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Abstract
The present dissertation is concerned with two topics, eminently of analytic nature, on Willmore
surfaces in Euclidean space. The first one is the Germain–Poisson problem, which is a geometric
boundary value problem consisting in finding a Willmore disk–type surface spanning a given
boundary curve, boundary Gauss map and having prescribed surface area. The second one is the
parametric approach to the Willmore flow, which merges the study of the Willmore gradient flow
with the framework developed by T. Rivière for the calculus of variation of Willmore surfaces
from a parametric point of view.
The study of such problems leads to two connected results that are of independent interest.

The first one is the validity – and failure – of Wente-type estimates for Neumann problems
involving Jacobians under various boundary conditions. The second one is an elliptic regularity
result for the inhomogeneous Willmore equation with Lp datum, where 1 < p <∞.

The contents of this thesis are as follows.
Chapter 1 is of introductory nature. The concepts of Willmore energies and Willmore surfaces

are introduced and few historical remarks and classical references on the subject are given;
afterwards the Germain–Poisson problem and the notion of gradient flow for the Willmore
energy are introduced, motivated and pertaining references are given. It is also explained why
one naturally comes to consider Wente–type estimates for problems with Neumann boundary
conditions while considering the Germain–Poisson problem. Finally, a general presentation of
the results of the thesis is given.

Chapter 2 is concerned with Wente–type estimates for boundary value problems with boundary
conditions of Neumann type. We show that such estimates do not in general hold under the
same hypotheses on the data for Dirichlet boundary conditions and also not under boundary
conditions that are natural from a variational perspective. Finally some positive results that
hold under specific assumptions are given, some of which will be used in the study of the
Germain–Poisson problem. The results in this chapter are obtained in collaboration with F. Da
Lio.
Chapter 3 serves as an introduction to the differential geometry present in the following

chapters. No original result is present in the chapter but the statements are presented in a
way that is useful for the following analysis. Some basic notions about curvature are recalled,
then some first variations formulas are computed – among these the derivation of the Willmore
equation – and finally the conservation laws issuing form the conformal invariance of the
Willmore energy are deduced.

Chapter 4 is concerned in establishing elliptic regularity results for the inhomogeneous
Willmore equation. For a conformal, Lipschitz W 2,2 immersion with distributional Willmore
operator in Lp, 1 < p <∞, it is proven that such immersion is locally W 4,p, just as is expected
for an elliptic problem. A quantitative estimate is also given for the case p = 2. This theorem is
a generalization of the classical result of Rivière for the regularity of weak Willmore surfaces,
and the proof follows, essentially, similar ideas. This result will be used while studying the
Willmore flow.
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Chapter 5 is concerned with the parametric approach to the Willmore gradient flow. The
introduction of such parametric theory allows to consider a general class of weak, energy–level
solutions and opens the possibility to study, in the future, energy quantization and finite–time
singularities. We restrict to a small–energy regime and prove that, for small-energy weak
immersions, the Cauchy problem in this class admits a unique solution. The results in this
chapter are obtained in collaboration with T. Rivière.
Chapter 6 is concerned with the Germain–Poisson problem. We find a disk–type surface
D ⊂ Rn of least Willmore energy among all immersed surfaces having the same boundary,
boundary Gauss map and area. We present a solution in the case of boundary data of class C1,1

and when the boundary curve is simple and closed. The minimum is realised by an immersed
disk, possibly with a finite number of branch points in its interior, which is of class C1,α up to
the boundary for some 0 < α < 1, and whose Gauss map extends to a map of class C0,α up to
the boundary. The results in this chapter are obtained in collaboration with F. Da Lio & T.
Rivière.

vi



Sunto
La presente tesi tratta di due argomenti, di natura eminentemente analitica, circa le superfici
di Willmore nello spazio euclideo. Il primo di questi è il problema di Germain–Poisson, un
problema al bordo geometrico che consiste nel trovare una superficie di Willmore di tipo disco
avente bordo, mappa di Gauss al bordo e area prescritti. Il secondo è l’approccio parametrico
al flusso di Willmore, che congiunge lo studio del flusso gradiente di Willmore con l’approccio
sviluppato da T. Rivière per il calcolo delle variazioni di superfici di Willmore da un punto di
vista parametrico.

Lo studio di tali problemi porta in modo naturale ad ottenere due risultati di interesse
autonomo. Il primo riguarda la validità – e la non–validità – di stime alla Wente per problemi
con condizione di Neumann che riguardano giacobiani, con vari tipi di condizioni al bordo. Il
secondo è un risultato di regolarità ellittica per l’equazione inomogenea di Willmore con dato in
Lp, ove 1 < p <∞.
Di seguito sono riportati i contenuti dei capitoli della presente tesi.
Il Capitolo 1 è di natura introduttiva. Si richiamano i concetti di energia di Willmore e di

superfici di Willmore, vengono date alcune note storiche e referenze calssiche sul tema; dopodiché
vengono introdotti il problema di Germain–Poisson e il flusso gradiente per l’energia di Willmore,
motivandoli e dando pertinenti referenze. Si chiarisce perché si giunge in modo spontaneo a
considerare stime di tipo Wente per problemi al bordo con condizione di Neumann mentre si
studia il problema di Germain–Poisson.

Il Capitolo 2 riguarda stime di tipo Wente per problemi al bordo con condizioni di Neumann.
Si mostra che tali stime non sono in generale valide se si assumono le medesime ipotesi del caso
con condizione al bordo di Dirichlet e nemmeno sotto ipotesi che sono naturali per problemi
variazionali. Infinte si danno alcuni risultati positivi validi sotto specifiche ipotesi, alcune delle
quali saranno poi usate nello studio del problema di Germain–Poisson. I risultati in questo
capitolo sono ottenuti in collaboraione con F. Da Lio.

Il Capitolo 3 serve da introduzione alla geometria differenziale presente nei capitoli che seguono.
Non vi sono risultati originali ma gli enunciati sono presentati in modo funzionale all’analisi
dei capitoli successivi. Vengono richiamate alcune nozioni di base sulla curvatura, si calcolano
alcune variazioni prime – tra queste l’equazione di Willmore – e infine vengono dedotte le leggi
di convervazione dovute all’invarianza conforma dell’energia di Willmore.
Nel Capitolo 4 si dimostrano dei risultati di regolarità ellittica per l’equazione di Willmore

inomogenea. Si dimostra che, per una immersione Lipschitz e W 2,2, se il suo operatore (distri-
buzionale) di Willmore è in Lp con 1 < p <∞, allora tale immersione è localmente di classe
W 4,p, come atteso qualora si studi un problema ellittico. Si dà intolre una stima quantitativa
per il caso p = 2. Tale teorema generalizza il risultato classico di Rivière sulla regolarità delle
immersioni di Willmore e la dimostrazione è simile nelle idee essenziali. Tale risultato verrà
utilizzato nello studio del flusso di Willmore.

Il Capitolo 5 presenta l’approccio parametrico allo studio del flusso gradiente di Willmore. Tale
approccio permette di considerare uan classe generale di soluzioni deboli a “livello energia” e apre
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la possibilità ad un futuro studio studio della quantizzazione dell’energia e delle singolarità che
si formano in tempo finito. Si lavora in regime di energia bassa e si mostra che, per immersioni
deboli, il problema di Cauchy ammette un’unica soluzione nella classe sopra menzionata. I
risultati in questo capitolo sono ottenuti in collaborazione con T. Rivière.

Il Capitolo 6 presenta lo studio del problema di Germain–Poisson. Si ottiene l’esistenza di un
disco topologico D ⊂ Rn avente energia di Willmore minima tra tutte le superfici aventi stesso
bordo, stessa mappa di Gauss al bordo e stessa area. I dati al bordo devono essere di classe C1,1

e la curva di bordo semplice e chiusa. Il minimo consiste in un disco immerso, possibilmente con
un numero finito di punti di ramificazione interni, di regolarità C1,α fino al boardo per qualche
0 < α < 1 e con mappa di Gauss di classe C0,α fino al bordo. I risultati in questo capitolo sono
ottenuti in collaborazione con F. Da Lio & T. Rivière.
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1 Introduction

Worum geht es?
The present thesis is concerned with topics, eminently of analytic nature, on Willmore surfaces
in Euclidean space.
These are surfaces whose peculiar shape is determined by the fact that they are critical

points of the so–called Willmore energy, a concept quite known also outside mathematics,
appearing, for instance, in nonlinear models for elasticity theory (Germain–Poisson model for
elastic plates), cell biology (shaping of red blood cells after Canham and of lipid bilayers of
membranes after Helfrich), general relativity (the Willmore energy is the main term appearing
in Hawking quasi–local mass).
We shall study

• the Germain–Poisson problem, which is a geometric boundary value problem consisting in
finding a Willmore disk–type surface spanning a given boundary curve, boundary Gauss
map and having prescribed surface area,

• the parametric approach to the Willmore flow, which merges the study of the Willmore
gradient flow with the framework developed by T. Rivière for the calculus of variation of
Willmore surfaces from a parametric point of view.

The study of such problems led to two connected results that are of independent interest:

• The validity – and failure – of Wente–type estimates for Neumann problems involving
Jacobians,

• An elliptic regularity result for the inhomogeneous Willmore equation with Lp datum,
where 1 < p <∞.

Such results have been obtained by the author together with his advisors Francesca Da
Lio and Tristan Rivière during his graduate studies and are contained in the papers
[DP17, DPR20, PR]. The material in this thesis will essentially consist in an expanded, adapted
and slightly revised version of these works.

In this introduction we shall recall and elaborate on the concept of Willmore surfaces, recall
fundamental concepts from Rivière’s parametric approach and give an overall description of the
results.



1 Introduction

1.1 Willmore Surfaces and Their Gradient Flow
The Willmore energy of a surface was initially considered in the works of Poisson [Poi16]
and Germain [Ger21] on elastic plates. It was reconsidered in a purely geometric perspective
in the works of Thomsen [Tho23] and Blaschke [Bla29], in attempt to merge the study of
minimal surfaces with conformal invariance. It was reintroduced in recent times in the works of
Willmore [Wil65] in pure mathematics and by Canham [Can70] and Helfrich [Hel73] in
theoretical biology while modeling, respectively, the shape of blood cells and of lipid bilayers of
membranes (in fact, it is sometimes referred to as Canham–Helfrich energy). It is since then
subject of constant research; some of the best-known examples are the works by Li and Yau
[LY82], Bryant [Bry84], Marques and Neves [MN14].

1.1.1 Let us recall the fundamental concepts. The Willmore energy of a closed surface
S ⊂ Rn is commonly known in the following three variants:

W0(S) = 1
2

∫
S
|A◦|2 dσg, W1(S) =

∫
S
|H|2 dσg, W2(S) = 1

4

∫
S
|A|2 dσg, (1.1.1)

were H the mean curvature, A is the 2nd fundamental form, A◦ it tracefree part and dσg the
area element for the induced metric g. If K denotes the Gauss curvature of S, there holds

1
2 |A

◦|2 = |H|2 −K = 1
4 |A|

2 − 1
2K, (1.1.2)

hence, by Gauss–Bonnet theorem, if the topology of S is fixed, at least in a smooth setting such
energies are all variationally equivalent and, in particular, they have the same Euler–Lagrange
operator. Depending on the context, it may however be more favorable to work with one rather
than another. Consequently, in what follows, when there is no need to choose one over another
we shall simply denote them collectively by W(S).

The Willmore operator is the associated Euler–Lagrange operator:

δW = ∆⊥H +Q(A◦)H,

where ∆⊥ is the Laplace operator on the normal bundle and

Q(A◦)H =
〈
A◦, 〈H,A◦〉

〉
= gµσgντ

〈
A◦µν , 〈A◦στ , H〉

〉
.

Similarly as for the mean curvature, δW is a normal–valued vector field along S. When n = 3,
the expression simplifies somewhat:

δW = ∆⊥H + |A◦|2H = (∆Hsc + 2(H2
sc −K)Hsc)N, (1.1.3)

where N is the Gauss map of S and Hsc = 〈H,N〉 is the scalar mean curvature.
Willmore surfaces are those surfaces with vanishing Willmore operator. Equivalently, (closed)

Willmore surfaces are the stationary points of the Willmore energy, namely if {St}t∈(−ε,ε) is any
1–parameter family of surfaces with S = S0, then S is Willmore if and only if

W(St) =W(S) + o(t) as t→ 0.

One may extend these concepts, with the needed care, also for surfaces that are not closed,
e.g. with boundary or noncompact – and in such cases, the equivalence of (1.1.1) may not hold
any more.

2



1.1 Willmore Surfaces and Their Gradient Flow

Figure 1.1: Euler-Lagrange Equation with area constraint (for graphs) derived by Poisson.

1.1.2 Any of the Willmore energies (1.1.1) is invariant under conformal transformations of
Rn and, in fact, the Lagrangian density |A◦|2dσg is a pointwise conformal invariant, see Chen
[Che74]. As a consequence, the Willmore operator and the notion of Willmore surface are also
conformal invariants. This was already observed by Blaschke and Thomsen; in fact in [Tho23]
they were referred to as “conformal minimal surfaces” (Konformminimalflächen). Since minimal
surfaces, namely surfaces with vanishing mean curvature: H = 0, are clearly Willmore, one
may think, broadly speaking, that the equivalence class of minimal surfaces with respect to
conformal transformations consists of Willmore surfaces.

In fact, at least in codimension one, it is possible to show that, essentially, the Willmore energy
is the only Lagrangian which is conformally invariant, see Bryant [Bry88] and Mondino and
Nguyen [MN18].

1.1.3 A different perspecive on Willmore surfaces comes historically from the seminal works
of Poisson [Poi16] and Germain [Ger21] on elastic plates.
Germain, building on earlier one–dimensional models concerning beams by Euler and J.

Bernoulli, formulated the hypotesis that the elastic energy density stored in a thin, elastic plate
is proportional to the mean curvature squared.
Poisson, considering thin, clamped elastic plates of given surface area, found that in a state

of equilibrium they should satisfy the equation corresponding to (1.1.3) complemented with a
term corresponding to a fixed-area constraint (see Fig. 1.1).
In light of this, we name Germain–Poisson problem the following:

Given a simple, closed curve Γ ⊂ Rn, and a unit normal (n− 2)-vector field N0
along Γ and a value a > 0, find an immersed disk D ⊂ Rn bounding Γ, having
boundary Gauss map N0, area a > 0 and minimizing the Willmore energy.

It should be said that in Poisson’s memoir the variational nature of the equation is just
referred to, in a concluding remark, as a “curious property” (see Fig. 1.2). The equation is
instead deduced with a different argument concerning the state of equilibrium of every particle
of the surface.

The understanding of elasticity has advanced since then, although we remark that a linearized
version of the Willmore energy (i.e. the biharmonic energy) is still in use today in models
concerning small deformations of thin elastic plates. We refer to [LL86, Vil97, FJM06, GGS10]
for more on modern theories of elasticity and to [BD80, DD87, Sza01] for a historical perspective
on the development of the subject.

3



1 Introduction

Figure 1.2: Another excerpt from Poisson’s memoir, where the Willmore lagrangian appears
.

1.1.4 We want to give another reason, this time purely analytic, on why one may come to
study the Poisson–Germain problem, and thus to Willmore surfaces. Probably the simplest and
most important problem in Calculus of Variations consists in finding minimizers of the Dirichlet
energy

E(u) = 1
2

∫
Ω
|∇u|2 dx,

over functions u : Ω ⊂ Rm → Rn subject to the the prescribed boundary condition u|∂Ω = u0
for a given u0. This yields to the study of the classical Dirichlet bounday value problem:{

−∆u = 0 in Ω,
u = u0 on ∂Ω.

(1.1.4)

The study of existence, uniqueness and regularity of weak solutions for such problem are among
the basic notions of the subject. Necessity and research yields to consider three fundamental
variants of this problem, where:

1. the domain is curved, i.e. Ω is replaced with a Riemannian manifold (M, g);

2. the target is curved, i.e. Rn is replaced with a Riemannian manifold (N , h);

3. the maps are immersions of Ω into Rn and the energy is with respect to the induced
metric g = u?gRn . In this case E(u) is the area of u(Ω).

The first variant is rather mild: classical theory for elliptic PDE yields an existence, uniqueness
and regularity theory for the associated Dirichlet problem similar to the basic case. Quite
different is the scenario for the other two variants: the second one leads to the theory of harmonic
maps and the third one to that of minimal surfaces, whose study offers formidable challenges.

4



1.1 Willmore Surfaces and Their Gradient Flow

For minimal surfaces, in the simplest case m = 2, n = 3 and Ω = B1, the minimization
problem becomes the Plateau problem: given a closed, simple curve Γ ⊂ R3, find an immersed
disk D = u(B1) ⊂ R3 bounding Γ and with least possible area. The boundary value problem
(1.1.4) translates into{

H = 0,
∂Σ = Γ,

where H is the mean curvature vector of D. The analogous boundary value problem associated
to the Germain-Poisson problem is then

δW = cH,

∂D = Γ,
N |∂D = N0,

where c ∈ R is a constant due to the area constraint. From an analysis perspective, up to the
area constraint this is, as for the Plateau problem, the variant nr. 3 of the Dirichlet problem
above described but for the biharmonic energy B(u) =

∫
Ω |∆u|2 dx. It is then also clear to see

that that the two boundary constraints are natural since the problem is of fourth order.

1.1.5 We briefly mention that the Willmore energy appears also in theoretical biology while
modeling the shapes of blood cells and lipid bilayers; in fact, it is sometimes referred to as
Canham–Helfrich energy. We refer to the introduction in [KMR14] for more references on the
subject.

1.1.6 The analogue of the Poisson problem in the closed case, namely the minimization of the
Willmore energy among closed surfaces of a given genus, is already widely studied and solved in
the works, among others, of Willmore [Wil65], Simon [Sim93], Bauer and Kuwert [BK03]
and Rivière [Riv14].

For boundary value problems, the scenario is far from complete and the subject is in constant
expansion. What follows is a selection of the works on the subject.
Nitsche [Nit93] discussed various boundary conditions for the Willmore and related type

of functionals, and proved existence and uniqueness results for a class of such problems, also
considering a volume constraint, when the surfaces are graphs in R3 and the boundary data are
sufficiently small in C4,α-norm.
Deckelnick, Grunau amd Rögers [DGR17] also consider the minimisation over graphs

in R3 of the Willmore functional (also plus a constant times integral of the Gauss curvature)
subject to various boundary conditions and deduced compactness results in the L1-topology,
and from this, also a lower-semicontinuity for a suitably defined relaxation of the Willmore
functional.
A considerable series of results [EK17, DGR17, DDW13, BDF13, DFGS11, BDF10, DG09,

DDG08] is available when considering boundary value problems for the Willmore functional
under the hypothesis that the surfaces in consideration are surfaces of revolution around an
axis in R3 (hence the boundary consist of two circles).
Schätzle [Sch10], by working on the sphere Sn ⊂ Rn+1, has proved the existence, for

arbitrary smooth boundary data Γ and N0 and without area constraint, of an immersion (even

5



1 Introduction

for surfaces with rich topology) which is smooth and Willmore away from the finitely many
points; the resulting surface however may not be solution of the Germain–Poisson problem and
may also be noncompact.
Alexakis and Mazzeo [AM15] consider smooth, properly embedded and complete Willmore

surfaces in the hyperbolic space H3 and relate the regularity of their asymptotic boundary with
the smallness of a suitable version of the Willmore energy.
Alessandroni and Kuwert [AK16] consider a free–boundary problem for the Willmore

functional and proved the existence (and non–uniqueness) of smooth Willmore disk-type surfaces
in R3 with prescribed but small value of the area whose boundary lays on the boundary of a
smooth, bounded domain.
Kuwert and Lamm [KL20] proved a first boundary regularity result for free–boundary

Willmore surfaces when the free boundary lies in a plane or a line.
Finally, we also mention the very recent works of Eichmann [Eic19] and Pozzetta [Poz20]

that also deal with minimization problems for Willmore–type energy similar to ours.

1.1.7 A Willmore L2–gradient flow in Rn (Willmore flow for short) of a closed, abstract
surface Σ is a 1–parameter family of immersions Φ(t, ·) : Σ→ Rn, t ∈ [0, T ) evolving according
to the law

∂

∂t
Φ = −δW + U in [0, T )× Σ, (1.1.5)

where, for each t, δW is the Willmore operator of St = Φ(t,Σ) and U = Uµ∂µΦ is a tangent
tangent vector field, possibly time–dependent.
A Willmore flow can be regarded as a continuous deformation of the initial surface S0 =
S = Φ(0,Σ) constructed so that the Willmore energy (in any of the forms given in (1.1.1))
decreases most rapidly in time, and the deformation stops as soon as the surface becomes
Willmore. Thus, at least in principle, Willmore flows have the potential to converge efficiently
to Willmore immersions as t→ +∞. This is a feature common to gradient flows for other type
of Lagrangians (for instance, the area or the Dirichlet energy) that makes them so useful. The
energy decrease is expressed quantitatively by the energy identity:

W(Φ(t, ·))−W(Φ0) = −
∫ t

0

∫
Σ
|δW|2 dσg dτ, for 0 ≤ t < T, (1.1.6)

which may be rephrased by saying that, among all families of immersions whose velocity vector
has normal part with L2-norm equal to ‖δW‖L2(S2), Willmore flows are those with most rapidly
decreasing Willmore energy.
The first to consider L2–gradient flows in geometric analysis were Eells and Sampson

[ES64] in the context of harmonic maps. Since then, the study of parabolic geometric flows has
widened to the extent that some of them constitute research areas on their own right, the mean
curvature flow and Hamilton’s Ricci flow being two of the best–known examples.

It should be noted right away that what is typically called a Willmore flow is a family solving
(1.1.5) with U = 0, which we will call a normal Willmore flow. Since Σ is closed, and δW is a
tensor, it is classical fact that, at least in a smooth situation, there is a bijective correspondence
between tangential components and family of reparametrizations of Σ, see e.g. Mantegazza
[Man11, Proposition 1.3.4] for the case, entirely analogous in this regard, of the mean curvature

6



1.2 The Parametric Approach

flow. Consequently, for every family solving (1.1.5) there is a unique family of diffeomorphisms
ϕ : [0, T )×Σ→ Σ with ϕ(0, ·) = idΣ so that the reparametrized family Φ(t, ϕ(t, ·)), t ∈ [0, T ) is
a normal Willmore flow, and on the other hand, every reparametrization of a normal Willmore
flow will be a Willmore flow (1.1.5) for some U .

Thus, in this sense, similarly as for immersions of surfaces, flows can be regarded as equivalence
classes of solutions to (1.1.5), two of them being equivalent if one can be reparametrized into
another. As for surfaces, depending on the situation one may choose one parametrization over
another, and in this case this may be done through the choice of the tangential component.
The study of Willmore flows was introduced by Kuwert and Schätzle [KS01, KS02] and

Simonett [Sim01] and is since then subject of a growing number of works.
Essentially, the central result that was there proved is a small–energy existence theorem:

there exists ε0(n) > 0 so thatm for any smooth immersion Φ0 : Σ→ Rn so that W0(Φ0) =
W0(Φ0(Σ)) < ε0, then the normal Willmore flow has a unique solution in the smooth category,
which furthermore exists for all times and converges to a round sphere.

Particularly close in spirit to the two original works is the paper Kuwert and Scheuer
[KS20] providing asymptotic estimates on the area and barycenter along the flow.

We also mention that Lamm and Koch in [KL12] obtained (among other results of geometric
interest) an existence and uniqueness result for the Willmore flow for entire graphs in a weak
framework with Lipschitz initial datum. Such datum needs to be small in the Lipschitz norm.

1.1.8 We limited ourselves,in the above exposition, to aspects on Willmore surfaces that
pertain the work of the present thesis. Many more topics regarding (or strictly connected
to) Willmore surfaces are subject of current research, for instance: Willmore immersions in
curved manifolds [MR13, MR14], refined singularity and bubbling analysis [KS04, BR13, BR14],
Morse–theoretic and classification aspects [Mic20, RM, Mic], Willmore surfaces of saddle–type
(minmax constructions) [Riv21].

1.2 The Parametric Approach
We now recall some basic ideas from the so–called parametric approach to the study of Willmore
surfaces that will be of major importance in this thesis. Such approach has been introduced by
Rivière [Riv08, Riv14, Riv16] building on works by Toro [Tor94, Tor95], Müller–Šverák
[MŠ95], Hélein [Hél02], and others.
It is similar in spirit with the parametric approach to the Plateau problem developed, to

mention few names, by Douglas, Radò, Courant and Morrey (see for instance [Str88, CI11,
DHS10, DHT10]) and the analysis of 2–dimensional harmonic maps (see for instance [Hél02]).
It consists, briefly speaking, in introducing an appropriately weak notion immersion of a given
abstract surface, namely that of Lipschitz (conformal) W 2,2 immersion, where calculus of
variations of the Willmore energy can be performed.

Such framework differs from the one introduced by Simon [Sim93], and later developed
extensively by Kuwert, Schätzle [KS04, KS07] and other authors. This is more an geometric
measure theory, or ambient, approach in that, instead of looking at the immersions, one studies
the immersed surface itself with techniques mainly from geometric measure theory.
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1.2.1 The central definition is the following.

Definition (Weak Immersions). Let Σ be a surface and let g0 be a fixed reference metric on Σ.
The set of Lipschitz W 2,2 immersions, or weak immersions for short, is

E (Σ,Rn) = (W 2,2 ∩W 1,∞
imm)(Σ,Rn),

namely, Φ belongs to E (Σ,Rn) if and only if it is W 2,2 and there exists C > 0 so that a.e. in Σ
there holds, in the sense of metrics,

1
C
g0 ≤ g ≤ Cg0,

where gµν = 〈∂µΦ, ∂νΦ〉 = (Φ?gR3)µν is the metric induced by Φ.

Note that, if Σ is closed, any smooth metric g0 above yields the same set of maps; in the
other cases (e.g. noncompact, noncomplete) one should clarify which choice is made. In any
case, such definition is sensible for two reasons.

First, any element in E (Σ,Rn) admits a distributional Willmore operator. Indeed, since the
Willmore operator can be written in divergence form1:

δW = ∇∗g
(
∇H − 2(∇H)> − |H|2dΦ

)
= ∇∗g

(
∇H + 〈A◦, H〉]g + 〈A,H〉]g

)
, (1.2.1)

then the (distributional) Willmore operator of Φ ∈ E (S2,R3) is defined as the vector–valued,
distribution–valued two form given by

(
δWdσg, ϕ

)
D′

=
∫

Σ

(〈
H,∆gϕ

〉
+
〈
〈A◦, H〉]g + 〈A,H〉]g ,∇ϕ

〉
g

)
dσg,

for every ϕ ∈ C∞(Σ,R3).
Second, the theory asserts that, at least when Σ is closed, any map in E (Σ,Rn) admits a

(bi–Lipschitz) reparametrization which makes it conformal. For a conformal Φ ∈ E (Σ,Rn) with
induced metric g = e2λg0, one can see that its classical Willmore energy is

W1(Φ) = 1
4

∫
Σ
|∆Φ|2e−2λ dσ,

where ∆ and dσ refer to the metric g0. Thus, for a conformal map in E (Σ,Rn), its Willmore
energy is equivalent to the standard bi–harmonic energy, such equivalence depending however on
a uniform control, above and below, of the conformal factor. The reader familiar with calculus
of variation will then recognize that, if such uniform control can be achieved, tools from the
standard machinery of calculus of variation and functional analysis can be brought into play.

1We denote here

– ∇∗g (Z ⊗ ω) = 1√
g∂µ

(√
g gµνωνZ

)
the (negative) formal L2-adjoint of the covariant derivative induced

on the pull-back bundle Φ?(TRn) acting on sections of Φ?(TR3)⊗ T ∗Σ, and

– 〈A,H〉]g = gµξ〈Aξν , H〉∂µ ⊗ dxν ' gµξ〈Aξν , H〉∂µΦ ⊗ dxν the the 1st-index raising of 〈A,H〉, and
similarly for 〈A◦, H〉.
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1.2.2 To achieve the fore–mentioned uniform control, one argues as follows. Given a conformal
immersion Φ : Σ→ Rn, the logarithm of its conformal factor λ, satisfies the classical Liouville
equation:

−∆λ = Kge2λ −K0 on Σ, (1.2.2)
where K0 is the Gauss curvature of the reference metric g0. This yields the estimate

‖∆λ‖L1(Σ,g0) ≤ C
(
W2(Φ) + 1

)
,

for a constant C > 0 independent of Φ. Such estimate is however not sufficient to establish a
uniform (i.e. in L∞) control for λ. This is a critical situation: standard elliptic thery would
have sufficed for the purpose if, on the left–hand side, we had the norm ‖∆λ‖Lp(Σ,g0) for some
p > 1.
It follows however from Gauss’ equation for the curvature of immersed submanifolds that

Kge2λ can be written locally as a Jacobian. Namely, if (e1, e2) is any local orhonormal frame for
the immersion Φ, one has

Kge2λ = 〈∗∇e1,∇e2〉 = 〈∇⊥e1,∇e2〉 = 〈∂1e1, ∂2e2〉 − 〈∂2e1, ∂2e1〉.

where ∇ denotes the standard Euclidean covariant derivative. So if Φ ∈ E (B1,Rn) is conformal
(for instance a local parametrization of some conformal immersion), we can recast (1.2.2) on B1
as

−∆λ = 〈∇⊥e1,∇e2〉 in B1,

with all the operators being the one for the flat metric gR2 .
Thus, by the classical estimate of Wente (or, equivalently, by integrability by compensation),

this special Jacobian structure allows, in particular, to have a uniform estimate for λ:
‖λ− `‖L∞(B1/2) + ‖dλ‖L2(B1/2) ≤ C

(
‖∇e1‖L2(B1)‖∇e2‖L2(B1) +W2(Φ)

)
.

for a constant ` ∈ R.
To complete the argument, one needs to finally show that there a special choice of the frame

(e1, e2) whose energy is controlled by the Willmore energy, namely
‖∇e1‖2

L2(B1) + ‖∇e2‖2
L2(B1) ≤ CW2(Φ),

and this is possible if W2(Φ) is sufficiently small, namely when W2(Φ) ≤ ε0 for some ε0 = ε0(n).

1.2.3 The reader familiar in calculus of variation will now recognize that this leads to a
concentration–compactness scheme, consisting roughly speaking in the following. Let Σ be closed
and let (Φk)k∈N ⊂ E (Σ,Rn) be a sequence of weak, conformal immersions, each conformal with
respect to a reference background metric g0,k and with uniformly bounded Willmore energy

lim sup
k→∞

W2(Φk) <∞.

If (g0,k)k∈N is compact in the moduli space of Σ (for instance if it can be taken constant), then,
up to the choice of a subsequence, there is a suitable sequence of Moebius transformations of Rn

(Ξk)k∈N, so that the normalized sequence Φ′k = Ξk ◦ Φk converges, in a suitable topology, to a
conformal map E (Σ \ {p1, . . . , p`},Rn) with respect to the limiting the metric g0 = limk→∞ g0,k.
Note that the pj’s are points where the Willmore energy concentrates along the sequence

above a certain level, and the composition with the Moebius transformations is needed to control
the conformal invariance of the Willmore energy.
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1.2.4 The theory clarifies that the nature of the limiting map above around each of the
singular points is that of a branched immersion, and the pj’s as above are branch points as in
the following definition.

Definition (Branch Point). A map in Φ ∈ E (B1 \ {0},Rn) conformal with respect to the
Euclidean metric gR2 has a branch point at 0 if Φ extends as a map in W 1,2(B1) and if

lim
δ→0

∫
B1\Bδ

|A|2dσg is finite.

Note that the last condition may be equivalently rephrased by saying the that Gauss map of
Φ extends to a map in W 1,2(B1).

The theory yields that, if Φ is as above, then it extends to a Lipschitz map also at 0 and
there exists an non–negative integer ϑ, called the order or the branch point, so that, for some
C > 0, there holds

C(|z|ϑ − o(1)) ≤ |dΦ(z)| ≤ C(|z|ϑ + o(1)) as z → 0.

So, branch points are in a way similar to branch points of holomorphic functions, such as z 7→ z2.
As already the study of minimal surfaces indicates, they are generally unavoidable and, after all,
quite natural in many situations.
Thus, one extends the definition of weak immersion as follows.

Definition (Weak Branched Immersions). Let Σ be a surface and let g0 be a fixed reference
metric on Σ. The set of weak conformal branched immersions is the set F (Σ,Rn) of maps
Φ ∈ E (Σ \ S,Rn), where S = S(Φ) ⊂ Σ is a finite set consisting of branch points of Φ.

Such definition completes, at least in this brief description, the variational set–up for the
parametric theory of Willmore surfaces.

The study of Willmore surfaces near branch points in the parametric framework is subject to
an increasingly fine number of works, see for instance [BR13] and [RM]. We shall only need
them to a limited extent in the present thesis.

1.2.5 With the appropriate notion of weak immersions comes the necessity of proving the
regularity of weak Willmore immersions. The problem is not trivial, since, even using the
divergence form of the equation (1.2.1):

δW = ∆gH +∇∗g
(
〈A◦, H〉]g + 〈A,H〉]g

)
,

the quantity on the left–hand side inside the divergence–type operator ∇∗g is merely in L1, thus
the equation is critical and, written as it is, does not bootstrap.

We do not give here more detail about this part, since in this thesis we shall present a elliptic
regularity results for the inhomogeneous Willmore equation which revisits all the ideas of such
regularity theory, in more general context which however does not obscure the original ideas.
We thus refer the reader to Chapter 4 (see also §1.3.3 below).
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1.3 Contents and Results of This Thesis
We now describe the results of this thesis. Detailed information, pertaining references, useful
but more technical consequences, extensive commentary and possible future developments are
found at the introduction each pertaining chapter.

1.3.1 Neumann Problem With Jacobian Data (Chapter 2) Integrability by compensation
plays an important role in the geometric analysis of many problems, for instance in the study
of harmonic maps, CMC surfaces and, of course, in the fore–mentioned analysis of Willmore
surfaces.
In particular, a central role is played by Wente’s inequality, in the following form: for

a, b ∈ W 1,2(B1), then the solution to the boundary value problem problem on the unit disk
B1 ⊂ R2:{

−∆u = 〈∇⊥a,∇b〉 in B1,

u = 0 on ∂B1,

is continuous in B1, in W 1,2(B1) and in W 2,1(B1) and exists C > 0 independent of u, a, b such
that

‖u‖L∞(B1) + ‖∇u‖L2(B1) + ‖∇2u‖L1(B1) ≤ C‖∇a‖L2(B1)‖∇b‖L2(B1). (1.3.1)

Here 〈∇⊥a,∇b〉 = ∂1a ∂2b− ∂2a ∂1b denotes the Jacobian of the map (a, b) : B1 → R2.
Such inequality is remarkable since it does not follow from stardard elliptic theory, as, on a

first glance, the Jacobian is just in L1.
The study of certain kind of geometric problems (in our case, the Germain–Poisson problem)

leads naturally to ask whether Wente’s estimate is valid in the case where Dirichlet boundary
conditions are replaced by Neumann ones.
More specifically, we consider the homogeneous problem:{

−∆u = 〈∇⊥a,∇b〉 in B1,

∂νu = 0 on ∂B1,
(1.3.2)

where the obvious compatibility condition
∫
B1
〈∇⊥a,∇b〉 dx = 0 is assumed, and the following

inhomogeneous problem:{
−∆u = 〈∇⊥a,∇b〉 in B1,

∂νu = (∂τa)b on ∂B1,
(1.3.3)

where for (x1, x2) ∈ ∂B1, τ(x1, x2) = (−x2, x1) is the unit tangent vector to ∂B1.
The first main result is a negative answer for (1.3.2) for general a and b.

Theorem. There exist a, b ∈ (L∞ ∩ W 1,2)(B1) with
∫
B1
〈∇⊥a,∇b〉 dx = 0 such that every

solution of (1.3.2) is neither in W 1,2(B1) nor in L∞(B1); in particular (1.3.1) cannot hold for
this problem.

One guesses that such result holds after realizing that elementary boundary reflection ar-
guments never preserve the Jacobian structure for the extended problem, unless additional
assumptions are made on a, b. In this regard, one has the following.
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Theorem. Let a ∈ W 1,2
0 (B1) and b ∈ W 1,2(B1) and let u be a solution of (1.3.2). Then for the

solution with zero average, (1.3.1) holds for this problem.

Also in the case of (1.3.3) (which is of variational nature, and hence more natural, one may
think) one can produce explicit counterexamples:

Theorem. There exist a, b ∈ L∞(B1) ∩W 1,2(B1) such that every solution of (1.3.3) is not in
L∞(B1) and in particular the estimate (1.3.1) cannot hold for this problem.

Additional assumptions to deduce a positive result can however be given arguing in terms of
Lorentz spaces:

Theorem. Let a, b ∈ W 1,2(B1) be so that ∇a,∇b are in the Lorentz space L(2,1)(B1) and with
−
∫
B1
a dx = 0 and let u ∈ W 1,1(B1) be the solution with zero mean to (1.3.3). Then ∇u ∈ L(2,1)(B1)

and there exists an absolute constant C1 > 0 so that:

‖∇u‖L(2,1)(B1) ≤ C1‖∇a‖L(2,1)(B1)‖∇b‖L(2,1)(B1).

As a consequence, there exists an absolute constant C2 > 0 so that:

‖u‖L∞(B1) ≤ C2‖∇a‖L(2,1)(B1)‖∇b‖L(2,1)(B1).

Finally, a positive result that will be used in the solution of the Germain–Poisson problem is
the following.

Theorem. Let a, b ∈ W 1,2(B1) be so that their traces tr(a), tr(b) belong to W 1,p(∂B1) for some
p > 1. Then there exist a constant C > 0 independent of u, a, b and constant C(p) > 0 depending
only on p so that every solution u ∈ W 1,2(B1) of the problem (1.3.3) belongs to C0(B1) and the
following estimate holds:

‖∇u‖L2(B1) + inf
c∈R
‖u− c‖L∞(B1) ≤ C‖∇a‖L2(B1)‖b‖W 1,2(B1)

+ C(p)
(
‖∂τ tr(a)‖Lp(∂B1)‖ tr(b)‖W 1,p(∂B1)

)
.

Such results are obtained by deducing a suitable representation formula for the trace of the
solution u at the boundary.

1.3.2 Differential Geometry of Willmore Immersions (Chapter 3) This chapter serves as
an introduction to the differential geometry present in the following chapters.

First some basic notions about curvature are recalled, then some first variations formulas are
computed (among these is the derivation of the Willmore equation) and finally the conservation
laws issuing form the conformal invariance of the Willmore energy are deduced.

No original result is present in the chapter but the statements are presented in a way that is
useful for the following analysis.
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1.3.3 Inhomogeneous Willmore Equation (Chapter 4) It is often the case that, when
dealing with PDE of variational nature, one is led to study the associated inhomogeneous
equation. If the PDE in question is elliptic, then one expects to gain as many degrees of
information from the inhomogeneous datum as is the order of the equation, similarly as in the
classical study of the Laplace operator and the Poisson equation.

For nonlinear elliptic equations, success or failure of this gain depends on the particular nature
of the nonlinearities in relation to the background initial function space and, if one also needs
quantitative estimates, on suitable “smallness” of the energy associated with the PDE (or a
related one).

The study of the Willmore flow leads to the following elliptic regularity question for Willmore
surfaces: for a conformal immersion Φ ∈ E (B1,R3) with distributional Willmore operator
δW ∈ Lp(B1), 1 < p < ∞, does it follow that Φ ∈ W 4,p

loc (B1), and, when Willmore energy is
small, does it also imply an estimate of elliptic type? The answer is positive:

Theorem. Let Φ ∈ E (B1,R3) be conformal with conformal factor eλ and Willmore operator
δW in Lp(B1) for some 1 < p <∞. Then Φ ∈ W 4,p

loc (B1) and furthermore, for the case p = 2,
if C(2,∞) > 0 is a constant bounding the Lorentz (quasi)norm:

‖dλ‖L(2,∞)(B1) ≤ C(2,∞),

there exists an ε0 > 0 depending only on C(2,∞) so that if

W2(Φ) = 1
4

∫
B1
|A|2 dσg ≤ ε0,

then the following estimate holds:

‖dΦ‖W 3,2(B1/2) ≤ C
(
‖e4λδW‖L2(B1) + ‖eλ‖L2(B1)

)
, (1.3.4)

where C = C(C(2,∞)) > 0.

Note that the fact that the estimate (1.3.4) does not include ‖Φ‖L2(B1/2) on the left hand-side
is motivated by the translation invariance of all the quantities on the right-hand side.
This theorem is a generalization of the classical result of Rivière for the regularity of weak

Willmore surfaces, and the proof follows, essentially, similar ideas. As for that result, the
distributional Willmore equation is critical with respect to the space E (B1,R3) and does not
bootstrap. To gain an initial amount of information, additional equations following from the
conformal invariance of the Willmore Lagrangian and suitable Hodge decompositions performed
on these equations have to be used.

1.3.4 Parametric Approach to the Willmore Flow (Chapter 5) Seminal works by Kuwert
and Schätzle on the Willmore flow proved long–time existence, uniqueness and convergence of
the solution to the corresponding Cauchy problem in the smooth category when the Willmore
energy of the initial datum is small.
As is the case for other geometric flows, an effective study of singularities and bubbling

analysis requires eventually to develop an energy–level theory, namely to consider appropriate
notions of weak solution. We have in mind as a particular example the classical work on the
harmonic map flow done by Struwe and complemented by Rivière, Freire and other authors.
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There is good evidence for the parametric framework introduced by Rivière to be, when
suitably adapted, the appropriate one. We substantiate this claim by introducing, under
particularly favourable hypotheses, an energy–level class of weak Willmore flow and prove a
uniqueness statement for the corresponding Cauchy problem in this class for a broad set of weak
initial data, which we believe to be sufficiently close to the largest possible one, at least among
unbranched surfaces.
We shall work in low energy regime, namely we shall arrange things so that the Willmore

energy of the surfaces in consideration W0(S) is as small as needed; furthermore, we shall also
work in codimension one, namely n = 3. The first major consequence of this is that (as it is
easy to see) small energy implies that the underlying topology is that of the standard sphere
S2. The second one is that we can take advantange of results from the work of De Lellis and
Müller which provides for surfaces with small Willmore energy the existence of a conformal
parametrization satisfying favourable estimates.

Central in the theory developed in by Rivière is the idea of working with conformal immersions
and exploit conservation laws issuing from the conformal invariance of the Willmore operator,
turning the Willmore equation (a 4th order quasilinear elliptic system) in a 2nd order semilinear
system involving Jacobian–type nonlinearities, which allows regularity bootstrap by means of
integrability by compensation.
We exploit this theory by considering Willmore flows in conformal gauge and then use a

slice–wise in time (elliptic) integrability by compensation arguments to bootstrap the regularity
of the equation, which – as is often the case when working with parabolic PDE in small energy
regime – will suffice to get the regularity also in the time variable.
We are going to consider the Cauchy problem

∂

∂t
Φ = −δW + U, in (0, T )× S2,

Φ(0, ·) = Φ0 on S2.

where the tangential vector field U is chosen so that Φ(t, ·) is conformal for every t. It is a fairly
simple matter to find an explicit characterization for U , and one verifies that, while working on
the sphere, it defines an uniformly elliptic, zero–cokernel operator.
To control the gauge action of the Aut(S2) (the conformal self–maps of S2) an additional,

finite–dimensional constraint is needed and is defined by the following.
Definition. An immersion Φ : S2 → R3 is called well–balanced if there holds∫

S2
Idσg = 0 and

∫
S2

Φ× I dσ = 0,

where I denotes standard embedding of S2, dσ its area element and dσg the area element for the
induced metric g = Φ?gR3.

It is also necessary to fix the gauge invariance relative to the choice of the conformal
parametrization for the initial datum. To this aim, we adapt the special conformal parametriza-
tion constructed in the work of De Lellis and Müller.
The set of initial data for the conformal Willmore flow will consist of weak W 2,2–closure of

the set of immersed surfaces S ⊂ R3 with Willmore energy W0(S) ≤ ε, area 4π and vanishing
barycenter C(S) = 0. Parametrically we shall choose a parametrization provided by De Lellis
and Müller, which is in addition well–balanced. More precisely:
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Definition. For ε > 0, the set of weak initial data W ε(S2,R3) is the weak W 2,2–closure of the
set Dε(S2,R3) consisting of smooth conformal immersions Φ : S2 → R3 so that the surface
S = Φ(S2) has Willmore energy W0(S) ≤ ε, area A(S) = 4π, barycenter C(S) = 0, is
well–balanced and so that the estimate of De Lellis and Müller holds:

‖Φ− I − c‖W 2,2(S2) + ‖eλ − 1‖L∞(S2) ≤ CW0(S),

where I : S2 → R3 denotes the standard immersion of S2, c = −
∫
S2 Φ dσ and eλ is the conformal

factor.

The only essential requirement in this definition is the control (smallness) of the Willmore
energy. All the others can be seen as normalizations.

We will consider W ε(S2,R3) only for ε > 0 sufficiently small. As a consequence of the theory
of Rivière, W ε(S2,R3) is a subset of the space E (S2,R3).

We now define an energy-level class of maps where one can consider weak conformal Willmore
flows.

