ( NBy)p

A+t
4 (1+ A
<A UHA) s gy
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for every 0 < p < 7. By iteration, we obtain

1
— A (x
/zm(Bp\Bp/Qn) |z [>=7/2 (@)

<zhcf‘+5(1+A)%2EmB~ S T Y
— = 7) 272)i )°

§=0
and, by passing to the limit as n — +o0, we have
A+t
1 4 1+ A
/ ——y () < %%2(2 N By)p™’?, (2.4.7)
snB, |z|*/ 72(1—277/2)

for every 0 < p < 7. By combining the previous estimate with (2.4.6), estimate (1) follows with

41+ AL
(1 —-270/2)

w

For what concerns (2), we simply notice that by (2.4.2), by point (2) in Lemma 2.4.1 and by [69,
Lemma 1], we get

5 1 =
/ |Nodm(E0)| dit? < Ko, —= S0 A o) d#”?
YNB, $NB, -]

1 =
<4Km/ — S5 Av)Pda”?
snB, | |

1
—|—4Km/ —2\I/—V0|2d<%”2
snB, ||

|
1

+4K,, ﬁ‘(ij—io)/\l/opdﬁz
YNB, -]
xnB
< 4KmG<eAp+€m(1—|—Ap)jW _9(0’2)>
p
+4K,,LA#*(X N B,)
1
+ 4K, (02 + L?) / —— dA”.
snB, | [*77

By using the same method that we have used in order to prove the decay in (2.4.7), we can show
that

4¢3 (1+A)
72

1
/ P dA*(x) < H2(S N By)p?, (2.4.8)

for very 0 < p < 7. Moreover, we clearly have that

i
HAENB,) _ A*ENB,) _ 4475 (1 + Ap)

2
e < 2 2 JC°(X N Bp)
A+t
4 1+ A
< 677:(2—’—)%2(2 N Bj),
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for very 0 < p < 7. Thus, we get that (2) holds with

UK e (1 AL+ 2 + )
=2

= .
Do =

7

Hence, the statement follows with Z := max{Z;, Za}. O

Remark 2.4.4. A first remarkable consequence of Lemma 2.4.2 and Proposition 2.4.1 is that
M (7. ([X]L B,)) — 0 as p— 0%, (2.4.9)

Lemma 2.4.3 (Good slicing). Under the same hypotheses and notation of Lemma 2.4.1, let
7 € (0,1). Then, for every r € (0,7] there exist p € [r/2,r] and © = ©(m,7,Lip(Q),¢,7) > 0
such that:

(1) A (XN OB;) < O#2(L N Br)p;
(2)/ \/\2d7r ()] dot < ©

[Ngdr ()| d?;
p SN (Br\ By o)

(3) M(W*O([E]I_Bﬁ)) <OV K, f;;/mm S0 A vo| st AL (p).

Proof. First, we notice that, by the coarea formula and the monotonicity formula (2.4.2), it holds
that

T 1
/ wdﬁl(p) < %%Q(EQBT)
/2

P
2
< 2T v (14 Ar )L (sz Br),
T
4€A+%(1 +A) _, r
P S ) —
< > AH(EN Br)3
Hence,
r 1 A1 NOB,)
dcl(p) <1, 2.4.10
T/2 @1%2(2 ﬂ BF) p (p) ( )
with
425 (1 + A)

0, = _
)

Moreover, again by the coarea formula, we get

Forl Inadn(E]dset actp)
/2 JsnoB,
/ / |Nodm(S)| ds#t dL (p)
/2 JznoB,

= / |Aodr(8)| do#? =: a,
SN(Br~B,/2)
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which leads to

T 1 o
][/2 Y /E adn(S) g () < 1 (2.4.11)
r P

Lastly, by |54, Lemma 7.6.1], we know that for a.e. p € (0,1) the slice ¥ N dB, is a 1-rectifiable
subset of B?™ and the vector field i‘p orienting its approximate tangent space at x belongs to
Sz (see notation of Lemma 2.4.1). Then, by [69, Lemma 1| and by points (3) and (4) of Lemma
2.4.1, it follows that

ip AZ WA Jol/o’z = ‘ip A Joip ANZ WA JoI/o‘
< 2o Ao A Jovo|
< Km‘io A V0|2, Hlae on XN 0B,.

Hence, we get

M (r. ()L B,)) < / dr(5,)| d!

$NoB,
1 -
:/ 1S, Avo A Jug| dA!
P JxnoB,
VK o
<7m ‘20/\1/0’61%1.
p $NoB,

Thus, by averaging the previous inequality on [r/2,r], we obtain

][ M (. 0([S]L B,) dL (p) < \/Km][ 1/ S0 A vo| dt = b,
r/2 r/2 P JEndB,

which leads to

][:2 %M(w*a([z] L B,)dL' (p) < 1. (2.4.12)

By summing up the three inequalities (2.4.10), (2.4.11) and (2.4.12) we obtain

" 1 ANENOB,) 1 / B 1
+ - Nodm(2)| ds#
]£/2 <®1%2(2 N Bf) P (Ip $NOB, ‘ 2 ( )|

+ (OS] B,)) dLh (o) < 3

b
Then, we conclude that there exists p € [r/2,r] such that

1 AN (ENOB,) 1 = 1
0, 7751 By) 5 + ap/Em?Bp |Nodm(3)| dA#

+ %M(m([z] LB,) <3

and the statement follows with © := max{©1,6}. O

28



Lemma 2.4.4 (Controlling the mass of the projected boundaries). Under the same hypotheses
and notation of Lemma 2.4.1, let 7 € (0,1). Let r € (0,7] be such that

M(m ([S]L By)) < 2K2M(m([E] L B, /2)) (2.4.13)
and

/E . |Aodm(30)| dot? > ¢TL2% (2 N By)r/?, (2.4.14)

for some ¢ € (0,1). If pj € [r/2,7] is such that ¥ N OB,, is a good slice of ¥ in the sense of
Lemma 2.4.3, then

M(m0([Z]LBy,)) < AVAA(E N Br)y/M(m(S]L B,,))

+ A2 Br)p) (2.4.15)

for a constant A = A(m,7,Lip(Q),¢,~) > 0.

Proof. Let pj € [r/2,r] be such that ¥ N dB,, is a good slice of 3. We apply twice the Cauchy-
Schwarz inequality in the right-hand side of (3) in Lemma 2.4.3 and the coarea formula to get

"]
M(r. (] B,,)) < @\/Km][ ;
r/2
T 1 -
:6\/Km][ / ~1%0 A gl dat ALt (p)
r/2JEndB, P
< @\/Km][ JA(snoB,)
r/2
1 =
\// —2|EO/\1/0|2d¢%”1d£1(p)
$ndB, P
2 '
= e\/Kmr/ \/ A1 (ZNOB,)
r/2
1 -
- \// — 150 A o2 dat ALt (p)
$naB, P

< e\/lrcmi\///2 SN N OB,) dL (p)

T 1 -
'\///2 /zmaB ?‘ZO/\VOP A" L)
r P

- @m\/f\/]f; AV (SN OB,) dL(p)

1 =
. / 72|20/\I/0|2d%2.
ZO(BT\BT/Q) | : |

/ S0 A vo| dA dL(p)
TNOB,
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We notice that, by point (1) in Lemma 2.4.2 and by our assumption (2.4.14), it holds that

‘M(w*([E]I_BT)) —/ |Agdm(30)| A% < 2%(2 N By )r /2

YNBy

<¢ |Nogdm(50)| do#?
YNB,

which implies
= 1
/ Agdr(S0)| dA? < — M(r.(Z]L B,)
SNB;, 1-¢
Hence, by [69, Lemma 1| we have

1 = S|
/ CalSanmnPdn? <k, [ Aadr(So)| d
EQ(BT\BT/Q) ‘ ' | ZO(BT\BT/Z)
K

Moreover, by (2.4.10), it follows that

\/][r :%ﬂl(EﬂaBp)dﬁl(p)g\/;\/][T wdﬁl(p)
r/2 r/2 p

< @Wm\@

Thus,

\/563/2}'(
M(m0([E]L B,.)) < ————="+/H2(X N B;)\/M(7m([Z] L B)).
(r-0(B)LB,)) < 7 VAPEN Br) M (. (5L By))
By our hypothesis (2.4.13) and since p; > r/2, we obtain that
M(m.([S]L Br)) < 2K2, M(m.([S]L B, 2))
< 2K2 M(m([E]L B,,)) +4K2 2SN By)p) .

We point out that the last inequality follows a direct application of point (1) in Lemma 2.4.2.
Then, the statement follows with

{2@3/2K3n 2\/5921(3”}
A := max .

VI-C¢ ' V1-¢
O

We recall the following general fact about integral 2-currents on CP™ ™! with small mass which
are (-almost semicalibrated by wepm-1, whose proof can be found in [69, Lemma 11|. Recall that
a current T € D?(CP™ 1) is said to be (-almost semicalibrated by wepm-1 for some constant
¢e(0,1)if

(1= QT L Uywepns) | SM(TLU) < (1 4+ QNT LU, wgpm) |,

for every open set U ¢ CP™~ !,
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Lemma 2.4.5. Let ¢ € (0,1). Given any couple of constants A >0 and X > 0, there exist § > 0
and £ > 0 satisfying what follows. For every integral 2-current T € D?*(CP™™ ) such that

1. T s C-almost semicalibrated by wepm-—1,

2. M(T) +M(0T) < ¢,

3. M(dT) < A/M(T),
there is a complex projective (m — 2)-hyperplane H C CP™ ! and a tubular neighbourhood H, C
CP™ ! of H with width ¢ such that

M(T L H.)

——<) < AM(T). (2.4.16)

9

Lastly we need to establish that, given a complex projective (m — 2)-hyperplane H C CP™ ! and
a tubular neighbourhood H, ¢ CP™ ! of H with width e, we can approximate the symplectic
form wepm-1 on CP™ ! with an exact form da that coincides with wepm—-1 on the complement
of Hc and vanishes on H, ;. We achieve this approximation through the following lemma, whose
proof is again in [69, Lemma 6].

Lemma 2.4.6. Let H C CP™! be any complex projective (m — 2)-hyperplane and let H, C
CP™ ! be a tubular neighbourhood of H with width €. Then there exists a 1-form a € QY(CP™1)
and a universal constant k > 0 such that:

1. wepm-1 = dac on CP™™ 1 H;
2. a=0on Hp;
3. lalls < &

K

2.4.2. Proof of the fundamental Morrey type estimate

Recall that x,Z > 0 are positive constants introduced in Lemma 2.4.6 and Lemma 2.4.2 respec-
tively.

Fix any jo € N~ {0} and let £ > 0 be a constant depending only on Lip(€2). Let § > 0 and
¢ > 0 be the constants given by applying Lemma 2.4.5 with A = A(m, 2770 Lip(Q), ¥, 1/2) from
Lemma 2.4.4 and A := 5(24x)~!. Let & > 0 be such that

6/
AV + 5 +8 <0
and choose 7 € (0, min{277,§'(22)"'}) such that

!
max{A, E} (e22(1 4 4)) T/ < %

Assume that .% is a family of closed almost J-holomorphic curves in B>™ such that every element
3} € F satisfies the following properties:

(1) |5(x) — S5(x)] < Llz|V?, for A*ae. x €Y,
(2) A2(SNByso) < (eA2(1+4)) 7,
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!/

(3) / |/\2d7'('(i0)| d? < bR
£NB,j,

Remark 2.4.5. For every ¥ € .#, the hypotheses (2) and (3) combined with point (1) in Lemma
2.4.2 imply that:

1. M(m.([Z]L B,)) + M(7.0([Z]L B,)) < 6,
2. M(md([Z]L B,)) < Ay/M(m(S]L B,)),

for every good slice ¥ N 0B, of ¥, where p € [r/2,r] with r € (0, 7] satisfying the hypotheses
(2.4.13) and (2.4.14) of Lemma 2.4.4.

We want to show that for every ¥ € % there exist constants C' > 0 and 0 < a < 1 depending on
m, jo, Lip(€2) such that

<Op*,  Vpe(0,27%). (2.4.17)

‘ / W*W(C]P;m—l |E
$NB,

By definition of mass it holds that

= [ {m([Z]L Bp), wepm—1) |

‘ / W*W(C]P;m—l ‘E
$NB,

< M(m([E] L By)), (2.4.18)
for every p € (0,1). Hence, in order to prove (2.4.17) it is enough to show that
M(m.([E]L B,)) < Cp®, for every p € (0,7). (2.4.19)

Moreover, by exploiting point (1) in Lemma 2.4.2, we realize that we if we show

/ |Ngdr(S0)| do#? < Cp®, for every p € (0,7), (2.4.20)
$NB,

then (2.4.19) will follow with C' := C' + = and « := min{a, 1/4}. Thus, we just need to show
(2.4.20).

Fix any ¥ € .%. Let
B = [ Wadn(Eolan?,  vpe )
¥NB,
and define
A A 1 .
I:={j t. 279 <7and E(27UFD) < ZE(277
{]ENst 7 and ( ) 5 ( ) ,
J:={jeNst 279 <7Fand B(27UT)) < 52270/
First, we claim that there exists 6 = G(m,jo, Lip(Q)) € (0,1) such that

B(2-0+) <o(B(277) +27911), (2.4.21)
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for every j € (I U J)° Fix j € (IUJ)¢ and set r := 277, Pick a radius p; € [r/2,7] such that
¥ N JB,, is a good slice of ¥ (see Lemma 2.4.3). By Lemma 2.4.2 and Lemma 2.4.4, it follows
that we can choose a sequence of radii {sg ren € (0,7/2) such that s — 0% as k — +o0o0 and

M(m,d([Z] L By,)) < M(m([S]L By N B,j2)), VEkeN. (2.4.22)

Since ¥ € .7, by Remark 2.4.5 and since j € (I U J)¢ it follows that T' = m.([¥]L B,,) satisfies
the hypotheses of Lemma 2.4.5 with ¢ = 1/2. Thus, there exists a complex projective (m — 2)-
hyperplane H ¢ CP™~! and a tubular neighbourhood H, ¢ CP™ ! of H with width ¢ > 0 such
that

M (7. ([S] L B,,) L He)
62

< NM(r.(EIL B,,)).

We let o € QY(CP™ 1) be a smooth 1-form given by Lemma 2.4.6 relatively to H, H.. Following
the proof of point (1) in Lemma 2.4.2; we notice that

/ Agdr(S5o)| d?
$N(B,2~Bs),)

< |Ngdm ()| dot?
BN(Bp;Bs;,)

/ <7T*WC]P>m71 5 i> d%Q
SN(Bp;~Bs;)

_ 2‘ /EQ(BPJ_\B%) <w*da,i> dA>

+ 2‘/ (7" (wepnr — da), ) d?
SN(Bp;~Bsy)

=2

. (2.4.23)

For what concerns the second term in the last sum, by Lemmas 2.4.5, 2.4.6 and (1) in Lemma
2.4.2 we see that

YN (B, ~Bs,)
J k

< Jwgpm-1 — do|[M(m, ([E]L B,,) L He)

M(r.([S]L B,,) L H.)
k 2

N

< KAM(m.([E]L B,,))
1

2 = 1/4
4/ |/\2d7r(20)‘d<%02+Z%2(Emej)pj/
SNBy,

N

1 . N
<= / |Agdm(S0)| dst?® + =rt/4, (2.4.24)
4 JsnB,

with

[1]x
|

(6A+2€(1 + A))_l.

| [1]

33



Now we want to estimate

/Zn(Bp].\Bsk) <7T*da, i> A2,

Since 7 is a smooth map on B, \ Bs,, by Stokes theorem we get that
/ <7r*da, i> 4"
SN(Bp, ~Bsy,)
= / m*dals| = ‘ / d(m*a)|x
SN(Bp;~Bsy) SN(Bp, ~Bsy,)
= / T alsroB,, — / T alsnos,,
SNOB, ! $NIBs,

< / 7T*Oé|zmaBp]. +
OB,

Since j € (I U J)¢, by (2.4.22) we get that

ES
/ ™ Oé|2maBsk .
$N9Bs,

= [(mO([Z]L Bs,), a)| < |laf M (m.0([X] L By,))

*
/ T alsnos,,
$NOBs,

< EM(mo([S] L (Br N By j2)))
<3 | Agdr(S0)| o>
2 Eﬂ(Br\Br/2)

Thus, we have obtained

/Zm(Bpj\Bsk) <7r*da,§_j> 2| <

*
/ T alznoB,,
$N9B,,
3K

|Agdm(S0)| dot’? (2.4.25)
2 Jen(B,~B,)2)

and we just need to bound

k
/ Q0 OK‘EmaBpj
SNIB,,

To do this, we write the 1-rectifiable closed curve ¥ N dB,, as

[e.9]
SN OB, =|JT,
1=0

where T; is a Lipschitz connected closed curve in B. We let v; : [0,5¢1(T;)] — B?™ be the
parametrization of I'; through its arc-length, so that |y/| = 1 a.e. on [0, 51(T;)]. First, fix i € N
and notice that for every smooth function f : B®™ \ {0} — R such that f* =0, where

Fii= /F.fd%%

7
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the following Poincaré type inequality holds for I';:

12 AT 12
( / f|2d=%”1) _ ( /0 |fow|2|v;|dc1>
l HH(Ty) 1/2

%l(r 1/2
foy) |2 dl >

%1
= =

1/2
— AT ( e act)
1/2
o[ s prac)
1/2
=T (/ dfls,, de%1> : (2.4.26)
Secondly, since spt(a) € CP™~! \ H. /2 and CP™ !\ H. /2 is diffeomorphic to R?"~2 we can

write o in coordinates {y1,...y2m_2} on CP™ ! as

2m—2

o= Z Qqdyq
a=1
in order to get the expansion
2m—2
ale, = (Tl = 3 (a0 o) (dyas drlr,)
a=1

Moreover, we notice that

|d(aq ow)\gpj‘ < |dag OW‘Q‘d’]ﬂgpj ‘2 < ‘dOéOﬂ"z‘dﬂ"ij ‘2

K 2
< max {|(A}Cpm—1||007 g}‘dﬂzpj ‘

‘ 2

N

K
max {’w(c]pml‘|007 EQ}‘dﬂ\zpj
2
= Mm‘d7r|gpj‘ ,
where

K
Mm = Imax {Hw(c]pml H007 82}

depends only on m. Then, by (2.4.26), Holder’s inequality and point (3) in Lemma 2.4.1, we

estimate
*
/ ™ | ry
r;

2m—2 ‘

Z/ ag o ) (dyq, dr(7]))

35



2m—2
Z /F (ag o — @}, o) (dya, dﬁ(%)>|
a=1 i

2m—2

< Z/ g o 7 — & o 7|l |
a=1 /T
2m—2 ' 1/2 1/2
<y </ \aam_a;ow\?d%ﬂl) </ \dw|gpj\d%1>
a=1 Ly Ly

2m—2

1/2 1/2
<) 3 ([ Vitawomis, [Fart) ([ anls, i)
a=1 Ly ! Ly ’
ngjfl(Fi)/ |drls, |* o
Iy J
< Mt (SN 0B,) / Agdr(S0)] d,
r;

where M, := (2m — 2)M,, and the last inequality follows by our choice of % (see point (4) in
Lemma 2.4.1). Summing up over 7 € N in the previous inequality, using the properties of good
slices established in Lemma 2.4.3 and since ¥ € .%#, we eventually get

*
/ ™ a‘zmaBpj
£NIB,,

< My (2N OB,,) / |Ngdr(So)| do"
$NIBy,

< N O2 (50 By ) / | Agdr(S)| d?
SN(By B, /)

< M@ (eAH0(1 4 A)) 7" / |Aogdr(Z0)| dot? (2.4.27)
SN(By B, /)

Plugging (2.4.27) in (2.4.25) we get

/ <7r*da, i> d?
£0(Bp,;~Bsy)
3K

< <Mm@2 (A2 (1+A) '+ > / | Agdm(30)| dot?. (2.4.28)
SN(Br~\B,2)

2

Combining (2.4.28), (2.4.24) and (2.4.23) and setting

. 2M,,0? =
C .= max{(Ml—l—fl) + 3:‘% 1,2:,},
we obtain
/ |Agdm(30)] do#? < é( / |Agdm(30)| dt? + r1/4>
SN(B,/2~Bs;) SN(BrB,2)
1 .
+ / |Aodm(So)| dot™.

2 JsnB,
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By letting £ — 400 in the previous inequality, we obtain

/ | Agdm(30)| do#? < é( / | Agdm(30)| dt? + r1/4>
EQBT/Q ZO(BT\BT‘/Q)

1 5
+ = / ’/\Qdﬂ'(zoﬂ d%%
2 JsnB,

and by subtracting from both sides the quantity

1

! / Asdr(So)] d A2,
2 JsnB, ),

we get
[ atnatan <o | Nadn (S0 d +1),
ZI"IBT/Q Em(Br\Br/Z)

where C' > 0 is chosen big enough so that C' > 2C' and

By the hole filling technique and recalling that » = 277, we obtain

/ | Agdm(30)| d#? < 9/ |Agdm(S0)| dot’® + 6771,

208, —(j+1) INB,-j
with 6 € (0,1) given by 8 := C/(C + 1) > 27'/* and our claim (2.4.21) follows.
By (2.4.21) we obtain that
B(279) <0B(27U) 461 <9?E(27U7Y) 4 209

LK OPBE(27)07 4 (G — o) /)02
97

NN

up

with 6 := 61/2 and
5! 9o
2

(1>

+sup {(j — jo)0 7} < +oc.

J=Jjo

In order to get (2.4.20), we notice that if j € I U J then either j € I or j € J ~ I. In the first

case, we have
= 1
/ |Nodm(o)| dst? < /
£NB, (i1 2 JsnB

<0 | Agdm(30)| d?.
EQBQ,J‘

|Ngdm(30)| dot’?

2—

In the second case, by definition of J, it holds that
/ Agdr(50)| % < 52 2-G+D/4,
ENB,—(j+1)
By setting & = min{—log, 0,1/4} € (0,1), we get
. 1\*
/ ‘/\gdW(ZO)’ d%Q g 55() y
SNB,_; 2
which leads to (2.4.20) with C' := max{50'/4Z, 2}.
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2.5. Almost pseudo-holomorphic foliations

Lemma 2.5.1. Let m > 2 and let (X, Jx,wx) be a closed, almost Kdhler, smooth (2m — 2)-
dimensional manifold. Assume that v € W12(B?™, X) satisfies v* volx € L'(B*™) and

d(v*volx) =0

in D'(B*™). Then, there exists a representative of v such that the coarea formula holds. Moreover,
given such a representative, for volx-a.e. z € X the following facts hold:

1. v_l(z) is a countably S€>-rectifiable subset of B*™;
2. (v*voly)s # 0, for #?-a.e. x € v 1(2);

3. [wY(2)] is a cycle of finite mass.

Proof. By [41, Theorem 11, Theorem 12| there exists a representative of v such that both (1) and
the co-area formula hold. Moreover, if we denote by E C B?™ the set of all the x € B?™ such
that (v*voly), = 0, by the coarea formula we get

O:/ |v* volx ]gdvolg:/ A2 (v (2) N E) dvolx(2),
E X

which implies that for voly-a.e. z € X the set v1(z) N E has vanishing #?-measure. Thus, (2)
immediately follows.

We are just left to prove (3). By the coarea formula, it follows that
/ A (v71(2)) dvolx (z) = / [v* volx | dL*™ < +o0.
X B2m

Hence, the function X > z ENTZ (v7'(2)) belongs to L'(X) and we know that a.e. z € X is
+

HE
a Lebesgue point for f such that f (z) < +00. F ix any such point z € X. By our choice of z,
it holds that M([v~!(2)]) = #2(v!(z)) = f(2) < 4+0c0. Hence, just need to show that [v=1(2)]
is a cycle. Let exp, : R 2 — X be the exponentlal map of X at the point z. Denote by
po € (0,400) the injectivity radius of X at z and we define

B.(z) :=exp, (B:(0)), for every e € (0, po).
For every € € (0, pg), we let {¢q i }ren C C°(X) be a sequence of smooth functions on X such
that:
1. ¢cp =0o0n X \ B:(2);
2. 0< oo < (Vle(BE(Z)))il on B.(z);
3. it holds that

k—o00 1

olx -a.e. on X.
VO]X (BE VO

(ps,k XBg z)s
(z)) ()

Fix any o € D!(B*™). By the coarea formula, it follows that

/ do A v* (p2 g, volx) :/ gpak(z)(/ da|v_1(z)>dvolx(z).
B2m X v=1(2)
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Hence, by dominated convergence, we get

lim da AN v* (e i volx) = ][ (/ da|v—1(z)>dvolx(z).
k=400 Jp2m Be(2) v=1(z)

Since z is a Lebesgue point for f, we obtain

lim lim da A\ v*(pe volx) = / daly-10,) =: ([v™1(2)], dev) (2.5.1)

e—=0t k—+oo Jpam v=1(z)

Moreover, since v is such that d(v* voly) = 0 distributionally on B*™ and by the upper bound
on . 1, it holds that

/ da ANv* (e i volx)‘ =
B2m

/ v Qe k (da Av* volx ) '
B2m

<1
= volx (B.(2))

/ da A\ v* VOIX‘ =0, (2.5.2)
B2m

for every € € (0,pp) and k € N.

By (2.5.1) and (2.5.2) we get that ([v=!(z)],da) = 0 and, by arbitrariness of o € D*(B*™), it
follows that d[v~!(x)] = 0 in the sense of currents. The statement follows. O

Lemma 2.5.2. Let v € WY2(B?™, X) be a weakly (J, Jx)-holomorphic map such that we have
v*voly € L'(B?™) and d(v* volyx) = 0 in D'(B?™). Then, there exist a representative of u and a
full measure set RegVal(v) C X such that:

1. the coarea formula holds for v;

2. for every z € RegVal(u), the level set v=1(2) is a closed J-holomorphic curve in B*™.

Proof. By Lemma 2.5.1, it follows immediately that there exists a representative of v such that
the coarea formula holds and, for such a representative, v=!(z) is an #2-rectifiable subset of
B2™ with 9[v=!(z)] = 0, for volx-a.e. z € X. Thus, we are just left to show that v=1(2) is
J-holomorphic, for a.e. z € X. By the coarea formula and since v is weakly (J, Jx )-holomorphic,
for volx-a.e. z € X the form v* volx is non-vanishing on v=!(z) and dv(Jw) = Jxdv(w) for every
w € R?™ up to some J#%-negligible set. For such z € X, the orienting vector field to v=1(2) is
given by

= *v'voly
" Jo*volx |y
We claim that ¥ is J-invariant for #2%-a.e. 2 € v(z). Indeed, given any z € v~(z) such

that (v*voly), # 0, we pick an orthonormal basis {&1, Jx&1, .., Em—1, JxEm—1} of T;‘(I)X and we
notice that

(v" vol)y = (ml_l)!v*(fl ATXE A o A ot A TxEmo1)
= (ml_l)!v*gl AV TIxEL A e AV 1 AV T xEm1
= (ml_l)!v*gl ANJWE)N o AV 1 AT (0 Em—1).
This clearly implies that S is J-invariant and the statement follows. O
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In the following lemma, which generalises the model situation presented in Lemma 2.5.2, we will
adopt the notation developed in Appendix 2.A Moreover, we will denote by X the product space
X := CP!' x CP™ 2 and by p; : X — CP! and py : X — CP™ 2 the canonical projections on
the first and on the second factor respectively. We will endow X with the complex structure
Jx = pij1 + P3Jm—2 and with symplectic form wx := pjwepr + pswepm—2 in order to obtain the
Kéhler manifold (X, Jx,wx).

Lemma 2.5.3. Let m,n € Ny be such that m > 3. Let u € WH2(B?™, CP") be weakly (J, jn)-
holomorphic and locally approzimable. If n > 2, then for a.e. (qi,...,qn_1,p) € CP" x CP"1 x
. X CP?2 x CP™ ! the map vy, g0 1p = (Fy,_,0...0Fy ou, Fyor) : B*™ — X has the following
properties:

(1) Vg1,.qn-1p € W172(E2m7X);
(2) 0}, 0, pvolx € LY(B?™);
(3) there exists a set RegVal(vg, .. g, 1.p) C X such that

volx ((X ~ RegVal(vg,,..q_1,p)) =0

and for every (y,z) € RegVal(vg,... 4. 1.p) the 5% -rectifiable set vq_l%m’qnihp(y, z) is a closed
almost J-holomorphic curve in B>™, in the sense of Definition 2.4.2. Moreover, the constants
>0 and vy € (0,1] can be chosen as £ = 2,/2Lip(?) and v =1/2.

If n = 1, analogous properties hold for the map v, = (u,F, o) : B2™ — X and for a.e.
pe Cpmt

Proof. Since the techniques are identical both in the case n = 1 and n > 2, we just focus on the
second one.

Let Y := CP" x ... x CP%. First, we want to prove (1). By Lemma 2.A.1, we know that
P20 Vg, _qn_1.p Delongs to WH2(B2m CP™2), for every p € CP™ !, We claim that the map

P1OVIy . gn1p = Fgn 100 Fy 0w

belongs to W12(B*™ CP') for a.e. (q1,...,qn—1) € Y. Indeed, notice that the map F}, ,o...0F,, ou
is weakly (J, j1)-holomorphic, for every (qi,...,qn—1) € Y. Thus, by Corollary 2.2.1 we have that

/Bzm |d(Fy, ,©...0oFy o u)\z dvol,
Qm—l
= Q/BQM(F%_I o0...0 Fq1 o U)*WC]PJ VAN m

Hence, by Lemma 2.A.2 we obtain

/B2 90</Y |d(Fy,_, 0...0Fy ou)|§dv01y(q1, ...,qn_1)> dvoly

. mel
= 2/IB2m gO(/Y(Fqnl O0...0 th (e} U) wm,l dVOlY((]l, ...,qn_l)) A m
m—1 9
=2D o pu*wepr A ] =D o plduly dvoly < +o0,
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where D := By, ;1 - ... - Bg (be careful to the bad notation, the letter “B” in the definition of the
constant D refers to the constants that are determined by Lemma 2.A.2), for every ¢ € C2°(B?™).
Thus, we get that

/ |d(Fy,_, ©...0 Fy ou)|2dvoly (g1, ..., gn-1) = Dldul?, (2.5.3)
Y

for a.e. x € B?™. By integrating both sides of (2.5.3) on B?™ and by Fubini’s theorem, we get

/2 </ |d(Fy, , 0...0Fy ou)|§dvoly(ql,...,qn 1)> dL2m
B2m Y
/ (/2 |d(l Gn_1 © -+ Olql OU)|§dV019> dVOly(ql,...,qn 1)
Y B2m

= D/ \du\g dvoly < 400. (2.5.4)
B2m
Since (2.5.4) directly implies that
/ (d(Fyy_ 0.0 Fyy o) dvoly < +oo
B2m

for voly-a.e. (q1,...,qn—1) € Y, point (1) follows.

Next, we turn to show (2). By (2.5.3), Lemma 2.A.2, (2.2.1), (2.A.1) and by Fubini’s theorem,
we have

/Y (/BQM ‘vfl‘l ..... qn,l,pV01X ‘gdvolg> dvolYX(Cqu(ql,...,qn,l,p)

2
< /JB2 </Y ‘d(Fqn_1 o..oF, ou)’gdvolYX(CPm_l(ql, ...,qn_l,p)>
- |d(F, 07T)|§m_4dvolg
—DG’”_Q/ |dul? - |d(F, o m)[>™* d vol,
]B2m

2
< DG“”/ dulg dvol (2.5.5)
gom dist( -, Ly,)2m—4 9

where L, is defined as in Appendix A. For any p € (0,1), define Ly := (L, + B,) N B*™. By the
almost monotonicity formula (2.2.3), we get that

/ s, < 22m4/ \dul? dvol
Lz\LZ/Z dlSt( o Lp)2m—4 VO JORS p2m_4 B u g VO g

p

Ap 2
om—2€"" (1 + Ap) 2 p
< 2 m W \du|gdvong

P
2

< (22m—2eA(1+A)/ \duygdvolg>p,
]BQm 4

for every p € (0,1). By iteration (see also the proof of Lemma 2.4.2) we get

|dul? 22meA(1 + A) 9 2
{ —= . 0.
/L" Tst(- L) dvol, < 3 </B?m \du]gdvolg>p (2.5.6)
p
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Combining (2.5.5) and (2.5.6), we obtain

/wam_l (/B ‘U;,...,qn_l,pVOlX ‘gdvolg> dvoly ., cpm-1(q1, s @n—1,P)

<C |dul? dvoly < oo, (2.5.7)

B2m

where C' > 0 is a constant depending on m, n and Lip(2). Again, point (2) follows by Fubini’s
theorem.

We are left to prove (3). First, we claim that for a.e. (q1,...,¢n_1,p) € Y x CP™ ! it holds that

d (U;,..-,qnf . pVolx) = 0 in the sense of distributions. Indeed, we already know that for voly-a.e.

(q1,.--,qn—1) € Y the estimate (2.5.4) holds. Fix any a € D!(B?™). Notice that by estimates
(2.5.4) and (2.5.6) we obtain

\du\g
LI/; dlSt( . Lp)2m74

< O]da|*</ |du\§dvolg>p2, Vpe(0,1),
BQm

< Cldal«

*
‘/Bzm Vgroogn1.p VOLX Ndax dvol,

where C' > 0 is a constant depending only on m, n and Lip(Q). By letting p — 07, we get

‘/Y><(CIF‘”"_1

By arbitrariness of o € D(B?™), our claim follows.
Let E CY x CP™ ! be the set of all the n-tuples (g1, ..., ¢n_1,p) € Y X CP™! such that
1. (1) and (2) hold,;

*
2. d(”qhm,qnfl,p

By what we have shown so far, we have voly cpm-1(E¢) = 0. Fix any (q1,...,qn—1,p) € E. We

dVOIYX(C]P’m71 (QL veey Qn—lap) =0.

*
/B Ugu,...qn1,p VOLX Ndat

voly) = 0 in the sense of distributions.

fix the representative of the map vy, . 4, ,p given by Lemma 2.5.1. Thus, we know that the
following facts hold for volx-a.e. (y,z) € X:

1. the set v ! (y,2) is S %-rectifiable;
1

yeesdn—1,P
2. (Vg an 1 (y, z) and the rectifiable set v, " (y,2)

volx) # 0, for #2-ae. xevy’ .
is oriented by the #2-measurable and unitary field 2-vectors given by:

i’ — (* (Uél,-n,qnfl,p VOIX))ﬁ

*
|vq1,~-,qn—1,p volx |g

3. 8[1)(1_1}“_7%7171,(1;,2)] =0.
Hence, we just need to show that Uq_l}...,q% . p(¥, 2) is almost J-holomorphic according to Definition
2.4.2, i.e. we claim that there exists some J-invariant and #?-measurable field of g-unitary 2-
vectors 3.7 : Ut a1 oW, 2) = AR?™ such that

1= -3, <, (2.5.8)
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for some ¢ > 0 and « € (0, 1]. In order to prove our claim, consider the following .7#2-measurable
and g-unitary fields respectively of 2-vectors and 4-vectors on Uq_ﬁ...,qnf 17p(y, z):

§
S (Plqul,...,qn_l,p)*WCPl)

2=
‘(pl © Ugp,eeesgn1,p) “Wept ‘g

}(PQ © Ugy....gn—1.p)* VOlgpm—2 ‘g ‘(Fp o m)* volgpm-2 ‘g

$2 . (* (P20 Vgy,....qn_1,p)" VOlopm—2 )li (* (Fp o m)* volgpm—2 )ﬁ

Notice that such fields are both well defined .7#?-a.e. on v(;l}n_7qn717p(y, z), since

(U;,---,an,P VOIX)QU 7& 0

for #%-a.e. x € v;j_quil’p(y, z). Fix x € v! . (y,z) such that (v .~ volx), # 0,

so that the subspace Wi := span{%!(z)} is a J-holomorphic 2-plane and Wy := span{¥?(z)}
is a Jo-holomorphic 4-plane. Let W := span{%(z)} and notice that we have W = W; N W,
Wy = (Wit N W3) @ W and dim(W) = 2. Moreover,

4 = dim(Ws) = dim(Wi- N W) + dim(W) = dim(Wi- N W) + 2,

which implies dim(Wji- NWs) = 2. We let {e1, e3} be an g-orthonormal basis of W and let {v,w}
be an g-orthonormal basis of Wll NWs. By construction, {e1, e, v, w} is an Qp-orthonormal basis
of Wy and we can write

S2(z) == ey Aes Av Aw.

If $2(z) is J-invariant, we set i?,(:v) = %2(z).
If not, notice that {e1, Je1,es, Jes,v — Jej,w — Jes} is a linearly independent set. Let ea, e4 be
the unique unitary vectors such that {ey, Jei,es, Jes, e, e4} is an g-orthonormal set such that

span{ey, Jey, es, Jes, v — Jey,w — Jeg} = span{ey, Jey, e3, Jes, ea,eq}.

Exactly as in the proof of Lemma 2.4.1, it follows that there exist two angles ¢1, ¢2 € [0, 27] such
that

—

22(93) :=e1 A (cos p1Jer + singprea) A es A (cos paJes + sin ¢aey).
The same computation as in Lemma 2.4.1 leads to
1 — Lip(Q)]z| < cos ¢1 cos g < 1+ Lip(Q)|z].
We set
Z?](a:) = ey AcosprJe; Aesg Acospades

and we compute

2

£2(0) - S (@)|]

= (1 — cos ¢y cos ¢2)? + sin® ¢,
=1+ cos? ¢y — 2OS Py COS ¢y
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< 2(1 — cos ¢y cos ¢2) < 2Lip(Q)|z|,

which leads to

|22 (2) — ig(:p)}g < /2 Lip(Q)]z|'/2. (2.5.9)

Eventually, we define

By construction, %7 is an #%-measurable and unitary field of 2-vectors on ,Uq_l}u-,Qn— (Y 2).

Moreover, by (2.5.9), we have

\ilA*fﬂg:@lA* (52— %2) + LA X2 ,
S A B[, — | Ax(E2 - E3)),

1|82 - 83| > 1-v2Lip(Q)] - ',

which leads to

5 = = AR & &
-5, <GS -5, =G| 20 S as
IS 7 ,
< 2V/2Lip(Q)G| - |V/2.
Hence, (2.5.8) holds with ¢ = 2,/2Lip(2)G and v = 1/2. The statement follows. O

2.6. Proof of the main theorem

This section is entirely devoted to proof Theorems 2.1.1 and 2.1.2, whose local versions will be
recalled now for the reader’s convenience.

Theorem. Let m,n € Ny be such that m > 2. Assume that u € W12(B>™ CP") is weakly
(J, jn)-holomorphic and locally approximable.

Then, u has a unique tangent map at the origin.

Theorem. Let m,n € Ny be such that m > 2. Assume that u € W12(B?™ CP") is weakly
(J, jn)-holomorphic and locally approximable.

Then, the (2m — 2)-cycle T,, € Daopm—2(B*™) has a unique tangent cone at the origin.

In the first two subsections, we treat the proof of Theorem 2.1.2. We will first address the easy
case m = 2, n = 1 in Section 2.6.1, in order to clarify which will be the main ideas in order
to proceed towards higher dimensions and codimensions. The general case will be discussed in
Section 2.6.2. Lastly, in Section 2.6.3 we will show how Theorem 2.1.1 can be obtained as a
consequence of Theorem 2.1.2.
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2.6.1. A model problem

Let u € W'2(B* CP') be weakly (.J, j1)-holomorphic and locally approximable. As usual, 7 :
B* — CP' denotes the Hopf map.

If #(0,u) < €o, then u is smooth in a neeighbourhood of 0 by Theorem 2.3.1 and the statement
follows. Assume then that 6(0,u) > eo.

We use the same notations and labeling for the constants as in Sections 2.4 and 2.5. Since
wWwept € L'(B*), by using Lemma 2.5.2 with X = CP!, we get that there exists a representative
of u and a full measure set RegVal(u) C CP' such that:

1. the coarea formula holds for u;

2. for every y € RegVal(u), the level set u~!(y) is a closed J-holomorphic curve.
Hence, all the estimates in Section 2.4 will be used assuming i] = i, f=0and v =1, as we
stressed out in Remark 2.4.2.
For every k € Ny, we consider the set Ej, C CP! given by all the points y in RegVal(u) such that
(1) A2(u= (y) N Byr) < ((eA(1+A)) 7

!/

2) / Nagdr(E8) doe? < T
—1
u=l(y)N By 2

where &’ > 0 is the constant introduced in Section 2.4.2 and ig is built as shown in Lemma 2.4.1

starting from the J-holomorphic field of 2-vectors given by
T . *(wwepr )
[u*weptlg

which orients the closed .J-holomorphic curve u=!(y) for every y € RegVal(u). We notice that
Ey_1 C E) for every k € Ny. Moreover, since RegVal(u) C CP! has full measure in CP!, we get

+oo
volgpt (CPl ~ U Ek> =0
k=1

For every k € Ny, we define the localized current T}, := T, L u='(E}y), i.e.
(Tg, ) := / Wwep Ao Va € DXBY).
u=(Ey)

Claim. We claim that every T} has a unique tangent cone at the origin. First, notice that T}
is a normal 2-cycle on B?* semicalibrated by €. By definition of Ej, and by Proposition 2.4.1, for
every y € Eji we get that

I (u_l(y) N Bp)
2

H*(u(y) N By)

e?(1+ Ap) —e7(1 4 Ao) 5

g

> / %(Qt,i%d%z
u=(y)N(Bp~Bs) ‘ ) |

and
H*(u(y) N B,)
2

2 (ufl(y) N BU)
o2

e~ P(1— Ap) — e 49(1 - Ao)
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< / <Qt,2y>d%2
u=H(y)N(Bp\Bg )| ‘

for every 0 < ¢ < p < 1. Since a direct computation leads to

M(T, L B,) 1 _

72” - 2/ %Q(U 1(y) ﬁBp) dvolgp: (y),

p P” JEy

by integrating on Fj the two previous inequalities we get the following almost monotonicity
formulas for the current Tj:

M(T, L B M(T, L B,
Ap(1 +A,0)M — et (1 —|—Aa)(’;2)
> / < / 12<Qt,iy>d%2> dvolgp (1), (2.6.1)
B, \Ju-1(y)n(B,~By) | |
e~ P(1 — Ap)w —e47(1 - AU)MIQ—R’)
(o
</ </ P ’2<Qt,2y>d%2> dvolep (y), (2.6.2)
B, \Ju=1(y)n(B,~Bo)

for every 0 < 0 < p < 1. Equation (2.6.1) immediately implies that function

M(T, L B
(0,1) Bpr—>eAp(l+Ap)(l;2p)

is monotonically non-decreasing. Thus, the density of the current T} at zero, which is given by

M(T,L B
0(1,0) :== lim M(TL B,) = lim (1 + Ap)

M(T; L B,)
p—0t p2 p—0t 2

exists and is finite. Moreover, by (2.6.2), the coarea formula, (2.4.17) and the estimate (2.4.8), it
follows that
‘ M(Ty L B,)

00,y

Q
u* Wept N —5 ’ |2
_I(Ek, ﬂBp

0-Q
ufl(Ek)Iﬁpr uil(Ej)ﬂBp ‘ : ’
<C / T wept | dvolgp: ()
¥)NB,
Q-0
+C/ / | 20’ A dvolp: (y)
Er Ju 1 ﬁBp ’
1
< C'volgpr (CPY)p™ + C/ / — dA#* dvolgp (y)
Ex Ju=1(y)NB, ‘ ) ’
< Cvolgpr (CPY)p® + O volep (CPY)p < C volgpr (CPY)p®, (2.6.3)
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for every p € (0,7), where the constant C' > 0 and «,7 € (0,1) all depend just on k and on
Lip(©?). From the Morrey decay (2.6.3), uniqueness of tangent cone for T}, follows by standard
arguments.