Central to the definitions we shall give shortly is the validity of the energy identity (1.1.6) for
the Willmore flow, always true in smooth settings but taken as an assumption in weak ones (in
fact, a slightly weaker version will suffice, see condition (iii) in the definition below). This should
be, broadly speaking, an obvious requirement to avoid the presence of pathological solutions
that invalidate the uniqueness of the solution to the Cauchy problem, as is the case for the case
of the harmonic map flow.

Definition (Well–Balanced Energy Class). For ε, δ, T > 0, W ε,δ
[0,T ](S2,R3) is set of locally

integrable maps Φ : (0, T )× S2 → R3 so that

(i) For almost every t, Φ(t, ·) is in E (S2,R3) and conformal,

(ii) There holds

‖Φ− I − c‖L∞((0,T ),W 2,2(S2)) + ‖eλ − 1‖L∞((0,T )×S2) ≤ δ,

where I denotes standard embedding of S2, eλ = eλ(t,·) is the conformal factor of Φ(t, ·)
and c(t) = −

∫
S2 Φ(t, ·) dσ,

(iii) There holds

δW ∈ L2((0, T )× S2) and W0(Φ(t, ·)) ≤ ε for a.e. t,

(iv) Φ is well-balanced for a.e. t.

Finally we let, also for T = +∞,

W ε,δ
[0,T )(S

2,R3) =
⋂

τ∈(0,T )
W ε,δ

[0,τ ](S
2,R3).

In the energy class it is possible to define the notion of weak (distributional) Willmore flows.
Our main result is the following.
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Theorem. There exists ε0 > 0 so that the Cauchy problem for the conformal Willmore flow with
initial datum in W ε0(S2,R3) has a weak solution in W ε0,δ

[0,∞)(S2,R3) for some δ > 0, assuming the
initial datum in the sense of traces. Such solution is smooth, exists for all times and smoothly
converges to the standard embedding I of S2 in R3. Furthermore, if the initial datum is smooth,
such weak solution is also unique.

We can compare this result with the classical one by Kuwert and Schätzle. They obtain,
in the smooth class, long–time existence, uniqueness and convergence to a round sphere for
the Cauchy problem of the (normal) Willmore flow. A central feature our result is that the
uniqueness of this smooth solution is in the broad class of finite energy solutions, and the fact
that it converges exactly to the standard embedding.
We expect the solution to be unique also if the initial datum is nonsmooth.
The proof of the regularity part of the above Theorem shares evident similarities with the

corresponding one for the harmonic map flow or Rivière and Freire. In those works, the core
estimate that was obtained for weak solutions of the harmonic map flow was of the form

‖u(t, ·)‖W 2,2 ≤ C
(
‖∂tu(t, ·)‖L2 + 1

)
for a.e. t,

which could then be squared and integrated in time to yield higher regularity, and eventually
smoothness by the classical theory by Struwe.
We shall obtain a similar result, namely an inequality of the form

‖Φ(t, ·)‖W 4,2 ≤ C
(
‖eλδW(t, ·)‖L2 + 1

)
for a.e. t,

for weak solutions of the conformal Willmore flow, and likewise obtain higher regularity from it.

1.3.5 Germain–Poisson Problem (Chapter 6) A solution to the Germain–Poisson problem
is presented. We recall it once more:

Given a simple, closed curve Γ ⊂ Rn, and a unit normal (n− 2)-vector field N0
along Γ and a value a > 0, find an immersed disk D ⊂ Rn bounding Γ, having
boundary Gauss map N0 and area a > 0 minimising the Willmore energy.

We minimise here the version of the Willmore energy

W2(D) =
∫
D
|A|2 dσg,

which has good coercivity properties and (differently from the other variants in (1.1.1)) controls
the number of branch points.

The class of “admissible” data (Γ, N0, a) for which we can solve the problem is the following.

Definition. A triple (Γ, N0, a) curve Γ ⊂ Rn, a unit–normal (n− 2)-vector field N0 and a real
number a > 0 is called admissible for the Germain–Poisson problem if Γ and N0 are of class
C1,1, Γ is simple and closed, and if there is at least one weak, branched conformal immersion
Φ ∈ F (B1,Rn) so that

(i) its branch points are only on the interior of B1,
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1.3 Contents and Results of This Thesis

(ii) it assumes geometrically the boundary data, namely if γ : ([0,H1(Γ)]/ ∼)→ Rm is a chosen
arc-length parametrisation of Γ, there exist a homeomorphism σΦ : S1 → [0,H1(Γ)]/ ∼ so
that, for every x ∈ ∂B1 = S1 there holds

Φ(x) = γ(σΦ(x)) and N = N0(γ(σΦ(x))),

(iii) it has area equal to a, namely, Area(Φ) = 1
2
∫
B1
|∇Φ|2 dx = a.

An elementary application of the h− principle allows us, for any given Γ and N0 ad in the
above definition to prove the existence of some a0 > 0 so that, for every a ≥ a0 the triple
(Γ, N0, a) is admissible. One notices that when n = 3, if one requires the map Φ not to have any
branch points, (Γ, N0) need to satisfy a topological constraint, namely, if t denotes the tangent
vector of Γ, the map x 7→ (t×N0, t, N0)(x), x ∈ S1, has to define a non-nullhomotopic loop in
the space of special orthogonal matrices SO(3).

The existence result is the following.
Theorem. Let (Γ, N0, a) be an admissible triple for the Germain–Poisson problem. Then, there
exists conformal weak, branched immersion Φ : B1 → Rn (whose branch points lie of the interior
of B1) assuming this data which minimizes the Willmore energy W2 in this class.

The (partial) regularity result is the following.
Theorem. Let (Γ, N0, a) be an admissible triple for the Germain–Poisson problem. Every
minimizing map Φ as in the previous theorem satisfies distributional Willmore equation with
area constraint:

δW = ∇∗g
(
∇H + 〈A◦, H〉]g + 〈A,H〉]g

)
= cH, in D′(B1),

where c ∈ R, and such equation is in particular satisfied at the branch points.
Such map Φ is smooth in B1 away from the branch points and for every 0 < β < 1, Φ is

of class C2,β at the branch points and its Gauss map N extends to a map of class C1,β at the
branch points.

Finally, there exists 0 < α < 1 so that Φ is of class C1,α up to the boundary and its Gauss
map N extends to a map of class C0,α up to the boundary.

In the above result, the interior regularity part (both away and at the branch points) comes
from the works of Bernard, Rivière and Michelat. The boundary part is instead obtained
through suitable biharmonic comparison.

Central in the proofs of these theorems is the use of the results about the Neumann problem
with Jacobian data discussed in Chapter 2. Indeed, for a conformal immersion Φ : B1 → Rn,
the logarithm of the conformal factor solves the Liouville equations with a Neumann boundary
condition:−∆λ = Ke2λ in B1,

∂νλ = kgeλ − 1 on ∂B1,

where kg is the geodesic curvature of the boundary curve. If (e1, e2) is a tangent ortho–normal
frame for Φ, such boundary value problem is recast as−∆λ = 〈∇⊥e1,∇e2〉 in B1,

∂νλ = 〈∂τe1, e2〉 on ∂B1,

so the connection with the content of Chapter 2 is evident.
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2 Notes on the Poisson Equation with
Jacobian Data

Summary: In this chapter we study the validity of Wente–type estimates for
boundary value problems with Neumann boundary conditions. We show in particular
that such estimates do not in general hold under the same hypotheses on the data
as for Dirichlet boundary conditions and also not under boundary conditions that
are natural from a variational perspective. Finally we give some positive results that
hold under specific assumptions.

2.1 Introduction
Integrability by compensation has played a central role in the last decades in the geometric
analysis of conformally invariant problems. At the beginning of this theory there is Wente’s
discovery [Wen69, Wen81] that the distribution

ϕ = log | · | ∗ 〈∇⊥a,∇b〉 = log | · | ∗ (∂x1a ∂x2b− ∂x2a ∂x1b)

with ∇a,∇b ∈ L2(R2) is in (L∞ ∩W 1,2)(R2) and the following estimate holds:

‖ϕ‖L∞(R2) ≤ C‖∇a‖L2(R2)‖∇b‖L2(R2),

for C > 0 independent of a, b. Subsequent works by Brezis and Coron [BC84], Tartar
[Tar85], Coifman, Lions, Meyer and Semmes in [CLMS93], produced, together with various
generalizations, the following.

Theorem 2.1.1 (Wente’s Inequality). Let B1 = {x ∈ R2 : |x| < 1} be the unit disk and
a, b ∈ W 1,2(B1). Then the solution u ∈ W 1,1

0 (Ω) to the problem:{
−∆u = 〈∇⊥a,∇b〉 in B1,

u = 0 on ∂B1,

is continuous in B1 and in (W 1,2 ∩W 2,1)(B1) with C > 0 independent of u, a, b such that

‖u‖L∞(B1) + ‖∇u‖L2(B1) + ‖∇2u‖L1(B1) ≤ C‖∇a‖L2(B1)‖∇b‖L2(B1). (2.1.1)

The reader familiar with classical elliptic theory will recognize that such result is remarkable
since, on a first glance, the Jacobian 〈∇⊥a,∇b〉 is just in L1.

Proofs, detailed accounts and geometric applications can be found in Hélein’s book [Hél02].
We also explicitly mention the following generalization which shall be used in next chapters.



2 Notes on the Poisson Equation with Jacobian Data

Theorem 2.1.2. ([Bet92], [Riv93], [Ge99]) Let Ω ⊆ R2 be a bounded domain, let a ∈ W 1,2(Ω)
and f ∈ Lp(Ω) for 1 < p < 2. Let u ∈ W 1,(2,∞)(Ω)1 be a solution to

−∆u = 〈∇⊥a,∇u〉+ f in Ω.

Then u ∈ W 2,p
loc (Ω).

The study of the Germain–Poisson problem (Chapter 6) leads to ask whether Wente’s estimate
is valid in the case where Dirichlet boundary condition are replaced by Neumann boundary
conditions. More specifically, we shall look at the homogeneous problem (assuming of course
the compatibility condition

∫
B1
〈∇⊥a,∇b〉 dx = 0):{

−∆u = 〈∇⊥a,∇b〉 in B1,

∂νu = 0 on ∂B1,
(2.1.2)

and at the following inhomogeneous one:{
−∆u = 〈∇⊥a,∇b〉 in B1,

∂νu = (∂τa)b on ∂B1,
(2.1.3)

where for every (x1, x2) ∈ ∂B1, τ(x1, x2) = (−x2, x1) is the unit tangent vector to ∂B1. Solutions
to (2.1.3) are more natural since they are critical points in W 1,2(B1) of the Lagrangian:

L(u) = 1
2

∫
B1
|∇u+ (∇⊥a)b|2dx.

The first main result is a negative answer for (2.1.2) for general a and b.
Theorem 2.1.3. There exist a, b ∈ (L∞ ∩W 1,2)(B1) with

∫
B1
〈∇⊥a,∇b〉 dx = 0 such that every

solution of (2.1.2) is neither in W 1,2(B1) nor in L∞(B1); in particular (2.1.1) cannot hold for
this problem.

Two preliminary considerations motivate this result.
The first one is that the elementary proof of Theorem 2.1.1 that is illustrated e.g. in [Hél02,

Theorem 3.1.2] cannot be adapted to the Neumann case: indeed, if ui solves (2.1.2) and
α : B1 → B1 is a conformal self-map (Moebius transformation) of the disk, u ◦ α still solves
(2.1.2) but differs from u by a constant that depends on α. This poses an obstacle in obtaining
an uniform L∞-estimate up to the boundary.

The second one is that, if we consider (for better clarity) the analogous problem in the upper
half-plane R2

+ := {(x1, x2) : x2 > 0}, to which (2.1.2) is equivalent by conformal invariance:{
−∆u = 〈∇⊥a,∇b〉 in R2

+,

∂νu = 0 on ∂R2
+,

and call ũ the even reflection of u with respect to ∂R2
+, then one sees that

−∆ũ(x) = 〈∇⊥a,∇b〉(x1, x2)χR2
+

(y) + 〈∇⊥a,∇b〉(x1,−x2)χR2
−

(x);
for general a, b, the right-hand-side can no longer be interpreted as a Jacobian. The same holds
for the case of the disk, where the reflection is replaced by the inversion with respect to the unit
circle.
However, if either a or b have vanishing trace, say a, then, extending a oddly and u and b

evenly, one can see that the Jacobian structure is preserved and that the following holds.
1That is, u ∈W 1,1(Ω) and ∇u is in the Lorentz space L(2,∞)(Ω).

20



2.1 Introduction

Theorem 2.1.4. Let a ∈ W 1,2
0 (B1) and b ∈ W 1,2(B1) and let u be a solution of (2.1.2). Then

for the solution with zero average, (2.1.1) holds for this problem.

Theorem 2.1.4 has been used by Rivière in [Riv07]. We also refer also to the work of
Schikorra [Sch18] for related results.

Also in the case of (2.1.3) the assumption a, b ∈ (L∞ ∩W 1,2)(B1) is not enough to guarantee
the boundedness of the solution.

Theorem 2.1.5. There exist a, b ∈ (L∞ ∩W 1,2)(B1) such that every solution of (2.1.3) is not
in L∞(B1) and in particular the estimate (2.1.1) cannot hold for this problem.

A similar result was proved by Hirsch [DP17]. The boundedness of the solution is however
obtained if we assume a bit more on a, b, namely that their gradient lies in the Lorentz space
L(2,1)(B1) (see e.g. [Ste70] for definition and fundamental properties) rather than just in L2(B1).

Theorem 2.1.6. Let a, b ∈ W 1,2(B1) be so that ∇a,∇b ∈ L(2,1)(B1) and with −
∫
B1
a dx = 0 and

let u ∈ W 1,1(B1) be the solution with zero mean to (2.1.3). Then ∇u ∈ L(2,1)(B1) and there
exists an absolute constant C1 > 0 so that:

‖∇u‖L(2,1)(B1) ≤ C1‖∇a‖L(2,1)(B1)‖∇b‖L(2,1)(B1).

As a consequence, there exists an absolute constant C2 > 0 so that:

‖u‖L∞(B1) ≤ C2‖∇a‖L(2,1)(B1)‖∇b‖L(2,1)(B1).

We observe that the assumption ∇b ∈ L(2,1)(B1) is in particular satisfied if b ∈ W 2,1(B1),
see e.g. [Hél02]. We also remark that the assumptions ∇a ∈ L(2,1)(B1) and −

∫
B1
a dx = 0 imply

a ∈ L∞(D2) with ‖a‖L∞ ≤ C‖∇a‖L(2,1) .
Finally, a positive result that shall be used later for the Germain–Poisson problem is the

following.

Theorem 2.1.7. Let a, b ∈ W 1,2(B1) be so that their traces tr(a), tr(b) belong to W 1,p(∂B1) for
some p > 1. Then there exist a constant C > 0 independent of u, a, b and constant C(p) > 0
depending only on p so that every solution u ∈ W 1,2(B1) of the problem (2.1.3) belongs to C0(B1)
and the following estimate holds:

‖∇u‖L2(B1) + inf
c∈R
‖u− c‖L∞(B1) ≤ C‖∇a‖L2(B1)‖b‖W 1,2(B1)

+ C(p)
(
‖∂τ tr(a)‖Lp(∂B1)‖ tr(b)‖W 1,p(∂B1)

)
.

For future convenience, we also state the following “localized” version. Its proof follows from
Theorem 2.1.7 and standard cut-off–type arguments.

Lemma 2.1.8. Let f ∈ L1(B1), g ∈ L1(∂B1), a1, . . . a` be points in B1 and α1, . . . , α` be real
numbers satisfying∫

B1
f dx+

∑
i

αi = −
∫
∂B1

g dσ.
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2 Notes on the Poisson Equation with Jacobian Data

Let u ∈ W 1,1(B1) be a weak solution to the problem
−∆u = f +

∑̀
i=1

αiδai in B1,

∂νu = g on ∂B1.

Assume that, for a given x0 ∈ ∂B1 and 0 < r < 1, B1 ∩ Br(x0) contains none of the ai’s and
there holds

f = 〈∇⊥a,∇b〉 in B1 ∩Br(x0),
g = ∂τa b on ∂B1 ∩Br(x0),

for some a, b ∈ W 1,2(B1 ∩ Br(x0)) so that the traces on ∂B1 tr(a), tr(b) belong to W 1,p(∂B1 ∩
Br(x0)) for some p > 1. Then u ∈ C0(B1 ∩Br/2(x0)) ∩W 1,2(B1 ∩ Br/2(x0)) and there exists
constants C(r) > 0 C(r, p) > 0 so that

inf
c∈R
‖u− c‖L∞(B1∩Br/2(x0))

≤ C(r)
(
‖f‖L1(B1) + ‖g‖L1(∂B1) +

∑̀
i=1
|αi|

)
+ C(r)‖∇a‖L2(B1∩Br(x0))‖b‖W 1,2(B1∩Br(x0))

+ C(r, p)‖∂τ tr(a)‖Lp(∂B1∩Br(x0))‖ tr(b)‖W 1,p(∂B1∩Br(x0)).

2.2 Proof of Theorems 2.1.4 and 2.1.6
In the following, we denote by ι : R2 \ {0} → R2 \ {0}, the inversion with respect to the unit
circle, namely ι(z) = z

|z|2 = 1
z̄
. This is a conformal map mapping B1 to its complement in the

plane with conformal factor eµ = 1√
2 |∇ι| =

1
|z|2 .

Proof of Theorem 2.1.4. Extend a by odd reflection by means of ι:

ã(z) =

a(z) if z ∈ B1,

−a(ι(z)) if z ∈ R2 \B1,

and b and u by even reflection:

b̃(z) =

b(z) if z ∈ B1,

b(ι(z)) if z ∈ R2 \B1,
ũ(z) =

u(z) if z ∈ B1,

u(ι(z)) if z ∈ R2 \B1.

Since a has vanishing trace, both ã and b̃ belong to W 1,2
loc (R2) and by the conformal invariance

of the Dirichlet energy, there holds∫
R2
|∇ã|2 dx = 2

∫
B1
|∇a|2 dx and

∫
R2
|∇b̃|2 dx = 2

∫
B1
|∇b|2 dx.

Again by conformality, we have

∆ũ = e2µ(∆u) ◦ ι in R2 \B1,
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2.2 Proof of Theorems 2.1.4 and 2.1.6

on the other hand, by the chain rule we have

〈∇⊥ã,∇b̃〉 = det[D(ã, b̃)] = (det[D(a, b)] ◦ ι) det[Dι] = e2µ〈∇⊥a,∇b〉 ◦ ι in R2 \B1;

consequently, we have

∆ũ = 〈∇⊥ã,∇b̃〉 in R2 \B1.

Since u has vanishing normal derivative, its distributional Laplace operator does not have jump
terms across ∂B1 and hence

∆ũ = ∆uχB1 + ∆ũχR2\B1 = 〈∇⊥a,∇b〉χB1 + 〈∇⊥ã,∇b̃〉χR2\B1 = 〈∇⊥ã,∇b̃〉 in R2.

From here, it is a standard matter to deduce the conclusion using Theorem 2.1.1.

Proof of Theorem 2.1.6. Step 1. We start by observing that we can recast (2.1.3) in diver-
gence form:{

div(∇u+ (∇⊥a)b) = 0 in B1,

∂νu = (∂τa)b on ∂B1.

Therefore, there exists C ∈ W 1,2(B1) such that:

∇⊥C = ∇u+ (∇⊥a)b.

which then solves:{
−∆C = − div((∇a)b) in B1,

∂τC = 0 on ∂B1.

Since C is determined up to a constant, we can reduce ourselves to study the following Dirichlet
problem:{

−∆C = − div((∇a)b) in B1,

C = 0 on ∂B1.

Step 2. In this step and in the following we use basic facts about the theory of Calderón-
Zygmund operators and interpolation theory, for which we refer to [Hél02, Ste70]. We first
assume b ∈ W 1,p(B1). For a fixed but arbitrary 1 < p <∞. Letting

f = −(∇a)b ∈ Lp(B1),

we have:

‖f‖Lp(B1) ≤ C‖∇a‖Lp(B1)‖b‖L∞(B1).

We denote by f̃ = fχB1 its extension by 0 to R2. We write C = C1 + C2 where:

C1(x) =
(
− 1

2π log | · | ∗ div f̃
)

(x), x ∈ R2,
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2 Notes on the Poisson Equation with Jacobian Data

and C2 = C − C1 is the harmonic rest, namely the solution to{
−∆C2 = 0 in B1,

C2 = −C1 on B1.

Since

∇C1(x) = 1
2π

∫
R2
f̃(y)

(
y − x
|y − x|3

)
dy,

and the function K(x, y) = y−x
|y−x|3 is a CZ-operator, using that p > 1 we may estimate

‖∇C1‖Lp(R2) ≤ C‖f̃‖Lp(R2) = C‖f‖Lp(B1).

As for C2, since its trace is in W 1−1/p,p(∂B1), elliptic estimates imply C2 ∈ W 1,p(B1) with

‖∇C2‖Lp(B1) ≤ Cp‖ tr(C1)‖W 1−1/p,p(∂B1) ≤ Cp‖f‖Lp(B1).

We then deduce that

‖∇C‖Lp(B1) ≤ Cp‖f‖Lp(B1),

and therefore:

‖∇u‖Lp(B1) ≤ Cp‖f‖Lp(B1) ≤ Cp‖∇a‖Lp(B1)‖b‖L∞(B1).

We shall keep in mind that, as long as p belongs to a compact interval I ⊂ (0,∞), the constant
Cp is uniformly bounded.
Now we define:

Gp(B1) := {X = (X1, X2) ∈ Lp(D2,R2) : curl(X) = −∂x2X1 + ∂x1X2 = 0}.

Note that since B1 is simply connected, Poincaré’s lemma ensures that every X ∈ Gp(B1) is of
the form X = ∇f for some f ∈ W 1,p(B1). By Step 1, if we fix b ∈ L∞(D2), the linear operator
T : Gp(D2)→ Lp(D2), which maps X = ∇a to ∇u, where u is the zero-mean solution to (2.1.3),
is continuous for each p > 1.
Step 3. Note now that, since b ∈ L∞(B1) and ∇a ∈ L(2,1)(B1) f ∈ L(2,1)(D2) with

‖f‖L(2,1)(B1) ≤ C‖∇a‖L(2,1)(B1)‖b‖L∞(B1).

By interpolation and Step 2, we get that ∇u ∈ L(2,1)(B1) with:

‖∇u‖L(2,1)(B1) ≤ C‖f‖L(2,1)(B1)

≤ C‖∇a‖L(2,1)(B1)‖b‖L∞(B1)

≤ C‖∇a‖L(2,1)(B1)‖∇b‖L(2,1)(B1).

for some C = C1 > 0, which concludes the proof.

24



2.3 Proof of Theorems 2.1.3, 2.1.5 and 2.1.7

2.3 Proof of Theorems 2.1.3, 2.1.5 and 2.1.7
Because of conformal invariance, we now consider the problems on the half-plane R2

+ = {x2 > 0},
the homogeneous one being{

−∆u = 〈∇⊥a,∇b〉 in R2
+,

∂νu = 0 on ∂R2
+,

(2.3.1)

and the inhomogeneous one being{
−∆u = 〈∇⊥a,∇b〉 in R2

+,

∂νu = (∂τa)b on ∂R2
+.

(2.3.2)

For a, b in the homogeneous space Ẇ 1,2(R2) namely so that ∇a,∇b ∈ L2(B1). In this case
ν = (0,−1) and τ = (1, 0). Therefore ∂νu = −∂x2u and ∂τu = ∂x1u.

We recall that Green’s function for the Neumann problem in the half-plane G : R2
+×R2

+ → R
is that solution, for every x ∈ R2

+ of the problem:{
−∆yG(x, ·) = δx in R2

+,

∂νyG(x, ·) = 0 in ∂R2
+,

given by:

G(x, y) = − 1
2π {log(|x− y|) + log(|y − x̃|)} ,

where x = (x1, x2), y = (y1, y2), x̃ = (x1,−x2). We are going to consider the solutions to the
problems obtained through the representation formula:

u(x) =
∫
R2

+

G(x, ·)(−∆u) dy +
∫
∂R2

+

G(x, ·)∂νu dσ (2.3.3)

and deduce representation formulas for its trace.

Lemma 2.3.1. The trace of the solution u given by the formula (2.3.3) is given, for the
inhomogeneous problem (2.3.2), by

tr(u)(x1) = A(x1) +B(x1),

and, for the homogenoeus problem (2.3.1), by

tr(u)(x1) = A(x1) +B(x1) + 1
π

(
log | · | ∗ (∂τa)b

)
(x1),

where A = A(a, b) anb B = B(a, b) are two functions so that B is estimated uniformly as

ess sup
R
|B| ≤ C‖∇a‖L2(R2

+)‖∇b‖L2(R2
+), (2.3.4)

and A can be written as

A(x1) = 1
π

p. v.
∫
R

1
t
a(x1 − t, 0)b(x1 − t, 0)dt+ 1

π
p. v.

∫
R

1
t
a(x1 + t, 0)b(x1 − t, 0)dt. (2.3.5)
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Proof. Let us start with the inhomogeneous case. By translation invariance it suffices to prove
that (2.3.4) and (2.3.5) hold at the origin. We may also assume that a, b are in C∞c (R2), and
deduce the general case by density.
Step 1. Writing 〈∇⊥a,∇b〉 = div((∇⊥a)b), we integrate by parts (2.3.3) and get:

u(x) =
∫
R2

+

G(x, ·)〈∇⊥a,∇b〉 dy +
∫
∂R2

+

G(x, ·)(∂τa)b dσ = −
∫
R2

+

〈∇yG(x, ·),∇⊥a〉b dy,

hence, since G((x1, 0), y) = − 1
π

log |(x1, 0)− y|, at the origin we obtain the expression

u(0) = 1
π

∫
R2

+

〈∇(log |y|),∇⊥a(y)〉b(y) dy,

which, in polar coordinates, reads as

u(0) = 1
π

∫
R2

+

1
r

(∂θa)b drdθ =
∫ ∞

0

∫ π

0

1
r

(∂θa)b drdθ.

We now split such expression as follows: we add and subtract br = 1
2(b(r, π) + b(r, 0)) and let

u(0) = 1
π

∫ ∞
0

∫ π

0

1
r

(∂θa)br drdθ + 1
π

∫ ∞
0

∫ π

0

1
r

(∂θa)(b− br) drdθ := A+B,

so we see that

A = 1
π

∫ ∞
0

∫ π

0

1
r

(∂θa)br drdθ

= 1
π

∫ ∞
0

1
r

∫ π

0
(a(r, π)− a(r, 0))br drdθ

= 1
2π

∫ ∞
0

1
r

(a(r, π)− a(r, 0))(b(r, π) + b(r, 0)) dr,

which is then equivalent to

A = 1
2π

∫
R

1
t
(a(−t, 0)− a(t, 0))(b(−t, 0) + b(t, 0)) dt

= 1
π

p. v.
∫
R

1
t
a(−t, 0)b(−t, 0)dt+ 1

π
p. v.

∫
R

1
t
a(t, 0)b(−t, 0)dt.

This yields the expression for (2.3.4). For the term B, it can be estimated with Hölder and
Poincaré’s inequality:

|B| ≤
∣∣∣∣ ∫ ∞

0

∫ π

0

1
r

(∂θa)(b− br) drdθ
∣∣∣∣

≤ C
( ∫ ∞

0

∫ π

0

1
r
|∂θa|2 drdθ

)1/2( ∫ ∞
0

∫ π

0

1
r
|∂θb|2 drdθ

)1/2

≤ C‖∇a‖L2(R2
+)‖∇b‖L2(R2

+),

thus yielding (2.3.5).
The formula for the homogeneous problem is proved similarly: integrating by parts we get

u(x) =
∫
R2

+

G(x, ·)〈∇⊥a,∇b〉 dy

= −
∫
R2

+

〈∇yG(x, ·),∇⊥a〉b dy −
∫
∂R2

+

G(x, ·)(∂τa)b dσ,

and the conclusion is reached as before.
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2.3 Proof of Theorems 2.1.3, 2.1.5 and 2.1.7

The following lemma is elementary but provides the core material to produce the counterex-
amples.
Lemma 2.3.2. Let α ∈ R and consider the function f : [−1/2, 1/2]→ R given by

f(t) =
( 1
− log |t|

)α
.

Then:
(i) if α ≥ 0, then f belongs to (L∞ ∩W 1

2 ,2) ((−1/2, 1/2));

(ii) If α > 1
2 , then f H belongs to (L∞ ∩ W 1

2 ,2) ((−1/2, 1/2)), where H is the Heavyside
function: H(t) = χ[0,+∞)(t).

Proof. Part (i). Boundedness is clear. It is sufficient to prove that f is the trace on(−1/2, 1/2)×
{0} of a function belonging to W 1,2(B1/2(0)). Such function can be taken as F (y) =

(
1

− log |y|

)α
,

since through polar coordinates we see that:

|∇F (y)|2 dy =

∣∣∣∣∣∣α
(

1
− log |y|

)α+1
y

|y|2

∣∣∣∣∣∣
2

dy

= α2
(

1
− log ρ

)2(α+1) 1
ρ
dθdρ,

so if α > −1
2 ,
∫
B1/2(0) |∇F (y)|2 dy is convergent.

Part (ii). g = H f is bounded, so it is enough to check that the W 1
2 ,2- seminorm:

[g]
W

1
2 ,2((−1/2,1/2))

=
∫ 1/2

−1/2

∫ 1/2

−1/2

|g(s)− g(t)|2
|s− t|2

dsdt

is finite. Since the support of g lies in
[
0, 1

2

]
, we see that:∫ 1/2

−1/2

∫ 1/2

−1/2

|g(s)− g(t)|2

|s− t|2
ds, dt =

∫ 1/2

−1/2

(∫ 0

−1/2

|g(t)|2

|s− t|2
ds

)
+
(∫ 1/2

0

|g(s)− g(t)|2

|s− t|2
ds

)
dt

=
∫ 1/2

0

(∫ 0

−1/2

|g(t)|2

|s− t|2
ds

)
dt+

∫ 0

−1/2

(∫ 1/2

0

|g(s)|2

|s− t|2
ds

)
dt+

∫ 1/2

0

∫ 1/2

0

|g(s)− g(t)|2

|s− t|2
ds dt

= 2
∫ 1/2

0

∫ 0

−1/2

|g(t)|2

|s− t|2
ds dt+

∫ 1/2

0

∫ 1/2

0

|g(s)− g(t)|2

|s− t|2
ds dt

= 2
∫ 1/2

0
|g(t)|2

(
1
t
− 1
t+ 1

2

)
dt+

∫ 1/2

0

∫ 1/2

0

|g(s)− g(t)|2

|s− t|2
ds dt

=
∫ 1/2

0
|g(t)|2 1

t
(
t+ 1

2

) dt+
∫ 1/2

0

∫ 1/2

0

|g(s)− g(t)|2

|s− t|2
ds dt

=
∫ 1/2

0

( 1
− log |t|

)2α 1
t
(
t+ 1

2

) dt+
∫ 1/2

0

∫ 1/2

0

|g(s)− g(t)|2

|s− t|2
ds dt.

The second integral is bounded by [f ]
W

1
2 ,2((− 1

2 ,
1
2)), and is consequently convergent for (i). The

first integral is convergent if and only if α > 1
2 .
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2 Notes on the Poisson Equation with Jacobian Data

Proof of Theorem 2.1.5. Because of conformal invariance, it suffices to prove that the thesis
holds for the problem in the upper half-plane (2.3.1), where we can use Lemma 2.3.1. Fix
ψ : R→ R a radial, symmetric smooth cut-off function ψ : R→ R:

ψ(t) =

1 in
[
−1

2 ,
1
2

]
,

0 in R \
[
−3

4 ,
3
4

]
,

Consider any bounded, compactly supported extension to a, b ∈ W 1,2(R2
+,R) (that exist thanks

to Lemma 2.3.2) of:

a(t) =
(

1
− log |t|

)α
H(t)ψ(t), and b(t) = ψ(t), t ∈ R ' ∂R2

+,

where again H(t) = χ[0,+∞)(t), and 1
2 < α < 1. By Lemma 2.3.1,

u(x1, 0) = A(a, b)(x1) +B(a, b)(x1),

and B(a, b) is bounded. By the symmetry of ψ, b(y1, 0) = b(−y1, 0) so we deduce:

A(a, b)(0) = 1
π

∫ 3/4

0

1
y1

(
1

− log |y1|

)α
ψ(y1)2 dy1, (2.3.6)

and this integral is divergent since α < 1.

Proof of Theorem 2.1.3. Because of conformal invariance, it suffices to prove that the thesis
holds for the problem in the upper half-plane (2.3.2), where we can use Lemma 2.3.1. With the
same functions a, b and exponent 1

2 < α < 1 of the previous proof, and again the representation
formula of Lemma 2.3.1,

u(x1, 0) = A(a, b)(x1) +B(a, b)(x1) + 1
π

(
log | · | ∗ (∂τa)b

)
(x1),

we have that A(a, b) + B(a, b) belong to W 1/2,2(∂R2
+), because it represents the trace for the

compatible solution. To see that the last term does not belong to W 1/2,2(∂R2
+), we note that we

can write it as:( 1
π

log | · | ∗ (∂τa) b
)

(x1) = (−∆)−1/2((∂τa) b)(x1)

From the mapping properties of the Riesz Potential (see [Ste70]) it is sufficient that ∂τa b does
not belong to W−1/2,2(∂R2

+), and this verified since, being

∂τa b(t) = ψ(x)
(
α

t

( 1
− log |t|

)α−1
ψ(t)H(t) +

( 1
− log |t|

)α
ψ′(t)

)
,

if we test it against t 7→ (− log |t|)αψ(t) ∈ W 1/2,2(∂R2
+), the resulting integral is divergent.

Finally, combining such expression with the one above (2.3.6) we see once more that tr(u)(x1, 0)
is unbounded as x1 → 0.

28



2.3 Proof of Theorems 2.1.3, 2.1.5 and 2.1.7

Proof of Lemma 2.1.8. We let χ be a function in C∞(B1) so that χ = 1 in B1∩B3r/4(x0) and
whose support is contained in B1 ∩B7r/8(x0), and we let ã be an extension of a to B1, obtained
through a suitable Moebius tranformation of B1 so that ‖∇ã‖L2(B1) ≤ C‖∇a‖L2(B1∩Br(x0)) and
‖∂τ ã‖Lp(∂B1) ≤ C(p)‖∂τa‖Lp(∂B1∩Br(x0)) for constants C,C(p) > 0. Up to a constant, we may
write u = u1 + u2, with{

−∆u1 = 〈∇⊥ã,∇(χb)〉 in B1,

∂νu1 = [∂τ ã] (χb) on ∂B1,

and 
−∆u2 = 〈∇⊥a,∇((1− χ)b)〉+

∑
i

αiδai in B1,

∂νu2 = [∂τa] ((1− χ)b) on ∂B1,

with the convention that

〈∇⊥a,∇((1− χ)b)〉 = f in B1 \B7r/8(x0) and
[∂τa] ((1− χ)b) = g on ∂B1 \B7r/8(x0).

From Theorem 2.1.7, we deduce that for some constant c1 ∈ R there holds

‖u1 − c1‖L∞(B1)+‖∇u1‖L2(B1) (2.3.7)
≤ C‖∇ã‖W 1,2(B1)‖χb‖W 1,2(B1)

+ C(p)
(
‖∂τ tr(ã)‖W 1,p(∂B1) ‖ tr(χb)‖W 1,p(∂B1)

)
.

To estimate u2, we use the representation formula:

u2(x)− u2 =
∫
B1
G(x, y)〈∇⊥a,∇((1− χ)b)〉(y) dy

+
∫
∂B1
G(x, y)〈∂τa, (1− χ)b〉 dσ(y) +

∑̀
i=1

αiG(x, ai),

since none of the ai’s is in B1 ∩Br(x0) and 1− χ vanishes B1 ∩B3r/4(x0), we may estimate on
B1 ∩Br/2(x0):

‖u2 − u2‖L∞(B1∩Br/2(x0)) (2.3.8)

≤ C(r)
(
‖〈∇⊥a,∇((1− χ)b)〉‖L1(B1) + ‖ tr((∂τa)(1− χ)b)‖L1(∂B1) +

∑̀
i=1
|αi|

)
.

Since χ can always be chosen so that ‖∇χ‖L∞(B1) ≤ C/r, by joining estimates (2.3.7) and (2.3.8)
we reach the conclusion.
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3 Differential Geometry of Willmore
Immersions

Summary: This chapter serves as an introduction to the differential geometry
present in the following chapters. No original results are present but we establish
some notation and recall a few formulas for curvature operators; also some first
variation formulas (and among these, the derivation of the Willmore Euler–Langrange
equation) and conservation laws issuing from the conformal invariance of the Willmore
Lagrangian are deduced with self–contained proofs.

3.1 Curvature Operators
We recall some classical notions and facts concerning curvature operators. Let (M, g) be a
Riemannian manifold, where we also denote g = 〈·, ·〉 and let ∇ be the associated Levi-Civita
connection.

3.1.1 The Riemann curvature operator of M , R = Rg is the ( 1
3 )-tensor:

R(X, Y )(Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, R = Rτ
µνσ.

It may equivalently expressed as a ( 0
4 )-tensor by lowering one index:

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉 i.e. Rµνστ = gτζR
ζ
µνσ.

The Ricci curvature is defined as the trace of the operator Z 7→ R(Z,X)(Y ):

Ric(X, Y ) = tr(R(·, X)Y ), i.e. Ricµν = Rσ
σµν = gστRσµντ = gστRµστν .

From the basic properties of R it follows that Ric is a symmetric ( 0
2 )-tensor. We may identify

with a ( 1
1 )-tensor by raising and index:

Ricνµ = gνα Ricµα = gναgστRσµατ .

The scalar curvature is the trace of the Ricci operator with respect to g:

S = trg(Ric), i.e. S = gµν Ricµν = gµνRσ
σµν = gµνgστRσµντ .

The sectional curvature Sec(π) of a plane π ⊂ TxM, x ∈M, is the Gauss curvature at x of
the surface which is image of π through the exponential map inM which is (by definition on
abstract surfaces) the sectional curvature of such surface divided by two. If π = span{v1, v2}
denoting gij = 〈vi, vj〉, there holds:

Sec(π) = 1
2g

ijgklR(vk, vi, vj, vl),



3 Differential Geometry of Willmore Immersions

and in particular if v1, v2 are orthonormal it is

Sec(π) = R(v1, v2, v2, v1).

One may equivalently write

Sec(π) = R(v, w, w, v)
|v|2g|w|2g − 〈v, w〉2

= 2R(v, w, w, v)
|v ∧ w|2g

,

where the last equality follows form the definition of wedge product and of extension of g to
tensor products:

|v ∧ w|2g = |v ⊗ w − w ⊗ v|2g
= |v ⊗ w|2g + |w ⊗ v|2g − 2〈v ⊗ w,w ⊗ v〉
= 2

(
|v|2g|w|2g − 〈v, w〉2

)
.

3.1.2 Let us now assume that M is a sub-manifold of another manifold (N , h), with the
induced metric, which we denote by g. If no risk of confusion arises we denote both h and g
by 〈·, ·〉. We identify the tangent plane at x ∈M as a subspace of the tangent space TxN , we
denote with A the second fundamental form ofM, and we use superscripts “M” or “N ”, or “g”
and “h”, to mark the belonging of the different objects below. When N = Rn, the preferred
notation for the Euclidean covariant derivative is ∇.

The Gauss equation relates the curvature tensors with the second fundamental form: for every
U1, U2, V1, V2 ∈ X(M) there holds〈

A(U1, U2), A(V1, V2)
〉
−
〈
A(U1, V2), A(V1, U2)

〉
(3.1.1)

=
〈
RM(U1, V1)V2, U2

〉
−
〈
RN (U1, V1)V2, U2

〉
i.e.

RMµνστ = RNµνστ + 〈Aµτ , Aνσ〉 − 〈Aµσ, Aντ 〉,

where the Greek indices refer to local coordinates (or local frames) on M. We deduce the
following expression for the scalar curvature ofM:

SM = gµνgστ
(
RNµνστ + 〈Aµτ , Aνσ〉 − 〈Aµσ, Aντ 〉

)
.

WhenM = Σ is a surface, we have

SΣ = 2 SecN (TM) + gµνgστ (〈Aµτ , Aνσ〉 − 〈Aµσ, Aντ 〉)
= 2 SecN (TM) + 2(g11g22 − (g12)2) (〈A11, A22〉 − 〈A12, A12〉)

= 2
(

SecN (TN ) + 〈A11, A22〉 − |A12|2

det g

)
.

From this expression we recall in particular that when Σ is immersed in Rn and K is the Gauss
curvature, it is

K = 1
2S

Σ.
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3.1 Curvature Operators

We take this equality as definition of Gauss curvature when Σ is immersed in a general N ; in
this way the Theorema Egregium and the Gauss-Bonnet theorem still hold. Note that when
dimN = 3, then, in terms of principal curvatures it is

K = k1k2 + SecN (TΣ).

The Codazzi equation complements the Gauss equation, in the sense that, if (3.1.1) specified
the tangential component of RN with respect toM, then Codazzi specifies the normal one. In
the following, ∇⊥ refers to the induced covariant derivative on the normal bundle (TM)⊥. For
instance:

∇⊥H = (∇hH)⊥,
∇⊥A(X, Y ) =

(
∇hA(X, Y )

)
⊥ =

(
∇h(A(X, Y ))

)
⊥ − A(∇gX, Y )− A(X,∇gY ),

∆⊥H = (∇⊥)∗(∇⊥H) = ((∇h)∗(∇⊥H))⊥.

The equation of Codazzi is then the following: for every X, Y, Z ∈ X(M) there holds

(RN (X, Y )(Z))⊥ = ∇⊥XA(Y, Z)−∇⊥YA(X,Z). (3.1.2)

If we contract this identity with respect to X and Y and use the fact that metric contraction
commute with covariant derivative, see that (expressing the contraction by means of a local
orthonormal frame e1, . . . , em onM)

(∇⊥)∗A =
∑
j

∇⊥ejA(ej, ·) =
∑
j

∇⊥ejA(·, ej)

=
∑
j

∇⊥(·)A(ej, ej) + (RN (ej, ej)(·))⊥

= m(∇⊥H) +
∑
j

(RN (ej, ej)(·))⊥ = m(∇⊥H) + R,

where by definition we set

R(X) = (trg RN (·, ·)(X))⊥ for X ∈ X(M).

Thus, (3.1.2) implies the following:

∇⊥A = m(∇⊥H) + R,

(∇⊥)∗A◦ = (m− 1)(∇⊥H) + R,

where the last identity follows from the first and the fact that (∇⊥)∗(Hh) = ∇⊥H.
WhenM = Σ is a surface, if e1, e2 is any local ortho-normal frame on Σ, we have:

SΣ = 2
(

SecN (TΣ) + h(A(e1, e1), A(e2, e2))− |A(e1, e2)|2
)
,

|A|2 = |A(e1, e1)|2 + |A(e2, e2)|2 + 2|A(e1, e2)|2,

|H|2 = 1
4
(
|A(e1, e1)|2 + |A(e2, e2)|2 + 2h(A(e1, e1), A(e2, e2)

)
,

|A◦|2 = 1
2
(
|A(e1, e1)|2 + |A(e2, e2)|2

)
− h (A(e1, e1), A(e2, e2)) + 2|A(e1, e2)|2,
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3 Differential Geometry of Willmore Immersions

and thus we have the relations
|A|2 = 4|H|2 − SΣ + 2 SecN (TΣ) = 2|A◦|2 + SΣ − 2 SecN (TΣ),
|A◦|2 = 2|H|2 − SΣ + 2 SecN (TΣ) = |A|2 − 2|H|2.

In a 3-manifold (N 3, h) we may talk about principal curvatures and from the above formulas
we see that

|A|2 = k2
1 + k2

2, |H|2 = (k1 + k2)2

4 , |A◦|2 = (k1 − k2)2

2 , SΣ − 2 SecN(TΣ) = 2k1k2.

3.1.3 Let us recall some formulas for conformal changes in the ambient Space. Let h̃ = e2uh
be a metric conformal to h, where u ∈ C∞(N ,R).
The Levi-Civita connection of h̃ satisfies
∇h̃
XY = ∇h

XY +X(u)Y + Y (u)X − h(X, Y ) gradh u. (3.1.3)

If M is a m-sub-manifold of N and g and g̃ denote the metrics induced on M by h and h̃
respectively, then its second fundamental form with respect to h̃ is given by

Ã(X, Y ) =
∑
a

h̃
(
∇h̃
XY, ña

)
ña =

∑
a

h
(
∇h̃
XY, na

)
na,

consequently thanks to formula (3.1.3) we deduce that
Ã(X, Y ) = A(X, Y )− h(X, Y )(gradh u)⊥

and thus
H̃ = e−2u(H − (gradh u))⊥

where the orthogonal projection “⊥” is indifferently that of h or, since they coincide, that of h̃.
These relations imply that the trace-free second fundamental form

A◦ = A− trg A
m

h = A−Hh,

is point-wise conformally invariant:
Ã◦ = A◦.

Finally, since the Riemanninan volume form can be locally expressed as
d volh = e∗1 ∧ · · · ∧ e∗n,

where e1, . . . , en is any local ortho-normal frame for h and e∗1, . . . , e∗n is its dual co-frame, from
the relation e∗i = eue∗i we deduce that the change is given by

d vol̃
h

= enud volh,
and similarly for M there holds

d volg̃ = emud volg .
Now we assume thatM = Σ is a surface. By definition of the norm on the tensor products

and the point-wise conformal invariance of the trace-free second fundamental form, we have
|Ã◦|2

h̃⊗g̃ = e−2u|A◦|2h⊗g,

and so the 2-form |A◦|2d volg = |A◦|2 dσg is also pointwise conformally invariant.
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3.2 Families of Immersions

3.1.4 Recall that for a conformal metric g (with respect some fixed background metric g0)
on a surface Σ, if g = e2λg0, Liouville’s equation holds:

−∆g0λ = e2λK −K0,

where K and K0 are the Gauss curvatures of g and g0 respectively.
In the particular case where Φ : B1 → Rn is a conformal immersion, i.e. g = Φ?gRn (such as

the local parametrization of a conformally immersed surface), then from Gauss equation we see
that

K = 〈A(e1, e1), A(e2, e2)〉 − |A(e1, e2)|2,

where (e1, e2) is any local ortho-normal frame for Φ?(TB1). A simple computation reveals that
the right-hand side has a Jacobian structure:

〈A(e1, e1), A(e2, e2)〉 − |A(e1, e2)|2 = e−2λ
(
〈∂1e, ∂2e〉 − 〈∂2e, ∂1e〉

)
= 〈∗∇e1,∇e2〉g

where, since the metric is conformal, the Hodge operator acts exactly as the Euclidean one,
namely

∗∇e1 = ∗
(
∂1e1 ⊗ dx1 + ∂2e2 ⊗ dx2

)
= −∂1e1 ⊗ dx2 + ∂2e2 ⊗ dx1 =: ∇⊥e1.

With this fact, we finally deduce that, for any ortho-normal frame (e1, e2), there holds:

−∆λ = 〈∗∇e1,∇e2〉 = 〈∇⊥e1,∇e2〉.

3.2 Families of Immersions
3.2.1 Recall that ifM is any manifold and f :M→N is any map, a vector field along f is
a section of the pullback bundle f ?(TN ), that is a map X : M → TN so that X(x) ∈ Tf(x)N
for every x ∈M . We may locally write

X(x) = X i(x)ei(f(x)),

where (e1, . . . , en) is any local frame for TN near f(x). One may covariantly differentiate vector
fields along f as follows: if x ∈M and V ∈ TxM, for X as above,

∇h
VX(x) = dX i(x)(V ) ei(f(x)) +X i(x)∇h

df(x)(V )ei (f(x)).

The following holds.

Lemma 3.2.1. Let f :M→N be a differentiable map between manifolds and let h = 〈·, ·〉 be
a Riemannian metric on N . Denote by x1, . . . , xm local coordinates on M . Then:

◦ If X, Y are vector fields along f , then

∂

∂xµ
〈X, Y 〉 =

〈
∇h
∂µX, Y

〉
+
〈
X,∇h

∂µY
〉

; (3.2.1)
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3 Differential Geometry of Willmore Immersions

◦ There holds

∇h
∂µ∂νf = ∇h

∂ν∂µf. (3.2.2)

◦ If Y is a vector field along F , then

∇h
∂µ∇

h
∂νY = ∇h

∂ν∇
h
∂µY +Rh(∂µf, ∂νf)Y, (3.2.3)

where Rh is the Riemann curvature tensor for the Levi-Civita covariant derivative of h.

Proof. Formula (3.2.1). If e1, . . . , en is a local frame for TN around f(x) (such as ei = ∂i), we
may write X(x) = X i(x)ei(f(x)) and Y (x) = Y j(x)ej(f(x)) for some locally defined smooth
function X i, Y j. By the metric properties of the covariant derivative there holds

∂

∂xµ
〈ei(f), ej(f)〉 (x) = d (〈ei, ej〉) (f(x))[∂µf(x)]

=
〈
∇h
∂µf(x)ei(f(x)), ej(f(x))

〉
+
〈
ei(f(x)),∇h

∂µf(x)ej(f(x))
〉
,

hence we may compute

∂

∂xµ
〈X, Y 〉 (x) = ∂

∂xµ

(
X iY j 〈ei(f), ej(f)〉

)
(x)

=
〈
∂µX

i(x)ei(f(x)), Y (x)
〉

+
〈
X i(x)∇h

∂µf(x)ei(f(x)), Y (x)
〉

+
〈
X(x), ∂µY j(x)ej(f(x))

〉
+
〈
X(x), Y j(x)∇h

∂µf(x)ej(f(x))
〉
,

which, by definition of covariant derivative along a map, yields (3.2.1).
Formula (3.2.2). We may write locally ∂µf(x) = ∂µf

i(x)∂i|f(x) and ∂νf(x) = ∂νf
j(x)∂j|f(x),

so we see that, if Γkij are the Christoffel symbols of ∇h,

∇h
∂ν∂µf(x) = ∂2

µνf
i(x)∂i|f(x) + ∂µf

i(x)∇h
∂νf(x)∂i(f(x))

= ∂2
µνf

i(x)∂i|f(x) + ∂µf
i(x)∂νf j(x)∇h

∂j
∂i(f(x))

= ∂2
µνf

i(x)∂i|f(x) + ∂µf
i(x)∂νf j(x)Γkji(f(x))∂k|f(x)

= ∂2
µνf

i(x)∂i|f(x) + ∂µf
i(x)∂νf j(x)Γkij(f(x))∂k|f(x)

= ∇h
∂µ∂νf(x),

by the symmetry of Γkij in i and j. This proves (3.2.2).
Formula (3.2.3). We compute in local coordinates:

∇h
∂µ∇

h
∂νY (x) = ∇h

∂µ

(
∂νY

i(x)∂i|f(x) + Y i(x)∇h
∂νf(x))∂i(f(x))

)
= ∂2

µνY
i(x)∂i|f(x) + ∂νY

i(x)∇h
∂µf(x)∂i|f(x)

+ ∂µY
i(x)∇h

∂νf(x))∂i(f(x)) + Y i(x)∇h
∂µf(x)∇h

∂νf(x)∂i(f(x));
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3.2 Families of Immersions

we now note that the first line in the above expression is symmetric in µ and ν, while for the
second one we have:

∇h
∂µf(x)∇h

∂νf(x)∂i(f(x))

= ∇h
∂µf(x)

(
∂νf

j(x)∇h
∂j
∂i(f(x))

)
= ∂2

µνf
j(x)∇h

∂j
∂i(f(x)) + ∂µf

k(x)∂νf j(x)∇h
∂k
∇h
∂j
∂i(f(x))

= ∂2
µνf

j(x)∇h
∂j
∂i(f(x)) + ∂µf

k(x)∂νf j(x)
(
∇h
∂j
∇h
∂k
∂i(f(x)) + Rh

f(x)(∂k, ∂j)∂i(f(x))
)

= ∇h
∂νf(x)∇h

∂µf(x)∂i(f(x)) + Rh
f(x)(∂µf, ∂νf)∂i(f(x)),

which then leads to (3.2.3).

3.2.2 A preliminary remark on differentiation of tensors:

◦ Let M be a manifold let I ⊆ R be some open interval and let S = S(t, ·) be a family
tensor fields ofM which is also differentiable as a function I ×M→ T kl (M). It is then
possible to consider the “time” derivative of S:

∂S

∂t
(t, x) = lim

h→0

S(t+ h, x)− S(t, x)
h

, x ∈M.

First of all, the limit exists and is a smooth function since we may interpret ∂tS(t, x) =
dS(x, t)[∂t]. Since S(·, x) is an element of T kl (TxM) for every x, the incremental ratio is
well-defines and is a tensor; and thus ∂tS(t, ·) also defines a family of (k, l)-tensors.

◦ Let now N be another manifold and let Φ : I ×M→ N be a family of smooth maps. If
S : I ×M→ TN is a family of vector fields along Φ, that is S(t, x) ∈ TΦ(t,x)N for every
(t, x). In general, S(t, x) and S(t+ h, x) will belong to two different spaces. To be able to
differentiate with repsect to t we introduce a covariant derivative ∇h on N and so the
analogue of ∂tS(t, x) will be ∇h

∂tS(t, x).
A similar procedure must be considered when S is a more general tensor along Φ. In this
case the one has to consider the differentiation with respect to tensor connections.

For an immersion Φ : M → (N , h) inducing on M the metric g = Φ?h we introduce the
following “Ricci–type” curvature operator:

R(X) := trg Rh(X, ·)(·) = gµνRh(X, ∂νΦ)(∂µΦ),

for vector fields along Φ X ∈ Γ(Φ?(TN )). By the symmetry properties of Rh, we have the
symmetry property〈

R(X), Y
〉

=
〈
X,R(Y )

〉
,

for vector fields along Φ X, Y ∈ Γ(Φ?(TN )).
We identify abstract tangent vectors inM with their counterpart in N , i.e.

V = V µ∂µ ' V µ∂µΦ,
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3 Differential Geometry of Willmore Immersions

and we denote with (·)] the index-raising musical isomorphism in M :

ω] = (ωµdxµ)] = gµνων∂µ ' gµνων∂µΦ.

The raising for a tensor with more than one covariant component is the one for the first (or
left-most) argument.

Proposition 3.2.2 (Some First Variation Formulas). Let Φ : I ×M → N , with I ⊆ R be a
family of immersions between manifolds with velocity

X(t, x) = ∂

∂t
Φ(t, x).

We assume M to be orientable and we let h = 〈·, ·〉 be Riemannian metric with associated
Levi-Civita covariant derivative ∇h and Riemann curvature tensor Rh. OnM we let g = Φ?h
be the induced metric. The following formulas hold:

(i) First variation of the metric:

∂

∂t
g(U, V ) =

〈
∇h
UX, V

〉
+
〈
U,∇h

VX
〉

(3.2.4)

for U, V vector fields overM, and

∂

∂t
g(ω, ϑ) = −

〈
∇h
ω]X,ϑ

]
〉
−
〈
ω],∇h

ϑ]X
〉
, (3.2.5)

for ω, ϑ differential forms overM.

(ii) First variation of the volume element1:

∂

∂t
dσ =

〈
dΦ,∇hX

〉
dσ. (3.2.6)

(iii) First variation of the Christoffel symbols of ∇g:

∂

∂t
Γσµν = gστ

(〈
∇2
µνX, ∂τΦ

〉
+
〈
Aµν ,∇h

∂τX
〉

+
〈
Rh(∂τΦ, ∂νΦ)(∂µΦ), X

〉)
. (3.2.7)

(iv) First variation of the second fundamental form:

∇h
∂tA(U, V ) =

(
∇2
U,VX +Rh(X,U)(V )

)
⊥ − 〈A(U, V ),∇hX〉], (3.2.8)

and of its norm:

∂

∂t
|A|2 = 2〈A,∇2X〉 − 2gµνgστ

〈
Rh(X, ∂σΦ)(∂µΦ), Aντ

〉
(3.2.9)

+ 4m
〈
(∇hH)>,∇hX

〉
− 4

〈
(R)>,∇hX

〉
+ 4

〈
Ric, dΦ⊗̇∇hX

〉
where Ric is the Ricci tensor of the metric g.

1 Useful: since 〈X, dΦ〉] ' gµν〈X, ∂νΦ〉Φ∂µΦ = X>, it is possible to write, by the Leibniz rule:

∂

∂t
σ = −〈∆Φ, X〉 dσ + divg(X>) dσ = −〈2H,X〉 dσ + divg(X>) dσ.
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(v) First Variation of the mean curvature:

∇h
∂tH = 1

m
(∆X + R(X))⊥ − 2

m

〈
A, dΦ ⊗̇∇hX

〉
− 〈H,∇hX〉], (3.2.10)

and of its norm:

∂

∂t
|H|2 = 2

m

(〈
H,∆X

〉
+ 2

〈
(∇hH)>,∇hX

〉
+
〈
R(H), X

〉)
. (3.2.11)

Proof. We will repeatedly use Lemma 3.2.1 with the domain manifold M = I ×M map f = Φ,
and X vector field along Φ.
Variation of the metric. Writing locally gµν = 〈∂µΦ, ∂νΦ〉, thanks to (3.2.1) and (3.2.2) we

have

∂

∂t
gµν = ∂

∂t
(〈∂µΦ, ∂νΦ〉)

=
〈
∇h
∂t∂µΦ, ∂νΦ

〉
+
〈
∂µΦ,∇h

∂t∂νΦ
〉

=
〈
∇h
∂µ∂tΦ, ∂νΦ

〉
+
〈
∂µΦ,∇h

∂ν∂tΦ
〉

=
〈
∇h
∂µX, ∂νΦ

〉
+
〈
∂µΦ,∇h

∂νX
〉
,

which yields (3.2.4). If gµν denotes the induced metric on the cotangent bundle, since gµνgνσ = δµσ ,
it follows that

∂tg
µν gνσ + gµν∂tgνσ = 0,

and consequently we deduce that

∂

∂t
gµν = −gµσgντ ∂

∂t
gστ = −gµσgντ

(〈
∇h
∂σX, ∂τΦ

〉
+
〈
∂σΦ,∇h

∂τX
〉)
,

which yields (3.2.5).
Variation of the volume element. With Jacobi’s formula:

∂t(A(t)) = detA(t) tr
(
A−1(t)∂tA(t)

)
,

we see that

∂

∂t
det g = det g tr

(
gµσ

∂

∂t
gστ

)

= det g gµσ ∂
∂t
gσµ

= det g gµσ
(〈
∇h
∂σX, ∂µΦ

〉
+
〈
∂σΦ,∇h

∂µX
〉)

= 2 det g gµσ
〈
∂µΦ,∇h

∂σX
〉

= 2h⊗ g
(
dΦ,∇hX

)
det g.
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Consequently

∂

∂t

√
det g = 1

2
√

det g
∂

∂t
det g = h⊗ g

(
dΦ,∇hX

)√
det g,

and so the derivative of the volume element dσ =
√

det g dx1 ∧ · · · ∧ dxm is given by (3.2.6).
Variation of the Christoffel Symbols. By definition it is

Γσµν =
(
∇h
∂µ∂νΦ

)
> = gστ

〈
∇h
∂µ∂νΦ, ∂τΦ

〉
.

We compute first with (3.2.2), (3.2.3):

∇h
∂t∇

h
∂µ∂νΦ = ∇h

∂µ∇
h
∂t∂νΦ +Rh(X, ∂µΦ)(∂νΦ) = ∇h

∂µ∇
h
∂νX +Rh(X, ∂µΦ)(∂νΦ),

so with (3.2.5), we have

∂

∂t
Γσµν = −gσξgτζ

(〈
∇h
∂ξ
X, ∂ζΦ

〉
+
〈
∂ξΦ,∇h

∂ζ
X
〉) 〈
∇h
∂µ∂νΦ, ∂τΦ

〉
+ gστ

〈
∇h
∂µ∇

h
∂νX +Rh(X, ∂µΦ)(∂νΦ), ∂τΦ

〉
+ gστ

〈
∇h
∂µ∂νΦ,∇

h
∂τΦ

〉
= −gσξΓζµν

(〈
∇h
∂ξ
X, ∂ζΦ

〉
+
〈
∂ξΦ,∇h

∂ζ
X
〉)

+ gστ
〈
∇h
∂µ∇

h
∂νX +Rh(X, ∂µΦ)(∂νΦ), ∂τΦ

〉
+ gστ

〈
∇h
∂µ∂νΦ,∇

h
∂τΦ

〉
= −gσξΓζµν

〈
∇h
∂ξ
X, ∂ζΦ

〉
− gσξΓζµν

〈
∂ξΦ,∇h

∂ζ
X
〉

+ gστ
〈
∇h
∂µ∇

h
∂νX, ∂τΦ

〉
+ gστ

〈
Rh(X, ∂µΦ)(∂νΦ), ∂τΦ

〉
+ gστ

〈
∇h
∂µ∂νΦ,∇

h
∂τX

〉
.

Now recalling that

∇(2)
∂µ,∂ν

X = ∇h
∂µ∇

h
∂µX −∇

h
∇g
∂µ
∂ν
X = ∇h

∂µ∇
h
∂µX − Γσµν∇h

∂σX,

Aµν = ∇(2)
∂µ,∂ν

Φ = ∇h
∂µ∂µΦ− Γσµν∂σΦ,

we may collect, respectively, the 2nd and 3rd and the 1st and 4th term in the above expression
to get:

∂

∂t
Γσµν = gστ

(〈
∇2
∂µ,∂νX, ∂τΦ

〉
+
〈
Aµν ,∇h

∂τX
〉

+
〈
Rh(X, ∂µΦ)(∂νΦ), ∂τΦ

〉)
.

Since by the symmetry properties of the curvature tensor there holds〈
Rh(X, ∂µΦ)(∂νΦ), ∂τΦ

〉
=
〈
Rh(∂τ , ∂µΦ)(∂νΦ), X

〉
,

we arrive at (3.2.7).
Variation of the Second Fundamental Form. We have

∇h
∂tAµν = ∇h

∂t

(
∇(2)
∂µ,∂ν

Φ
)

= ∇h
∂t

(
∇h
∂µ∂νΦ− Γσµν∂σΦ

)
;

on the one hand, by (3.2.1), (3.2.2) we have

∇h
∂t∇

h
∂µ∂νΦ = ∇h

∂µ∇
h
∂νX +Rh(X, ∂µΦ)(∂νΦ),

40



3.2 Families of Immersions

on the other hand with (3.2.7) we have

∇h
∂t

(
Γσµν∂σΦ

)
=
(
∂tΓσµν

)
∂σΦ + Γσµν∇n

∂t∂σΦ

= gστ
(〈
∇2
∂µ,∂νX, ∂τΦ

〉
+
〈
Aµν ,∇h

∂τX
〉

+
〈
Rh(∂τΦ, ∂νΦ)(∂µΦ), X

〉)
∂σΦ

+ Γσµν∇h
∂σX,

hence

∇h
∂tAµν = ∇h

∂µ∇
h
∂νX +Rh(X, ∂µΦ)(∂νΦ)

− gστ
(〈
∇2
∂µ,∂νX, ∂τΦ

〉
+
〈
Aµν ,∇h

∂τX
〉

+
〈
Rh(∂τΦ, ∂νΦ)(∂µΦ), X

〉)
∂σΦ

− Γσµν∇h
∂σX

= ∇2
∂µ,∂νX +Rh(X, ∂µΦ)(∂νΦ)

− gστ
(〈
∇2
∂µ,∂νX, ∂τΦ

〉
+
〈
Aµν ,∇h

∂τX
〉

+
〈
Rh(∂τΦ, ∂νΦ)(∂µΦ), X

〉)
∂σΦ

= ∇2
∂µ,∂νX +Rh(X, ∂µΦ)(∂νΦ)

− gστ
(〈
∇2
∂µ,∂νX, ∂τΦ

〉
+
〈
Rh(X, ∂νΦ)(∂µΦ), ∂τΦ

〉)
∂σΦ

− gστ
〈
Aµν ,∇h

∂τX
〉
∂σΦ

=
(
∇2
∂µ,∂νX +Rh(X, ∂νΦ)(∂µΦ)

)⊥
− gστ

〈
Aµν ,∇h

∂τX
〉
∂σΦ,

which yields (3.2.8). Recall next that by definition it is

|A|2 = gµνgστ 〈Aµσ, Aντ 〉,

and hence

∂t|A|2 = ∂t(gµνgστ )〈Aµσ, Aντ 〉+ gµνgστ∂t〈Aµσ, Aντ 〉.

On the one hand, with (3.2.8) we have

∂t〈Aµσ, Aντ 〉 = 〈∇h
∂tAµσ, Aντ 〉+ 〈Aµσ,∇h

∂tAντ 〉
=
〈
∇2
µσX +Rh(X, ∂σΦ)(∂µΦ), Aντ

〉
+
〈
Aµσ,∇2

ντX +Rh(X, ∂τΦ)(∂νΦ)
〉
,

and so using the (anti)symmetry properties of the curvature tensor we have

gµνgστ∂t〈Aµσ, Aντ 〉 = 2〈A,∇2X〉+ 2gµνgστ
〈
Rh(X, ∂σΦ)(∂µΦ), Aντ

〉
= 2〈A,∇2X〉 − 2

〈
Rh(∂µΦ, Aντ )(∂σΦ), X

〉
.

On the other hand, with Gauss equation

〈Aµσ, Aντ 〉 = 〈Aµν , Aστ 〉 −Rg
µτσν +Rh

µτσν
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(where we have denoted Rh
µτσν =

〈
Rh(∂µΦ, ∂τΦ)(∂σΦ), ∂νΦ

〉
) and (3.2.5) we have

∂t(gµνgστ )〈Aµσ, Aντ 〉
= −(gµξgνζgστ + gµνgσξgτζ)〈Aµσ, Aντ 〉

(
〈∇h

∂ξ
X, ∂ζΦ〉+ 〈∂ξΦ,∇h

∂ζ
X〉
)

= −gµξgνζgστ
(
〈Aµν , Aστ 〉 −Rg

µτσν +Rh
µτσν

)(
〈∇h

∂ξ
X, ∂ζΦ〉+ 〈∂ξΦ,∇h

∂ζ
X〉
)

− gµνgσξgτζ
(
〈Aµν , Aστ 〉 −Rg

µτσν +Rh
µτσν

)(
〈∇h

∂ξ
X, ∂ζΦ〉+ 〈∂ξΦ,∇h

∂ζ
X〉
)

= −gµξgνζ
(
m〈Aµν , H〉 − Ricµν +gστRh

µτσν

)(
〈∇h

∂ξ
X, ∂ζΦ〉+ 〈∂ξΦ,∇h

∂ζ
X〉
)

− gσξgτζ
(
m〈H,Aστ 〉 − Ricτσ +gµνRh

µτσν

)(
〈∇h

∂ξ
X, ∂ζΦ〉+ 〈∂ξΦ,∇h

∂ζ
X〉
)

= −2gµξgνζ
(
m〈Aµν , H〉 − Ricµν +gστRh

µτσν

)(
〈∇h

∂ξ
X, ∂ζΦ〉+ 〈∂ξΦ,∇h

∂ζ
X〉
)
.

We now notice that, since H is a normal vector, we have

gµξgνζ〈Aµν , H〉〈∇h
∂ξ
X, ∂ζΦ〉 = −gµξgνζ

〈
〈∇h

∂µH, ∂νΦ〉,∇
h
∂ξ
X
〉

= −
〈
(∇hH)>,∇hX

〉
,

and similarly

gµξgνζ = 〈∂ξΦ,∇h
∂ζ
X〉 = −

〈
(∇hH)>,∇hX

〉
;

also note that

gµξgνζgστRh
µτσν

〈
∇h
∂ξ
X, ∂ζΦ

〉
= gµξgνζgστ

〈
Rh(∂µΦ, ∂τΦ)(∂σΦ), ∂νΦ〉

〈
∇h
∂ξ
X, ∂ζΦ

〉
= gµξgνζ

〈
R(∂µΦ), ∂νΦ〉

〈
∇h
∂ξ
X, ∂ζΦ

〉
= gµξ

〈
∇h
∂ξ
X, gνζ〈R(∂µΦ), ∂νΦ〉∂ζΦ

〉
=
〈
∇hX, (R)>

〉
,

and similarly

gµξgνζgστRh
µτσν

〈
∂ξΦ,∇h

∂ζ
X
〉

=
〈
∇hX, (R)>

〉
,

and so we have (3.2.9).
Variation of the Mean Curvature. Recall that by definition it is H = 1

m
∆Φ = 1

m
gµνAµν ; with

(3.2.4) and (3.2.8) we have

∇h
∂tH = 1

m
∇h
∂t(g

µνAµν)

= − 1
m

(
gµσgντ

(
〈∇h

∂σX, ∂τΦ〉+ 〈∂σΦ,∇h
∂τX〉

))
Aµν

+ 1
m
gµν

((
∇2
µνX +Rh(X, ∂νΦ)(∂µΦ)

)⊥
− gστ 〈Aµν ,∇h

∂τX〉∂σΦ
)

= − 2
m

〈
A, dΦ ⊗̇∇hX

〉
+ 1
m

(
∆X + gµνRh(X, ∂νΦ)(∂µΦ)

)⊥
− gστ 〈H,∇h

∂τX〉∂σΦ,

which yields (3.2.10). Using this formula we compute

∂

∂t
|H|2 = −2

〈
∇h
∂tH,H

〉
= − 4

m

〈
〈A,H〉, 〈dΦ,∇hX〉

〉
+ 2
m

〈
∆X + R(X), H

〉
.
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We now notice that, since H is a normal vector and Aµν = ∇h
µ∂νΦ− Γσµν∂σΦ we have〈

〈A,H〉, dΦ⊗̇∇hX
〉

= gµσgντ 〈Aµν , H〉〈∂σΦ,∇h
∂τX〉

= −gµσgντ 〈∂νΦ,∇h
∂µH〉〈∂σΦ,∇h

∂τX〉

= −gντ
〈
gµσ〈∂νΦ,∇h

∂µH〉∂σΦ,∇h
∂τX

〉
= −

〈
(∇hH)>,∇hX

〉
,

and, by the symmetry properties of R, there holds

〈R(X), H〉 = 〈R(H), X〉,

whence (3.2.11) follows.

3.2.3 We also point out the following.

Proposition 3.2.3 (First Variation of the Gauss Curvature Density). In the setting as Propo-
sition 3.2.2 when M = Σ is a surface and when N = Rn, the first variation of the Gauss
curvature density of the immersion Φ : Σ→ RN is

∂

∂t
(K dσ) = d∗

(
2〈H,∇X〉 − 〈A,∇X〉

)
dσ = d∗

(
〈H,∇X〉 − 〈A◦,∇X〉

)
dσ.

Remark 3.2.4 In light of the Gauss-Bonnet theorem, Kdσ is null Lagrangian and thus the
fact that its first variation has a divergence structure is expected. If moreover we recall that

A = ∇2Φ, H = 1
2∆Φ, 2K = 4|H|2 − |A|2 = |∆Φ|2 − |∇2Φ|2,

some Euclidean heuristics can be helpful. Indeed for any ϕ, ψ ∈ C∞(R2,R), on the one hand
we have〈

∇2ϕ,∇2ψ
〉

=
∑
µ,ν

∂2
µνϕ∂

2
µνψ =

∑
µ,ν

∂µ
(
∂2
µνϕ∂νψ

)
− ∂3

µµνϕ∂νψ

= div
(
∇2ϕ · ∇ψ

)
−
〈
∆∇ϕ,∇ψ

〉
,

on the other hand〈
∆ϕ,∆ψ

〉
=
∑
µ,ν

∂2
µµϕ∂

2
ννψ =

∑
µ,ν

∂ν
(
∂2
µµϕ∂νψ)− ∂3

νµµϕ∂νψ

= div(∆ϕ∇ψ)−
〈
∇∆ϕ,∇ψ

〉
,

and since in this case it is ∇∆ϕ = ∆∇ϕ, we see that the two expressions differ by a divergence
term: 〈

∆ϕ,∆ψ
〉
−
〈
∇2ϕ,∇2ψ

〉
= div

(
∆ϕ∇ψ −∇2ϕ · ∇ψ

)
.

In our case however the gradient and the Laplacian will commute up to a curvature term (a
consequence of Weizenböck formula) but this will be compensated by the fact that the variation
of the area elemtent is nonzero.
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Proof of Proposition 3.2.3. Recall first that, for surfaces, the Ricci tensor is simply given
by Ric = S

2 g = Kg. Thus, from computations of Lemma 3.2.2, we have
∂

∂t
|A|2 = 2

〈
A,∇2X

〉
+ 8

〈
(∇H)>,∇X

〉
+ 4K

〈
dΦ,∇X

〉
,

∂

∂t
|H|2 =

〈
H,∆X

〉
+ 2

〈
(∇H)>,∇X

〉
,

∂

∂t
dσ =

〈
dΦ,∇X

〉
dσ,

and thus we have
∂

∂t
(2K) = ∂

∂t

(
4|H|2 − |A|2

)
= 4

〈
H,∆X

〉
− 2

〈
A,∇2X

〉
− 4K

〈
dΦ,∇X

〉
,

and hence
∂

∂t

(
2Kdσ

)
=
(

4
〈
H,∆X

〉
− 2

〈
A,∇2X

〉
− 2K

〈
dΦ,∇X

〉)
dσ

= 2
(〈

∆Φ,∆X
〉
−
〈
∇2Φ,∇2X

〉
−K

〈
dΦ,∇X

〉)
dσ.

Now, from the definition of adjoint we have〈
∆Φ,∆X

〉
=
〈
∆Φ,∇∗∇X

〉
= d∗

〈
∆Φ,∇X

〉
−
〈
∇∆Φ,∇X

〉
and similarly, by working on the bundle Φ?(TR3)⊗ T ∗Σ with induced connection and Laplace
operator,〈

∇2Φ,∇2X
〉

=
〈
∇(dΦ),∇(∇X)

〉
= d∗

〈
∇(dΦ),∇X

〉
−
〈
∇∗∇(dΦ),∇X

〉
= d∗

〈
∇2Φ,∇X

〉
−
〈
∆(dΦ),∇X

〉
.

(recall that here it is 〈∇(dΦ),∇X
〉

= gµν〈∇∂µ(dΦ),∇∂νX〉 = gµν〈∇2
µ,·Φ,∇∂νX〉).

To understand how the two vector-valued 1–forms ∇∆Φ and ∆(dΦ) are related, it it suffices
to consider Φ = (Φ1, . . . ,Φn) as n–tuple of functions, on which the differential operators in
question act component-wise. We can consequently reduce to the familiar case of differential
forms on Σ, where, with the usual small abuse of notation,

∆(dΦ) = ∇∗∇(dΦ) = ∆C(dΦ),
∇∆Φ = d(∇∗dΦ) = d(d∗dΦ) = ∆HdΦ,

where ∆C and ∆H denote the connection and Hodge Laplacian respectively and we also used
the fact that ∇∗ = d∗ when restricted to forms. Hence, by the Weizenböck formula, with our
sign conventions we have

∇∆Φ = ∆(dΦ)− Ric(dΦ) = ∆(dΦ)−KdΦ.
We conclude that〈

∆Φ,∆X
〉
−
〈
∇2Φ,∇2X

〉
= d∗

(〈
∆Φ,∇X

〉
−
〈
∇2Φ,∇X

〉)
+K

〈
dΦ,∇X

〉
,

and consequently that
∂

∂t
(Kdσ) = d∗

(〈
∆Φ,∇X

〉
−
〈
∇2Φ,∇X

〉)
dσ = d∗

(
2
〈
H,∇X

〉
−
〈
A,∇X

〉)
dσ.

Finally if we replace A with A = A◦ +Hg, since 〈Hg,∇X〉 = 〈H,∇X〉, we deduce the validity
of the claimed formulas.
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3.3 The Willmore Operator in Divergence Form
We present some details about the Willmore operator.

3.3.1 First, a remark about differential geometry. IfM is a manifold immersed in Rn, there
is a fundamental difference in the covariant differentiation, in the ambient space, of vector fields
and differential forms, namely if X, V ∈ X(M) and ω ∈ Ω1(M), then

∇XV = ∇XV + A(X, V ),
∇Xω = ∇Xω,

where A is the second fundamental form ofM and ∇ the Euclidean covariant derivative in Rn.
Consequently, the musical isomorphisms onM do not commute with the ambient covariant
derivative.

An obvious example is the following. Denote by Φ the map defining the immersion ofM into
Rn. If we take the (flat) metric g = gRn restricted toM, for which it holds ∇g = ∇g ≡ 0, and
we raise the first index we obtain the identity map overM:

g] = ∂µ ⊗ dxµ ' ∂µΦ⊗ dxµ = dΦ,

we have

∇(g]) = ∇dΦ = ∇2Φ = A.

More generally, in the same setting as above, we will use the following.

Lemma 3.3.1. Let B = Bµνdx
µ ⊗ dxν ∈ T 0

2 (M) be a 2-covariant tensor and let

B] = gµαBαν ∂µ ⊗ dxν ' gµαBαν ∂µΦ⊗ dxν

be the tensor obtained raising the first index. Then the ambient covariant derivative of B] is as
follows:

∇X(B])(V ) = (∇XB)](V ) + A(X,B](V )),

for every X, V ∈ X(M).

Proof. Write B] = Bµ
ν ∂µ ⊗ dxν ' Bµ

ν ∂µΦ⊗ dxν and compute in local coordinates:

∇X(B]) = X(Bµ
ν )∂µΦ⊗ dxν +Bµ

ν

(
∇X∂µ + A(X, ∂µ)

)
⊗ dxν +Bµ

ν ∂µΦ⊗∇Xdx
ν

= ∇X(B]) +Bµ
νA(X, ∂µ)⊗ dxν

= ∇X(B]) + A(X,Bµ
ν ∂µ)⊗ dxν ,

and conclude using the fact that index raising commutes with the covariant derivative onM.
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3.3.2

Proposition 3.3.2. With the same hypotesis as in Proposition 3.2.2, whenM = Σ is a surface
and N = Rn, we have

1
2
∂

∂t

(
|A◦|2 dσ

)
= (∇∗w) dσ + d∗

(
〈A◦,∇X〉 − 〈w,X〉

)
dσ, (3.3.1)

w is the TRn-valued 1-form written in any of these equivalent ways:

w = ∇H − 2(∇H)> − |H|2dΦ
= ∇H + 〈H,A〉] + 〈H,A◦〉] (3.3.2)
= ∇⊥H + 〈H,A◦〉] (3.3.3)
= (∇⊥)∗A◦ + 〈H,A◦〉]. (3.3.4)

Proof. From Proposition 3.2.2, integration by parts yields

∂

∂t

(
|H|2dσ

)
=
(〈
H,∆X

〉
+ 2

〈
(∇H)>,∇X

〉
+ |H|2

〈
dϕ,∇X〉

)
dσ

=
〈
∇∗
(
∇H − 2(∇H)> − |H|2dϕ

)
, X

〉
dσ

+ d∗
(〈
H,∇X

〉
−
〈
∇H − 2(∇H)> − |H|2dϕ,X

〉)
dσ,

and since 1
2 |A

◦|2 = |H|2 −K, with Proposition 3.2.3 we deduce (3.3.1). To deduce the other
equivalent expression for w, we claim that

(∇H)> = −〈H,A〉], (3.3.5)
|H|2dΦ = 〈H,Hg〉], (3.3.6)

(∇H)> + |H|2dΦ = −〈H,A◦〉]. (3.3.7)

Indeed, since H is a normal vector, we have

(∇H)> = gµν〈∇H, ∂νΦ〉∂µΦ
= −gµν〈H,∇∂νΦ〉∂µΦ
= −gµν〈H,A(·, ∂ν)〉∂µΦ
= −gµν〈H,Aαν〉∂µΦ⊗ dxα,

which is (3.3.5). Similarly for (3.3.6) since

|H|2dΦ = 〈H,H〉∂µΦ⊗ ∂xµ = gµν〈H,Hgαν〉∂µΦ⊗ dxα,

and (3.3.7) is obtained adding (3.3.5) to (3.3.6). With these identites, decomposing ∇H =
(∇H)>+∇⊥H gives (3.3.2) and (3.3.3), while (3.3.4) is obtained in turn since Codazzi’s equation
implies

∇⊥H = (∇⊥)∗A◦ = 1
2(∇⊥)∗A.
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Remark 3.3.3 We may equivalently have used |A◦| = |A|2 − 2|H|2 and

1
4
∂

∂t

(
|A|2dσ

)
= 1

2

(〈
A,∇2X

〉
+ 4

〈
(∇H)>,∇X

〉
+
(

2K + |A|
2

2

)〈
dϕ,∇X

〉)
dσ

=
〈
∇∗
(
∇H − 2(∇H)> − |H|2dϕ

)
, X

〉
dσ

+ d∗
(1

2

〈
A,∇X

〉
−
〈
∇H − 2(∇H)> − |H|2dϕ,X

〉)
dσ,

to deduce, since K = 2|H|2 − 1
2 |A|

2,

1
2
∂

∂t

(
|A◦|2dσ

)
=
(〈
H,∆X

〉
+ 2

〈
(∇H)>,∇X

〉
+ |H|2

〈
dϕ,∇X〉

)
dσ

− d∗
(〈
H,∇X

〉
−
〈
A◦,∇X

〉)
dσ

=
〈
∇∗
(
∇H − 2(∇H)> − |H|2dϕ

)
, X

〉
dσ

+ d∗
(〈
A◦,∇X

〉
−
〈
∇H − 2(∇H)> − |H|2dϕ,X

〉)
dσ.

and deduce in this way (3.3.1).
From Proposition 3.3.2 we deduce an expression, in divergence form, of the Willmore operator;

the following shows its equivalence with the classical one.

Proposition 3.3.4. For an immersion Φ : Σ→ Rn, its Willmore operator may be expressed
equivalently as

δW = ∇∗w = ∆⊥H +Q(A◦)H, (3.3.8)

where ∆⊥ denotes the Laplace operator on the normal bundle of Φ(Σ) and

Q(A◦)H =
〈
A◦, 〈H,A◦〉

〉
= gµσgντ

〈
A◦µν , 〈A◦στ , H〉

〉
.

Proof. We see that

∇∗(∇⊥H) =
(
∇∗(∇⊥H)

)
> +

(
∇∗(∇⊥H)

)
⊥

=
(
∇∗(∇⊥H)

)
> + (∇⊥)∗(∇⊥H)

=
(
∇∗(∇⊥H)

)
> + ∆⊥H.

We claim that(
∇∗(∇⊥H)

)
> = −〈∇H,A〉]. (3.3.9)

Indeed, since ∇⊥H is normal-valued, we have(
∇∗(∇⊥H)

)
> = gµν〈∇∗∇⊥H, ∂νΦ〉∂µΦ

= −gµν〈∇⊥H,∇∂νΦ〉∂µΦ
= −gµν〈∇⊥H,A(·, ∂ν)〉∂µΦ,
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that gives (3.3.9). So we deduced:

∇∗(∇⊥H) = ∆⊥H − 〈∇H,A〉]. (3.3.10)

Next, from Lemma 3.3.1 and Codazzi’s equation we have

∇∗(〈H,A◦〉]) = (∇∗〈H,A◦〉)] + 〈A, 〈H,A◦〉〉

=
(
〈∇H,A◦〉+ 〈H,∇∗A◦〉

)]
+ 〈A, 〈H,A◦〉〉

=
(
〈∇H,A◦〉+ 〈H,∇H〉

)]
+ 〈A, 〈H,A◦〉〉

= 〈∇H,A〉] + 〈A, 〈H,A◦〉〉.

Consequently,

∇∗w = ∇∗
(
∇⊥H + 〈H,A◦〉]

)
= ∆⊥H − 〈∇H,A〉] + 〈∇H,A〉] + 〈A, 〈H,A◦〉〉
= ∆⊥H + 〈A, 〈H,A◦〉〉;

however, it is

〈A, 〈H,A◦〉〉 = 〈A◦, 〈H,A◦〉〉 = Q(A◦)H, (3.3.11)

since, being A◦ trace-free, there holds

〈Hg, 〈H,A◦〉〉 = Hgµσgντgµν〈H,A◦στ 〉 = Hgστ 〈H,A◦στ 〉 = 0.

So ∇∗w is equivalent to the classical form of the Willmore operator.

3.3.3 For future use, we also compute explicitly how the Willmore operator compares to the
Bilaplacian ∆2Φ = 2∆gH.

Lemma 3.3.5. The Bilaplacian operator of an immersion Φ : Σ→ Rn decomposes orthogonally
as follows:

1
2∆2

gΦ = ∆gH = (∆gH)⊥ + (∆gH)> (3.3.12)

= ∆⊥H − 〈A, 〈H,A〉〉 − 2〈∇H,A〉] − 〈∇H,H〉].

Proof. Orthogonal decomposition gives

∆gH = ∇∗∇H = ∇∗(∇H)> +∇∗(∇⊥H);

with (3.3.5), Lemma 3.3.1 and Codazzi we deduce

∇∗(∇H)> = −∇∗(〈H,A〉])

= −
(
〈∇H,A〉+ 〈H,∇∗A〉

)]
− 〈A, 〈H,A〉〉

= −
(
〈∇H,A〉+ 〈H,∇H〉

)]
− 〈A, 〈H,A〉〉

so together with (3.3.10) we get (3.3.12).
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From (3.3.12) it is also clear that the highest-order term in the expression is ∆⊥H. In a
similar fashion, if we want to write δW as full bilaplacian ∆2

gΦ plus lower order terms, we have
the following.

Lemma 3.3.6. For an immersion Φ : Σ→ Rn there holds

δW = 1
2∆2

gΦ +∇∗
(
〈H,A◦〉] + 〈H,A〉]

)
(3.3.13)

= 1
2∆2

gΦ + 〈∇H,H〉] + 2〈∇H,A〉] + 〈A◦, 〈H,A◦〉〉+ 〈A, 〈H,A〉〉. (3.3.14)

Proof. Identity (3.3.13) line is immediate from (3.3.2). Using (3.3.5), (3.3.6), (3.3.7), (3.3.11),
Lemma 3.3.1 and Codazzi, we get

δW = 1
2∆2

gΦ +∇∗
(
〈H,A◦〉] + 〈H,A〉]

)
= 1

2∆2
gΦ +

(
〈∇H,A◦〉+ 〈H,∇∗A◦〉

)
] + 〈A, 〈H,A◦〉〉

+
(
〈∇H,A〉+ 〈H,∇∗A〉

)
] + 〈A, 〈H,A〉〉,

= 1
2∆2

gΦ +
(
〈∇H,A◦〉+ 2〈H,∇H〉+ 〈∇H,A〉

)
] + 〈A◦, 〈H,A◦〉〉+ 〈A, 〈H,A〉〉.

Since

〈∇H,A◦〉+ 2〈H,∇H〉+ 〈∇H,A〉 = 〈∇H,H〉+ 2〈∇H,A〉,

we get (3.3.14).

Finally we also point out the following.

Lemma 3.3.7. Let g0 be a fixed reference metric on Σ and let Φ : Σ → Rn be a conformal
immersion with conformal factor eλ. Then

∆2
gΦ = e−4λ

(
∆2
S2Φ− 4〈dλ,∇∆g0Φ〉g0 + (4|dλ|2g0 − 2∆g0λ)∆g0Φ

)
, (3.3.15)

and likewise

∆2
g0Φ = e4λ

(
∆2
gΦ + 4〈dλ,∇∆gΦ〉g + (4|dλ|2g + 2∆gλ)∆gΦ

)
.

The proof is elementary: it suffices to expand the identities ∆2
gΦ = e−2λ∆g0(e−2λ∆g0Φ)) and

∆2
g0Φ = e2λ∆g0(e2λ∆g0Φ)).

3.4 Willmore Energy and Conservation Laws
In this section and the following, we revisit some of the work done in [Riv08], [Riv16], [Ber16]
with particular regard to surfaces that that are not necessarily Willmore.

We shall work henceforth in codimension 1, i.e. n = 3, The assumption greatly simplifies the
calculations, although is it not essential.
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Proposition 3.4.1. Let Φ : Σ→ R3 be an immersion with induced metric g = Φ?gR3 = Φ?〈·, ·〉
and let δW be the Willmore Euler-Lagrange operator applied to Φ. Let w ∈ Γ(Φ?(TR3)⊗ T ∗Σ)
be the vector-valued form along Φ defined in Proposition 3.3.2, namely

w = ∇H − 2(∇H)> − |H|2dΦ = ∇H + 〈H,A◦〉] + 〈H,A〉].

Then the following formulas hold true:

δW = ∇∗w, (3.4.1)
Φ× δW = ∇∗

(
− dΦ× A◦ + Φ× w

)
, (3.4.2)〈

Φ, δW
〉

= d∗
〈
Φ, w

〉
, (3.4.3)

Φ× (Φ× δW) + Φ
〈
Φ, δW

〉
= ∇∗

(
− 2Φ× (dΦ× A◦) + Φ× (Φ× w) + Φ〈Φ, w〉

)
. (3.4.4)

Proof. Since the Lagrangian

1
2 |A

◦|2dσg

is point-wise invariant under conformal transformation on the target (see Chen [Che74](, if we
consider family of diffeomorphisms (onto their image) F : I × Ω→ R3, with I × Ω ⊆ R× R3

that are conformal at every time and so that F (0, ·) = idR3 , the Willmore Lagrangian of the
family

Φ(t, x) = F (t,Φ(x))

will be constant in time. Thus letting

X (y) = ∂

∂t
F (t, y)

∣∣∣∣∣
t=0

be the associated vector field and

X(t, x) = ∂tΦ(t, x) = X (Φ(t, x))

be the velocity of the family, from Proposition 3.3.2 it will follow that〈
δW , X

〉
+ d∗

(〈
A◦,∇X

〉
−
〈
w,X

〉)
= 0. (3.4.5)

Invariance by Translations. For every fixed vector v ∈ R3, we set F (t, y) = y+sv, so X (y) ≡ v
and X(x) ≡ v. Thus (3.4.5) gives immediately (3.4.1). As expected this conservation law is
equivalent to the Euler-Lagrange equation.
Invariance by Rotations. If v is a unit vector in R3 and R(v, ϑ) is the counter-clockwise

rotation of angle ϑ in direction v, we set F (t, y) = R(v, t)(y), so X (y) = v × y and X = v × Φ.
Thus (3.4.5) gives〈

δW , v × Φ
〉

+ d∗
(〈
A◦, v × dΦ

〉
−
〈
w, v × Φ

〉)
= 0,

and hence, with the triple product rule and since v is arbitrary, (3.4.2) follows.
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Invariance by Dilations. We set F (s, y) = esy, so X = idRn and X = Φ. Thus, since A◦ is a
normal-valued, (3.4.5) gives (3.4.3).
Invariance by Inversions. Let I(y) = y/|y|2 be the inversion with respect to the unit sphere

and let τv(y) = y + v be the translation of vector v ∈ Rn. Then the composition

fv(y) = I ◦ τv ◦ I = y + v|y|2

|y + |y|v|2 |x|
2 = y + v|y|2

1 + |y|2|v|2 + 2〈y, v〉

is smooth away from −v/|v|2 and satisfies fv ◦ fw = fv+w. Then for each unit vector in v ∈ R3

the map F : (−s0, s0)×B1/s0(0)→ Rn given by

F (s, y) = fsv(y) = y + sv|y|2

1 + s2|y|2 + 2s〈y, v〉 .

is a family of diffeomorphisms, and is in fact the local flow associated to the vector field
X (y) = v|y|2 − 2y〈y, v〉. Then

X = v|Φ|2 − 2Φ〈Φ, v〉 = Φ× (v × Φ)− Φ〈Φ, v〉.