Conclusion. For every j € Ny, consider the residual current R; := T, — T;. By the same
arguments that we have used in the proof of the previous claim, we conclude that R; is a normal
2-cycle in B* which is semicalibrated by Q. In particular, the quantity

M(R; L B
Ap(l—l—Ap) ( J2 P)

(2.6.4)
is non-decreasing in p € (0,1). Therefore, the limit as p — 0T of the quantity (2.6.4) exists and
it is finite. Then, since the quantity (2.6.4) is also non-increasing in j € N and going to 0 as
j — +00, we are allowed to exchange the limits in the following chain of equalities and we get

M(R;L B M(R;L B
lim lim W = lim lim eAp(l—i-A,o)#
Jj—+00 p—0+ P Jj—+00 p—07+
M(R; L B
= lim e?(1+ Ap) lim # = 0. (2.6.5)
p—0+ Jj—r+oo P
Fix any € > 0. By (2.6.5), we can pick j € Ny sufficiently large so that
M(R;L B
lim LB € (2.6.6)

p—0t p2 2

Now assume that {pg}ren C (0,1) and {p}}ren C (0,1) are two sequences converging to 0 as
k — 400 and both

(@) T — Cooy
(D )T — Clo:

where for every p € (0,1) the map ®, is defined as in subsection 1.2. By further extracting
subsequences if needed, we assume also that the sequences {(®p,)«T)j}ren and {(®, )«T}}ren
converge weakly in the sense of currents. By our previous claim, they converge to the same limit
and then we have

Clo—Coo= lim ((®

k—+o0

p;)*Rj - ((I)pk)*R ) + lim ( o )*TJ

k—+o0 k

— lim ((I)Pk)*Tj

k—+o00

= lim ((2y):R; — (Pp,)RR)),

k—+o0

in the sense of currents. By sequential lower semicontinuity of mass with the respect to weak
convergence of currents, and by (2.6.6), we eventually get

M(CL, — Cx) < hminfM(( )R — (@, )«R;)
k—+o00
< Jim InfM((®, > + i inf M((2,). 1)
M(R; L B, R;LB
= lim M—&- lim M<€.
k—-+oo (0%) k—+oo o
By arbitrariness of € > 0, we obtain that M(C’_ — C) = 0 and the conclusion follows.
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2.6.2. The general case

Let m,n € Ny be such that m > 3. Let u € WH2(B?™, CP") be weakly (.J, j,)-holomorphic and
locally approximable. As usual, 7 : B — CP™ ! denotes the Hopf map.

If #(0,u) < o, then u is smooth in a neeighbourhood of 0 by Theorem 2.3.1 and the statement
follows. Assume then that 6(0,u) > 9. Moreover, since the case n = 1 can be done exactly using
the same method, we just focus on the case n > 2.

Let T € Dy(B*™) be the 2-current given by

1
(m —2)!

Notice that T is well-defined and normal, since

(T, a) := / wrwepn A W*wg};f,l A« Yo e D}(B™M).
B2m

[T, a)| < =) ]a\ / |du| |/\2d7r\2m *dvol,
< 07\04* |d2u]2 7 dvolg
(m —2)! m | -2
1
< B — % 1 D2 BQm
Cogll /Bzm duf>dvoly < +oo,  Va € DB,

where C' = C(Lip(2)) > 0 is a constant and the last inequality follows from (2.2.3) exactly in the
same way as estimate (2.5.6). Let Y := CP" x ... x CP? x CP™! and X := CP! x CP"™ 2. Notice
that by Lemma 2.A.2, Fubini’s theorem, Lemma 2.5.3 and the coarea formula, we can write the

action of T' as
1
(T,a) = (2/ </2 vy, volx /\a) dvoly (y)
_ p2m

2 // (/ aiy>d%2> dvolx(z) dvoly (),

for every o € D?(B?™), where y := (q1,...,qn—1,p) € Y is any point in Y such that (1), (2) and
(3) of Lemma 2.5.3 hold, vy, := v, ,...q,_,,p and

(* (v;k volX))ﬁ

YYo=
\v; volx |g

)

following the notation that is used in Lemma 2.5.3, is the g-unitary field of 2 vectors orienting
v, (), for every z € RegVal(v,) C X. We define the “tilted current” Ty € Do(B*™) by

(T, ) = e 2 // (/ ai§>d%2>dvolx(z)dvoly(y),

for every a € D?(B?™), where ig is the J-holomorphic field of 2-vectors that we have built in
the proof of Lemma 2.5.3.

Step 1. We want to show that that Ty has a unique tangent cone at the origin. First, for every
k € N we define the set Fy, C Y x X given by

1. points (1), (2) and (3) in Lemma 2.5.3 hold for the map v, and the level set v, (2);
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2. %2(vy_1(z)ﬂB27k) < (eA+2f(1+A))—1;

3. / |Aodr(5Y)| dot? <
;1(2)ﬂ32,k

/
57
where we are using the notation of subsection 3.2 and ¢ = ¢ ( Lip(Q)) > 0 is the constant provided
in Lemma 2.5.3. Notice that, by Lemma 2.5.3, Lemma 2.4.2 and Fubini’s theorem, it holds that

VO]YXX <Y x X U Ek)

keN

Fix any k € N. Define the truncated current T% € Dy(B?™) by

<Tff,a> :/ (/ y )<a, i% d<%”2> dvoly « x(y, 2), Yo € D*(B*™).
FEy vy (2

Notice that, by Proposition 2.4.1 and by definition of E, for every (y, z) € Ej it holds that

A2 (v, (2) N By)
2

pAp+ep'/? (1+ Ap)

P
% (v Y (2) N B,
_6A0+80'1/2(1+A0_) (Uy (2’2) )
ag
> (05
vgl(z)ﬂ(Bﬂ\Ba) ‘ : |

and

A% (v, (2) N By)

_ 1/2
e (Ap+Lp )(l—Ap) yp2
A2 (v, (2) N By,
_e—(AJ—l—EUl/Q)(l_AO_) (Uy (;) )
o
1 o
< —{Q, %Y dA#?,
/vy_l(z)ﬂ(Bp\Bg) |- \2< o))

for every 0 < o < p < 1. Since a direct computation leads to

M(T;LB,) 1
p? N

2

A% (v, (2) N By) dvoly x(y, 2),
P~ JEy

by integrating on Fj the two previous inequalities we get the following almost monotonicity
formulas for the current Tff:

M(Tk_ B M(TkL B,
eAp—Mpl/Q(l—{—Ap) ( J2 P) _6A0+£01/2(1+A0_) ( JJ2 )
1 .
2 / </ 2 <Qt723> d‘%z) dVOlYXX(yaz)J (267)
B \Joy ()n(By~Bo) | |

k k
e—(Ap+€pl/2)(1 _ AP)W _ e—(Aa+ea1/2)(1 _ AU)M(T‘;L_R’)
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</v (/ <Qt723> djf?) dVOlYXX(Z/» )7 (268)
Ey, vy 1 (2)N(Bp~Bs) ’ ‘

for every 0 < o < p < 1. The inequality (2.6.7) immediately implies that the function

M(T; L B
(0,1) 3 p — et % (1 4 Ap)i( > )

is monotonically non-decreasing. Thus, the density of ij at 0, given by

M(T5_ B
O(T%,0) := lim —— ——* — lim eApMp“"’(HAp)w
p—0

exists and is finite.
We claim that TL],C has a unique tangent cone at the origin, for every given k € N. The fact that
Ty itself has a unique tangent cone at the origin will follow directly by the same method that is
used in the conclusion of the previous subsection. By using (2.6.8), the fact that €2 is Lipschitz,
point (3) in Lemma 2.5.3, the estimates (2.4.17) and (2.4.8), we get
M(T*L B,)
2
1
<C (/ <Qt,2y>d%2> dvoly x x (y, 2)
B, | 2

Q Q
C/ / | 2 ol d%deolyXx(y,z)
vy (2)NB,

IE” [£ — 55|
|- [?

- e(T];,o)‘

d? dvoly « x(y, 2)

Y2)NB,

/ ﬂ*w(c]}pm—l‘zy d%2‘ dVOleX(yyz)
vy (2)NB,

+c/
E;j

< CVOlyxx(Y X )()po‘7

for every p € (0,7), where the constant C' > 0 and «, 7 € (0,1) all depend just on k and on Lip(€2).
The fact that T]f has a unique tangent cone at the origin than follows by standard arguments and
step 1 is proved, due to the arbitrariness of k € N.

Step 2. We claim T has a unique tangent cone at the origin. A direct computation using the
estimate in point (3) of Lemma 2.5.3 leads to

M((T - Ty)L B,) g/ / / |- Y2 4.2 dvol (=) voly (1).
vy~ (2)NB

Hence,

M{(T-T;)LB 1
(( 2J) ) < / / / 75 d% dvolx (z) voly (). (2.6.9)
1% vy (2)NB, | : ’ /

By (2.4.8) (recall that v =1/2)), we get

2 2/ —1 1/2
/Uyl()m i 7 < O ()
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for every p € (0,1) and for voly « x-a.e. (y,z) € Y x X. By integrating the previous equality on
Y x X, (2.6.9) and (2.5.7), we get that

M(T-T;)LB
( 2J) ) <C’(// vy, volx |gdvolg)p1/2
Y JB2m

p
SC'(/ |du\§dvolg>p1/2,
B2m

where C' > 0 is a constant depending only on m, n and Lip(£2). This implies that the density of

T — Ty at 0, given by

and there is a Morrey decrease of the mass ratio to the limiting density zero. Thus, T' — T; has
a unique tangent cone at the origin. Since by step 1 we know that 7'y has a unique tangent cone
at the origin and T'=T; + (T — TY), our claim follows.

Conclusion. Notice that 7' = (m — 2)!T, L ﬂ*w(’cnp_,f,l and recall that W*wgpf,l is invariant
under ®7. We address the reader to [54, Section 7.2| for the definition of the standard operations
"L" and "A" when the arguments are a current and a form. Pick any two sequences of radii
{pr}ren C (0,1) and {p} }ren C (0,1) such that pg, pj. — 07 as k — 400 and

(@p)sTu — Cooy

Since

for every a € D?(B?™) and for every p € (0,1), we get that
(CI)pk)*T — (m— 2)! Coo L W*w&np—n?ﬂ
(P

)T — (m —2)!1CL I_Tr*wgpjf,l.

>~

p

Since the tangent cone to 1" at the origin is unique, we conclude that

* m—2 / * m—2
Celm Wepm-1 = ColLm Wepm—1>

which implies
(C’OO Lﬁ*wgp_m?_l) A2 = (C’ Lw*wm_z_l) A T2 (2.6.10)

Notice that

Coo = (Coo Lﬂ*wgp_ﬁ,l) A ﬂ*wgp_f,l + (C’oo A ﬂ*wm_Q,l) Lw*wgpﬁ,l,
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!/ / * m—2 * m—2 / * m—2 * m—2
Cy = (COO (s w(cpm,l) AT Wepm-1 + (C’OO AT wcpm,l) L Wepm—1-

Since m > 3 we have, by dimensional considerations, that

T ((Coo A2 ) L 1) = 0, (2.6.11)
T ((Clo A W*wgpjf_l) Lw*wgw;f_l) =0. (2.6.12)

Thus, by (2.6.10), (2.6.11) and (2.6.12), we get m.Co = m.C.,. Since Cy and C/, are Jo-
holomorphic cones, we get Cy = C’ and the statement of Theorem 2.1.2 follows.

2.6.3. Recovering uniqueness of tangent maps for u

The case n = 1. Let m > 3 and let u € WH2(B?™, CP') be weakly (J, ji)-holomorphic and
locally approximable. By the methods that we have introduced in the previous subsection, it
follows that uniqueness of tangent cone holds for every (2m — 2)-dimensional current 7T, of the
form

(T, ) == / u* (Y wept) A o Vo € D*™2(B),
B2m

with 1) € C°(CP!).
Pick any two sequences of radii {p;}ren C (0,1) and {p} }ren C (0,1) such that pg, pj, — 0T as
k — 400 and

Upp, — Uoco,

/

—\
uoo’

Up;g

weakly in W12(B?™, CP!). By uniqueness of tangent cone for Ty, we get immediately that

[ ks A (680 = [ (0" (Gwce) A (990),
B2m

B2m

for every ¢ € C®°(CPY), ¢ € C°(B*™). As both us and u/ are weakly (Jp, 51)-holomorphic, by
the coarea formula and by Corollary 2.1 we get

/ () A (600 = / w@)( / Pty d %pm-z) volon (3)
B2m cpt B2m
| o ween a0 = [ w)( [ oXa 1w 4?2 voleps(w)
B2m CP! B2m
for every 1) € C®(CP'), p € C2°(B?™). Hence,

/cpl v ( /1532m P(Xuzi ) — X 1) 47 2’”2) volgp (y) = 0

for every 1) € C®(CP'), p € C°(B>™). This implies that for volopi-a.e. y € CP! the sets uz}! (y)
and (ul,)~!(y) coincide up to 2" 2 negligible sets. We conclude that us, = ul, L£*™-a.e. on
B2 and the statement of Theorem 2.1.1 follows.
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The case n > 1. Let m > 3, n > 2 and let u € WH2(B?™ CP") be weakly (J, j,)-holomorphic
and locally approximable. By the methods that we have introduced in the previous subsection, it
follows that uniqueness of tangent cone holds for every (2m — 2)-dimensional current 7 3;/’1""(]”‘1
of the form

<T5’112)""q"_1,04> = /1522 (Fpyo..oF, ,ou)(pwep)Aa YVac DM 2B,

with ¢ € C°°(CP") and for every choice of (g1, ...,gn_1) € CP? x ... x CP".

Pick any two sequences of radii {p;}ren C (0,1) and {p} }ren C (0,1) such that pg, pj — 0T as
k — +o0 and

Upy, — Uoo,

/

u 003

o U
weakly in W12(B?™, CP!). By using the technique that we have shown for the case n = 1, we
get that

Fjo0..0F, oux=F,o0..0F,  ou L£*™ a.e. on B™,

dn—1 00

for every choice of (g1, ...,qn_1) € CP? x ... x CP". By using iteratively Lemma 2.A.3, we obtain
Uso = ul, L?™-a.e. on B?™ and the statement of Theorem 2.1.1 follows.

Remark 2.6.1. The advantage of the previous approach relies in the fact the we don’t get only
uniqueness of tangent cone for the current T;, but also for its "localizations" T, ,; (see the beginning
of subsection 6.3) through smooth functions ¢ € C°°(CP"). This allows more flexibility and we
would like to drag the attention of the reader on the fact we could exploit such flexibility in order
to get a new proof the result in [7]. Given an integer (p,p)-cycle ¥ C B?™ we could consider
a weakly holomorphic and locally approximable map u € W1H2(B*™, CP™ P) such that u(X) =
{y} € CP™ P, By localizing the associated cycle T, through a sequence {1.} C C°°(CP™P)
such that . — d, in D'(CP™P), we could exploit our techniques to get uniqueness of tangent
cone for ¥ ultimately.
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Appendix to Chapter 2

2.A. Slicing through singular meromorphic maps

Let m € N be such that m > 3 and fix any point p € CP™ 1. Let 7 : C™ ~ {0} — CP™ ! be the
quotient map given by

(21, ey Zm) 2= [21} -} Zm), Vz € C™ \ {0}.

Denote by L, the complex line generated by p in CP™ ! and let T, : C™ \ L, — Li ~ {0} be
given by the restriction to C"™ \ L,, of the standard orthogonal projection from C™ into L;. Fix
a complex orthonormal basis {€f, ...,e} _;} of L~ and let ¢, : Ly- — C™~! be the following linear
isomorphism:

m—1
gp,,( Z ozje§> = (a1 ooy Q) V(ag,..,am_1) € C™L,
j=1

Let m, : L[f ~ {0} — CP™ 2 be the smooth submersion given by m, := 7 o ¢, where
(O, ooy Qp—1) = |1} oy Qun—1], V(aq,...0m—1) € (GUCREING {0}.
Eventually, notice that the map F), : CP™ ! < {p} = CP™ 2 given by
Fy([z15 .5 2m]) = (mp o Tp) (21, ooy 2m), Y [21, .y 2m) € CP™71 N {p},
is well-defined and smooth, since the map m, o T}, is constant on the fibres of 7.

Lemma 2.A.1. Let m € N be such that m > 3. Then, for every p € CP™ ! the following facts

hold:

(1) the map F, o belongs to WhH2m=4(B2m CP™ ?2);

(2) F, om is weakly (Jo, jm—2)-holomorphic, where jn,_o is the standard complex structure on
CP™?;

(8) F,om is such that d((Fp o m)* volgpm-2 ) = 0, distributionally on B*™.

Proof. Fix any p € CP™ ! and notice that the complex line L, is indeed a real 2-plane in R2™.
Thus, #?m=%(L,NB*™) = 0, for every a € [1,2m —2). Hence, L, NB*™ has vanishing (2m — 4)-
capacity. Since F, o € L (B?*™) N C>(B*™ \ L,) and the classical differential of F, o 7 on
B2m < L, can be estimated by

C

|d(Fy o )| = |d(mp 0 Tp)| < [Aadmp 0 Ty| < M’

(2.A.1)
we obtain that d(F, o w) € L*™~4(B?™ \ L,). Point (1) immediately follows.

For what concerns (2), we know that the weak differential of F,, o 7 coincides £2™-a.e. with its
classical differential on B?™ \. L,, where F},om is smooth. Moreover Fj,om = m,0 T}, on B2™ < L,.
Since both 7, and T}, are holomorphic maps, then F}, o7 is holomorphic on B2™ L,. Then, since
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B2™ L, has full L2™-measure in B?™, the fact that the weak differential of F, o m commutes

with the complex structures Jo and j,,_o for £L2™-a.e. x € B?™ follows and we have proved (2).

We are just left to prove (3). Fix any a € D3(B?™). For every any ¢ > 0 we define

L = (Lp + B=(0)) N B*™ (2.A.2)

and we notice that

/ (Fp o m)* volgpm—2 Adox / (Fp o m)* volgpm—2 Ada
B2m L

£
P

< / |da||(F}y o 7)* volgpm-—2 | dL*™
Ls

p
< ||dal | / (d(F, o m)[2mdcom
Ly
< [[dar|| oo [ d(Fy o )| [Fa 4 £7™ (L) /T — 0
as ¢ = 07, where q :== (2m — 3)/(2m — 4) and ¢’ = 2m — 3 is the conjugate exponent of ¢q. By
arbitrariness of o € D3(B?™), point (3) follows. O

Lemma 2.A.2. For every m > 3, there exists a constant By, > 0 such that

UL)(CH];m—l — Bm F;(J.)C]P)m—Q dp
Cpmfl

Proof. Throughout this proof, given any m > 1 and a unitary matrix A € U(m), we will denote
by A:CP™ ! — CP™! the map [2] — [Az].

It is well known that, up to rescalings by constant factors, the Fubini-Study metric is the only
U (m)-invariant symplectic form on CP™ !, for every m > 2. Thus, it is enough to show that

& ( /CP’”l Frcen=s dp) N /(;Hmml Fywepm-2 dp, VAecU(m).

Fix any A € U(m).Given p € CP™~ !, define
B, = (ppOTpOAOSpOQO;l el 5 cml

where S, : sz — C™ is the left inverse of the orthogonal projection map 7, : C™ — LIJ;. As
composition of linear and unitary maps, B, € U(m — 1). Moreover, by construction it holds that
E,o A= Bp o Fy,.

Hence, by linearity of the integral and the definition of F},, we have

A*</(Cpm_1 F;WCPm—Q dp> — /CIP"L_I A*F;W(CPM—Q dp
\/Cv]Pml (Fp (¢] A)*w(cpm72 dp

- (B @) Fp)*wcpm72 dp

— /(C]Pm_l F;B*WCPm—2 dp

a

55



= /(C]Pml F[;kaPm_2 dp
and the statement follows by arbitrariness of A € U(m). O

Lemma 2.A.3. Let m > 3 and pick any two points x,y € CP™~ L. For every j = 1,...,m, let
é;j = m(ej) € CP™ ! where {e1,...,em} denotes the standard complex euclidean basis of C™.
Assume that

Fe(x) = Fg; (), Vi=1,..,m. (2.A.3)
Then, x = y.

Proof. Let x = [21;...;2m] and y = [y1;...;ym]. Fix any j = 1,...,m. By definition of F%,, the
condition F,(x) = Fg,(y) implies that there exists \; € C \ {0} such that

Ajx; = yi, Vi=1,...,m with i # j.
Hence, by enforcing (2.A.3) we get that there exists A € C \ {0} such that
AT = yi, Vi=1,...,m.

This implies z = y in CP™~! and the statement follows. O
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3. Vector fields with integer valued fluxes

3.1. Introduction

3.1.1. Motivation and statement of the results

Given a smooth map u : X — Y between closed, oriented and connected (n — 1)-dimensional
manifolds, the degree of u is a measure of how many times X wraps around Y under the action
of u. Tt can be defined as follows!:

deg(u) :/Xu*w,

with w € Q"(Y) being a renormalized volume form on Y, i.e. w is nowhere vanishing and

/wzl.
Y

Let D C R™ be an open and bounded Lipschitz domain and consider a map u € WP(D,Y)
for some p > 1 being smooth up to finitely many point singularities, which simply means that
u € C®(D \ S,,Y) for some finite set S, C D. In this case we write u € R'P(D,Y). We define
the degree of u at some singular point x € S, as

deg(u, z) := deg(ulop) = / u'w € Z, (3.1.1)
oD’

where D’ CC D is any open, piecewise smooth domain in D such that D’ N S, = {z}. Notice

that Definition (3.1.1) is independent from the choice of the set D’.

If deg(u, x) # 0 for some x € S, then we say that x is a topological singularity of u and we refer

to the subset of .S, made of the topological singularities of u as the topological singular set of u,

which we denote by SLep.

Notice that if u € RM (D) then u*w € Q) '(D), moreover by (3.1.1) we see that the u*w

“detects” the topological singularities of u, in the sense that

/8[)/ urw = Z deg(u, x) (3.1.2)

zESffpﬁD’

for every open, piecewise smooth domain D' CC D such that 9D’ NS, = (). From (3.1.2) one
can deduce that

*d(u*w) = Z deg(u,z)d, in D'(D).
zESLP

!An alternative definition can be given in terms of the orientations of the preimages of regular points of u, see
for instance [10, Chapter 7|
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Remark 3.1.1. Sobolev maps that are smooth up to a finite set of topological singularities arise
frequently as solutions of variational problems in critical or supercritical dimension. For example,
this is the best regularity which is possible to guarantee for energy minimizing harmonic maps in
Wh2(B3,S?) (see [79, Theorem II]). Again, quite recently the F. Gaia and T. Riviére considered
the following “weak S'-harmonic map equation”

div(u A Vu) = 0 in D'(B?)
and gave a completely variational characterization of the solutions in RYP(B2 S') with finite

“renormalized Dirichlet energy” for p > 1 (see [37, Theorem 1.3| for further details).

We also remark that the presence of topological singularities is deeply linked to fundamental ques-
tions concerning the strong W P-approximability through smooth maps of elements in W' (D,Y)
(see [12], [43]).

The previous discussion motivates the following general definition.

Definition 3.1.1. Let p € [1,00]. Let F € Qgil(D). We say that F has finitely many integer
singularities if there exists a finite set of points S C D such that F' € Q" }(D \ S) and

*dF = Z a0z,
xeS
where a, € Z for every x € S. The class of L? integrable (n — 1)-forms on D having finitely many
integer singularities will be denoted by QZ};(D).

As we have seen above, u*w € Q] (D) for every u € R1"~1(D,Y), for any closed, oriented and
connected n — 1-manifold Y. Other simple examples of elements of QZ}I (D) can be constructed
as follows. Let o : D — R denote the fundamental solution of the Laplace equation, i.e.

—|z| ifn=1,
o(z) = § —5= log|z| ifn=2
L L ifn>3,

n(n—2)a(n) |z"~>

where a(n) denotes the volume of the unit ball in R™. Then *do € QZ’}LI(D) for any p € [1, -"5).
In fact xd(xdo) = Ao = dy.

Clearly any finite linear combination with integer coefficients of translations of *do also belongs
to QZE%I (D). In fact one can show that any element F' of QZ}}(D) can be decomposed as such
a linear combination plus some F € Qg_l(D) with *dF = 0. In particular, if p > —5 then
xdF = 0. Thus the class Qzﬂj%l (D) is relatively simple from an analytical point of view and so it is
natural to ask which forms in QZ*I(D) can be approximated by elements in Qgﬁl (D). The main
purpose of the present chapter consists in giving a description of the strong and weak closure of
the class QZ’}}(D) for any open domain in R™ which is bi-Lipschitz equivalent to the open unit
n-cube Q1(0) C R™.

First, we will address the strong closure in the case of the open, unit n-dimensional cube Q1(0) C
R™. To this end we introduce the class of (n — 1)-forms with integer-valued fluxes.

For any F € Q" ', for any z¢ € Q1(0) let Rp., C (0,70) be the set of radii p € (0,79) such that

P
Lloc

1. the hypersurface 0Q,(zo) consists " '-a.e. of Lebesgue points of F,
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2. there holds |F| € LP(0Q (o), # ™ 1).
One can check that £! ((0, Tzo) N RF@O) = 0.

Definition 3.1.2. Let p € [1,00], let F' € ngl N Q;_I(Q1(0)7u) for some Radon measure p, for
loc

any xo € Q1(0) let RF,IO be defined as above. We say that F' has integer-valued fluzes if for any
xo € Q1(0), for L1'—a.e. p € RF , there holds?

0wy F € Z. (3.1.3)
/an(xo) Qp(@0)

The space of LP(u)-vector fields with integer valued fluxes will be denoted by QZ%I(Ql(O), ).
The set of radii p € Rp, for which (3.1.3) holds will be denoted by Rp 4,

We will always write (227%1(@1(0)) for (22721(@1(0),5"), where £" denotes the n-dimensional
Lebesgue measure.

First of all we observe that (3.1.2) implies that QZ}l(Ql(O)) C Qg’il(Ql(O)). More general
examples of forms in Qz’il (Q1(0)) can be constructed as follows. Let again Y be a smooth, closed,
oriented and connected (n — 1)-dimensional manifold. Let u € W"~1(Q1(0),Y). Then for any
zo € Q1(0), for a.e. p € (0,2disteo(z0,9Q1(0))), u}an(O) € Win=1(96Q,(0),Y). Therefore for
any such p

150 (o) (W) = deg (u S/ 3.14
/anm) 0@, (o) (U'®) ( ’anmo)) (3.1.4)

Notice that deg (u‘aQ (wo)) is well defined (by means of approximation by functions in W1 (9Q,(z¢),Y),
P

see |21, Section 1.3]).

We will show that in fact the closure of Q;LE{I(Ql(O)) in Qg_l(Ql(O)) is exactly Qgil(Ql(O)).

More precisely, we have

Theorem 3.1.1. Let n € N and let p € [1,00). Let F' € 927;(@1(0),#). Then we have

1. if g€ [0,1] and p € [1, %), then there exists a sequence {F}}ren in Qg}&l(Ql(O)) such

that Fy, — F in = 1(Q1(0)) as k — oc.

2. ifq € (—0,0] and p € [Ll,—i—oo), then *dF = 0.
n —
The reason why we have introduced the weighted measures p = f L™ for ¢ # 0 is that forms
belonging to Qz’il(Ql(O), 1) appear naturally in the proof of Corollary 3.2.2. Nevertheless, we
advise the reader to assume ¢ = 0 (i.e. p = L") throughout Section 3.2 at a first reading of the
present chapter. This allows to skip many technicalities without losing formality, since all the
results of this chapter are independent on Corollary 3.2.2.

With the help of Theorem 3.1.1 we will get another characterization of the LP-closure of QZ; (Q1(0)).
For this we recall the following definition (compare with [19, Section II]):

2Notice that for the associated vector field V = (xF)° condition (3.1.3) reads

/ V Vo, (v d """ € L.
an(TCl)
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Definition 3.1.3 (Connection and minimal connection). Let M C R™ be any embedded Lipschitz

m-dimensional submanifold of R” (with or without boundary) such that M is compact as a subset
of R™.

A 1-dimensional current I € Ri(M) is said to be a connection for (the singular set of) F if
M(I) < 400 and I = *dF in (W, ™ (M))*.

A 1-dimensional current L € R;(M) is said to be a minimal connection for (the singular set of)
F' if it is a connection for F' and

M(L)= inf M(T).
TeD1 (M)
OT=xdF

We will see in Corollary 3.2.1 that F' admits a connection if and only if it admits a minimal
connection.
Here is the characterization of QZ%I(Ql(O)) in terms of minimal connections:

Theorem 3.1.2. Let n € Ny, let p € [1,400). Let F € Qg_l(Q?(O)). Then, the following are
equivalent:
1. there exists L € R1(Q1(0)) such that OL = *dF in (WOI’OO(Ql(O)))*.

2. for every Lipschitz function f : Q1(0) — [a,b] C R such that f|sg, ) = b, we have
/fl(t) i},l(t)F €z, for L'-a.e. t € [a,b];

3. F € Q1 (Q1(0)).

In other words, F' € (22721(@1(0)) if and only if F' admits a (minimal) connection. This character-

ization allows to generalize the definition of the class Qgil(Ql(O)) to general Lipschitz domains:

Definition 3.1.4. Let M C R™ be any embedded Lipschitz m-dimensional submanifold of R"
(with or without boundary). We define

QZ’QI(M) = {F e Qy '(M) s.t. 3L € R1(M) connection for F}.

Notice that if M = Q1(0), Definition 3.1.2 and Definition 3.1.4 coincide by Theorem 3.1.2.

We will deduce from the previous results that the approximation result can be extended to any
open domain which is bi-Lipschitz equivalent to Q1(0) of 0Q1(0) (see Theorem 3.2.3).

We mention here two other corollaries of Theorem 3.1.1.

Corollary 3.1.1. Let n € N. Let I € R1(Q7(0)) be an integer rectifiable 1-current. Then
there exists a 1-form w € Q1 (Q1(0)) such that xdw = O8I and OI can be approzimated in

(Wol’oo(Q’f(O)))* by finite sums of Dirac-deltas with integer coefficients. More precisely, there
exist sequences (P;)ien and (N;)ien of points in Q7(0) such that

oI = (dp, — dn,) in (Wy™(Q1(0)))" and Y|P — Ni| < oo.
1€N ieN

Moreover if I is supported on a Lipschitz submanifold M of R™ compactly contained in Q1(0), the
points in the sequences (P;)ien and (N;)ien can be chosen to belong to M.
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The next corollary was obtained first by R. Schoen and K. Uhlenbeck (|78, Section 4|) and F.
Bethuel and X. Zheng ([13, Theorem 4]).

Corollary 3.1.2. Let Q1(0) C R? be the unit cube in R%. Let u € WP(Q1(0),S!) for some
p € (1,00).

If p > 2, then u can be approzimated in WP be a sequence of functions in C*(Q1(0),S!).

If p < 2, then u can be approzimated in WP by a sequence of functions in

R:={ve WP(Q1(0),8");v € C®(Q1(0) ~ A, S, where A is some finite set} .

In the second part of the chapter we turn our attention to the weak closure of the space QZ;(D)

for a domain D C R™ which is bi-Lipschitz equivalent to Q1(0) (or equivalently of QZ;(D)). We
will show the following.

Theorem 3.1.3 (Weak closure). Letn € Nxo, p € (1,400) and D C R™ be any open and bounded
domain in R™ which is bi-Lipschitz equivalent to the n-dimensional unit cube Q7(0). Then, the
space QZ%I(D) is weakly sequentially closed in Q)= (D).

Notice that, by Theorem 3.1.1 (or more generally by Theorem 3.2.3), the statement of Theorem
3.1.3 is trivial for p € [n/(n — 1),+00). Thus, we just need to provide a proof in case p €
(I,n/(n—1)).

We first treat the case of the open unit n-cube Q1(0) C R™ by exploiting the characterization of
ngil(Ql(O)) given by Theorem 3.1.2 and a suitable slice distance a la Ambrosio-Kirchheim (see
[4] and [42]). We then address the general case by standard arguments (see Remark 3.3.8).

We remark that the case n = 1 is different. In fact for any interval I C R there holds

20 (™ Z Q0(1) (see Lemma 3.3.3)

bR » .3.3).
Our main motivation to look at forms (instead of maps) with finitely many integer topological
singularities is the need of developing geometric measure theory for principal bundles in order
to face the still deeply open questions arising in the study of p—Yang-Mills lagrangians. As it is
described in the introduction to Chapter 4 and in [48], [65], the reason why we aim to extend the
set of the (by now classical) Sobolev connections is purely analytic and justified by issues arising
in the application of the direct method of calculus of variations to p—Yang-Mills lagrangians. On
the other hand, the need to extend the notion of bundles in order to allow singularities to appear
has already been faced in many geometric applications, which brought to the introduction of
coherent and reflexive sheaves in the analysis of Yang-Mills fields over complex manifolds (see
[51],[52]). However, such tools are insufficient to deal with the phenomenon of accumulation of
singularities that can’t be excluded a priori in the real framework. Thus, new ways to describe
the behaviour of very singular Yang-Mills connections need to be investigated.

Notice that all results mentioned above can be formulated in terms of vector fields: for any
F e Q~1(D) we can consider the associated vector field Vp := (*F)°. In fact for the proof of
some of the results we preferred to work with vector fields instead of (n — 1)-forms.
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3.1.2. Related literature and open problems

Theorem 3.1.1 was firstly announced to hold for a 3-dimensional domain in [48] and a full proof of
the 3-dimensional case was eventually given by the author in [22]. Some form of the 2-dimensional
case was treated in [61], where M. Petrache proved that a strong approximability result holds for
1-forms admitting a connection both on the 2-dimensional disk and on the 2-sphere. In both cases,
the proof that we give here is more general and simple. The 3-dimensional version of Theorem
3.1.3 was already treated by M. Petrache and T. Riviére in [63]. Nevertheless, here we took the
opportunity to present the arguments in a more detailed and complete way. Both Theorem 3.1.1
and Theorem 3.1.3 in dimension n # 2,3 are instead completely new.

The first open problems that relate directly to our results are linked to the celebrated Yang-Mills
Plateau problem. Indeed, the weak sequential closedness of the class Q§7Z(B3) implies that such
forms behave well-enough to be considered as suitable “very weak” curvatures for the resolution
of the p—Yang-Mills Plateau problem for U(1)-bundles on B? (see the introduction of [63] for
further details). The question to address would be if and how we can exploit the same kind of
techniques in order to face the existence and regularity issues linked to the so called “non abelian
case” (i.e. the case of bundles having a non abelian structure group) in supercritical dimension.
An interesting proposal in this sense is due to M. Petrache and T. Riviére and can be found in
[62], where a suitable class of weak connections in the supercritical dimension 5 is introduced. In
Chapter 4 we will describe how these methods can be used in order to establish e-regularity for
stationary Yang-Mills connections belonging to such class of weak objects in dimension 5.

One could also hope that the technique presented in this chapter could be adapted to show
LP-closeness (weak and strong) of classes of differential forms exhibiting "integer fluxes" prop-
erties similar to the one described in Definition 3.1.2. As an example we define here the class
Q) 7(Q%(0)) of differential forms with "Hopf singularities".

Recall that for any n € Nsq, for any smooth map f : §?"~! — S" the Hopf invariant of f is
defined as follows: let w be the standard volume form on S". Let o € Q" 1(S?"~1) be such that
f*w = da. Then the Hopf invariant of f is given by

H(f) = /S%la/\doz.

One can show that H(f) € Z and that it is independent of the choice of a (see [17], Propo-
sition 17.22). In the spirit of Definition 3.1.2 we say that a form F € Qg(Q%”(O)) belongs to

1
Qp 2n(0)) for some p > 2 — - if there exists A € Q";‘[;llp( 27(0)) such that dA = F and if for
every zog € Q2"(0) there exists a set Rpy, C (0,74,), With 74, := 2 dista (20, 9Q3™(0)) such that:
1. £t ((0, Tzo) RF,ro) =0;
2. for every p € Rp4,, the hypersurface 8@%”(:130) consists J#?"l-a.e. of Lebesgue points of
F, A and VA (the matrix of all the partial derivatives of the components of A);

3. for every p € Rp, we have |F|,|A],|VA| € L”((?Q%”(:co)7jf”—1);
4. for every p € Rp 4, it holds that

i502n(p (AN F) € Z.
/é)Q,%n(xo) Q3" (o)

Notice that if u € W12"=1(Q3"(0),S"™), then u*w € Qp 2n(0)).
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3.1.3. Organization of the Chapter

The chapter is organized as follows. Section 3.2 is dedicated to the strong LP-closure of the
space Qg’il(Ql(O), ). First we present some preliminary and rather technical lemmata (Sections
3.2.1-3.2.3), then we give a proof of Theorem 3.1.1 (Section 3.2.4). In Section 3.2.5 we show the
characterization of Q;El (Q1(0)) in terms of (minimal) connections (Theorem 3.1.2). In Section
3.2.6 we exploit this result to extend the approximation result to other Lipschitz manifolds, and
in particular to 0Q7(0). Lastly, in Section 3.2.7 we prove Corollary 3.1.1 and Corollary 3.1.2.

In Section 3.3 we discuss the weak LP closure of QZ;ZI(Ql(O)). First, we will introduce a slice
distance a la Ambrosio-Kirchheim, first on spheres (Section 3.3.1) and then on cubes (Section
3.3.2). In Section 3.3.3 we discuss some of the properties of the slice distance and in Section 3.3.4
we use it to obtain a proof of Theorem 3.1.3. We will also discuss briefly the special case n = 1.

3.1.4. Notation

Let M™ C R™ be any m-dimensional, embedded Lipschitz submanifold of R (with or without
boundary) such that M is compact as a subset of R”.

We always assume that M is endowed with the L°°-Riemannian metric given by gy = ¢},e,
where g. denotes the standard euclidean metric on R".

For every p € [1,40c], we denote by QF(M) and QF,, , (M) the completions of Q%(M) with respect
to the usual LP-norm and W!P-norm respectively. We call Q’; (M) the space of LP k-forms on M
and Q’Ijvlp( ) the space of WP k-forms on M.

By the symbol "«", we denote the Hodge star operator associated with the metric gas on M. By
"p" and "§" we denote the usual musical isomorphisms associated with the metric gp;. Recall
that, under this notation, the map

QN (M) 3w (sw)* € LP(M,R™) (3.1.5)

gives an isomorphism onto its image. Exploiting this fact, we frequently identify (n — 1)-forms
with vector fields on M.

Given any F € QF(M) we define the (m — k)-current associated to F by

(Tp,w / FAw,  YweD"*M).

3.2. The strong LP-approximation Theorem

In this section we provide a proof of Theorem 3.1.1. In an attempt to make the proof more
accessible, we reformulate the Theorem in terms of vector fields. For any Radon measure p := f£"
with f = (f — || lloo)?, with g € (=00, 1] let

L5,(Q1(0), ) == {V € LP(Q1(0), p) vector field s.t. xV” € Q11 (Q1(0))}
and let
L5(Q1(0), 1) := {V € LP(Q1(0), i) vector field s.t. V€ Q771(Q1(0))}.

)
We will sometime write L2 (Q1(0)) for LY (Q1(0), £™), where L™ denotes the n-dimensional Lebesgue
measure.
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Theorem 3.2.1. Let V € LY (Q7(0),n). The following facts hold:

1. if q €10,1] and p € [1,n/(n — 1)), then there exists a sequence {Vi}ren C L5 (Q1(0), p)
such that Vi, — V' strongly in LP(QT(0), 1);

2. if ¢ € (—00,0] and p € [n/(n —1),+00), then div(V) = 0 distributionally on Q7(0).

The case n = 1 is particularly easy and is treated in Lemma 3.2.6. For the proof in the case
n > 2 we follow the ideas of [61] and [22]. We present here a plan of the proof, reducing to the
case ¢ = 0 for simplicity and without losing generality.

First of all we show that for any e > 0 it is possible to decompose @1(0) into cubes @ of size
(plus a negligible rest) so that

/ VvagdA" e
Q

and so that the number of cubes where the integral is different from zero is controlled (Section
3.2.1). We will then show that V' can be approximated on the boundaries of the small cubes @
by smooth vector fields (V;)e>0 with similar properties (Section 3.2.2). In Section 3.2.3 we show
that the vector fields V. can be extended inside the cubes @ in such a way that the extension
V- has a finite number of singularities in @ (more precisely Vz|q € L4,(Q)) and is close to V in
LP(Q). In Section 3.2.4 we will combine the previous elements to show that the approximating
fields constructed above (up to some shifting and smoothing) satisfy the claim of the Theorem.
3.2.1. Choice of a suitable cubic decomposition
Fix any ¢ € (0,1/4) and a € Q-(0). Let

¢- :=max{q € Ns.t. e¢g <1—¢},

o1 r ... "
Ce = j—|—§ €5 with j=1,...,¢-. —1; ,

e = {Qc(x) + a, with z € C.}.

We say that 6., is the cubic decomposition of 1(0) with origin in a and mesh thickness ¢.
Let

Feq = {F | F'is an (n — 1)-dimensional face of 9@Q), for some open cube Q € Cfa,a},

Seq = U F.

Feys,a

We say that 5., is the (n — 1)-skeleton of the cubic decomposition ¢ .