Thus computing with the triple product rule,〈
δW , X

〉
=
〈
δW ,Φ× (v × Φ)

〉
−
〈
δW ,Φ〈Φ, v〉

〉
=
〈
v × Φ, δW × Φ

〉
−
〈
δW ,Φ〈Φ, v〉

〉
=
〈
v,Φ× (δW × Φ)

〉
−
〈
δW ,Φ〈Φ, v〉

〉
=
〈
− Φ× (Φ× δW)− Φ〈Φ, δW〉, v

〉
,

similarly we have〈
w,X

〉
=
〈
− Φ× (Φ× w)− Φ〈Φ, w〉, v

〉
,

and finally since

∇X = 2
(
〈dΦ,Φ〉v − dΦ〈Φ, v〉 − Φ〈dΦ, v〉

)
= 2

(
Φ× (v × dΦ)− Φ〈dΦ, v〉

)
with a similar computation we have〈

A◦,∇X
〉

= 2
〈
A◦,Φ× (v × dΦ)− Φ〈dΦ, v〉

〉
= 2

〈
− dΦ× (Φ× A◦)−

〈
dΦ, 〈Φ, A◦〉

〉
, v
〉

= 2
〈
− dΦ× (Φ× A◦)− A◦ × (dΦ× Φ), v

〉
= 2

〈
Φ× (A◦ × dΦ), v

〉
= −2

〈
Φ× (dΦ× A◦), v

〉
,

where we used that
〈
dΦ, 〈Φ, A◦〉

〉
= A◦× (dΦ×Φ) since A◦ is normal valued and Jacobi identity

for the vector product. Hence (3.4.5) gives

−
〈
Φ× (Φ× δW) + Φ〈Φ, δW〉, v

〉
+ d∗

(
− 2

〈
Φ× (dΦ× A◦), v

〉
+
〈
Φ× (Φ× w) + Φ〈Φ, w〉, v

〉
= 0,

and since v is an arbitrary unit vector this is equivalent to (3.4.4).
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Remark 3.4.2 Note that (3.4.4) can be deduced from (3.4.2) and (3.4.3), but for instance
(3.4.3) does not seem directly deducible directly using only (3.4.2) and (3.4.4). Thus there seems
to be some sort of “hierarchy” between these equations.

The equations in Proposition 3.4.1 involve the tracefree second fundamental form. We obtain
an equivalent set of equations, analogous to the one in [Riv08], [Ber16], involving the mean
curvature instead.

Corollary 3.4.3. In the same hypothesis of Proposition 3.4.1, the following formulas hold true:

δW = ∇∗w,
Φ× δW = ∇∗

(
− dΦ×H + Φ× w

)
,〈

Φ, δW
〉

= d∗
〈
Φ, w

〉
,

Φ× (Φ× δW) + Φ
〈
Φ, δW

〉
+ 4H = ∇∗

(
− 2Φ× (dΦ×H) + Φ× (Φ× w) + Φ〈Φ, w〉

)
.

Proof. Since the Gauss curvature density is point-wise invariant by rotations, applying the
same procedure as in the proposition, from Proposition 3.2.3 we get the formula

∇∗
(
dΦ×H − dΦ× A◦

)
= 0, (3.4.8)

from which one computes that

−2H = ∇∗
(
Φ× (dΦ×H)− Φ× (dΦ× A◦)

)
. (3.4.9)

By subtracting (3.4.8) from (3.4.2) and (3.4.9) from (3.4.4) we get the result.
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4 Elliptic Estimates for the
Inhomogeneous Willmore Equation

Summary: This chapter presentes an ellpitic regularity result for the inho-
mogeneous Willmore equation. For a conformal, Lipschitz W 2,2 immersion with
distributional Willmore operator in Lp, 1 < p <∞, it is proven that such immersion
is locally W 4,p, just as is expected for an elliptic problem. A quantitative estimate
is also given for the case p = 2. This theorem is a generalization of the classical
result of Rivière for the regularity of weak Willmore surfaces, and the proof follows,
essentially, similar ideas.

4.1 Introduction
It is often the case that, when dealing with PDE related to a variational problem, one is led
to study the associated inhomogeneous equation. If the PDE in question is elliptic, then one
expects to gain as many degrees of information from the inhomogeneous datum as is the order
of the equation, similarly as in the classical study of the Laplace operator and the Poisson
equation.
For instance, considering

−∆u = f in B1,

one wants to deduce information on u from f . By the classical elliptic estimates, if for instance
f ∈ L2(B1) then, regardless of the initial space where u is (e.g. W 1,2, or even only a distribution),
there holds u ∈ W 2,2

loc (B1) with a quantitative estimate

‖u‖W 2,2(B1/2) ≤ C
(
‖f‖L2(B1) + ‖u‖L2(B1)

)
,

holding for a constant C independent of u and f .
For nonlinear elliptic equations, success or failure of this gain depend on the particular nature

of the nonlinearities in relation to the background initial function space and, if one also needs
quantitative estimates, on suitable “smallness” of the energy associated with the PDE (or a
related one).

In the present situation, we are concerned with the Willmore equation, a nonlinear, 4th order
elliptic PDE, and motivated by the study of the Willmore flow in the next chapter, we are
interested in deducing local regularity properties of a weak conformal immersion from that of
its Willmore operator.
To this aim we recall the basic definitions.
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Definition 4.1.1. Let B1 be the unit disk in R2 with background Euclidean metric gR2. The
class of Lipschitz W 2,2 immersions, or weak immersions for short, is

E (B1,Rn) = (W 2,2 ∩W 1,∞
imm)(B1,Rn),

namely, Φ belongs to E (B1,Rn) if and only if it is W 2,2 and there exists C > 0 so that a.e. in
B1 there holds, in the sense of metrics,

1
C
gR2 ≤ g ≤ CgR2 .

The Willmore operator of Φ ∈ E (B1,Rn) is defined as the vector-valued, distribution-valued two
form on B1 given by(

δW(Φ)dσg, ϕ
)
D′

=
(
∇∗g

(
∇H + 〈A◦, H〉]g + 〈A◦, H〉]g

)
dσg, ϕ

)
D′
,

for every ϕ ∈ C∞(B1,Rn) or, equivalently, as
(
δWdσg, ϕ

)
D′

=
∫
B1

(
〈H,∆gϕ〉 −

〈
〈A◦, H〉]g + 〈A,H〉]g ,∇ϕ

〉
g

)
dσg.

This chapter is devoted to prove the following regularity result.

Theorem 4.1.2. Let Φ ∈ E (B1,R3) be conformal with conformal factor eλ and Willmore
operator δW in Lp(B1) for some 1 < p <∞. Then Φ ∈ W 4,p

loc (B1), and furthermore when p = 2
if C(2,∞) > 0 is constant so that

‖dλ‖L(2,∞)(B1) ≤ C(2,∞),

there exists an ε0 > 0 depending only on C(2,∞) so that if

W2(Φ) = 1
4

∫
B1
|A|2g dσg ≤ ε0,

then the following estimate holds:

‖dΦ‖W 3,2(B1/2) ≤ C
(
‖e4λδW‖L2(B1) + ‖eλ‖L2(B1)

)
, (4.1.1)

where C = C(C(2,∞)) > 0.

Remark 4.1.3 The fact that the estimate (4.1.1) does not include ‖Φ‖L2(B1/2) on the left
hand-side is motivated by the translation invariance of all the quantities on the right-hand side.
Such result generalizes the classical proof of the regularity of weak Willmore immersions

by Rivière [Riv08, Riv14, Riv16], and the proof is similar in spirit and methodology. We now
briefly summarize the essential ideas.

The first thing one notices is that the Willmore equation is critical in E (B1,R3): indeed if we
write

δW = ∆gH +∇∗g
(
〈A◦, H〉]g + 〈A◦, H〉]g

)
, (4.1.2)
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4.2 The Inhomogeneous Willmore System

even assuming conformality and, say, δW ∈ L2 the last term on the right hand side represent,
written explicitly, divergence of L1–quantities, a fact thats prevents standard elliptic regularity
theory from being applied to H. Only a slightly better information on H namely H ∈ Lploc(B1)
for some p > 2 rather than just p = 2 would suffice to start the bootstrapping process.
To deduce such information, a new substantial idea is needed, namely, one exploits the fact

that Willmore surfaces and Willmore energies are conformal invariant. More precisely, in our
version of the proof we shall use the fact that the Lagrangian density |A◦|2dσg is pointwise
invariant under conformal transformations of Rn (n = 3 in this case) see Chen [Che74]. This
yields a set of new equations (see Proposition 3.4.1 and Corollary 3.4.3 of Chapter 3), true for
any immersion Φ, and performing suitably a Hodge decomposition on such equations, one is led
to a system that comprises linear combination of Jacobians, plus other therms due to the fact
of higher regularity.
This in the end is yields the required extra information on H and, through integrability by

compensation estimates (see Chapter 2) allows for the regularity bootstrap.

4.2 The Inhomogeneous Willmore System
We first point out the following fact.

Lemma 4.2.1. The vector-valued form w defined in Proposition 3.3.2 satisfies 〈w, dΦ〉g = 0.

Proof. Since |dΦ|2 = 2 and H is a normal vector field, we have

〈w, dΦ〉 =
〈
∇H, dΦ

〉
− 2

〈
πτ (∇H), dΦ

〉
− |H|2|dΦ|2

= −
〈
∇H, dΦ

〉
− 2|H|2

= −1
2
〈
∇∆gΦ, dΦ

〉
− 2|H|2

= 1
2
〈
∆gΦ,∇∗dΦ

〉
− 2|H|2

= 1
2 |∆gΦ|2 −

1
2 |∆gΦ|2 = 0.

Since we are working on the disk, every closed 1–form is also exact. For the same reason, if
ω ∈ Ω1(B1) is a 1–form which is co–closed: d∗ω = 0, then there exist a function f ∈ C∞(B1),
unique up to an additive constant, so that d∗(∗f) = ω i.e. so that ∗df = ω. The same holds for
vector-valued forms, replacing “d” with “∇”.

For the following proposition, the starting point are Proposition 3.4.1 and Corollary 3.4.3 of
Chapter 3.

Proposition 4.2.2. Φ : B1 → R3 be an immersion. Consider the Hodge decomposition

w = ∇L + ∗∇L, (4.2.1)

and consider further the Hodge decompositions

−dΦ×H − (∗dΦ)× L = ∇R + ∗∇R, (4.2.2)
−〈∗dΦ, L〉 = dS + ∗dS. (4.2.3)
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Then the following relations hold:

∆gΦ = dΦ×
(
∇R + ∗∇R

)
+
〈
dΦ, dS + ∗dS

〉
(4.2.4)

∆gR = ∇N × (∇R + ∗∇R)− 〈∇N, dS + ∗dS〉+ (∗dΦ)×∇L , (4.2.5)
∆gS = 〈∇N,∇R + ∗dR〉+ 〈∗dΦ,∇L 〉, (4.2.6)

where N is the Gauss map of Φ.

Proof. Note first that, if the Hodge decompositions (4.2.1), (4.2.2), (4.2.3) hold, we necessarily
have

∆gL = ∇∗w = δW ,

∆gR = −dΦ×∇L , (4.2.7)
∆gS = −〈dΦ,∇L 〉. (4.2.8)

With (3.4.4) and the identity

∇∗(−Φ× dΦ×H) = 2H − Φ× dΦ×∇H = 2H − Φ× dΦ× w,

we see that there holds

Φ× (Φ× δW) + Φ〈Φ, δW〉+ 4H
= ∇∗

(
− 2Φ× (dΦ×H) + Φ× (Φ× w) + Φ〈Φ, w〉

)
= ∇∗

(
− Φ× (dΦ×H)

)
+∇∗

(
Φ×

(
− dΦ×H + Φ× (∇L + ∗∇L)

)
+ Φ

〈
Φ,∇L + ∗∇L

〉)
= 2H − Φ× (dΦ× w)

+∇∗
(

Φ×
(
− dΦ×H + Φ×∇L + ∗∇(Φ× L)− (∗dΦ)× L

))
+∇∗

(
Φ
(
〈Φ,∇L 〉+ ∗d〈Φ, L〉 − 〈∗dΦ, L〉

))
= 2H − Φ× (dΦ× w)

+∇∗
(

Φ×
(
Φ×∇L +∇R + ∗∇R + ∗∇(Φ× L)

))
+∇∗

(
Φ
(
〈Φ,∇L 〉+ dS + ∗dS + ∗d〈Φ, L〉

))
.

Now, on the one hand we have, from (4.2.7),

∇∗
(

Φ×
(
Φ×∇L +∇R + ∗∇R + ∗∇(Φ× L)

))
= dΦ×

(
Φ×∇L +∇R + ∗∇R + ∗∇(Φ× L)

)
+ Φ×

(
dΦ×∇L + Φ×∆gL + ∆gR

)

= dΦ×
(
Φ× dL +∇R + ∗∇R + ∗∇(Φ× L)

)
+ Φ× (Φ× δW)

56
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on the other hand from (4.2.8) it follows that

∇∗
(

Φ
(
〈Φ,∇L 〉+ dS + ∗dS + ∗d〈Φ, L〉

))
=
〈
dΦ, 〈Φ,∇L 〉+ dS + ∗dS + ∗d〈Φ, L〉

〉
+ Φ

(
〈dΦ,∇L 〉+ 〈Φ,∆gL 〉+ ∆gS

)
=
〈
dΦ, 〈Φ,∇L 〉+ dS + ∗dS + ∗d〈Φ, L〉

〉
+ Φ〈Φ, δW〉,

thus we deduce

2H = −Φ× (dΦ× w)
+ dΦ×

(
Φ×∇L +∇R + ∗∇R + ∗∇(Φ× L)

)
+
〈
dΦ, 〈Φ,∇L 〉+ dS + ∗dS + ∗d〈Φ, L〉

〉
= −Φ× (dΦ× w) + dΦ×

(
∇R + ∗∇R

)
+
〈
dΦ, dS + ∗dS

〉
+ dΦ×

(
Φ×∇L + ∗∇(Φ× L)

)
+
〈
dΦ, 〈Φ,∇L 〉+ ∗〈Φ, L〉

〉
.

By definition of L and L, with Lemma 4.2.1 the last line in the above expression is

dΦ×
(
Φ×∇L + ∗∇(Φ× L)

)
+
〈
dΦ, 〈Φ,∇L 〉+ ∗〈Φ, L〉

〉
= dΦ×

(
Φ× (∇L + ∗∇L) + (∗dΦ)× L

)
+
〈
dΦ, 〈Φ,∇L + ∗∇L〉+ 〈∗dΦ, L〉

〉
= dΦ×

(
Φ× w + (∗dΦ)× L

)
+
〈
dΦ, 〈Φ, w〉+ 〈∗dΦ, L〉

〉
= dΦ×

(
Φ× w

)
+
〈
dΦ, 〈Φ, w〉

〉
+ dΦ×

(
(∗dΦ)× L) +

〈
dΦ, 〈∗dΦ, L〉

〉
= Φ× (dΦ× w),

and this yields (4.2.4). Next, since 〈dΦ×H,N〉 = 0, we see that〈
∇R + ∗∇R,N

〉
=
〈
− dΦ×H − (∗dΦ)× L,N

〉
= −

〈
N × (∗dΦ), L

〉
= −

〈
dΦ, L

〉
= − ∗ dS + dS

and similarly, using the rules of the vector product, we have(
∇R + ∗∇R

)
×N = (−dΦ×H − (∗dΦ)× L

)
×N

= N ×
(
dΦ×H

)
+N ×

(
(∗dΦ)× L

)
= −H × (N × dΦ)− dΦ× (H ×N)
− L×

(
N × (∗dΦ)

)
− (∗dΦ)× (L×N)

= H × (∗dΦ)− L× dΦ− (∗dΦ)× (L×N)
= −(∗dΦ)×H + dΦ× L+N〈∗dΦ, L〉
= ∗∇R −∇R−N(dS + ∗dS),
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and thus, codifferentiating these identities we have

∆gR ×N +
(
∇R + ∗∇R

)
×∇N = −∆gR−

〈
∇N, dS + ∗dS

〉
−N∆gS ,〈

∆gR, N
〉

+
〈
∇R + ∗∇R,∇N

〉
= ∆gS.

It now suffices to notice that, by definition of R and S it is

N∆gS = −N〈dΦ,∇L 〉
∆gR ×N = −(dΦ×∇L )×N = N × (dΦ×∇L ) =

〈
dΦ, 〈N,∇L 〉

〉
,〈

∆gR, N
〉

= −〈dΦ×∇L , N〉 = −〈N × dΦ,∇L 〉 = 〈∗dΦ,∇L 〉

and in particular

∆gR ×N +N∆gS =
〈
dΦ, 〈N,∇L 〉

〉
−N〈dΦ,∇L 〉

= ∇L × (dΦ×N)
= ∇L × (∗dΦ).

Substituting these relations in the ones above then gives (4.2.5) and (4.2.6).

4.3 Qualitative Estimates
Proposition 4.3.1. Let 1 < q < ∞ and let Φ ∈ E (B1,Rn) be a conformal with Willmore
operator δW in Lq(B1). It suffices to know that H ∈ Lp(B1) for some p > 2 to deduce that
Φ ∈ W 4,q

loc (B1).

Proof. We may certainly assume 2 < p < 4. Since

∆Φ = 2e2λH ∈ Lp,

elliptic regularity theory gives that Φ ∈ W 2,p
loc , and this in turn implies

A = (∇2Φ)⊥ ∈ Lploc.

Looking at the Willmore equation (4.1.2):

−∆H = ∇∗(〈A◦, H〉]g + 〈A,H〉]g)− e2λδW ,

we see that

〈A◦, H〉]g + 〈A,H〉]g = e−2λ
(
〈A◦, H〉] + 〈A,H〉]

)
∈ L

p
2
loc,

and, since q > 1, we have in particular that δW ∈ W−1,2; thus ∆H ∈ W−1, p2
loc , whence elliptic

regularity and Sobolev embedding give

H ∈ W 1, p2
loc ↪→ L

( p2)∗
loc ,

58



4.3 Qualitative Estimates

and from this, it follows that A ∈ L( p2)∗
loc . Then

〈A◦, H〉]g + 〈A,H〉]g ∈ L
1
2( p2)∗
loc ,

whence ∆H ∈ W−1, 12( p2)∗
loc , so by elliptic regularity

H ∈ W 1, 12( p2)∗
loc .

This process can be iterated, and since the sequence p,
(
p
2

)∗
,
(

1
2

(
p
2

)∗)∗
,
(

1
2

(
1
2

(
p
2

)∗)∗)∗
,. . . is

strictly monotone increasing and unbounded, after a finite number (depending on p) of steps we
get that(1

2

(1
2

(
· · ·

(
p

2

)∗
· · ·

)∗)∗)∗
≥ 2.

We then deduce that −∆H ∈ W−1,2
loc , and thus that H ∈ W 1,2

loc . By Sobolev embedding, this
yields H ∈ Lrloc for every r <∞, and in turn elliptic estimates give

Φ ∈ W 2,r
loc ∀ r <∞,

hence also A ∈ Lrloc for every r <∞. From Liouville equation

−∆λ = e2λK,

since |K| ≤ C|A|2, we have ∆λ ∈ Lrloc and hence λ ∈ W 2,r
loc for every r <∞. With this we infer

that in fact A,H ∈ W 1,r
loc and so

〈A◦, H〉]g + 〈A,H〉]g ∈ W 1,r
loc ,

Thus −∆H ∈ Lqloc, which implies H ∈ W 2,q
loc and hence (again since λ ∈ W 2,r

loc ) that Φ ∈ W 4,q
loc .

Proposition 4.3.2. Let Φ ∈ E (B1,R3) be conformal with conformal factor eλ and so that
δW ∈ Lp(B1) for some p > 1. Then H ∈ Lrloc(B1) for every r <∞.

Proof. We may certainly assume 1 < p < 2.
Step 1: there exists L and L realizing the Hodge decomposition (4.2.1) with L ∈ W 2,p(B1)

and L ∈ L(2,∞)
loc (B1). Indeed, we let L solve{

∆L = e2λδW in B1,

u = 0 on ∂B1.

Elliptic regularity theory gives then that L ∈ W 2,p. By construction we have

d∗(w − dL ) = 0 in B1,

thus L exists as a distribution in B1 thanks to Poincaré’s lemma and it is determined up to an
additive constant. Note now that

∆L = d∗(∗dL − ∗w)
= d∗

(
∗ dL − ∗(∇H + 〈A◦, H〉]g + 〈A,H〉]g)

)
= −d∗

(
∗ (〈A◦, H〉]g + 〈A,H〉]g)

)
,
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so if we let

L0(x) = −
∫
B1

〈
dK(x− y), ∗(〈A◦, H〉]g + 〈A,H〉]g)

〉
dy,

where K(x) = − 1
2π log |x| is the fundamental solution of the Laplace operator, given that

|dK(x− y)| ≤ C

|x− y|
=⇒ sup

x∈B1

‖dK(x− ·)‖L2,∞(B1) ≤ C,

we see that L0 ∈ L(2,∞), and hence, since L− L0 is harmonic, that L ∈ L(2,∞)
loc .

Step 2: There exist R, R, S and S realizing the Hodge decompositions (4.2.2), (4.2.3) with
R,S ∈ W 2,p∗(B1) and R, S ∈ W 1,(2,∞)

loc (B1). Indeed, define R and S by{
∆R = −dΦ× dL in B1,

R = 0 on ∂B1,

{
∆S = −〈dΦ, dL 〉 in B1,

S = 0 on ∂B1.

Since by Sobolev embedding dL ∈ W 1,p ↪→ Lp
∗ , so elliptic regularity gives R,S ∈ W 2,p∗ . By

construction we then have

d∗
(
− dΦ×H − (∗dΦ)× L− dR

)
= 0,

d∗
(
− 〈∗dΦ, L〉 − dS

)
= 0,

and thus R and S exist as distributions by Poincaré lemma and are determined up to additive
constants, and, since L is in L(2,∞)

loc , so are dR and dS.
Step 3: conclusion. From relations (4.2.5), (4.2.6), we see that R and S satisfy a system

Jacobians plus some extra terms, namely{
∆R = dN × (∗dR)− 〈dN, ∗dS〉+ fR,

∆S = 〈dN, ∗dR〉+ fS,

where, since dL ∈ Lp∗ and dR, dS ∈ W 1,p∗ ↪→ L∞, we have

fR = dN × dR − 〈dN, dS 〉+ (∗dΦ)× dL ∈ L2,

fS = 〈dN, dR〉+ 〈∗dΦ, dL 〉 ∈ L2.

Thanks to Theorem 2.1.2 of Chapter 2, we get that R, S ∈ W 2,q
loc for every q < 2 and hence that

dR, dS ∈ W 1,r
loc for every r <∞.

Inserting thin information in (4.2.4) gives that ∆Φ, and so H, is in Lrloc for every r <∞.

4.4 Quantitative Estimates
4.4.1 Control of the Conformal Factor We firs recall the following basic fact about weak
immersions, providing uniform control of the conformal factor with sufficiently small Willmore
energy.
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Theorem 4.4.1 ([Hél02], [Riv16]). There exists ε0 > 0 so that, if Φ ∈ E (B1,Rn) is conformal
with conformal factor eλ and so that

W2(Φ) = 1
4

∫
B1
|A|2g dσg ≤ ε0,

then, if C(2,∞) > 0 is constant so that

‖dλ‖L(2,∞)(B1) ≤ C(2,∞),

for any domain 0 < r < 1 there holds

‖dλ‖L2(Br) + ‖λ− `‖L∞(Br) ≤ C
∫
B1
|A|2g dσg,

for some constants ` ∈ R and C = C(r, C(2,∞)) > 0.

Remark 4.4.2 By the triangle inequalily, without loss of generality we can take ` = λ(0) in
the above estimate.

4.4.2 In the computations that follows, we shall make use of various Gagliardo-Nirenberg
inequalities, namely, of multiplicative Sobolev inequalities such as

‖u‖L4(Ω) ≤ C‖u‖1/2
L2(Ω)‖u‖

1/2
W 1,2(Ω),

for u ∈ W 1,2(Ω), Ω ⊂ R2 bounded, regular domain. We refer for instance to [Nir59].

Proposition 4.4.3. Let Ω ⊂ R2 is a bounded, regular domain with 0 ∈ Ω and Φ : Ω → Rn

is a conformal immersion of class W 4,2 with conformal factor eλ. Let E > 0 and C∞ > 0 be
constants so that

‖e−λ∇2Φ‖L2(Ω) ≤ E and ‖λ− Λ‖L∞(Ω) ≤ C∞,

where Λ = λ(0). Then, the following estimate holds:

‖∆2Φ‖L2(Ω) ≤ 2‖e4λδW‖L2(Ω) + C‖e−λ∇2Φ‖L2(Ω)‖∇2Φ‖W 2,2(Ω), (4.4.1)

for a constant C = C(Ω, E, C∞) > 0.

Lemma 4.4.4. The following pointwise estimates hold for an absolute constant C > 0 and
k = 0, 1, 2:

1
C
|e−λ∇2Φ| ≤ |e−λA|+ |dλ| ≤ C e−λ|∇2Φ|, (4.4.2)

|∇k(e2λH)| ≤ C|∇k+2Φ|, (4.4.3)
|∇k(e2λH)| ≤ C|∇kA|, (4.4.4)

and the following estimate holds:

‖A‖Wk,2(Ω) ≤ C‖∇2Φ‖Wk,2(Ω), (4.4.5)

for C = C(Ω, E, C∞) > 0 and k = 0, 1, 2.
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4 Elliptic Estimates for the Inhomogeneous Willmore Equation

Proof. Since

Aµν = ∂2
µνΦ− Γσµν ∂σΦ and e2λ = 1

2 |dΦ|2,

and

Γ1
11 = ∂1λ, Γ1

12 = Γ1
21 = ∂2λ, Γ1

22 = −∂1λ,

Γ2
11 = −∂2λ, Γ2

12 = Γ1
21 = ∂1λ, Γ2

22 = ∂2λ,

estimates (4.4.2) and consequently (4.4.5) for k = 0 follow. Next, since

e2λH = 1
2∆Φ = 1

2(∆Φ)⊥ = 1
2(A11 + A22),

estimates (4.4.3) and (4.4.4) follow. Now differentiating of the above identities:

∂ξAµν = ∂3
ξµνΦ− ∂ξΓσµν ∂σΦ− Γσµν ∂2

ξσΦ,
∂2
ζξAµν = ∂4

ζξµνΦ− ∂2
ζξΓσµν ∂σΦ− ∂ξΓσµν ∂2

ζσΦ− ∂ζΓσµν ∂2
ξσΦ− Γσµν ∂3

ζξσΦ,

and

2dλe2λ = 〈∇2Φ, dΦ〉,
(2∇2λ+ 4dλ⊗ dλ)e2λ = 〈∇3Φ, dΦ〉+∇2Φ〈⊗̇〉∇2Φ,

(2∇3λ+ 8∇2λ⊗ dλ+ 8dλ⊗ dλ⊗ dλ)e2λ = 〈∇4Φ, dΦ〉+ 2∇3Φ〈⊗̇〉∇2Φ,

(where 〈⊗̇〉 means scalar product in the vector part, inner product in one of the covariant entries
and tensor product in the remaining ones) yields the estimates

|Γσµν | ≤ C|dλ|, |∂ξΓσµν | ≤ C|∇2λ|, |∂2
ζξΓσµν | ≤ C|∇3λ|,

and

|dλ| ≤ Ce−λ|∇2Φ|,
|∇2λ| ≤ C

(
|dλ|2 + e−λ|∇3Φ|+ e−2λ|∇2Φ|2

)
≤ C

(
e−2λ|∇2Φ|2 + e−λ|∇3Φ|

)
,

|∇3λ| ≤ C
(
|∇2λ||dλ|+ |dλ|3 + e−λ|∇4Φ|+ e−2λ|∇3Φ||∇2Φ|

)
≤ C

(
e−2λ|∇3Φ||∇2Φ|+ e−3λ|∇2Φ|3 + e−λ|∇4Φ|

)
,

thanks to which we estimate in turn

|∇A| ≤ C
(
|∇3Φ|+ eλ|∇2λ|+ |dλ||∇2Φ|

)
≤ C

(
|∇3Φ|+ e−λ|∇2Φ|2

)
,

|∇2A| ≤ C
(
|∇4Φ|+ eλ|∇3λ|+ |∇λ||∇2Φ|+ |dλ||∇3Φ|

)
≤ C

(
|∇4Φ|+ e−λ|∇3Φ||∇2Φ|+ e−2λ|∇2Φ|3

)
.
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Thus, with the help of Gagliardo-Nirenberg we can estimate

‖∇A‖L2 ≤ C
(
‖∇3Φ‖L2 + ‖e−λ|∇2Φ|2‖L2

)
≤ C

(
‖∇3Φ‖L2 + e−Λ‖∇2Φ‖2

L4

)
≤ C

(
‖∇3Φ‖L2 + e−Λ‖∇2Φ‖L2‖∇2Φ‖W 1,2

)
≤ C

(
‖∇3Φ‖L2 + ‖e−λ∇2Φ‖L2‖∇2Φ‖W 1,2

)
,

yielding (4.4.5) for k = 1. Similarly, since

‖∇2A‖L2 ≤ C
(
‖∇4Φ‖L2 + ‖e−λ|∇3Φ||∇2Φ|‖L2 + ‖e−2λ|∇2Φ|3‖L2

)
≤ C

(
‖∇4Φ‖L2 + e−Λ‖|∇3Φ||∇2Φ|‖L2 + e−2Λ‖∇2Φ‖3

L6

)
,

with Hölder and Gagliardo-Nirenberg we estimate

‖∇3Φ||∇2Φ|‖L2 ≤ ‖∇3Φ‖L4‖∇2Φ‖L2

≤ C‖∇2Φ‖
1
4
L2‖∇2Φ‖

3
4
W 2,2‖∇2Φ‖

3
4
L2‖∇2Φ‖

1
4
W 2,2

≤ C‖∇2Φ‖L2‖∇2Φ‖W 2,2 ,

and

‖∇2Φ‖3
L6 ≤ C‖∇2Φ‖2

L2‖∇2Φ‖W 2,2 ,

so to obtain

‖∇2A‖L2 ≤ C
(
‖∇4Φ‖L2 + ‖e−λ∇2Φ‖L2‖∇2Φ‖W 2,2 + ‖e−λ∇2Φ‖2

L2‖∇2Φ‖W 2,2

)
,

yielding (4.4.5) also for k = 2.

Proof of Proposition 4.4.3. It can be deduced from the following three lemmas and (4.4.5).
Lemma 4.4.5. There holds

‖e4λ∆⊥g H‖L2(Ω) ≤ C‖e−λA‖L2(Ω)‖A‖W 2,2(Ω) + ‖e4λδW‖L2(Ω), (4.4.6)

for a constant C = C(Ω, E, C∞) > 0.
Lemma 4.4.6. There holds

‖e4λ∆gH‖L2(Ω) ≤ ‖e4λ∆⊥g H‖L2(Ω) + C‖e−λA‖L2(Ω)‖A‖W 2,2(Ω), (4.4.7)

for a constant C = C(Ω, E, C∞) > 0.
Lemma 4.4.7. There holds

‖∆2Φ‖L2(Ω) ≤ 2‖e4λ∆H‖L2(Ω) + C‖e−λ∇2Φ‖L2(Ω)‖∇2Φ‖W 2,2(Ω), (4.4.8)

for a constant C = C(Ω, E, C∞) > 0.
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4 Elliptic Estimates for the Inhomogeneous Willmore Equation

Proof of Lemma 4.4.5. With the classical form of the Willmore operator (see (3.3.8) of
Chapter 3) and the pointwise estimate (4.4.4), by means of Hölder’s and Gagliardo-Nirenberg
inequalities we estimate

‖〈A◦, 〈H,A◦〉〉g‖L2 ≤ C‖e−4λ〈A◦, 〈H,A◦〉〉‖L2

≤ C‖e−4λ|A◦|2H‖L2

≤ C‖e−6λ|A|3‖L2

≤ Ce−6Λ‖A‖3
L6

≤ Ce−6Λ‖A‖2
L2‖A‖W 2,2

≤ Ce−4Λ‖e−λA‖2
L2‖A‖W 2,2 ,

which yields (4.4.6).

Proof of Lemma 4.4.6. From formula (3.3.12), we have

‖∆gH‖L2 ≤ ‖∆⊥g H‖L2 + C
(
‖〈A, 〈H,A〉〉g‖L2 + ‖〈∇H,A〉]gg ‖L2 + ‖〈∇H,H〉]g‖L2

)
.

Similarly as in the proof of Lemma (4.4.5), we have

‖〈A, 〈H,A〉〉g‖L2 ≤ Ce−4Λ‖e−λA‖2
L2‖A‖W 2,2 .

Next, since

∇H = e−2λ∇(e2λH)− 2H ⊗ dλ,

with (4.4.4) we may pointwise estimate

|∇H| ≤ Ce−2λ
(
|∇A|+ |A||dλ|

)
,

thus allowing to deduce

‖〈∇H,H〉]g‖L2 ≤ C‖e−λ|∇H||H|‖L2

≤ C‖e−3λ(|∇A|+ |A||dλ|)|H|‖L2

≤ C‖e−5λ(|∇A|+ |A||dλ|)|A|‖L2 ;

now with Hölder and Gagliardo-Nirenberg we see that, on the one hand,

‖e−5λ|∇A||A|‖L2 ≤ Ce−5Λ‖|∇A||A|‖L2

≤ Ce−5Λ‖∇A‖L4‖A‖L4

≤ Ce−5Λ‖A‖L2‖A‖W 2,2

≤ Ce−4Λ‖e−λA‖L2‖A‖W 2,2 ,

and on the other hand

‖e−5λ|A|2|dλ|‖L2 ≤ Ce−5Λ‖dλ‖L2‖A‖2
L∞

≤ Ce−5Λ‖dλ‖L2‖A‖L2‖A‖W 2,2

≤ Ce−4Λ‖dλ‖L2‖e−λA‖L2‖A‖W 2,2 ,
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so we deduce

‖〈∇H,H〉]g‖L2 ≤ Ce−4Λ‖e−λA‖L2‖A‖W 2,2 .

Similarly, we see that

‖〈∇H,A〉]gg ‖L2 ≤ C‖e−3λ〈∇H,A〉]‖L2

≤ C‖e−3λ|∇H||A|‖L2

≤ C‖e−5λ(|∇A|+ |A||dλ|)|A|‖L2 ,

and so similarly as before we deduce

‖〈∇H,A〉]gg ‖L2 ≤ Ce−4Λ‖e−λA‖L2‖A‖W 2,2 ,

yielding (4.4.7).

Proof of Lemma 4.4.7. From formula for the bilaplace operator in conformal coordinates
(formula (3.3.15) of Chapter 3), it follows that

‖∆Φ‖L2 ≤ 2‖e4λ∆gH‖L2 + C
(
‖e4λ〈dλ,∇H〉g‖L2 + ‖e4λ|dλ|2gH‖L2 + ‖e4λ∆gλH‖L2

)
.

Now with (4.4.2), (4.4.3), and (again) the identity

∇H = e−2λ∇(e2λH)− 2H ⊗ dλ,

we estimate with Hölder and Galgliardo-Nirenberg

‖e4λ〈dλ,∇H〉g‖L2 ≤ C‖e2λ〈dλ,∇H〉‖L2

≤ C‖e2λ|dλ||∇H|‖L2

≤ C
∥∥∥e2λ

(
e−λ|∇2Φ|

)(
e−2λ|∇3Φ|+ e−3λ|∇2Φ|2

)∥∥∥
L2

≤ C
(
e−Λ‖|∇3Φ|∇2Φ|‖L2 + e−2Λ‖∇2Φ‖3

L6

)
≤ C

(
e−Λ‖∇3Φ‖L4‖∇2Φ‖L4 + e−2Λ‖∇2Φ‖3

L6

)
≤ C

(
e−Λ‖∇2Φ‖L2‖∇2Φ‖W 2,2 + e−2Λ‖∇2Φ‖2

L2‖∇2Φ‖W 2,2

)
≤ C‖e−λ∇2Φ‖L2‖∇2Φ‖W 2,2 .

Similarly, again with (4.4.3) and Gagliardo-Nirenberg we estimate

‖e4λ|dλ|2gH‖L2 ≤ C‖e2λ|dλ|2H‖L2

≤ C‖e2λ(e−2λ|∇2Φ|2)(e−2λ|∇2Φ|)‖L2

≤ C‖e−2λ|∇2Φ|2‖L2

≤ C‖e−λ∇2Φ‖L2 .

Finally, with Liouville’s equation

−∆λ = e2λK,
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the pointwise estimate

|K| ≤ |A|2g ≤ e−4λ|A|2,

we can estimate with Gagliardo-Nirenberg and (4.4.5):

‖e4λ∆gλH‖L2 ≤ C‖|A|2H‖L2

≤ C‖e−2λ|A|3‖L2

≤ Ce−2Λ‖A‖2
L2‖A‖W 2,2

≤ C‖e−λA‖2
L2‖A‖W 2,2

≤ C‖e−λA‖2
L2‖∇2Φ‖W 2,2 .

All these estimates together yield (4.4.8).

The combination of lemmas 4.4.5, 4.4.6 and 4.4.7 immediately gives (4.4.1), and concludes
the proof of Proposition 4.4.3.

Proof of Theorem 4.1.2. The qualitative statement, namely that Φ ∈ W 4,p
loc , is an immediate

consequence of Propositions 4.3.1 and 4.3.2, so we now seek to establish the estimate for the
case p = 2. By Proposition 4.4.3, (4.4.1) jointly with elliptic estimates for the bilaplacian give

‖dΦ‖W 3,2(B1/2) ≤ C
(
‖e4λδW‖L2(B1) + ‖e−λ∇2Φ‖L2(B1)‖∇2Φ‖W 2,2(B1) + ‖dΦ‖L2(B1)

)
(4.4.9)

for C = C(E,C∞) > 0. Now we consider rescalings. For 0 < r < 1 we let

Φ̃(x) = Φ(rx), x ∈ B1,

and we denote with a tilde all the quantities pertaining to Φ̃. From for k ∈ N it follows in
particular that for Ω ⊆ B1 we have

∇kΦ̃(x) = rk∇kΦ(rx),
‖∇kΦ̃‖L2(Ω) = rk−1‖∇kΦ‖L2(rΩ),

eλ̃(x) = reλ(rx),

λ̃(x)− λ̃(0) = λ(rx)− λ(0),
δ̃W(x) = δW(rx),

(the last equality follows either by direct inspection or at once recalling that δW is a vector
field) and from these relations, we deduce in particular that

‖e4λ̃δ̃W‖L2(B1) = r3‖e4λδW‖L2(Br),

‖e−2λ̃∇2Φ̃‖L2(B1) = ‖e−2λ∇2Φ‖L2(Br),

‖λ̃− Λ̃‖L∞(B1) = ‖λ− Λ‖L∞(Br),

and the last two relations in particular give that Ẽ ≤ E and C̃∞ ≤ C∞. Consequently, applying
(4.4.9) to Φ̃ gives

‖dΦ‖′W 3,2(Br/2) ≤ C
(
r3‖e4λδW‖L2(Br) + ‖e−λ∇2Φ‖L2(Br)‖∇

2Φ‖′W 2,2(Br) + ‖dΦ‖L2(Br)
)
, (4.4.10)
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where for k = 1, 2 we denoted ‖Φ‖′Wk,2(Bρ) =
(∑k

h=1 ρ
k−1‖Φ‖2

Wh,2(Bρ)

)1/2
the scale-invariant

version of the Sobolev norms where, as we said abefore C = C(E,C∞) > 0.
Recall now that from (4.4.2) it is

‖e−λ∇2Φ‖L2(B1/2) ≤ C
(
‖e−λA‖L2(B1/2) + ‖dλ‖L2(B1/2)

)
,

so by Theorem 4.4.1 we let ε0 be sufficiently small so to have

‖dλ‖L2(B1/2) + ‖λ− λ(0)‖L∞(B1/2) ≤ C‖e−λA‖L2(B1) ≤ Cε0,

for C = C(C(2,∞)) > 0, whence (4.4.10) can be improved to

‖dΦ‖′W 3,2(Br/2) ≤ C
(
r3‖e4λδW‖L2(Br) + ε0‖∇2Φ‖′W 2,2(Br) + ‖dΦ‖L2(Br)

)
,

for C = C(C(2,∞)) > 0.
Choose finally ε0 > 0 be sufficiently small so that Cε0 ≤ 1

2 to obtain

‖dΦ‖′W 3,2(Br/2) ≤
1
2‖dΦ‖′W 3,2(Br) + C

(
r3‖e4λδW‖L2(B1) + ‖dΦ‖L2(B1)

)
,

for every 0 < r ≤ 1/2. A classical iteration/interpolation argument applied to φ(r) =
‖dΦ‖′W 3,2(Br) and a covering argument yield to (4.1.1).
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5 The Willmore Flow in Conformal Gauge
Summary: In this chapter we introduce a parametric framework for the study of

Willmore gradient flows which enables to consider a general class of weak, energy-
level solutions and opens the possibility to study energy quantization and finite–time
singularities. We restrict to a small–energy regime and prove that, for small–energy
weak immersions, the Cauchy problem in this class admits a unique solution.

5.1 Introduction
In the present chapter we move the first steps towards a parametric theory for the Willmore flow
that, we believe, will lead to an effective study of singularities, bubbling analysis and energy
quantization.

5.1.1 Willmore Gradient Flows A Willmore L2–gradient flow in Rn (Willmore flow for short)
of a closed, abstract surface Σ is a 1-parameter family of immersions Φ(t, ·) : Σ→ Rn, t ∈ I ⊆ R
evolving according to the law

∂

∂t
Φ = −δW + U in I × Σ, (5.1.1)

where, for each t, δW is the Willmore operator of St = Φ(t,Σ) and U = Uµ∂µΦ is a tangent
tangent vector field, possibly time-dependent.

One good reason to consider Willmore flows is that they satisfy the energy identity, namely if
I = (0, T ), then

W0(Φ(t, ·))−W0(Φ0) = −
∫ t

0

∫
Σ
|δW|2 dσg dτ, for 0 ≤ t < T. (5.1.2)

Willmore flows can be regarded as a continuous deformation of the initial surface S0 = S = Φ(0,Σ)
constructed so that the Willmore energy (in any of the forms given in (1.1.1)) decreases most
rapidly in time, and the deformation stops as as soon as the deformed surface becomes Willmore.
Thus, at least in principle, these flows have the potential to converge efficiently to Willmore
immersions as t→ +∞.

This is a feature common to gradient flows that makes them particularly worth studying. The
first to consider L2–gradient flows in a geometric context were Eells and Sampson [ES64] in
the context of harmonic maps. Since then, the study of parabolic geometric flows has widened
to the extent that some of them constitute research areas on their own right, the mean curvature
flow and Hamilton’s Ricci flow being two of the best-known examples.

It should be noted right away that what is typically called a Willmore flow is a family solving
(5.1.1) with U = 0, which we will call here a normal Willmore flow. Since Σ is closed, and
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δW is a tensor, it is classical fact that there is a bijective correspondence between tangential
components and family of reparametrizations of Σ, see e.g. Mantegazza [Man11, Proposition
1.3.4] for the case, entirely analogous in this regard, of the mean curvature flow. Consequently,
if, say, I is a connected interval containing 0, for every family solving (5.1.1) there is a unique
family of diffeomorphisms ϕ : I × Σ→ Σ with ϕ(0, ·) = idΣ so that the reparametrized family
Φ(t, ϕ(t, ·)), t ∈ I is a normal Willmore flow, and on the other hand, every reparametrization of
a normal Willmore flow will be a Willmore flow (5.1.1) for some U .

Thus, in this sense, similarly as for immersions of surfaces, flows can be regarded as equivalence
classes of solutions to (5.1.1), two of them being equivalent if one can be reparametrized into
another. As for surfaces, depending on the situation one may choose one parametrization over
another, and in this case this may be done through the choice of the tangential component.
This will be a crucial fact in the present discussion.

The study of Willmore flows was introduced by Kuwert and Schätzle [KS01, KS02] and
Simonett [Sim01] and is since then subject of a growing number of works. Particularly useful
for us will be the one by Kuwert and Scheuer [KS20] providing asymptotic estimates on the
area and barycenter along the flow.

Our attention here focuses on the following foundational result. Consider the Cauchy problem
for the normal Willmore flow:

∂

∂t
Φ = −δW , in (0, T )× Σ,

Φ(0, ·) = Φ0 on Σ.
(5.1.3)

Theorem ([KS01, KS02]). There exists ε0(n) > 0 so that, for a smooth immersion Φ0 : Σ→ Rn

satisfying W0(Φ0) =W0(Φ0(Σ)) < ε0, then (5.1.3) has a unique solution in the smooth category,
which furthermore exists for all times and converges to a round sphere.

It should be said immediately that if W0(Φ) is sufficiently small, Σ must be a sphere. Indeed,
as already noticed in [Wil65], it is always W1(Φ) ≥ 4π and from (1.1.2), using Gauss-Bonnet
one sees that

χ(Σ) = 1
2π

∫
Σ
K dσ = 1

2π
(
W1(Φ)−W0(Φ)

)
≥ 1

2π
(
4π − ε0

)
> 1, (5.1.4)

where χ(Σ) is the Euler-Poincaré characteristic of Σ.
Such theorem was concerned with smooth solutions. As for other geometric flows however, an

effective study of singularities and bubbling analysis requires eventually to work at the energy
level, namely, to consider appropriate notions of weak solution.

We have in mind as a particular example the classical work on the harmonic map flow done
by Struwe [Str85, Str08] and complemented by the works of others, the 2nd author [Riv93],
Freire [Fre95b, Fre95a], Chang, Ding and Ye [CDY92], Topping [Top02] Bertsch, Dal
Passo and van der Hout [BDvdH02] just to mention a few.

We believe that the framework introduced by Rivière in a series of works [Riv08, Riv14, Riv16],
which led for instance to an effective energy quantization analysis of Willmore surfaces by
Bernard and the 2nd author [BR14] to be, when suitably adapted, the appropriate one. We
want to give in the present chapter an idea of why this should be true by introducing, under
particularly favourable hypotheses, an energy-level class of weak Willmore flow and prove a
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uniqueness statement for the corresponding Cauchy problem in this class for a broad set of
weak initial data, which we believe to be sufficiently close to the largest possible one (among
unbranched surfaces).

Let us mention that Lamm and Koch in [KL12] obtained (among other results of geometric
interest) an existence and uniqueness result for the Willmore flow for entire graphs in a weak
framework with Lipschitz initial datum. Such datum needs to be small in the Lipschitz norm.

5.1.2 Well-Balanced Conformal Willmore Flows We shall work, in the present situation,
always in a low energy regime, namely we shall arrange things so that the Willmore energy of
the surfaces in consideration W0(S) is as small as needed; furthermore, we shall also work in
codimension one, namely n = 3. The first major consequence of this is that, as already said
above, with (5.1.4) we may directly assume that the underlying topology is that of the standard
sphere S2. The second one is that we can take advantange of results from the work of De
Lellis and Müller [DM05, DM06].

So, from now, it is Σ = S2, and the underling reference metric and complex structure are the
standard ones.
Central in the theory developed in [Riv08, Riv14, Riv16] and in the present one is the idea

of working with conformal immersions. The first advantage of doing so is that the Willmore
operator becomes uniformly elliptic, with ellipticity constants depending on the conformal
factor, and this permits eventually the regularity bootstrap. The second one is that, exploiting
conservation laws issuing from the conformal invariance (as explained in Bernard [Ber16]
see also Chapters 3 and 4), the Willmore operator of a conformal immersion, which is a 4th
order quasilinear elliptic system, can be recast as a 2nd order semilinear system involving
Jacobian-type nonlinearities, which allows regularity bootstrap by means of integrability by
compensation, similarly as in the work of Hélein [Hél02] on weakly harmonic maps in two
dimensions.

The idea is then to consider Willmore flows in conformal gauge, where the equation becomes
uniformly parabolic, if the conformal factor is uniformly bounded away from zero, and then
use a slice–wise in time (elliptic) integrability by compensation arguments to bootstrap the
regularity of the equation, which – as is often the case when working with parabolic PDEs in
small energy regime – will suffice to get the regularity also in the time variable. This approach
was successfully used by the 2nd author in [Riv93] for the case of the harmonic map flow.

Indeed, (5.1.1) is invariant under reparametrizations and thus it is degenerate parabolic, as
is the case for others geometric flows such as the mean curvature flow or the Ricci flow - and
this can be a serious source of troubles. The celebrated trick of DeTurck [DeT83], originally
devised for the Ricci flow but easily adapted to the present situation, is one way of overcoming
this problem. For the sake of complenetess, we outlined it in §5.4. Such method has the
advantage of working regardless of the topology of Σ, but, as an inspection of the proof reveals,
does not seem to be suitable when working with low degrees of smoothness and moreover does
not give explicitly a control on the parametrization that is chosen by such gauge.
We are instead going to consider the Cauchy problem

∂

∂t
Φ = −δW + U, in (0, T )× S2,

Φ(0, ·) = Φ0 on S2.
(5.1.5)
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where the tangential vector field U is chosen so that Φ(t, ·) is conformal for every t.
It is a fairly simple matter to find an explicit characterization for U , which – unsurprisingly,

given the relationship between complex and conformal structures on surfaces – is best expressed
in complex notation. To this aim, we recall that if Φ : S2 → R3 is a conformal immersion with
metric g = e2λgS2 , the second fundamental form may be written in complex notation as

A = h0 + h0 +H ⊗ g,

where H is the mean curvature and

h0 = Azz dz ⊗ dz = 1
4(A11 − A22 − 2iA12)dz ⊗ dz.

Similarly, the tracefree second fundamental form is written as

A◦ = A−Hg = h0 + h0.

With this formalism, we have the following.

Lemma 5.1.1. The tangential component of a conformal Willmore flow satisfies

∂̄U (1,0) = −〈δW , h0〉]g , (5.1.6)

that is

∂z̄(U1 + iU2)∂z ⊗ dz̄ = 2e−2λ
〈
− δW , Az̄z̄

〉
∂z ⊗ dz̄.

Basic facts for the ∂-operator on vector fields is recalled in §5.5. It is certainly good news
that, at least on the sphere, it defines an uniformly elliptic, zero-cokernel operator.
However, (5.1.6) do not suffices per se to guarantee that (5.1.5) is uniformly parabolic,

not even for short time, since the control on the conformal factor in time still needs to be
addressed. Geometrically this is evident: any conformal Willmore flow can be composed with
any 1-parameter family of conformal self-maps of S2 and remain conformal, and Aut(S2), the
set conformal (i.e. biholomorphic) self-map of S2 is not compact. One can clearly see this also
by noting that (5.1.6) has a nontrivial kernel given by the conformal Killing (holomorphic, with
complex identification) vector fields on S2 which is 6 dimensional, as Aut(S2).

Moreover, (5.1.6) is an equation satisfied for every fixed t, and does not give any information
on the regularity in time of U . Geometrically, this means that the 1-parameter family of maps
in Aut(S2) which we may compose a conformal Willmore flow may be taken nonsmooth with
respect to t.

Precisely because Aut(S2) is 6-dimensional however, a final choice of a 6-dimensional constraint
will be enough to tame the action of such gauge group. This will be defined by the following.

Definition 5.1.2. An immersion Φ : S2 → R3 is called well-balanced if there holds∫
S2
Idσg = 0 and

∫
S2

Φ× I dσ = 0, (5.1.7)

where I denotes standard embedding of S2, dσ its area element and dσg the area element for the
induced metric g = Φ?gR3.
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Remark 5.1.3 Note that being well-balanced is a translation-invariant condition, namely if Φ
is well-balanced, so is Φ + k for every k ∈ R3.
Conditions (5.1.6) and (5.1.7) together with a good choice for the parametrization of the

initial datum, which we shall now discuss, will be sufficient to control the behaviour of the
tangential component U in on (5.1.5). Moreover, they are meaningful also for the notion of
weak conformal Willmore flow that we are going to define.

5.1.3 Chosing an ad-hoc Parametrization for initial Data with Small Energy. From a
geometric perspective, both the Cauchy problems (5.1.3) and (5.1.5)–(5.1.6) possess an obvious
“gauge invariance” for the initial datum, namely if Φ0(S2) = S is the immersed sphere representing
the initial datum, and ϕ is any diffeomorphism of S2, then Φ0 ◦ ϕ is again a parametrization
for the same surface S, and there is no a priori preferred choice – or possibility to distinguish –
between Φ0 and Φ0 ◦ ϕ. This a relevant issue for a parametric theory.

The conformal gauge choice helps to reduce this invariance (Φ0 has to be conformal, and so ϕ
must belong to Aut(S2)), but does not break it entirely. To this aim, we shall use the following
result contained in the work of De Lellis and Müller [DM05, DM06].

Theorem ([DM05, DM06]). There exist ε0, C > 0 so that, if S ⊂ R3 is an immersed surface
with area A(S) = 4π and Willmore energy W0(S) ≤ ε0, there exists a conformal parametrization
Φ : S2 → S satisfying

‖Φ− I − c‖W 2,2(S2) + ‖eλ − 1‖L∞(S2) ≤ CW0(S), (5.1.8)

where I : S2 → R3 denotes the standard immersion of S2 and c = −
∫
S2 Φ dσ.

In this theorem the fact that the area of the surface is 4π can be seen to a normalization
achievable by scaling. We shall need another one, achievable by translations; to this aim recall
that the barycenter of an immersed surface S ⊂ R3 is defined as

C(S) =
∫
S

idR3 dH2 =
∫

Σ
Φ dσg,

where Φ : Σ→ S is any parametrization of S.
The set of initial data for the conformal Willmore flow will consist geometrically of the set of

immersed surfaces S ⊂ R3 with Willmore energy W0(S) ≤ ε, area 4π and vanishing barycenter
C(S) = 0. Parametrically we shall choose a parametrization provided by the above theorem,
which is in addition well-balanced as in Definition 5.1.2. More precisely:

Definition 5.1.4. For ε > 0, Dε(S2,R3) is the set of smooth conformal immersions Φ : S2 → R3

so that the surface S = Φ(S2) has Willmore energy W0(S) ≤ ε, area A(S) = 4π, barycenter
C(S) = 0, is well-balanced and so that (5.1.8) holds for C > 0 given by that estimate.

This is, when restricted to the smooth category, the suitable class of initial data that shall be
considered in this work, for sufficiently small ε > 0. It will be enlarged to its weak W 2,2-closure
when considering the extension of the theory to the weak framework, which we discuss below.

We want to stress that the only essential requirement in Definition 5.1.4 is the control
(smallness) of the Willmore energy. All the others can be seen as normalizations. More precisely,
the first result of this work, which will be used to prove the main one, is the following extension
of the theorem above:
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Proposition 5.1.5. There are ε0, δ, C > 0 with the following properties:

(i) Any immersed surface S ⊂ R3 with area 4π and Willmore energy W0(S) ≤ ε0 admits a
conformal parametrization satisfying (5.1.8) which is also well-balanced.

(ii) For any well-balanced conformal parametrization Ψ : S2 → S with conformal factor eν and
any vector c ∈ R3 so that

‖Ψ− I − c‖W 2,2(S2) + ‖eν − 1‖L∞(S2) ≤ δ, (5.1.9)

there holds

‖Ψ− I − c‖W 2,2(S2) + ‖eν − 1‖L∞(S2) ≤ CW0(S).

Furthermore, the following local uniqueness property holds: if Ψ′ is another well-balanced
conformal immersion satisfying (5.1.9), and ψ ∈ Aut(S2) is the conformal diffeomorphism
so that Ψ′ = Ψ ◦ ψ, there is a neighborhood O ⊂ Aut(S2) of the identity e (depending only
on δ) so that, if ψ ∈ U , then ψ = e.

5.1.4 Conformal Weak Flows We now define an energy– class of maps where one can consider
weak conformal Willmore flows. We believe it to the a prototype for future works concerned
with Willmore flows at energy level.

Central to the definitions we shall give shortly is that the validity of the energy identity (5.1.2)
(in fact, a slightly weaker version will suffice). This should be, broadly speaking, a requirement
to avoid the presence of pathological solutions that invalidate the uniqueness of the solution to
the Cauchy problem, as the examples of Topping [Top02] and Bertsch, Dal Passo and van
der Hout [BDvdH02] show in the case of the harmonic map flow.
From [Riv08, Riv14, Riv16] we recall the notion of weak W 2,2-Lipschitz immersion. If

W 1,∞
imm(S2,R3) denotes the set of Lipschitz immersions, namely those Lipschitz maps Φ : S2 → R3

so that there exists C = C(Φ) > 0 with

1
C
gS2 ≤ g = Φ?gR3 ≤ CgS2

almost everywhere in the sense of metrics, we let

E (S2,R3) = W 1,∞
imm(S2,R3) ∩W 2,2(S2).

Every map in such set admits a conformal reparametrization and moreover, it is possible to
define its Willmore operator in the sense of distributions. Starting from the divergence form of
the Willmore operator introduced in [Riv08]:1

δW = ∇∗g
(
∇H − 2(∇H)>Φ − |H|2dΦ

)
= ∇∗g

(
∇H + 〈A◦, H〉]g + 〈A,H〉]g

)
, (5.1.10)

1 We denote, here and in the sequel:

– ∇∗g (Z ⊗ ω) = 1√
g∂µ

(√
g gµνωνZ

)
, minus the formal L2-adjoint of the covariant derivative induced on

the pull-back bundle Φ?(TR3) acting on sections of Φ?(TR3)⊗ T ∗S2,

– 〈A,H〉]g = gµξ〈Aξν , H〉∂µ ⊗ dxν ' gµξ〈Aξν , H〉∂µΦ ⊗ dxν the the 1st-index raising of 〈A,H〉, and
similarly for 〈A◦, H〉.
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the Willmore operator of Φ ∈ E (S2,R3) is defined as the distribution-valued two form given by
(
δWdσg, ϕ

)
D′

=
∫
S2

(〈
H,∆gϕ

〉
+
〈
〈A◦, H〉]g + 〈A,H〉]g ,∇ϕ

〉
g

)
dσg,

for every ϕ ∈ C∞(S2,R3).
We can now give the following central definitions.

Definition 5.1.6 (Weak Initial Data). For ε > 0, W ε(S2,R3) is the closure of Dε(S2,R3)
(from Definition 5.1.4) with respect to the weak W 2,2(S2)-topology.

We will consider W ε(S2,R3) only for ε > 0 sufficiently small. As a consequence of the
works [Riv08, Riv14, Riv16], W ε(S2,R3) is a subset of the space E (S2,R3), which would be the
broadest possible choice for the theory (among nonbranched surfaces, at least). We do not know
at present whether W ε(S2,R3) coincides, or strictly contained in, E (S2,R3).

Definition 5.1.7 (Well-Balanced Energy Class). For ε, δ, T > 0, W ε,δ
[0,T ](S2,R3) is set of locally

integrable maps Φ : (0, T )× S2 → R3 so that

(i) For almost every t, Φ(t, ·) is in E (S2,R3) and conformal,

(ii) There holds

‖Φ− I − c‖L∞((0,T ),W 2,2(S2)) + ‖eλ − 1‖L∞((0,T )×S2) ≤ δ, (5.1.11)

where I denotes standard embedding of S2, eλ = eλ(t,·) is the conformal factor of Φ(t, ·)
and c(t) = −

∫
S2 Φ(t, ·) dσ,

(iii) There holds

δW ∈ L2((0, T )× S2) and W0(Φ(t, ·)) ≤ ε for a.e. t, (5.1.12)

(iv) Φ is well-balanced for a.e. t.

Finally we let, also for T = +∞,

W ε,δ
[0,T )(S

2,R3) =
⋂

τ∈(0,T )
W ε,δ

[0,τ ](S
2,R3).

Assumption (5.1.11) is quite natural if we look at Proposition 5.1.5. In the energy class, a
weak Willmore flow is defined as follows.

Definition 5.1.8 (Weak Willmore Flow). Φ ∈ W ε,δ
[0,T )(S2,R3) is a weak solution of the Willmore

flow with tangential component U = Uµ∂µΦ:

∂

∂t
Φ = −δW + U in (0, T )× S2,

if for every ϕ ∈ C∞c ((0, T )× S2,R3) there holds

−
∫ T

0

∫
S2

〈
Φ, ∂
∂t
ϕ
〉
dσg dt = −

∫ T

0

(
δWdσg, ϕ(t, ·)

)
D′
dt+

∫
S2

〈
U,ϕ

〉
dσg dt.
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Our main result is the following.

Theorem 5.1.9. There exists ε0 > 0 so that the Cauchy problem for the conformal Willmore
flow (5.1.5)-(5.1.6) with initial datum in W ε0(S2,R3) has a weak solution in W ε0,δ

[0,T )(S2,R3) for
some δ > 0, assuming the initial datum in the sense of traces. Such solution is smooth, exists
for all times and smoothly converges to the standard embedding I of S2 in R3. Furthermore, if
the initial datum is smooth, such weak solution is also unique.

We can compare this result with the above metioned one of Kuwert and Schätzle
[KS01, KS02]. They obtain, in the smooth class, long-time existence, uniqueness and convergence
to a round sphere for the Cauchy problem of the normal flow (5.1.3). A central feature our result
is that the uniqueness of this smooth solution is in the broad class of finite energy solutions,
and the fact that it converges exactly to the standard embedding.

We expect the solution to be unique also if the initial datum is nonsmooth; we plan to address
this question in the future.
The proof of the regularity part of Theorem 5.1.9 shares evident similarities with the corre-

sponding one for the harmonic map flow obtained in [Riv93]. In that work, the core estimate
that was obtained for weak solutions of the harmonic map flow was of the form

‖u(t, ·)‖W 2,2 ≤ C
(
‖∂tu(t, ·)‖L2 + 1

)
for a.e. t,

which could then be squared and integrated in time to yield higher regularity, and eventually
smoothness by the classical theory by Struwe [Str85, Str08]. We shall obtain a similar result,
namely an inequality of the form

‖Φ(t, ·)‖W 4,2 ≤ C
(
‖eλδW(t, ·)‖L2 + 1

)
for a.e. t,

for weak solutions of the conformal Willmore flow, and likewise obtain higher regularity from it.
The overall procedure shall be however more technical.

5.1.5 Final Comments We have intentionally decided to work in a small-energy regime in
this first contribution on the subject. We plan to consider more general scenarios in future
works, where more technical, localization/energy-concentration arguments will be dealt with.

One has also to take into account that, when the underlying surface is not a sphere, there
is more than one conformal class, so to properly work with a conformal Willmore flow, one
has to take into account the nontriviality of the corresponding Teichmüller space. The work of
Rupflin and Topping [RT16] on the Teichmüller harmonic map flow also faces the difficulty
of “following” the conformal class along the flow.
In the future we plan to determine whether the class W ε(S2,R3) coincides or not with

E (S2,R3), and whether the solution given by Theorem 5.1.9 is unique also in the case of weak
initial data. We shall also seek to extend the argument for branched weak initial data.
Finally, we plan to carry an accurate study of singularities (blow-up points, degeneration of

conformal factor or conformal class...) in forthcoming works. For this we will likely build upon
some of the work already done on the subject, Mayer and Simonett [MS02], Blatt [Bla09]
and Chill, Fašangová and Schätzle [CFS09] just to mention a few.

One of the questions relative to the parametric approach of the Willmore flow is the following:
can the conformal class of a conformal Willmore flow – suitably normalized to remove any
obvious gauge invariance – degenerate in finite time?
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5.2 Consequences of De Lellis-Müller Theorem
First we recall:

Theorem 5.2.1 ([DM05, DM06]). Let S ⊂ R3 be an immersed surface with area A(S) = 4π
and let g be the induced metric. Then there holds∫

S
|Asc − g|2g dσg ≤ C

∫
S
|A◦|2g dσg, (5.2.1)

where Asc(· , ·) = 〈A(· , ·), N〉 is the scalar second fundamental form of S. Furthermore, there is
ε0 > 0 so that if

W0(S) =
∫
S
|A◦|2g dσg ≤ ε0,

there exists a conformal parametrization Φ : S2 → R3 satisfying

‖Φ− (cS + I)‖W 2,2(S2) + ‖eλ − 1‖L∞(S2) ≤ CW0(S), (5.2.2)

for some vector cS ∈ R3 and for an absolute constant C > 0, where eλ is the conformal factor
of the induced metric and I is the standard immersion of S2 into R3.

Remark 5.2.2 From the minimality property of the average:∥∥∥∥f −−∫
S2
f dσ

∥∥∥∥
L2(S2)

= inf
c∈R
‖f − c‖L2(S2),

and since
∫
S2 I dσ, we may suppose cS = −

∫
S2 Φ dσS2 in (5.2.2).

The proof of Proposition 5.1.5 will follow from two lemmas.

Lemma 5.2.3. The function F : Aut(S2)→ R6 given by

F (ψ) = (F1(ψ), F2(ψ)) =
( ∫

S2
I ψ?dσ,

∫
S2

(I ◦ ψ)× I dσ
)
, (5.2.3)

where ψ?dσ denotes the pullback of area element dσ via ψ, is differentiable and dF (e) is an
isomorphism.

Proof. Differentiability follows since F is composition of smooth functions and operations.
We shall now use the language of differential forms and so along this proof it is convenient to
temporarily change our notation for the area element from dσ to ωS2 .
Recall that ωS2 = ωR3xN = ωR3(N, ·, ·), where N Gauss map of S2. More explicitly, since

N(y) = y, we have the formula

ωS2 = (dy1 ∧ dy2 ∧ dy3)(y, ·, ·) = y1dy2 ∧ dy3 − y2dy1 ∧ dy3 + y3dy1 ∧ dy2.

Now Aut(S2) has dimenion 6 as a manifold and we consider the basis for the tangent space
Te Aut(S2) given by the vector fields generating, respectively, rotations and “spherical dilations”
about the coordinate axes:

Z1(y) = (0,−y3, y2), Z2(y) = (y3, 0,−y1), Z3(y) = (−y2, y1, 0),

Z4(y) = e1 − y1y, Z5(y) = e2 − y2y, Z6(y) = e3 − y3y.
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We shall prove that(
∂F j

∂Za
(e)
)

1≤a,j≤6
= −8π

3 16×6. (5.2.4)

To compute ∂XF (e), if ΦX denotes the local flow of the vector field X, we have to evaluate

∂

∂X
F (e) = d

dt
F (ΦX(t, ·))

∣∣∣∣∣
t=0
.

Let us look at F1. By Cartan’s formula, since dωS2 = 0, it is
∂

∂t
ΦX(t, ·)ωS2

∣∣∣∣
t=0

= LXωS2 = d(XxωS2),

where LX denotes the Lie derivative with respect to X. Since Za’s for a = 1, 2, 3 generate
isometries, LZaωS2 = 0 and hence a fortiori

d

dt
F1
(
ΦZa(t, ·)

)∣∣∣∣∣
t=0

=
∫
S2
I LZaωS2 = 0 for a = 1, 2, 3.

As for the Za’s for a = 4, 5, 6, we see that

Z4xωS2 = −y2dy3 + y3dy2, Z5xωS2 = y1dy3 − y3dy1, Z6xωS2 = −y1dy2 + y2dy1,

d(Z4xωS2) = −2dy2 ∧ dy3, d(Z5xωS2) = 2dy1 ∧ dy3, d(Z6xωS2) = −2dy1 ∧ dy2,

and hence with Stokes’ theorem we get
d

dt
F1
(
ΦZ4(t, ·)

)∣∣∣∣
t=0

=
∫
S2
ILZ4ωS2

=
( ∫

S2
y1(−2dy2 ∧ dy3),

∫
S2
y2(2dy1 ∧ dy3),

∫
S2
y3(−2dy1 ∧ dy2)

)
= −8π

3 (1, 0, 0),

and similarly

d

dt
F1
(
ΦZ5(t, ·)

)∣∣∣∣∣
t=0

= −8π
3 (0, 1, 0), d

dt
F1
(
ΦZ6(t, ·)

)∣∣∣∣∣
t=0

= −8π
3 (0, 0, 1).

Now we consider F2. Since we can write

F2
(
ΦX(t, ·)

)
=
∫
S2

ΦX(t, ·)× I dσ,

it is
d

dt
F2
(
ΦX(t, ·)

)∣∣∣∣∣
t=0

=
∫
S2
X × I dσ,

and thus one directly computes that for a = 1, 2, 3 it is∫
S2
Za × I dσ = −8π

3 ea,
∫
S2
Za+3 × I dσ = 0.

Putting together all these computations yields (5.2.4) and hence the thesis.
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Lemma 5.2.4. There exists E > 0 with the following property. For any η1 ≤ E there exist
η2 > 0 so that, if S ⊂ R3 is an immersed surface with area A(S) = 4π and Φ : S2 → S is a
conformal immersion with conformal factor eλ and c ∈ R3 is a vector so that

‖Φ− I − c‖W 2,2(S2) + ‖eλ − 1‖L∞(S2) ≤ η1, (5.2.5)

then there exists a conformal self-map ψ ∈ Aut(S2) so that Ψ = Φ ◦ ψ is well-balanced and ψ is
the unique self-map with such property in the Riemannian ball Bη2(e) ⊂ Aut(S2). In addition,
if eν denotes the conformal factor of Ψ, there holds

‖Ψ− I − c‖W 2,2(S2) + ‖eν − 1‖L∞(S2) ≤ 2η1. (5.2.6)

Proof. Let F : W 2,2(S2,R3)× Aut(S2)→ R6 be given by

F(f, ψ) =
( ∫

S2
I

1
2 |d(f ◦ ψ)|2dσ,

∫
S2

(f ◦ ψ)× I dσ
)
.

Note that this definition makes sense for every f ∈ W 2,2(S2) and, if Φ is a conformal immersion
F(Φ, e) = 0 means that Φ is well-balanced as in Definition 5.1.2. Moreover F(I, ·) = 0
coincides with F given in (5.2.3). Finally F is invariant by translations in its first component:
F(f, ·) = F(f + k, ·) for every k ∈ R3.

As a consequence of Lemma 5.2.3, dψF(I, e) = dψF(I, ·)(e) is an isomorphism, and hence by
the implicit function theorem, there exists E, η2 > 0 so that if (5.2.5) holds for η1 ≤ E, there is
a unique ψ = ψΦ in the Riemannian ball Bη2(e) ⊂ Aut(S2) so that F(Φ− c, ψ) = F(Φ, ψ) = 0,
i.e. so that Ψ = Φ ◦ ψ is well-balanced (recall also Remark 5.1.3).

Finally, since ψ is biholorphic, ∀N ∈ N we can estimate ∑N
k=1 dist(∇kψ,∇ke) ≤ CN dist(ψ, e)

for some CN > 0 independent of ψ. So (5.2.5) holds, by the triangle inequality and the continuity
of the Lebesgue integral,

‖Ψ− I − c‖W 2,2(S2) + ‖eν − 1‖L∞(S2)

= ‖Φ ◦ ψ − I − c‖W 2,2(S2) + ‖ 1√
2 |dψ|e

λ◦ψ − 1‖L∞(S2)

= ‖(Φ− c) ◦ ψ − I‖W 2,2(S2) + ‖ 1√
2 |dψ|e

λ◦ψ − 1‖L∞(S2)

= η1 + o(1) as dist(ψ, e)→ 0,

and, since ‖Ψ− c‖L2(S2) and ‖eλ‖L∞(S2) are uniformly bounded, the remainder o(1) can be taken
uniform in Φ,Ψ, ψ, c and hence, choosing η2 sufficiently small we obtain to (5.2.6).

Proof of Proposition 5.1.5. It suffices to prove the thesis for W0(S) ≤ ε0 sufficiently small.
For part (i), combine Theorem 5.2.1 and Lemma 5.2.4.
For part (ii), Let ε0 > 0 be sufficiently small so that

Cε0 ≤
1
2E,

where H is as in Lemma 5.2.4 and C is the constant of Theorem 5.2.1, and let Φ : S2 → S be
the conformal parametrization given by that theorem. By Lemma 5.2.4 there exists a unique
choice of α = αΦ in Bη2(e) ⊂ Aut(S2) with F(Φ, α) = 0 i.e. Φ′ = Φ ◦ α is well-balanced and

‖Φ′ − I − c‖W 2,2(S2) + ‖eλ′ − 1‖L∞(S2) ≤ 2CW0(Φ′) ≤ E.
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5 The Willmore Flow in Conformal Gauge

So now if δ is taken so that

δ ≤ 1
2E,

since Ψ is already well-balanced, by uniqueness it must be Φ′ = Ψ, and the thesis follows also
for the local uniqueness part, with O = Bη2(e).

The following simple consequence of Theorem 5.2.1 will also be needed later.

Lemma 5.2.5. If Φ : S2 → R3 is a conformal immersion with conformal factor eλ and
Br(x0) ⊂ S2 is a disk of radius r (in the standard metric of S2), there holds∫

Br(x0)
|A|2g dσg ≤ C

( ∫
S2
|A◦|2g dσg + e4C0r2

)
, (5.2.7)

where C0 = ‖λ‖L∞(S2) and C > 0 is an absolute constant.

Proof. It is a consequence of (5.2.1) applied to the immersed surface S = aΦ(S2), where
a =

√
4π
A(Φ) and A(Φ) =

∫
S2 e2λ dσ is the area of Φ(S2). Indeed, since

4πe−2C0 ≤ A(Φ) ≤ 4πe2C0 ,

it follows that e−C0 ≤ a ≤ eC0 and we can estimate∫
Br(x0)

|a g|2gdσg = a
∫
Br(x0)

2e2λdσ ≤ Ce4C0r2.

and thus∫
Br(x0)

|A|2g dσg ≤ 2
∫
Br(x0)

|Asc − aΦg|2g dσg + 2
∫
Br(x0)

|a g|2g dσg

≤ C
∫
Br(x0)

|A◦|2g dσg + Ce4C0r2,

which proves (5.2.7).

5.3 Conformal Willmore Flows
Proof of Lemma 5.1.1. A metric g is conformal if and only if its Hopf differential (computed
with respect to the background complex structure of S2) vanishes identically. In our case it is

Hopf(g) = gzzdz ⊗ dz = 〈∂zΦ, ∂zΦ〉dz ⊗ dz.

Since δW is a normal vector field, we see that
1
2
∂

∂t
〈∂zΦ, ∂zΦ〉 = 〈∂z∂tΦ, ∂zΦ〉 = 〈−∂zδW + ∂zU, ∂zΦ〉 = 〈δW , ∂2

zzΦ〉+ 〈∂zU, ∂zΦ〉.

Since U = U z∂zΦ + U z̄∂z̄Φ with U z = U1 + iU2 and U z̄ = U1 − iU2 we have

〈∂zU, ∂zΦ〉 =
〈
∂zU

z∂zΦ + U z∂2
zzΦ + ∂zU

z̄∂z̄Φ + U z̄∂2
zz̄Φ, ∂zΦ

〉
= ∂zU

zgzz + U z
〈
∂2
zzΦ, ∂zΦ

〉
+ ∂zU

z̄gz̄z + U z̄
〈
∂2
zz̄Φ, ∂zΦ

〉
= ∂zU

zgzz + ∂zU
z̄gz̄z + 1

2

(
U z∂zgzz + U z̄∂z̄gzz

)
,
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5.3 Conformal Willmore Flows

thus we have
1
2
∂

∂t
〈∂zΦ, ∂zΦ〉 = ∂zU

zgzz + ∂zU
z̄gz̄z + 1

2

(
U z∂zgzz + U z̄∂z̄gzz

)
+
〈
δW , ∂2

zzΦ
〉
.

If the flow Φ is conformal, then ∂t Hopf(g) ≡ 0 and gzz, gz̄z̄ vanish identically. Since moreover
δW is a normal vector we may replace ∂2

zzΦ with Azz and thus obtain, after conjugation,

gz̄z∂zU
z̄ = −〈δW , Azz〉,

and so since 1
2e2λ = gz̄z, this yields (5.1.6).

Next, we recall the following.

Theorem 5.3.1 ([KS01, KS02, KS20]). There exists an ε0 = ε0(n) > 0 so that, if Φ : [0, T )× S2 → Rn

is a smooth normal Willmore flow

∂

∂t
Φ = −δW ,

with smooth initial datum Φ(0, ·) = Φ0 and W0(Φ0) ≤ ε0, then:

(i) its area satisfies

|A(Φ(t, ·))−A(Φ0)| ≤ CA0(Φ0)W0(S),

for a constant C = C(n) > 0.

(ii) Its barycenter C(Φ) = −
∫
S2 Φ dσg satisfies

|C(Φ(t, ·))− C(Φ0)| ≤ CW0(S)

for a constant C = C(n) > 0.

(iii) Φ exists for all times and smoothly converges to a round sphere t→∞.

The proof of the following proposition follows directly by direct inspection of the proof of the
original theorems; for the proof of (ii) one uses additionally that conformal Willmore flows are
W 4,2 for almost every time, as proved in Proposition 5.3.3 below.

Proposition 5.3.2. (i) If the surface S is immersed through a W 4,2-map, then the same
conclusion of Theorem 5.2.1 and all its consequences obtained in Section 5.2 still hold.

(ii) For conformal Willmore flows in W ε,δ
[0,T )(S2,R3) the area and barycenter bounds in Theorem

5.3.1 still hold if ε is chosen sufficiently small.

A first regularity improvement for conformal Willmore flows is the following.

Proposition 5.3.3. For any ε0, δ > 0, any conformal Willmore flow Φ ∈ W ε0,δ
[0,T )(S2,R3) is in

W 4,2(S2) for a.e. t ∈ (0, T ). Futhermore there exist ε0, δ, C > 0 independent of Φ so that
Φ ∈ L2((0, T ),W 4,2(S2)) with

‖dΦ‖L2((0,T ),W 3,2(S2)) ≤ C(
√
T + ‖eλδW‖L2((0,T )×S2)), (5.3.1)

for a constant C > 0.
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5 The Willmore Flow in Conformal Gauge

Proof. Since δW ∈ L2((0, T ) × S2), Fubini’s theorem implies δW(t, ·) ∈ L2(S2) for a.e. t ∈
(0, T ). Consequently, by Propositions 4.3.1 and 4.3.2 of Chapter 4 it follows that Φ(t, ·) is in
W 4,p(S2). This yields that A(t, ·) ∈ L∞(S2) an information that inserted back in (5.1.6) yields
that U(t, ·) ∈ L2(S2), whence that Φ(t, ·) ∈ W 4,2(S2) by Proposition 4.3.2.
From Liouville’s equation

∆S2λ = e2λK − 1,

the pointwise inequality |K| ≤ |A|2g = e−4λ|A|2 and elliptic estimates

‖dλ‖L∞((0,T ),L(2,∞)(S2)) ≤ C. (5.3.2)

Choose now ε1 > 0 sufficiently small so that, for a.e. t ∈ (0, T ) so that Φ(t, ·) is W 4,2, we can
fix a value r > 0 which satisfies, according to Lemma 5.2.5,∫

Br(x0)
|A|2 dσ ≤ C

(
ε1 + eCr2

)
≤ ε0, (5.3.3)

for every x0 ∈ S2, where ε0 is as in Theorem 4.1.2 of Chapter 4. With the estimates (5.3.2) and
(5.3.3), an application of Theorem 4.1.2 to a covering S2 with balls of radius r/2 gives, for a.e.
t ∈ (0, T ),

‖dΦ‖W 3,2(S2) ≤ C
(
‖e4λδW‖L2(S2) + ‖eλ‖L2(S2)

)
≤ C

(
‖eλδW‖L2(S2) + 1

)
.

Now if we square and integrate in t such inequality, recalling that, since Φ ∈ W ε0,δ
[0,T ), (5.1.12)

holds by assumption, we obtain (5.3.1).

One can see that, in fact, along the proof of Proposition 5.3.3, well-balanced condition (iv) in
Definition 5.1.7 was not needed, an in fact the proof is completely independent of the tangential
component U . Such condition is however essential to prove the following.

Proposition 5.3.4. For every p < 2 there exist δ > 0 with the following property. Let Φ ∈
W ε,δ

[0,T )(S2,R3) be a weak Willmore flow. Then its tangential component is in L2((0, T ), Lp(S2)),
with

‖U‖L2((0,T ),Lp(S2)) ≤ C‖eλδW‖L2((0,T ),L2(S2)), (5.3.4)

for a constant C = C(p) > 0.

Proof. We may certainly assume p > 1. In this proof we find it convenient to clearly distinguish
between the non-immersed (pulled-back) tangential component U = Uµ∂µ, the immersed
one dΦ(U) = Uµ∂µΦ, and the associated tangent vector field on S2, dI(U) = Uµ∂µI, where
I : S2 → R3 denotes is the standard immersion. With this notation Φ satisfies weakly

∂

∂t
Φ = −δW + dΦ(U) in (0, T )× S2.

In what follows, it will be implicitly understood that all the slice-wise operations are valid for
a.e. fixed t. Finally we shall make use of the notation and concepts recalled in Appendix 5.5.
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5.3 Conformal Willmore Flows

From Lemma 5.1.1, we deduce that U is given by

U (1,0) = −∂−1(〈δW , h0〉]g) + Ω

for some time-dependent holomorphic vector field Ω = Ω(t, ·) ∈ Xω(S2). Classical elliptic
estimates and the simple inequality

1 = e−λeλ ≤ sup
S2

(e−λ)eλ ≤ C(1 + δ)eλ

issuing from property (5.1.11) and Hölder permit to estimate

‖∂−1(〈δW , h0〉]g)‖Lp(S2) ≤ Cp‖〈δW , h0〉]g‖L1(S2) (5.3.5)
≤ Cp‖|δW|e−2λ|A◦|‖L1(S2)

≤ Cp‖e−λ|A◦|‖L2(S2)‖δW‖L2(S2)

≤ CpW0(Φ)‖eλδW‖L2(S2)

≤ Cp‖eλδW‖L2(S2).

We now examine Ω. It will be more practical to look at the associated (time-dependent)
conformal Killing vector field i.e. generating conformal transformations:

V = Ω + Ω,

Similarly as in the proof of Lemma 5.2.3, a basis for the vector space of conformal Killing fields
Te Aut(S2) is given, in its immersed representative, is given by

dI(Z1)(y) = (0,−y3, y2), dI(Z2)(y) = (y3, 0,−y1), dI(Z3)(y) = (−y2, y1, 0),

dI(Z4)(y) = e1 − y1y, dI(Z5)(y) = e2 − y2y, dI(Z6)(y) = e3 − y3y.

One checks that this basis is orthogonal with respect the L2–scalar product and each element
has the same length. Thus, we may write

V =
6∑

a=1
V aZa = C

6∑
a=1

(V, Za)L2(S2)Za = C
6∑

a=1
(U,Za)L2(S2)Za, (5.3.6)

where the last inequality is a consequence of the fact that, by construction, the normal solution
of the ∂-operator is L2-orthogonal to the space of holomorphic vector fields. So, to estimate V
it suffices to estimate the (time-dependent) coefficients

(V, Za)L2 =
∫
S2
〈U,Za〉 dσ for a = 1, . . . , 6.

Now, we may write the integrand as

〈U,Za〉 = 〈dI(U), dI(Za)〉 = 〈dΦ(U), dI(Za)〉+ 〈dI(U)− dΦ(U), dI(Za)〉

where the second term can be estimated as∣∣∣〈dI(U)− dΦ(U), dI(Za)〉
∣∣∣ ≤ C|dI − dΦ||U |
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5 The Willmore Flow in Conformal Gauge

and thus, upon integration, Hölder’s inequality and property (5.1.11) of the set W ε,δ
[0,T )(S2,R3),

we see that the estimate∣∣∣∣∣
∫
S2
〈dI(U)− dΦ(U), dI(Za)〉dσ

∣∣∣∣∣ ≤ C
∫
S2
|dI − dΦ||U | dσ (5.3.7)

≤ C‖dI − dΦ‖Lp′ (S2)‖U‖Lp(S2)

≤ C‖Φ− I − c‖W 2,2(S2)‖U‖Lp(S2)

≤ Cp δ ‖U‖Lp(S2),

holds, which will suit our purposes. We are left to estimate the terms∫
S2
〈dΦ(U), dI(Za)〉 dσ for a = 1, . . . , 6.

Differentiating the well-balanced conditions (5.1.7) gives,

0 = d

dt

∫
S2
I × Φ dσ =

∫
S2
I × (−δW + dΦ(U)) dσ,

0 = d

dt

∫
S2
Idσg =

∫
S2
I
(
〈2H, δW〉+ divg(U)

)
dσg,

and thus that∫
S2
I × dΦ(U) dσ =

∫
S2
I × δW dσ, (5.3.8)

and, upon integration by parts, that∫
S2
dI(U) dσg =

∫
S2
I〈2H, δW〉 dσg.

On the other hand, a direct calculation shows that〈dΦ(U), dI(Z1)〉
〈dΦ(U), dI(Z2)〉
〈dΦ(U), dI(Z3)〉

 = I × dΦ(U), (5.3.9)

and similarly that〈dΦ(U), dI(Z4)〉
〈dΦ(U), dI(Z5)〉
〈dΦ(U), dI(Z6)〉

 = dΦ(U)− 〈dΦ(U), I〉I = (dΦ(U))>, (5.3.10)

where (·)> denotes the orthogonal projection onto the tangent space of S2 in the standard
immersion. Integrating (5.3.9) and using (5.3.8) we can estimate for a = 1, 2, 3∣∣∣(dΦ(U), dI(Xa))L2

∣∣∣ ≤ C

∣∣∣∣ ∫
S2
I × δW dσ

∣∣∣∣ ≤ C‖eλδW‖L2(S2). (5.3.11)

Integrating (5.3.10) we get instead
3∑

a=1
C(dΦ(U), dI(Ya))L2ea =

∫
S2

(dΦ(U))>dσ,
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and if we write the integrand as

(dΦ(U))> = (dI(U))> + (dΦ(U)− dI(U))>

and notice that, similarly as for (5.3.7) we can estimate∣∣∣∣ ∫
S2

(dΦ(U)− dI(U))>dσ
∣∣∣∣ ≤ C

∫
S2
|dΦ(U)− dI(U)| dσ

≤ C‖dΦ− dI‖Lp′ (S2)‖U‖Lp(S2)

≤ Cp δ ‖U‖Lp(S2),

using (5.3.8) (since dI(U) = dI(U)>), we have for a = 4, 5, 6

|(dΦ(U), dI(Ya))L2| ≤ C
∣∣∣∣ ∫
S2
dI(U)dσ

∣∣∣∣+ Cp δ ‖U‖Lp(S2) (5.3.12)

≤ C

∣∣∣∣ ∫
S2
I〈2H, δW〉 dσg

∣∣∣∣+ Cp δ ‖U‖Lp(S2)

≤ C‖Heλ‖L2(S2)‖eλδW‖L2(S2) + Cp δ ‖U‖Lp(S2)

≤ Cp
(
‖eλδW‖L2(S2) + δ ‖U‖Lp(S2)

)
,

where we also used that ‖Heλ‖L2(S2) = CW1(Φ) is bounded uniformly in t.
Estimates (5.3.7), (5.3.11) and (5.3.12) inserted in (5.3.6) yield

‖V ‖L∞(S2) ≤ Cp
(
‖eλδW‖L2(S2) + δ ‖U‖Lp(S2)

)
.

and so, in conjunction with (5.3.5), we get

‖U‖Lp(S2) ≤ Cp
(
‖eλδW‖L2(S2) + δ ‖U‖Lp(S2)

)
.

Taking the L2-norm in time of such inequality gives

‖U‖L2((0,T ),Lp(S2)) ≤ Cp
(
‖eλδW‖L2((0,T ),L2(S2)) + δ ‖U‖L2((0,T ),Lp(S2))

)
,

and so, if δ is chosen sufficiently small, we reach (5.3.4).

Remark 5.3.5 The δ of Proposition 5.3.4 may be smaller than that given by Proposition 5.1.5.
An inspection of the proof however shows however that we may equivalently have taken the same
δ at the price of choosing ε > 0 sufficiently small, because we may apply instead Propositions
5.3.2 and 5.1.5 for a.e. t so that Φ(t, ·) is W 4,2, and argue in the end similarly as above. This
variant would have been equally fine for our purposes.

Corollary 5.3.6. There exists ε0, δ > 0 so that any Willmore flow in W ε0,δ
[0,T )(S2,R3) is in

C∞((0, T ]× S2), and, if it is a solution to the Cauchy problem (5.1.5) for smooth initial datum
Φ0, then it is in C∞([0, T ]× S2).

Proof. By definition and by Proposition 5.3.3, dΦ is in L∞((0, T ),W 1,2(S2))∩L2((0, T ),W 3,2(S2)),
we have sufficient regularity to expand the Willmore operator in the flow equation by means of
formulas (5.1.10) and (3.3.12) of Chapter 3:

∂

∂t
Φ + 1

2e−4λ∆2Φ = 1
2e−4λ

(
2〈dλ,∇H〉g + (2|dλ|2g + ∆gλ)H

)
−∇∗g

(
〈A,H〉]g + 〈A◦, H〉]g

)
+ U ;
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5 The Willmore Flow in Conformal Gauge

since eλ is by assumption uniformly bounded, the equation is uniformly parabolic, and by
Proposition 5.3.4, U ∈ L2(0, T ), Lp(S2)) for any p < 2.

This is enough to start a boostrapping procedure using first Lp-Lq and then Schauder parabolic
estimates in a fashion similar to the elliptic case discussed in Proposition 4.3.1 of Chapter 4. To
bootstrap the regularity of the tangential component U , one uses higher-regularity variants of
Proposition 5.3.4, whose proofs are similar to the basic case.