Lemma 3.2.1 (Choice of the cubic decomposition). Let n € Nsg. Let V € L5 (Q1(0), ) where

= fL" with
1 q
ri= (511

for some q € (—o0,1]. Then, there exists a subset Ey C (0,1) satisfying the following properties:
1. £Y((0,1) \ Ey) = 0;
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2. for every € € Ey, there exists a. € Q:(0) such that € € Ry, for every Q € 6. 4. and

Eleigl‘/s( 3 / V= (V)alf(co) ™ 1):0, (3.2.1)

e—07t QECe,a
where (V)g = ][ vac".
Q

Proof. For any x € Q1(0) let Ry := Ry , (see Definition 3.1.2). By assumption

1
/ / Lyery,, A" dp = / LY(Ry,) dL" _/ 2dist(z,0Q1(0))dL”  (3.2.2)
0 Qlfp(o) Q1(0)

/chlp

X, ={r€Qi-,(0): p& Ry},

then by (3.2.2) £L"(X,) =0 for a.e. p € (0,1). Now notice that for any p € (0,1)

Z/ Sz +c dﬁ”—/ Y 1y, (z+c)dL,
Q

ceC)p 0(0) ceC)p

For any p € (0,1) let

thus for a.e. p € (0,1) we have that for a.e. a, € Q,(0) there holds p € Ry, for any Q € €4,
Let Ey be the set of all such p € (0,1).
Now let € € Ey. We claim that

L— / > / V(z) — (V)olPf(cg) d" L (x) dL™(a) = o(e" ), (3.2.3)

QEG:,a

as e — 07 in Ey. Indeed, let .Z be the set of the faces of the cube Q1(0) C R™ and notice that

I—/ / V(x+c+a)—][ 14
=) pyeg cec. /ebo Qe(cta)

/ / V(z+c+a)— ][ 1%
Foeﬂ ceC. 7 eFo /Q=(0) Qe (c+a)

P
eFp s(C) «(v)

f(y)dL™(y) d™ " (x).
Observe that for any ¢ € C;, x € 9Q:(0)

/625 (C

7 o / (z+9) = V(2 +y)PF )AL (5)dL" (2).

pf(c + a) dA" " (x) dL"(a)

p

flc+a)dL™(a)ds™ 1 (z)

F()E/' CEC

p

Viz+y)— f()wz) )L™ )
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Thus for any Fy € %
+ v
ceCe /FO /6 x y ][Qs(y)
- p n n n—1
</F0][E(O)/l . V(z+y)—V(z+y)Pf(y)dL"(y)dL" (z)dH#" " (z)
<2 / / V(z+y) = V)P f(y)dL" (y)da™ " (x)
Fo JQ1-2:(0)
+ gp—1.n—1 ][ / ‘V(Z + y) — V(y)|pf(y)dﬁn(y)d,£”(z)
<(0) /Q1-2:(0)

<" sup [V -V(-—a)l}
ac0. (0) LP(Q1—2e,1)"

p

fly)dL"(y) dAa" ()

Since C2(Q1(0)) is dense in LP(Q1(0), i) (see [56, Theorem 4.3]), given any 6 > 0 we can find
V € C%Q1(0)) such that

/ [V —VI[Pdu < 6.
Q1(0)

Notice that by Taylor’s Theorem

(3 — lllloo —

Jz+a)— f@)] _
7()

lev]]oo

(3 = llz + alloo) = (5 = llz]l0)*
)q

for every z € Q1-<(0), a € Q-(0) and for some constant C > 0 depending only on ¢. Thus
IV =V a0 o < 4(/ VoVPaus [ 7 -T-aPds
1-¢(0) Q1-¢(0)

¥ /Q T v P dn

:4p—1(2/ |V—f/|pdu+/ V-V (—a)Pdu
Q1(0) Q1-2(0)
+ / v VP flra)—f du)

Q1-c(~a) /

<4p—1(2+0)5+4p—1/ WV V(- — )P dp.
Ql*s(o)
As V € C2(Q1(0))

sup |V =V(-— )HLP(Ql (0),0) —0ase— 0T,

a€Qe (0)
we have

limsup sup ||V — V(- — )||LP(Q1 Loy S <4PH 2+ C)o.

e—=0T aeQ:(0)
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By letting § — 07 in the previous inequality we get

sup |V -=V(- —

a7 0ase— 0t, (3.2.5)
aeQE(O)

010

and claim (3.2.3) follows.

By Fubini’s theorem, for every fixed € € Ey there exists some non-negligible subset T, C Q:(0)
such that for any a € T: € € Ry, for any Q € ¢, and

Qezg: / V= Vgl leq) "< / Qg(; / V= (V)gl f(eq)d™ " dL"(a)

I
En

By (3.2.3), for every a € T, we have
/ V= (V)olPf(co) ™ = o)
QEC:a

as € = 07 in Ey. The statement follows. O

Fix any V € LY(Q1(0)) and € € Ey. From now on, we will denote simply by %, the cubic
decomposition ¢, provided by Lemma 3.2.1. Accordingly, the subscript "a." will be omitted
in any writing referring to such a cubic decomposition.

Given any @ € %, we say that @ is a good cube if

/ V-veg =0
oQ

and that Q is a bad cube otherwise. We denote by %7 the subfamily of 4. made of all the good
cubes and by €2 the one made of all the bad cubes. Moreover, we let

Q=Jo 2¢=e 2= e

QEC: Qe%? Qeel
= Jo s:=JoQ s=]oQ
QE%: Qe Qewt

Lemma 3.2.2. Assume that n > 2. Then, we have

lim &" cg) = 0.
lim " > fleq)
e—0T1 QEC:

In particular if ¢ =0 (and thus p = L™) we have

lim £"(Q2) = 0.
EGEV
e—0t

Proof. Notice that by estimate (3.2.4)

|/ — fleq)l

7 <C on @ for every @ € 6- (3.2.6)
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for some universal constant C > 0. For every bad cube Q) € Cfsb, it holds that

< / \V|ds#m1L.
0Q

1<

/ V -vaq dn1
0Q

By multiplying the previous inequality by f(cg) and summing over all the bad cubes, we get

S fleg) < Z/\vrch dm!

Qeet Qech
(Z/ VIPf(eq) d™ ) (Z Feq) dom )
QE‘(o”b QE‘Pb
_ (an)7 e ( / VIPf(eq) dot™ ) (Z ch>',

Qe®? Qee?

which is equivalent to
3 fleq) < (ny e V) 37 v scq
Qesl Qeeb

Hence, by the triangle inequality, we get

S fleq) < (anp e (2 52 [ W= (ol fleg) o

QE%? Qe%Y
+2n Z /]V\pf cQ dﬁ”)
Qe®?
< (41D ( > [ IV = Wl steq
QEb:
+2n Y /|V|pfd£”+2n 3 /\vyp (cq) de”)
Qes? QE®?
<(4n)p—1s<P—1><”—1>—1< / IV — (V)olPf(cq) ds#™ ! (3.2.7)
QEG:

+on(14C) / virs dﬁ") .
o

Therefore
e ZfCQ 4np15p”1( Z/ V= (V)qlP fleq)do™
QEe%? QE%:
—|—2n(1—|—0)/ |[VIPfdL"
1(0)
and the statement follows from (3.2.1) (here we need the assumption n > 1). O
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Remark 3.2.1. Assume that p € [n/(n—1),+00). In this case e®P=D@=D=1 yemains bounded as
e — 0%. Now by Lemma 3.2.1

62/ V— (V)glPflcg)d#™ ™t =0 ase— 0" in Ey.
QEb:

Moreover, by Lemma 3.2.2, we have

Qbfcl/l" (1+C)e chQ ase — 0" in Ey.
= Qetgb

This implies £7(92%) — 0 as ¢ — 07 in Ey, therefore

/ \VIPfdL" -0 ase— 0" in By
Qb

by absolute continuity of the integral. Thus it follows from (3.2.7) that

flcg) =07 ase—0"in Ey.
Q
Qe6p

Let Nb be the number of bad cubes in %;. Notice that for ¢ < 0, we have f > 277 on 1(0). This
implies

NP < 21 Z flcg) >0t ase— 0" in Ey.
Qes?

Since N’ € Z for any ¢ € Ey, N° = 0 for every ¢ € Ey small enough. Hence, whenever
pE [n/(n - 1), —|—oo) and g < 0 we will assume, without losing generality, that there are no bad
cubes in our chosen decomposition.

3.2.2. Smoothing on the (n — 1)-skeleton of the cubic decomposition

Lemma 3.2.3. Let Q C R™ be an n-dimensional cube with side length R. Let V € LP(Q,R™).
Let € > 0. There exists V; € C°(Q,R™) such that

/VEdE”:/VdE”
Q Q

Ve = Ve < e

and

Proof. Without loss of generality, we will assume that () is centered in the origin of R”. Let
Y € CX(1Q) and g € (1/2,1) such that

€

dL™ = d R"
/Q‘” boand B =75) <y
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Let 7 € (19, 1) be such that

1

E P
IV £o(@r@) < min <) cf
Vlize(@wre) 191 e (@)

Set
s::/ VdL", V=XV + s € LP(Q,R™).
Q~rQ
Then
/Vdﬁ”:/ Vd£"+</ Vdﬁ”)/wdE”:/VdE”.
Q rQ Q~rQ Q Q
Moreover
1
5] = ‘ | vae| <ie~ Qi IVise.o
Q~rQ
1
1 3 p g
<=y ( ) < .
11l Lr (@) 1911 (@)
Therefore

s¥lle@) = Il Le(yls| < e
and, by choice of V,
IV = Vi) < lIs¥llr@) + 1VILeguag) < 26

Notice that V‘Q\TQ =0.
Let n € C°(B1(0)) with fBl(O) ndL"™ = 1. For any § > 0 let

1 x
ns(z) :== sul (g> VzeR"
Choose §p > 0 such that
20 < dist (0Q,0(rQ)) and ||V =V xng, | 1r(g) < &

Set V.:=V *15,- Then V. € C°(Q),

/%dﬁ”:/ modc"/mcnz/f/cwnz/vcw"
Q R™ Q Q Q

IV = Vellzoi@) < IV = Vllzog) + IV = Vel (o) < 3e.

and
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3.2.3. Extensions on good and bad cubes

Lemma 3.2.4 (Extension on the good cubes). Let Q C R"™ be a bounded, connected Lipschitz
domain and p € [1,00). Let f € LP(9Q) with

., fdA"t =0 (3.2.8)

There exists a vector field V- € LP(Q) such that
/V-wdﬁn = | foda#"!  VeeC®RM) (3.2.9)
Q a0
and
/\V!p L™ < C(p, Q)/ |f|P do™ ! (3.2.10)
Q o0
for some constant C(p, ) depending only on p and Q.
Moreover if p =1, then V € L4(Q) for any q € [1, %)

Remark 3.2.2. Observe that (3.2.9) implies that V' is a distributional solution of the following
Neumann problem

div(V)=0 inQ

V-vpg=f ondQ.

Proof.
Step 1: First we consider the case p € (1, 00).

Let p/ := Ll For any u € W' (Q) let
p—

1 /
E,(u) = p,/Q|Vu|p act — - fudz™ L.

Recall that any function v € W' (Q) has a trace in LP (92), and that the trace operator is

continuous. Thus for any v € W' (Q) with | v = 0 by Poincaré Lemma there holds

Q
'/BQ foda" | < ||f||LP(8Q)||UHLp’(aQ) < C(p, Q)”fHLP(BQ)vaHLP’(Q)
for some constant C'(p,?) depending only on p and 2. In particular the energy E, is well defined
on W' ().
Let

W' (Q) .= {v S WLP’(Q),/ vdL" = o}
Q

and observe that FE, is strictly convex on Wl’p/(Q). Let w be the unique minimizer of FE, in
W' (Q). Then?

/\Vu|p/2Vu-Vg0dL” = | fed#"l,  Vpe CPRM. (3.2.11)
Q o0

*The argument above shows that (3.2.11) holds for any ¢ € C*°(R") with [, pdL" = 0, but assumption (3.2.8)
implies that (3.2.11) remains valid for any ¢ € C*°(R").
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Moreover, as u is a minimizer of E,, E,(u) < E,(0) = 0. It follows that

> vz < [ rudsent <o ol on < OO o0 96l
Thus
[ war et < ewoy [ ipaen
Set V := |Vu[’'~2Vu in Q. Then by (3.2.11)

/V-wdcn = [ fed#"' Vpec C®R"Y)
Q o

and
/|vypd5” /vuv’ dL" < (PC(p, Q) / [P doent.

Step 2: Next we consider the case p = 1.
Let s > n. For any u € WH%(Q) let

1
= /|Vu|5d£”—/ fudjf”_l.
S Ja a0

Notice that FEj is well defined and strictly convex in W15(Q).
Recall the Sobolev embedding

W (Q) — % (Q)

for & = 1—2. Then for any u € W*(Q) the trace of u on 9 lies in C%*(0) and if [, udL™ = 0.
Poincaré inequality implies

1ull oo (a0) < C(s, D) [[Vullps (o)

for some constant C(s,2) depending only on s and €.
Let u be the unique minimizer of Es in W1#(Q). Then since Fs(u) < E4(0) = 0 there holds

1
/\vumﬁ" g/ fuds™ !
S Ja N

< fllzr ooy llull Lo o) < C(s, D fll L1 o0y Vull Ls @)

s—1
(/\vu|8dm> ) gsC(s,Q)/ \f| dom L
Q oN

Moreover, since « is a minimizer of Fj,

Therefore

/Q |Vul*2Vu - Vo dL" = , fodA™t Yo e C°(R").
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Similarly as before set V := |[Vu|*"2Vu in Q. Then

s—1

/V!dﬁ”:/Wu\S_ldﬁ” < Q) </\Vu|sd£"> b
Q Q Q
<SC(S,Q)L”(Q)i/ \f| doem L
oN

Moreover

/|V|sf1 L™ = / |Vul® dL" < oo
Q Q

Remark 3.2.3. Let @ C R™ be the unit cube and let C(p, Q) be the corresponding constant in
(3.2.10). By an easy scaling argument one sees that for any € > 0 one can choose C(p,eQ) =

eC(p, Q).

Lemma 3.2.5 (Extension on the bad cubes). Let Q := Q-(cq) C R™ and r(z) = ||z — cq||oo,
for every x € R™.

Consider any vector field V : Q — R™ having the form

- 1 Ex —cQ T —cqQ
Viz) = 2n1f<2 () +CQ> () Vo eqQ,

for some f € L>°(0Q). Then, the following facts hold:
1. V € LP(Q) for every p € [1,n/(n —1));

2. for some constant C(n,p) > 0 depending only on n and p we have
/|V|P dL™ < sC(n,p)/ |f|P dst™ L, (3.2.12)
Q 2Q
3. for every ¢ € C*°(R"™) we have

/V-wcw": fodxm 1t — < fd%"—1><p(cQ). (3.2.13)
Q

oQ oQ

Proof. Without losing generality, we assume that ¢ = 1 and ¢ = 0. First, notice that r : R" — R
is a Lipschitz map such that |Vr(z)| = 1, for a.e. z € R™. Moreover, since all the norms are
equivalent on R™ there exists a constant C'(n) > 0 depending only on n such that |z| < Cr(z),
for a.e. € R". Now choose any p € [1,n/(n — 1)). By coarea formula we have

= 1
e < f )
Q 2(TL— )p 0 p(TL— )p 3Q2p(0) 2p

— C’p % 1 d pd%on—l
= see |/, see % 8Q\f(y)\ ()

—c [ \raent,
0Q

P
d" () dp
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with

cr P 1 p
¢=00p) = e /0 D) P S e

Hence, 1. and 2. follow in once. We remark that the condition p € [1,n/(n — 1)) is needed in
order to guarantee the convergence of the integral in p.

We still need to prove 3. Pick any ¢ € C°°(R"™). By the coarea formula we have

1
1 2 1 T
V-Vgpdﬁ”:/ / f<):17-Vg0x d"(z) dp
/é 2n—1 0 pn 8Q2p(0) 2P ( ()) ()

=2 [* [ 1) Vetm) d ) dp
0 oQ

_ % i n—1
= /8 Qf(y) /O i ((2py)) dpd™ " (y)
= foda" ™t — ( fdﬁf"1><ﬁ(0)
0Q 0Q
and 3. follows. ]

3.2.4. Proof of Theorem 3.2.1

We are finally ready to prove Theorem 3.2.1.

Proof. Let V€ L% (Q1(0)) and let € € Ey (constructed in Lemma 3.2.1). First, we notice that
by using Lemma 3.2.3 separately on every face F' € %, we can build a vector field V, € C*°(S;)
such that

/ V;-l/ani%ﬂnflz V‘Van%nfl YQ € %
0Q oQ

and

S [ V= vistegunn <

QEG:

Let V. be the vector field defined £"-a.e. on €2 as follows:

1. if Q € €. is a good cube, then we let V. := W, + (V)g on @, where W, is the extension
of the datum f := (VE — (V)Q) - V@ given by Lemma 3.2.4 (notice that for any good cube
condition (3.2.8) is satisfied by our choice of f);

2. if Q € %- is a bad cube, then we let

~ 1 e xT—cC T —c
V5122n_1f< Q +CQ>Q VreQ,

2 ||z = cqlloo Iz = coll%”

with f:= Va{a@ Vog € L™(0Q).
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We recall that no bad cubes will appear in the cubic decomposition in case p € [n/(n -1), —|—oo)
(see Remark 3.2.1).

Claim 1. We claim that

d1V Z dQdeq distributionally on 2,
QE®?

where
dQ::/ Vs-Van%”n_lz/ VvgodA" e LN {0}, VQeE.
0Q oQ

Indeed, pick any ¢ € C°(€;). Let Q € 6. be a good cube. By the properties of the extension
given by Lemma 3.2.4 and the divergence theorem we have

/ V. -VpdL" = / (Vg . (V)Q) 7 a1 dmt +/ ((V)Q . VaQ)god%nfl
Q oQ oQ
— [ rvagyp et
oQ
On the other hand, let Q € . be a bad cube. By (3.2.13), we have

/Qf/; -Vpdl" = /8Q(VE v90) dA T — dg(Sey, ©)-

Hence we conclude that

/v Vedl" = Z/ (Ve - va@)edA™ 1 = N do(ley,

QEb: QE%?

= Z dQ<5CQa‘p>'

Qes?

The claim follows.

Claim 2. We claim that ||V — Vs, ) — 0 as € — 0% in Ey.
Recall estimate (3.2.6) and notice that

1V = VB0, < (1+ O)(A: + Be),

with
A= / V. — VIPf(cq) e,
Qe%?
=) /|V VIPf(cq)dLm.
QE®?

By triangle inequality and by the estimate in Lemma 3.2.4, we have that

A: < ( /IV V)l fleq)dL™ + ) /!V V)l f(eq)dL" >
Qe%?

Qee?
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( > /|W5|pf cQ)dl" + Y /|V )olPf( CQ)dL">

Qe%? Qe%?
< <€C > / Ve = (V)gl fle)d ™" + /\V Vel f( CQ)CM)
Q€<gg QE((&Q

where C), := C(p, Q) (see Remark 3.2.3). Again by triangle inequality and because of our choice
of V., we have

) 2/ Ve = (V)al fleq) d™™ < 27 1( 2/ Ve = VIPfeq) dot™!

Qe%? Qe%?
e X0 [ W 0ersico ﬂf)
Qe%d
(e =y / V= (V)ol"f(cq) d™™ )
Qec?
Thus by Lemma 3.2.1 it follows that
£ Z / Ve — (V)P feq)ds#™ ™t — ase — 07 in Ey.

QEb:

Moreover, by (3.2.6) we have

> [V -0arseas <20+0) S f [ Wty VP w e

Qe%? Qe%?

2p(1+0)7[ IV(z+-) = VIEq =0
Q=(0)

as e — 01 in Ey. Hence, A, =+ 0 ase — 0" in Ey.
On the other hand, by (3.2.12) we have

(Z /|V\pf cQ)dL" + Y /|V|pf Q) d£”>

Qeet Qeet
(06 ) / Ve fleg) d™ + / VA cg)dcn>
Qe%?

We notice that

52/ VP feq)da™ ! < ( Z/ V. — V[P f(eq) dat™!

Qel Qesl

+e Z/ VIPf(cq) da™ 1)

QEe®?

< p—1 2 p d n—1
<4 <2n5 ey /iava (V)olP f(cq) dr
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X [ o ne).

Qev?

Moreover, by (3.2.6) we have

52/1 olPf(cq)dsm™ ! < EZ/ (]éw\pf(cQ)dz")d%“

QE®? Qes?
< (fw’f cQ dﬁ”)/ At
Qee? 0Q
<2n ) /]V|7’f cQ)dL™ = zn/ \VIPf(cq)dLm
Qee?

<(1+ C’)Qn/ VIPFdcn.
o

Thus, we have obtained
B ( te / V= Vel fcq)arn + | IVI”fd£”>,
b
Qefgb s

for some constant C' > 0 which does not depend on € € Ey. By Lemma 3.2.1 and Remark 3.2.1
we get that B, — 0 as ¢ — 0T in Ey. Hence, the claim follows.

Next we show that by rescaling V. we obtain a vector field with similar properties defined on the
whole @Q1(0). Let

e :=sup{a € [1/2,1) s.t. Q1(0) C a1}, Ve e Ey.

Notice that a, — 1~ as € — 01 in Ey. Define the vector field V. := o 'V.(a. -) : Q1(0) — R™.
It’s straightforward that V. € LP(Q1(0), ) in case p > 1 and V. € L*(Q1(0), u) for some s > 1
in case p = 1, for every given € € Ey. A direct computation also shows that the distributional
divergence of V. on Q1(0) is given by

div(Ve) = Y dgf, -

Qeet

with

- {dQ/ if a;lcQ/ S Ql(O),
dQ/ ==

0 otherwise.

We claim that V. — V in LP(Q1(0), 1). Indeed, we have
/ V.- VPPracr = / a2 o (as) — V()P f(2)dL ()
1(0) Q1(0)
— ap=)-n / V)~ 0TIV T )PS0 ) e
Qe

= a7 h7 (/Q V() = az "DV (e y)IP £ (y) AL (y)
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a-ly) —
+ EW;(y)—a;(”—”vm;ly)Pf (e D=1y dﬁ"<y>)

<Cn,p</g |1~/E—V|pfd£”+/ﬂ ]V—Pa;1V|pfd£">,

(see Lemma 3.C.2 for the definition of P,-1V’). By Lemma 3.C.2 and since V. = Vin LP(Qe, 1),
our claim follows.

Thus, we have built a vector field V, such that:
1. V. e LP(Q1(0),p) and V. € L¥(Q1(0), L") for s = pif p> 1 and s > 1 if p = 1%;
2. the distributional divergence of V. on Q1(0) is given by a finite sum of delta distributions
supported on a finite set X. C Q1(0) with integer weights {d, s.t. z € X .};
3. va — VHLP(Q1(0),M) —0ase— 0T in Ey.

Now we are ready to reach the conclusions 1 and 2 of Theorem 3.2.1.

1. If g € [0,1] and p € [1, ﬁ) we possibly have X. # (), since bad cubes can appear in the
cubic decompositions. Since V. always belongs to L¥(Q1(0)) for some s > 1 (with s = p if
p itself is already greater than 1), we can Hodge-decompose VZ as Vi = dp + d* A for some
A e 02,,.(Q1(0)) and some ¢ € W#(Q1(0)). Applying d* to the previous decomposition
we obtain

Ap = d* (V) = div(V.) = > dyd,.
reXe

By standard elliptic regularity, o € C*°(Q1(0) ~ X¢). Choose A. € 9%(Q1(0)) such that
HA A”QZ Ql(o)) <e. Then Hd* e — d*AHQip(w(QI(O)) <L €. Let Ve 1= dQO + Cl*(AE) and
let U, :=v¥ . Then U: € LY (Q1(0), p) for every € € Ey and U. — V in LP(Q1(0), p).

2. If ¢ € (—00,0] and p € [ﬁ, +oo) no bad cubes are allowed in the cubic decomposition,
thus (V:):er, is a sequence of divergence-free vector fields converging to V in LP(Q1(0), i)
as € — 07 in Ey. Hence V itself is divergence-free.

O

Remark 3.2.4. Notice that if p =1, Vj, € L¥(Q7(0)) for any k € N and for any s € [1, -").

Remark 3.2.5. Observe that this proof can be used to show that the analogous approximation
result holds if we assume that V satisfies the first three conditions of Definition 3.1.2 and in
addition we require that for every p € Rp,, we have that

P50 (e F €S
/acep(cco) 82 (o)

for a set S C R such that 0 € S and 0 is an isolated point in .S. In this case the vector field V'
can be approximated in LP by a sequence of vector fields (V},),en smooth outside a finite set of
points and such that for any n € N, div(V},) is a finite sum of deltas with coefficients in S.

4In fact even when w is different from L™, f/s is constructed through Lemmata 3.2.4 and 3.2.5 as extension of a
smooth boundary datum, thus V; lies in L"(€Q.) for any r € [1, -%<) if p < n and in L"(Q.) for any r € [1,c0)
if p> %1 It follows that V. € L"(Qc) for any r € [1, -"5) if p < n and V. € L"(Q%) for any r € [1,00) if
D=

n— 1
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Lemma 3.2.6. Let I C R be a connected interval and p € [1,+00). Then

2" = P(1,7) + R = L5(1).

Proof. We start by showing the first equality. Notice that

LL(I) = V=c+ ZanI]. ¢ (Ij)jes is a finite partition of I,a; € ZVj € J, c € [0,1)
jeJ
In other words, L%(I ) consists of all integer-valued step functions and their translations by a
constant.
First we show the inclusion ” D ”: let f = g+ a with g € LP(I,Z) and a € [0,1) and let ¢ > 0.
For any k € N set gi := 1j4<xg. Then there exists K € N such that [|gx — gllz»(r) < §-
Now for any j € {—-K, ..., K} gl}l () = g71(4) is a measurable set, therefore there exists a finite

collection of disjoint intervals (I:ij),ie(]j such that £ <Ui6]j IijAg_l(j)> < 2(2[(57“)2

For any j € {-K,...,K} set A; := ;e Iij N (Uj,# Uicsir Iij/>. Then A; is a finite union of

intervals and

AL < A et |« S
L(AAG()) S L(Aj N g (J))+j/z:#£ gjfz Ny () S 902K 1 1)

Set

_ J ifzx e Aj

K 0 otherwise
Then by construction gx € L(1) and ||gx — gllr(r) < €. We conclude that any g € LP(I,Z) lies
in the closure of L%,(I). This shows ” D 7. As LP(I,Z) + R = LP(I,Z) + [0,1) is closed in LP(I),
the inclusion "C" holds as well.
Next we show the second equality. Let’s start with "C". Let g € LP(I,Z),a € Rand f = g+a. Let
xo € I, then for a.e. r € (0,dist(xg,dI)) we have f(xo+7)— f(xo—7) = g(xo+7)—g(x0—7) € Z.
Let RF@O denote the set of all such r. Set Rpr ., to be the intersection of RF@«O with the set of
Lebesgue points of f. Then f satisfies Definition 3.1.2 and thus f € LY (I).
To show "2" let f € LH(I). Set F : I — S', o+ €@, Then F is a measurable bounded
function. Notice that for any z¢ € I, for a.e. r € (0,dist(xg, 9I)) there holds F(zo—r) = F(xo+7).
This implies that F'is constant: this can be seen for instance approximating F' by smooth functions
with the same symmetry properties away from I (convolving with a symmetric mollifier with
small support), which then have to be constant. Choose a € R such that F' = €??™, then
f—a € LP(I,Z). This completes the proof. O

Remark 3.2.6. From Theorem 3.2.1 it follows immediately that

(@ (0)" = I2(Q1(0)).

To see this it is enough to check that L} (Q1(0)) is closed in LP, which can be shown by simple
application of the coarea formula.

Notice that in case p € [n/(n — 1),4+00) we can approximate V strongly in LP with smooth and
divergence free vector fields. This is a straightforward consequence of Hodge decomposition.
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3.2.5. A characterization of '

First of all we apply the Strong approximation Theorem to obtain a useful characterization of
the class F' € QZil(Ql(O)).

Theorem 3.2.2. Let n € Nyg, p € [1,400). Let F € Qgil(Q?(O)). Then, the following are
equivalent:

1. there exists L € R1(Q1(0)) such that 0L = *dF in (W&’M(Ql(O)))* and

M(L) = sup / F Adp.
©€D(Q1(0)), Y Q1(0)
[ldell oo <1

2. for every Lipschitz function f : Q1(0) — [a,b] C R such that f|sg, ) = b, we have

/ y )i;_l(t)F €7z, for L'-a.e. t € [a,b];
Fl

3. F e Q1 (Q1(0)).

Proof. We just need to show that 1 = 2, 2 = 3 and 3 = 1. We prove these implications
separately.

1= 2. Assume 1. Let L € R1(Q1(0)) be given by
(L, w) :/9<w,i> A, Wwe DNQI0)),
r

where I' C Q1(0) is a locally 1-rectifiable set, L is a Borel measurable unitary vector field on T
and 6 € LYT, 1) is a Z-valued function. Pick any Lipschitz function f : Q1(0) — R and let
¢ € C((—o0,b)) be such that [, ¢ dL! = 0. By the coarea formula we have

+00
/ F A f*(pvolg) :/ go(t)</ z"}_l(t)F> dt.
Q1(0) —o0 FHe)

At the same time, by the coarea formula for countably 1-rectifiable sets, we have

(o (vl = 047" ovola). e = [t ([ )

—00

where 6 : T' — Z is given by 6 := sgn((f* volg, L))f. Let ® € C>°((—o0, b)) satisfy d® = ¢ volp.
Notice that since f is proper f*® € WOI’OO(Ql(O)). Then, by hypothesis, we have

/ F A f*(pvolg) = / FANdf*® = (xdF, f*®) = (0L, f*®)
Q1(0) Q1(0)
= (L, d(f*®)) = (L, f*(d®)) = (L, f* (¢ volr)).

Therefore

/ cp(t)(/ i1 F —/ é) dt =0, Vo e CX((—00,b)) s.t. / v =0.
_oo 1) TAf—1(t) R
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We conclude that
/1 T » 6=c, for Ll-a.e. t € [a,b],
1) TAf-1(t)

for some constant ¢ € R. We claim that ¢ = 0. In fact let m € N\ {0}. Integrating both sides
on (—m,m) we get

/ F A f*volg — / 0(f* volg, L) = 2me. (3.2.14)
{Ifl<m} O] fl<m}

Since f*volg = df, we have

/ FAf*VOIR—/9<f*V01R,E>:/ F ANdf —(L,df) = (xdF — 0L, f) = 0.
Q1(0) r Q1(0)

Thus, by letting m — +oo in (3.2.14), we get that the left-hand-side converges to 0 whilst the
right-hand-side diverges to +o00, unless ¢ = 0. Hence we conclude that ¢ = 0, i.e.

/fl(t) Z‘}fl(t)F = /mel(t) 6ez, for L1-a.e. t € [a,b],

since I' N f~1(¢) consists of finitely many points for £L'-a.e. t € R.

2 = 3. Assume 2. Given zg € Q1(0), let fy, := min {|| — 2o|/cc, 32 }. We claim that we can find

Rp 4, as in Definition 3.1.2. Indeed, let L C Q1(0) be the set of the Lebesgue points of F. Let
Ty := 2 disteo (20, 0Q1(0)). Then, by the coarea formula, we have

1

0=2.L" (Q”O (.%'0) ~ L) = 27 /0“0 %nil«Ql(O) ~ L) N an(:Co)) dp,

which implies that there exists a set E, C (0,7,,) such that
1. £t ((O,Txo) ~ Exo) =0;
2. for every p € Ey,, " 1-ae. v € 0Q,(xo) is a Lebesgue point for F.

Hence, for every p € E,, it makes sense to consider the pointwise restriction of F' to 0Q,(zo).
Notice that, by the coarea formula, we have

/ (/ \F{pd%“) dp = 2"/ |F|PdL™ < 400,
Exy \J0Qp(0) Qrag (20)

0

which implies
/ \F|Pdo™ ! < 4oo, for Ll-a.e. p € (0, Ey,).
0Qp(0)

Moreover, by Statement 2., we have

i1 F:/ 150 (z0F € Z, for Ll-a.e. p € (0, Ey,).
/fzol(P) fﬁco (P) 8QP(IO) Q/’( 0) 0

Our claim follows immediately.
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3= 1. Assume 3. By Theorem 3.1.1, we can find a sequence {Fj tren C 27, 7 (Q1(0)) such that
Fy, — F strongly in LP. Since the estimate

(Tr, —Tr,w)| < C|[Fx — F|[Lr

holds for every w € D'(Q1(0)) such that ||w||z~ < 1 and for every k € N, we conclude that

sup (%dFy, — xdF, ) < C||F; — Fl|t» — 0 as k — oo. (3.2.15)
PEW, > (Q1(0)),
lldeol| Loo <1
Fix any € € (0,1). By (3.2.15) we can find a subsequence {ij(s) }jeN Q. 7 (Q1(0)) such that
€ .
[#dFy; (o) — *dFy, (e H Lo (@i (o) S % for every j € N.

For every h € N, let Lj, be a minimal connection for the singular set of Fj, () (the existence of
such a minimal connection is proved in Proposition 3.A.1. Analogously, for every j € N, let L& 5t
be the minimal connection for the singular set of Fy () — Fy,,,(¢)- Define the following sequence

of integer 1-currents on Q1(0):

L it h =0,
LE = Le - " Ly ifh>0, for every h € N.
=0
Clearly
h—1 h—1
0L, = 0Ly — > OL5 ;1 = OL5 — Y (L5 — 0L5,,) = OLj, = xdF, (o).
=0 Jj=0

Moreover, since L; j41 s a minimal connection, it holds that
I

6 .
M(L5 j41) = ||>x<dFk].(5) — *dij+1(5)||(W01,00(Q1(0)))* < R for every j € N.
Thus,
M(~‘I€1+1 - ff}i) = M( Z,h+1) < 2%, for every h € N,

which amounts to saying that the sequence {I:Z}heN is a Cauchy sequence in mass. Hence, by
the closure of integer currents under mass convergence (see Lemma 3.C.1), there exists an integer
1-current L® € R1(Q1(0)) such that

M(L; — Lf) = 0 as h — oo,
Notice that
OLF = lim JL; = lim *dFy, o = *dF  in (Wy(Q1(0)))".
h—o00 h—o00
The family of integer 1-cycles {fff — ﬂ1/2}0<€<1 C R1(Q1(0)) is uniformly bounded in mass.
Indeed, first we notice that by (2.10) it holds that

M(L}) = [[dF, o)l 2 <C, VheN,Vee(0,1),

“(Q1(0)))*
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where C' > 0 is a constant independent on h and €. Thus, we have

h—1 +o00
~ €
M(L5) < M(L§) + > M(L5;,1) <C+ jg <C+e<C+1 YheN, Vee(0,1).
Jj=0 J=0

Since L§ — L° in mass as h — +oo for every € € (0, 1), we have
M(LF — LY?) < M(LF) + M(LY?) < 2(C + 1).

Hence, by standard compactness arguments for currents (see for instance |53|, Theorem 7.5.2),
we can find a sequence £ — 0 and an integer 1-cycle L € R1(Q1(0)) with finite mass such that
L — LY? 5 L weakly in D;(Q1(0)) as k — 4o0. If we let L := L'/? 4 L then we get L% — L
weakly in D;1(Q1(0)). By construction, L is again an integer 1-current with finite mass such that
OL = OLY? = xdF in (WH*(Q1(0)))*. We claim that

M(L)=  inf  M(T).
TEM1(Q1(0)),
OT=x*dF

By contradiction, assume that we can find T' € M;(Q1(0)) such that 0T = *dF and
M(T) < M(L) < lim inf M(L®*),
k—o0

where the last inequality follows by weak convergence and lower semicontinuity of the mass. Then,
we can find some h € N such that

M(T) < M(L*) — 2ep,.
Moreover, since M(L§ — L) < 2¢ for every 0 < e < 1, it holds that
M(LG" — L") < 2¢p,.

We define T := T + Ly — L and we notice that 9T = *d F (c,)- Moreover, by the minimality
of Lg", we conclude that

M(Lg") < M(T) < M(T) +M(Lg" — L) < M(Lg"),

which is a contradiction. Thus, our claim follows.
Since L € R1(Q), we get that

M(L) = inf M(T) = inf M(T)
TeR1(Q1(0)), TeM1(Q1(0)),
OT=xdF OT=x+dF

and, by Lemma 3.A.2, we have

inf M(T)=  sup / F Adep.
TeM:1(Q1(0)), ©eD(Q1(0)), / M
OT=dl lldellLoo<1
Hence, 1. follows. O
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Remark 3.2.7. We notice that in the proof of Theorem 3.2.2 we have never used the minimality
property of L while showing that 1 = 2. Hence whenever F' € Q7! (Q7(0)) admits a connection
we have F € QZ?(Q? (0)) in the sense of Definition 3.1.2 and the conclusions of Theorem 3.1.1
hold for F'.

By the previous remark we can deduce the following result from the proof of Theorem 3.2.2.

Corollary 3.2.1. Let F € QZ’;*l(Q’f(O)) and assume that there exists an integer 1-current of finite
mass I € R1(Q1(0)) such that OI = xdF. Then there exists an integer 1-current L € R1(Q1(0))
of finite mass such that L = *xdF and

M(L)= inf M(T).
TeR1(Q1(0))
OT=xdF

In other words, whenever there exists a connection for F', then there exists a minimal connection
for F.

3.2.6. The case of 9Q}"'(0)

In order to extend the previous result to more general manifolds we introduce the following
definition.

Definition 3.2.1. Let M be a Lipschitz m-manifold embedded in R™. Let p € [1,00). Set

Q;R’OO(M) = {a € Q}D(M) leﬁfc(M NS) :xda = Zdiépi} ;
iel

where I is a finite index set, d; € Z, p; € S for any i € I and F := {p; }ies.

The previous definition is motivated by the following observation: let M be a Lipschitz m-
manifold, N a smooth m-manifold, ¢ : M — N a bi-Lipschitz map. Let F' € Q}?’R(N). Then

P F € Q% ., (see Lemma 3.2.7).

Corollary 3.2.2. Let n € N>, Assume that F' € sziz(aQ?(O)) admits a connection. Then, the
following facts hold:

1. ifp € [1,(n—1)/(n —2)), then there exists a sequence {Fj}ren C QZ;%%OO(OQ’{‘(O)) such
that Fy, — F strongly in LP;

2. ifpe [(n—1)/(n—2),+00), then xdF = 0 distributionally on 0Q".
Proof. Let N = (0, ..., 0, %) be the north pole in 9Q7(0) C R™ and let

1
U= {(xh ey Tp—1, Tp) € 0QT(0) s.t. x, = 5}

be the upper face of 9Q7(0). Let ¢ := (n — 1) — (n — 2)p. For every z = (x1,...,z) € R", we let
x' = (x1,...,2n_1) € R*1. Define @ : 9Q7(0) ~ N C R® — Q7(0) by

1 V2, .1 @
- _ Y 2 N,
(2 e )Hw’\loo on U

g(x) on 0QT(0)\ U,

O(z) =
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where the map g : 9QT(0) N U — Q7F ), 1 ( ) is any bi-Lipschitz homeomorphism such that g =

;-2 Hx’||oo> W on OU. Notice that ® is an homeomorphism from dQ7(0) ~ N to Q7 *(0).

We denote its inverse map by ¥
We have that ¥ is Lipschitz on Q’f_l (0) and @ is Lipschitz on every compact set K C 0QT(0)\ N,
since there exists C' > 0 such that

D) < —C . VaeaQi0)~ N,

=~ V%
1 _
) <05l YueQro).

Define F := ¥*F and fix any ¢ € (0,1/4). Notice that

1 7 1 1 n—1 .
/Q”—l(m (2 -l ”°°> IRFEAE S C/Qn—l(O) (2 -l ”°°> |FowPdam
1 1

<C |FIPdA™ ! < +o0.
Q1 (0)

Moreover if I € R1(0Q}(0)) and *dF = I, then ®.1 € Ry (dQ7 (0)) and *dF = d®,I (sce
Lemma 3.2.7). This implies that I € 92722(Q71‘_1(0), p) with = (5 — ||"loc)? £ ! in the sense
of Definition 3.1.2.

Let’s consider first the case p € [1,(n —1)/(n —2)). Notice that in this case g > 0.

By Theorem 3.2.1 with f := (3 — ||-|0)? there exists a (n — 2)-form F. e QZ’ﬁ(QE,aE) such that
||F€ — FHLP(Ss,aE) <e and

1F2 = Pliso, oy = O (3:2.16)

ase — 0% in Ep.
Define F. := ®_F. on 9Q7(0) \ U, with ®,_ := ® + a. and U. := D71 (Q} 1 (0) \ Qe0.).
Notice that

1 . .
IEe = FI 0 <0/ R0, Fod, P
Lr(0Q7T(0)\Ue) aQT (0)~U- H *NH € a @

1 - -
+O/ g |[F o @, — Fo 0P d !
QrO)NUe ||- — Nljsa P

< C(/ |F. — FIPfdam!

+ / |F(-—ac) - F!pfdif”‘1>.
Q=10

The first term tends to zero as e — 07 in Ej by (3.2.16), while the second tends to zero as
e — 0T by (3.2.5). Therefore we have

| Fz — FHIip(aQ?(O)\UE) —0
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ase — 0% in Ep.

Now we notice that

iy Fo = — / i% aom F.
/8UE ovene 0(0Q7 (0)\Us) POQEONTTE

= / Z.BQE@E Fg = / ngE,a€F = be € 7.
Qe a, 0 a

If b. = 0, then we use Lemma 3.2.4 to extend F; inside U.. If b. # 0, then we use Lemma 3.2.5
to extend F. inside U, (notice that U, is an (n — 1)-cube of side-length 8¢2 contained in U and
centered at N, for € sufficiently small). In both cases, the following estimate holds:

/ |F.|Pds#™ 1 < Ce? / |F.|P dot™ 2
€ 8U6

< Ce? < / |F — F.|Pd#" 2 + / |F|pdjf”‘2> :
U OUe

Notice that the first term on the right hand side tends to zero as ¢ — 0" in E, since | F. —
F| L7(S.q.) S € for any € € E. In order to control the second term, pick any § > 0 sufficiently
small and notice that, by coarea formula, we have

][ / |F[Pd#""2dL (e / / |EPd#""2dL (e)
U, QUL ()

852
— / |F|Pds"2dLt (¢)
0 Jori()

2n—1
< / |FPd™" —0F
16 Jortav

as 6 — 07. This implies that we can pick a sequence {¢;},en C E such that €; — 0" and

53./ |F|Pda#™ —0F
Uk .

as j — +oo. Thus
||F€j - FHI[)/IJ(UEJ, 2]3 1<||F51 ”LP UE + ||FHIZ/I’(UEJ)> =0
as j — 400, since A" (U,,;) — 0% as g5 — 0T. Hence, we conclude that

| F FHLp (0Q7(0)) =0

as j — +o0o. Moreover, by construction we have that *dF;; is a finite sum of Dirac-deltas with
integer coefficients, for any 5 € N. Thus arguing as in the final step of the proof of Theorem
3.2.1 (i.e. by Hodge decomposition), for any 7 € N we can find F € QpROO((?Q’f(O)) such that
| Fe, — E. ilp(a@n(0)) < €j- The sequence {F};}jen then has the des1red properties. This concludes
the proof in the case p € [1,(n —1)/(n — 2)).

If p € [(n—1)/(n—2),+00) notice that ¢ < 0. Therefore by Remark 3.2.1 we may assume, up to
passing to a subsequence, that no bad cube appears in the construction of F.. Hence repeating
the first part of the proof as in the previous case, we get b.; = 0 and *dF;; = 0 on 9Q7(0) for
any j € N. Thus we obtain that F' can be approximated in Qg_l(BQ? (0)) by a sequence (F:,)jen

J

such that for any j € N there holds xdF;, = 0, and this property passes to the limit. O
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Remark 3.2.8. Notice that if p = 1, for any k € N we have that Fj, € Q7~1(8Q"(0)) for some
g > 1 which does not depend on k (compare with Remark 3.2.4).

Lemma 3.2.7. Let M, N C R"™ be Lipschitz m-manifolds in R™. Let ¢ : M — N be a bi-Lipschitz
map.

Let F' € Qg_l(M) and assume that there exists a 1-rectifiable current I € Ri(M) of finite mass
such that xdF = OI in (WOI’OO(M))*. Then p.F € Q;”_l(N) and *d(psF) = 0psl.