Proof of Theorem 5.1.9. Case of smooth initial datum. By Corollary 5.3.6, it suffices to
prove that there exists a unique smooth solution in W ε0,δ

[0,T )(S2,R3) with the required properties.
An application DeTurck’s trick (see Appendix 5.4) yields existence and uniqueness of a smooth

solution to the Cauchy problem for the normal Willmore flow:
∂

∂t
Φ0 = −δW in (0, T )× S2,

Φ0(0, ·) = Φ0 on S2,

and if ε0 > 0 is small enough, by Theorem 5.3.1 Φ0 exists for all and smoothly converges to
a round sphere.2 We conformalize such flow composing it with the family (φ(t, ·))t∈[0,+∞) of
canonical quasi-conformal mappings associated to the family of metrics g0(t, ·) = Φ0(t, ·)?gR3 ,
see [AB60]. The fact that it is φ(0, ·) = e that such family is smooth both in the space and in
time follows from the theory of quasi-conformal mappings. Then Φ1(t, ·) = Φ0(t, φ(t, ·)) is a
conformal Willmore flow defined for all times and converging to a conformal parametrization of
a round sphere.
Let

a(t) =
√

4π
A(St)

the normalizing function of time so that a(t)St has always area 4π and let ε0 > 0 be sufficiently
small as in Theorem 5.2.1 and also so that Cε0 ≤ δ where C is as in (5.2.2) and δ is sufficiently
small as in Propositions 5.1.5 and 5.3.4.3 In this way, there exists a family of conformal
diffeomorphisms (ψ(t, ·))t∈[0,+∞) ⊂ Aut(S2) so that Φ(t, ·) = Φ1(t, ψ(t, ·)) is conformal, well-
balanced and

‖a(t)Φ(t, ·)− I − c(t)‖W 2,2(S2) + ‖a(t)eλ(t,·) − 1‖L∞(S2) ≤ CW0(St), (5.3.13)

where c(t) = −
∫
S2 Φ(t, ·) dσ (see Remark 5.2.2) and moreover there exist a neighborhood of the

identity O ⊂ Aut(S2) where such choice is unique.
As for a(t), thanks the area control of Theorem 5.3.1 (recall that A(S) = A(S0) = 4π) it is

|A(St)− 4π| ≤ CW0(St) = o(1) as t→ +∞,

and hence

|a(t)− 1| ≤ CW0(St) = o(1) as t→ +∞,
2Note carefully: the convergence is to some smooth parametrization, of a round sphere of some center and
radius, not to I modulo dilation and translation. For instance, if Φ0 is any smooth parametrization of a
round sphere, then Φ0 trivially converges to Φ0.

3See in this regard Remark 5.3.5.
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which means that we may remove a(t) from the estimate (5.3.13).
As for c(t), we may write

c(t) = −
∫
S2

Φ(t, ·) dσ = −
∫
S2

Φ(t, ·)e2λ(t,·) dσ +−
∫
S2

Φ(t, ·)(1− e2λ(t,·))dσ

= C(St) +−
∫
S2

Φ(t, ·)(1− e2λ(t,·))dσ,

where C(St) denotes the barycenter as in Theorem 5.3.1. Thus, from: the barycenter control of
Theorem 5.3.1, the control on the conformal factor issuing from (5.3.13), the fact that ψ(t, ·) ∈ O,
smooth convergence and C(S) = 0, we can estimate

|c(t)| ≤ CW0(St),

and hence also c(t) can be removed from estimate (5.3.13) as well and deduce that

‖Φ(t, ·)− I‖W 2,2(S2) + ‖eλ(t,·) − 1‖L∞(S2) ≤ CW0(St). (5.3.14)

Since W0(St) = o(1) as t → +∞, we obtain that Φ(t, ·) converges to I in W 2,2 and that its
conformal factor converges uniformly to 1. Convergence of higher order derivatives to I then
follow from this and the smooth convergence of Φ1.
Case of weak initial datum. Let Φ0,j ∈ Dε0(S2,R3) be a sequence appoximating Φ0 in the

weak W 2,2-topology, i.e.

Φ0,j ⇀ Φ0 in W 2,2(S2).

If ε0 is taken sufficiently small, it follows from the analysis in [Riv08, Riv14, Riv16] (see for
instance the proof of Theorem 3.36 in [Riv16]) that also

eλj ∗⇀ eλ in L∞(S2).

For each j, we let Φj ∈ W ε0,δ
[0,+∞)(S2,R3) be the well-balanced conformal Willmore flow given by

Theorem 5.1.9 with initial datum Φ0,j, which we know to be smooth. By estimate (5.3.14) we
have that for every t > 0 there holds

‖Φj(t, ·)− I‖W 2,2(S2) + ‖eλj(t,·) − 1‖L∞(S2) ≤ CW0(St) ≤ δ,

and by Proposition 5.3.3 it follows that for every fixed choice of T > 0 there holds

‖Φj‖L2((0,T ),W 4,2(S2)) ≤ C,

and finally by Proposition 5.3.4 we also have, for a fixed choice of 1 < p < 2,

‖∂tΦj‖L2((0,T ),Lp(S2)) = ‖ − δWj + Uj‖L2((0,1),Lp(S2)) ≤ C,

where C does not depend on j.
Weak sequential compactness properties of Sobolev spaces then imply that, up to the

extraction of a subsequence, there exists measurable functions Φ : (0,+∞)× S2 → R3 and
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λ : (0,+∞)× S2 → R so that, for every fixed T > 0, as j →∞,

Φj → Φ a.e. in (0,+∞)× S2, (5.3.15)
Φj ⇀ Φ in W 1,p((0, T )× S2), (5.3.16)
Φj ⇀ Φ in L2((0, T ),W 4,2(S2)),
Φj

∗
⇀ Φ in L∞((0, T ),W 2,2(S2)),

eλj ∗⇀ eλ in L∞((0, T )× S2). (5.3.17)

Thus, for every T > 0, Φ satisfies the conditions (i), (ii), (iv) of Definition 5.1.2 (and eλ is its
conformal factor), its Willmore operator is in L2((0, T )× S2) and finally since also

W0(Φ(t, ·)) ≤ lim inf
j→∞

W0(Φj) ≤ ε0,

which means that (ii) is satisfied as well and so Φ ∈ W ε0,δ
[0,+∞)(S2,R3). Moreover, since p > 1 by

(5.3.16) Φ has a trace at initial time, which, by uniqueness and continuity of the trace operator,
must coincide with Φ0.

Finally, the convergence properties (5.3.15)-(5.3.17) are enough to pass to the limit as j →∞
in Definition 5.1.8 and thus deduce that Φ is also a weak Willmore flow. By Corollary 5.3.6 Φ is
smooth on (0,+∞)× S2 as well.

5.4 Appendix: DeTurck’s Trick for the Willmore Flow
We outline here one way to obtain, in the smooth category, short-time existence for the Cauchy’s
problem (5.1.3) adapting an idea originally devised by DeTurck [DeT83] in the context of the
Ricci flow. There are other possibilities, such as the graph Ansatz [HP99] (in codimension 1) or
through the Nash-Moser Implicit Function Theorem [Ham82a, Ham82b].
The key idea is as follows. From the divergence form of the Willmore operator (5.1.10), we

write

δW = ∆gH +∇∗g
(
〈A◦, H〉]g + 〈A,H〉]g

)
= 1

2∆2
gΦ + F

(
dΦ,∇2Φ,∇3Φ

)
,

where F is a smooth function and the covariant derivatives are with respect to a fixed smooth
reference metric on Σ. Now in local coordinates we may write

∆gΦ = gµν∂2
µνΦ− gµνΓσµν∂σΦ,

and so

∆2
gΦ = ∆g(∆gΦ)

= gµν∂2
µν(∆gΦ)− gµνΓσµν∂σ(∆gΦ)

= gµν∂2
µν

(
gαβ∂2

αβΦ− gαβΓγαβ∂γΦ
)

+ f
(
∂xΦ, ∂2

xxΦ, ∂3
xxxΦ

)
,

for some smooth function f . Now, because also the metric depends on Φ: gµν = 〈∂µΦ, ∂νΦ〉,
the term gαβ

(
∂2
µνΓ

γ
αβ

)
∂γΦ also contains derivative of order 4 in Φ. This causes the Willmore

operator to be degenerate elliptic, and the corresponding flow to be degenerate parabolic.
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However, writing:

∆2
gΦ = gµνgαβ∂4

µναβΦ− gµν∂2
µν

(
gαβΓγαβ

)
∂γΦ + f

(
∂xΦ, ∂2

xxΦ, ∂3
xxxΦ

)
,

one guesses that it may be possible to add a tangent vector field to the Willmore operator which
for which the corresponding flow is a uniformly parabolic one. This motivates the following.

Definition 5.4.1. Let Σ be a closed, orientable surface and let Φ0 : Σ → R3 be a smooth
immersion. If Φ : Σ→ R3 is another smooth immersion, DeTurck’s vector field for the Willmore
flow (for Φ relative to Φ0) is the vector field tangent to Φ given by

V = V (Φ0,Φ) = −1
2∆gW = −1

2(∆gW )γ∂γΦ,

where W = W γ∂γ is the vector field on Σ given by

W γ = gαβ
(
Γγαβ − Γ̆γαβ

)
,

where Γγαβ and Γ̆γαβ denote respectively the Christoffel symbols of Φ and Φ0.

Note that this definition makes sense, since it is a well-known fact in differential geometry
that, although the Christoffel symbols are themselves not tensor, the expression Γγαβ − Γ̆γαβ (and
consequently its trace W ) is.

Proposition 5.4.2 (Short-Time Existence for the Smooth DeTurck-Willmore Flow). Let Σ be
a closed, orientable surface and let Φ0 : Σ → R3 be a smooth immersion. There exists some
T = T (Φ0) > 0 so that the Cauchy problem{

∂tΦ = −δW + V in (0, T )× Σ,
Φ(0, ·) = Φ0, on Σ,

(5.4.1)

has a unique solution in the class C∞([0, T ]× Σ,R3), where V = V (Φ0,Φ) is DeTurck’s vector
field for the Willmore flow.

Proof. It is sufficent to prove that (5.4.1) defines a uniformly parabolic system for Φ over Σ.
The existence, uniqueness and smoothness of a solution follows then from the general theory for
such systems in Hölder spaces [Sol65] (transl. English [MR067]), [LSU68]. We have

∆gW = trg
(
∇(2)W

)
= gµν

(
∇g
∂µ
∇g
∂ν
W −∇g

∇g
∂c

W
)

= gµν
(
∇g
∂µ
∇g
∂ν
W − Γσµν∇

g
∂σ
W
)
,

so computing directly we see that

∆gW = gµν
(
∂2
µνW

ξ + ∂νW
σΓξµσ + ∂µW

σΓξνσ

− Γτµν∂τW ξ +W σ∂µΓξνσ +W σΓτνσΓξµτ − ΓσµνΓξτσW σ
)
∂ξ

= gµν
(
∂2
µνW

ξ + f(W,∂xW,∂xΦ, ∂2
xxΦ)

)
∂ξ

= gµν
(
∂2
µνW

ξ + f
(
∂xΦ, ∂2

xxΦ, ∂3
xxxΦ

))
∂ξ,
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thus we have, in every choice of local coordinates, that

−δW + V = −1
2∆2

gΦ + V + f
(
∂xΦ, ∂2

xxΦ, ∂3
xxxΦ

)
= −1

2

(
gµνgαβ∂4

µναβΦ− gµν∂2
µν

(
gαβΓγαβ

)
∂γΦ

+ gµν∂2
µν

(
gαβ(Γγαβ − Γ̆γαβ)

)
∂γ~Φ

)
+ f

(
∂xΦ, ∂2

xxΦ, ∂3
xxxΦ

)
= −1

2
(
gµνgαβ∂4

µναβΦ− gµν∂2
µν

(
gαβ(Γ̆γαβ)

)
∂γ~Φ

)
+ f

(
∂xΦ, ∂2

xxΦ, ∂3
xxxΦ

)
= −1

2
(
gµνgαβ∂4

µναβΦ
)

+ f
(
∂xΦ, ∂2

xxΦ, ∂3
xxxΦ

)
,

so that (5.4.1) defines, for T sufficiently small and in the smooth category, a uniformly parabolic
system of fourth order in Φ.

One now obtains the analogue short-time existence and uniqueness statement for the Cauchy
problem (5.1.3) combining Proposition 5.4.2 and the the fact that there is a bijective correspon-
dence between tangential components an reparametrizations (see the analogous discussion in
[Man11]).

5.5 Appendix: The ∂-operator on Vector Fields
Let Σ be a Riemann surface. the complexified tangent bundle TCΣ = TΣ + iTΣ splits in two
sub-bundles:

TCΣ = TΣ(1,0) ⊕ TΣ(0,1),

whose sections are respectively (1, 0) and (0, 1)-vector fields:

X(1,0)(Σ) = Γ(TΣ(1,0)) 3 V = (V 1 + iV 2)∂z,
X(0,1)(Σ) = Γ(TΣ(0,1)) 3 W = (W 1 + iW 2)∂z̄.

One can identify (1, 0)- and real vector fields by means of conjugation and (1, 0)-projection:

X(1,0)(Σ) ' X(Σ) : V → V + V and W (1,0) ← W.

With this identification, we can consider holomorphic vector fields as real vector fields, whose
flows consist precisely of families of Aut(Σ), the space of conformal self-maps (Moiebius trans-
formations) of Σ. Calling B = Γ(TΣ(1,0) ⊗ T ∗Σ(0,1)), the ∂-operator over (1, 0)-vector fields
is

∂ : X(1,0)(Σ)→ B, ∂V = 1
2∂z(V

1 + iV 2)∂z ⊗ dz̄,

whose kernel is the space of holomorphic vector fields ker(∂) = Xω(Σ). Fix now a conformal
metric over Σ, g = e2λ|dz|2. The formal L2-adjoint of ∂, defined through the formula (∂V, F )L2 =
(V, ∂∗F )L2 is, if F = f∂z ⊗ dz̄,

∂∗ : B → X(1,0)(Σ), ∂∗F = −2e−4λ∂z(e2λf)∂z.
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We deduce that ker(∂∗) consists of those tensors F = f∂z ⊗ dz̄ so that e2λf is antiholomorphic.
If we lower the fist index of F :

F [ = fgz̄z dz ⊗ z = 1
2e

2λf dz ⊗ dz,

then F [ is an antiholomorphic quadratic differential, and so its conjugate is a holomorphic
quadratic differential. With these identifications, we have

ker(∂∗) ' Qω(Σ).

In particular, we note that even though ∂∗ does depend on the chosen metric, Qω(Σ) does not.
For given F ∈ B, we consider the equation

∂V = F on Σ. (5.5.1)

Then, (5.5.1) has a solution if and only if

F ∈ ∂(X(1,0)(Σ)) = ker(∂∗)⊥

In such case, if V0 is one such solution, every other one is of the form V = V0 + v for v ∈ Xω(Σ).

The normal solution to (5.5.1) is the only one in ker(∂)⊥, and we denote it by ∂−1F . Normal
solutions satisfy the typical elliptic estimates, such as for instance

‖∂−1
F‖W 1,2(Σ) ≤ C‖F‖L2(Σ) ∀F ∈ ker(∂∗)⊥.

for a constant C = C(Σ, g) > 0.
As a consequence of the Riemann-Roch formula, if γ is the genus of Σ, we have

dimCQ
ω(Σ) =


0 if γ = 0
1 if γ = 1,
3γ − 3 if γ ≥ 2,

and dimC X
ω(Σ) =


3 if γ = 0,
1 if γ = 1,
0 if γ ≥ 2.

In particular, (5.5.1) can be solved for any F when Σ = S2.
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6 The Germain–Poisson Problem
Summary: This chapter is dedicated to the solve the Germain–Poisson problem.

We find a disk–type surface D ⊂ Rn of least Willmore energy W2(D) among all
immersed surfaces having the same boundary, boundary Gauss map and area. We
present a solution in the case of boundary data of class C1,1 and when the boundary
curve is simple and closed. The minimum is realised by an immersed disk, possibly
with a finite number of branch points in its interior, which is of class C1,α up to the
boundary for some 0 < α < 1, and whose Gauss map extends to a map of class C0,α

up to the boundary.

6.1 Introduction
From the introduction to this thesis we recall that the Germain–Poisson problem (for disk–type
surfaces) is the following:

Given a simple, closed curve Γ ⊂ Rn, and a unit normal (n− 2)-vector field N0
along Γ and a value a > 0, find an immersed disk D ⊂ Rn bounding Γ, having
boundary Gauss map N0 and area a > 0 minimising the Willmore energy.

The name is after Germain’s [Ger21] and Poisson’s [Poi16], seminal work on elasticity
theory of plates. The hypothesis that the elastic energy density be proportional to the mean
curvature is due to Germain’s seminal research on elastic plates, who in turn built on earlier
one-dimensional models concerning the vibration of elastic beams investigated by Euler and
Jacques Bernoulli. Poisson found they should satisfy the corresponding Euler–Lagrange equation
complemented with a term corresponding to a fixed–area constraint.
Of course, the understanding of elasticity has advanced since then; however, a linearized

version of such energy, namely where the Willmore energy is replaced by the simpler biharmonic
energy of a graph, is still in use today in models concerning small deformations of thin elastic
plates. In such models however the non–stretchability of the plate is imposed by requiring
that the immersion is an isometry with respect to a reference metric on the surface instead of
just requiring the area to be fixed, as we are doing here following Poisson’s memoir. Such a
constraint, certainly more physical, would however greatly change the way the problem should
be treated. We refer for instance to [LL86, Vil97, FJM06, GGS10] for more on modern theories
of elasticity and to [BD80, DD87, Sza01] for a historical perspective on the development of the
subject. We briefly mention that considering Willmore–type energies with area constraints is
natural according to models for cell membranes in cell biology: we mention the celebrated paper
by Helfrich [Hel73] and we refer to the introduction in [KMR14] for more references on the
subject.

We are here interested in studying the Germain–Poisson problem from a geometric perspective;
we will consequently not dwell on the treatment of potentially undesired features of the solution
(such as self-intersections) that may not be desirable when dealing with physical elastic plates.



6 The Germain–Poisson Problem

Finally, we remark that the Germain–Poisson problem may be seen as a generalization of the
Plateau’s problem (see for instance [Str88, CI11, DHS10, DHT10]), since, for certain special
choices of the field N0 and of a, there will be minimal surfaces Σ (i.e. satisfying H = 0) bounding
Γ which are then absolute minimisers for the Germain–Poisson problem.

Among the possible variants for the Willmore energy (see (1.1.1) in the introduction of this
thesis) we shall work here with

W2(D) = 1
4

∫
D
|A|2 dσg, (6.1.1)

(sometimes called total curveture energy of D), since it has the advantage of having better
coercivity properties and is capable of controlling the number of branch points (recalled in §1.2.4
of the introduction of this thesis, see also [MR14, Riv16]), so the variational problem will be
well–posed with W2.

Note also that, if Φ : B1 → D is a conformal parametrization and N : B1 → Grn−2(Rn) is its
Gauss map (see §6.1.1 below for more information), then

W2(D) = 1
4

∫
B1
|∇N |2 dx.

With respect to the classical Willmore energy W2(D) =
∫
D |H|2 dσg, we recall once more that,

since there holds

|A|2 = 4|H|2 − 2K,

where K denotes the Gauss curvature of D, we have that

4W1(D)−W2(D) = 2
∫
D
K dσg,

so by virtue of the Gauss–Bonnet theorem (see for instance [AT12, Chapter 6]) there holds∫
D
K dσg = 2πχ(D)−

∫
∂D
kg d`g = 2π −

∫
∂D
kg d`g, (6.1.2)

since χ(D) = 1 is the the Euler-Poincaré characteristic of D and
∫
∂D kg d`g is the integral of the

geodesic curvature of ∂D as a positively oriented curve in D.
We observe that there could be differences between minimizers of the two Lagrangians W1

and W2 in the case of interior branch points since the identity (6.1.2) does not hold anymore.
We present in this paper a solution to the Germain–Poisson problem when Γ is a connected,

simple, closed curve and D is (the image of) a parametrised, possibly branched, immersed disk
Φ : B1 → Rn, where B1 = {z ∈ R2 : |z| < 1}. Let us define the class of “admissible” data
(Γ, N0, a) for which we can solve the problem.

In accordance with the terminology given in the introduction of this thesis, in what follows a
(conformal) “weak, branched immersion” is understood to be a conformal Lipschitz, branched
immersion with second fundamental form in L2.

Definition 6.1.1. A triple (Γ, N0, a) curve Γ ⊂ Rn, a unit-normal (n− 2)-vector field N0 and a
real number a > 0 is called admissible for the Germain–Poisson problem if Γ and N0 are of class
C1,1, Γ is simple and closed, and if there is at least one weak, branched conformal immersion
Φ ∈ F (B1,Rn) so that
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(i) its branch points are only on the interior of B1,

(ii) it assumes geometrically the boundary data, namely if γ : ([0,H1(Γ)]/ ∼)→ Rm is a chosen
arc–length parametrization of Γ, there exist a homeomorphism σΦ : S1 → [0,H1(Γ)]/ ∼ so
that, for every x ∈ ∂B1 = S1 there holds

Φ(x) = γ(σΦ(x)) and N = N0(γ(σΦ(x))),

(iii) it has area equal to a, namely, Area(Φ) = A(Φ) = 1
2
∫
B1
|∇Φ|2 dx = a.

Note that, for a given triple (Γ, N0, a) it is not so obvious to determine directly whether is it
admissible of not. However, an elementary application of the h− principle (see [EM02, Gro86])
allows us, for any given Γ and N0 as in Definition 6.1.1, to prove the existence of some a0 > 0 so
that, for every a ≥ a0 the triple (Γ, N0, a) is admissible. As the proof of this fact shows, when
n = 3, if one requires the map Φ as in the definition 6.1.1 not to have any branch points, (Γ, N0)
need to satisfy a topological constraint, namely, if t denotes the tangent vector of Γ, the map

x 7→ (t×N0, t, N0)(x), x ∈ S1,

has to define a non–nullhomotopic loop in the space of special orthogonal matrices SO(3).

The first main result of this paper is the following.

Theorem 6.1.2. Let (Γ, N0, a) be an admissible triple for the Germain–Poisson problem. Then,
there exists conformal weak, branched immersion Φ : B1 → Rn (whose branch points lie of the
interior of B1) assuming this data which minimizes the Willmore energy W2 in this class.

The second main result is the following.

Theorem 6.1.3. Let (Γ, N0, a) be an admissible triple for the Germain–Poisson problem. Every
minimizing map Φ as in Theorem 6.1.2 satisfies the distributional Willmore equation with area
constraint:

δW = ∇∗g
(
∇H + 〈A◦, H〉]g + 〈A,H〉]g

)
= cH, in D′(B1),

where c ∈ R, and such equation is in particular satisfied at the branch points.
Such map Φ is smooth in B1 away from the branch points and for every 0 < β < 1, Φ is

of class C2,β at the branch points and its Gauss map N extends to a map of class C1,β at the
branch points.

Finally, there exists 0 < α < 1 so that Φ is of class C1,α up to the boundary and its Gauss
map N extends to a map of class C0,α up to the boundary.

In the above result, the interior regularity part, away and at the branch points follows
adapting the results in [Riv08], similarly as done in [MR13, MR14], while the regularity at the
branch points follows from the study of singularities of Willmore surfaces (see [Riv08, BR13]
and [KS04, KS07]).
Remark 6.1.4 Notice that the assumptions Γ, N0 ∈ C1,1 = W 2,∞ are far from being optimal.
We expect that the conclusions of theorems 6.1.2 6.1.3 to hold under weaker assumptions on
the admissible boundary data.
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Let us put our results in a broader context. Nitsche [Nit93] discussed various boundary
conditions for the Willmore and related type of functionals, and proved existence and uniqueness
results for a class of such problems, also considering a volume constraint, when the surfaces are
graphs in R3 and the boundary data are sufficiently small in C4,α-norm. Recently Deckelnick-
Grunau-Rögers [DGR17] also consider the minimisation over graphs in R3 of the Willmore
functional (also plus a constant times integral of the Gauss curvature) subject to various boundary
conditions and deduced compactness results in the L1-topology, and from this, also a lower-
semicontinuity for a suitably defined relaxation of the Willmore functional. A considerable series
of results (we refer to [EK17, DGR17, DDW13, BDF13, DFGS11, BDF10, DG09, DDG08] and
the references therein) is available when considering boundary value problems for the Willmore
functional under the hypothesis that the surfaces in consideration are surfaces of revolution
around an axis in R3 (hence the boundary consist of two circles). Schätzle [Sch10], by working
on the sphere Sn ⊂ Rn+1, has proved the existence, for arbitrary smooth boundary data Γ and
N0 and without area constraint, of a branched immersion, smooth away from the finitely many
branch points, satisfying the classical form of the Willmore equation in Sn, namely

∆⊥H +Q(A◦)H = 0,

away from the branch points However this equation has no meaning at the branch points and it
is not proved that, starting from arbitrary data Γ, N0 in Rn, projecting them stereographically
into Sn, and then considering the projected-back Willmore surface obtained in Sn (recall that
the Willmore equation is conformally invariant), one gets a surface which is “Germain–Poisson–
minimal”, i.e. that it solves the Poisson problem or also whether it passes through ∞ or
not.
Alexakis and Mazzeo [AM15] consider smooth, properly embedded and complete Willmore

surfaces in the hyperbolic space H3 and relate the regularity of their asymptotic boundary with
the smallness of a suitable version of the Willmore energy. In a recent paper Alessandroni and
Kuwert [AK16], considering a free-boundary problem for the Willmore functional, have proved
the existence (and non-uniqueness) of smooth Willmore disk-type surfaces in R3 with prescribed
but small value of the area whose boundary lays on the boundary of a smooth, bounded domain.
Finally, we also mention the very recent works of Eichmann [Eic19] and Pozzetta [Poz20]
that also deal with minimization problems for Willmore–type energy similar to ours.

We would like to mention some interesting questions and open problems related to the the
Germain–Poisson problem, some of which are the aim of future investigation. Beside our
expectations sharpening the boundary regularity one may for instance consider:

• existence and properties of non–minimizing i.e. saddle-type Willmore surfaces having
prescribed boundary data and area (a partial answer is in [Sch10] described above);

• the solution to the Germain–Poisson problem in the case of a boundary curve consisting
of multiple connected components (in the spirit of its Plateau-counterpart as done in the
classical work by Meeks and Yau [MY82]) or among manifold with a non-trivial topology
(an important tool for this should be the work by Bauer and Kuwert [BK03]), or both;

• an investigation on a version of the Germain–Poisson problem where no area bound is
prescribed;
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• free-boundary versions of the Germain–Poisson problem in the case of surfaces with
arbitrary prescribed area and boundary laying in some submanifold of Rm such as the
sphere (as done in the forementioned work [AK16] but with no restriction on the prescribed
value of the area).

Central ingredient for our solution to the Germain–Poisson problem, are the estimate for
Neumann problems involving Jacobians treated in Chapter 2.
The regularity up to the boundary of a minimising map in Theorem 6.1.3 follows from a

boundary ε-regularity Lemma which is in turn obtained by suitable biharmonic comparison
arguments. It is expected such an ε-regularity Lemma up to the boundary to hold for general
critical points of the Energy (6.1.1) (an interior ε-regularity for such critical points has been
already proved by Rivière in [Riv08]).

6.1.1 Some Notation, Definitions and a Lemma Beside the common notation, in this paper
we denote:

R2
+ = {(x1, x2) : x2 > 0} upper half-space,

B+
r (0) = Br(0) ∩ R2

+ with r > 0 upper half-ball of radius r,
ε1, . . . , εn canonical basis of Rn.

We will write ∂B+
r (0) = rI + rS, where

rI = {(x1, 0) : −r < x1 < r} ' (−r, r) base diameter,

rS = {(x1,
√

1− (x1)2) : −r < x1 < r} upper semi-circle.

The Gauss map of an immersion Φ : B1 → Rn is seen here as the map N : B1 → Grn−2(Rn)
given by

N(x) = ?
∂1Φ(x) ∧ ∂2Φ(x)
|∂1Φ(x) ∧ ∂2Φ(x)| ,

where ? is the Hodge operator in Rn (here Grn−2(Rn) denotes the (n− 2)-dimensional Grass-
mannian of Rn and ? is the Hodge operator in Rn see e.g. [BG80, Chapter 2]). When when
n = 3, we have the canonical identification ?(V ∧W ) = V ×W , where × is the vector product,
so in this case N can be considered as a S2-valued map.
It can be represented as N = N1 ∧ · · · ∧Nn−2, where the Ni’s are normal vector fields for Φ

so that the n-ple (∂1Φ, ∂2Φ, N1, . . . , Nn−2) defines a positively oriented basis of Rn.
If Γ ⊂ Rn is a simple, closed curve with a chosen arc-length parametrization γ : [0,H1(Γ)]/ ∼→

Γ and N0 = N0(γ(·)) is a unit-normal (n− 2)-vector field along Γ, the geodesic curvature kg of
Γ (with respect to N0) is defined as follows: if t = γ̇ denotes the unit-tangent vector of Γ we set
(see [AT12, Chapter 5])

kg =
〈
ṫ, ?(N0 ∧ t)

〉
= 〈γ̇, ?(N0 ∧ γ̇)〉 . (6.1.3)

Definition 6.1.5 (Weak Branched Immersions).

(i) F (B1,Rn) denotes the set of weak branched immersions whose branch points lie only in
the interior of B1.
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(ii) If Γ ⊂ Rn is a simple, closed curve and N0 is a unit-normal (n − 2)-vector field along
Γ, F (B1,Rn,Γ, N0) is the set of maps Φ ∈ F (B1,Rn) so that for some homeomorphism
σΦ : S1 → [0,H1(Γ)]/ ∼ there holds

Φ(x) = γ(σΦ(x)) and N(x) = N0(σΦ(x)), for x in ∂B1 = S1,

where γ : [0,H1(Γ)]/ ∼→ Γ is a fixed arc-length parametrization of Γ.

(iii) For a > 0, F (B1,Rn,Γ, N0, a) is the set of maps Φ ∈ F (B1,Rn,Γ, N0) with area a,
namely A(Φ) = Area(Φ) = 1

2
∫
B1
|∇Φ|2 dx = a.

If Φ : B1 → Rn is a weak branched conformal immersion, the logarithm of its conformal factor
λ = log(|dΦ|/

√
2) will be a weak solution of the so-called Liouville equation:

−∆λ = Ke2λ − 2π
∑̀
i=1

niδai inB1,

∂νλ = kg(σΦ)eλ − 1 on ∂B1,

(6.1.4)

where a1, . . . , a` are the branch points of Φ and ni ∈ N are their respective multiplicities.
The existence of a conformal re–parametrizations for branched immersions that are not

necessarily conformal is implied by the following result which makes use Müller-Šverák theory
of weak isothermic charts [MŠ95] and Hélein’s moving frame technique (for more deails we refer
to [Hél02] and [Riv12]):

Lemma 6.1.6. Let Φ ∈ W 1,∞(B1,Rn) satisfy the following conditions:

i) there exists some C > 0 such that

|∇Φ|2 ≤ C
√

det gΦ a.e. in B1,

ii) there exists a finite (possibly empty) set {a1, . . . , a`} ⊂ B1 such that for every compact set
K ⊂ B1 \ {a1, . . . , a`}, Φ defines a Lipschitz, W 2,2 immersion,

iii) Its Gauss maps extends to a W 1,2–map also at the ak’s,

Then there is a bi–Lipschitz diffeomorphism ψ : B1 → B1 so that Φ ◦ ψ is conformal.

6.2 Existence of Immersed Disks with Given Boundary Data
In this section we prove, along with some other facts and comments, the following result.

Lemma 6.2.1. Let Γ ⊂ Rn be a simple, closed curve of class Ck,α for k ∈ N≥1 and α ∈ (0, 1]
whose unit tangent vector we denote by t and let N0 be a unit-normal (n− 2)-vector field along
Γ of class Ck,α. There exists a possibly branched conformal immersion Φ : B1 → Rn of class
Ck,α and boundary Γ and whose Gauss map along Γ is N0. In particular, a branch-point-free
immersion Φ can be produced when either n > 3 or when n = 3 and the map

x 7→ (t×N0, t, N0)(x), x ∈ S1,

defines a non-nullhomotopic loop in SO(3).
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We treat the case n = 3; when n ≥ 3 see the final Remark 6.2.4. For the elementary concepts
of algebraic topology here mentioned we refer the reader to [Hat02, DFN85, DFN92].

Any (non-branched) immersion Φ : B1 → R3 naturally defines a map into the space invertible
of matrices with positive determinant, E = EΦ : B1 → GL+(3,R), by

E(x) = (∂1Φ(x), ∂2Φ(x), N(x)), x ∈ B1
2,

where N denotes the Gauss map of Φ. The classical Gram-Schmidt algorithm gives the existence
of a deformation retraction of GL+(3,R) to the 3-dimensional special orthogonal group SO(3),
and in particular the map E is homotopic in GL+(3,R) to the coordinate frame map

e(x) = eΦ(x) = (e1(x), e2(x), e3(x)), x ∈ B1,

where

e1(x) = ∂1Φ(x)
|∂1Φ(x)| ,

e2(x) = ∂2Φ(x)
|∂2Φ(x)| −

〈
∂2Φ(x)
|∂2Φ(x)| , e1(x)

〉
e1(x),

e3(x) = e1 × e2(x) = N(x).

We can similarly define the polar frame map defined by means of polar coordinates x = reiθ in
B1 \ {0} as p(x) = (p1(x), p2(x), p3(x)), where

p(reiθ) = (e1, e2, e3)(reiθ)

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
We recall that the fundamental group of SO(3) consists precisely of two components:

π1(SO(3)) = Z/2Z,

the non-trivial class being represented for instance by the family realising a complete rotation
around the z-axis:

R(θ, ẑ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , θ ∈ [0, 2π].

Recall moreover that, being SO(3) a topological group, the matrix product operation is
compatible with the one of π1(SO(3)). Since the restriction of the coordinate frame map e
to S1 = ∂B1 defines a nullohomotopic loop in SO(3), the homotopy being induced by the
immersion:

et(x) = e (tx) , x ∈ ∂B1, t ∈ [0, 1].

the polar frame defines then a non-contractible loop in SO(3). This argument implies that,
given an immersed curve γ : S1 → R3 and a unit-normal vector field N0 : S1 → S2 along γ, a
necessary condition for the existence of an immersion Φ : B1 → R3 bounding γ and so that
NΦ = N0 on ∂B1 is that

x 7→ (t×N0, t, N0)(x), x ∈ S1,

is not a nullhomotopic loop in SO(3). Examples of couples (γ, n0) that do not satisfy this
condition are easy to produce.
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Example 6.2.2 (Dirac Belt) Let γ : [0, 2π]→ R be the unit circle:

γ(θ) = (cos θ, sin θ, 0).

We consider a rotation of angle θ around the tangent vector of γ, namely t(θ) = (− sin θ, cos θ, 0).
Its matrix is given by

R(θ, t(θ)) = BT (θ)R(θ, ẑ)B(θ),

where

B(θ) =

 0 0 1
cos θ sin θ 0
− sin θ cos θ 0

 ,
hence we consider the polar frame map given by

p(θ) =
(
R(θ, t(θ))ẑ × t(θ), t(θ), R(θ, t(θ))ẑ

)
,

where ẑ = (0, 0, 1) is the z-versor, which corresponds to rotating the polar frame map of the
standard unit disk:

p(θ) = R(θ, t(θ))

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
Using the compatibility of the product operations between the SO(3) and π1(SO(3)), we see
that

[p(θ)] = [R(θ, t(θ))] + [R(θ, ẑ)]
= [R(θ, t(θ))] + 1.

To prove that also R(θ, t(θ)) belongs to the non-trivial class of π1(SO(3)), we can use its
quaternion representation:

R(θ, t(θ)) = (cos(θ/2), sin(θ/2) t(θ))
= cos(θ/2)− sin(θ/2)(− sin θi + cos θj).

With this representation, since there holds

R(0, t(0)) = 1 and R(2π, t(2π)) = −1,

the lift of R(θ, t(θ)) to the universal cover S3 is not a closed loop, and this means that the base
loop is not nullhomotopic. We then conclude that

[p(θ)] = 1 + 1 = 0 in Z/2Z.

This example demonstrates also that a couple (γ,N0) needs not to bound an immersion of
Φ : B1 → R3 not even if γ is planar and injective. We now want to prove that the only additional
requirement for Φ to exist is to have a branch point. The key step to prove it, obtained through
an elementary application of the so-called h-principle [EM02, Gro86], is the following lemma.
In what follows, let us denote, for 0 ≤ r ≤ R <∞,

A[R, r] = BR \Br

the annulus of radii R and r centered at 0.
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Lemma 6.2.3. Let γ1, γ2 : S1 → R3 be regular, closed curves of class Ck,α for k ∈ N≥1 ∪ {∞}
and α ∈ (0, 1], whose unit tangent vectors we denote by t1 and t2, and let N0, N1 : S1 → S2

be unit normal vector fields along γ1 and γ2 respectively of class Ck,α. There exists a regular,
immersed strip of class Ck,α

Φ : A[2, 1]→ R3,

satisfying

Φ|∂B1 = γ1, N |∂B1 = N1 and Φ|∂B1 = γ2, N |∂B1 = N2 (6.2.1)

if and only if the maps

p1(x) = (t1 ×N1, t1, N1)(x) and p2(x) = (t2 ×N2, t2, N2)(x), x ∈ S1,

are homotopic in SO(3).

Proof of Lemma 6.2.3. The necessity of the condition is clear, we prove the sufficiency.
Step 1. Set, for δ > 0, Kδ = S1 × (−δ, δ)2 and define the following maps for i = 1, 2:

φi(ξ, u, v) = γi(ξ) + u (ti ×Ni)(ξ) + v Ni(ξ), (ξ, u, v) ∈ Kδ.

If δ is chosen small enough, φ1 and φ2 define regular immersions (i.e. the Jacobian matrix
Dφ(x) has rank 3 for every x ∈ Kδ) of class Ck,α. Since S1 and SO(3) are strong deformation
retracts of Kδ and GL+(3,R) respectively, an homotopy between p1 and p2 in SO(4) induce
an homotopy in GL+(3,R) between Dφ1 and Dφ2. Let (x, t) 7→ m(x, t), (x, t) ∈ Kδ × [0, 1] be
such an homotopy.
Step 2. Let J1(R3,R3) be the 1-jet space of maps from R3 to itself (see [EM02, Chapter 1])

and let us consider the (local) section

F : S1 ×
[
−δ, 5

2δ
]
× [−δ, δ]→ J1(R3,R3), x 7→ (x, φ(x),M(x)),

where

φ(x) = φ(ξ, u, v)

=


φ1(ξ, u, v) if u ∈

[
−δ, δ2

]
,

2
δ
(δ − u)φ1(ξ, u, v) + 2

δ

(
δ
2 − u

)
φ2
(
ξ, u− 3

2δ, v
)

if u ∈
[
− δ

2 , δ
]
,

φ2
(
ξ, u− 3

2δ, v
)

if u ∈
[
δ, 5

2δ
]
,

and

M(x) = M(ξ, u, v)

=


Dφ1(ξ, u, v) if u ∈

[
−δ, δ2

]
,

m
(
ξ, u− 3

(
u− δ

2

)
, v, 2

δ

(
1− δ

2

))
if u ∈

[
− δ

2 , δ
]
,

Dφ2
(
ξ, u− 3

2δ, v
)

if u ∈
[
δ, 5

2δ
]
,

Performing a normalisation of the parameters, we obtain a section G : K1/2 = S1 × [−1, 1]×
[−1, 1]→ J1(R3,R3) which is holonomic in the set S1×[−1,−1/4]×[−1, 1]∪S1×[1/4, 1]×[−1, 1].
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Step 3. By the relative version of the Holonomic Approximation theorem ([EM02, Theorems
3.1.1, 3.2.1]) with

A = S1 ×
[
−3

4 ,
3
4

]
× {0}, B = S1 ×

{
−1

2 ,
1
2

}
× {0},

we may obtain, for every ε1 > 0, a diffeomorphism h : R3 → R3 with ‖h− IdR3 ‖C0(R3) ≤ ε1 and
satisfying h ≡ IdR3 on a open neighbourhood U of B, a holonomic section G̃ : V → J1(R3,R3),
where V ⊇ U is an open neighbourhood of h(A), satisfying G̃ ≡ G on U and ‖F̃ −F‖C0(V ) ≤ ε1.
By choosing ε1 small enough, G̃ is then the 1-jet extension of an immersion coinciding with
the one of φ0 in a open neighbourhood of S1 × {−1/2} × {0} and with the one of φ1 in a open
neighbourhood of S1 × {1/2} × {0}; in particular it is of class Ck,α in such neighbourhoods.
Possibly reducing U and V , the existence of a diffeomorphism g : K1/2 → V that shrinks

K1/2 into V wile keeping U fixed is ensured. If we consider the restriction of holonomic section
H = G ◦ g : K1/2 → J1(R3,R3) to S1× [−1/2, 1/2]×{0}, and denote by Ψ : S1× [−1/2, 1/2] '
A[2, 1]→ R3 the base map, we have that Ψ is realises a regular immersion of class C1 which, in
a small neighdourhood of the boundary, containing, say, S1 × [1/2 + ε2, 1/2− ε2] for some small
ε2 > 0, and of class Ck,α and satisfies the desired boundary prescriptions (6.2.1).
Step 4. To ensure the global Ck,α regularity, we us use a localised mollification for Ψ:

Φ(x) = Ψ ∗ ρε(x)(x) x ∈ S1 ×
[
−1

2 ,
1
2

]
,

where ρ is the standard mollification kernel and ε(x) = ε3χ(x), where χ is smooth cut-off
function identically 1 on S1× [−1/2 + ε3, 1/2− ε3] and compactly supported on S1× (−1/2, 1/2)
and ε3 > 0 has be chosen so small that Φ has maximum rank. We conclude that the map Φ
thus defined is the one we have been looking for.

From this lemma we can prove lemma 6.2.1, in the case n = 3, that is we can construct,
given any couple curve-normal vector field (γ, n0) of class Ck,α, a possibly branched immersion
Φ : B1 → R3 of class Ck,α assuming such data at the boundary.

Proof of Lemma 6.2.1. We consider the the loop p(x) = (t× n0, t, n0)(x) in SO(3) induced
by Γ and N0. If it is not nullhomotopic, we can connect, in a C1 way, the couple (γ,N0) and
the flat immersion of the disk z 7→ (z, 0) by means of a regular strip of class Ck,α. If it is
nullhomotopic instead we can do the same with the branched immersion z 7→ (z2, 0). If necessary,
we smooth out the immersion near the junction as done in Step 4 of the proof of Lemma 6.2.3; a
final reparametrization with Lemma 6.1.6 gives then the immersion Φ : B1

2 → R3 we have been
looking for (since, when k = α = 1, or when k ≥ 2, Φ satisfies the assumptions of lemma).

Remark 6.2.4 (Higher codimension case) For general n ≥ 3, a regular curve γ : S1 → Rn and
(n− 2)-unit normal vector field N0 : S1 → Grn−2(Rn) along γ uniquely determine a loop into
the set of couples of ortho-normal vectors or Rn:

x 7→ (?(t ∧N0), t)(x) x ∈ S1,

that is to say, into the Stiefel manifold V2(Rn) (see e.g. [Hat02]), which for the case n = 3
we could identify with SO(3). As it is well-known, π1(V2(Rn)) = 0 for n > 3 and hence, the
higher-dimensional version of lemma 6.2.3 basically says that a regular strip bounding any two
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couples (γ1, N1) and (γ2, N2) can always be constructed. As a consequence, with the aid of the
Holonomic approximation, in a similar fashion as the one just described, we may always find a
regular immersion bounding γ and N0. This is perhaps not so surprising, as higher codimension
gives us more freedom.

6.3 An Estimate for the Neumann Problem
For given f ∈ L1(B1), g ∈ L1(∂B1) we recall that a function u ∈ W 1,1(B1) is said to weakly
solve the Neumann problem for the Poisson equation in B1:{

−∆u = f in B1,

∂νu = g on ∂B1,
(6.3.1)

if, for every ψ ∈ C∞(B1), there holds∫
B1
f ψ dx+

∫
∂B1

g ψ dH1 =
∫
B1
〈∇u,∇ψ〉 dx.

From this expression, it is immediate to see that a necessary condition for the existence of
a weak solution is that

∫
B1
f = −

∫
∂B1

g (see e.g. [Ken94] for more on weak formulations of
Neumann problems). Such condition is also sufficient and we have the following representation
formula:

u(x)−−
∫
∂B1

u dH1 =
∫
B1
G(x, y) f(y) dy +

∫
∂B1
G(x, y)g(y) dH1(y) x ∈ B1,

where G is the Green function for the Neumann problem (with zero average on ∂B1), that is
the function:

G(x, y) = − 1
2π (log |x− y|+ log |x̃− y||x|) + |y|

2

4π −
1

4π , (6.3.2)

which satisfies, for every x ∈ B1,

−∆yG(x, ·) = δx −
1
|B1|

, in B1,

∂νyG(x, ·) = 0 on ∂B1,∫
∂B1
G(x, y) dH1(y) = 0.

(6.3.3)

Note that the presence of the constant −1/|B1| = −1/π, computed directly from expression
(6.3.2), is indeed the correct one for the Neumann problem (6.3.3) to admit a solution. Two
such solutions to (6.3.1) differ by a constant.