If (Fy)ken is a sequence in Q}g;loo(M) and Fr — F in Q1 (M) as k — oo, then (psFy)ren is
a sequence in Q;’ELO(N) and @, F, — @ F in Q""H(N) as k — oo.

If in addition we assume that N is smooth and closed or a bounded simply connected Lipschitz
domain and for any k € N we have Fj, € lefl(N) for some q > 1 (possibly dependent on k),

then . F can be approzimated in Q' 1(N) by (m — 1)-forms in ngél(N).

Proof. Assume that xdF = &I holds in (Wy°°(M))*. Then for any f € Wy ™(N) ¢*f €
Wol’OO(M) and thus

(+d(pF), f) = /N oo F A df = /M FAdg™f = (01, 5" f) = (I, odf) = (0.1, f),

therefore xd(@. F) = 8,1 in (W, ™°(N))*.

Now assume that (Fj)ren is a sequence in Q’g_l(M) such that Fj, — F in Q7" 1(M) as k — .
Then for any k& € N there exists I € Ri(M) of finite mass and so that 9l supported in
a finite subset of M such that xdFy = 0I;. As we saw above, xd(p.F)) = O0p.l}, therefore
o Fy € QZEIOO(N) Moreover we have 0. Fj, = 0. F in Q" 1(N) as k — oc.

Finally if NV is smooth and closed or a bounded Lipschitz domain and for any £ € N we have that
Fy € Qg’l_l(N) for some ¢ > 1, we can improve the approximating sequence (¢*F)xen as follows:
for any £ € N, let o, € Q%}i(]\f), Br € Qp1qo(N) and hy € Q" 1(N) (the space of harmonic
(m — 1)-forms on N) such that ¢, F = dag + d* S + h. Then xAS = xdp, F, = xp.dF},. Since
pxdFy, = 0pyly, p.dF}y is supported in a finite set of points, thus § is smooth in N outside
of a finite number of points. Now let &, € Q™ 2(N) such that |y — agllwre < 2% and set
Fy, = day, + dBy + hg. Then by construction Fj, € Q’g_l(N) and F, — ¢, F in lefl(N) as
k — oo. O

Theorem 3.1.1, Corollary 3.2.2, Lemma 3.2.7 and Remark 3.2.7 can be combined to obtain the
following general statement.

Theorem 3.2.3. Let M C R" be any embedded m-dimensional Lipschitz submanifold of R™ which
is bi-Lipschitz equivalent either to Q7'(0) or QT (0). Then:

o an” = Q7 (M) if p € [1,m/(m—1)),
pfoo [FeQr (M) st xdF =0} ifpem/(m—1),+o0).

P

LP
Moreover, if M is smooth we have ngﬁl(M) = Q;EIOO(M)
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3.2.7. Corollaries of Theorem 3.1.1

Finally we present a couple of Corollaries of Theorem 3.1.1.
First we show that the boundary of any I € R;(D) having finite mass can be approximated
strongly in (VVO1 *°(D))* by finite sums of deltas with integer coefficients.

Corollary 3.2.3. Let D C R" be any open and bounded domain in R™ which is bi-Lipschitz
equivalent to Q7(0). Let I € Ry(D) with finite mass. Then, there exists a vector field V € LY(D)
such that

div(V)=0I in (Wy™(D))*.

Thus OI can be approximated strongly in (Wol’oo (D))* by finite sums of deltas with integer coeffi-
cients. More precisely there exist sequences of points (P;)ien and (N;)ien in D such that

oI = (6p, — dn,) in (Wy'™(D))* and Y _|P; — Ni| < oo. (3.2.17)
€N ieN

Proof. By Lemma 3.2.7, it is enough to consider the case D = @Q1(0). Let I be as above. By [2,
Theorem 5.6] there exists a map v € WH"1(Q1(0),S" 1) such that

1 - i—1
*d EZ(_D Uu; /\ duj | = ap—101,
i=1 J#i
where a;,—1 denotes the volume of the (n — 1)-dimensional ball.
Set

n

1 A
Y nan Z(_l)l_lui /\ du;

i=1 ji

Notice that w € Q7 1(Q1(0)) and xdw = dI. Now let V := (xw)f. Then V € L'(Q1(0)) and
div(V) = al.
By Theorem 3.1.1, there exists a sequence (Vg)gen in L5(Q1(0)) such that Vi — V in L. Then
div(Vy) = div(V) =8I in (W, (Q1(0)))*.

As for any k € N we have that div(Vj) is a finite sum of deltas with integer coefficients, by [68,
Proposition A.1]? (3.2.17) holds. O

Corollary 3.2.4. Let M be a complete Lipschitz m-manifold, with or without boundary, compactly
contained in the open cube Q2(0). Let I € R1(Q2(0)) be a rectifiable current of finite mass
supported on M. Then there exist two sequences of points (p;)ien and (n;)ien in M such that

OI = (0p, — ) in (WH(Q2(0)))" and Y _|pi — ni < oc.
1€EN €N
SHere Proposition A.1 in [68] is applied to the following metric space: for any x,y € Q1(0) let d(x,y) =
min{d(z,y), dist(z, 8Q1(0)) + dist(y, 9Q1(0)}, where d denotes the Euclidean distance in Q1(0). Let (Q1(0),d)
denote the completion of Q1 (0) with respect to the distance d. Then Lipschitz functions on (Q1(0),d) corre-
sponds to functions in W, > (Q1(0)) (with same Lipschitz constant) modulo additive constants.
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Proof. Let I € Ri(M) be a rectifiable 1-current of finite mass supported in M C @Q2(0). By
Corollary 3.2.3 there exists a vector field V' € L'(Q2(0)) such that div(V) = dI. Thus we can
apply the arguments of the proof of Theorem 3.2.1 to V. For any ¢ € Ey this yields a vector field
V. e LY(Qq, <) with the following properties: all bad cubes Q € %, . are such that Q@ N M # 0,
therefore the topological singularities of V. lie at a distance of at most Vv/ne from M. Moreover

notice that if ¢ is sufficiently small, ng(o) div(VZ)dL™ = 0 (one can see this by testing div(V;)

against a function ¢ € C°(Q2(0)) such that ¢ =1 in a neighbourhood of M). Thus div(V;) can
represented by

Qé‘
div(Ve) = D (8 — Onc)

=1

for some Q° € N and points p{ and n$ (possibly repeated) in a y/ne-neighbourhood of M. By
the argument of Lemma 3.2.2 (with Q2(0) in place of Q1(0)) we have eQ° — 0 as € — 01 in Ey.
Now for any 7 € {1,..., Q°} let pf and nf in M such that |p5 — p5| < 2y/ne and |n§ — 75| < 2y/ne.
Let Ip: € R1(Q2(0)) be the rectifiable current given by integration on the segment joining pf and
p; oriented from pf to pf and let I € R1(Q2(0)) be the rectifiable current given by integration
on the segment joining n$ and 75 oriented from 7 to n. Let I. € R1(Q2(0)) be a rectifiable
1-current of finite mass such that div(V.) = dI.. Set I. = I, + Zgl(lpg + Ing). Then

QE
o0l. = Z(éﬁf - 5ﬁf)

i=1

is supported in M. Moreover we have

(here M is endowed with the euclidean distance in (2(0); notice that we are making use of the
fact that any Lipschitz function on M can be extended to a Lipschitz function on Q2(0) with same
Lipschitz constant). Now since ||V, — Vlie(o,, ., — 0ase—0in Ey and 91, 0I. are supported
in a compact subset of Q2(0), the first term on the right hand side tends to zero as ¢ — 07 in Ey .
Moreover the second term is bounded by 41/ne@® (see for instance Lemma 2 in [18]) and thus
tends to 0 as ¢ — 07 in Ey. This shows that 91 belongs to the (strong) (W1°°(M))* closure of
the class of O-currents 7" on M such that

T =Y (5, — 6n,) in (WH(M))* and » |p; — n;| < oo (3.2.18)

JjeJ J€J
for a countable set J and points p;, n; in M. By |68, Proposition A.1] applied to the complete
metric space (M,d) (where d denotes the Euclidean distance in @2(0)) this space is closed in
(Woe(M))*, therefore OI is also of this form. Since any Lipschitz function ¢ € W1°(Q4(0))

has a Lipschitz trace go‘M on M and (91, ¥)g,(0) = <8I,<p}M>M, we conclude that I can be
represented as in 3.2.18 also as an element of (W1°°(Q2(0))*. O

Theorem 3.1.1 could also be useful to obtain approximation results for Sobolev maps with values
into manifolds. For instance we can use it to recover the following result, due to R. Schoen and
K. Uhlenbeck (for p = 2, see |78, Section 4|) and F. Bethuel and X. Zheng (for p > 2, see [13,
Theorem 4]).
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Corollary 3.2.5. Let u € WHP(Q1(0),S!) for some p € (1,00).
If p > 2, then

diviu AV+Tu) =0 in D'(Q1(0))

and u can be approxvimated in WP by a sequence of functions in C*(Q1(0),S!).
If p < 2, then

S div(u A Vi) = al, (3.2.19)
2

where I € R1(Q1(0)) is a I-rectifiable current of finite mass, and u can be approzimated in WP
by a sequence of functions in

R = {v e WHP(Q1(0),Sh);v € C®(Q1(0) ~ A,SY), where A is some finite set} .

Proof. First we claim that the vector field u A V+u belongs to L5 (Q1(0)). In fact notice that for
any o € Q1(0), for a.e. p € (0,2distoo(wo,0Q1(0))) IQ,(wo) consists " L-a.e. of Lebesgue
points of u A V1 u. Moreover for almost any such p we have

1

— (w A V) - vy (m) = deg (u €Z.
21 Joq, (o) Qp (o) ( ‘8Qp(x0))

Hence the vector field 5=u A V4u belongs to LE(Q1(0)).
Thus if p > 2 by Theorem 3.1.1 there holds div(u A V+u) = 0 in D'(Q1(0)), while if p < 2 there
exists a sequence of vector fields (Vy)nen in L% (Q1(0)) such that

1
Vo — oY AVYu in LP(Q1(0)) as n — oo.
T

For any n € N by Hodge decomposition there exist a,, € WHP(Q1(0)), b, € Wol’p(Ql(O)) such
that

27V, = Vlan + Vb,

For any n € N let @, € C*°(Q1(0)) be such that ||a, — an|/» < 1. Moreover notice that there
exists d,, € W1P(Q1(0),SY) N C>®(Q1(0) . A), where A is a finite set, such that

Vb, = d, AV*d,.

In fact

Q’IL
Ab, =2 div(V,) =21 Y djidyn
=1

for some Q" € N, pI' € Q1(0) and d} € Z, thus b, = — ZZQan log|z — pP|%" + hy, for an harmonic
function h,,. Then d,, can be chosen to be

90



where h,, is the harmonic conjugate of h,, (the product has to be understood as complex multi-
plication in C ~ R?).
For any n € N set u, := " d,. Then by construction u, € R and

Up AV u, = uAVEiu  in LP(Q1(0)) as n — oo.
Therefore there is ¢ € [0, 27) so that up to a subsequence
e“u, —u  in LP(Q1(0)) as n — oo.
O

Remark 3.2.9. Equation (3.2.19) was obtained in [20, Theorem 3’| with the help of the approxi-
mation result of F. Bethuel and X. Zheng.

3.3. The weak LP-closure of QZ,’Zl(Q?(O))

In the present section we follow the ideas presented in [63] in order to prove that the space
QZ,QI(Q?(O)) is weakly sequentially closed for every n > 2 and p € (1,+00). The main reason
why such techniques couldn’t be used before in this context for n # 3 was the lack of a strong
approximation theorem like Theorem 3.1.1 for general dimension n. Such result is needed in order
to define a suitable notion of distance between the cubical slices of a form F' € Qz,il (Q™(0)), given
by (x — xo + px)*ngp(xo)F for £1-a.e. p (see Section 3.3.1 and 3.3.2 for the precise definition).
Once we have turned the space of the cubical slices of F' into a metric space, we will show that
the “slice function” associated to F', given by p — (x — z¢ + p:c)*ngp ($0)F’ is locally Z%—Hijlder
continuous (see Section 3.3.3). Moreover we will see that if {Fj}ren C Q;il(Ql(O)) converges
weakly in LP, then the sequence of the slice functions associated to each Fj is locally uniformly
]%—Hélder continuous. Lastly, we will use the previous facts together with some technical lemmata
to conclude the proof of Theorem 3.1.3 for D = Q7(0). Notice that by Theorem 3.1.1 the result
is clear if p € [n/(n — 1), 00), here we will focus on the case p € (1,n/(n —1)).

3.3.1. Slice distance on S™*!

Throughout the following section, we will assume that p € (1,n/ (n — 1)) Moreover, we will
denote by “x” the Hodge star operator associated with the standard round metric on S*~!. We
will denote by Z the linear subspace of Qg*I(Snfl) given by

L n—1/qgn—1
Z._{heﬁp (") s.t. /Sn_lheZ}.

Remark 3.3.1. It’s clear that Z is weakly (and thus strongly) L? closed in Q2= (S"~1). Indeed,
let {hx}ren C Z be any sequence such that hy — h weakly in Qg_l(S”_l), ie.

/§ e [ eh o Vee (s .

Then, the statement follows by picking ¢ = 1 and noticing that a convergent sequence of integer
numbers is definitively constant.
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Fix any arbitrary point ¢ € S*"1. We define the functions d,d : Z x Z — [0, +00] by

d(hl,hg) ;= inf {||oz]|Lp s.t. *(h1 — hg) =d*a+0I + </ hi — hg)éq},
Snfl

with a € Q}J(S”_l),f € Ri(S"1), and

d(hl,hg) = inf{HaHLp s.t. *(h1 — hg) =d'a+ 0l + </ hi — h2>5q},
gn—l

with @ € QL(S™1), I € Ri(S"1) NN;(S™1).

Remark 3.3.2 (d and d are always finite on Z). We claim that d,d < 4oco. Since obviously
d(h1,hg) < d(hi, ha), it is enough to show that d(hy, ha) < +o0, for every hy, ho € Z. This just
amounts to saying that given any hi, hy € Z we can always find o € Q})(S””), IeRi(S"Hn
Ni1(S"~1) satisfying

*(hl - h2) = d*Oé + 8[ + (/ hl - h2>5q.
S

n—1

Indeed, let

a:= / hi — hy € Z.
S§n—1

Consider the following first order differential system on S"~!:

d*w = *(h1 — hg) —adq =: F,
dw = 0.
Since p € (1,n/(n—1)), F € LWL (S"=1)). Moreover, (F,1) = 0. Hence, by Lemma 3.B.2,

we know that the previous differential system has a solution o € Q;(S”_l) and the statement
follows.

Remark 3.3.3. As observed above, it is clear that d(hj, he) < d(hq, ha), for every hy,hy € Z. We
claim that actually d(hi, he) = d(h1, he), for every hy,hy € Z. In order to prove the remaining
inequality, fix any hi,he € Z and let {ag }ren C Q}?(Snfl), {It}ren C R1(S™1) be such that

(hy — he) = d*ay + 0l + ad,, VEkeEN,
HakHLP — d(hbhg) as k — 0,

with

a = / hl — hg.
Snfl

By Corollary 3.B.1, the linear differential equation
Au = x(h1 — ha) — ady
has a weak solution ¢ € WHP(S"™1). Let wy, := di — oy, for every k € N. Notice that

d*wy = 0L,  VkeN.
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By Theorem 3.2.3, for every k € N there exists a sequence {Wk}geN C Q R(S"71) such that

r{c = wg — wk — 0 strongly in LP as j — co. By construction, it follows that

*(hy — he) = d*(ax + ri) + d*wi + ady, VEk,jeN.

We observe that by Proposition 3.A.1 for every k,j € N there exist I] € Ri(S" 1) NN (S™ )
such that d*wk = 0I;,. J This implies that

d(h1, ha) < ||k + 14l |e < [Jewllre + |[7|e,  Vk,j €N
By letting first j — oo and then & — oo in the previous inequality, our claim follows.

Proposition 3.3.1. (Z,d) is a metric space.

Proof. We need to check symmetry, triangular inequality and non-degeneracy.

Symmetry. This is clear since both the LP-norm and the space R1(S"~!) are invariant under sign
change.

Triangular inequality. Let hy, ho, hs € Z. By definition of infimum, for every € > 0 we can write
x(hy — he) = d"a. + 01 + /S"l hi — ha )dq,
#(hy — hg) = d*al + OI. + /S  h2 =y o,

with ae, al € (S"1) and I, I € R1(S""!) satisfying

l|ae||lze < d(hy, h )—i—e
<d

lozlze < d(ha, hs) +

We notice that

*(hl—hg):d*(ag—l—a )—f—a( +I/) (/ hl—h3>(5q, Ve > 0.
S

n—1

Then, by definition of d, we have
d(h1,h3) < |loe +of|lpe < [lacl[ee + |laZ]|e < d(ha, ho) + d(ha, hs) +2¢, Ve > 0.

By letting € — 07 in the previous inequality, we get our claim.

Non-degeneracy. Assume that d(hy, he) = 0, for some hy, hy € Z. Let

a:—/ hi —ho € Z.
S§n—1

Then, since d = d (see Remark 3.3.3) and by definition of d, there exist {ay }ren C Q;(S"_l) and
{Ii}keny C R1(S™1) N A1 (S™1) such that

*(h1 — ha) = d* oy, + 01, + ady
and oy — 0 strongly in LP as k — co. Observe that

oI, — *(h1 — hg) —ad, in (Wheo(S"1))*.
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Now for any k € N, 9 can be represented as

Jk

0Lk =) (0,1 — 0,)

J
j=1

for some Ji € N and points pg‘? , n;‘ in S”~!. But the space of distributions of the form

> (8p, = 0n;) such that Y |p; —nj| < oo (3.3.1)
jeJ jeJ

(for a countable set J and points pj, nj in S*71) is closed with respect to the (strong) topology of
(Wheo(Sn=1))* (see Proposition A.1 in [68]), thus there exists a distribution 7" as in (3.3.1) such
that

* (hl — h2) =T -— a5q. (332)

But this implies that % (h; — ha) = 0, since the left-hand-side in (3.3.2) is in LP whilst the
right-hand-side is in L? if and only if it is equal to zero. O

Remark 3.3.4. Notice that the proof above relies on the fact that d = d, which was proved using
Corollary 3.2.2. As the proof of the Corollary 3.2.2 was rather cumbersome, we remark here that
there is a way to skip that passage. Indeed, in the proof of the non-degeneracy of d it is not
necessary to assume that {Ij}ren lies in V1 (S"71). In fact, it follows from Corollary 3.2.4 that
OI}, is of the form (3.3.1), and thus the limit of {I}}ren in (WH(S"1))* will also be of that
form.

Proposition 3.3.2. Let {hi}tren C Z and h € Z. Then the following are equivalent:
1. {hg}tren C Z is uniformly bounded w.r.t. the LP-norm and d(hy,h) — 0 as k — oo;
2. hy — h weakly in LP as k — oo.

Proof. We prove separately the two implications.

2 = 1. Pick any subsequence of {hj}ren (not relabelled). For every k € N, let
o = (hk—h,1>:/ he — h.
Sn—1

Since hy, — h weakly in LP as k — oo, it follows that a; — 0 as as k — oo. Since {ax }ren C Z,
there exists K € N such that a = 0 for every k > K. Fix any k£ > K. By Lemma 3.B.2, the
linear differential system

d*w = *(hj, — h)
dw =0,

respectively (if n = 2)

d*w = *(h, — h)
dw =0

/sz,
St
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has a unique weak solution oy, € Q},(S”_l). By Remark 3.B.3 we have
llowllwre < C(|ldal|Lr + |ld” k|| Lr) = Cllhx — hl| o

Since {hy}ren is weakly convergent, we know that it is also uniformly bounded w.r.t the LP-
norm. Then {ay}rs>x is uniformly bounded w.r.t the W!P-norm. Hence, by weak compactness

in WP, there exists a subsequence {ay, }ien C {or}rsk and a one-form o € Q31 ,(S"1) such

that ay, — o weakly in WP, By Rellich-Kondrakov theorem, it follows that ay, — a strongly
in LP. We claim that o = 0. Indeed,

(0, W)y o = ll_iglo(akl, dp +d*B) pp_1»
= lllglo *<d*akl , ‘P)Lprp/

= lim — (hgy —R)Ap =0, Vw=dp+dBecQ ST,

l—00 sn—1

respectively (if n = 2)

(W) p 1y = llim (o, dp+d*B+n0)pp 1
—00
= h Y <O[kl, d(p + d*B>Lp_LpI
l—00

= lim —{(d*« ’
oo < kl7§0>Lp7Lp

= lim — (hy, —R)Ap =0, Nw=dp+dB+necQ (S,

l—00 Ssn—1
where 1 € Q1(S!) is a harmonic 1-form on S' (hence a constant 1-form) and the second equality
follows because oy, is distributionally closed.

Hence, we have shown that aj, — 0 strongly in LP as | — oco. As x(hy, — h) = d*«y,, for every
[ € N, we have

d(hi,, h) < ||oug,||Lr — 0, as [ — oo.

We have just proved that any subsequence of {hy}ren has a further subsequence converging to h
with respect to d, therefore 1. follows.

1 = 2. Pick any subsequence of {hj}ren (not relabelled). Since {hi}reny C Z is uniformly
bounded w.r.t. the LP-norm, by weak LP-compactness there exists a subsequence {hg, }ien of
{hi}ren and a hy, € Z such that hy, — h,, weakly in LP. Since we have just shown that 2 = 1,
we know that d(hg,, hy) — 0 as | = co. By uniqueness of the limit, we get h,, = h. We have just
proved that any subsequence of {hj}reny C Z has a further subsequence converging to h weakly
in LP?, hence, 2. follows. O

3.3.2. Slice distance on 90Q7(0)

Let Q1(0) C R™ be the unit cube in R” centered at the origin and let ¥ : S*~! — 9Q1(0) be a
bi-Lipschitz homeomorphism. We let Y be the linear subspace of Q7~1(8Q1(0)) given by

P n—1
Y- {h € Q0 1(9Q1(0)) st /an<0> he z}.
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Remark 3.3.5. Notice that h € Y if and only if ¥*h € Z. Indeed, given any h € Z we have

qul/ I </ |T*h[P dom™t gcw/ |h|P do™ 1,
0Q1(0) Sn—1 0Q1(0)

with Cy := (max{[|d¥| 1, Hd‘li_lHLoo})(n_l)(p_l), and

[ wn=[
sn-t 9Q1(0)

Thus, the functions dy,dy : Y x Y — [0, +00) given by

d\p(hl, hg) = d(\IJ*hl, \If*hg) Vhi,hy €Y,

dy(hy,ha) == d(¥*hy, U*hy)  YVhi,hy €Y,

are well-defined and coincide on Y x Y by Remarks 3.3.2 and 3.3.3. Moreover, (Y, dy) is a metric
space as a direct consequence of Proposition 3.3.1 and the following statement is a corollary of
Proposition 3.3.2.

Corollary 3.3.1. Let {hi}tren CY and h € Y. Then, the following are equivalent:
1. {hg}tren C Y is uniformly bounded w.r.t. the LP-norm and dg(hy,h) — 0 as k — oo;
2. hy — h weakly in LP as k — oo.

Remark 3.3.6. Let Wy, Wy : S"1 — 9Q1(0) be bi-Lipschitz homeomorphisms. We claim that the
distances dy, and dy, induced on Y by ¥; and Wy respectively are equivalent. Indeed notice
that given any bi-Lipschitz map A : S"~! — S*~! we have

n—1
d(A*hy, A*ho) < ||dA|F2dATY & d(hi,he),  Yhi,he € Z. (3.3.3)

To see this notice that if a € ,(S"!) is a competitor in the definition of d(hy, hy) then the form
given by (—1)"2 x A*(xa) € Q}(S"!) is a competitor in the definition of d(A*h1, A*hy). Hence

n—1
d(A"hy, Aha) < |eA"(x0)l|o < A2 A % llal o,

for every competitor « in the definition of d(hq, ha). By taking the infimum on all the competitors
in the previous inequality, (3.3.3) follows. By applying (3.3.3) we obtain

dy,(hi,he) = d(V5hy, Y5hy) = d((\lll_l 0 Wy)*Wihy, (U7t o o) *Wihy)
< Cyyw,d(Vihy, Uihg) = Cyywydw, (h1,h2)  Vhi,ha €,
Analogously, we get

dy, (h1,h2) < Cy,v,dw,(h1, he) Vhi,hy €Y,
n—24m1

with Cy,y, = max{||d(‘ll2_1 oWz, [|d(T o Wy}
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3.3.3. Slice functions and their properties

Definition 3.3.1 (Slice functions). Let F' € szil(Ql(O)). Given any arbitrary zp € Q1(0), we
let pg := 2 disteo (20, 0Q1(0)).
We call the slice function of F at x¢ the map s : Dom(s) C (0, p9) — Y given by

s(p) = (z— px+ xo)*ngp(xo)F, V p € Dom(s),
where Dom(s) is the subset of (0, pg) defined as follows: p € Dom(s) if and only if the following
conditions hold:
1. 2" Lae. point in 0Q,(wo) is a Lebesgue point for F,
2. |F| € LP(9Qp(wo), 2" ),

3. pis a Lebesgue point for the LP-function

(0,p0) 2 p 150, (z) F
5, (x0) Qp(z0)

4. (x — px+x0)*ij§Qp( FeYy.

z0)

Remark 3.3.7. Notice that Dom(s) has £! full measure in (0, pg) and s € LP((0,p0);Y), in the
following sense: letting j, : x + px + o, we have

(o)1 =/ i F|P doam! = / |F[Ppr=De=1) g yn1
9Q1(0) AQp(x0)
and thus

Po Po
[ do< [ [ pple et aem gy [ jppae
0 0 JoQ, Qp (z0)

Proposition 3.3.3. Let 9 € Q1(0) and set py = 2dist(zg,0Q1(0)). Fix any (n — 1)-form
F e Qgil(Ql(O)) and let s € LP((0,p0),Y) be the slice function of F at xo. Let K C (0,po) be
compact. Then, there exists a subset E C K such that L'(K ~ E) = 0 and a representative § of
s defined pointwise on E such that

1
dw (5(p1),5(p2)) < CprwllFllLelpr — pal?, Vp1,p2 € E, (3.3.4)

with
Cprcw i=C, e
P, KU ¥ I,?é}?p
Proof. Denote by Tr € D1(Q1(0)) the 1-current on Q1(0) given by
Tew)= [ Faw,  vweD(@O).
Q1(0)
Since F € Q;il(Ql(O)), by Theorem 3.2.2 there exists I € R1(Q1(0)) such that M(I) < 400 and

«xdF = 0I. By definition of integral 1-current, there exist a locally 1-rectifiable set I' C Q1(0), a
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Borel measurable unitary vector field TonT and a positive Z-valued ! L I'-integrable function
9 € L(T', s#") such that

1, w) —/F9<w,f> dA, Ve DYQIO)).

By the coarea formula, there exists G C K such that £}(K \ G) = 0 and such that I' N 9Q, (o)
is a finite set for every p € G.

Let W :S" ! — 9Q1(0) be the bi-Lipschitz map given by

U(x):

X

= , Ve st
2[|z[loo

Consider the map ® : S~ x [0, pg] — Im(®) = Q,, (z0) C Q1(0) given by
®(y,t) == w0 +tU(y),  V(y,t) €™ x [0, pol.

Notice that q)‘Sn*l «[ is a bi-Lipschitz homeomorphism onto its image for every p1, p2 € (0,1).

PlyP2]
We claim that estimate (3.3.4) holds on a full-measure subset of G. Indeed, fix any p1, p2 € G.

Without loss of generality, assume that py > p;. Let $ = @}Sn_lx[m Pl Define 7 := pry o @71 :

Qpo(z0) — S"=1, where pry : S*7! x [0, pg] — S*! is the canonical projection on the first factor,
and notice that 7 is a Lipschitz and proper map. Then, 7, (Tp L Im(®)) € Di(S"!) can be
expressed as follows: for any w € Q'(S"1)

(s (TFI_Im((i))),m = (TrLIm(®), 7*w) = /I @) FAT*w

= (@~H*(®*F A d*1*w)
Im(d)

:/ O*F A priw
Sn=1x[p1,p2]

= / priw A x(x®* F)
Sn=1x[p1,p2]

(priw, *®*F) dvolgn-1 5, ps1 (¥, 1)

/Snl x[p1,p2]
/

p2
</ (priw, *®*F) dvolgn1(y)> dt
S§n—1

1
p2
:/ (/ (W, ign—1, g1y * <I)*F>dvolgn1(y)> dt
p1 Sn—l
p2
:/ (/ w/\(*ign_lx{t}*®*F)) dt
01 S§n—1
P2
w/\</ (*ign_lx{t}*é*F)dt>
n—1

P1

= (1)"_1/ wA a,
Sn—1

Il
o

where

P2
= (_1)"—1/ (% inory gy * ®F) dt € Q028"
p1
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In particular,
(O, (Tr LIm(®)), ¢) = (. (T L Im(®)), d)

= (-1~ /Snl dp N a = (d*(xa), p), Ve oo smh.

Recall that the restriction of an integral current to a measurable set is still an integral current.
Moreover, the push-forward of an integral current through a Lipschitz and proper map remains
an integral current (see [53, Chapter 7, §7.5]). Then, I := —, (II_Im(i))) € Ry(S™71).

So far, we have shown that

O ((Tr — 1) LIm(®)) = 9, (Tr L Im(®)) — 97, (I LTm(®)) = d*(xa) + A1

1 /-
Let ¢ € C2°((—1,1)) such that / ¢ =1. For any ¢ € (0,min{p1, po — p2}) set (- = EC <g> and
R

let X, be the unique solution of

X;('r) = Ce(x = p1) — Ge(x — p2)
X.(0) = 0.

Let ¢ € C°°(S"1 x [0, po]) and let pry : S*~1 x [0, po] — [0, po] be the projection on the second
factor. We compute

(@ e v ope) = [ O 100X o o), s p) 8

p1te ~
= / gg(t)< / 1/10d%”0> dct(t)
p1—e d-1(I)N(S"—1x{t})

p2-+te B
— / gg(t)< / ¢0d%0> dch(t)
pa—e d-1(I)N(S"—1x{t})

with 6 = (@1, rsgn({dpry, f(q,_l)*ﬁ) € LY(®1(I"), Z). Moreover

(@) Tr, ¥ d(Xz 0 pry)) = / V(XL o pry)®*F A dpr,
Sn=1x[0,p0]

= [" e ([ el F) ac
p1—€ : Sn=1x{t} st

- /'Wc(t) [ @) F ) ac.
p2—¢ : Sn—1x{t} Smeix{t)

Now observe that

(@7H)u(Tr — 1), (Xe 0 pry) dip) — {(271)u(Tr — D)) L (8" x [p1, p2]), dy)

as € — 07, by dominated convergence. On the other hand, since d(Tr — I) = 0, we have

(@71)(Tr = I), (Xe 0 pry) dib) = (@7 1)<L, Y d(Xe 0 pry)) — (27 1)u T, ¥ d(Xe 0 Pry)).
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Therefore for almost every p1, p2 € (0, po) (depending on ) we have

O(@Y)o(Tr — D)L (S % [p1, o)), ) = / b6 A

S=HI)NES ! x{p1})

—/ vl dA° (3.3.5)
&= (D)N(S x{p2})

+/ (P, *F.
Sn=1x{p2} ( ‘S 1X{p2})

Now let {x }ren € C(S"™1 x [0, po]) be a countable sequence dense in C1(S"~1 x [0, pg]). For
every k € N, let E; C G be the set such that (3.3.5) holds with ¢ = v (i.e. the set of the p € G
wich are "(.-Lebesgue points" of the integrands in (3.3.5), with ¢ = ;) and define

E = ﬂ E,.
keN

Then £}(E) = L}(K) and for every p1, p2 € E estimate (3.3.5) holds with 1) = 1), for every k € N.
By density of {1y }ren in CH(S"L x [0, po]), we can pass to the limit in (3.3.5) and get that for
any given couple of parameters p1, p2 € E such estimate holds for every 1 € C>(S" 1 x [0, po)).
In particular, for every p1, p2 € E, ¢ € C®°(S" 1) we have

(0 (Tr — I) L Im(d Z 0(z, p1)g Z 0(x, p2)g

z€lp, z€lpgy

—/ w\IJ*S(m)Jr/ 0 W s(p2),
Snfl S'nfl

where
Ty i=pry (@71 T) N (" x {p1})) 8",
Ty = pry (@ H(T) N (S"! x {p2})) C "

are finite set for any p1, p2 € G.

Gathering together what we have proved so far, we have

*(\I/*s(pg) — \I/*s(pl)) = d*(xa) + OI' + (/S U*s(p2) — \Il*s(p1)> dqs

n—1

where I’ € R1(S"~!) is any rectifiable one-current of finite mass such that
= Z é(x7p2)5$ - Z é(l’,pl)(sx + 8I~—|— Z é(x>p1) - Z é(l’,pg) 5117
z€L py z€lp; z€lp; z€Lpy

i.e. *a is a competitor in the definition of d(¥*s(p2), ¥*s(p1)). Hence, in order to estimate
d(¥*s(p2), ¥*s(p1)) we just need to find an upper bound for ||*c||».

Notice that |d®| < t|d¥|+ \F Moreover since
p1 (\I'_1< T — o )7220 )
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— n—1
we have |JO 1 (z)] < 272 (M) . Therefore

lz—z0|loo
P2 p P
ballpy < [ | 100 Fldt) am <oy =gl | o PP dt
Sn=1 1Jpy Sn=1x[p1,p2]

i\ fae st
<<2<  (1awtom +32) I o 211 g,

1

and our claim follows.

3.3.4. Proof of Theorem 3.1.3 for Q7}(0)

For the proof of Theorem 3.1.3 we need two technical Lemmas.

Lemma 3.3.1. Let {fx}ren C LY(0,1) be such that ||fx||;n < C for any k € N. Then there
exist a sequence of compact subsets {Wh}nens, of (0,1) such that for every h € N3 the following
properties hold:

1. LYwy) =1- —
2. Wi, € (1/h,1);
3. for almost every p € Wy, and every k € N there exists k' > k such that |fi(p)| < h.

Proof. Let h € Nyo. For any I € N let

= () £ '([=h, B
k=l

Notice that for any [ € N A? C A{Zrl and set

I, = U Al
=1
Let m € N and let k¥ > m. Notice that
1
C> [ 1do> [ 1ol dp > et (al)

By letting m — oo in the previous inequality, be obtain
C
W
Then, by defining Ej, := Iy N (1/h,1), we clearly get

LYIp) <

C+1
LNE) = LY, U (0,1/h])%) = 1 — LI, U (0,1/h]) > 1 — T+
Moreover, Ej, and any of its subsets satisfy the properties 2. and 3.. Finally, since Ej, is measur-

able, we can find a compact set W}, C Ej, such that
C+2

LWy =1- ==,

By construction, W}, satisfies 1, 2 and 3. O
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Since we do not know if the space (Y, d) is complete, we will also need the following lemma.

Lemma 3.3.2. Let K C [0,1] be compact and let S C K be dense and countable. Let { fi}ren C
C°(K,Y) be such that

1. {fx}ken is uniformly Cauchy from K to (Y,d) (i.e. it is a Cauchy sequence w.r.t. uniform
convergence);
2. for some C >0,

supsup || fx(p)||z» < C;
peS keN

3. for some A >0 and some a € (0,1], we have
d(fk(p)v fk(p,)) < A|p - p,|a7 va p/ €S
Then, there exists f € CO(K,Y) such that fi, — f uniformly.

Proof. Fix any p € S. By hypothesis 2, {fr(p)}ren is bounded in LP and therefore it has a
subsequence converging weakly in LP to a limit f(p) € Y (recall that Y is closed with respect
to the weak LP convergence). By Corollary 3.3.1, such a subsequence converges in (Y, d) to the
same limit f(p). Since {fx}ren is uniformly Cauchy from K to (Y, d), we have that {fr(p)}ren
is Cauchy in (Y, d), therefore fi(p) 4 f(p) and, by Corollary 3.3.1, frx(p) — (p) weakly in LP.
Fix any p € K and let {p;};en C S be such that p; — p. We claim that there exists f, € Y such
that f(p;) = f, wr.t. d and f, doesn’t depend on the choice of the sequence {p;}ien. Indeed by
lower semicontinuity of the LP? norm w.r.t. the weak LP convergence, we have

1£(pi)llee < Timinf [|fi(po)l1s < C,

for every i € N. Then there exists a subsequence {p;, }jen and a f, € LP such that f(p;;) — f,
weakly in LP. Since Y is weakly closed in LP we have f, € Y. By Corollary 3.3.1 we also have

fpi;) = fp wrt. d.
Relabel the subsequence as {p;}ien. To see that f, doesn’t depend on the subsequence (and thus

it doesn’t depend on {p;}tien), assume that {p;}ien is another sequence in S with p; — p and
f(pi) — fp w.r.t. d. To see that f, = fp, first notice that by hypothesis 3. and by triangle
inequality we have

d(f(pi), f(pi)) < d(f(pi), fe(pi)) + d(fr(pi), fe(pi)) + d(fx(pi), f(pi))

d(f(pi), fr(pi)) + Alpi — 5l + d(fr(5:), F(57))-

for every i € N. Hence, passing to the limit as k — oo in the previous inequality, we get

d(f(pi), f(pi)) < Alpi — pa| ™.

<
<

Thus we finally obtain

A(fp: Tp) < d(fp: Fpi)) + d(f (o), £(pi)) + d(f(

Tos f (),
(fp’f(Pz‘))JrA’Pi—pi!aer( (Pi), f)

<d
<d
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and, passing to the limit as ¢ — oo, we get d(f,, fp) =0,ie f,= fp.
For any p € K let

f(p):= lim f(pi),

where {p;}ien C S is any sequence such that p; — p and the limit is understood w.r.t. d. Then
f is a well-defined function on K.
To see that fr — f uniformly, let € > 0 and let K € N such that for any m,n € N>

supd(fm(p), fn(p)) <e

peS

Let p € K and let {p;}ien be a sequence in S such that p; — p. Then for any k € N> we have

Afelp), £(p)) = i d(fi(p), F(pe)) = lim Tim d(fup), fu(p)) < =

1—00 M—>00

This shows that f is the uniform limit of {f;}ren in K, with respect to d. As f;, € C°(K,Y) for
any k € N, we have that f € C°(K,Y) (this also follows directly from the construction of f). [

Theorem 3.3.1 (Weak closure for Q7(0)). Fiz any n € N> and assume that p € (1,n/(n—1)).
Then QZ’QI(Q?(O)) is weakly sequentially closed.

Proof. Assume that F € Q”_l(Ql(O)) belongs to the weak LP-closure of szil(Ql(O)), ie.

there exists {Fi}lren C Q)7 £~ (Q1(0)) such that Fj . F. What we need to show is that
F e QZ};(Ql(O)), which amounts to saying that

50 (o F € Z, (3.3.6)
/8Qp($0) Qp( o)

for every zo € Q1(0) and for a.e. p € (0,2distoo (0, Q1(0))). Without losing generality, we will
just show (3.3.6) for zop = 0.

Step 1. For any £ € N let s; be the slice function of Fj at 0. Fix any h € Ny and
let W, C (1/h,1) be the compact set given by applying Lemma 3.3.1 with fi = ||sk/[L» and
C=2v supgen || Fil e (see Remark 3.3.7). Let EF C W), denote the subset associated to W}, and
s by Proposition 3.3.3, let Ej = Nken E and let s denote 1ts 1 _Hélder representative on Ej,
for any k € N. By property 3. in Lemma 3.3.1, for almost every p 6 E), we can find a subsequence
{5k, (P) }r,en C {sk(p)}ren such that si, (p) is uniformly bounded in LP by h. Denote by Ej
the set of all such p and observe that L1(E) = L1(W,) = 1 — % Then for any p € Ej,
{sk,(p)}x,en has a subsequence that converges weakly in L? or, equivalently, with respect to dy
(see Corollary 3.3.1).

Let S, C Ej be a countable dense subset. By a diagonal extraction argument, we find a subse-
quence {sg, }ien such that {sg,(p)}ien is convergent with respect to dy and weakly in L, and is
uniformly bounded in L? by h, for every p € Sj,.

Step 2. Next we claim that for any [ € N, s, can be extended to a I%-Hé')lder continuous function

on Ej, (with the same Hélder constant, which is bounded uniformly in 7).
In fact let f € {sk, }ien, let p € Ep, N Ep, let {p;}ien be a sequence in Sy, such that p; — p as
i — 0o (observe that such a sequence exists, since Sy is dense in Fj, which in turn is dense in
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Ey). Since {f(pi)}ien C Y is uniformly bounded in LP, by weak LP-compactness there exists a
subsequence { f(pi;)}jen of {f(pi)}ien such that f(p;;) — f, weakly in L? for some f, € Y. By
Corollary 3.3.1, we know that dy (f(pij), fp) — 0. Since f is I%—Hb'lder continuous on Ej, f, does
not depend on the sequence {p; }ien. Hence, the function

f(p) — flp) ifpeE,
' fo if p € Ej \ E},

is well-defined on Ej, and satisfies (3.3.4) on E},.
In the following, in order to simplify the notation, we will denote again by sj, the I%—Hélder

extension of sy, to E,, for any | € N.

Step 3. We show that {s, }ieny converges uniformly on Ej, to some s € C°(Ej,Y).
Fix any € > 0. By Step 2. we know that the sequence {sj, };en is equicontinuous from Ej, to
(Y,dg). Therefore we can choose d > 0 such that

dw (sk,(p), sk, () <, Vp,p € Epst. |p—p'| <dand VieN.

Notice that {(p — 8, p+ )} pes, is an open cover of E},. Since E}, is compact, we can find a finite
set {p1, ..., pm} C Sp, such that {(p; — J,p; + 8)}j=1,.m is a finite open cover of Ej,.

Now let p € Ej,. Observe that there exists a point p; € {p1, ..., pm } such that p € (p; — 6, p; +9),
ie. |p—pj| < é. By our choice of 8, this implies d(sk, (p), sk, (p;)) < €, for every I € N. By
triangle inequality, we have

dw (5k,(P)s Sk () < dw (51, (p), 51, (04)) + dw (58, (P5)s 8k (05)) + A (Sky, (05)5 Sk (P))
< 2e 4 dw (s1,(p); Sk (P5))-

But since p; € S, we know that there exists L; > 0 such that

dw (s1,(p), Sk () < €, Vi,m > L.

Hence, by letting L := max L;, we have that

7j=1,...m
dy (s1,(p), Sk, () <3e,  VIm>LNpeE),.

Here we have just proved that the sequence {sg, }ien is uniformly Cauchy on Ej. Since {sk, }ien
satisfies all the hypotheses of Lemma 3.3.2, we get that there exists s € C°(E},Y) such that
Sk, — s uniformly on Ej, w.r.t. dy.

Notice that since ||sg,(p)||z» < h for any | € N, for any p € E}, and since s, (p) = s(p) w.r.t. dg
for any p € Ej, by Corollary 3.3.1 there holds s, (p) — s(p) in LP for any p € Ej,.

Step 4. Let sy : B, — Y be the restriction to Ej, of the slice function of F' at 0. We claim that
s = sg a.e. in E}. To show this we will prove that

/ (o) / o En() ) dp 0wl

for every ¢ € C2°((0,1)) and for every ¢ € Lip(9Q1(0)). Indeed, an explicit computation gives

/ o(0) / O(s1(0) — s0(p)) dp
Ey, 8Q1(0)
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N /Eh #p) (/an(o) v <P> %Q"(O)Fkl N /acgp v <é>ngp(0)F) o

:2”/ ]lEh(Qr)gp(2|‘\)1/)<.>dr/\(Fkl —F)—0asl— oo,
Q10) N

since

1, (2r)(2] - |>¢(,_|)dr € OL(Qu(0))

and Fy, L% F. On the other hand, since s, (p) — s(p) in LP for any p € Ep,
/ 90(0)/ ¥(sk,(p) —s(p))dp =0  asl— o0
Ey 8Q1(0)
for every ¢ € C2°((0,1)) and for every ¥ € Lip(0Q1(0)), we obtain
[ o) [ wls0)-sa(0)dp=0. i€ CR(0.1). % € Lip(0Q1(0).
By, 0Q1(0)
This means that so(p) = s(p) € Y for a.e. p € E},.

Step 5. Finally we show that (3.3.6) holds for almost any p € (0, 1).
In fact for any p € Ej, such that so(p) = s(p) we have

/ ngpF:/ So(p):/ s(p) = lim su(p) € Z,
9Q,(0) 9Q1(0) 8Q1(0) k=00 J9Q1 (0)

since s, (p) — s(p) in LP. Thus (3.3.6) holds for L'-a.e. p € Ej. Since the previous step can be
repeated for any h € Nso, and since

li YE,) = lim 1- —==1
hﬁufooﬁ ( h) h*l}%I}OO h ’
we conclude that (3.3.6) holds for L-a.e. p € (0,1). O

Remark 3.3.8. Let D C R" be any open and bounded domain which is bi-Lipschitz equivalent to
Q1(0). From Theorem 3.3.1 follows that QZ%I(D) (see Definition 3.1.4) is a weakly sequentially
closed subspace of Q~1(D). Indeed, let ¢ : Q1(0) — D be any bi-Lipschitz homeomorphism

and let {Fi}tren C QZ%I(D) be such that F}, 2 Fon D. Then, by Lemma 3.2.7 we have
{¢*Fi}ren C QZ%I(Ql(O)) and as ¢ is bi-Lipschitz we have ¢*F}, N ©*F on Q1(0). By the

Weak Closure Theorem (Theorem 3.3.1), ¢*F € QZil(Ql(O)). Thus F € QZ;(D) (again by
Lemma 3.2.7). This shows that Theorem 3.1.3 holds true.

Observe that Theorem 3.1.3 does not hold if n = 1. In fact in this case the following holds.

Lemma 3.3.3. Let I be a bounded connected interval in R. Let p € [1,00).
The weak closure of LY (I) in LP(I) is LP(I).
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Proof. Since C°(I) is dense in LP(I), it is enough to show that any function f € C°(I) can be

approximated weakly in LP(I) by functions in L% (I). Without loss of generality we can assume

that I =[0,1). For any n € N let’s define f,, : I — R as follows:

for any k € {1,...,2"} let I} := [E5L 2 for any k € {1,...,2"} let ¢j, == fn f(x)dz and for any
k

x € I} set

: k— c
fu(z) == ] ifz -5 < o]
0 otherwise.

Then f,, € LP(I,Z) and fl,’; fo(z)dz = ffz? f(x)dz for any k € {1,...,2"}, for any n € N.
Moreover notice that since f is bounded, the sequence (fy,)nen is bounded in LP(I). Therefore if
p > 1 (fn)nen converges weakly in LP(I), up to a subsequence, to a function fe LP(I). Testing
against continuous functions on I it is easy to check that f = f.

If p = 1 we have to check that, up to a subsequence,

lim [ f.g= /fg Vge L™(I). (3.3.7)
Since L*°(I) C L(I) for any q > 1, (3.3.7) follows from the case p > 1 (with p = ¢). O

Remark 3.3.9. Let n > 2 and let D C R" be any open, bounded and Lipschitz domain in R™. It
is still unknown if the space L%(D) is weakly sequentially closed. Surely it is not weakly-* closed,
a proof this fact can be easily achieved by generalising the arguments in |63, Section 8|.
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Appendix to Chapter 3

3.A. Minimal connections for forms with finitely many integer
singularities

Throughout this appendix, we will denote by M™ C R" some arbitrary embedded Lipschitz and

connected m-dimensional submanifold of R™. Let p € [1,00]. We will denote by (22177 R.oo(M) the

space introduced in Definition 3.2.1.
Lemma 3.A.1. Let F' € Q;”}EIOO(M) Then, there exists a connection for F'.

Proof. Throughout the following proof, given any couple of points z,y € M we will denote
by (x,y) an arbitrarily chosen oriented Lipschitz curve with finite length joining z and y. By
assumption, it holds that

N
xdF = Zdjéwj, for some dy, ...,dy € Z ~ {0} and z1,...,zy € M.
j=1

We define

{it,...,ip} == {j € {1,... N} s.t. dj > 0},
{1, gt ={j €{1,... N} st. dj <0},

N
d:=) d; €L
j=1

We build a family .# = {I,}aea of oriented Lipschitz curves in M as follows. If there is no point
x; such that d; < 0, then we set .# = (). Else, we start from z;, and we add to the family .# the
curves (:L‘jl,a:il), s (xjkl , a:il), until we reach the condition k1 = ¢ or the condition

k1
ryi=d; + Zdjl < 0.
=1

If k1 = ¢, then we stop. Else, we move to the point x;,.

If 1 =0, then we add to .% the segments (xjklﬂ,xig), ey (xjkz,xiz), where ko € {1,...,q} is the
smallest value such that

ko
ro 1= diz + Z djl < 0.
l=k1+1

If there is no k € {1, ..., ¢} such that

k
di, + > dj <0,
I=k1+1

then we add to .# the segments (xjkﬁl,mh), . (qu,:v,-Q) and we set ko = q.
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If 1 < 0, then we add to % the segments (asjkl,xiQ) and (a:jkﬁl,xb),..., (xjk2,zi2), where
ka2 € {1,...,q} is the smallest value such that

ko
roi=dij, + 71+ Z dj, <0.
I=k1+1
If there is no k € {1, ..., ¢} such that
k
diy +r1+ Y dj <0,
I=k1+1
then we add to .# the segments (xjkl , xiQ) and (acjle,xiQ), o (qu, a%) and we set ko = q.

We proceed iteratively in this way, moving on to the subsequent points z;, until ks = q or s = p.
Then, the construction of the family .# is complete. We let x;, be the last node that is visited
before the iteration stops and, for every I, = (z;, ;) € %, we define its multiplicity m,, as

]dj\—m] ifiZil andj:ikl,
Me =  min{|d;|, |r—1|} if i =4 and j = ix,_,

min{|d,|, |d;|} else.

Finally, we divide three cases:

1. Case d = 0. Notice that this is always the case if M has no boundary. We define the integer
1-current I € R1(M) given by

(I,w) ::Zma/ w, for every w € D'(M).
Ia

2. Case d > 0. We fix a point zp € OM and we let I} := (zq,z;,), for every s = h,...,p. We
define the integer 1-current I € R1(M) given by

(I,w) ::Zma/ w+rh/bw+
Ia I

P
Z d;, / w, for every w € DY (M).
acA 4

s=h+1 s

3. Case d < 0. We fix a point xg € OM and we let I} := (xj,,x¢), for every s = ky,...,q We
define the integer 1-current I € Ri(M) given by

q
(I,w) :_Zm"‘/ w—i—]rh\/ w+ Z \dis\/ w, for every w € DY(M).
In n b

acA s=kp+1

By direct computation, we verify that I has the desired properties and the statement follows. [

Lemma 3.A.2. Let F € Q;?Z_I(M) (see Definition 3.1.4). Then,

inf M(T)= inf M(T)= sup / F ANdep < 400, (3.A.1)
TeD1 (M), TeM (M), <,0€W01’°°(M), M
OT=x*dF OT=xdF lldell oo <1

where My (M) denotes the set of all the 1-currents with finite mass on M. Moreover, the infimum
on the left-hand-side of the previous chain of equalities is achieved.
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Proof. By definition, there exists an integer l-current I € R;(M) with finite mass such that
0l = xdF. Hence

inf  M(T) < M(I) < +o0.
TeD (M),
OT=xdF

The first equality in (3.A.1) is clear.
Notice that for every T' € M (M) such that 0T = *dF it holds that

/M F A dp = (dF, o) = (IT,¢) = (T, dg) < M(T)||dgl| =y, Vo € W™ (M),

Hence,
inf M(T) > sup / F ANdep. 3.A2
reftiyp 2 o, o
- [ldepl] oo <1

To prove that the former inequality is actually an equality, it suffices to show that the supremum
on its right-hand-side is greater than the mass of some 1-current with finite mass T on M such
that T = *dF. Define the vector subspace X C QL (M) given by

X :={weQl (M) s.t. w=dp, for some ¢ € W&OO(M)}

Consider the linear functional ¢ : X C (QY(M),||||z=) — R given by

<¢,w>:/MF/\w, Vwe X.

By (3.A.2) we get that ¢ is continuous on X, i.e.

o} = sup / FAw= sup FAade< inf M(T) < 4oo.
olleco = sup [ et D TS e i, (T)
[[w] oo <1 ||| oo <1 OT=xdF

By Hahn-Banach theorem, we can extend ¢ to a linear functional T : Q'(M) — R such that

Tz ) = 1@llexy = sup / F Adyp
peW, > (M), /M
[ldep]] Loo <1
But then, T'is a 1-current on M having finite mass and such that
M) < T leopon = sw [ Fade
peW, > (M), M
[ldep]| oo <1

Moreover,

(0T, ) = (T, dp) = (¢, dp) =/MFAd<p= (xdF,¢), Vo€ Wy (M).

Hence,
M(T) = inf M(T) =  inf M(T) = sup / FAdp <400
TeDy (M), TeM1(M), PeW (M), M
OT=+dF OT=xdF [|de]|| oo <1
and the statement follows. O
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Proposition 3.A.1. Let F' € Qgﬁl(M) Then, there exists an integer 1-current L € Rq(M)
such that OL = *dF' and

M(L) = inf M(T) = su F ANdop.
0= fph, MO = = | Fnag
OT=dl" lldpl| oo <1

In particular,
M(L) < C||F||L».
Proof. Notice that by [38, Chapter 1, Section 3.4, Theorem 8|, we have

inf M(T)= inf M(T).

TeERL(M), TeD:1 (M),

OT=xdF OT=xdF
Since the mass M(-) is lower semicontinuous with respect to the weak convergence in D; (M)
and since M-bounded subsets of the competition class Ry(M) N{T € Dy(M) s.t. T = *dF'}
are weakly sequentially compact (for a reference, see e.g. [53, Equation (7.5), Theorem 7.5.2]),
by the direct method of calculus of variations we conclude that there exists an integer 1-current
L € Ri(M) such that 0L = *dF and

M(L)= inf M(T)= inf M(T)=  sup / F Adp,
TeR1(M), TeD:1 (M), ewbhe (), J M
IT=+dF IT=+dF =0 ’
[ldep|| oo <1
where the last equality follows from Lemma 3.A.2. The statement follows. O

3.B. Laplace equation on spheres

Let n € N be such that n > 2 and fix any p € (1, +00). We let
Wwhr(sn1) .= {u e WHP(S" 1 sit. w = / udvolgn—1 = 0}.
S§n—1

We can endow the space WHP(S"1) with the usual W'?-norm induced by W1?(S"~1), given by

lullwro = llullee + ldullzr, — Yue€ WHP(ES™).
Lemma 3.B.1 (Poincaré inequality on W'?). There exists a constant C > 0 such that

/ |ulP dvolgn-1 < C'/ |du|P d volgn-1, Vu € WhpP(s1).
Sn—1 Sn—1

Proof. By contradiction, assume that for every k > 0 there exists u, € WhP (S"~1) such that
l|uk||r = 1 and

1> k‘/ |dug|P d volgn-1 .
Sn—1
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This implies immediately that ||duk||rr — 0 as k — oo. In particular, the sequence {ug}ren
is bounded with respect to the W'P-norm. Hence, by weak compactness of W1 P(S"~1), there
exists a subsequence {ug; }jen of {ug }ren such that ug, — uin WhP(S"=1). Moreover, by Rellich-
Kondrakov theorem, we have uy;, — u strongly in LP(S™1). Since dug; — 0 strongly in LP we
get du = 0. Then, u is constant on S"~!. Since ug; — u in LP(S"71), it follows that

0= lim Uk, d volgn-1 = u d volgn—1
j—oo Jgn—1 7 sn—1

and this leads to u = 0. But this is absurd, since by strong LP-convergence of {ug, }jen to u we
obtain ||u||r» = 1. O

Remark 3.B.1. By Lemma 3.B.1, we conclude that we can endow W'? with the following much
more convenient norm:

ullyire = l|dul|ze,  Yue WHP(S™H.

Moreover, such a norm is equivalent to WP-norm.

Remark 3.B.2. Notice that a linear functional on W'?(S" 1) restricts to an element of (W12 (S7~1))*
if and only if it is W!P-continuous and (F,1) = 0.

Lemma 3.B.2. Let F € (WY (S"1))* be such that (F,1) = 0. Then, the following facts hold.
1. If n > 3 the linear differential system
d'w=F
dw =0

has a unique weak solution o € Q})(Sn_l).

2. If n =2 the linear differential system

has a unique weak solution a € QL(S').

In both cases, « satisfies the following estimate:
llaflzr < CHFHqu,p/(Snfl))v
for some constant C > 0 depending only n.

Proof. Observe that, by Remark 3.B.2, F restricts to an element of (W (S*~1))*. Consider the
linear functional ¢ : Q'(S*~!) — R given by

(p,w) = (Fou), Vw=dutdB+neQ (S,
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where 7 is a harmonic 1-form on S”~!. Since ¢ is continuous and linear on Q'(S"~1) w.r.t.
the Lp,—norm, by Hahn-Banach theorem there exists a unique (recall that LP-spaces are strictly
convex) extension ® € (Q}J,(Snfl))* of ¢ such that

1201, sn-1y)+ = 9]l sn-1))« < CUEl uirrar sn-1y)-
By Riesz representation theorem, there exists a unique « € Q},(S”_l) such that
(Q,W) o = / a A xw = (D, w), Vwe Q}D/ (smh (3.B.1)
Sn—1
and
Y e A [—.

Finally, by applying equation (3.B.1) with get

(a,du);, 1 = (P, du) = (¢,du) = (F,u), VYueC®ES" 1),
and

(a,d*B)p 1 = (D,d°B) = (¢, d*B) =0, VB eQ*(S"H).

The two previous equations are exactly the weak forms of the equations d*a = F and da = 0
respectively. Moreover, in case n = 2, we have

/ a :/ aAN*l = (a,x1),, ;v =(P,x1) = (F,1) =0.
St St

This concludes about the existence of a solution to the differential systems given in points 1 and 2.
For what concerns uniqueness, assume that o and o’ are two solutions of the differential system
given in point 1 (resp. 2) and define 3 = o — /. Then, we distinguish the two cases:

46 =0
g = 0.

Hence, 3 is a harmonic 1-forms on S*~! for n > 1, which implies 5 = 0.

Case n > 3. In this case, [ satisfies

Case n = 2. In this case, [ satisfies

d*B =0
dB =0

B=0.
Sl

Hence, /3 is a harmonic 1-forms on S', which implies 8 = cvolg: for some ¢ € R. But since 8 has
vanishing integral on S!, we get 8 = 0. O
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Definition 3.B.1 (Sobolev spaces of differential forms). Fix any £ € N~ {0}. We define the
Sobolev space of WYP-reqular differential k-forms on S™~! by

QF 1, (S"7Y) = {we Q’;(S”_l) s.t. dw,d*w € LP}.
We endow such space with the norm

lwllwre = llwllze + [[dwllze + [|d*w|ze, Y € Qpu(S7H).

Remark 3.B.3. It can be shown (see |80, §3 and §4|) that such Sobolev spaces are completely
equivalent to the usual ones, namely the space of k-forms having local coefficients in WP, More-
over, in case n > 3 there exists C' > 0 such that

[lw|lwir < C(HdeLp + Hd*wHLp), Ywe Q%,Vl,p(Snfl). (3.B.2)
Indeed, let

X = {da st. a € Uy, (S" N},
Y = {d*B s.t. B € Qy(S" 1}

By [80, Proposition 7.1], both X and Y are closed linear subspaces respectively of Qg(S”_l)
and Wb (S*~1). Then, X @Y is a Banach space with respect to the standard norm on the
direct sum of two Banach spaces. We claim that the liner operator T : Qf,,,(S*™!) - X &Y
L1, (S"71) is a continuous linear bijection between

Banach spaces. Indeed, the fact that T is injective follows form the fact that there no non-zero

given by Tw = (dw, d*w), for every w € Q

harmonic forms on S"~! for n > 3. Hence, we just need to show that T is surjective. Pick any
(da,d*) € X @Y. By Lemma 3.B.2, the linear differential system

d*w = d*(f — a)
dw=20
has a unique weak solution @ € QIIJ(S”_I). Since by construction we have dw,d*® € LP, we
conclude that @ € Qf;,1,(S*™!). Then, by letting w := & + a € 1, (S"!) we see that
Tw = (dw,d*w) = (do + da, d*© + d* ) = (da, d* )

and we have proved our claim. This proves that T has a continuous inverse and the statement

fOHOWS with C = ”T_IHE(XEBY,Q;/LP (Snfl)).

In case n = 2, the estimate (3.B.2) still holds for every w € Q3;,1,(S) such that
/ w=0.
St

Remark 3.B.4 (LP-Hodge decomposition). Let

The proof is completely analogous.

X :={dpst. p e WHP(S" )},
V= {d*Bst. B €, (S H},
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Z:={ne Q' (S") s.t. Ay = (dd* + d*d)y = 0}.

Then, as a particular consequence of the LP-Hodge decomposition theorem (see e.g. [80, Propo-
sition 6.5]), the operator T: X @Y & Z — Q(S""!) given by

T(dp,d*B,n) :=dp+d B +n

is a continuous and linear isomorphism between Banach spaces. Hence, T" has a continuous
inverse. We let

Cu = HT71|’L(Q;(S”*1),X®Y)-

We conclude that for every w € Q1(S"!) there exist ¢ € Whe(sr=1), g ¢ QF,1,(S"1) and
n € Z such that w = dyp + d*5 + n and

lldel|Le + [|d*Bl|ze + [InllLe < Crllwl|zr- (3.B.3)

Lemma 3.B.3 (A weak version of Poincaré lemma). Let n > 3 and let o € Q(S"1) be such
that da = 0 weakly on S"~'. Then, there exists a Sobolev function o € WHP(S"~1) such that
dy = o weakly on SP1.

Proof. We follow the notation of Remark 3.B.4 and we notice that, since n > 3 we have Z = {0}.

Hence, we write a = dp + d* 3, for ¢ € W'P(S*1) and 3 € Q2,1 (S"1). We observe that

<d*57W>Lp_Lp’ =

d*B,dp +d* ) 1w

d* B, d* V) o

a—de,d™ )y

a,d*¥)p v =0, Vw=dy+d'vye Ql(S"’I).

o~ o~ o~ ——

This implies d*8 = 0 and the statement follows. ]

Corollary 3.B.1 (Laplace equation on spheres). Let F € LW (S*1)) such that (F,1) = 0.
Then, the linear differential equation

Auy=F
has a unique weak solution p € WhP(S*~1) satisfying
lellwre < CIE girm gn-1))s-
Proof. First, we face the case n > 3. By Lemma 3.B.2 we can find « € Q},(S”‘l) satisfying
dfa=F
{da =0
and

lollze < CIF | girtot o1y
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Since da = 0, by Lemma 3.B.3 there exists ¢ € W1HP(S"1) such that a = dyp. Hence, we get
Ap =d*'dp=d*a=F.
Moreover, by Lemma 3.B.1, we have
lellws < Clidellzr = Cllallze < ClLE] g nsyy-

This concludes the proof in case n > 3.
If n. = 2, then by Lemma 3.B.2 we can find a € Q,(S"™') satisfying

d*a=F
doa=0

/a:()
Sl

HaHLp < CHFH(Wl,p’(Sn—I))*-

and

By setting ¢ := *«, the statement follows. Ul

3.C. Some technical lemmata

In this section we will make use of the following notation: let T' be an m-rectifiable current in
R™, then T can be represented as follows:

(T, w) = 9(w,§>d%m‘2 Yw € Q™(R™),
R’I’L

where ¥ is a locally m-rectifiable set,
0:%—7Z
is a locally ™ -integrable, non-negative function and
£:X = ApR"

is an J#"-measurable function such that for .7""-almost every point = € ¥, {(z) is a simple unit
m-vector in T,>.
In this case we write

T =1(%,60,¢).
Lemma 3.C.1. For any k € N let
Tk = T(Zlﬁ Hka é.k)

be an m-rectifiable current on R™ of finite mass. Assume that (T)ken is a Cauchy sequence with
respect to the convergence in mass.
Then there exists an m-rectifiable current

T=r1(%0,8)
such that

T =T (k— o0) in mass.
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Proof. Replacing the original sequence by a subsequence if necessary, we may assume that for
any k € N

M(T), — Ty1) < 27F

Now for any k € N let

_ T if k=1
Ty =
Ty — T if k> 1.

Then for any k € N we have

k
Ty, = ZT
i=1
For any k € N write
Tk = <Sk7 ék) gk)

Notice that

for every k € N. Set

Then ¥ is m-rectifiable as countable union of m-rectifiable sets. Moreover .2 (X) < co. In fact

H(D) <Y A (SN 6,1(0)) < Z/ 0k| dot™ LSy, =Y " M(T}) < oo.
kEN keN Y R" kEN
Next let

0=> 0,

keN

where 6}, is extended by zero on ¥\ ¥y, for any k € N .
By Beppo-Levi Theorem

0] dA™ S =" [ |0kl do™ LS
Rn

ken Y R"
— Z/ O] do™ LS = M(T}) < . (3.C.1)
keN /R” keN

Therefore 0 is finite J#™-a.e. in X, i.e. for #™-a.e. x € 3 there are only finitely many k € N so
that 0x(x) # 0. In particular the sum

> Ok(@)éx(x)

keN
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is well defined and finite for J#™-a.e. = € ¥ (again & is extended by zero on ¥ ~\ ¥y for any
k € N) and we can write

O(x)E(x) =Y O()é(x)

keN

for some 0(x) € Z>o and for some simple unit m-vector {(z) in T,)%, for #™-a.e. x € X.

Observe that 0 is an J#""-measurable function on X as the absolute value of the a.e.-limit of
" -measurable functions. Analogously, £ is an J#""-measurable map on X as the a.e.-limit of
A" -measurable maps. We set

T:=71(%,6,¢)
and we claim that
Ty - T (k—o0) in mass.

In fact we know that since the space of m-currents is complete under the convergence in mass (as
a dual space), there exists an m-current 7" such that

Ty — T (k— o0o) in mass.

To see that T = T" observe that for any w € D™(R")

k
Op(w, &) = Z§Z<w,§~z> — 0(w,§) H™-ae. in 3,
i=1

thus by (3.C.1) and Dominated Convergence Theorem we conclude that
(T, w) = (T,w) (k— o).
In particular T' = T". O

Lemma 3.C.2. Let a € (1,+400), ¢ € (—o0,1], € € (0,1) and let Q@ C QF__(0) be open, Lipschitz
and bounded. For any p € [1,+00) and = fL™ with f = (3 — || -|lc)?, consider the continuous
linear operator P, : LP(Q, u; R™) — LP(Q, u; R™) given by

" Wiar) if v €a”lQ,

(FaV)(@) := {0 on Q~ a Q.

Then:
1. For every a € (1,+00) such that |1 — a~t| < & holds that

1PV o) < Ca” % [V ]| oo,

for some constant C > 0 depending only on q and p.
2. For every V € LP(Q, 1; R™) we have that P,V — V in LP(Q, u; R™) as o — 1T,
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Proof. Fist we prove 1. Fix any V € LP(Q, u; R™) and compute

[Ipavpdn=ard [ Ve du
Q a— 10

<ot ([ WP an + [ \v<y>rpf<‘“_1;’(’y)‘f(y’du<y>).

As in (3.2.4) we can estimate

flaly) — fy) 1 -1 By
f(y) ’ S < IIy!oo) [yl —a™!) < C

for any y € Q1_-(0) and any a > 1 such that |1 — a~!| < ¢, for some constant C' depending only

on gq. Therefore

/Q VP dp < (C + 1)a?=Dn /Q V)P du(y)

Hence 1. follows. We are left to prove 2.. Fix any § > 0 and let V5 € C?(€2;R™) be such that
Vs = Ve <0
By 1, we have
[PV = Ve < |1Pa(V — VJ)HLP () + 1PaVs = Vsl Loy + 1Vs = Ve
< (Ca™ ™77 4+ 1)3 + [[PaVs — Villo
for every o € (1,+00) such that |1 — a~!| < e. Since Vj is continuous and compactly supported,

it follows from dominated convergence that ||PoVs — Vsl p(u) — 0 as @ — 1. Hence, by letting
a — 17 in the previous inequality we get

limsup|| PV — V| 1p(uy < (C' + 1)4.

a—1+

As § > 0 was arbitrary, 2 follows. O
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4. Coulomb gauges and regularity for
Yang—Mills fields in supercritical
dimension

4.1. Introduction

The study of the variations of the Yang—Mills Lagrangian has known a spectacular development
since the very first analytical works by K. Uhlenbeck, which have been central in producing new
invariants of differential structures on topological 4-manifolds. In particular, S. Donaldson proved
his celebrated result on the existence of non-smoothable topological 4-manifolds by studying
properties of the the moduli space of the anti-self-dual instantons! over such manifolds (see [30],
[31]). Examples of these manifolds had already been constructed by Freedman in [36]. Moreover,
Taubes proved the existence of uncountably many fake R*’s by means of gauge theoretic methods
in [87]. For a complete discussion of these topics, we refer the reader to [32] or [35].

Due to the successful use of the Yang—Mills energy in dimension 4, it is natural to explore its
behavior in higher dimensions, specifically in the supercritical regime. In fact, S. Donaldson and
R. Thomas outlined a research program in this direction in [33], [88]. However, analyzing the
Yang—Mills Lagrangian becomes increasingly challenging in dimensions higher than 4, where we
are led to considersingular solutions, which naturally emerge in this more complicated context.

Locally, the Yang-Mills Lagrangian is defined as follows. Let A be a l-form on the flat n-
dimensional unit ball B" taking values into the Lie Algebra g of a compact matrix Lie group G.
The Yang-Mills energy of this “connection 1-form” is given by

YM(A) :—/ |dA+ AN APadL", (4.1.1)
Bn

where L™ denotes the Lebesgue measure on R™, A A A is the g-valued 2-form given by
ANAXY) = [A(X),A(Y)] VX, Y e R" (4.1.2)

is the Lie Algebra bracket on g. The curvature Fy := dA 4+ A A A is the sum of a linear operation
on A (i.e. dA) and a bilinear one (i.e. A A A). One of the main difficulties in the analysis of
the Yang—Mills functional is to understand which one of the two is “taking over” the other along
sequences with uniformly bounded Yang—Mills energy. As we will see shortly, the general answer
to this question strongly depends on the dimension n of the base manifold.

The Yang—Mills Lagrangian is conformally invariant in dimension 4. This makes the 4-dimen-
sional case critical from a purely analytic perspective, as we are explaining in the forthcoming

! Instantons in dimension 4 are very special critical points of the Yang-Mills functional solving a first order PDE,
in a similar fashion as holomorphic functions are very special critical points of the Dirichlet energy in dimension
2.
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paragraphs. The Yang—Mills Lagrangian is invariant under the following gauge change operation:
YM(AY9) = YM(A), where AY:=gldg+gtAg (4.1.3)

for any choice of map g from B” into G. These maps are called local gauge transformations or
simply local gauges and they realize the so called local gauge group. The equality between the
Yang—Mills energy of A and the Yang—Mills energy of AY is a direct consequence of the following
identity?

Fas =g 'Fag = |Fas|=|Fal. (4.1.4)

This huge invariance group is both a source of difficulties and a big advantage in studying this
Lagrangian.

Our starting point consists in considering the space of connection forms modulo this gauge group
action. One of the main challenges in the field consists in proving the existence of a gauge g
in which the connection form A9 is “optimally” controlled® by its Yang-Mills energy YM(A9) =
YM(A). For instance, in order to make the functional YM as much coercive as possible, a
reasonable quest suggested by the abelian case (G = U(1)) in electromagnetism consists in looking
for the Coulomb condition to be fulfilled. This amounts to finding a local gauge g such that

d*A9 =0 in B"
(4.1.5)
(A9,2) =0 on OB".
This condition is equivalent to the following non-linear elliptic PDE
—div (g_1Vg) =div(g~'A4g) in B" (4.1.6)
—g10,9=9"1{A,2)g on OB". o

We shall come back to the difficulty of solving (4.1.6) later in this introduction but, assuming
such a g has been obtained, we control

CHA|[f1.2(gn) < / |dA9|% + |d* A9)? dL™ < YM(A) +/ |A9 A A9|? dLm. (4.1.7)
B4 Bn
From the Sobolev embedding theorem, for n > 2 we have*
WL2(B) — Lnez (B). (4.1.8)

In dimension n = 3,4, Holder inequality implies that L%(IB") < L*(B"™). Hence, for n < 4 we
obtain the bound

| 147 AP AL < A7 gy < A7 s (1.1.9)

2 The action of the local gauge group on a given connection — i.e. an equivariant horizontal plane distribution
in the principal G-bundle which is represented in a local trivialization by a g valued 1-forms A in the base —
is converted into the adjoint action of G on g at the level of the curvature which is itself measuring the lack
of integrability of this plane distribution (recall that the curvature is the vertical projection of the bracket of
horizontal lifts of vector fields in the base).

3The adjective “optimally” refers to the smallest possible classical function space that A¢ belongs to.

4For n = 2, we have

—+oo
WhHA(B") < () L7 (B").
p=1
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and finally
493 1amy < CYMA) + LA g (1.1.10)

Assuming now that a smallness condition of the form C||AY|| ) S 27! is known, one gets in

21171 2
B (Bn
return the “a priori” estimate

1A [[F1.2(gm) < C YM(A). (4.1.11)

One of the main achievements of [90] is to convert the a priori estimate (4.1.11) into an existence
result for (4.1.6) such that (4.1.11) eventually holds, provided YM(A) is small enough.

This achievement is not straightforward at all in dimension n > 4. A first attempt would be to use

the variational nature of the problem. Indeed, equation (4.1.6) happens to be the Euler—Lagrange
equation of

40 sy = [ Mg+ Agl? dc”. (4.1.12)

Hence, independently of dimension, a solution to (4.1.6) can be obtained by a direct minimization
of (4.1.12) and by applying the fundamental principles of the calculus of variations. Nevertheless,
this variational strategy is hitting a serious regularity issue in the sense that, for a generic A €
L?(B"), a minimizer g of (4.1.12) is a priori only in W2 and in general (4.1.11) is not satisfied

by any of these minimizers®

Here, another dichotomy appears within the low dimensions n < 4. For n < 4, because of the
Sobolev embedding
W22(B") — C°(B"), (4.1.13)
the group multiplication
M:W(B",G)? — WH(B",G)
(g, h) = gh

is smooth between the two Banach manifolds W%2(B",G)? and W22?(B",G). This allows to
implement an argument based on the local inversion theorem in order to prove that any A €
WL2(AIB" @ g) satisfying YM(A) < € admits a local gauge g € W22(B", ) solving (4.1.6) and
(4.1.11).

Coming now to the critical dimension 4, the group multiplication map M is still well-defined, since
the group G is assumed to be compact, but M ceases to be continuous. Moreover, W?22(B", )

(4.1.14)

looses its natural Banach manifold structure. These facts prevent implementing the strategy
involving the direct use of the local inversion theorem. K. Uhlenbeck instead developed a very
clever continuity argument leading to a W2 controlled representative satisfying (4.1.11), under
small YM-energy assumption.

To summarize, the balance between the linear part dA and the bilinear part AA A of the curvature
form can be settled in favor of the linear and more regularizing part dA as long as YM(A) is small

5Even for a smooth data A, minimizers to the Dirichlet energy for maps from B* into G are known to be at most
3
in W2(2)(B* Q) (see [79]) and are certainly not automatically in W*2(B*, G), which must be the case if A9
is in Wh2.
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enough and up to dimension 4. This enables to implement classical variational strategies for YM
6 on smooth principal G-bundles (see e.g. [81] for

within the framework of Sobolev connections

minimization procedures).

In dimension larger than 4, the Sobolev embedding W12 < L* does not hold anymore. This
fundamental fact compromises Uhlenbeck’s procedure to extract controlled gauges. Even worse,
one can produce a sequence of smooth su(2)-valued 1 forms {Ay}ren on B such that

Ap — Ay weakly in L?(B%)
dAj + Ay N Ay — F,  weakly in L?(B) (4.1.16)
d*AL, =0 in BS.
and
Spt d (tr(Fao A Fa)) = B5. (4.1.17)

Assume that there exists B € W1H2(A'B® ® su(2)) such that
Foo =dB+ BAB = Fg. (4.1.18)

Then, for any smooth function ¢ compactly supported in B® the coarea formula gives

+oo
/ do AN r(Fg A Fg) = / dcl(s)/ tr(Fp A Fig). (4.1.19)
B —o0 o= 1(s)

Thanks to Sard’s theorem and Fubini’s theorem, for J#'-a.e. s € R, ¢ !(s) is a smooth
closed 4-dimensional manifold and the restriction of B to this submanifold is in W12, On
such a 4-dimensional manifold, by a straightforward strong approximation procedure for B in
Wh2(Alp=1(s) ® su(2)), we can derive the following identity from the classical expression of the
transgression form for the second Chern class:

1
tr(Fg A Fig) = d [tr <B/\dB+3B/\ [B,B})]. (4.1.20)
This implies that
/ tr(Fg A Fg) =0 for #'-ae. scR. (4.1.21)
1 (s)
Combining (4.1.19) and (4.1.21), we get

d(tr(Fg AFg)) =0 in D'(B®). (4.1.22)

This fact is contradicting (4.1.17) and we conclude that the weak limit of the smooth curvatures
Fa, on B cannot be, even locally, the curvature of a Sobolev W12-connection. For sequences

6A Sobolev W*P-connection on a smooth principal G-bundle m : P — M?* is given by a collection of W*P
g-valued 1-forms Ay on each open set U over which P is trivial (i.e. #7(U) ~ U x G as principal G-bundle
isomorphism) and related to each other by the classical gauge equivalence relations

Ay = gyyvdguyv + gy Avguy - onUNV (4.1.15)

where gyv are the G-valued transition functions defining the smooth bundle P (see for instance [35]).
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of smooth Yang—Mills fields (smooth critical points of YM) with uniformly bounded energy, the
possibility for their weak limits” not to satisfy (4.1.22) is not excluded at all. In fact, we believe
that it is possible to produce such sequences where (4.1.22) is violated.

These facts left the variational geometric analysis community in some perplexity and the following
question arose naturally:

What is the space of weak limits of curvatures of smooth Yang—Mills connections
in supercritical dimension?

The above considerations are excluding the space of the curvatures of Sobolev connections, which
has been the unique framework adopted so far to approach the variational issues related to the
Yang—Mills lagrangian in subcritical and critical dimension.

The work in [66] was motivated by this question and brought an answer to it in the abelian case.
In this framework, a 2-form F' on a closed oriented connected surface 3 is the curvature of some
complex line bundle E over ¥ if and only if

/F €2nZ  and then ¢ (F)= / F. (4.1.23)
by by

The authors introduced on B? the space of weak LP-curvatures

Fh = {F € LP(B%) : Yo € Lip,(B®) and for /#'-ae. s € R, / F e QWZ}. (4.1.24)
©

“1(s)

The main result in [66] establishes that for every p > 1 the space .7-"5 is sequentially closed for
the weak convergence in LP. This statement and some complementary results were made more
precise and extended to higher dimensions in [22] and [23].

Inspired by the abelian case, M. Petrache and the second author introduced the space of weak
connections on a n-dimensional manifold N™. The first main idea consists first, for the dimensions
n < 4, in “wrapping together” the space of principal G-connections for any possible principal G-
bundles in a single definition. We define

V = (Ui, Ai)ier ; (U;)ier realizes an open cover of N
A e WA @ g), Vi#§ Jgi; € W2AHU;NU;,G) s t.
Ag(N") = Aj = Al =g ldgi; + g5 Avgiy on UiNU; . (4.1.25)
Vi#j#k gijgikgri =ideg  on U;NU; NU
|Fy| e L*(N™)

This is the definition of Sobolev connections considered in the classical analytical works on gauge
theory since the early eighties ([32], [35]). In order to implement analysis arguments, we need to
find some natural generalization of Sobolev connections to higher dimension that enjoys a good
closure property. Aiming to do so, it is tempting to work with a single form to represent the
connection. The problem of constructing a global gauge to any Sobolev connection in dimension
at most 4 was considered for the first time in [64].

"These objects are called admissible Yang—Mills connections in [89)].
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Theorem 4.1.1 ([64]). Let V € Agy(2)(N") be a Sobolev connection of some principal SU(2)-
bundle over a closed oriented Riemannian manifold N™ of dimension n < 4. Then there exists
A€ LY (ALN"®su(2)) such that, about every point, there exists locally a WL4) trivialization
i which

V=d+A, (4.1.26)

where LY is the weak Marcinkiewicz space

LY (N™) {f is measurbale and sup A [{x € N" ; |f(x)| > )\}|i < —I—oo} (4.1.27)
A>0
with | - | being the measure induced by the volume form of N™.

Representing a smooth connection on a non trivial bundle by a global 1-form is obviously im-
possible if one does not give up regularity. In fact, for instance, if the bundle is a non trivial
SU(2)-bundle over the 4-sphere, one can prove that no smooth connection V has a global repre-
sentative in L*. Hence, the regularity L** is optimal in that sense®.

Theorem 4.1.1 is leading naturally to the following definition

Ag(N™):={Ae€ L*(N'N"®g) : Fo € L*(N") and Jlocally g € W'?st. A9 € W1’2} .
(4.1.28)

Thanks to this theorem, for n < 4 we have
Asue)(N™) = Agua)(N™) (4.1.29)
Finally, again for n < 4, one can consider the following apparently weaker definition
ag(N™):={Ae L*(N'N"®g) : Fq € L*(N™) and 3 locally g € W2 s.t. A9 € L4} . (4.1.30)

This definition more flexible than the definition of Ag, because it extends to spaces X™ which
are bi-Lipschitz homeomorphic to a smooth Riemannian oriented closed manifold N™ and n < 4.
Moreover, we prove in the Appendix A of the present paper that for any Riemannian manifold of
dimension less or equal than 4 and for any compact Lie group G

Ag(N™) = ag(N™). (4.1.31)

In [74], a proof of the sequential weak closure of ag(M?*) under Yang-Mills energy control is
given for every closed oriented 4-dimensional Riemannian manifold N4. The proof is based on
the analysis mostly developed by K. Uhlenbeck during the 80s in [90], [91] and [92], combined
with some more recent arguments involving the use of interpolation spaces introduced in this
context by the second author in [72].

Coming now to the supercritical dimensions, as underlined earlier one would also wish to produce

a class of “objects” containing smooth connections and which is weakly sequentially closed under
Yang-Mills energy control exclusively. In order to do so, the main idea in [66] is to propose

8In [64], the authors were asking the question whether a global gauge in the optimal space L**(A'N™ ® su(2))
and satisfying simultaneously the Coulomb condition d*A = 0. A partial answer to this question which is still
open as such is given in [93].
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an inductive definition by mean of generic slicing. Let n > 4 and denote by L£(N™) the space
of Lipschitz functions whose level sets are almost always bi-Lipschitz equivalent to a smooth
manifold. We introduce the following space:

A€ L*(N'N"®g) : Fy € L*(N™)
ag(N™) := st. Yo € L(N™) and for #t-ae. s€R 3 (4.1.32)

L;_l(S)A € ag(e1(s))
where ¢,-1(,) is the canonical inclusion of @ 1(s) in M™.

In [65], a proof of the sequential weak closure of ag(M?) under Yang-Mills energy control is
proposed?. More precisely, the authors show that

V {Ap ken C ag(N®) s.t. limsup YM(AR) < +oo

k—+o0

{4k, Inen, A € ag(N®) and {gy}nen € WH(N?, G) (4.1.33)

s.t. A" — A in L*(N®) and YM(A) < liminf YM(Ag, ).

k——+o0

The proof of (4.1.33) uses a strong approximation property of elements in ag(B®) by connection
forms which are smooth away from finitely many points, modulo gauge transformations. More
specifically, in [65] the authors show that for any A € ag(B®) there exists a sequence of { Ay }ren C
ac(B®) such that each Ay is gauge equivalent to a connection form in B® which is smooth away
from finitely many points and

A — A strongly in L?(B5),
Fy, — Fy weakly in L?(B%), (4.1.34)

tr (Fa, A Fa,) —tr(FaAFa) weakly in D'(BP).

The space F(B®) of smooth connections away from isolated points is the smallest space such that
the strong approximation property (4.1.34) holds true. This makes Fg(B°) a natural subspace in
ag(B®), in the same way as the space R (B3, S?) of maps in the Sobolev space W12(B3,S?) that
are smooth away from finitely many isolated topological singularities is the smallest subspace in
W12(B3,S?) being sequentially dense with respect to the W'2-norm (see [13, Theorem 4]).

Because of the sequential weak closure property (4.1.33), ag(N®) is a space in which variational
problems related to the Yang Mills lagrangian on N° are well-posed. We can then define the
notion of weak Yang—Mills connections.

Definition 4.1.1 (Weak Yang—Mills connections). Let G be a compact matrix Lie group. We

9The proof of the sequential weak closure in [65] is based on the Proposition 2.1 in the same paper. As discussed
in Remark 4.2.1, [65, Proposition 2.1] has the missing term ||A||72 on the right-hand-side of the inequality
(2.2). This was first noticed by S. Sil. Our Proposition 4.2.1 below is a suitable replacement of [65, Proposition
2.1] as explained in section II. We give a complete and detailed proof of the sequential weak closure of ac(M %)
under controlled Yang—Mills energy in [24]
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say that A € ag(B) is a weak Yang—Mills connection on B® if

d4Fy=0 < iaxi(FA)ij +[Ai, (Fa)ij] Vj=1---5 distributionally on B?,
. (4.1.35)
i.e.
/B5 (Fa,dap) =0 YpeCPAB @g), (4.1.36)

where we have
dap =dp+[ANpl=dp+ANp+9oANA, VYo CPAB ®g).
and (-, -) denotes the scalar product on A’B° ® g.

Among weak Yang—Mills connections, we shall be particularly interested with the ones that sat-
isfy the following stationarity condition (which is automatically satisfied by smooth solutions to
(4.1.35) or by YM-energy minimizers for instance).