In what follows, we denote 1
2π
∫
∂B1

φ by φ. The results we now present are in the spirit of
Brezis-Merle [BM91, Theorem 1] and Da Lio-Martinazzi-Rivière [DMR15, Theorem 3.2].

Theorem 6.3.1. Let f ∈ L1(B1), g ∈ L1(∂B1) satisfy
∫
B1
f = −

∫
∂B1

g and let u ∈ W 1,1(B1) be
a weak solution to the problem (6.3.1). Then, for every ε > 0 verifying ‖g‖L1(∂B1) + 2‖f‖L1(B1) <
π − ε we have

‖eu−u‖Lp(∂B1) ≤ Cε,
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for some Cε > 0 depending on ε and

p = π − ε
‖g‖L1(∂B1) + 2‖f‖L1(B1)

.

Proof of Theorem 6.3.1. Set k = 1
2π
∫
B1
f = − 1

2π
∫
∂B1

g. We write the solution of (6.3.1) as:

u(x)− u = u1(x) + u2(x) + k

2(1− |x|2), x ∈ B1, (6.3.4)

where:
−∆u1 = f − 2k, in B1,

∂νu1 = 0 on ∂B1,

u1 = 0,
and


−∆u2 = 0, in B1,

∂νu2 = g + k on ∂B1,

u2 = 0.

Step 1: study of u1. We set F = f − 2k = f − −
∫
B1
f ; note that there holds

∫
B1
F = 0 and

‖F‖L1(B1) ≤ 2‖f‖L1(B1). The Green function for the Neumann problem can be written as

G(x, y) = 1
2π

(
log

(
2

|x− y|

)
+ log

(
2

|x̃− y||x|

))
+ |y|

2

4π −
1

4π −
1
π

log 2,

where, since |x− y| ≤ 2 and |x̃− y||x| ≤ 2, the term in brackets is non negative. Then we may
write u1 as:

u1(x) = 1
2π

∫
B1

(
log

(
2

|x− y|

)
+ log

(
2

|x̃− y||x|

))
F (y) dy +

∫
B1

|y|2

4π F (y) dy,

and in particular, for x ∈ ∂B1, we have the formula:

u1(x) = 1
π

∫
B1

log
(

2
|x− y|

)
F (y) dy +

∫
B1

|y|2

4π F (y) dy, x ∈ ∂B1.

For γ > 0 then there holds:

γ|u1(x)|
‖F‖L1(B1)

≤ γ

π

∫
B1

log
(

2
|x− y|

)
|F (y)|
‖F‖L1(B1)

dy + γ

4π ,

so by Jensen’s inequality (see e.g. [Eva10, Appendix B]):

exp
(
γ|u1(x)|
‖F‖L1(B1)

)
≤
∫
B1

(
2

|x− y|

) γ
π |F (y)|
‖F‖L1(B1)

dy · e
γ
4π .

Integrating on ∂B1 and using Tonelli’s theorem yields:
∫
∂B1

exp
(
γ|u1(x)|
‖F‖L1(B1)

)
dH1(x) ≤

∫
B1


∫
∂B1

(
2

|x− y|

) γ
π

dH1(x)

 |F (y)|
‖F‖L1(B1)

dy · e
γ
4π .

Then one sees that, for γ < π, the integral:
∫
∂B1

(
2

|x− y|

) γ
π

dH1(x)
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is convergent and its value uniformly bounded in y ∈ B1. We conclude that:∫
∂B1

exp
(
γ|u1(x)|
‖F‖L1(D)

)
dH1(x) ≤ Cγ, for γ < π, (6.3.5)

for some constant Cγ > 0 depending on γ.
Step 2: study of u2. Note that for x = eiφ, y = eiθ, G(x, y) takes the form:

G(eiφ, eiθ) = − 1
π

log |x− y| = − 1
2π log(2(1− cos(φ− θ))) =: G(φ− θ), (6.3.6)

hence the boundary value of u2 can be written as:

u2(φ) = u2(eiφ) = G ∗ (g + k) = G ∗ g, on ∂B1,

where the last equality follows since G has zero average. Using again this property, we may
write:

u2(eiφ) = − 1
2π

∫
∂B1

log(2(1− cos(φ− θ)))g(θ) dθ

= 1
2π

∫
∂B1

log
(

1− cos(φ− θ)
2

)
g(θ) dθ,

where now the argument in the logarithm is always bigger than 1. As in step 1, for γ > 0 and
Jensen’s inequality one deduces:

exp
(
γu1(eiθ)
‖g‖L1(∂B1)

)
≤
∫
∂B1

(
2

1− cos(φ− θ)

) γ
2π |g(θ)|
‖g‖L1(∂B1)

dθ,

hence with Tonelli’s theorem:∫
∂B1

exp
(
γu1(eiθ)
‖g‖L1(∂B1)

)
dθ ≤

∫
∂B1


∫
∂B1

(
2

1− cos(φ− θ)

) γ
2π

dφ

 |g(θ)|
‖g‖L1(∂B1)

dθ.

Provided γ < π the integral:
∫
∂B1

(
2

1− cos(φ− θ)

) γ
2π

dφ =
∫
∂B1

(
2

1− cos(φ)

) γ
2π

dφ

is convergent, hence we conclude that:∫
∂B1

exp
(
γ|u2(x)|
‖g‖L1(∂B1)

)
dx ≤ Cγ, for γ < π, (6.3.7)

and for some Cγ > 0.
Step 3. Finally from (6.3.4), we may write

eu−u = eu1eu2 on ∂B1 .

In particular, if 1
p

= 1
p1

+ 1
p2
, by Hölder’s inequality there holds

‖eu−u‖Lp(∂(B1)) ≤ ‖eu1‖Lp1 (∂B1)‖eu2‖Lp2 (∂B1).
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Choosing

p1 = π − ε
2‖f‖L1(B1)

and p2 = π − ε
‖g‖L1(∂B1)

,

we reach the conclusion by using estimates (6.3.5) and (6.3.7) with γ = π − ε. This proves
theorem 6.3.1.

Remark 6.3.2 In step 2, G defined in (6.3.6) has zero average, the computation is invariant by
translations of g. Consequently, the assumption on f and g on theorem 6.3.1 may be replaced
by

‖g − α‖L1(∂B1) + 2‖f‖L1(B1) < π − ε for some α ∈ R.

The following is a localised version of theorem 6.3.1.

Lemma 6.3.3. Let f ∈ L1(B1), g ∈ L1(∂B1), a1, . . . a` be points in B1 and α1, . . . , α` be real
numbers satisfying

∫
B1
f+∑i αi+

∫
∂B1

g = 0. Let u ∈ W 1,1(B1) be a weak solution to the problem
−∆u = f +

∑̀
i=1

αiδai in B1,

∂νu = g on ∂B1.

(6.3.8)

Assume that, for a given x0 ∈ ∂B1 and 0 < r < 1, Br(x0)∩{a1, . . . a`} = ∅ and ‖g‖L1(∂B1∩Br(x0))+
2‖f‖L1(B1∩Br(x0)) < π − ε, for some 0 < ε < π. Then

‖eu−u‖Lp(∂B1∩Br/2(x0)) ≤ CεC1

(1
r

)C2

, (6.3.9)

where

p = π − ε
‖g‖L1(∂B1∩Br(x0)) + 2‖f‖L1(B1∩Br(x0))

,

where Cε > 0 is a constant depending on ε and C1, C2 depend on ‖f‖L1(B1), ‖g‖L1(∂B1)) and the
α′is.

Proof of Lemma 6.3.3. Let χ : B1 → R be a function in C∞(B1) so that χ = 1 in B1 ∩
B3r/4(x0) and with support in B1 ∩Br(x0). We write the solution of (6.3.8) as: u− u = u1 + u2,
where:


−∆u1 = fχ in B1,

∂νu1 = gχ− c on ∂B1,

u1 = 0,
and


−∆u2 = f(1− χ) +

∑̀
i−1

αiδai in B1,

∂νu2 = g(1− χ) + c on ∂B1,

u2 = 0,

with c = 1
π

∫
B1
fχ+ 1

2π
∫
∂B1

gχ. Applying theorem 6.3.1 together with remark 6.3.2, we deduce
the existence of Cε > 0 such that:

‖eu1‖Lp(∂B1) ≤ Cε. (6.3.10)
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To estimate u2 we use the representation formula

u2(x) =
∫
B1
G(x, y)f(y)(1− χ(y)) dy +

∫
∂B1
G(x, y)g(y)(1− χ(y)) dH1(y) +

∑̀
i=1

αiG(x, ai).

Notice that for x ∈ ∂B1 we have eαiG(x,ai) = |x− ai|−αi/πeαi(|ai|2−1)/4π. Since none of the ai’s is
in B1 ∩ Br(x0) we have r/2 ≤ |x− ai| ≤ 2 for x ∈ ∂B1 ∩ Br/2(x0) and |x− ai|−αi/π . r−|αi|/π.
Observe also that and 1 − χ vanishes in B1 ∩ B3r/4(x0), therefore for x ∈ ∂B1 ∩ Br/2(x0) we
have the estimate

e|u2(x)| ≤ C1

(1
r

)C2

(6.3.11)

where C1 and C2 depend on ‖f‖L1(B1), ‖g‖L1(∂B1)) and
∑`
i=1 |αi|. Hence joining estimates (6.3.10)

and (6.3.11), we then deduce the validity of (6.3.9). This proves the lemma.

6.4 Facts About Moving Frames
A moving frame, or simply a frame, from a domain Ω ⊆ R2 into Rn is a map f = (f1, f2) : Ω→
Rn × Rn so that 〈fi, fj〉 = δij. If f and g are two frames from Ω into Rn, a function φ : Ω→ R
defines a way to pass from f to g, i.e. a gauge transformation:{

g1(x) = f1(x) cosφ(x) + f2(x) sinφ(x),
g2(x) = −f1(x) sinφ(x) + f2(x) cosφ(x),

which can be written using the complex notation as

g1 + ig2 = e−iφ(f1 + if2) in Ω.

Differentiating this relation, we deduce the following Change of gauge formula:

〈∇g1, g2〉 = ∇φ+ 〈∇f1, f2〉 in Ω. (6.4.1)

For a map N : B1 → Grn−2(Rn) expressed as N = N1 ∧ . . . ∧ Nn−2 for some (n − 2)-tuple of
ortho-normal sections: 〈Ni, Nj〉 = δij, we say that the frame (f1, f2) is a lift for N if:

N = ?(f1 ∧ f2) in B1,

where ? denotes the Euclidean Hodge operator in Rn transforming 2 vectors into n− 2 vectors
and vice-versa (see e.g. [BG80]). By orthonormality, there holds:

∇f1 = 〈∇f1, f2〉f2 +
n−2∑
i=1
〈∇f1, Ni〉Ni = 〈∇f1, f2〉f2 −

n−2∑
i=1
〈f1,∇Ni〉Ni,

∇f2 = 〈∇f2, f1〉f1 +
n−2∑
i=1
〈∇f2, Ni〉Ni = 〈∇f2, f1〉f1 −

n−2∑
i=1
〈f2,∇Ni〉Ni,

∇Ni = 〈∇Ni, f1〉f1 + 〈∇Ni, f2〉f2 (i = 1, . . . , n− 2),
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in particular:

|∇f1|2 + |∇f2|2 = 2|〈∇f1, f2〉|2 + |∇N |2. (6.4.2)

When N = NΦ is the Gauss map of an immersion Φ : B1 → Rn and (f1, f2) is a positively
oriented ortho-normal basis of the tangent space. When f and N correspond to a orthonormal
frame and Gauss map of an immersion Φ, an elementary computation reveals that

K dσg = 〈∇⊥f1, N〉〈∇f2, N〉 dx = 〈∇⊥f1,∇f2〉 dx, (6.4.3)

where K is the Gauss curvature of Φ and dσg its area element. This equation has two important
consequences: first, it reveals that the the left-hand-side is a sum of Jacobians. Second, if N is
sufficiently regular (namely, that it admits a lifting frame f : see lemmas 6.4.1 and 6.4.2 below)
then it has a meaning also when Φ is singular, for example at a branch point, when a tangent
plane is not defined. Finally, it is useful to note that

|〈∇⊥f1,∇f2〉| ≤
1
2
(
|〈∇⊥f1, N〉|2 + |〈∇f2, N〉|2

)
= |∇N |

2

2 .

Recall Hélein’s lifting lemma ([Hél02, Lemma 5.1.4], see also [LLT13]).

Lemma 6.4.1. There is an ε0 > 0 so that, for every 0 < ε < ε0, there exists a constant C > 0
independent of ε with the following property. If a map N ∈ W 1,2(B1,Gr2(Rn)) satisfies

‖∇N‖2
L2(B1) ≤ ε

for some 0 < ε < ε0, then there exist an orthonormal frame f = (f1, f2) ∈ W 1,2(B1,Rn × Rn)
which is a positive orthonormal basis for N , i.e.:

N = ?(f1 ∧ f2) in B1,

that satisfies the following Coulomb condition:div(〈∇f1, f2〉) = 0 in B1,

〈∂νf1, f2〉 = 0 on ∂B1,

and whose energy is controlled as follows:

‖∇f‖2
L2(B1) ≤ C‖∇N‖2

L2(B1).

The proof consists on a minimizing procedure and the L2-bound relies on Wente’s lemma. The
following variant concerns the existence of a energy-controlled lift with a prescribed boundary
value.

Lemma 6.4.2. There is an ε0 > 0 so that, for every 0 < ε < ε0, there exists a constant C > 0
independent of ε with the following property. For any map N ∈ W 1,2(B1,Grn−2(Rn)) and any
ortho-normal frame e = (e1, e2) ∈ H1/2(∂B1,Rn × Rn) lifting N :

N = ?(e1 ∧ e2) on ∂B1,

108



6.4 Facts About Moving Frames

and satisfying the estimate

‖∇N‖L2(B1) + [e ]W 1/2,2(∂B1) ≤ ε, (6.4.4)

there exists an ortho-normal frame g = (g1, g2) ∈ W 1,2(B1,Rn × Rn) lifting N :

N = ?(g1 ∧ g2) in B1, (6.4.5)

whose trace on ∂B1 coincides with e, satisfying the Coulomb condition

div (〈∇g1, g2〉) = 0 in B1, (6.4.6)

and the estimate

‖∇g‖L2(B1) ≤ C
(
‖∇N‖L2(B1) + [e ]W 1/2,2(∂B1)

)
.

Proof of Lemma 6.4.2. Let us start by fixing ε0 < 2π, so that by lemma (6.4.1) we deduce
the existence of a Coulomb frame f on B1 satisfying

‖∇f‖L2(B1) ≤
√

2‖∇N‖L2(B1). (6.4.7)

We now want to identify the angle α0 : ∂B1 → R which rotates f to e, implicitly defined in
complex notation by e1 + ie2 = e−iα(f1 + if2). To this aim, let us define the S1-valued function:

u = 〈e1, f1〉 − i〈e2, f1〉 on ∂B1,

and note that it belongs to W 1/2,2(∂B1, S
1), satisfying 1 because of (6.4.4) and (6.4.7) the

estimate

[u]W 1/2,2(∂B1 ) ≤ 2
(
[e ]W 1/2,2(∂B1) + [f ]W 1/2,2(∂B1)

)
≤ Cε, (6.4.8)

for some constant C > 0. By choosing ε0 > 0 sufficiently small, we may then invoke theorem
[PV17, Theorem 1] and deduce the existence of a function U ∈ W 1,2(B1, S

1) whose trace on
∂B1 coincides with u and satisfying the estimate

‖∇U‖L2(B1) ≤ C[u]W 1/2,2(∂B1), (6.4.9)

for some C > 0. For such U , we may now deduce the existence of a lift α ∈ W 1,2(B1) (see e.g.
[BBM00, Theorem 3]), that is,

U(x) = eiα(x) x ∈ B1,

satisfying the point-wise almost everywhere estimate |∇U | = |∇α|. if α̃ denotes the harmonic
extension of the trace of α on ∂B1, the Dirichlet principle together with the inequalities (6.4.4)
and (6.4.8) imply

‖∇α̃‖L2(B1) ≤ C
(
‖∇N‖L2(B1) + [e ]W 1/2,2(∂B1)

)
. (6.4.10)

1 Recall that if Ω is a domain of R or of S1, the space (W 1/2,2 ∩ L∞)(Ω) is an algebra with:

[ab]2W 1/2,2(Ω) ≤ 2(‖a‖2L∞(Ω)[b]2W 1/2,2(Ω) + ‖b‖2L∞(Ω)[a]2W 1/2,2(Ω)).
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Finally, we set:

g1 + ig2 = e−iα̃(f1 + if2) in B1.

By construction, the frame g has trace equal to e on ∂B1, and satisfies conditions (6.4.5), (6.4.6)
and from formula (6.4.2), we see that almost everywhere in B1 the relation

|∇g|2 = 2|〈∇g1, g2〉|2 + |∇N |2

= 2|〈∇f1, f2〉+∇α̃|2 + |∇N |2

≤ 4|∇f |2 + |∇α̃|2

holds, from which we deduce, thanks to inequalities (6.4.7) and (6.4.10), the validity of (6.4.9).
This concludes the proof of the lemma.

A localised version of the above lemma is as follows.

Lemma 6.4.3. There is an ε0 > 0 so that, for every 0 < ε < ε0, a constant C > 0 independent
of ε with the following property exists. Let x0 ∈ ∂B1 and 0 < r < 1 be fixed. For any map N ∈
W 1,2(B1,Grn−2(Rn)) and any ortho-normal frame e = (e1, e2) ∈ W 1/2,2(∂B1 ∩Br(x0),Rn × Rn)
lifting N :

N = ?(e1 ∧ e2) on ∂B1 ∩Br(x0),

and satisfying the estimate

‖∇N‖L2(B1∩Br(x0)) + [e ]W 1/2,2(∂B1∩Br(x0)) ≤ ε,

there exists an ortho-normal frame g = (g1, g2) ∈ W 1,2(B1 ∩Br(x0),Rn × Rn) lifting N :

N = ?(g1 ∧ g2) in B1 ∩Br(x0),

whose trace on ∂B1 ∩Br(x0) coincides with e, satisfying the Coulomb condition

div (〈∇g1, g2〉) = 0 in B1 ∩Br(x0),

and the estimate

‖∇g‖L2(B1∩Br(x0)) ≤ C
(
‖∇N‖L2(B1∩Br(x0)) + [e ]W 1/2,2(∂B1∩Br(x0))

)
.

The proof makes use of the following elementary result.

Lemma 6.4.4. Let 0 < θ0 < π be fixed and f : (−θ0, θ0)→ C be a W 1/2,2-function. Let F be
its extension to S1 ' (−π, π]/ ∼ by even reflection defined by:

F (x) =

f(x) if x ∈ (−θ0, θ0),
f(m(x− sign(x)π)) if x ∈ (−π, π] \ (−θ0, θ0),

where m = θ0
θ0−π . Then F ∈ W

1/2,2(S1) and there holds:

[F ]W 1/2,2(S1) ≤ 2[f ]W 1/2,2((−θ0,θ0).

110



6.4 Facts About Moving Frames

Proof of Lemma 6.4.4. Note first of all that we may equivalently write F = f ◦ j, where
j : [−π, π]→ [−θ0, θ0] is defined as:

j(x) =

x if x ∈ (−θ0, θ0),
m(x− sign(x)π) if x ∈ (−π, π] \ (−θ0, θ0).

Using the invariance by rescaling of the W 1/2,2-seminorm and Tonelli’s theorem, we see that:

[F ]2W 1/2,2(S1) = 2[f ]2W 1/2,2((−θ0,θ0)) + 2
∫
S1\(−θ0,θ0)

∫
(−θ0,θ0)

|F (x)− F (y)|2
|eix − eiy|2 dx dy.

Thinking of j as a diffeomorphism from S1 \ [−θ0, θ0] to [−θ0, θ0] with j′ = m, we perform a
change variable in the above integral as follows:∫

S1\(−θ0,θ0)

∫
(−θ0,θ0)

|F (x)− F (y)|2
|eix − eiy|2 dx dy

=
∫
S1\(−θ0,θ0)

∫
(−θ0,θ0)

|f(x)− f(j(y))|2
|eix − eiy|2 dx dy

= 1
|m|

∫
(−θ0,θ0)

∫
(−θ0,θ0)

|f(x)− f(η)|2
|eix − ei(j−1(η))|2

dx dη.

Suppose now that θ0 = π/2: we have j−1(η) = −η + sign(η)π and since x, η ∈ (−π/2, π/2),
there holds |eix − ei(j−1(η))| ≥ |eix − eiη|, hence:

∫
S1\(−π/2,π/2)

∫
(−π/2,π/2)

|F (x)− F (y)|2
|eix − eiy|2 dx dy

≤
∫

(−π/2,π/2)

∫
(−π/2,π/2)

|f(x)− f(η)|2
|eix − eiη|2 dx dη = [f ]2W 1/2,2((−π/2,π/2)),

So we conclude that:

[F ]2W 1/2,2(S1) ≤ 4[f ]2W 1/2,2((−π/2,π/2)).

For a general 0 < θ0 < π, we may reduce to the case θ0 = π/2 by using the fact that the
H1/2-seminorm is invariant with respect to the restriction to S1 of Moebius transformation of
D. In our particular case, the transformation we need is:

Ma(z) = z + a

az + 1 with a = π/2− θ0

1− (π/2)θ0
, for z ∈ S1.

In other words:

[F ]W 1/2,2(S1) = [F ◦Ma]W 1/2,2(S1),

so we may apply the previous inequality and reach the conclusion. This concludes the proof of
the lemma.

Remark 6.4.5 Lemma 6.4.4 holds also for domains which are conformally equivalent to B1.
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Proof of Lemma 6.4.3. Without loss of generality we may assume x0 = 1, so that we have
the identification ∂B1 ∩Br(x0) ' (−θ0, θ0) for some 0 < θ0 < π.
We define a map N ∈ W 1,2(B1,Grn−2(Rn)) which coincides with the given N in B1 ∩ Br(x0)
and has globally controlled energy, as follows. First, define N ′ ∈ Ẇ 1,2(C,Grn−2(Rn)) as the
extension of N to C through even reflection:

N ′(z) =

N(z) if z ∈ B1,

N
(

z
|z|2
)

if z ∈ C \B1.

By the conformal invariance of the Dirichlet energy, there holds ‖∇N ′‖2
L2(C) = 2‖∇N‖2

L2(B1)
and 2

‖∇N ′‖2
L2(Br(x0)) ≤ 2‖∇N‖2

L2(D∩Br(x0)). (6.4.11)

Consider now N ′ as a map from Br(x0) and define N ∈ Ẇ 1,2(C,Grn−2(Rn)) to be its extension
through even reflection:

N(z) =

N
′(z) if z ∈ Br(x0),

N ′
(

r2

|z−x0|2 (z − x0)
)

if z ∈ C \Br(x0).

By the conformal invariance of the Dirichlet energy and (6.4.11), there holds ‖∇N‖2
L2(C) ≤

4‖∇N‖2
L2(B1∩Br(x0)), hence a fortiori:

‖∇N‖2
L2(B1) ≤ 4‖∇N‖2

L2(B1∩Br(x0)).

Consequently, by assuming 4ε0 < 2π, we may invoke lemma 6.4.1 and find a Coulomb orthonor-
mal frame f = (f1, f2) ∈ W 1,2(B1,Rn × Rn) lifting N in B1 and satisfying:

‖∇f‖L2(B1) ≤ 2
√

2‖∇N‖2
L2(B1∩Br(x0)).

As in the proof of lemma 6.4.2, the angle α0 : ∂B1 ∩ Br(x0) → R which rotates f to e is
implicitly defined trough the S1-valued function u = 〈e1, f1〉 − i〈e2, f1〉, which belongs to
W 1/2,2((−θ0, θ0), S1) and satisfies the estimate

[u]W 1/2,2((−θ0,θ0)) ≤ 2
(
[e ]W 1/2,2((−θ0,θ0)) + [f ]W 1/2,2((−θ0,θ0))

)
≤ Cε

for some constant C > 0. By means of lemma 6.4.4, we may extend u to S1 = ∂B1, thus
obtaining a function v ∈ W 1/2,2(∂B1, S

1) satisfying [v]W 1/2,2(∂B1) ≤ 2[u]W 1/2,2((−θ0,θ0)). The rest
of the argument is now similar to that of the proof of lemma 6.4.2, with v in place of u. This
concludes the proof of the lemma.

6.5 Existence of a Minimizer
This section is devoted to prove the main part of theorem 6.1.2, namely the existence for an admis-
sible triple (Γ, N0, a) of a minimiser for Willmore energy (6.1.1) in the class F (B1,Rn,Γ, N0, a)
introduced in definition 6.1.5. In the section 6.6 it is shown that such a minimiser is actually C1

and not only Lipschitz.
2 If I(z) = z/|z|2 denotes the inversion with respect to the unit circle, then:

(C2 \D) ∩Br(x0)) ⊂ I(D ∩Br(x0)).
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6.5.1 Singular Point of Lipschitz Immersions We recall the following.

Lemma 6.5.1 ([Riv14], Lemma A.5). Let Φ ∈ E (B1 \ {0},Rn) be a conformal weak immersion
which extends to a map in W 1,2(B1,Rn) and so that

lim
δ→0

∫
B1\Bδ

|A|2dσg = lim
δ→0

∫
B1\Bδ

|∇N |2 dx is finite.

Then Φ extends to a map in W 1,∞(B1) and there exists an non–negative integer ϑ so that, for
some C > 0, there holds

C(|z|ϑ − o(1)) ≤ |dΦ(z)| ≤ C(|z|ϑ + o(1)) as z → 0.

We now prove the following fact for boundary points.

Lemma 6.5.2. Let {b1, . . . , bM} be points on ∂B1 and let Φ : B1 → Rn be a measurable map so
that, for every δ > 0, Φ : B1 \ ∪Mi=1Bδ(bi)→ Rn defines a conformal Lipschitz W 2,2 immersion,
possibly branched at finite number of points {a1, . . . , a`} ⊂ D, with ` independent of δ. Assume
that

1. Φ extends to a map in W 1,2(B1,Rn) and N extends to a map in W 1,2(B1,Grn−2(Rn))

2. log |dΦ| extends to a map in W 1,p(B1) for some p > 1,

3. Φ|∂B1 = γ ◦ σ and N |∂B1 = N0 ◦ σ for some homeomorphism σ,

where γ is an arc-length parametrization of a closed, simple curve Γ in Rn of class C1,1 and N0
is a unit-normal n− 2 vector field along Γ of class C1,1. Then Φ extends to a weak Lipschitz
immersion at every point bi, i = 1, . . . ,M .

Proof of Lemma 6.5.2. We call λ = log(|dΦ|/
√

2). It is enough to prove that, for every
i = 1, . . . ,M , there exists some 0 < s < 1 so that

‖λ‖L∞(B1∩Bs(bj)) < +∞.

Claim 1: For every ε > 0, the coordinate ortho-normal frame of Φ denoted by e = (e1, e2)
extends to a map in W 1,2(B1 \ ∪`j=1Bε(aj),Rn × Rn).
Proof of claim 1. We need to prove that e extends to a a W 1,2-map in a neighbourhood of each
bi. From the relation (6.4.2) we have

|∇e|2 = 2|〈∇e1, e2〉|2 + |∇N |2 = 2|∇λ|2 + |∇N |2 in D′(B1 \ {a1, . . . , a`})

consequently, since ∇λ belongs to Lp(B1) and |∇N | belongs to L2(B1), we deduce that |∇e|
belongs to Lp(B1\∪Mj=1Bε(aj)) for every ε > 0. Hence e belongs toW 1,p(B1\∪Mj=1Bε(aj),Rn×Rn)
and the trace of e on ∂B1 is well-defined and belongs to W 1/2,1−1/p(∂B1,Rn ×Rn). Moreover, if
t is the unit tangent vector of Γ, from the boundary conditions this trace is given in complex
notation by

e1 + ie2 = e−iθ(?(t ∧N0) + it)(σ) on ∂B1,

so we see that it actually lies in (W 1/2,2 ∩C0)(∂B1,Rn×Rn). Fix now i = 1, . . . ,M and choose
a sufficiently small 0 < r < 1 so that no branch point aj , j = 1, . . .M , lies in Br(bi) ∩D and so
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that, thanks to lemma 6.4.3, we find an ortho-normal Coulomb frame g = (g1, g2) belonging to
W 1,2(B1 ∩Br(bi),Rn × Rn), which lifts N and whose trace on ∂B1 ∩Br(bi) coincides with that
of e. If ϕ denotes the angle which rotates g to e , from the change of Gauge formula (6.4.1) we
deduce that ϕ is harmonic in B1 ∩Br(bi), moreover

|∇ϕ| ≤ |〈∇g1, g2〉|+ |〈∇e1, e2〉| in. D′(B1 ∩Br(bi)).

Hence ϕ ∈ W 1,p(B1 ∩ Br(bj)) and thus has a well-defined trace in ∂B1 ∩ Br(bj) which is
is zero by construction. Hence ϕ is smooth on B1 ∩ Br/2(bi) and so we deduce that e ∈
W 1,2(B1 ∩Br/2(bj),Rn × Rn). Since i = 1, . . . , N was arbitrary, claim 1 follows.
Claim 2. σ′ extends to a map in L1(∂B1).

Proof of Claim 2. From the boundary conditions on Φ we have that, uniformly on δ > 0,∫
∂B1\∪iBδ(bi)

σ′ =
∫
∂B1\∪iBδ(bi)

eλ|∂B1 ≤ H1(Γ),

hence, since σ is continuous, the classical Schwartz lemma for distributions implies σ′ = eλ|∂B1

extends to a map in L1(∂B1). This proves claim 2.
Combining claims 1 and 2, we deduce that λ is a weak solution of Liouville’s equation 6.1.4.

From claim 1, kg(σ)eλ − 1 belongs to L1(∂B1) hence we may find a sufficiently small 0 < r < 1
so that, from lemma 6.3.3 there holds ‖eλ−λ‖Lp(∂B1∩Br/2(bi) for some p > 1. Thanks to claim 2
and possibly reducing r so that no branch point aj lies in D ∩Br(bi), we can invoke theorem
2.1.7 of Chapter 2 and conclude that ‖λ− λ‖L∞(∂B1∩Br/4(bi)) is finite, which gives the desired
estimate 6.5.1. This concludes the proof of the lemma.

6.5.2 We now need several preliminary lemmas. Along this section, Γ and N0 will be fixed
as in the statement of Theorem 6.1.2, γ : [0,H1(Γ)]/ ∼→ Γ will denote a fixed arc-length
parametrization of Γ and kg its geodesic curvature defined in (6.1.3). When dealing with a
sequence of immersions, we denote with a subscript k every quantity pertaining to the immersion
Φk (e.g. the Gauss map of Φk will be simply denoted by Nk).

Lemma 6.5.3. Let (Φk)k be a sequence in F (B1,Rn,Γ, N0) with E = supkW2(Φk) < +∞.
Then:

(i) the L1-norm of the Gauss curvature ‖Kke2λk‖L1(B1) is uniformly bounded,

(ii) the number of branch points of Φk and their multiplicity is uniformly bounded on k,

(iii) The L(2,∞)-norm of the gradient of the conformal factor ‖∇λk‖L(2,∞)(B1) is uniformly
bounded on k,

(iv) for any fixed E0 > 0, the set of points x ∈ B1 such that the Willmore energy concentrates
above the level E0, i.e.:

lim inf
k→+∞

(
inf{r > 0 : ‖∇Nk‖2

L2(B1∩Br(x)) ≥ E0}
)

= 0

is finite and its cardinality is uniformly bounded on k.

All such bounds depend only on E and on ‖kg‖L1(Γ).
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Proof of Lemma 6.5.3. Proof of (i). The bound follows from the pointwise a.e. relation (see
§6.4 for more details)

Kke2λk ≤ |∇Nk|2

2 . (6.5.1)

Proof of (ii). Since λk is a weak solution to the Liouville’s equation
−∆λk = Kke2λk − 2π

`k∑
ik=1

nikδaik inB1,

∂νλk = kg(σk)eλk − 1 on ∂B1,

(6.5.2)

there must hold

−2π
`k∑
ik=1

nik +
∫
B1
Kke2λk dx+

∫
∂B1

(kg(σk)eλk − 1) dH1 = 0,

hence
`k∑
ik=1
|nik | ≤ C

(
‖Kke2λk‖L1(B1) + ‖kg‖L1(Γ) + 1

)
,

and the result then follows from (i).
Proof of (iii). Using Green’s representation formula (the green function G is given in (6.3.3)),

we have

∇λk(x) =
∫
B1
∇xG(x, y)Kk(y)e2λk(y) dy − 2π

`k∑
ik=1

nik∇xG(x, aik)

+
∫
∂B1
∇xG(x, y)kg(σk(y))eλk(y) dH1(y),

and since there holds

sup
y∈B1

‖∇xG(·, y)‖L(2,∞)(B1) < +∞,

we can estimate

‖∇λk‖L(2,∞)(B1) ≤ C
(
‖Kke2λk‖L1(B1) +

`k∑
ik=1
|nik |+ ‖kg‖L1(Γ) + 1

)
, (6.5.3)

hence deduce that the right-hand-side of (6.5.3) does not depend on k thanks to (i) and (ii).
Proof of (iv). The proof of (iv) follows from standard concentration-compactness arguments

and we omit it.

Combining Lemmas 6.4.1 and 6.5.3, the following estimate is obtained for points in B1.

Lemma 6.5.4. There exists an ε0 > 0 with the following property. Let (Φk)k be a sequence
in F (B1,Rn,Γ, N0) with E = supkW2(Φk) < +∞ and let x0 ∈ B1 and 0 < r < 1 be so that
Br(x0) ⊂ B1. If, for every k ∈ N, Br(x0) contains no branch points of Φk and there holds

‖∇Nk‖2
L2(Br(x0)) ≤ ε
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for some 0 < ε < ε0, then λk ∈ C0(Br(x0)) ∩W 1,2(Br(x0)) and there exist a constant C =
C(Γ, N0, E, ε0, r) > 0 and a sequence (ck)k ⊂ R so that

sup
k

(
‖∇λk‖L2(Br(x0)) + ‖λk − ck‖L∞(Br/2(x0))

)
≤ C. (6.5.4)

The proof is essentially as in [Riv12, Theorem 4.5]). It is given below for the reader’s
convenience.

Proof of Lemma 6.5.4. Thanks to Lemma 6.4.1, we may find a ortho-normal frame ek =
(ek,1, ek,2) spanning Nk with controlled energy: ‖∇ek‖2

L2(Br(x0)) ≤ C‖∇Nk‖L2(Br(x0)), and from
Liouville’s equation ((6.1.4) and (6.4.3)) we may write:

−∆λk = 〈∇⊥ek,1,∇ek,2〉 in Br(x0).

We then decompose λk = µk + νk, where µk solves{
−∆µk = 〈∇⊥ek,1,∇ek,2〉 in Br(x0),

µk = 0 on ∂Br(x0),

and νk = λk − µk is the harmonic rest. Thanks to Wente’s inequality (Theorem 2.1.1 of Chapter
2), there holds

‖µk‖L∞(Br(x0)) + ‖∇µk‖L∞(Br(x0)) ≤ C‖∇Nk‖2
L2(Br(x0)),

while using the properties of traces, Poincaré’s inequality and Dirichlet’s principle we deduce
that

‖νk − ck‖L∞(Br/2(x0)) + ‖∇νk‖L2(Br(x0)) ≤ C‖∇λk‖L2(Br(x0)),

where ck = −
∫
Br(x0) νk dx is the average of νk over Br(x0). Together with the continuous embedding

L2(Br(x0)) → L2,∞(Br(x0)) and Lemma 6.5.3-(iii), these estimates for µk and νk lead to
(6.5.4).

We have the following analogue result for boundary points.

Lemma 6.5.5. There exists an ε0 > 0 with the following property. Let (Φk)k be a sequence
of conformal maps in F (B1,Rn,Γ, N0) with E = supkW2(Φk) < +∞, and let x0 ∈ ∂B1 and
0 < r < 1. If, for every k ∈ N, B1∩Br(x0) contains no branch points of Φk and, having denoted
ek = e−λk(∂1Φk, ∂2Φk) the ortho-normal frame associated with Φk, there holds

‖∇Nk‖2
L2(B1∩Br(x0)) + ‖kg(σk)eλk‖L1(∂B1∩Br(x0)) ≤ ε and [ek]2W 1/2,2(∂B1∩Br(x0)) ≤ ε (6.5.5)

for some 0 < ε < ε0, then λk ∈ C0(B1 ∩Br(x0))∩W 1,2(B1 ∩Br(x0)) and there exist constant a
constant C = C(Γ, N0, E, ε0, r) > 0 independent of ε and a sequence (ck)k ⊂ R so that

sup
k

(
‖∇λk‖L2(B1∩Br/4(x0)) + ‖λk − ck‖L∞(B1∩Br/4(x0))

)
≤ C.
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Proof of Lemma 6.5.5. On the one hand, from the pointwise a.e. relation (6.5.1) and (6.5.5)
we have

‖kg(σk)eλk‖L1(∂B1∩Br(x0)) + 2‖Kke2λk‖L1(B1∩Br(x0)) ≤ ε

consequently since λk is a weak solution to Liouville’s equation (6.5.2), by choosing an ε0 small
enough, by Lemma 6.3.3 and Lemma 6.5.3 we may find a p = p(ε0) > 1 so that, uniformly on k,
there holds

‖eλk−λk‖Lp(∂B1∩Br/2(x0)) ≤ C. (6.5.6)

On the other hand, possibly after reducing ε0 we can invoke Lemma 6.4.3 and deduce the
existence of Coulomb ortho-normal frames gk = (gk,1, gk,2) ∈ W 1,2(B1 ∩ Br(x0)) lifting Nk in
B1 ∩Br(x0), coinciding with ek on ∂B1 ∩Br(x0) and so that uniformly in k there holds

‖∇gk‖2
L2(B1∩Br(x0)) ≤ C. (6.5.7)

In particular, we may write:

Kke2λk = 〈∇⊥gk,1,∇gk,2〉 in B1 ∩Br(x0),
kg(σk)eλk − 1 = 〈∂τgk,1, gk,2〉 on ∂B1 ∩Br(x0).

From Lemma 2.1.8 of Chapter 2, we deduce that λk ∈ C0(B1 ∩Br/4(x0)) ∩W 1,2(B1 ∩Br/4(x0))
and that for some constant ck ∈ R there holds

‖λk − ck‖L∞(B1∩Br/4(x0))+‖∇λk‖L2(B1∩Br/4(x0)) (6.5.8)

≤ C

(
‖Kke2λ‖L1(B1) + ‖kg(σk)eλk‖L1(∂B1) +

∑̀
ik=1
|αik |

+ ‖∇gk,1‖L2(B1∩Br/2(x0))‖gk,2‖W 1,2(B1∩Br/2(x0))

+ ‖∂τgk,1|∂B1‖Lp(∂B1∩Br/2(x0))‖gk,2|∂B1‖W 1,p(∂B1∩Br/2(x0))

)
.

The first line on the right hand side of (6.5.8) can be estimated uniformly on k by means of
lemma 6.5.3-(i)-(ii). The second line can be estimated uniformly on k with (6.5.7). Finally the
third line is estimated uniformly on k with (6.5.6) since, for i = 1, 2, we have

‖gk,i|∂B1‖W 1,p(∂B1∩Br/2(x0)) ≤ C
(
‖(|kg(σk)|+ |Ṅ0(σk)|)eλk‖Lp(∂B1∩Br/2(x0)) + 1

)
≤ C

(
‖eλk−λk‖Lp(∂B1∩Br/2(x0)) + 1

)
,

where we used Jensen’s inequality to deduce that, uniformly on k, there holds:

eλk = exp−
∫
∂B1

λk ≤ −
∫
∂B1

exp(λk) = H
1(Γ)
2π .

This concludes the proof of the lemma.

Definition 6.5.6. Let P1, P2, P3 be three distinct, fixed, consecutive points in P1, P2, P3 on Γ
that is, γ(sj) = Pj for some 0 ≤ s1 < s2 < s3 < H1(Γ). We denote by F ∗(B1,Rn,Γ, N0, a) is
the set of maps F (B1,Rn,Γ, N0, a) so that

Φ
(
e 2πi

3 j
)

= Pj for j = 1, 2, 3. (6.5.9)
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Remark 6.5.7 We note that:

(i) if σΦ defines the boundary parametrization of Φ, that is Φ|∂B1 = γ ◦ σΦ, condition (6.5.9)
is equivalent to σΦ

(
2π
3 j
)

= sj for j = 1, 2, 3.

(ii) For every Φ ∈ F (B1,Rn,Γ, N0, a), there is a unique Möbius transformation of B1 so that
Φ◦φ ∈ F ∗(B1,Rn,Γ, N0, a). Moreover, the invariance by diffeomorphisms of the Willmore
energy implies thatW2(Φ) =W2(Φ◦φ), hence the infimum ofW2 over F (B1,Rn,Γ, N0, a)
will equal that over F ∗(B1,Rn,Γ, N0, a).

The following lemma is a consequence of the Courant-Lebesgue lemma, a key tool in the
analysis of Plateau’s problem (see e.g. [CI11, Lemma 4.14]).

Lemma 6.5.8. For any sequence Φk)k in F ∗(B1,Rn,Γ, N0, a), the sequence of boundary curves
(Φk|∂B1)k is equicontinuous.

Equicontinuity of the boundary curves is equivalent to the equicontinuity of the σk’s. As a
consequence of lemma 6.5.8, we have:

Lemma 6.5.9. Let (Φk)k be a sequence in F ∗(B1,Rn,Γ, N0, a) and let x0 ∈ ∂B1 be fixed. Then,
possibly passing to a subsequence, for any any ε > 0, there always exists an r = r(Γ, N0) > 0 so
that:

sup
k∈N

[ek]W 1/2,2(∂B1∩Br(x0)) ≤ ε and sup
k∈N
‖kg(σk)eλk‖L1(∂B1∩Br(x0)) ≤ ε. (6.5.10)

Proof of Lemma 6.5.9. Possibly after extracting a subsequence, thanks to lemma 6.5.8 and
the Arzelà-Ascoli theorem, we may suppose that σk converges uniformly on ∂B1 to some
continuous map σ. As a consequence, we have the pointwise convergence away from the
diagonal:

lim
k

(
σk(θ1)− σk(θ2)

eiθ1 − eiθ2

)
= σ(θ1)− σ(θ2)

eiθ1 − eiθ2 for θ1 6= θ2,

and, possibly after extracting another subsequence, the bound:

|σk(θ1)− σk(θ2)|2
|eiθ1 − eiθ2 |2 ≤ 2 |σ(θ1)− σ(θ2)|2

|eiθ1 − eiθ2|2 .

Hence, integrating both sides, we deduce that for every ρ > 0 and x ∈ ∂B1 there holds:

[σk]2W 1/2,2(∂B1∩Bρ(x)) ≤ 2[σ]2W 1/2,2(∂B1∩Bρ(x)). (6.5.11)

Let us assume without loss of generality that x0 = 1 and that r < 1, so that we may identify
[−θ0, θ0] ' ∂B1 ∩Br(x0) for some 0 < θ0 < π. Writing in complex notation (see §6.4)

eiθ(ek,1 + iek,2) = ?(t ∧N0)(σk) + it(σk) on ∂B1,
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thanks to (6.5.11) we deduce that3 that

[ek]2W 1/2,2((−θ0,θ0)) ≤ 2
(
[t(σk)]2W 1/2,2((−θ0,θ0)) + [?(t ∧N0)(σk)]2W 1/2,2((−θ0,θ0))

)
+ 4θ2

0

≤ 2
(
[t]2C0,1 + [?(t ∧N0)]2C0,1

)
[σk]2W 1/2,2((−θ0,θ0)) + 4θ2

0

≤ C
(
[σ]2W 1/2,2((−θ0,θ0)) + θ2

0

)
,

and so the first inequality in (6.5.10) follow by choosing a sufficiently small θ0. As for the
second inequality in (6.5.10), if a and b denote the extrema of ∂B1∩Br(x0), from the point-wise
convergence of σk to σ we have:

lim
k

∫
∂B1∩Br(x0)

|kg(σk)|eλk(eiθ) dθ = lim
k

∫ σk(b)

σk(a)
|kg(s)||γ̇(s)| ds =

∫ σ(b)

σ(a)
|kg(s)||γ̇(s)| ds,

hence, possibly after extracting a subsequence, there holds:

‖kg(σk)σ′k‖L1(∂B1∩Br(x0)) ≤ 2‖kg(σ)σ′‖L1(∂B1∩Br(x0)),

and the results then follows by choosing r sufficiently small. This concludes the proof of the
lemma.

Definition 6.5.10 (Weak Sequential convergence). Given a sequence (Φk)k in F (B1,Rn,Γ, N0),
and a conformal map Φ : B1 → Rn, we say that Φk weakly converges to Φ if:

(i) Φk ⇀ Φ in W 1,2(B1,Rn) and a.e. on B1,

(ii) Φk|∂B1 → Φ|∂B1 uniformly in C0(∂B1),

(iii) ∇λk ∗
⇀ ∇λ in L(2,∞)(B1),

and there exists a finite, possibly empty set η = {η1, . . . , η`} ⊂ B1 so that, for every open set
Ω ⊂ R2 with compact closure in B1 \ η, there holds:

(iv) λk ∗
⇀ λ in L∞(Ω,Rn) and ,

(v) Φk ⇀ Φ in W 2,2(Ω,Rn),

where λ = log(|∇Φ|/
√

2).