Definition 4.1.2 (Stationary weak Yang-Mills connections). Let G be a compact matrix Lie
group. We say that a weak Yang-Mills connection A € ag(B®) on B is stationary if

d

=1 YM@;4) =, (4.1.37)

t=0

for every smooth 1-parameter group of diffeomorphisms ®; of B> with compact support.

If A is a stationary Yang—Mills connection, by standard methods it can be shown that the following
monotonicity property holds true: for every given x € B®, the function

cAp

(0, dist(z,0B")) 3 p — c / |Fa|?dC? (4.1.38)
By(z)

is non-decreasing, where ¢ > 0 is a universal constant and A depends on Bj(z). In particular, we

have

1
sup / Fa? dL’ < C / Faf? de?,
xeB%(O)J) B, (x) B}(0)

0<p<3

for some constant C' > 0 independent on A. We then naturally introduce the following spaces
which are known as Morrey-Sobolev space for any domain Q C R"

1
0 R P . p o p n
MO, (9) = {feL (@) 7By o = S0 /Bp(w)mlfl ac } (4.1.39)

€,

p>0
It is strongly motivated by the analysis of weak stationary Yang-Mills Fields to ask whether
Uhlenbeck’s Coulomb gauge extraction extends in the higher dimension 5 to weak connections
having a curvature with small Morrey Mg’Q—norm. The following theorem answers positively to
this question and is one of the main results of the present work.
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Theorem 4.1.2. Let G be a compact matrix Lie group. There exists eg > 0 such that for every
weak connection A € ag(B®) satisfying

1

|Fal} = sup / |Fa? dL° < eg (4.1.40)

MS,Q(]E5) $€B5, p (:E)ﬂB5
p>0

there exists g € W12(B®, G) such that

d*A? =0, (4.1.41)
and
_ g|2 5 2
|VA ’MO (B5) —xsel%p p\/BP QB5Z|8331A | dr CG’FA‘MS’Q(IBS)’ (4142)
p>0

where Cg > 0 is a constant depending only on G.

This result has been conjectured to hold in [65]. Such a Coulomb gauge extraction theorem has
been first established in [89] for smooth connections and in [57] under the assumption that the
connection can be approximated strongly by smooth connections with curvatures having small
Morrey norm (4.1.40). Later on, the same statement was proved in a particular case assuming
that the connection is a weak limit of smooth Yang-Mills fields (see [86]). Such weak limits are
smooth away from a closed codimension 4 rectifiable set and and referred to as admissible Yang—
Mills connections. We also remark that energy identities and bubbling analysis for Yang—Mills
fields in supercritical dimension are due to the subsequent works of the second author and A.
Naber-D. Valtorta, in [73| and [60] respectively.

In [86], the authors prove a strong approximability property of admissible Yang-Mills connections
by smooth connections with small Morrey norm (see [86, Proposition 4.4]). In [83, Theorem 34|,
the author shows the existence of Morrey norm controlled local Coulomb gauges in supercritical
dimension by exploiting an approximation procedure, in the same spirit as in [57]. However,
approximating connections in the (stronger) Morrey norm requires additional assumptions!? which
are not available in our context.

The main achievement of the present chapter is to prove that any weak connection satisfying
(4.1.40) (which includes all the previous cases) can be approximated by smooth connections with
small Morrey norms.

Combining Theorem 4.1.2 and the main result in [57] we can derive the following e-regularity
statement by using the same arguments presented in |57, Section 4].

Theorem 4.1.3 (e-regularity). Let G be a compact matriz Lie group. There exists e € (0,1)
such that for every stationary weak Yang-Mills A € ag(B®) satisfying

YM(A) = /B5|FA\2dz:5 <eq

there exist g € WH2(B1(0), G) such that A € C*(B

(0))-

%Tn particular, in [83, Theorem 34] the author exploits a “vanishing Morrey norm” condition.

N
[NIE
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Finally, standard covering arguments give the following bound on the singular set of stationary
weak Yang—Mills connections, which is the main result of the present chapter.

Theorem 4.1.4. Let G be a compact matriz Lie group and let A € ag(B®) be a stationary weak
Yang-Mills connection on B®. Then

A (Sing(A)) =0,

where 7 is the 1-dimensional Hausdorff measure in R® and Sing(A) C B® is the singular set of
A, given by Sing(A) := B® \ Reg(A) where

Reg(A) :={z € B’ s.t. Ip>0, g€ W'*(B,(z),G) s.t. A% € C™(B,(z))}.

Organization of the chapter

As mentioned above, the proof of the main Theorem 4.1.2 consists in approximating strongly
in L? every weak connection A (i.e. every A € ag(B%)) whose curvature has a small Morrey
M3 y-norm by a sequence of smooth g-valued 1-forms A; having small Morrey Mgg—norms.

Section 4.2 is devoted to the construction of the building blocks. It contains two main results,
explaining how to extend in an “optimal way” inside a cube a given connection at its boundary.
We propose two ways of extending this connection. First, we assume some smallness condition
on the L?-norms both of the curvature and of the connection at the boundary (Corollary 4.2.1).
Then, we assume smallness of the L2norm of the curvature only (Corollary 4.2.2).

In Section 4.3 we introduce some terminology. We say that a cube is good if on its boundary
both the L?-norms of the curvature and of the connection are small. We call a cube bad if on its
boundary just the L?-norm of the curvature is small.'! Then, in a second step, by the mean of
the coarea formula and the mean value theorem we prove the existence of a so called admissible
covers by small cubes of comparable sizes, so that the L?-norm of the curvature is small on the
boundary of each of the cubes.

Section 4.4 is devoted to what is called the “first smoothification”. In the first smoothification,
we replace the initial connection in every cube of a chosen admissible cover by mean of the
extensions introduced in the previous section. When the cube is good, we use Corollary 4.2.1
whilst, if the cube is bad, we exploit by Corollary 4.2.2. The main result in Section IV is Theorem
4.4.1. The consequence of the “first smoothification” is that the newly obtained connection forms
A; A converging strongly in the L?-norm to A as i — +oo and A — +o0, still having a small
Morrey norm of the curvature, enjoys the following property: every trace on a generic cube of
size comparable to the size of the admissible covering satisfies the small L?-condition.

In Section 4.5 we shall proceed to the “second smoothification”, that is, the L? strong approxi-
mation of the initial weak connection A by a sequence A; of smooth connections whose curvature
has small Morrey Mg,Q—norm (Theorem 4.5.1). The proof of the second smoothification goes as

"This terminology in the dichotomy between good and bad cubes is reminiscent of the one introduced in the
framework of the strong approximation of weak connections in B® ([65] and [24]). Nevertheless, the meaning
that we associate to it is different, in the sense that assuming the smallness condition of the Morrey norm
allows us to decompose the domain into cubes at the boundary of which the L?-norm of the curvature is always
small. The dichotomy between good and bad cubes is made on the base of the smallness of L?-norm of the
connection only.
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follows. Starting from the approximating sequences A; o given by the first smoothification, we
take a grid of size comparable to the size of the admissible cover associated to A; o and we apply
the replacement results of Section II (the building blocks Corollary 4.2.1 and Corollary 4.2.2) on
each of the disjoint cubes of the grid iteratively in such a way that, in the procedure, each cube
to be replaced is facing at least one cube which has not been replaced yet.

In Section 4.6, we combine the approximation given by the second smoothification with the main
result in [57] in order to prove our main theorem (Theorem 4.1.2).

4.2. The building blocks for the approximation theorems

4.2.1. Extension of weak connections

In this subsection we build the fundamental statements that will be used in Section 4.4 in order to
prove the strong L?-approximation theorems for weak connections (Theorem 4.4.1 and Theorem
4.5.1) under Morrey norm control. In particular, we will need Corollaries 4.2.1 and 4.2.2 to
extend weak connections from the boundary of 5-cubes to their interior. If we can assume the
L?-smallness of both the connection and its curvature on the boundary of the cube, then we
will use Corollary 4.2.1. In case we can only assume the L2-smallness of the curvature of the
connection on the boundary, we will exploit Corollary 4.2.2.

Extension under L2-smallness of the connection and its curvature

To ease the reading, throughout this subsection we will denote by “drs” and “dgs” the standard
differential of k-forms respectively on R® and on the round sphere S*. More precisely we have

dS4 = L§4dR5,

where s is the canonical embedding of S* into R?. The following proposition is one of the
building blocks of our approximation procedure.

Proposition 4.2.1 (Harmonic extension under smallness condition on F4 and A). Let G be
a compact matriz Lie group and let f : R> — RS be a bi-Lipschitz homeomorphism such that
f e WE™(R% R®) and

<dS4fiadS4fj>L2(S4) = 0, V’L,] = 1, ,5 s.t. 1 75 j (421)

Let

> 1

Cy:= _.
d i—1 ||dS4fiH%2(§4)

(4.2.2)

There are constants (G, f) € (0,1) and C(G, f) depending only on G, Cy and on ||dgs f|| Lo ms)
such that for any A € ag(S*) satisfying
[EallL2(se) + [ All L2 (sa) < e(G, f) (4.2.3)

the following facts hold.
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(i) There exist g € WH2(S*, G) and a g-valued 1-form A € L°(A'B® ® g) such that

L§4A:A‘q
and
1A% Lasty < C(G, ) (IFallz2ssy + 1A = tgaf Al 2say + 1Al L2st)
ldssglzzs < C(G, £) (IFallzzen + 14— 3o Allny + 4320 ) - (4.2.4)
1415 oy < CG 8 (1Fallzaesy + 1ALz 4 = 08 All oy + 141 2n)

(4.2.5)

for every constant g-valued 1-form A on R®.

(ii) There exists g € W12(B%, G) satisfying

16— ide 1 z3(es) + 131l 2%) < C(Gs ) (IFallzaesy + 14 = 6 f* All ooy + 1413 (e0))
(4.2.6)

for every constant g-valued 1-form A on R®, such that the g-valued 1-form A= A
L?(BP) satisfies the following properties.

(a) F; € L*(B?).
(b) 5 A=Ac¢€ L2(S%).
(c) Let Q C R be an open set such that 2 N B> has a 4-dimensional compact Lipschitz

boundary which can be included in a union of N submanifolds of B5 of class C%. Then
we have

1F4ll 2 00mms)) < Ko (HFAHL2(S4) + || All 29y || A — L§4f*AHL2(S4) + \|A||?i2(s4))
(4.2.7)
and

IA]| Laoarms) < Ko (HFAHL2(S4) + 1Al 2t [ A — g f* Al 20y + HA||L2(S4)) ;
(4.2.8)
for every constant g-valued 1-form A on R3, where Kg = Kg(Q2NB3) > 0 depends only

on G and on QNBS (that is, on the number N of submanifolds containing (QNB?) as
well as their C* norms), on Cy and on ||dgs f || Lo (ss)-

Moreover,
|A—f* AHLs(Bs) C(G, f) <||FAHL2(S4) +HA_L§4f*AHL2(S4)+HAH%Q(S4))7 (4.2.9)
HdAHL 3y S < C(G, f) <||FAHL2(S4) +||A_L§4f*AHL2(S4)+HA||%2(S4))7 (4.2.10)
|A - £ AHL2(Bs) C(G, f) <||FAHL2(S4) +HA_L§4f*AHL2(S4)+HAH%Q(S4))7 (4.2.11)

for every constant g-valued 1-form A on R®.

130



Proof of Proposition 4.2.1. Notice that since f = (fi,..., f5) is a bi-Lipschitz homeomor-
phism, we have that ||dga fi||2(s4) # 0 for every i = 1,...,5. Let £ be the constant g-valued 1-form
on R given by

<Aad§4fi>L2(S4)dR5m’ia (4212)

<= Z ot/

where {z;};=1, 5 represent the standard euclidean coordinates on R5. We have

HLz (s4)

5
€] = Z’&P S Z [ dgs [Allp2s1) = CrllAll L2 sy, (4.2.13)
i=1 S4 szLz S4)
with
Cy:= 4.2.14
! Z ||dS4fZHL2 §4) ( )
Let n € L%(S*) be given by
5
* ok d§4fi dS4fl
ni=A—1af{=A- A > 4.2.15
s 2 A i il ooy T fillzaen) (4:2.15)

Notice that, since 7 is the L2-orthogonal projection of A on the linear subspace {d§4f7;}iL:17__.,5 C
L?(S*), we have
1l L2(s4) < NA = 1ga f* AllL2(s9), (4.2.16)

for every constant g-valued 1-form A on R®. Moreover,
dS4T] = dS4A — dS4 (L§4f*§) = dS4A — L§4f*(dR5£) = dS4A.

For future reference, we record the simple bound

1£%€ ] oo 85y < Clldgs fl oo w5y €] < Clldgs £l Lo w5 CrllAll L2ty = CCrl| Al pa(sey,  (4.2.17)
where C'y > 0 is given by (4.2.14) and we let C'f = [|dgs f|| oo m5) Cf-

Since dgs(f*¢ A f*€) = 0 and f*¢ € L>®(BP), for every exponent p € [1,4+00) there exists a
unique!? o € WHP(A'B® ® g) such that

dgsa = f*EN X6 in B?,

dpsa =10 in B?,
a(dy) =0 in B°.

12 The form a can be obtained variationally by minimizing
laf® dC®
B5

among any form satisfying dpsa = f*¢ A f*€.
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Moreover, from [47], for any p € [1,400) we have
||0‘||W1’P(IB%5) <Gy ||f*f||%2p(35 Cp £~ fHLoo (B5) X <C C’f HAHLZ (S4)» (4.2.18)
where C}, > 0 depends only on p € [1,400). In particular, we deduce
ol ey < OO A2 g (4:2.19)
We define
wi=n+trua=A—1uf"E+ aa € L2(SY).
Observe that
F, = e = dsan +tsa(fFEN R +nAn+nAtgaa A +igaa A+ (o A @)

(4.2.20)
= (Fy + Ga(fFENFRO)) + n A laa A +idaa A+ u(a A a).
Since d(f*¢) = 0, we also have
Fa=Fypp e = Fy+n A8 f" AN+ 15 (f7EN 7€) (42.21)
= (Fy 4+ 5 (f"EN ) A0 N g 'S+ g f"EA D,
Combining (4.2.20) and (4.2.21) we obtain
Fo=Fa—nNtaf*—af"EAn+nNgaa N +igaa An+ (oA a). (4.2.22)
Thus,
[Fwllr2sey < C <||FAHL2 s1) + lldgs f 1| oo @) €1l L2 (s9) + vl oo sy 1] L2 sy + Nltl|F oo s )
<C <||FAHL2 sty + CrllAll 2 Inll 2 + Cf||AHL2(S4)||77||L2(S4 + CfHA||L2 st )
< 0 (Il + Cr1 + cfec>||A||Lz sollzen + ClAlg)  (42.23)
<C (HFAHL2(S4) +Cp(1+ Cpeq + C} )HAHL2(S4)>
<C (SG + Cf (1+ Cfeg + C’fsg)sc>

for some universal constant C' > 0. By assumption, since A € ag(S*) and since the curvature of
A is small enough in L?-norm, there exists § € W12(S*, G) such that A9 € W12(S?). We observe
that

wI =g dgag+ 97 (n + 1340)g
=9 s+ 5N A = B fTE+ g = AT+ g (e - [7E)g € LY.
and

|Fus 2y = I Fullpaeny < € (sa + Cr(1 + Cre + Cled)e)

If e in (4.2.3) is small enough, we can apply Proposition 4.A.3 to w9 and we get the existence
of a gauge h € W4(S*, G) such that, by letting g := gh € WH2(S*, G), we have dgaw? = 0 and

wI=A9—g 1L§4f Eg+gt Lgax g. (4.2.24)
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Moreover,

lw?llw12(s1) < CllF | L2(s9)

~ N - (4.2.25)
C (IFallzz@n + Cr (1 + Crea) | Al mll s + CHl ALy )

where C' > 0 only depends on G. We have

[A%]| pa(sey < llw?llpagsey + [lee = foEll Lasy

C(G,f) (IFallL2ssy + 1A — tga f*All p2(say + | All 2gsny) -

N //\

Observe that by substituting g with g go for some go € G we still have dg,w? = 0 and (4.2.25)
with the constant C' > 0 being unchanged. Since we have dgag = gw9 — wg, recalling that eg < 1
by assumption, we get

C (ngHLZ(S‘l) + HWHL2(S4))

C (1Fullz2sy) + Inll2(ss) + lletll 2 (st))

< C (IFallzaesy + Cr(1+ Cpea + CRed) | Al e ) (4.2.26)
+ CHT}HLQ(S‘l) + CCf HA||L2(S4)

< O (IFallza + Iz + Crll Al )

ldsagllz2(say <
<

where C; == Cp(1 + 2C; + C’?) Sobolev—Poincaré inequality gives the existence of C' > 0
(independent on A) such that

19 = Gllasty < Clldsagllr2 sy, (4.2.27)
where g is the average of g on S%. Thus, we deduce the existence of 2y € S* such that

9(z0) — gl < Clldsagl|r2(s1)- (4.2.28)
Replacing g by gg~!(x0) and combining (4.2.27) and (4.2.28) we obtain

lg —ide [|zast) < ClldsagllL2(s) (4.2.29)

C (IFallzasey + Inllzae + Crll Al ) -

We denote g := g(x/|z|) € WH2(B®) the radial extension of g in B®. A straightforward estimate

gives
1
4 1
dch (a:))

1
( r dﬁl / \g ldg‘ d%4> ||g —idg HL4(S4) (4.2.30)

< C (IFallan + Inllzaes) + CrllAldaqes)) -

19 —idg || ms) = ( —idg

Ix\
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Moreover, using (4.2.26), we get

1
( |@PM§2<0</ g
B5 B5
1 3 i
c</ r2dLt( )) (/ ]dg4g2|djf4) (4.2.31)
0

< C (IFallza + Iz + Crll Al s

Let & be the unique minimizers of

inf{/ (|dgsC|* + |dgsC?) dz® = 154C = wg}. (4.2.32)
B5
Classical analysis for differential forms gives that @ solves

dis@ =0 in B?,
drsdgs = 0 in B, (4.2.33)
15w =wId = A9 + g_1L§4(a — f*8)g  on OB®

and that & € (VV%2 N C*)(B®). By classical elliptic regularity theory and Sobolev embedding
theorem, we have the estimates

< Cllell, < Cllw?|lwrz(ss

2@ & \ (4.2.34)
< (||FAHL2(S4) + | All 2y Inll L2 sy + 1Al 72 (s2)»

18015 ) <

for some constant C' > 0 depending only on G and on f (notice that the last inequality follows
from (4.2.25)). Recall the continuous linear embedding

Wl (B%) — LP(B%). (4.2.35)
Hence, in particular
[P CIIwHWI 5y S OlONy g2 < Cllo?lwrzy
\ (4.2.36)
< O (IFallany + 1Al 2 Inll ey + Al ) -
We let A € L>(A'B® @ g) be given by
A=f+ fé=0—a+(+ f€, (4.2.37)
where we denote
F=0—a+( (4.2.38)

and ( is constructed as follows. We apply Proposition 4.B.1 to G and we find a smooth Riemannian
manifold Mg and a measurable map

Ext(g) : Mg — Wh3(B®,G) (4.2.39)
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P— gp (4.2.40)
such that (4.B.1), (4.B.4) and (4.B.6) hold. We then choose

Ci=a— f"¢— ][M g;l(a — &) gp dvoly, (p) (4.2.41)

= ][ (ide —ggl) (o= f*€)gp dvolpr, (p) —l—][ (o = f*¢) (idg —gp) dvolp, (p). (4.2.42)
Mg Mg
We notice that 15,¢ = 0 and (5,0 = A9 + g Liga(a— f*€) g, so that L§4A = A9 by construction'3.

We have also

d=fenfe—f gl frenfeado—f dg (o= 1) gpdvolg(r)

+ ][ g, " (o= f*€) A dgp d ol (p)
Ma (4.2.43)

- fM (146 —0") FEA 1€ gpdvolusg(p) + f  FENF'€ (idG ~gy) dvolusy(r)

— ][ dg];1 A (o — f*€) gpdvoly, (p) +][ g;l (o = f*€) A dgp dvolp, (p)-
Mg Mg

Using (4.B.3), we have

d < C| €12 H][ —idg| dvol
| C!\Lg(B5) I1f*Ell7 00 (B5) Mclgp el Me (P) i)

+C |la — f5&]| poo mo)

f (dagy| dvolazg (p)
Mg

L3 @) (4.2.44)
< Cp | Allp2esty lldgllpz (st
< ClAllzeny (IFallzaen + 14— o f Al + 1413

and, by Poincaré-Sobolev inequality,

¢l < llo — €l ]][ [ 19— idot dcf’dvolMG(p)\
Mg JBS

1
5

< CrallAlizey |f, [ ool ac dvole (s
’ (4.2.45)

[SUIN]

5
<Cralliy [f, [ 1l actavon, v
G (s}

< Cr | Allp2esty ldgllp2(sty
<Oy (IFallzeen + 14— o f Allaen + 1412 -

13 At this stage, in order to control the L?-norm of F'; in B® it could be tempting to estimate separately ||dA\|L2(]Bs)
and HA A AHLQ(]BE). This however is not going to lead to the expected estimate because each of the terms
require to estimate respectively ||dal|z2@msy and [|f*€ A f*€]|L2@ms) which would give in the r.h.s of (4.2.5)
a term proportional to HAHZLQ(BS) as in [65, Proposition 2.1] but which is preventing to prove the desired
approximability property 4.1.34. While in the combination dA + A A A these two contributions fortunately
cancel each other which is one of the main advantage of this construction.
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Hence,

ld¢ + ¢ Al < C || Al (s (HFAHL2(S4) + [|A = g frAll p2(se) + HAH%2(S4)> . (4.2.46)

L3 ®5)
We now explicitly compute

Fi=dpA+ANA=dps(@+ fé—a+ )+ @+ ffE—at+tON @+ fE—at()
=Fa+Fe—fENEFONE—ONa+ONCHTEND+ fPENFE— FPEN
+ffENCH —anNw—aANfé+rara+ A0+ CAfFfE—CNa (4.2.47)
=Fo+F+@AfE+fEnD)—(@ha+and)+ (@AC+HCAD)

—(ffEna+anf O+ (fFENCHONE —(an(+H(Aa)+aNa.
Hence, we obtain
173,55, < Clld

yt &[175 g5y + 1Pl + C |l oo sy [ f7Ell Lo (B9)

1776l oo w5y + oo + C el (4.2.48)

L3 B L3 (B5)

+ Cdl

L3 (B
o |
L2 (B5)
< € (IFallasn + 1Al s 14 — 3 F* All ey + 1Al ) -
Observe that
A— ffA=ij+ f*¢— ffA=ii+ f*(£ - A), (4.2.49)
where 7 := & — a4+ (. We have

170l 255y < @l Lsms) + llallzs@sy + 1] Lo @)
<C (”FAHLQ(S‘l) + [ All L2y lInll L2 (s2y + ||A”%2(S4)> + CCHAll72(s1)

) - ) (4.2.50)
+ 00y Al (1Eallizn + 14— o F* Allany + Crl Al en))
+ CCH Al 254 (HFA||L2(S4) + A — i5a f* All p2(s0y + C'f\|A”%2(s4)> :
We have also
1£*(€ = Dllzs @) < Clidgs £l oo w3y 1€ — All L3 (m5)
;
< Ol limonlé ~ A1 = Cl lumion (e~ A) ", 427

i=1

where C' > 0 is a universal constant. Notice that, by Cauchy—Schwarz inequality, we have

(A= f* A, dsa fi) 2 (sn)|? - 1A = 50 f* All72 g0,

& — Ai|* = < , Vi=1,..,5  (4.2.52)

||dS4fi”i2(§4) ”dS‘lfiH%‘Z(gzl)
which by (4.2.51) implies

1£*(6 = A) || 5msy < CCHlIA — i f* All p2s0y, (4.2.53)
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for some universal constant C' > 0. We now need an estimate on L?-norm of 7. Using (4.2.49),
(4.2.16), (4.2.38) and (4.2.53), we have

IA — f* Al s sy < 1illLssy + 11756 = A)l| 1o o)
[ Fall2(say + Al 2s) A — 154 f* Al 2(say + HAH%Z(S‘l)} + Cé}%||A||%2(S4)

+ CCf|| Al p2(s9) (HFA||L2(S4) + A — i5a f* All 250y + C’f\|A||%2(s4)) (4.2.54)
+ CC3 Al er) (IFalliaes) + 14— g f* Allzagesy + Crll Alaon) )
+ OCr| A= 5 f* Al p2(s),

where C only depends on G. Thus, we get (4.2.9) for B := A. We have

ldA]l, 5 +lldall 5 s +11CH 3

<C (HFAHL2(S4) + 1 All2 @A = g f* All p2(se) + HA||A£2(S4)) + CCHAll72 s

,) < llda]

2(B L2(]B5) L3 (B®) L3 (B®)

+C Al (1Fallzaes + 14— e f Allzas + 14122gs)) -

(4.2.55)
Hence, we obtain (4.2.10).
We now prove (4.2.11). Notice that
FA:dRSA—l—A/\A:dRs(Ag )—|—Agl/\/~1§1 (4256)
=§F;5 ' € L*(B) B
and
15 A = 15 (Gdps (57) + GAGT") = tha(—dregg " + §AG )
= —dsigg™" + gA% " = —dgagg + g(g " dsag + g7 Ag)g! (4.2.57)
= Ac L*(SY).
We have

||A*f”kf‘_lHLmBa5 |A - AHL2B5 +A- F*All 2@

<
<NFAG" = Allrzms) + 11345 lz2s) + 1A — £* Al 2w (4.2.58)
<17 — ide | as) Al pas) + 14G] 2@y + 1A — £* Al r2(ss).-

Combining (4.2.31), (4.2.54), (4.2.58) and (4.2.54), we obtain (4.2.11).
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Coming now to the trace estimates

1<l aoanes) < 2 lla = f7€ll Lo ms)

’ ][ gy — idc| dvola, ()
Mg LA (0QNB5)

<2 [la — f5E]| poo mo)

‘ f lgp — idg| dvola, (p)
Mg

1
2
L2(6QNB5) Lo (6QNBO)

][M lgp — idg| dvolp (p)

1
2

G
< O(0) lla— [*€l ‘ ][M gy — ides| dvolag, (p)
G

L2(0QNB5)

1

2

< O(O) lla— [*€l ( F. N~ e s dvolMG<p>)
G

4

< (@) o= 1€l (. ow = el ormn, dvolase(v))
G

1
< CG,) lla = €] ooz g — 10 fpnager

N|=

<C(G. ) (CrllAllaen + CHIAI 2 ) (I1Fallzzes + Inllzss + Crll Al

(4.2.59)
We have also using (4.2.43)
Iz oms < C 7€y | Lo = il dvolasg )
Mg L2(0QNB5)
+Clla=Féluey | ldgl dvolug(v)
Mg L2(0QNB5)
<CIF €l £ lp = el 2 oms) d¥olaro(r)
G
+Clla= €l . ldaplannen dvoli 0
G
2
<1 €lmn (£ 10~ d6onrse) dvoluo )
G
2
+Clla = félmg £, Ml sy dvolu W) G20
G

Using Proposition 4.B.1 together with (4.2.17) and (4.2.19), we finally get

¢ L2 o0nms) < Ca(@)(CrllAllzssy + CHIANT 2 g1y) (1 Fallz2ssy + Inllz2ss) + Crll Allzzsay) -
(4.2.61)

Moreover, thanks to the continuous embedding W32 (B%) — W12(0Q2 N B?), we have

N

|G| 2 0nBs) + [don@ | 2 (a0ns) < C(£2) H@HW%,2(B5) < C(Q) [lw?|lwr2(sey

< (@) (IFallzessy + 14l 2 llnll oo + 1Al )
(4.2.62)
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where C(9) depends only on the C2?-norm of the C? components of (2 N B%), G, C; and
ldf || oo (B5)- Combining now (4.2.17), (4.2.19), (4.2.59), (4.2.61), (4.2.62) and (4.2.47), we obtain
(4.2.7).

Combining (4.2.59), (4.2.62), (4.2.19) and the definition of &, we obtain

14711 s onres) = Al onrms) < Ko (IFallzes + IAllzaes | A = Gaf* Al jaggsy + I 4lz2sn ) -
(4.2.63)

This concludes the proof of Proposition 4.2.1. O

From now on, we will use the following notation:

IIpEp——
i=1,..5

5 1

2

2] = (Zx%) ,
=1

for every x = (z1, ..., 5) € R%. We have obviously
-1
Vx| <zl < |z|  Vaz eRP.
Let ¢ € VV;J’COO(RE’, R®) be the bi-Lipschitz homeomorphism given by

|z| . 5
—uzx ifz e R’ {0}
p(x) = 9 [7]oo
0 ifz=0.

Corollary 4.2.1. Let G be a compact matriz Lie group. Let Q C R> be any open cube with
edge-length ke, where k > 0 is a universal constant. There are constants e € (0,1) and Cg > 0
depending only on G such that for any A € ag(0Q) satisfying

IFallz200) + & 1Al r200) < a (4.2.64)

the following facts hold.
(i) There exist g € WY2(0Q,G) and a g-valued 1-form A € L°(Q) such that for every 4-

dimensional face F' of 0Q we have

{HAQHVVLQ(F) < Cc (IFallzoq) + & 14l 20)) - (42.65)

L}fl = A9
and

HFAHLg(Q) < Ca (HFA||L2(8Q) +e 2 | Allz2o0) 1A — thoAllr2(aq) + 573\\14\&2(6@)) :
(4.2.66)

dgllz2(aq) < Ca (5||FAHL2(3Q) + 1A = 5 Al 200 + 571\%”%2(0@)) ; (4.2.67)

for every constant g-valued 1-form A on R®.
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(ii) There exists § € WH2(Q,G) such that the g-valued 1-form given by A= A7 € L*(Q)
satisfies the following properties.
a) Fj € L*(Q).
b) it A= A€ L*0Q).
c¢) Let Q' C R> be an open cube such that Q' N Q is a rectangle of minimum edge-length
ae > 0 where a > 0 is a universal constant. Then, we have

||FA||%2(8Q’QQ) < Ca (”FAH%Q(BQ) + 5_4”14”%2(3@)”14 - %QAH%%aQ) + 6_6||A||%2(8Q))7
(4.2.68)

4] 1 a0no) < Ca (HFAHL2(8Q) +e 2 | All2a0) ||A - LBQAHLz(aQ) +e HAHLz(aQ)) ,

(4.2.69)
for every constant g-valued 1-form A on R®.
Moreover, we have the estimates
1A~ Al < Ca (IFall gy + € 1A~ oAl soq) + 72 1412 0q)) . (4:270)
44l 5,0, < Ca (IFaloq) +e 7 1A = oAl zog) + 22 MAlRsag)) ,  (4271)

|4 - Allz2g) < Ca Ve (IFAllzzeq) + e 14— 5o All2eq) + e 2 IAlReaq) ) s (42.72)

for every constant g-valued 1-form A on R®.

Proof of Corollary 4.2.1. Corollary 4.2.1 is deduced by applying Proposition 4.2.1 with f = ¢
to the 1-form ((5 - 4cqg)o <p)*A, where cg denotes the center of the cube @), and then pulling
the resulting data back on @ by ((5 - +cq)o go)fl. O

Extension under L?-smallness of the curvature only

Proposition 4.2.2 (Harmonic extension under smallness condition on Fy4 only). Let G be a
compact matriz Lie group. There are constants eg € (0,1) and Cg > 0 depending only on G such
that for any A € ag(S?) satisfying

||FAHL2(S4) < Eq (4.2.73)

the following facts hold.
(i) There exist g € WH2(S*, Q) and a g-valued 1-form A € (VV%’2 N C™)(B) satisfying

||A||w%v2(135) < CGHFA||L2(S4),
[A%]lwr2(s1) < CallFallrzse), (4.2.74)
L§4A = Ag’
and
Idgll 2ty < Ca (I|Fall2(st) + || All z2(sey)- (4.2.75)
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(ii) There exists § € WH2(B5, G) such that the g-valued 1-form A := A9 € L2(BP) satisfies
the following properties.
(1) Fj € L*(B®).
(2) i A= A€ LS.
(3)
[ 1AP 42 < O(@) (IFalaee + 1412 - (4:2.76)

(4) Let Q@ C RS be an open set such that Q N B> has a 4-dimensional compact Lipschitz
boundary which can be included in a union of N submanifolds of B® of class C%. Then
we have

1F 4l 200n85) < KGl|Fallp2ss), (4.2.77)

and
[ Al L2 0arms) < KallFallr2ss), (4.2.78)

where Kg = Kg(Q2NB®) > 0 depends only on G and on QNB® (that is the number N
of submanifolds containing 0 as well as their C? norms).

Proof of Proposition 4.2.2. To ease the reading, throughout this proof we will denote by “dgs"
and “dga" the standard differential of k-forms on R® and on the round sphere S respectively. First,
notice that since A € ag(S*), by definition there exists locally § € W12 such that A9 € W12, For
£¢ in (4.2.73) small enough the existence of such a g is global and A has a representative globally
on S* which is in W12(A!S*). We can apply Uhlenbeck’s Coulomb gauge extraction theorem (see
Proposition 4.A.1) to A9 and we get the existence of a gauge h € W4(S*, G) such that, letting
g:=gh € Wh2(S* @), we have di, A9 = 0 and

1A% lwr2st) < C(G)||FallLa(ssy, (4.2.79)

where C(G) > 0 depends only on G. Observe that by changing g into g go we still have a solution
of (4.2.25) with the constant C'(G) > 0 being unchanged. We have dgag = g A9 — A g, hence

ldsagll 251y < C(G) (1A% L2(s1) + [|All L2 (st)) (4.2.80)
< C(G) ([IFall 2ty + Al L2(sty) -
Poincaré inequality gives the existence of C' > 0 (independent on A) such that
19 — Gll2st) < C |ldsagll L2 sy, (4.2.81)
where g is the average of g on S*. Thus, we deduce the existence of 2y € S* such that
19(z0) — 31 < C ldsagl (s (12.82)
Replacing g by gg~'(x) and combining (4.2.81) and (4.2.82) we obtain
lg —ide |22y < Clldgll 2ty < C(G) (I[Fallz2 sy + Al L2(s1)) - (4.2.83)
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We denote § := g(x/|z|) the radial extension of g in B> (here “|-|” stands for the standard

Euclidean norm of ). A straightforward estimate gives

19 —ide llz2es) < g —ida 251y < C(G) (1Fall 2ty + 1Al L2(sey) -

Moreover, by the coarea formula we have

~ 1 _ x
/ |dg|? dﬁB:/ p 2/ dg()
B5 0 dB,.(0) ||

< CG) (IFa3agn) + 1Al32(ss)) -

2
" (x) L (p) < C gl

We now extend A9 by A that we choose to be the unique minimizer of
inf { / (|dR5G|2 + |d]§5G|2) d£5 . L§4G = Ag}
B5

Classical analysis for differential forms gives that A € (T/V%2 N C°°)(B®) solves

d?&5‘4 - 0,
dsdps A = 0,
L§4A = Ag.

Moreover, the following estimate holds:

ySC 1ALl S O A% wrzsey < C(G) [[Fallrzss)-

||A||W1,%(B5 %,2(]35)
Thus, (i) follows. Let A := A9™" e L%(B%). Notice that
Fi=dpsA+ ANA=dps(A7 )+ AT AAT = GF57" € L*(B)

and

A = 150 (gdps (§7Y) + GAGTY) = iu(—drsgg~ " + §AG)

= —dgigg ' + gA%9 " = —dgigg™" + g(g M dsag + g7 Ag)g Tt = A € L*(SY).

We have also
/ |A|? dCP :/ 1GAG™Y + gdg™)? dL® < 2 / |A)? dLd + 2 / |dg|* dcb
B5 BS B5 B5

<CG) (IFala + 1 A8y ) -

(4.2.84)

(4.2.85)

(4.2.86)

(4.2.87)

(4.2.88)

(4.2.89)

(4.2.90)
(4.2.91)

(4.2.92)

Lastly, fix any open set  C R® such that N B> has Lipschitz boundary which can be included
in a union of N submanifolds of B of class C2. Recalling that e < 1 by assumption, we have

1Fill2cx)y = 1Fill2xy < € (HVAHL?(X)) + HA”%?(X))

< CONA 3.2 g5 < CO0G) [Fall o),

(4.2.93)

where C(2, G) > 0 depends only on G and on QNB®. This concludes the proof of Proposition 4.2.2.
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Completely analogously to the way we proved Corollary 4.2.1, by exploiting Proposition 4.2.2 one
derives from proposition 4.2.2 the following statement.

Corollary 4.2.2. Let G be a compact matriz Lie group. Let Q C R> be any open cube with
edge-length ke, where k > 0 is a universal constant. There are constants eg € (0,1) and Cg > 0
depending only on G such that for any A € ag(0Q) satisfying

1Fallz20g) < ca (4.2.94)

the following facts hold.

(i) There exist a gauge g € W'2(0Q,G) and a I-form A € Wl’g(Q) such that for every 4-
dimensional face F' of 0Q we have

||d/~1HLg(Q) + 1Al s () < Ca IFallz200),

A9 lw12ry < CallFallz2a0); (4.2.95)
L}A = A9
and
HFA”Lg(Q) < Ca | Fallr2(0q), (4.2.96)
ldgllr2(a0) < CG(EHFAHLZ(QQ) + HAHLZ(BQ)). (4.2.97)

(ii) There exists §j € W'2(Q, G) such that the g-valued 1-form A := AT" € L2(Q) satisfies the
following properties.

(a) FA € LQ(Q).

(b) 5, A=Ac L(0Q).

(c) Let Q" C R be an open cube such that Q' N Q is a rectangle of minimum edge-length
ag > 0 where a > 0 is a universal constant. Then, we have

HFAHL?(aQ’mQ) < KG||FAHL2(8Q), (4.2.98)

and
IAll 2 0gnQ) < KellFallrzag); (4.2.99)
where Kg > 0 depends only on G.

Remark 4.2.1. [65, Proposition 2.1|, has a missing term on the right-hand-side of equation (2.2).
This has been noticed by S. Sil. Proposition 4.2.1 is a suitable replacement of |65, Proposition
2.1].

4.2.2. Construction of optimally regular gauges on the boundary of cubes

We start by recalling the following optimal extension theorem, whose proof can be found in [67,
Theorem 2].

Proposition 4.2.3. Let n € N be such that n > 1 and let N — R be a closed embed-
ded submanifold of RE. Then, for every u € Wm’nH(S",N) there exists an extension U €
Wh(n+100) B+l N such that ii|sn = u in the sense of traces.

143



Next, we leverage on the Proposition 4.2.3 to prove the following gluing lemma.
Lemma 4.2.1. Let G be a compact matriz Lie group and let n € N be such that n > 2. Let

St i={x = (z1,...,Zn41) €S" : Tpy1 > 0}, (4.2.100)
Then, for every g € Wl’”(S’jr, G) there exists § € Whntleo) B+l QY such that gﬂgi =g.
Proof of Lemma 4.2.1. Let

S™i={z = (z1, ..., Tnt1) €S" : Tpy1 < 0} (4.2.101)
and define h € Wn(S", G) by

h(x1, ooy Tny1) == g(X1, ey —Tpg1) Vo= (x1,..,rn41) € S". (4.2.102)

Let g € W1 (S™ G) be given by

. g onSY
= 4.2.103
g {h on S™ ( )

Since WL (S", G) — WaT™F1(S", G), by Proposition 4.2.3 there exists § € Wh(n+1o0) (Bn+l )
such that g|s» = § in the sense of traces. Since § = g on S'}, this concludes the proof of Lemma
4.2.1. O

Corollary 4.2.3. Let G be a compact matriz Lie group. There exist constants e € (0,1) and
Cq > 0 depending only in G such that the following holds. Let Q@ C R® be an open cube in R®
and let F be any non-empty proper subset of 4-dimensional faces of 0Q. Let

Q:=[JF (4.2.104)

Fe7

Then, for every g € Wh4(Q, G) there exists an extension § € W5 (Q,G) such that jlo = g in
the sense of traces.

Proof of Corollary 4.2.3. Let ® : Q — B? be a bi-Lipschitz homeomorphism such that
Q=si, 90=T, 9Q~Q=5". (4.2.105)

By apply Lemma 4.2.1 to (®~1)*g € W1’4(Si, @) and pullback the resulting extension on B® by
® we get the desired g. This concludes the proof of Corollary 4.2.3. O

4.3. The notion of admissible covers and good and bad cubes

4.3.1. The notion of admissible cubic ¢;-covers

From now on, for every ¢ € R and € > 0 we let

Q0= (-5.5) +e

be the open cube with center ¢, edge-length € > 0 and faces parallel to the coordinate planes. We
shall be using the following definition.
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Definition 4.3.1. Let A € ag(B%), ¢ € R5 and p > 0. We say that A € Ag(Q,(c)) if there exists
an L? 1-form that we denote LBQP (C)A such that

(i)
1 pte
lim/ /
e208 Jp—e JOQu(0)

where D, (z) := 2 (x —c) +c.

(i)

2
LETLBQT(C)A - Lng(c)A dAtdL (r) =0,

LEQP(C)A € aG(an(C))
As a direct consequence of Fubini and Lebesgue theorems, we have the following proposition.

Proposition 4.3.1. Let A € ag(B®) and ¢ € B, then for L'-a.e. p > 0 such that Q,(c) C B®
there holds A € Ag(0Q,(c)). A positive number p such that A € Ag(0Q,(c)) is called an
admissible edge-length for A.

For the purposes of the present subsection, given any ¢ € (O, %) we let
% = £Z° N Q12 (0).
Note that
#{d €6 : Qac(c)NQa(d) £V} <N  Vceb, (4.3.1)

where N € N is independent on €.

Lemma 4.3.1 (Choice of an admissible cubic cover). Let A € ag(Q3(0)). There exists a universal
constant K > 0 such that for a sequence {€;}ien € (0, i) satisfying €; — 0 for i — +oo, fori
large enough we can find a family of admissible edge-lengths {pivc}cgggi C (%EZ‘, 2€i) for which the
following facts hold.

(i) A€ Ag(0Q,, (c) for every c € €.

(ii) For every ¢ € 6., we have

K
/ |Fal?do#* < / |Fa|?dL? (4.3.2)
0Qp; . () 280 JQae, (o)
and
K
/ AP d#t < — | A2 dLcs. (4.3.3)
0Qp, (o) 2¢i JQse, ()

(iii) It holds that

lim ¢ / A— (Ao, (ol d#t =0, 4.3.4
itoo Z ani,C(c)‘ ( )Q%l()‘ (43.4)

Ce(gei
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lim 1A= (A)g,. 0] dL> =0 (4.3.5)
i——00 e, Qp; (o) 2¢, (

and

. 2 4
lim g Fy—(Fa)g,.. A" =0, (4.3.6)
oo e%: Q. (©) | @0

where we have used the following notation:

(A)Q2€¢(C) = 7[ AdL? and (FA)Q25¢(C) = 7[ Fa dc’.
Q251 (C) Q25i (C)

Proof of Lemma 4.3.1. Fix any ¢ € (0, %) By assumption, for every ¢ € %, there exists a full
L'-measure set Ra. C (3¢,2¢) such that Lng(C)A € ag(0Q,(c)) for every p € Ra.. Given a
constant K > 0 (to be fixed), for any ¢ € 6. we define the set

K
Be ke = {P € <3€,2€) s.t. A ¢ ag(0Q,(c)) or / |Fal? ot > / |Fal? dﬁ"’}.
’ 0Q,(0 2 Jou.(0

(4.3.7)
By integration on F; i . and Fubini together with mean value theorem we get
K 2 105\ p1 2 4 g1
Py |FA| dL” | L (EE,K,C) < ‘FA| A" dL (P) (4'3'8)
26 \J@a-(0) Be e J0Qp(c)
2¢e
< / / a2 doet AL (p) (4.3.9)
0 JQp(c)
:/ |Fa|?dLo. (4.3.10)
Q2¢(c)
This implies that
1 2e
L(E:k.) < e VeeE.. (4.3.11)
Fix i € N and let 4; € C°(A'Q%(0) ® g) be such that
/ |A; — A2 dLs <27, (4.3.12)
Q7(0)
Let
Ge k= {p (3 €, ) s.t. aZ/ |Ai—A\2dji”4>K/ yAi—A\Qdﬁf’}, (4.3.13)
ceg. ) 0Qp(c Q3(0)
3 2¢e
H.g;:= {p € (25,25> st fi(p) > K g filp )d[,l(p)}, (4.3.14)
3¢
with
= / Da(o)|* A (4.3.15)
CEG: 9Q
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Notice that, again by Fubini theorem together with mean value theorem and integration as above,
we get

»Cl (GE,K,i) <

Ce
K (4.3.16)
'Cl(HE,K,i) <

=

for every i € N, where C' > 0 is a universal cover. By Fubini theorem, the mean value theorem
and Poincaré inequality, we have

/; / Do) At L (p Z/ Dowo| L (4.3.17)
3 0Q,(c

2¢ ce¥%. cEC:

<3 Cp(Qale / VAP (43.18)
O

cEC:
< 4Cp(Q3(0) Z/ IVA;|2dL® (4.3.19)
Ce(g QQS
<052/ |V A;|?dL?, (4.3.20)
1(0)

where we denote Cp(2) > 0 for the open and bounded domain 2 C R? and C > 0 is universal.
Hence for any p € (Ge ki UH: ;)¢ (where the superscript “c” denotes the complement of the set
n (g,2¢)) one deduces

Z/ i)Qac( c>! dA* < - Z/ )@oc(o)| 2 A AL (p) (4.3.21)
CEC: 2Q 2€ cc%. 0Q
gKCe/ |VA;*dLo. (4.3.22)
1(0)

Moreover, for every p € (g,2¢) we have

2
62/ Qa0 — (Ao 4 <3 10Q,(c)] <]€2 ()|A—Ai|d£5> (4.3.23)
2e(C

cet. 7 9Qn(c c€E.

<C ) |A— A2 dL> <27l (4.3.24)
CEG: Qac(c)

Hence, by triangle inequality, we get that for every p € (G¢ kU H: k,;)¢ we have

52/

Ao, ol drt < (K + )2 + KCe / VAP (43.25)
CEG: 9Qp(c)

Q3(0)

Analogously, we consider F; € C2°(A?Q3(0) ® g) such that

/5( )]Fz- — Fal2da® <277 (4.3.26)
Q30
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and we get that for every ¢ € (0, %) and for every i € N there are two L£!-measurable sets
GIE,K,ivHé,K,i - (%57 26) satisfying

Ce
LG ki) € 5=
=i K (4.3.27)
‘Cl( € Kz) < ?
such that for every p € (G ;;;, U H. )¢ we have
ey / |Fa — (Fa)gy. (o] do#" < (K +C)27 + KCE/ \VE;|*dLb. (4.3.28)
ce. ” 9Qp(c 5(0)
Now, first we let K > 0 be big enough (independent on ¢ and i) so that
1 €
LG, g VH, UG, o UH. 1)< 3 (4.3.29)
Then, we notice that for every i € N there exists ¢; < 2~ small enough so that
KC€i</ IVA;|?dLd + / \VF;|? d£5) < 270+, (4.3.30)
Q3(0) Q3(0)
Then, for every ¢ € N and for every c € 6., we pick p; . > 0 in the non-empty set
(Geiyk)i U Hsivf(vi U Gl{:‘i,R,‘ U Héi,k,i)c n RA’C ﬂ EEZ',R,C' (4331)
Notice that, for such admissible edge-lengths, we have
i Y. / Ay (o] dAt < (K +C) 27 + 270+ (4.3.32)
cEGe, aQPz c
and
i Y. |Fa — (Fa)gn. (o] d#* < (K +C) 277 4 270D, (4.3.33)
ce@., ) 0%pic(0) '
This concludes the proof of Lemma 4.3.1. O

Definition 4.3.2. Let A € ag(Q3(0)). Under the same notation that we have used in the
previous Lemma 4.3.1, for every ¢; € (0, i) we say that ¢; is an admissible scale for A and that
the collection of cubes {Q,, .(c)}ces., is a admissible cubic g;-cover relative to A.

Remark 4.3.1. Let A € ag(Q3(0)). Let ¢ € (0,%) and let Q. be an admissible cubic e-cover

relative to A. For every @ € Q., denote by Ag the constant 2-form given by (A)QQE(CQ), where
cq denotes the center of (). Notice that, by Jensen inequality, we have

o<  aPac’, vQeo. (4.334)
Q2E(CQ)
We have

> / |A|? dott <

QEeQ: QeQ

(/ |A—AQ|2djf4+/ |AQ|2d<%ﬂ4> (4.3.35)
\Jag 0Q
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<C ) (/ |A — Ag|2dt + 4 Ag |2>

QeQ.

<C > (/ |AAQ|2d%ﬂ4+s4][ |Ay2dc5>
0Q QQ&(CQ)

QEeQ.

(Z/ |A — Ag | dot + / ]A\2d£5>,
QeQ. i

where C' > 0 is independent on e. By (4.3.4), for € small enough we have

ey / A — Ag?d* < / |A|2dLP.
QeQ. Q1(0)
This implies that for such small values of the parameter ¢ it holds that
ey |A[2d%4 < 0/ |A|2dL?,
QeQ. @1 (0)
where C' > 0 is independent on €. Exactly by the same procedure, we get that
ey / |Fal?dort < c/ |Fa|?de®
Q€eQ.

5 for € > 0 sufficiently small.

4.3.2. The notion of good and bad cubes

(4.3.36)

(4.3.37)

(4.3.38)

(4.3.39)

(4.3.40)

(4.3.41)

Definition 4.3.3 (Good and bad cubes). Let A € ag(Q7(0)). Let € € (0,1) be an admissible
scale for A and let Q. be an admissible cubic e-cover relative to A. Given any A > 0, we say that

Q € Q. is a A-good cube if the following conditions hold:

1

) 3/ |FA\2d%4<55/ |Fu|?dc?,
2 Joq @3(0)
1

@) / |Ay2djf4<e%/ a2 dc?,
Q5(0)

g3

/yA Ag|? ds?t < 1/ |A]2dc®,
Q2€(CQ)

4) 4/ |A—AQ\2d%4§A/ |Fal?dL?,
€ JoQ Q5(0)

(5) ][ A2 dL5 < A.
Q2E(CQ)

Otherwise, we say that @Q is a A-bad cube. We denote by QgA the set of all the A-good cubes

and QeA S XN QZA.

The following technical lemma is important for our argument. Given a sequence of admissible
scales {¢;}ien, the lemma states that as 4 € N increases, asymptotically, the L2norm of A on
the A-bad cubes is controlled by the L? norm of A on the union of cubes where property (5) in

Definition 4.3.3 fails.



Lemma 4.3.2. Let A € ag(Q5(0)) and let {&;}ien C (0, 1) be a sequence of admissible scales for
A. Let A > 0 and let O, be an admissible cubic ;-cover relative to A and A, for every i € N.
Then, for some universal constant C > 0 (depending on the intersection property of the cubic
cover) there holds

Gim Y / \A|2d£5<0hm/ A2 s, (4.3.42)
=00 Qae, Qin A

QeQl (cq)

where Qi A 4 C Q3(0) is given by

Qina=J {Q € Q., s.t. ][ |A]?dL® > A}. (4.3.43)
2¢;(cq)
Proof of Lemma 4.3.2. Observe the following.
o If Q € Q. is such that (1) fails, we have
9
|Fy?dott > 53/ |Fal?dL®. (4.3.44)
0Q Q70
o If Q € 9., is such that (2) fails, we have
9
ei/ |A|2dA#* > c? / |Fal?dL?, (4.3.45)
oQ Q3(0
o If Q € Q., is such that (3) fails, we have
gi/ |A — Ag|* dst? >/ |A]2dL®. (4.3.46)
oQ Q2e (CQ)
o If Q € Q., is such that (4) fails, we have
ai/ |A— Ag|?d#t > SN |Fal?dLo. (4.3.47)
0Q Q3(0)

Summing up over the appropriate cubes and by Remark 4.3.1, for g; > 0 small enough we get the
following set of estimates:

l\?\@

card({Q € Qg s.t. (1) fails}) < Cé; 2, (4.3.48)
card({Q € 0., s.t. (2) fails}) < c< / \A|2d£5> ( / yFA|2d/;5> et (4.3.49)
Q%(0) Q30

> / ]A\Qd/f’ <& / |A — Ag|2dst, (4.3.50)
QeQ QeQ.,
t. (3) fails
-1
card({Q € Q. s.t. (4) fails}) < A</ |FAy2dL5> sﬁ( / |A — AQ|2djf4>
Q0 Qea.,
(4.3.51)
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In particular, we note that the £5-measure of the union of the cubes in Q., such that (1),(2),(4)
fail vanishes at the limit ¢ — +oo. Thus,

: 2 5 __
im > g |A|2dL® = 0. (4.3.52)
QeQ.,; s.t. 2¢;(cQ)
(1,(2),(3),(9)
fail

Finally, we get

: 2 5 : 2 5
Jim Y / L lapac <i_lgrnoo 3 / lapac (4.3.53)
Qe , ’@2ileQ) QEQ
o t. (5) falls

and the statement follows by the intersection properties of the cubic cover. This concludes the
proof of Lemma 4.3.2. O

Remark 4.3.2. Let A € ag(Q3(0)). Lete € ( ) be a good scale for A and let Q. be an admissible
cubic e-cover relative to A. Notice that the property (3) in Definition 4.3.3 immediately implies
that

/ |A|2d%4</ |A—[1Q|2d,%”4+/ |Ag|? dst? (4.3.54)
9Q 2Q 2Q
1 1
< / \A|2d£5+(]545/ |AI2dL® < C/ |A|2dL®  (4.3.55)
€ JQa:(cq) €7 JQae(cq) € JQa:(cq)

for every good A-good cube @ € Q., where C' > 0 depends only on the dimension.

4. 4. The first smoothification

The goal of this section is to approximate in L?-norm any weak connection A whose curvature is
small in Morrey norm by forms A4; o whose curvature is suitably controlled in L?-norm on a set
of good slices at the same scale p.

Lemma 4.4.1. Let Q = Q,(c) C R® be an open cube in R®. Fiz any g-valued 1-form A € L*(9Q)
with Fa € L*(0Q). Let {Q;}i=o.. k-1 be a collection of open cubes such that 0Q) is transversal to
0Q; for all i and assume that aQ C U LQi, A€ ag(0QN Q) for everyi=0,....k—1. Then,
there exists eq € (0,1) depending only on G such that if

/ |Fal?dst* < eq (4.4.1)
aQ

we can find a global gauge g € W12(0Q, Q) such that A9 € L*(0Q).

Proof of Lemma 4.4.1. Since A € ag(0QNQ;)) and since 0QNQ); is bi-Lipschitz homeomorphic
to the 4-dimensional ball, there exists h; € W12(0Q N Q;, G) such that A" € L4(0Q N Q;). We
consider 9., := (p - +c) o ¢ which realizes a bi-Lipschitz homeomorphism from S* into 9Q and
we denote U; the Lipschitz open subset of S* given by U; := @D;;(GQ NQ;). Let (w;i)i=o..k—1 be
an open cover of S* such that @; C U;. We then cover each w; by finitely many smooth convex
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geodesic balls (Vij)jer, of S* with Vi, C U; so that the whole cover given by the V;; is a good
cover of S* (i.e. the intersections of the Vijs are again diffeomorphic to balls) by convex geodesic
balls. To simplify the notations we re-index the cover (Vij)ic{o..k—1},jer; by (O1)i=1.. and we
denote by ¢; the index ¢ € {0---k — 1} such that O; C U;. Observe that

1% o Fallrzsty < Clldelocss [1Fallzzoq) < Clldells vee. (4.4.2)

We first choose e > 0 in (4.4.1) such that we can apply Proposition 4.A.2 to 1/12‘7p(Ahiz) on the
geodesic ball O;. Let g; € W12(0y, G) given by Proposition 4.A.2 such that

Byi= (07, (4"))" (4.4.3)
satisfies
IBillw2(0)) < C e, Fallasyy < Clldgll7e sy 1FallL2 (o) (4.4.4)
and
44 B; = 0. (4.4.5)

Using the same argument as in [74, proof of Theorem V.5|, we have that the transition functions
Omn = g+ (B, 0 wc_,pl)_lhim o 1/10_’}, gm are continuous on O, N O,,. and the co-cycle generated by
(Tmn)mne{iL} 18 CY approximable by a sequence of smooth ones. Hence, o, are the transition
functions of a smooth bundle and 7 ,A defines a W12 _Sobolev connection on this G—bundle.
Using [92], for ¢ small enough the bundle is trivial and there exists a global W12 representative
of ¥ ,A. Pulling back this representative by 1, ; we have the existence of g € W2(9Q, G) such
that A9 € L*(0Q). This concludes the proof of Lemma 4.4.1. O

We recall the definition of the Morrey seminorms in 2 C R™:

R

for every s e N, 1 < p < 400, O<q<—

B =

‘asl . asnf‘P d£n> ,

(@) 514 +sn—s

Definition 4.4.1. Given an admissible cubic e-cover Q., we say that a cube @ C R® is uniformly
transversal to Q. if there are universal constants 0 < o < k such that for every Q' € Q. we have
that Q N Q' is either empty or a rectangle with minimum edge length e and maximum edge
length ke.

Theorem 4.4.1 (Approximation under controlled traces of the curvature). Let G be a compact
matriz Lie group and let A > 0. There exist eg € (0,1) and Cg > 0 depending only on G such
that for every A € ag(Q3(0)) satisfying

1
’FA|?\40 50y ‘= Sup / |FA\2d£5 <eq
22 GO a2 P S
p>0
we can find a set {&;}ien C (0, 4) of admissible scales for A (with associated admissible cubic
gi-covers Q.. ) and a family of g-valued 1-forms {A; p}ien C L2(Q3(0)) such that the following
facts hold.
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(i) For everyi € N, Fa, , € MQQ(Q?(O)) with
‘FAi,A|M§)’2(Q?(O)) < Cg \FA’MQ2(Q§>(0))-
(ii) There exist a universal integer N € N and a non-negative f € M{)A(Q‘;’(O)) satisfying

2
[l @0 < Faling s 0)

such that for every i € N, for every x € Q3(0) and for every p > 0 for which Q,(x) is
untformly transversal to Qe, and 0Q,(z) C Ql_%(()) we have

Co &

|Fa, |2 dott < =< / fdcs, (4.4.6)
/aczpm * €i ; Qaz; ()

for an N-tuple of points {xy = z(i,z,p) } =15 C Q3(0).
Moreover, for every i € N, for every x € Q3(0) and for L'-a.e. p > 0 for which Q,(x) is
uniformly transversal to Q., and 0Q,(x) C Ql_%(O) we have Lng(z)AivA € ag(0Q,(x)).

(i1i) We have

i o 2 : 2 3,5
Jim [ Ain = Allzzgs0y < Ce lim Qi’AyA“‘” L,

where ;A4 C Q3(0) is defined as in Lemma 4.3.2.

Remark 4.4.1. Tt is not claimed in Theorem 4.4.1 that the elements A; 5 are in ag(Q3(0)). It
could very well be that this is the case and that it could be checked out of the construction given
in the proof but, since it is not needed in the sequel, this property is left open.

Before proving Theorem 4.4.1, we shall need the following lemma, which will be used at several
steps of the proof of Theorem 4.4.1 and deserves to be stressed separately.

Lemma 4.4.2. Let A € L*(Q5(0)), let Q,(c) C Q3(0) and let p € [1,+00) and q € [1,+00)].
Assume moreover that the following facts hold.

(i) Fam dA + AN A € LP(Q,(0) N IP(QI(0) ~ Qp(c)).
(ii) There exists an L? 1-form Lng(C)A on 0Q,(c) such that

1 pte
lim — /
208 Jp—e JOQu(o)

where D, (x) := 5 (x—c)+ec.
Then, Fa:=dA+ ANA € LP(Q3(0)) .

2
Dftho. A = tho,A| 4 AL (r) =0, (4.4.7)

Proof of Lemma 4.4.2. Since the proof is identical for ¢ # p, to fix the ideas we assume that
q=p, ie. LP9(Q3(0)) = LP(Q3(0)). We first claim that F4 € LY(Q3(0)). Since A € L?(Q3(0)),
automatically we have AAA € L1(Q3(0)) and it suffices to show that the distributional differential
of Ais a 2-form in L'(Q3(0)). We claim that the distributional differential of A on Q3(0) is exactly
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dA € LY(Q3(0)). Let ¢ € C2°(Q3(0)) be any smooth and compactly supported 3-form on Q3(0).
Fix any € > 0 and let 7. € C°(Q3(0)) a cut-off function that vanishes on 9Q,(c) and satisfies

ne=1 on (Q?(O) ~ Qp+€(0)) UQp—z(c),
0<n.<1  onQ}(0)

and

C
lldnell L @30y < -

Notice that 7. € W&’%Q?(O) N\ 0Q,(c)). Hence,

/, AAd(nssO)Z/, Ne(dA N ).
Q20 @30

Moreover,
d(nep) = dne A @ + nedp.

Thus,

/ ANd(nep) =/ ne(A N dp) +/ ANdn: N .
Q3(0) Q3(0) Q3(0)

This implies that

/ na(AAdsO)Z/ ns(dAMD)—/ ANdn: N\ .
Q3(0) Q3(0) Q3(0)

By assumption (ii), we have
/ ANdne Ny =0
Q7 (0)

as € — 0. Hence, by passing to the limit as ¢ — 0 in (4.4.14) we get

/ ANdp = / dA N @,
Q3(0) Q%(0)

1

(4.4.8)
4.4.9
(4.4.10)

(4.4.11)

(4.4.12)

(4.4.13)
(4.4.14)
(4.4.15)

(4.4.16)

which implies that dA € LY(Q3(0)) is the distributional differential of A on Q3(0) and our claim

follows.

Let ¢ € C2°(Q3(0)) a smooth and compactly supported 2-form on Q3 (0) such that ||g0\|Lp/(Q51,(O)) <

1. Fix any € > 0 and let

/ FA/\*cp:/ FA/\*g0+/ FA/\*cp—l—/ FaNxp
Q?(O) Q?(O)\QP‘FE (©) Qpre(e)NQp—c(c) Qp—c(c)

g/ FA/\*g0+/ FA/\*<p+/
Q?(O)\Qp(c) Qo+ () \Qp—<(c) Qp(c)

< IFallatonapion + I Falla,ien + [
CHONCRE) N o ot
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Since we have already shown that Fs4 € L'(Q3(0)), by taking the limit as ¢ — 07 in the above
inequality we have

/Qs(m Fanxp < Falle@z0)~@u(en + 1Fallzr @,

1
By taking the supremum over ¢ € C°(Q3(0)) a smooth and compactly supported 2-form on
Q3(0) such that [l z2(@s(0)) < 1, we finally get
1Fallzr @30 < 1EallLe@i 0ot + I1Eall Loy (e))-

This concludes the proof of Lemma 4.4.2. O

Proof of Theorem 4.4.1. Let {¢;} C (0, i) be a set of admissible scales for A with associated
admissible cubic g;-cover Q.,. We subdivide the family of cubes Q., into a uniformly bounded
number N of disjoint subfamilies

oL, ..ol (4.4.17)

We denote by €7 the set of centers of the cubes in QF . The subfamilies QF. are chosen such that

the union of the cubes in Qgi with same centers and radii multiplied by 2 have no intersections
with the union of the cubes in ngi with same centers and radii multiplied by 2 whenever j # k.

We claim that for every s = 0, ..., N we can build a g-valued 1-form A$, € L*(Q5(0)) and we can
choose a family of radii pj € (%si, 252-) for each center ¢ € CK; in the family of cubes in Qj_ii such
that for some constant Cs > 0 depending only on G we have the following.

(a) We have
Vee 6, A7y €aa(0Q,:(0), (4.4.18)

and the estimates

/ [Fapal® ot < Cs/ |Fysr|?dL, (4.4.19)
0Qpi () 261 Jos 0 o
/ AT A < C/ AP e (4.4.20)
aQZLc (c) ’ 251' QSEZ (c >
(b) Faz, € M$,(Q3(0)) with
1y s 349,@ e, 00 < O [Faliag, ot0n)- (4.4.21)

(c) There exist Ny € N and a real-valued, non-negative function fs € MSQ(Q?(O)) satisfying

2
‘fsyMi)A(Q?(O)) < ‘FA|M£J’2(Q?(O)) (4.4.22)
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such that, for every x € Q3(0) and for every p > 0 for which Qp(x) is uniformly transversal
to Qc,, we have

N.
C B
/ |Fa, p [P dott < = / fsdL? (4.4.23)
0Qp (%)M €i 1Y Qac, (k)

for a family of N, points {z{ = z (i, 2, p) bk=1,. N, C Q3(0), where Qf C Q3(0) is the open
set given by

Qf :zint(O U Q). (4.4.24)

k=1Qe Q’gi
(d) It holds that

m |A|?dL5, (4.4.25)

lim || A, — Al? <O i
i—>+oo|| vA HLZ(Q?(O))\ ® 400 Qa4

where ;A 4 C Q3(0) is as in Lemma 4.3.2.

Base of the induction. For s = 0, since QY = () we have that A?,A := A satisfies (a), (b), (c) and

(d).

Induction step. Let s > 1. Using one more time Fubini theorem combined with the mean value
theorem we adjust the radii p; . € (%ei, 25,-) in QF such that A‘f’xl satisfies the properties in (a).
From now on, in the induction procedure, the family Q7 is fixed.

By assumptions (1) and (2) in Definition 4.3.3, if ¢ > 0 is small enough then LgQAiRl € ag(0Q)
satisfies the hypotheses of Corollary 4.2.1 for every A-good cube Q € QZ?. Moreover, by our
choice of the cubic cover (see Lemma 4.3.1-(i)), we have that LBQAZXI € ag(0Q) satisfies the
hypotheses of Corollary 4.2.2 for every Q € Q7 .

€47
Corollary 4.2.1-(ii) to LBQAfj\I. On the other hand, if @ is A-bad we let Af, be the g-valued
1-form given by applying Corollary 4.2.2—(ii) to LEQAfxl.
Let A$ , be defined on Q3(0) by

For every Q € Q? | if @ is A-good then we let ASQ be the g-valued 1-form given by applying

s {ASQ on Q for every Q € QZ ,
i\

Afj\l otherwise.

By construction and using Lemma 4.4.2, it is clear that A7), Fa: € L?(Q5%(0)). First, we show
that A7, satisfies (b). Fix any point = € Q3(0) and let p € (0,dist(z,0Q3(0))). First we
assume that p < e;. Then, Q,(z) intersects at most N cubes in QZ,, say Q1, ..., Q, with N eN
depending only on the choice of the cubic cover and independent on i, z and p. Hence, by Holder
inequality, by the estimates (4.2.66) for the good Qs and (4.2.96) for the bad ones for each Ag),
as well as (4.3.2) and the inductive assumption (b) on Af;\l, we get

1

p /Qp(x)m(ﬂf\ﬂf—l

Fas 12dL5 < || Fys |2
>’ S AM”L%@p(m(ﬂf\ﬂf‘l))
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N N
2
< s = S 2
s¢ Ze_l HFAA‘ 13 CZ_ g, I q

<C ) (HFAjj\l”%Q(an e 2143 L HL2(8Q[))+ > HFAfj\l”%?(an)

QeeQ?, A QeEQ?, 4

<C|Fpalie, <C |Faliyg, (4.4.26)

(Q(0) =
for some constant C' > 0 depending only on G.

(Q%(0))"

Assume now that &; < p < 1. Then there exists a universal constant k& > 1 such that Q,(z) N
(97 Qf_l) can be covered with a finite number of cubes {Q¢}¢=1,....n,,, in QF, such that

Ni,z,p

U QQ& (CQZ) C Qkp(x)

(=1

Notice that now the number of cubes N;, , may depend on 7, z and p. Then, by the estimates
(4.2.66) and (4.2.96) we obtain

zzp zzp

/Q(m(m gy o et Z / [Fag  dL” = Z / [Fag, [* dL?
p\Z NG

<cC Z et / A3 — (A5 ) 2 dAt e / AP dt (4.4.27)
QeeQ?, 0Qe

3 Ni,z,p
+ C Z ( —2/ ’A‘Z;\l‘Z d%4> + Ce¢; Z / ’FA§*1‘2 d%{
Qe 0Qe = JoQ, A

for some constant C' > 0 depending only on G. By property (4) in Definition 4.3.3, by Remark
4.3.2 and by inductive hypothesis (a) on Afj\l, we get

Z AR et s [ A
oQ

QZGQ
s—12 5
ooy o AR Rag’
Qng i(eq,)

< oAt ’FA

1A

<COA " [Falipo 30y D / AP dc,
’ QZGQg i)

for some constant C' > 0 depending only on G. By property (5) in Definition 4.3.3 and by our
choice of k > 0, we get

> / AP AL <CA > (260)° < CA(kp)?,
QZEQ&,A Q2ei(CQ2) QZEQ%

for some constant C' > 0 depending only on G. Hence, since by assumption p € (0, 1), we have
obtained the estimate

Z —4/ 1AL — (A5 D, dort gi/ AL 1\2d%4<0k5p]FA\MO @30y (44.28)
QeeQ?, Qe
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for some constant C' > 0 depending only on G. By Remark 4.3.2 and by property (5) in Definition

4.3.3, provided i > ig is large enough so that g; < A3 |FA|M0 (@3(0)) Ve obtain
3 3
Z € (5;2/ | AT A ]2d%4) < Z € (5;3/ |AT A ]2d£5>
Qéeggi,/\ 9 Qeeggi,/\ 251'(CQ[)
< Y alE ) (4.4.29)
QZEQ?,-,A
<2 A3 2 < Ce2 A < Cp |[Fal?
S G >, <O <Cp Alhg (@20
Qfeggi,/\

for some constant C' > 0 depending only on G. By (4.3.2) and the inductive hypothesis (a) on
Afxl, we get

zzp zzp

£ Z/ |F yom 1]2d%4<02/ Fysa|?dL?
oA QQE,L CQZ Z’A
2 4.4.30
<C Fpaa PAL5 < Clip |Fypen (4.4.30)
Quplz) A A 1MD,(Q3(0))

< CkplFalig qzo)

for some constant C' > 0 depending only on the choice of the cubic cover. Hence, provided
i > 1ip is sufficiently large, combining (4.4.27), (4.4.28), (4.4.29) and (4.4.30) we get this time for
g <p<l

1 - )
/Q (@)@ stl)|FAf,A‘ e’ < C |FA‘M3’2(Q?(O)), (4.4.31)
p\Z N0

for some constant C' > 0 depending only on G. Since

1 1 1
/ ‘FAS |2d£5 / |FAS ’2 d£5 / ’FASA‘Q d£5
P Q@) Qo(@N@2]™) RONGIN N

1 1
<= |Fas |2 dL° + / |FA§R1\2d£5,

4 /Qp(w)m(ng\ﬂjl) ’ P JQ,(x)

P

property (b) for A7, follows by (4.4.31) and inductive hypothesis b) for Afg\l.

Now we turn to show property (c) for A7 ,. Notice that

142 — AlZ2 050 < 1484 — 423 aggaon + 1452 — Al 020y

<)) /|As AP AL +11ATL — Allf2 050
QeQs,

< Z /‘AS As 1|2 d£5—|- HA;SAI AHL2(Q5 o)
QeQ:,NQY. \
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+ > |AY — Asy!Pac’
QeQz,NQl.
< 2 Ii,A,s +2 Ji,A,s + Ki,A,s + HAf’Xl - AH%Q(Q‘;’(O))’

with

Lins= Y, /yAs (Aol dL?,

Qnglng

Baei= Y[t (st e
Qnglng Q

Kips = / |43 A;;lﬁdz:f’.

QGQSZHQE A

By using (4.2.70) with A = (Af;\l)Q for every good cube @), by Lemma 4.3.1 (in particular (4.3.4))
and by properties (1),(2) in Definition 4.3.3, we have

Lins= Y. /]AS (A3 gl?dL?

QeQ:,NQY 4
1 1y 12 7,5 2 4
<Ce Y. /IAfA (A5 Dol dL® + &} Z /'FA;—;' A
QeQ QeQ

—1 —14
+¢; Z 145 31 172 00)

Qng
s s 6+1/2
<Ce Y /IAM1 (A DolPdc® +cefr N Fas g0
QeQ!, QeQ!. A
6 4
+Ce Z Faet g 01.00)
Qng
a3 / AR~ (A7)0l dL” + O(e) — 0 (1432
QGQ

as ¢; — 07 for a fixed A. Now, we estimate .J; p 5. We write

Tins <3 Y /IA —APdS+3 > /|A > dce

QeQz,nQ? QeQz,NQ \
+3 > /| (A)gl? dc® (4.4.33)
QeQ;pQ"
<6473 — Al 2 0u0p +3 D /’A A)ql* dc’.
QeQg,

Using the induction hypothesis together with (4.3.5) we obtain that

lim Jias <C lim |A|? dL5. (4.4.34)

i——+00 i——+00 stl
i,A A
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Finally, we bound Kj; A s. Using respectively (4.2.76) together with the induction hypothesis on
(@2, A74") (4.4.19) and (4.4.20), we obtain

Kings < </|AS ?dc’ + /|AfA12d£5>

QeQX’,
<C Zb ( /]AfA”d,%”A‘Jra /aQ\FAiAl\d,%”4+/]A ]2d£5)
QeQ’y
<C > / AjA12d£5+05 > /|FA5. 1| dL?
QeQ’, QeQ:,NQL.
<C ) / AP L’ + Cef / |F o1 | dLP
Qac(c Qi) A
QEQZbA Q 1
<c ¥ / AP AL AL = Al g + o) (4.4.35)
QeQ’, " (cq)

Hence, by Lemma 4.3.2 and by inductive hypothesis (d) on Afj\l, property (d) for Aj y follows.

We are just left to show property (c) for A7 ,. Fix any = € Q3(0) and p > 0 such that Q,(z) is
uniformly transversal to Qéi for I < s. Notice that,

2
”FAiAHLQ(an(x)ﬂQf = HFA ”LQ(BQ (z)nQs ) +HFAS ||L2 (0Q,(2)N(Q3~ 2~ 1)

= ||FA9 1||L2 (0Q, ()N Qf 1 + ||FAs ”L2(8Qp(x)ﬁ(95 Qs 1)) (4.4.36)

By inductive hypothesis (c) on Afj\l, there exists Ns_1 € N independent on x, p and ¢ such that

stl
Cs_
/ PPt < == j/ foordL, (4.4.37)
BQP(SE)PIQ? v i k=1 Q2si(xk)

for Cs_1 > 0 depending only on G, for an N,_q-tuple {xi_l = xz_l(:c,p,i)}k:h“,]vsfl C Q3(0)
and for a real-valued, non-negative fs_; € M{)A(Q?(O)) independent on ¢ such that

[fom1lag @200 < 1Fallug, @300
Hence, in order to prove property (c) for A7, it remains to control HFA?A”%}@Q 0@~ 1))’
’ v P i i

Notice that, since p € ( i, Zsl) there exists N depending only on the choice of the cubic cover
such that 0@Q), intersects just N cubes in Qs say {Q1,...,Qg}. Then, by construction, we have

N
Faz Log,n@sat) = D Faglog,wna = Y Fag, Log,wne:
QeQg, =1
Thus, by (4.2.68) and (4.2.98) we get

N
/ JE P <SS [ e
0Q, (2)N(Q3\Q5 ™ 0Qp(z)NQ,
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N 3
<cy [ gAY (/ |A;Al2d%4>
(=170 Y QeeQ? 9Qe

o e fio A8~ Cataase [ 1A Pase. (149
QeeQl, o

Fix any ¢ € {1,..., N}. Notice that we have have chosen QZ, so that (4.4.19) holds. Then, we
have

/ [Fpee 1|2d,%ﬂ4 < C/ |Fa|?dLo, (4.4.39)
8QZ € QQE CQZ)

for some constant C' > 0 independent of ¢;. Moreover, by properties (2), (4)and (5) in Definition
4.3.3 (characterizing good cubes), by Remark 4.3.2 and by (4.4.20), we obtain the estimates

3 3
e° ( / \AfA1|2d%”4> <" <e§+1/2 / |FA§_1|2d£5> (4.4.40)
0Qc Q) A
3+3/2
<e " 1Fae g, @i
<C— / 1/2\ el oty 46° (4.4.41)

and

A - e Pt [ aiPae
0Qy 0Q,

< AT

< Cs—l

2 4 2
Eassalag @z & A 1Fast g, @s0))

/ |FA\§M202(Q§(O)) dcs. (4.4.42)
Q2c €Qy ’

By combining (4.4.38), (4.4.39), (4.4.40) and (4.4.42), we get

N

C
/ g Pt < 23 [ gar (1.4.43)
0Qp(@)N(Q Q) & 2¢; Q)

' 1 2
with g5 := |Fal? + \FA|§4§2<Q?<0>> /

then follows by (4.4.36), (4.4.37) and (4 4.43), lettlng

fs = max{gs, fs—1}.

Fal® o s The required estimate (4.4.23) for F As
M3 ,(Q3(0))

Finally, let 4; 5 := AN, € L?(Q}(0)). By construction, Fy, , € L*(Q}(0)) and A; 5 satisfies the
properties (i) and (111). Moreover, notice that QY > Ql_%(O). In particular, 0Q,(z) C QV.

Hence, by property (c) for Af.v A, there exists N € N independent on z, p and ¢ such that

/ |Fa, 2 dtt < — Z/ fdc, (4.4.44)
an( Q2s (wk
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for C > 0 depending only on G, for an N-tuple of points {zy = z(z,p,)}k=1... 8 C Q3(0) and

-----

for some real-valued, non-negative f € Mﬂ L(Q3(0)) independent on i such that
2
|f|M?,4(Q?(0)) < ’FA|M§2(Q§(0)) (4.4.45)

We are just left to check that, given any x € Q9(0), for £!-a.e. choice of p > 0 such that Q,(z)
is uniformly transversal to Q., and 9Q,(x) C Ql_%(O) we have Lng(x)Ai7A € ag(0Q,(x)). First,
note that for £'-a.e. p > 0 we have Lng(x)Ai,A € L*(0Q,(z)). Moreover, by (4.4.44), we get

|Fx A, |2d,%”4:/
/8Qp(m) Lan(-T) oA 0Q

< / |Fa, |? d#* < Ceg, (4.4.46)
0Q,(x

( )‘LE;QP(JE)FAi,A|2 d*

P

for some constant C' > 0 depending only on G. By construction, we can find a covering
(Ri)e=1,..,N,, of 0Q,(x) where Ry is a rectangle included in some Q; € Q:El) for some s(l) €
{0--- N} depending on [ such that
l
Aa=A%0 on R

By the properties of the extensions on good and bad cubes implying that we have respectively
(4.2.69) and (4.2.99), if (4.4.46) holds there exist g, € W12(R,, G) such that

(th0, ) A0 € LH(0Qp() N Re).
Then, we can apply Lemma 4.4.1 to conclude there exists g € leg(an(x)’ G) such that
(th, (@) Ain)? € LH(OQp(x)). (4.4.47)

Hence, Lng(x)ALA € ag(0Q,(x)). This concludes the proof of Theorem 4.4.1. O

4.5. The second smoothification: strong L2-approximation by
smooth connections

The goal of this section is to prove that any weak connection with curvature having a small
Morrey norm is strongly approximable in L? by smooth connections with small Morrey norm of
the curvature as well. More precisely the main result obtained in this section is to prove the
following theorem.

Theorem 4.5.1 (Smooth approximation under controlled Morrey norm). Let G be a compact
matriz Lie group. There ezists e € (0,1) such that for every A € ag(Q3(0)) satisfying

2
[Falag @30 < €6

there exists a sequence of g-valued 1-forms {A;}ien C C°(Q3(0)) such that:
(1) for every i € N we have

‘FAZ-|M§,2(Q%(O)) < Ca |Falmg @30

for some constant Cg > 0 depending on G;
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(i3) || A; — AHLQ(Q%(O)) — 0 asi— +oo.

In order to prove Theorem 4.5.1 we shall need some preliminary results. Recall that we have
defined

G = (€Z)5 N Ql_Qs(O)
1

for every € € (O, Z) (see the beginning of Section 3). Under the same assumption and notation of
Theorem 4.4.1, for every i € N and for every ¢ € Q=i (0) the cubes in the grid {Q¢,(c +t)}cee.,
are uniformly transverse to the cubes in Q. and such that 0Qc(c+1t) C Q_ o (0) for every
¢ € 6. Since uniform transversality is stable by small perturbations, there exists a > 0 small
enough and independent of &; so that for every r € ((1 — a)e;, (1+ a)e;) and every t € Qz(0) the
cubes in the grid {Q,(c+1t)}.cy, are still uniformly transverse to the cubes in Q,; and such that
0Qr(c+1t) C Ql_%(O) for every ¢ € €.

Lemma 4.5.1 (Choice of an admissible cubic grid). Under the same assumption and notation of
Theorem 4.4.1, for every i € N there exist r; € ((1 —a)e;, (1 +0¢)5i) and a translation t; € Q%(O)
for which the following facts hold.

1. LBQri(c—&—ti)AivA € ag(0Qy,(c+1t;)) for every c € 6,,.
2. There exist N € N and a real-valued, non-negative f € M} ,(Q5(0)) satisfying

[ Flarg s@son < Faliug,@z0)

such that for every c € €,, we have

C N
/ |Fa, |2 dot* < ?2/ fdce,
0Qr; (c+t;) &i k=1

for an N-tuple of points {xy = x(i,z,7;) }p=1..n C Q3(0).
3. It holds that

li i A r — (A Nt 4 _ 451

@J%T cgé; /8QrZ ctt;) | oA ( Z’A)Qri(c_'_tl)’ d 0, (4.5.1)
2 4

lgﬂo Ti 2 : /8 (erte) |FAi,A - (FAi,A)Qri(c-‘rti)‘ dz" = 0. (4.5.2)

Proof of Lemma 4.5.1. By our assumption on « and by Theorem 4.4.1-(ii), arguing exactly as
in the proof of [23, Lemma 2.1| (with p = 2 and ¢ = 1) or [22, Lemma 3.1] we can show that there
exists a full measure subset E C ((1 — @)e;, (14 «)e;) such that for every r € E we have that for
a.e. translation t € Qg(O) 1. and 2. in the statement hold. We fix r; € E and again, exactly as
in the proof of [23, Lemma 2.1| (with p = 2 and ¢ = 1) or [22, Lemma 3.1| we have that

/ S /a s — (i), (oo 44 L = o(r4) (45.3)
ri c+t
@

CE%
7’L
3

Z /a - |Fa,n = (Fa, 0)Q,, (cn|” dA* AL = o(r}) (4.5.4)
ce%' r; (€
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as r; — 01. Consider the sets

Tokai={teQu) st > K f aic)
8
Qr; (0)
8
D= {1€QuO) st 0> K f aavac)
8
Qr; (0)
8
with
= [ - gyl 8 VEE Qg 0)
CG% aQrZ C+t)
Z / ‘FAZ;A - (FAi,A>Qri(C+t)’2 d%4 Vite Q%(O)
cEEr, 9Qr; (ct+t)
By integration on T}, k1 and T, 2 we get
5
re
£5(T7’17K,1) < ?l
5 Tz‘5
L (TT‘@',K,Q) < K
Moreover, for every t € Qr: (0) \ (T, k,1 U Ty, Kk 2) it holds that
8
I,
ri Y / [Ain = (Ain)g,, +o* dA* <K ][ p1dL° = K-, (4.5.5)
CG% 6er C+t Qr T’i
Iy,
iy |Fa, o = (Fa, )a, (erp)” " <riK podl® = KL, (4.5.6)
cety,  0Qri(c+t) Qr; (0) T

Now, we notice that
5 ry
L(Tr41 U T, a2) < 517
which implies
rd
LTy, 4) = 5 >0
with T, :=T¢ ;1 NT 4 5. Hence, we fix t; € T,. By (4.5.3)-(4.5.4) and (4.5.5)-(4.5.6), we have

lim r; Y /a [Ain — (Ain)q,, e+t |” a2 =0,

r;—0t CEC@” QT‘z c+t7‘1

li Fa, , — (Fa, 2 dnt =0,
ri1—>n(}+ i Z ~/3er C“rt'r,L ’ AZ’A ( AZ’A)Q”(CH”)‘
The statement follows. This concludes the proof of Lemma 4.5.1. O

Definition 4.5.1. Under the same notation that we have used in the previous Lemma 4.5.1, we
say that the collection of cubes Qy, 1= {Qy,(c + ti) }cew,, 1s a admissible cubic r;-grid relative to
A A
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Definition 4.5.2 (Good and bad cubes). Under the same notation that we have used in the
previous Lemma 4.5.1, given an admissible cubic 7;-grid relative to A; o we say that Q € Q,, is
a A-good cube if all the following conditions hold:

1 1
(1) 3/ ’FAi,A|2 dA* < T‘Z? / |FAi,A‘2d‘C57
ri JoQ Q5(0)

1

1 1
2 L / AP At <} / Fa 2L,
Ty Joq Q3(

0
1
1
A i A N i A ,
) [ - APt <o [ 4P
oQ i JQ
1
(4) 4/ [Aia — (Aia)ol* dot! <A‘1/ |Fa, o2 dL,
"i JoQ HO)

5) ][|Ai7A|2d£5 <A
Q

Otherwise, we say that that ) is a A-bad cube. We denote by Q;‘fi’ A the set of all the A-good
cubes and QI;hA Q, \ QI

T,

Lemma 4.5.2. Under the same notation that we have used in the previous Lemma 4.5.1, let Q.
be a good r;-grid relative to A; n. We have

lim > /|AZA\2d£5 < C lim | A a|?dLo,
1—+00 1——400 Q. ]
GQIT’ A i,A,A; A

where Qi p a, , C Q3(0) is given by

QizAvAi,A = U {Q E Qri S~t- f |A1’A|2d£5 > A}
Q
Proof of Lemma 4.5.2. The proof is identical to the one of Lemma 4.3.2. 0

Remark 4.5.1. Notice that we have

r / AaPdrt < Y / Ais — (Ain)gl? dr!
QEQ;, 4 /0Q QEQT
Z / [(Ain) Q|2d<%ﬂ4
QEQb
Z / ‘AzA_ zA Q’zd%él—i- Z /’A1A|2d[,5
QEQ A QGQ

Thus, by (4.5.1) and by Lemma 4.5.2 we have

lim ri/ |A; A2 d#* < O lim |A; A dLP,
Qe JoQ

i——400 i——400 QiAA-A
ANAG

where Q;4.4,, C Q}(0) is given as in Lemma 4.5.2.
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We now have all the tools that are needed to prove the following strong L2-approximation result
by smooth connections under controlled Morrey norm of their curvatures.

Proof of Theorem 4.5.1. We assume that g > 0 is small enough so that we can apply The-
orem 4.4.1 to A. Hence, we find a sequence of admissible scales {&;};en such that &; — 01 as
i — 400 and a sequence {Ai,A}ieNCB(Q?(O)) satisfying (i), (ii) and (iii) in Theorem 4.4.1.

Let Q,, be an admissible cubic r;-grid relative to A; o in the sense of Definition 4.5.1. Recall that
by definition r; € ((1 — @)e;, (1 + @)e;), for some fixed o € (0, 3) sufficiently small. We fix i € N
big enough so that

Q:0c |J @
QEQy,

N

Step 1: construction of the approximating 1-forms.

Let N; be the number of cubes in Q,,. We first enumerate the family

Qn = {Qla ceey QNZ}

in such a way that for every for every n € {1, ..., N;} we have

Q' :=int < CJQ;C>
k=1

satisfies ) # H]' := 0Q} N 0Qn+1 # 0Qn+1 and QF is bi-Lipschitz equivalent to a 5-dimensional
ball, for every n = 1,..., N;.1

If e¢ > 0 is small enough, by 1. and 2. in Lemma 4.5.1 we have that LBQA,L"A satisfies the
assumptions of Corollary 4.2.2 on 9Q), for every Q € Q,,. Moreover, if ) € Q,, is A-good then
LBQAi7 A satisfies the assumptions of Corollary 4.2.1 on 9Q. For every k € {1, ..., N;} we denote by
Ag, € L?(Qx) the extension given by applying Corollary 4.2.1-(i) (if Qx is A-good) or Corollary
4.2.2-(1) (if Qg is A-bad) to ¢jo, A;a. Hence, for every k € {1,..., N;} such that @y is A-good
there exists g € WH2(0Qy, G) such that for every 4-dimensional face F of Q) we have

{“(ngkAi,A)gk“leQ(F) < C(IFa,allz2 000 + 7 1 Aiallz200,)) (45.7)

UpAg, = (LpAin)7k
and the estimates

< CUIFa; a2 200, + 77 11 4in

|Faq, Zaoouldin — (Ao le00,  (458)

12 5

L2(Q)
+r Al 2 00,)

14g, = Allf2(gp < Clril Faa 2200, + 71 1Aia = (Asn) @il 200, + 7 1Al Z200,)

(4.5.9)

MNotice that, by construction, H is always non-empty and bi-Lipschitz equivalent to a 4-dimensional closed ball.
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for every constant g-valued 1-form A on R®, where C' > 0 is a constant depending only on G. On
the other hand, for every k € {1,..., N;} such that Qj is A-bad there exists g € W12(0Qx, G)
such that for every 4-dimensional face F' of 0Q); we have

1o, Ain) w2y < ClIFa; Allz2004) (4.5.10)
vpAQ, = (LpAin)?r,
and the estimate
1Fa 25 ) < CIEA AN L2000 (4.5.11)

where C' > 0 is again a constant depending only on G. Lastly, for every k£ = 1,..., N;, let
gr € WH2(Qp, G) be the extension of g given by Corollary 4.2.1-(ii), if Q% is A-good, or Corollary
4.2.2-(ii), if Qy is A-bad.

In order to construct the approximating 1-forms, we proceed by induction on n = 1,..., N;. In par-
~ 5
ticular, for every n = 1,..., N; we build a g-valued 1-form A}, € L>%°(QF) with FATLA € L2™°(QM)

such that there exists a gauge transformation o,, € W1H2(QF, G) N WL2(9QF, ) satisfying
s Ay = (g Aia)" € LHO92)

Base of the induction. At the initial step n = 1, we have Q! = @Q; and we set flg}A = Ag, €
LP(Q}). By (4.5.8) (if Q1 is A-good) or (4.5.11) (if Q1 is A-bad) we get FAlA € Lg(Qzl) Let

o1 =g € WH(QL, Q) n w200}, G),
we have
BorAin = thorAgr = (1 Ain)™ = (G Ain)™
Hence, we have proved our claim for n = 1.

Induction step. Let n, := g, o1 € W1’4(Hf_1, G) and notice that, by the inductive assump-
tion, we have

((L;I?,lAi,A)gn)% = (11 Ain) 7" = L;I?,J;fgl c LY HM Y. (4.5.12)
Hence, we have

i = o (V5n1 Ain) " = (Gt AP ) € LH(H]Y). (4.5.13)

Thus, by Corollary 4.2.3, if e > 0 is small enough we can find an extension h,, € Wl’(s’oo)(Qn, G)
of 1. Let A7y € L5°(Q") and o, € W12(Q2, G) N W2(9Q7, G) be given by

- Arl Qrt
Any = A o 2o (4.5.14)
’ (AQ,)"  on Q,
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and

_ ot
PR Sl (4.5.15)

By construction and by Lemma 4.4.2, we have FA’.LA € Lg"’o(Q?). Moreover, since 027 \89?71 -
0Q,, and we have ’

G ATy = G (Al ) = (G Ain)"™ = (Gn Aia) ™
we conclude that
Gan Ay = (hap Ain)™ € LH(OQL).
This concludes the proof of the induction step and of our claim at once.
Now, to lighten the notation let 2; := va ¢ and define

fL"A = Aﬁlj\ S L5’OO(QZ)

OiA = ON; € W1’2(Qi, G).

Step 2: Morrey norm control on the curvatures.

Note that, by construction, we have Q1(0) C ;. Fix any point =z € Q%(O) and let r €
2 ~
(0,dist(z,0Q1(0))). Assume that r < & Then, Q,(x) intersects at most N cubes in Qf
2

say Q1, ..., Q g, with N eN depending only on the choice of the cubic cover. Hence, by Holder
inequality, by the estimates (4.2.65), (4.2.95) for each Ag, by the property (1) of A-good cubes
and by the property (i) of A; o given by Theorem 4.4.1, we get

1
- Fi 12dcd <||F; |]?
T/cmx) Aual 40123 0,0

N N
<CY |IF; I =C |Fa |15
LI EPEL) DL P

<SC Y (IFaslEa@qy + & 2 1Ainllzap0,)
QﬁeggiJ\

+ Z HFAi,AHQLQ(BQg)
QzéQi’Z_‘A

2 2
< ClEa;a g 030 < ClEAlLg @30y

for some constant C' > 0 depending only on G.

Assume now that ¢; < r < 1. Then there exists a universal constant k£ > 1 such that @, (z) can
be covered with a finite number of cubes {Q¢}=1,.. v, ,, in Q7 such that

Ni,z,r

U QQEz‘(CQe) C ri(x)
/=1
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Notice that now the number of cubes NNV, , may depend on i, x and r. Then, by the estimates
(4.2.66) and (4.2.96) we obtain

Ni,z,'r 7. x,T

/ |Fg [PdL’ < /|F R Z/|FAQ 2dch
Qr(z) " =1 Y Qe
<o ¥ (ot 1= el art) (s [ aapart)
0Qy 0Qy

QeeQ]. A

zz'r

+s,~<5;2/ ]AlAyzd%“) >+O€Z Z / |Fa, |? dot”,
0Qy

for some constant C' > 0 depending only on G. By property (4) in Definition 4.5.2 and by the
property (i) of A; o given by Theorem 4.4.1 we get

>, ((554/ [ Ain — (Ai,A)QAQd%”4) <€z/ !Ai,AIQd%4>
0Qy 0Qy

Qéeggi,/\
< CA [FAZ A}MO (QS( )) Z / ’Ai,A’2 d£5,
QreQ?, 7 @ilear)
<SCAYFalfpo o050y Do |Aia|?dLo,

Qre?, , 7 Fxeilear)

for some constant C' > 0 depending only on G. By property (5) in Definition 4.5.2 and by our
choice of k > 0, we get

> |Aial?dL> <CA Y (26:)° < CA(kr)?,
QZGQZ,A Q2si(CQ£) QZEQ”’

for some constant C' > 0 depending only on G. Hence, since by assumption r € (0, 1), we have
obtained the estimate

> <(€i_4/ [Ain = (Ain)q, d%4> <€z/ \Ai7A!2d%4> CErFalig 030
0Qy 0Qy

QeGin,A

for some constant C' > 0 depending only on G. By property (5) in Definition 4.5.2, provided
i > g is large enough so that ¢; < A_3|FA|?V[0 5.1, WeE obtain
22(Q2(0))

3 3
Z E; <5i2 / |Ai,A|2 de%ﬂ4> < Z (< <€i3 / |Ai,A|2 d£5>
0Q, Q2¢,(cq,)

QeeQl. A QeeQ]. A
- 2
< Z gi(e;PAED)P < e2A3 Z €
QeeQl. A QeeQl. o

< OfA? < OrlFaly 30
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for some constant C' > 0 depending only on G. By Lemma 4.5.1-(ii) and by the property (i) of
A; A given by Theorem 4.4.1 we get

117

Ni,:L'r
siZ/ |Fa, |2 d#* < C Z/ |FA¢‘A\2d£5
(=1 7/ 0Qe

QQs CQZ

=¢ Qur(a >|FA"’A|2d£5 < CkrlFaialing, oz
kr ’

CkT’FA|MQ Q"(O))
for some constant C' > 0 depending only on the choice of the cubic cover. Hence, provided i > ¢
i sufficiently large we get

1
T/Q 153 y2d£5 C]FA\MO (@30))’ (4.5.16)

for some constant C' > 0 depending only on G.

Step 3: strong L?-convergence of the connections.

Notice that, by construction, we have

1 N;
|45 -

Agn _ ‘

L2(Qn)

n=1

2
( ‘Agn _ ’LQ +Z}|A1A A%, Qn)
n=1 n=1

<o,

for some constant C' > 0 depending on G and A. By the same procedure that we have used in
the proof of Theorem 4.4.1, we get

2

2

2
-

2
L2(Qn) * HALA N AHLQ(Ql(O)))

< C lim |A; A2 dL?,

L2(Qn) i—>+00 Qina; .

lim
z—>+oo

‘Agn —Ai,A‘

where C' > 0 is a universal constant depending only on G and Q; A 4, , C Q3(0) is given as in
Lemma 4.5.2. Now we notice that

‘CS(Qi:A,Ai,A) = 79 card <{Q € Q,, s.t. ][|Ai7A|2dx5 > A})
Q

< 7P card <{Q € 9, s.t. f|A — AjpPda® + ][ |A|2dL® > A}) <
Q Q

and, recalling the definition of €2; A 4 from Lemma 4.3.2, we have

=1 Q

C

(Y <~
Lo(24A,4) A
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for every given i, where C' > 0 is independent on 7. Thus, by Theorem 4.4.1-(iii), we get that for
-1

every j € N there exists i(j) > 0 big enough so that be letting AJ = A, i), and oj = Tty €
Wh2(Q5)) we have
1% 2 7,5
HAj] — 4 (J)J L@ ) C/ i(j),j| dc
0 Q)5 Ai(4).
<C</ \A|2d£5+/ 144().j A|2d£5>
Qii)dAi),5 Q7(0)
c/ yAy2d£5+/ |A|2dLC?,
1(J)JAZ(J)] QZ(J)JA
where C' > 0 doesn’t depend on j. Finally, we get
~oT ! 2
HAJ.J - AH < c/ A2 dL® =0
L Qb(j) Qi(j)’j’Ai(j),j
as j — +oo.
Notice that, by assumption, €2;; Q Q1(0) for every j € N. Since m(G) = 0, we can find a

sequence {G;}jen C C™(Q (0)) such that

1
2
loj — UjHle?(Q%(O)) —0

and 7; — 0; — 0 pointwise L5-a.e. on Q1(0) as 7 — +00. Moreover, since we have the improved
2
integrability properties A € L>*(Q1(0)) and Fy € Lg’oo(Q;(O)), by standard convolution with
2 2
a smooth mollifying kernel we can find a sequence {4;},en € C°(Q1(0)) such that
2

2 2 2 .
14, g0, 0 < 28 Thag @, 0 S 201 Falhg 0t0y - VIEN

1
2
|A; — A; HLle ) — 0

and flj — A; — 0 pointwise L5-a.e. on Q1(0) as j — +oc. Now define
2

Aj A]J €C™(Q1(0)) VjEN.
By construction and Ad-invariance of the norm on g, we have

o < 2C|Ealig, VjeN.

2 2
1Fa, 10y 00 < 214,104 0 (@1(0)

Nl

By construction and dominated convergence, we have

145 — AHL?(Q%(O HA A (0)) + HA ’ AHL2(Q

HL2(Q1 (0))

as j — +o0o. This concludes the proof of Theorem 4.5.1. O
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4.6. Partial regularity for stationary weak Yang—Mills fields

In this section we prove our main result about the partial regularity of stationary weak Yang—Mills
fields on the unit cube Q?(0). In order to get that, we first use Theorem 4.5.1 and the main result
in [57] to obtain the following Coulomb gauge extraction theorem for weak connections whose
curvature has sufficiently small Morrey norm.

Theorem 4.6.1 (Coulomb gauge extraction under small Morrey norm assumption). Let G be
a compact matriz Lie group. There exists eq € (0,1) such that for every weak connection A €

ac(Q3(0)) satisfying
2
[Falug @30 < €6

there exist g € W1’2(Q%(0), G) such that A9 € (M2172 NM§1)(Q1(0)) satisfies

1
2
d* A9 =0,

Yoa(0) (+47) = 0,

VA g, @, ) + 1Al @y ) < CelFalug, @

(0))

1 1
2 2

for some constant Cg > 0 depending only on G.

Proof of Theorem 4.6.1. By Theorem 4.5.1, if e > 0 is small enough we can find a sequence
of g-valued 1-forms {4;};en C CSO(Q%(O)) such that

1. for every i € N we have
2 2
Failig @, o) < KelFalig i)

for some constant K > 0 depending on G}
2. |A; — AHL2(Q1(0)) — 0 as 1 — 400.
2

By choosing e > 0 possibly smaller, we can make sure that v/ Kgeg is smaller than the constant

given by [57, Theorem 1.3] and we can apply such statement to conclude that for every i € N

there exists a gauge g; such that d*AY" =0 on Q1(0), Lng(O)(*Ag) =0 and
2 1

|VAgi’M§’2(Q%(O)) + ‘Agi|M21(Q%(O)) < ColFailmg,@q 0 (4.6.1)

[

for some constant Cg > 0 depending only on G. By standard Sobolev embedding theorems, there
exists a subsequence (not relabeled) such that A7 — A € My, weakly in L* and VAY — VA €
MSQ weakly in L2. Clearly, we have d*A = 0. Notice that

dgi = gAY — Aigi.

By (4.6.1) and 1, we get that {g;};en is uniformly bounded in W12(Q1(0),G). Hence, there
2

exists a subsequence (not relabeled) such that g; — g weakly in W12, By Sobolev embedding

theorems, we have g; — g strongly in L?. Thus, since A; — A strongly in L? and G is bounded

we conclude that A9 = A on Q1(0). This concludes the proof of Theorem 4.6.1. t
2
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Definition 4.6.1 (Weak Yang-Mills connections). Let G be a compact matrix Lie group. We
say that A € ag(Q3(0)) is weak Yang—Mills connection on Q3(0) if

d4Fa=0 distrubutionally on Q3(0),
ie.

/ Fa-dap=0 for every p € C(A'Q3(0) ® g).
QY (0)

Definition 4.6.2 (Stationary weak Yang-Mills connections). Let G' be a compact matrix Lie
group. We say that a weak Yang—Mills connection A € ag(Q3(0)) on Q3(0) is stationary if

Ay a) o, (4.6.2)
dt]_g

for every smooth 1-parameter group of diffeomorphisms ®; of Q3(0) with compact support.

Remark 4.6.1. Note that if A is a stationary weak Yang—Mills connection and A € W2 0 L4
is another g-valued 1-form on Q3(0) such that A = A9 for some g € WH2(Q%(0),G), then A
is a stationary weak Yang—Mills connection as well. The proof of such fact follows by direct
computation exploiting the gauge invariance of the Yang—Mills functional.

If A is a stationary Yang—Mills connection, it can be shown that the following monotonicity
property holds true: for every given x € Q3(0) the function

cAp

(0, dist(z,0Q7(0)) > p — c /Q ( )|FA\2d£5 (4.6.3)

is non-decreasing, where ¢ > 0 is a universal constant and A depends on Q1 (x). In particular, we
have

| Falng, i) < CllFall2 30

for some constant C' > 0 independent on A. Thanks to (4.6.3) and to Theorem 4.6.1, we can derive
the following e-regularity statement by using the same arguments presented in |57, Section 4].
This is a crucial initial step in building a regularity theory for YM-energy minimizers, following
the same path that R. Schoen and K. Uhlenbeck walked in their work on energy-minimizing
harmonic maps in general supercritical dimension n > 2 (as documented in [79]).

Theorem 4.6.2 (e-regularity). Let G be a compact matriz Lie group. There exists e € (0,1)
such that for every stationary weak Yang-Mills A € ag(Q3(0)) satisfying

YM(A) :/ |Fal?dL’ < eq
Q3 (0)

there exist g € W1’2(Q%(0), G) such that A9 € COO(Q%(O)).

Standard covering arguments (see e.g. [39, Proposition 9.21]) together with Theorem 4.6.2 and
(4.6.3) give the following bound on the singular set of stationary weak Yang—Mills connections,
which is the main result of the present paper.
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Theorem 4.6.3. Let G be a compact matriz Lie group and let A € ag(Q3(0)) be a stationary
weak Yang-Mills connection on Q3(0). Then

A (Sing(A)) =0,

where ' is the 1-dimensional Hausdorff measure on Q3(0) and Sing(A) C Q3(0) is the singular
set of A, given by Sing(A) := Q3(0) \ Reg(A) where

Reg(A) := {z € Q}(0) s.t. 3p > 0,9 € W'2(B,(z),G) s.t. AY € C™(B,(z))}.

4.A. Adapted Coulomb gauge extraction statements in critical
dimension

Proposition 4.A.1. Let G be any compact matriz Lie group. There exist constants eg,Cqg > 0
depending only on G such that for every g-valued 1-form A € WH2(S*) on S* such that

/ FAl2dA* < e
S4
we can find a gauge g € WH4(S*, G) satisfying A9 € WL2(S*), d*A9 = 0 and

[A9][w1.2s1y < Cl|Fallp2(st

Proof of Proposition 4.A.1. Let 7 be the stereographic projection from S$* \ {N} into R*
which is sending the north pole N of S* to infinity and which is conformally invariant. Introduce

D:=(x"hH*A

Because of conformal invariance of the Hodge operator on 2-forms one has

/ |Fpl*dLt = —/ tr(Fp A +Fp) = —/ (V) (br(Fa A %F )
R4 R4 R4

:—/ tl"(FA/\*FA):/ |FA|2CZ<%£4<E().
Ne NG

For every R > 0, on Bg(0) one chooses the Uhlenbeck Coulomb gauge Dg := (D)%% (see [90])
that satisfies

d*Dp =0
and
IDRrlL4(BR0)) + 1dDRI 2(Br0)) < Ca [1FDgll12(Br0)) < Ca [|[Fallp2(st)-

What is crucial here is that all the norms involved are scaling invariant and then the constant
C¢g > 0 is independent of R.

Consider now on 7~ }(Bg(0)) = S*\ B, (N) where pg ~ R/(1+ R?) — 0 as R — +oc the 1-form

W*(DR) == AhR
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where hg := g om. Using the conformal invariance of the L* norms on 1-forms as well as the L?
norms on 2-forms one has

AP a1 (o)) + 1A 21 (Br(0)) < Co IFallL2se) (4.A.1)

There exists obviously a sequence Rj, — 400 such that for some Q € L} (S \ {N}) we have

AMri —~ Q weakly in Li (ST~ {N})
and

hr, — heo weakly in WEA(S* < {N}).
Moreover

d(AM) — dQ weakly in L7 (ST~ {N})

By (4.A.1) we have in particular that

HQHLAL(SAI) < CGHFAHLQ(SAl) and Q= Al>~ ¢ L4(S4) (4.A.2)

Following Uhlenbeck continuity type argument introduced in [70] and adapted in [55] to the
4-dimensional case we construct g € WH4(S* G) such that

d*(g7'dg+9 'Q9) =0 and ||dgll s < Ca [ sy
Hence we have the existence of g € W14(S*, G) such that (A"=)9 = Q9 satisfies
d*((A"=)9) =0 and [[(A")7] past) < Ol Fall 2se)
which gives
[(A")9 | pr2(say < Call Fallr2se

This proves the existence of a controlled global Coulomb gauge § := hoog € W14(S* G) under
small curvature assumption. This concludes the proof of Proposition 4.A.1. O

We recall here the main statement that we will use to extract Coulomb gauges in critical dimen-
sion. This is an adaptation of the main Theorem in [90].

Proposition 4.A.2. Let G be a compact matrix Lie group. There exist constants eq,Cqg > 0
depending only on G such that for every g-valued 1-form A € L*(B*) on B* such that

[ Fallz2st) < €c
we can find a gauge g € WHH(B*, G) satisfying A9 € W12(B*), d*A9 = 0 and

[A%][wr2@ey < CollFallpzee)
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Proof of Proposition 4.A.2. Fix any 4 < p < 8. For every ¢,C > 0, we define

X :={AePB,\'B*@g) st. dA e L5(B*, A°B* @ g)}
¢ = {A € X with |Fal 2@ < €}

V5 ={Aeu: g W' B G): d"A’ =0, 140 1.8 gy < CUIFAl g oy @ = 4P}
On X, we consider the topology induced by the following norm:
IAllx = Ao @) +11dAl g 5oy, VAEX.

Notice that X is a Banach vector space with respect to such norm.

Claim. We claim that there exist e,C' > 0 such that 7,5 = %°. In order to achieve such result,
we prove separately the following facts.

o %% is path-connected. Notice that 0 € Z¢. Given any A € % ¢, we define
A(t) ==tA(t), Vte[0,1].
Notice that A(0) =0 and A(1) = A. Moreover,
Fag = dA(t) + A(t) NA(t) = t2dA(t-) + AL ) NA(t-) = P Fal(t-)

which implies that

/ \FA(t)!5d£4:/ tP|FA(t-)|5dL4:tp4/ |Fa|% dC?
B B* B4
< / |Fal? dL* < 400 (4.A.3)
B4

and
/|FA(t)‘2d£4:/ t4|FA(t-)|2d£4:/ yFA|2d£4</ |Fal?dL* < e
B4 B4 B4 B4

Hence, A(t) € %° for every t € [0,1]. At the same time we have
AP dCt = / LA dLt < tp4/ AR dLt 50
B4 B4 B4

ast — 0T, Hence, A(t) — 0 in LP(B%). As a byproduct, we have A(£) AA(t) — 0 in L= (BY).
Moreover, by (4.A.3) we have Fy;) — 0 in L% (B*). This implies dA(t) — 0 in L2 (B*).
It follows that [0,1] > ¢ — A(t) is a continuous path in %€ joining A and 0.

o For every e,C > 0, ¥5 is closed in %°. Let {Ap}ren C 7§ be such that Ay — A € %.
We want to show that A € 7.

Notice that, by abbumption we have Fy, — F4 strongly in Lg(IB%‘l). Moreover, for every
k € N there exists gi € Wd’p (B%, G) such that d* A" = 0 and

| AZE |l < Ol Fallp2@sy < Ce

whd ) S
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for ¢ = p, 4. Since {A{ }en is bounded in W3 | there exists a subsequence (not relabeled)
such that A* — A, in whi. Hence, for ¢ = p, 4, we have

Notice that d*As = 0 and that, by Sobolev embedding theorem, we have Ai’“ — A
strongly in LP. Since

we get that {gx}ren is bounded in I/I/lil’p (B*,G). Thus, there exists a subsequence (not

relabeled) such that gy — ¢ in Wd’p (B*, ). This is enough to pass to the limit in (4.A.4)
and we get A, = AY. Since g is a gauge satisfying all the required properties for A, we
conclude that A € 7.

For some choice of e,C > 0, V5 is open in %*. Let A € V5. It is clear that if we find an
open neighborhood of its Coulomb gauge A9 for the topology of X in 75, then A posses
also such a neighborhood. So we can assume right away that d*A = 0 and

1A]] < C|IFall g gy < Ce

w3 (B1) L% (B

Notice that, in such a way, automatically we have A € W5 (B%).

Y = {U c WhP(B? g) : /34 Udch = o}. (4.A.5)

7= {(f La) e WIP(BY g) x W' IR (0B, AP T 0B @) : [ fdLt=- / a}.
B OB4
(4.A.6)

Notice that Y and Z are Banach spaces, as they are closed subspaces of WP (B*, g) and of
1
the product WP (B™, g) x W~ »P(0B* A3T*0B* ® g) respectively. We introduce the map

Fa: X XY > Z
given by

Fa(w,U) = (d*((A + w)eXP(U))7 Logn (* (A+ w)exp(U)))

By direct computation we can show that .#4 is a C''-map between Banach spaces. The
partial derivative 0y.#4(0,0) : Y — Z is the following linear and continuous operator
between Banach spaces:

A Z4(0,0)[V] = (AV + d*(AV — VA),8,V)
= (AV +d*([4,V)),0,V), VVeY.

In order to apply the implicit function theorem to %4 we need to show that 9y.%4(0,0)
is invertible. First we show that it is injective. Indeed, by standard LP-theory for the
Laplacian and since A is in a controlled Coulomb gauge, for every V € Y we get

Vlly < C(IAVIw-ro@e) + 18V, 30 )

177



VIllw-roqes) + N4, V]llos) )
Villw o) + 1AL IV L))

ey T CelV i),

for 5ome constant C' > 0 which just depends on G. By choosing &, C' > 0 in such a way that

Ce < 20, we obtain

IVlly < 2C1100-Z4(0,0)[V]llw-1s(s)-

which implies that Jy.%4(0,0) has trivial kernel. Classical Calderon-Zygmund theory as-
serts that the operator Lg : Y — Z given by

Lo(V):=AV, VYVeEY

is invertible and therefore it has zero index. For every ¢ € [0,1] we define the operator

LY — Z by
Ly(V) := AV — t(x[xA,dV]), vV ey.

and we notice that [0,1] > t — L; is a continuous path of bounded operators joining £y and
L1 = 0y#4(0,0). By continuity of the Fredholm index, we conclude that dy.%4(0,0) has
zero index. This, together with ker (8U9A(0, O)) = 0, implies that Jy.#4(0,0) is invertible.
Hence, we can apply the implicit function theorem in order to get that there exist an open
neighbourhood O of 0 in Y and § > 0 such that for every w € X such that ||w||x < § there
exists U, € O such that

0=Fa(lw,U,) = d*((A —i—w)gw),
where we have set g,, := exp(U,) € WP(B*, G). We just need to establish the bounds

(A + )™ g gay < CllFatoll 4

L? B4) % (B4)

for ¢ = 4, p. Notice that, by triangular inequality and Sobolev embedding theorem, we get

1(A + w)? A+ w)®l g oy + 1A+ ) g )

(||FA+w||L2 &y T [(A 4 w)? ”L‘I(IB%“))

HWL%(]BAL) - ”( L2 B4

< C (1Pl oy 1A+ paaoll A+ 005 )
for some constant C' > 0 depending only on G. Now we see that

(A + w)®| L@y < K[| Allpaqeasy + K(HWHLq(JB4) + HdeHLq(M))
<

KAl 18 oy + K (1]l oee) + 1dgell o (es)),
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where again K > 0 depends only on G. Notice that by possibly reducing é > 0 and the
size of the neighbourhood O we bring the quantity ||wlzem4) + ||dgw|lLa(sa) to be arbitrary
small. Then, we choose such parameters possibly depending on A in such a way that

lwll Loy + ldgwll La@ey < ”AHW1 % ()
which implies

I(A + @) | Lags) < 2K A] S 2KCe

w3 () S

and finally

[1(A +w)? || < COlF A+l g gy +2CKCe|[(A+ w)*|

whdme) S A1) whd B4))

Assuming that £, C > 0 are such that 20K Ce < 1 and C > 2C we get

1(A +w)*|

w3 (B1) L3 (BY)

and it follows that
By (A) = {A+w: |lw|x <8} C 7.

This concludes the proof of the openness of 75 in U, and our claim follows.

Now that the previous claim is proved, we proceed by approximation in the following way. Let A
satisfy the hypothesis of the statement and let { Ag}reny C C°(B*) be such that A, — A strongly
in L* and dAj, — dA strongly in L?. Hence, we have that Fa, — Fy4 strongly in L? and, for
k € N large enough, we get

/ |Fa |?dL? < e.
184

Hence, for k € N large enough we have A, € % °. We choose ¢,C > 0 so that 5 = Z¢. Thus,
we get that for every k € N large enough there exists g, € WP (B, G) such that al*AZ’C =0 and

1AZ S CllFall g

w3 (B4) L% B4

for ¢ = 4, p. Hence we find a subsequence (not relabeled) such that Ag’“ — A, weakly in whs.
Clearly, we have d* A, = 0. Moreover, A7¥ — A, weakly in W12 and we get

[Asollwr2me) < lim inf AL w2 @1y < ¢, tim [Fa,llze = CllFallz2s)-
Since p > 4, the weak convergence of AJ* in whi implies that AJ* — A, strongly in L* In
particular, by
dgi = gAY — Arg,

we get that {gi}ren is uniformly bounded in W14(B%). Thus, there exists a subsequence (not
relabeled) such that g, — g € W14(B*) weakly in W14, By passing to the limit in the previous
equality, we eventually get

dg = gAs — Ag,

i.e. Aso = AY9. This concludes the proof of Proposition 4.A.2. O
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Remark 4.A.1. A statement that is completely equivalent to Proposition 4.A.2 also applies to
every open and bounded domain D contained in R* with a sufficiently smooth boundary. This is
necessary to use the standard tools from elliptic regularity theory in the proof. For the purposes of
this chapter, it suffices to note that all the elliptic regularity theory can be applied to cubes using
standard reflection methods. As a result, Proposition 4.A.2 can be extended to open 4-cubes in
R4,

Finally we extend Proposition 4.A.2 to the sphere case following the same proof of Proposition
4.A.1.

Proposition 4.A.3. Let G be any compact and connected Lie group. There exist constants
eq,Cg > 0 depending only on G such that for every g-valued 1-form A € L*(S*) on S* such that

/S4|FA’2d<%ﬂ4 < Eq@

we can find a gauge g € WHA(S*, G) satisfying A9 € W12(S*), d*A9 = 0 and

[AY][y12(s1) < CallFallr2ssy-

4.B. G-valued map extensions of traces in W!2(0B’, G)

The aim of the present appendix is to show the following extension result for general compact Lie
groups.

Proposition 4.B.1. Let G be a compact Lie group. We can find a smooth Riemannian manifold
Mg such that for every g € WH2(0B®, G) there exists a measurable map

Ext(g) : Mg — Wl’g(Bs,G)

P 9p
such that for volyr,-a.e. p € Mg we have
gp=g onS"'=0B° (4B.1)
and for g =go € G
Ip =90 (4.B.2)
We have , 5
/Mc /BS \dwgp|2d L dvoly,.(p) < 1dgl72sa) (4.B.3)
and
/MG (/amBs’dxgp‘? d’%ﬂl) dvolug (p) < Ca(Q) [ldglia(ss) (4.B.4)

for every C?-domain Q C R of R>.

Moreover, for every C?-domain @ C R of R?, Ext is continuous from H%(S4, Q) into L*(09Q x
1 1

Mg). More precisely, for every pair of maps (g%, g%) € H2(S%,G) x H2 (S, G) we have

L 422 4 < 1 22 B
/MG </am[aaf>|gp i )dVOIMG(p) <Ce(@) llg” -9 ||H%(S4)’ (4.B.5)
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where Cg(QY) only depend on G and the C*-norm of the domain Q. In particular for any g €
1
H2(S* G) there holds

/ ( / !gp—idGPd%‘*) dvolug(p) < Ca(Wlg —ida |I* 1 ., (4.B.6)
Mg \ JoQNBs HZ(8%)

where Ca(Q) only depend on G and the C?-norm of the domain €.

Remark 4.B.1. Notice that, for every compact Lie group, we can write G is
n
G=|]|G (4.B.7)
i=1

where the G; are connected, compact Lie groups themselves and the one above is a disjoint union.
Hence, up to working on each connected component G; of G separately, without losing generality
we can assume that G is compact and connected in the statement of Proposition 4.B.1.

Lemma 4.B.1. Let G and G2 be Lie groups. Assume that we have proved Proposition 4.B.1 for
G1 and Go. Then, Proposition 4.B.1 holds also for G1 x G with Mg, xq, := Mg, X Mg,.

Proof. Let g = (¢', g%) € WH2(S*, Gy x G3). Applying Proposition 4.B.1 to g! and g2 separately
we find the two maps
Ext(¢g) : Mg, — Wl’g(BS,Gl)
p1+— 91171
and
Ext(¢%): Mg, — WI’S(BS,GQ)
p2— 922
and we define
Ext(g) : Mg, xq, = Mg, x Mg, — WY 3(B®, Gy x Ga)
p = (p1,p2) — gp = (9;1;179;2;2)-
Straightforward computations show that Ext(g) satisfies (4.B.1), (4.B.4) and (4.B.6). O
Lemma 4.B.2. Let G, H be Lie groups and let m : G — H be a smooth covering map. Assume

that we have proved Proposition 4.B.1 for G. Then, Proposition 4.B.1 holds also for H with
My := Mg.

Proof. Let g € WH2(S* H). By [15, Theorem 1], we can find a lift § € W12(S* G) such that
mog=g. Now we use Proposition 4.B.1 to find the map

Ext(j) : Mg — W(B?,G)

P Gp
We define
Ext(g) : Mg — WH(B®, H)
b — gp =TTo gp'
Straightforward computations show that Ext(g) satisfies (4.B.1), (4.B.4) and (4.B.6). O
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We recall the following structure theorem for compact Lie groups, whose proof can be found in
[82, §5.2.2 and §5.2.4].

Theorem 4.B.1. Let G be a compact and connected Lie group. Then, G is diffeomorphic (G' X
T™)/F, where:

e G’ is a simply connected compact Lie group.
e T" =U(1) x ... x U(1) is an n-dimensional torus, called the abelian component of G.

e [ is a finite abelian normal subgroup of G' x T™.

Recall that if H is a discrete normal subgroup of G, then the projection map = : G — G/H is
a covering map. Hence, by Lemma 4.B.1 and Lemma 4.B.2, Theorem 4.B.1 implies that if we
can show Proposition 4.B.1 for any simply connected compact Lie group and for the group U(1),
then we have proved it for every compact and connected Lie group.

We start by facing the case G = U(1).

Proposition 4.B.2. Proposition 4.B.1 holds for G = U(1).

Proof. Let g € WH2(S*,U(1)). For every u = uy +iug € WH2(S*, C), by standard approximation
results we get the identity

{d(udu) = du A du = 2i(duy A dug)  distributionally on St (4.B.8)

dlu|? = 2uyduy + 2uadus in L2(S%).
Notice that (4.B.8) immediately implies that @du is always a purely imaginary 1-form on S*.
Since g = g1 +1igo € WH2(S*, U(1)) ¢ WH2(S*,C), by using (4.B.8) and the constraint |g|? = 1,
we get

0 = gidg1 + godgs = 2(dgy A dgo) = d(gdg)  distributionally on S*.

Hence, gdg is a purely imaginary closed 1-form on S*. Since H[}R(S‘l) = 0, standard L?-Hodge
decomposition on S* (see for instance ) gives the existence of ¢ € W12(S* R) such that

tdy = gdg.
Vol'pert chain rule in W1?2(S* R) gives
d(e™%) = —ie ¥dp = —e~%gdg € L*(S*,U(1)). (4.B.9)
By Leibniz rule in the algebra (L N W12)(S% C) and by (4.B.9) we get
d(e™"g) = d(e™")g + e ¥dg = —e”¥gdgg + ¢~ ¥dg = —e|g|*dg + e”¥dg = 0,

where in the last equality we have used that |g|> = 1. Hence, there exists a constant gy € U(1)
such that

g=goe® ae. on S
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Now let ¢ € W%’Q(]B%5,(C). be the standard harmonic extension of ¢, i.e. the solution of the
following PDE

Ag=0 inB>
{ 4 o (4.B.10)

P = on S*.

Let My 1y = {p} and g, := goe’. By construction, (4.B.1) and (4.B.3) are satisfied. Moreover,

by standard trace theory for Sobolev functions W%’Q(BS,C), the estimates (4.B.4), (4.B.6) and
hence the statement follow immediately. O

We now tackle the case of a general simply-connected compact Lie group G. Recall the following
lemma, whose prove can be found in [44, Lemma 6.1].

Lemma 4.B.3. Let N C R be an n-dimensional smooth submanifold of RF such that
mo(N) =m(N) = m(N) =0.

Then, there exists a compact (k — 4)-dimensional Lipschitz polyhedron X C R* such that a locally
Lipschitz retraction Q : R¥ . X — N such that

/ 1dQ[P dLF < +oo, (4.B.11)
B;-(0)

for every p € (1,4) and r € (0,+00). Moreover, the projection map Q is smooth of constant rank
n near the manifold G C R* and coincides with the identity on N.

Lastly, we use Lemma 4.B.3 to prove the following.
Proposition 4.B.3. Proposition 4.B.1 holds if G is a simply connected, compact Lie group.

Proof. Notice that mo(G) = 0 for every compact Lie group and moreover, by Nash embedding
theorem, there exists k € N such that G is isometrically embedded in R*. Hence, without losing
generality, we can assume that G C R” is a smooth submanifold of R* satisfying the assumptions
of Lemma 4.B.3. We denote by @ : R¥ \ X — G the projection map given by applying Lemma
4.B.3 to G. Recall that both G and X are compact subsets of R* and let B C R* be any open
ball in R* containing G U X. Exactly as in the proof of [44, Theorem 6.2], for a small positive
number o € (0,dist(G,dB)) chosen so that @ is smooth on G + B¥(0) and any arbitrary point
p € B¥0) C RF we define X, := X +p = {y+a:y € X} and the translated projection
Qp: R* < X, — G given by

Qp(y) =Qy—p) VyeR\X, (4.B.12)
For such a sufficiently small o,

A:= sup Lip(Qp\G)_l
pEBE(0)

is, by the inverse function theorem, a finite number depending only on G.
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Fix any g € WH2(S%,G) and let § € W%’Q(IB5, R¥) be the solution of the following PDE:
Aj=0 inB5,
{g =g on S*.
Notice that, by standard elliptic regularity, § € C°°(B?,R¥) and it satisfies the estimate
g — go||Wg,2(Bs) < Cllg = gollwr2(sys (4.B.13)

where gg € G is any constant in GG. Define

J ::][ gd?
S4

and notice that, for every C?-domain £ C R® the trace theorem for C?-domains (see [1, Chapter
1, Section 5.1]) (4.B.13) with gp = g and Poincaré~Wirtinger inequality give the estimate

| tediant= [ - o) it (4B.14)

<Ol =2 50, < Cllo — alfiraen < C@ldglasy,  (1BI5)
for a constant C(£2) > 0 depending only on the C2-norm of the domain 2. We have also obviously

using classical Sobolev embeddings

g <Cllg—dl 3 < Cldgl r2ss)- (4.B.16)

L3 () W 2:2(B5)
For every p € B¥(0), we define
gp::on§:IB5—>G
and we notice that, by the area formula and chain rules in Sobolev Spaces g, € Wl’%(BE’, Q) for

LF-a.e. p € BX(0) moreover there holds gp|gs = g for for £¥-a.e. p € BE(0). Using the fact that
by the maximum principle [|§]|c < [|9]|coc < diam(G), we have

[ gt ac acte) < [ Jaglt [ Q) - oIt dte) e
pEB;(0) /B B Bg(0)

1dQ(y)|? dL*(y) dL5 ()
B | glle0 (©) (4.B.17)

VAN
=
E=}
—~

&
-

nlot

5
< Cg Hd9||12J2(S4)‘

Given now any C2-domain € C R®, by using Fubini’s theorem, the chain rule and (4.B.14) we
infer that

/ / |thadgp|* A dLh < / |thodd(@)[? / 1dQ, (3(x)) |2 dL¥(p) dA  (z)
BE(0) JoonB® O0NBS Bk (0)

/ |thodi(z)|? / 1dQ(§(x) — p)|? AL (p) dot (x)
O0NBS BE(0)

< |thadg(@)* ([ 1dQy)? dL*(y) | dot(x)
g0, )

<C / odi(@)? A < O(Q) / dg|? d*,
o0NBS S4

N

(4.B.18)
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and we have shown (4.B.4). It remains to prove the continuity of Ext from H g(S“,G) into
L%(0Q x B¥(0)). Let g' and g% in W12(S*, @), we first have

15" = 7 lwrems) < Cllgh — 92||H%(S4) (4.B.19)
We write using again Fubini’s theorem
/ </ 195 — 9 d%‘*) dL*(p)
By (0) \ [ onB? (4.B.20)
< Q3" () = p) — QG () — p)[* dL*(p) d#* ()
aQnB5 J Bk (0)
Recall the Lusin—Lipschitz inequality
‘Q(é1<m) _1p) _Q(g2(x)2_p)’2 9 1 9 o (4B21)
< Clg' (@) = g () [M(1dQ1)*(g" (x) — p) + M(|dQ|)*(3°(x) — p)]

where M (|dQ|) denotes the Hardy-Littlewood maximal function of d@. Combining (4.B.20),
(4.B.21) and the trace theorem we get

/Bk(O) </<9§sz5 |g}1’ - 92’2 d%4> dﬁk(p)

<¢ [ 8@ =G @F 4 @) 4Rl my) (4.B.22)
<C 18"~ Pl < Cllg' =91y 0
Hence, the statement follows by letting Mg := B%(0). -
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General notation

LP(M)
Lipe(M)
WLe (M)
Wil (M)
Ce (M)
D'(M)

open, unit n-dimensional ball in R™

open, n-dimensional ball in R™ of radius p centered at the origin

open, n-dimensional ball in R™ of radius p centered at x

open, n-dimensional cube in R™ of edge-length p centered at x

open, unit n-dimensional sphere in R™*!

smooth differential k-forms on the manifold M

smooth and compactly supported differential k-forms on the manifold M
comass of the differential form w

general k-currents on the manifold M

mass of the current T

boundary of the current T

k-currents with finite mass on the differentiable manifold M

normal k-currents on the differentiable manifold M

integer-multiplicity rectifiable k-current on the differentiable manifold M
standard inclusion map ¢y : M — R", for any M C R"™.

L*°-norm on R".

real-valued, LP-integrable functions on the Riemannian manifold M.
real-valued, locally LP-integrable functions on the Riemannian manifold M.
real-valued, WP-Sobolev functions on the Riemannian manifold M.
real-valued, locally W1 P-Sobolev functions on the Riemannian manifold M.
real-valued, compactly supported smooth functions on the manifold M.
distributions on the manifold M.

current of integration on some oriented k-submanifold > C M of the mani-
fold M.
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