We are now in the position to prove the following compactness result.

Lemma 6.5.11. Let (Φk)k be a sequence in F ∗(B1,Rn,Γ, N0, a) with supkW2(Φk) < +∞.
Then (Φk)k contains a subsequence weakly converging in the sense of Definition 6.5.10 to an
element F ∗(B1,Rn,Γ, N0, a).

3 Recall the elementary inequality:

[ab]2W 1/2,2 ≤ 2
(
‖a‖2L∞ [b]2W 1/2,2 + ‖b‖2L∞ [a]2W 1/2,2

)
.

Also recall that if a : (l1, l2) → C is a Lipschitz function and b : (−θ0, θ0) → (l1, l2) is a function in
H1/2((−θ0, θ0)) we have:

[a ◦ b]2W 1/2,2((−θ0,θ0)) ≤ [a]2C0,1((l1,l2))[b]2W 1/2,2((−θ0,θ0)).
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Proof of Lemma 6.5.11. Step 1. Since for every k we have that ‖∇Φk‖2
L2(B1) = 2a and the

three-point condition (6.5.9) holds, we deduce that supk(‖Φk‖W 1,2(B1)) is finite and so by the
Rellich–Kondrachov theorem, possibly passing to a subsequence, condition (i) of Definition
6.5.10 is satisfied.
Step 2. From lemma 6.5.8, by Arzelà–Ascoli theorem we deduce that, possibly passing to a

subsequence, condition (ii) of Definition 6.5.10 is satisfied.
Step 3. From lemma 6.5.3-(iii), we deduce that, possibly passing to a subsequence, condition

(iii) of Definition 6.5.10 is satisfied.
Step 4. If {ak,1, . . . ak,`k} is the set of branch points of Φk, from Lemma 6.5.3, possibly

after extracting a subsequence, we may suppose that `k is independent of k and that, for each
j = 1, . . . `, limk→∞ ak,j = aj for some aj ∈ B1.
We say that a point p belongs to η if either:

• p = ak for some k = 1, . . . , `, or

• there holds

lim inf
k→∞

(
inf

{
r > 0 : ‖∇Nk‖2

L2(D∩Br(p)) ≥ ε0
})

= 0, (6.5.12)

with ε0 is as in Lemma 6.5.4 if p ∈ B1, or as in Lemma 6.5.5 if p ∈ ∂B1, or

• p = e 2πi
3 j for j = 1, 2 or 3.

Note that the set of points satisfying (6.5.12) is, due to Lemma 6.5.3, finite and uniformly
bounded in k. Let Ω ⊂ R2 an open set with compact closure in B1 \ η and let Ω′ be a closed set
contained in B1 \ η and with smooth boundary so that Ω ⊂ Ω′ and for some small δ > 0 there
holds

B1 \ ∪p∈ηB2δ(p) ⊂⊂ Ω′ ⊂⊂ B1 \ ∪p∈ηBδ(p).

Possibly passing to a further subsequence, we may suppose that, for every k, the set of branch
points {ak,1, . . . ak,`k} of Φk, lies in ∪p∈ηBδ(p). Now, for every x ∈ Ω′, we can choose an rx > 0
so that, if x ∈ B1, then Brx(x) ⊂ Ω′ and ‖∇Nk‖2

L2(Brx (x)) < ε0, and, if x ∈ ∂B1, then

‖∇Nk‖2
L2(B1∩Brx (x0)) + ‖kg(σk)eλk‖L1(∂B1∩Brx (x)) < ε0,

[ek]2W 1/2,2(∂B1∩Brx (x)) < ε0,

(this can be done uniformly on k thanks to Lemma 6.5.9). The family {Brx/4(x)}x∈Ω′ forms an
open cover of Ω′, from which we may extract a finite sub-cover {Brj(xj)}Mj=1. From Lemmas
6.5.4 and 6.5.5, we deduce that λ ∈ C0(B1 ∩Brj(xj)) ∩W 1,2(B1 ∩ Brj(xj)) and there exists
constants lk(xj), so that, for j = 1, . . . ,M ,

sup
k

(
‖∇λk‖L2(B1∩Brj (xj)) + ‖λk − lk(xj)‖L∞(B1∩Brj (xj))

)
≤ C. (6.5.13)

Notice that, for every i, j the bound |lk(xi)− lk(xj)| ≤MC holds. Indeed, if Bρ(xi)∩Bρ(xj) 6= ∅,
then from (6.5.13) and the triangle inequality we have |lk(xi)− lk(xj)| ≤ 2C. and general i and
j pick a collection from the covering which connects xj and xj and reach a similar conclusion.
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We can then assume that such constants do not depend on xj and consequently that, for some
lk, there holds:

sup
k

(
‖∇λk‖L2(Ω′) + ‖λk − lk‖L∞(Ω′)

)
≤ C. (6.5.14)

We claim that the sequence (lk)k is uniformly bounded on k. To see that (lk)k is bounded
from below, note that, if we had lim supk→∞ lk = −∞, possibly after extracting a subsequence
condition (6.5.14) would imply that limk→∞ λk = +∞ uniformly on Ω. Consequently we would
have

lim
k→∞

∫
Ω′

e2λk dx = +∞,

which contradicts condition ‖∇Φk‖2
L2(B1) = 2a. Suppose now (lk)k is not bounded from above,

that is lim infk→∞ lk = +∞. Let α be an arbitrary closed, connected sub-arc of ∂B1 which does
not contain any point in η. We add if necessary a finite number of balls Brj(xj), to the above
finite cover of Ω′ so that {Brj(xj)}j also covers α. Since λk is continuous, possibly passing to a
subsequence, from (6.5.14), that limk→∞ λk = −∞ uniformly in α. Then,

0 = lim
k→+∞

∫
α

eλk dσ = lim
k→+∞

H1(Φk|∂B1(α)),

and thus, by the weak lower-semicontinuity of the Hausdorff measure with respect to the
uniform convergence, that H1(Φ(α)) = 0. Since the arc α was arbitrarily chosen, from the
Borel-regularity of the Hausdorff measure (see [EG15]) we have H1(Φ(∂B1 \ η)) = 0, but then,
Φ being continuous and η consisting of a finite set, this gives H1(Φ(∂B1)) = 0. This contradicts
the three-point normalization condition. This proves that condition (6.5.14) can actually be
strengthened to

sup
k

(
‖∇λk‖L2(Ω′) + ‖λk‖L∞(Ω′)

)
≤ C. (6.5.15)

and thus, possibly passing to a subsequence, condition (iv) of definition 6.5.10 is satisfied.
Step 5. From (6.5.15), we can estimate

‖∇Φk‖L∞(Ω′) ≤ C, (6.5.16)

‖∆Φk‖2
L2(Ω′) ≤

1
4‖e

2λk‖L∞(Ω′)W (Φk) ≤ C, (6.5.17)

moreover,

‖eλk‖W 1/2,2(∂B1∩Ω′) ≤ ‖eλk‖W 1/2,2(∂Ω′)

≤ C‖eλk‖W 1,2(Ω′)

≤ C e‖λk‖L∞(Ω′)(1 + ‖∇λk‖L2(Ω′)) ≤ C,

hence

‖∂τΦk‖W 1/2,2(∂B1∩Ω′) = ‖eλkek,1(σk)‖W 1/2,2(∂B1∩Ω′) (6.5.18)
≤ C(‖eλk‖W 1/2,2(∂B1∩Ω′)

+ ‖eλk‖L∞(∂B1∩Ω′)[ek,1]W 1/2,2(∂B1∩Ω′))
≤ C.
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From (6.5.16)-(6.5.17)-(6.5.18), elliptic regularity theory yields supk ‖Φk‖W 2,2(Ω) < +∞. Thus,
possibly passing to a subsequence, also condition (iv) of definition 6.5.10 holds.
Step 6. As in [Riv12, Lemma 5.1], we have that the Gauss map of Φ extends to a map in

W 1,2(B1,Grn−2(Rn)), and consequently, from lemma 6.5.1 in appendix 6.5.1, the structure near
points of η lying in B1 is that of a (possibly removable) branch point. Finally as shown in
lemma 6.5.2 singular points a ∈ η lying on the boundary are always removable, and the limiting
map Φ extends to a conformal Lipschitz immersion near ∂B1. This concludes the proof of the
lemma.

The proof of the following lemma can be easily deduced from its analogue in the closed case
(see [Riv12, Theorem 5.9]).

Lemma 6.5.12. The Willmore energyW2 is sequentially lower semi-continuous in F (B1,Rn,Γ, N0, a)
with respect to weak convergence in the sense of Definition 6.5.10, that is, if (Φk)k is a sequence
in F ∗(B1,Rn,Γ, N0, a) weakly converging to Φ, then

lim inf
k→∞

W2(Φk) ≥ W2(Φ).

Proof of Theorem 6.1.2. Since the triple (Γ, N0, a) is admissible, the set
F (B1,Rn,Γ, N0, a) is not empty and we can consider a sequence (Φk)k in F (B1,Rn,Γ, N0, a)
minimising the Willmore energy:

lim
k→∞
W2(Φk) = inf{W2(Ψ) : Ψ ∈ F ∗(B1,Rn,Γ, N0, a)}.

By Remark 6.5.7, we may assume that each Φk satisfies the three-point normalisation condition
given by Definition 6.5.6. From Lemma 6.5.11 we can then extract a weakly converging
subsequence in the sense of Definition 6.5.10 to a conformal map Φ in F (B1,Rn,Γ, N0, a).
Finally, because of Lemma 6.5.12 we have

W2(Φ) = lim
k→∞
W2(Φk) = inf{E(Ψ) : Ψ ∈ F (B1,Rn,Γ, N0, a)}.

This concludes the proof of the theorem.

6.6 Regularity of Minimizers
This section is devoted to prove that any element in F (B1,Rn,Γ, N0, a) which minimizes the
Willmore energy satisfies all the regularity statements of Theorem 6.1.3.

We need first some preparatory results regarding Lipschitz W 2,2 immersions and estimates
on suitable competitors for the Germain–Poisson problem. In this section, we denote with
DArea(Φ)w and DW2(Φ)w the directional derivative at Φ along w of the area and Willmore
energy functional, namely

DArea(Φ)w = dArea(Φ + tw)
dt

∣∣∣∣∣
t=0
, DW2(Φ)w = dW2(Φ + tw)

dt

∣∣∣∣∣
t=0
,

and, if Ω is the domain of Φ (a ball or a half–ball) we set

‖DArea(Φ)‖ := sup{|DArea(Φ)w| :w ∈ W 1,∞(Ω,Rn), ‖w‖W 1,∞(Ω) ≤ 1, suppw ⊂⊂ Ω}.
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6.6 Regularity of Minimizers

6.6.1 Lemmas on Conformal Immersions

Lemma 6.6.1 (Interior Estimates for λ). There exists an ε0 > 0 such that, if Φ : B1 → Rn is
a conformal Lipschitz W 2,2 immersion satisfying

W2(Φ) =
∫
B1
|A|2 dσg < ε0,

then,

(i) for any 0 < r < 1 there holds∫
Br
|∇λ|2 dx ≤

(
r2

2 + Cε0

)∫
B1
|∇2Φ|2g dσg (6.6.1)

(ii) for any compact set K ⊂⊂ B1, there holds

‖λ− (λ)B1‖L∞(K) ≤
C

dist(K, ∂B1)2‖∇λ‖L(2,∞)(B1) + Cε0, (6.6.2)

where (λ)B1 = −
∫
B1
λ dx denotes the average of λ on B1 and C > 0 is a constant independent

of Φ.

Proof of Lemma 6.6.1. Thanks to Lemma 6.4.1, if ε0 is small enough we may find a Coulomb
orthonormal frame f defined on B1 satisfying the estimate

‖∇f‖2
L2(B1) ≤ C‖∇N‖2

L2(B1) ≤ Cε0.

We write λ = µ+ h, where µ is the solution be the solution to{
−∆µ = 〈∇⊥f1,∇f2〉 in B1,

µ = 0 on ∂B1,

and h is the harmonic rest. By Wente’s lemma, µ belongs to C0(Br) ∩W 1,2(Br) with

‖∇µ‖L2(B1) + ‖µ‖L∞(B1) ≤ C‖∇N‖2
L2(B1) ≤ Cε0. (6.6.3)

As for h, since it is harmonic, for any 0 < r < 1 it satisfies∫
Br
|∇h|2 dx ≤ r2

∫
B1
|∇h|2 dx. (6.6.4)

Using successively (6.6.4), the Dirichlet principle, (6.6.3) and identity |∇2Φ|2g = 4e−2λ|∇λ|2 + |A|2
we then deduce∫

Br(0)
|∇λ|2 dx =

∫
Br(0)
|∇(µ+ h)|2 dx

≤ 2r2
∫
B1
|∇h|2 + 2

∫
B1
|∇µ|2 dx

≤ 2r2
∫
B1
|∇λ|2 dx+ C‖∇N‖4

L2(B1)

≤ 1
2r

2
∫
B1
|∇2Φ|2g dσg + C‖∇N‖4

L2(B1)

=
(
r2

2 + Cε0

)(∫
B1
|∇2Φ|2g dσg

)
,
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6 The Germain–Poisson Problem

which proves (6.6.1). As for (6.6.2), we note that h may be written by means of the Poisson
kernel4 as

h(x) =
∫
∂B1

K(x, y)λ(y) dH1(y), x ∈ B1,

consequently we deduce that, for any x ∈ K, using the trace theorem and Poincaré’s inequality,
there holds

|h(x)− (λ)B1| ≤
1− |x|2

2π

∫
∂B1

1
|x− y|2

|λ(y)− (λ)B1 | dH1(y)

≤ C

dist(K, ∂B1)2‖λ− (λ)B1‖L1(∂B1)

≤ C

dist(K, ∂B1)2‖∇λ‖L1(B1)

≤ C

dist(K, ∂B1)2‖∇λ‖L(2,∞)(B1).

We may then conclude with (6.6.3) that

‖λΦ − (λ)B1‖L∞(K) ≤ ‖h− (λ)B1‖L∞(K) + ‖µ‖L∞(B1)

≤ C

dist(K, ∂B1)2‖∇λ‖L(2,∞)(B1) + Cε0,

as desired. This concludes the proof of the lemma.

Lemma 6.6.2 (Boundary Estimates for λ). There exists an ε0 > 0 so that the following holds.
Let Φ : B+

1 (0) → Rn be a conformal Lipschitz W 2,2 immersion and let e = (e1, e2) be its
coordinate frame. If for some p > 1 we have ∂τe ∈ Lp(I,Rn × Rn) and∫

B+
1 (0)
|A|2 dσg + [e ]2W 1/2,2(I) < ε0,

then:

(i) for any 0 < r < 1 there holds∫
B+
r

|∇λ|2 dx ≤
(
r2

2

)∫
B+

1

|∇2Φ|2 dσg (6.6.5)

+
(
Cε0 + C(p)‖∂τe1‖Lp(I)(1 + ‖∂τe2‖Lp(I))

)( ∫
B+

1

|A|2 dσg + ‖〈∂τe1, e2〉‖L1(I)

)
,

(ii) for any compact set K ⊂ B+
1 (0) so that dist(K,S) > 0 there holds

inf
c∈R
‖λ− c‖L∞(K) ≤

C

dist(K,S)2‖∇λ‖L(2,∞)(B+
1 ) + C(p)(ε0 + ‖∂τe1‖Lp(I)(1 + ‖∂τe2‖Lp(I))),

(6.6.6)

where C > 0 is an universal constant and C(p) > 0 is a constant depending only on p.
4 the explicit formula is (see [Eva10, §2.2.4]): K(x, y) = 1−|x|2

2π
1

|x−y|2 .
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6.6 Regularity of Minimizers

Proof of Lemma 6.6.2. Step 1. Thanks to Lemma 6.4.4 (see also Remark 6.4.5), we can
consider an extension f of e|I to all of ∂B+

1 such that

[f ]W 1/2,2(∂B+
1 ) ≤ 2[f ]W 1/2,2(I),

Step 2. We choose ε0 sufficiently small so that thanks to lemma 6.4.2 we may find a frame
g = (g1, g2) lifting N on B+

1 that coincides with f on ∂B+
1 and satisfies

‖∇g‖L2(B+
1 ) ≤ C

(
‖∇N‖L2(B+

1 ) + [f ]W 1/2,2(∂B+
1 )

)
≤ Cε0.

Step 3. We write λ = µ+ h, where:
−∆µ = 〈∇⊥g1,∇g1〉 in B+

1 ,

∂νµ = 〈∂τg1, g2〉 on I,
µ = 0 on S,

and


−∆h = 0 in B+

1 ,

∂νh = 0 on I,
h = λ on S.

Step 4: estimate of µ. Since µ satisfies a homogeneous Dirichlet condition on S, its extension
to R2

+ by means of odd inversion along S (given by the conformal map x 7→ x/|x|2):

µ̂(x) =

µ(x) for x ∈ B+
1 ,

−µ(x/|x|2) for x ∈ R2
+ \B+

1 ,

satisties (also thanks to the transformation law under conformal maps of the Laplace operator
and of the determinant):{

−∆µ̂ = 〈∇⊥g̃1,∇g̃2〉 in R2
+,

∂νµ̂ = 〈∂τ g̃1, g̃2〉 on ∂R2
+,

(6.6.7)

where for i = 1, 2,

g̃i(x) =

gi(x) for x ∈ B+
1 ,

gi(x/|x|2) for x ∈ R2
+ \B+

1 ,

denote extensions of gi by means of even inversion along S.
We then consider the Cayley map φ(z) = i−z+1

z+1 mapping biholomorphically B1 onto R2
+ and

by simplicity of notation we continue to denote by µ̂ and g̃i the composition µ̂ ◦ φ and g̃i ◦ φ.
By the conformal invariance of the problem (6.6.7), µ̂ ◦ φ satisfies{

−∆µ̂ = 〈∇⊥g̃1,∇g̃2〉 in B1,

∂νµ̂ = 〈∂τ g̃1, g̃2〉 on ∂B1,

Thanks to Theorem 2.1.7 of Chapter 2, we have

inf
c∈R
‖µ̂− c‖L∞(B1) ≤ C‖∇g̃1‖L2(B1)(1 + ‖∇g̃2‖L2(B1))

+ C(p)‖∂τ g̃1‖Lp(∂B1)(1 + ‖∂τ g̃2‖Lp(∂B1)).

Because of the conformal invariance of the Dirichlet energy there holds

‖∇g̃i‖L2(B1) = ‖∇gi‖L2(B+
1 ) i = 1, 2,
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6 The Germain–Poisson Problem

on the other hand a direct computation shows that

‖∂τ g̃i‖Lp(∂B1) ≤ 2‖∂τgi‖Lp(I) i = 1, 2,

hence we deduce (assuming without loss of generality that ε0 < 1 and recalling that g = e on I):

inf
c∈R
‖µ− c‖L∞(B+

1 ) ≤ Cε0 + C(p)‖∂τe1‖Lp(I)(1 + ‖∂τe2‖Lp(I)). (6.6.8)

Consequently, through integration by parts and by using (6.6.8) we can estimate∫
B+

1

|∇µ|2 dx = −
∫
B+

1

(µ− c)∆u dx+
∫
I
(µ− c)∂νλ dH1 (6.6.9)

≤ inf ‖µ− c‖L∞(B+
1 )

(
‖〈∇⊥g1,∇g2〉‖L1(B1) + ‖〈∂τe1, e2〉‖L1(I)

)

≤ (Cε0 + C(p)‖∂τe1‖Lp(I)(1 + ‖∂τe2‖Lp(I)))
(∫

B+
1

|A|2 dσg + ‖〈∂τe1, e2〉‖L1(I)

)
.

Step 5: estimate of the harmonic rest h. We observe that the existence of h can be deduced by
variational methods. Since h satisfies a homogeneous Neumann condition along I, its extension
to B1 by even reflection along I:

h̃(x) =

h(x1, x2) in B+
1 ,

h(x1,−x2) in B−1 = B1 ∩ R2
−,

will then satisfy−∆h̃ = 0 in B1,

h̃ = λ̃ on ∂B1,

where λ̃ similarly denotes the extension of λ to B1 by even reflection along I. From the classical
estimate for harmonic function we will then deduce∫

Br
|∇h̃|2 dx ≤ r2

∫
B1
|∇λ̃|2 dx,

and consequently,∫
B+
r

|∇h|2 dx ≤ r2
∫
B+

1

|∇λ|2 dx. (6.6.10)

By joining estimates (6.6.9)-(6.6.10) we then deduce∫
B+
r

|∇λ|2 dx ≤ 2
∫
B+

1

|∇µ|2 dx+ 2
∫
B+
r

|∇h|2 dx

≤ (Cε0 + C(p)‖∂τe1‖Lp(I)(1 + ‖∂τe2‖Lp(I)))
(∫

B+
1

|A|2 dσg + ‖〈∂τe1, e2〉‖L1(I)

)

+ r2
∫
B+

1

|∇λ|2 dx,

which then yields estimate (6.6.5).
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6.6 Regularity of Minimizers

As far as the estimate (6.6.6) is concerned, similarly as in Lemma 6.6.1, we deduce that

‖h̃− (λ̃)B1‖L∞(K̃) ≤
C

dist(K̃, ∂1B)
‖∇λ̃‖L(2,∞)(B1),

where we denoted by K̃ = K ∪ {(x1,−x2) : (x1, x2) ∈ K}, and consequently that

‖h− (λ)B+
1
‖L∞(K) ≤

C

dist(K, ∂1B)2‖∇λ‖L(2,∞)(B+
1 ). (6.6.11)

We may then write

inf
c′∈R
‖λ− c′‖L∞(K) ≤ ‖h− (λ)B1‖L∞(K) + inf

c∈R
‖µ− c‖L∞(B+

1 ),

and with estimates (6.6.8)-(6.6.11) we deduce the validity of (6.6.6). This concludes the proof
of the lemma.

Lemma 6.6.3 (Affine approximation). For every δ > 0 there exists an ε0 > 0 such that, for
every conformal Lipschitz W 2,2 immersion Φ : B1 → Rn satisfying∫

B1
|∇2Φ|2g dσg < ε0,

there exists a conformal affine immersion L = L0 + x1X1 + x2X2 = L0 + 〈x,X〉 so that

‖Φ− L‖W 2,2(B1/2) < δ‖∇Φ‖L2(B1)

and, if eν = |X1| = |X2| denotes the conformal factor of L,

‖λ− ν‖L∞(B1/2(0)) < δ.

Proof of Lemma 6.6.3. We argue by contradiction and suppose that there exists a δ > 0
such that, for every k ∈ N, there is a conformal Lipschitz W 2,2 immersion Φk : B1 → Rn such
that (writing as usual eλΦk = eλk),∫

B1
|∇2Φk|2gΦk

dσgΦk
=
∫
B1

e−2λk |∇2Φk|2dx ≤
1
k
, (6.6.12)

and for every conformal affine immersion L there holds

‖Φk − L‖W 2,2(B1/2(0)) > δ‖∇Φk‖L2(B1). (6.6.13)

or, if eν denotes the conformal factor of L,

‖λk − ν‖L∞(B1/2(0)) ≥ δ. (6.6.14)

Since (6.6.12) is invariant under translations and dilations in Rn, writing for short ck = −−
∫
B1
λk dx

if we set

Φ̃k(x) = eck(Φk(x)− Φk(0)), x ∈ B1, (6.6.15)
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6 The Germain–Poisson Problem

then Φ̃k : B1 → Rn defines for every k a conformal Lipschitz W 2,2 immersion such that, if eλ̃k
denotes its conformal factor, there holds

λ̃k = λk + ck, Φ̃k(0) = 0, −
∫
B1
λ̃k dx = 0,

and ∫
B1

e−2λ̃k |∇2Φ̃k|2 dx ≤
1
k
. (6.6.16)

From the identity |∇2Φ|2 = 4e−2λ|∇λ|2 + |A|2 , Lemma 6.6.1 and (6.6.16) it follows

‖λ̃k − (λ̃k)B1‖L∞(B1/2(0)) = ‖λ̃k‖L∞(B1/2(0))

≤ C‖∇λ̃k‖L2(B1) + C‖∇Ñk‖2
L2(B1) ≤

C

k
→ 0 as k →∞,

so

λ̃k → 0 uniformly in B1/2, (6.6.17)

and consequently we infer that

‖∇Φ̃k‖L2(B1/2) =
∫
B1/2

2e2λ̃k dx→ π/2 as k →∞, (6.6.18)

‖∇2Φ̃k‖L2(B1/2) ≤ eC/k
∫
B1/2

e−2λ̃k |∇2Φ̃k|2 dx ≤
C

k
→ 0 as k →∞,

from which we deduce, with Poincaré’s inequality,

‖Φk‖W 2,2(B1/2) = ‖Φk − Φk(0)‖W 2,2(B1/2) ≤ C.

We deduce that, up to extraction of subsequences, for a map Φ̃∞ ∈ W 2,2(B1/2,Rn) we have

Φ̃k ⇀ Φ̃∞ in W 2,2(B1/2,Rn),
∇2Φ̃k → 0 in L2(B1/2,Rn),

Φ̃k → Φ̃∞ in W 1,p(B1/2,Rn) for every 1 ≤ p <∞ and a.e. in B1/2.

consequently, Φ∞ : B1/2(0)→ Rn is a conformal map and, from the uniform convergence of λ̃k
above, up to a further subsequence, its conformal factor is 1 (that is, Φ̃∞ is a isometric linear
immersion). Being ∇2Φ∞ = 0, there actually holds

Φ̃k → Φ̃∞ in W 2,2(B1/2,Rn). (6.6.19)

Note now that from the definition (6.6.15), (6.6.13) is equivalent to

‖e−ckΦ̃k + Φk(0)− L‖W 2,2(B1/2) ≥ δ‖∇Φk‖L2(B1/2),

hence

‖Φ̃k + eck(Φk(0)− L)‖W 2,2(B1/2) ≥ δ‖∇(eckΦk)‖L2(B1/2) = δ‖∇(Φ̃k)‖L2(B1/2),
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Since L is arbitrary, we may consider the sequence Lk = Φk(0) + e−ckΦ̃∞ and deduce from
(6.6.18) that

‖Φ̃k − Φ̃∞‖W 2,2(B1/2) ≥ δ‖∇(Φ̃k)‖L2(B1/2)

= δ(π/2 + o(1)) as k →∞,

which is a contradiction with (6.6.19). Similarly, if (6.6.14) holds, since the conformal factor of
Lk is e−ck , we have

‖λk − νk‖L∞(B1/2) = ‖λk + ck‖L∞(B1/2) = ‖λ̃k‖L∞(B1/2) ≥ δ for every k ∈ N,

which contradicts (6.6.17).

6.6.2 Construction of Suitable Competitors

Lemma 6.6.4 (Interior Competitors). Let Φ : B1 → Rn be a conformal Lipschitz W 2,2 immer-
sion. For every δ > 0 there there exists an ε0 > 0 such that if∫

B4r
|∇2Φ|2g dσg < ε0,

for some 0 < r ≤ 1/4, then there exists a ρ ∈ [r/2, r] such that the solution to
∆2ψ = 0 in Bρ,

ψ = Φ on ∂Bρ,

∇ψ = ∇Φ on ∂Bρ,

(6.6.20)

defines an immersion which satisfies:∫
Bρ
|∇2ψ|2gψ dσgψ ≤ C

(
1 + C0(δ + o(δ))

) ∫
Br\Br/2

|∇2Φ|2g dσg, (6.6.21)

and

|Area(Φ|Bρ)− Area(ψ)| ≤ C0(δ + o(δ))‖∇Φ‖2
L2(Bρ), (6.6.22)

and

‖DArea(Φ|Bρ)−DArea(ψ)‖ ≤ C0(δ + o(δ))‖∇Φ‖L2(Br), (6.6.23)

where C > 0 independent of r and Φ, C0 > 0 depends only on ‖∇λ‖L(2,∞)(B1) and o(δ)/δ → 0 as
δ → 0.

Remark 6.6.5 We note that:

(i) For every ρ, the existence and uniqueness of a solution to (6.6.20) in W 2,2 is given,
for example, by the fact that such problem is the Euler-Lagrange equation for the
biharmonic energy functional B(σ) =

∫
Bρ
|∆σ|2 dL2 (or, equivalently, of the Hessian energy∫

Bρ
|∇2σ|2 dL2), subject to the prescribed boundary data. Since Φ is of classW 2,2, existence

and uniqueness by an argument similar to the one for the Dirichlet problem.
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(ii) An elementary fact that will be used in the proof of lemma 6.6.4 is the following. For a
function f ∈ L1(BR) (R > 0 is arbitrary) and a constant C > 0 we say that ρ ∈ [R/2, R]
defines a C-good slice for f (in BR(0) \BR/2) if f |∂Bρ is in L1(∂Bρ) and there holds

ρ
∫
∂Bρ
|f(r, θ)| dσ ≤ C

∫
BR\BR/2

|f | dx.

The existence of C-good slices for some C and any f is a consequence of Fubini’s theorem.
Moreover, one can check that, for every 0 < δ < R/2, there exists a Cδ > 0 so that, for
every f ∈ L1(BR), the radii ρ ∈ [R/2, R] defining Cδ- good slices for f have Lebesgue
measure at least R/2− δ.

Proof of Lemma 6.6.4. It is sufficient to prove the thesis only for any δ > 0 sufficiently small.
We first treat the case r = 1/4 and argue through rescalings at the end. In what follows, we
denote by C a positive constant (possibly varying line to line) which is independent of Φ, and
with C0 a positive constant depending only on ‖∇λ‖L(2,∞)(B1).

Step 1. For ε0 sufficiently small as in Lemma 6.6.1, we have that

‖λ− (λ)B1‖L∞(B3/4) ≤ C
(
‖∇λ‖L(2,∞)(B1) + ε0

)
= C0, (6.6.24)

where (λ)B1 denotes the average of λ over B1. Also, for every δ > 0, if ε0 is sufficiently small as
in Lemma 6.6.3, then there exists a conformal affine immersion L whose conformal factor we
denote by eν , satisfying the following estimate

‖Φ− L‖W 2,2(B1/4) < δ‖∇Φ‖L2(B1/2), (6.6.25)
‖λ− ν‖L∞(B1/4) < δ. (6.6.26)

By combining (6.6.24)-(6.6.26), we deduce

‖λ− ν‖L∞(B3/4) ≤ ‖λ− (λ)B1‖L∞(B3/4) + |(λ)B1 − ν|
≤ ‖λ− (λ)B1‖L∞(B3/4) + ‖λ− (λ)B1‖L∞(B1/2) + ‖λ− ν‖L∞(B1/2)

≤ C0 + δ.

It follows that

C−1
0 (1− δ − o(δ))eν ≤ eλ(x) ≤ C0(1 + δ + o(δ))eν for x ∈ B3/4, (6.6.27)

and in particular

C−1
0 (1− δ − o(δ))e2ν ≤ ‖∇Φ‖2

L2(B3/4) ≤ C0(1 + δ + o(δ))e2ν . (6.6.28)

We then consider a good-slice choice ρ ∈ [1/8, 1/4] so that Φ and Φ−L belong to W 2,2(∂Bρ,Rn)
with

‖Φ‖W 2,2(∂Bρ) ≤ C‖Φ‖W 2,2(B1/4\B1/8),

‖Φ− L‖W 2,2(∂Bρ) ≤ C‖Φ− L‖W 2,2(B1/4\B1/8),

hence we consider the solution to (6.6.20) for such choice of ρ. Elliptic regularity theory (see for
instance [LM72, Remark 7.2, Chapter 2]) implies that

‖ψ − L‖W 5/2,2(Bρ) ≤ C‖Φ− L‖W 2,2(∂Bρ),
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while Sobolev embedding W 5/2,2 ↪→ C1,α implies that, for every 0 < α < 1/2,

‖ψ − L‖C1,α(Bρ) ≤ C‖ψ − L‖W 5/2,2(Bρ).

Hence we have

‖∇ψ −∇L‖L∞(Bρ) ≤ C‖ψ − L‖W 5/2,2(Bρ) (Sobolev embedding)
≤ C‖Φ− L‖W 2,2(∂Bρ) (elliptic estimates)
≤ C‖Φ− L‖W 2,2(B1/4\B1/8) (good-slice choice)
≤ Cδ‖∇Φ‖L2(B1/4) (by (6.6.25))
≤ C0eν(δ + o(δ)) (by (6.6.27) and (6.6.28)).

Hence for i = 1, 2, we deduce the pointwise estimates in Bρ

||∂iψ|2 − e2ν | = ||∂iψ| − eν | ||∂iψ|+ eν |
≤ |∂iψ − ∂iL| ||∂iψ|+ eν |
≤ C0e2ν(δ + o(δ)),

and similarly

|〈∂1ψ, ∂2ψ〉| = |〈∂1ψ, ∂2ψ〉 − 〈∂1L, ∂2L〉|
= |〈(∂1ψ − ∂1L), ∂2ψ〉+ 〈∂1L, (∂2ψ − ∂2L)〉|
≤ ||∂2ψ|+ |∂1L||

(
|∂1ψ − ∂1L|+ |∂2ψ − ∂2L|

)
≤ C0e2ν(δ + o(δ)).

This implies that, if gψ = (〈∂iψ, ∂jψ〉)ij denotes the metric associated with ψ, for every vector
X = (X1, X2) ∈ R2, we have

e2ν (1− C0(δ + o(δ))) |X|2 ≤ gψ(X,X) ≤ e2ν (1 + C0(δ + o(δ))) |X|2, (6.6.29)

where |X| =
√

(X1)2 + (X2)2 is the Euclidean norm of X. As a consequence, we deduce that
for δ > 0 small enough, ψ defines an immersion, and in such case we have

e2ν (1− C0(δ + o(δ))) ≤
√

det gψ ≤ e2ν (1 + C0(δ + o(δ))) , (6.6.30)

and

e−4ν (1 + C0(δ + o(δ)))−2 |∇2ψ|2 ≤ |∇2ψ|2gψ ≤ e−4ν (1− C0(δ + o(δ)))−2 |∇2ψ|2

consequently wee that, point-wise in Bρ(0),

|∇2ψ|2gψ
√

det gψ ≤
1 + C0(δ + o(δ))

(1− C0(δ + o(δ)))2 e−2ν |∇2ψ|2. (6.6.31)

Step 2: estimate for the curvature energy. Since ψ solves (6.6.20), from elliptic regularity
theory, we have that for any affine function M(x) = M0 + 〈Y, x〉 there holds

‖∇2ψ‖L2(Bρ) = ‖∇2(ψ −M)‖L2(Bρ)

≤ C
(
‖Φ−M‖W 2,2(∂Bρ) + ‖∇(Φ−M)‖W 1,2(∂Bρ)

)
≤ C

(
‖Φ−M‖L2(∂Bρ) + ‖∇(Φ−M)‖L2(∂Bρ) + ‖∇2Φ‖L2(∂Bρ)

)
,
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and hence if we suitably choose M so that

‖∇(Φ−M)‖L2(∂Bρ) ≤ C‖∇2Φ‖L2(∂Bρ),

‖Φ−M‖L2(∂Bρ) ≤ C‖∇(Φ−M)‖L2(∂Bρ)

(if M(x) = M0 + 〈Y, x〉, it is sufficient to choose Y = (∇Φ)∂Bρ and M0 = (Φ −M)∂Bρ), we
actually deduce that

‖∇2ψ‖L2(Bρ) ≤ C‖∇2Φ‖L2(∂Bρ),

and so, from the choice of ρ we made, we have

‖∇2ψ‖L2(Bρ) ≤ C‖∇2Φ‖L2(∂Bρ) ≤ C‖∇2Φ‖L2(B1/4\B1/8).

Note also that∫
B1/4\B1/8

|∇2Φ|2 dx ≤
∫
B1/4\B1/8

e2λe−2λ|∇2Φ|2 dx (6.6.32)

≤ e2δe2ν
∫
B1/4\B1/8

e−2λ|∇2Φ|2 dx

≤ e2ν(1 + 2(δ + o(δ)))
∫
B1/4\B1/8

e−2λ|∇2Φ|2 dx,

By joining estimates (6.6.31) – (6.6.32), we deduce that∫
Bρ
|∇2ψ|gψ dσgψ ≤ C(1 + C0(δ + o(δ)))

∫
B1/4\B1/8

|∇2Φ|2g dσg.

Step 3: estimate on the area. From (6.6.26) and (6.6.30)5 we deduce that (recall that
ρ ∈ [1/8, 1/4]), we have

|
√

det gψ − e2λ| ≤ e2νC0(δ + o(δ)) ≤ e2λC0(δ + o(δ)) in Bρ,

hence by integrating over Bρ we deduce

|Area(ψ)− Area(Φ|Bρ)| =
∣∣∣∣∣
∫
Bρ

(√
det gψ − e2λ

)
dx

∣∣∣∣∣
≤
∫
Bρ

∣∣∣√det gψ − e2λ
∣∣∣ dx

≤ C0‖∇Φ‖2
L2(Bρ)(δ + o(δ)).

Step 4: estimate on the derivative of the area. For w ∈ W 1,∞(Bρ,Rn) with compact support
in Bρ, we have

DArea(Φ)w =
∫
Bρ
〈∇Φ,∇w〉 dx,

DArea(ψ)w =
∫
Bρ
gψ(∇ψ,∇w)dggψ =

∫
Bρ
gijψ 〈∂iψ, ∂jw〉

√
det gψ dx,

5 (6.6.26) implies (1− 2(δ + o(δ)))e2ν ≤ e2λ ≤ (1 + 2(δ + o(δ)))e2ν in B1/4.
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and from (6.6.29) and (6.6.30) we deduce that

δij(1− C0(δ + o(δ))) ≤ gijψ

√
det gψ ≤ δij(1 + C0(δ + o(δ))). (6.6.33)

We also observe that

‖∇ψ −∇Φ‖L2(Bρ) ≤ Cδ‖∇Φ‖L2(B1/4).

Moreover

gijψ 〈∂iψ, ∂jw〉
√

det gψ − δij〈∂iΦ, ∂jw〉 = gijψ 〈∂iψ, ∂jw〉
√

det gψ − gijψ 〈∂iΦ, ∂jw〉
√

det gψ
+ gijψ 〈∂iΦ, ∂jw〉

√
det gψ − δij〈∂iΦ, ∂jw〉.

By using (6.6.33) we get that∫
Bρ

∣∣∣gijψ 〈∂iΦ, ∂jw〉√det gψ − δij〈∂iΦ, ∂jw〉
∣∣∣ dx ≤ C0(δ + o(δ))

∫
Bρ
|〈∇Φ,∇w〉|dx (6.6.34)

and ∫
Bρ

∣∣∣gijψ 〈∂iψ, ∂jw〉√det gψ − gijψ 〈∂iΦ, ∂jw〉
√

det gψ
∣∣∣ dx (6.6.35)

≤ C0‖∇ψ −∇Φ‖L2(Bρ) ≤ C0δ‖∇Φ‖L2(B1/4).

By combining estimates (6.6.34) and (6.6.35) we get

|DArea(ψ)w −DArea(Φ)w| ≤ C0(δ + o(δ))
∫
Bρ
|〈∂iΦ, ∂iw〉|dx+ C0‖∇ψ −∇Φ‖L2(Bρ)

≤ C0δ‖∇Φ‖L2(B1/4)

Step 5: the estimates for a general r. If 0 < r < 1/4, we may reduce to the case r = 1/4:
indeed, if we consider the rescaling Φ̃(x) = Φ(4rx) for x ∈ B1, by conformal invariance we have∫

B4r
|∇2Φ|2g dσg =

∫
B1
|∇2Φ|2g dσg,

and the area functional, the Dirichlet energy, solution to the problem (6.6.20) and the L(2,∞)–
seminorm of ∇λ are invariant by rescalings as well 6. We may apply the previous steps to Φ̃,
estimate ‖∇λ‖L(2,∞)(B4r) with ‖∇λ‖L(2,∞)(B1) and then rescale back.

Definition 6.6.6. An immersion Φ : B+
1 → Rn is said to have flat geometric boundary data

on the base diameter I if there holds

Φ(x1, 0) ∈ spanR{ε1} and N(x1, 0) = ε3 ∧ . . . ∧ εn−2 for (x1, 0) ∈ I.

For a conformal immersion Φ : B+
1 (0) → Rn with flat geometric boundary data on I, its

geometric reflection along I, Φ̂ : B1 → R3 is defined as

Φ̂(x1, x2) =

Φ(x1, x2) if x2 ≥ 0,
Φ1(x1,−x2)ε1 −

∑m
l=2 Φl(x1,−x2)εl if x2 < 0.

6to see this last fact, note that, if d∇λ(t) = L2 ({x : |∇λ(x)| > t}}) denotes the distribution function of ∇λ,
and σ > 0, λσ(x) = λ(σx) has distribution function d∇λσ (t) = σ−2d∇λ(t/σ). Consequently

‖∇λσ‖L(2,∞) = sup
t>0

t
√
d∇λσ (t) = sup

u>0
u
√
d∇λ(u) = ‖∇λ‖L(2,∞) .
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Note that if Φ as in Definition 6.6.6 is conformal and W 2,2, there holds

∂1Φ(x1, 0) = eλ(x1,0)ε1, and ∂2Φ(x1, 0) = eλ(x1,0)ε2.

Hence, provided that ‖λ‖L∞(B+
1 ) < +∞, the geometric nature of the reflection and conformality

imply that Φ̂ defines a conformal immersion of class (W 1,∞ ∩W 2,2)(B1,R3), hence a Lipschitz
W 2,2 immersion with

|∇Φ̂(x1, x2)|2 = |∇Φ(x1, x2)|2χ{x2≥0} + |∇Φ(x1,−x2)|2χ{x2<0},

|∇2Φ̂(x1, x2)|2 = |∇2Φ(x1, x2)|2χ{x2≥0} + |∇2Φ(x1,−x2)|2χ{x2<0},

|∆Φ̂(x1, x2)|2 = |∆Φ(x1, x2)|2χ{x2≥0} + |∆Φ(x1,−x2)|2χ{x2<0},

eλΦ̂
(x1,x2) = eλ(x1,x2)χ{x2≥0} + eλ(x1,−x2)χ{x2<0}.

The following is a boundary analogue of Lemma 6.6.4, where additionally we have flat geometric
boundary data on I in the sense of Definition 6.6.6.

Lemma 6.6.7. There exists an ε0 with the following property. Let Φ : B+
1 → Rn be a conformal

Lipschitz W 2,2 immersion and flat geometric boundary data on I such that ‖λ‖L∞(B+
1 ) < +∞.

For every δ > 0 there there exists an ε0 > 0 such that, if∫
B+

4r

|∇2Φ|2g dσg < ε0,

for 0 < r ≤ 1/4, then there exists a ρ ∈ [r/2, r] and an immersion ψ ∈ C1,α(B+
ρ ,Rn) which

satisfies

ψ = Φ on ∂Bρ ∩B+
1 ,

∇ψ = ∇Φ on ∂Bρ ∩B+
1 ,

has flat geometric boundary data on ρI and satisfies∫
B+
ρ

|∇2ψ|2gψ dσgψ ≤ C
(
1 + C0(δ + o(δ))

) ∫
B+
r \B+

r/2

|∇2Φ|2g dσg (6.6.36)

+ C0(δ + o(δ)) Area(Φ|B+
ρ

),

and

|Area(Φ|B+
ρ

)− Area(ψ)| ≤ C0(δ + o(δ)) Area(Φ|B+
ρ )), (6.6.37)

and

‖DArea(Φ|B+
ρ

)−DArea(ψ)‖ ≤ C0(δ + o(δ)) Area(Φ|B+
r

), (6.6.38)

where C > 0 is independent of r and Φ, C0 > 0 may depend on ‖∇λ‖L(2,∞)(B+
1 ) and o(δ)→ 0 as

δ → 0.

Parts of the proof of this lemma are similar to the proof of Lemma 6.6.4, so we will focus on
the differences. The overall idea is first to reflect geometrically Φ as in Definition 6.6.6, then
consider the biharmonic competitor as in Lemma 6.6.4 and finally to smoothly “correct” it so
that it has flat geometric boundary data on ρI. Such “correction” will be essentially constructed
by means of the 1st order Taylor polynomials of such biharmonic comparison at the points (ρ, 0)
and (−ρ, 0) respectively.
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Proof of Lemma 6.6.7. As in the case of Lemma 6.6.4, it sufficient to prove the thesis only
for any δ > 0 sufficiently small. We first treat the case r = 1/4 and argue through rescalings at
the end. In what follows, we denote by C a positive constant which is independent of Φ, and
with C0 a positive constant depending only on ‖∇λ‖L(2,∞)(B+

1 ).
Step 1. We consider the geometric reflection of Φ, Φ̂ : B1 → Rn, according to Definition 6.6.6.

For ε0 sufficiently small as in Lemma 6.6.1, we have that

‖λΦ̂ − (λΦ̂)B1‖L∞(B3/4) ≤ C
(
‖∇λΦ̂‖L(2,∞)(B1) + ε0

)
(6.6.39)

≤ C
(
‖∇λ‖L(2,∞)(B+

1 ) + ε0
)
≤ C0,

where (λΦ̂)B1 denotes the average of λΦ̂ over B1. Also, for every δ > 0, if ε0 is sufficiently small
as in Lemma 6.6.3, then there exists a conformal affine immersion L whose conformal factor eν
is so that the estimates

‖Φ− L‖W 2,2(B+
1/4) < δ‖∇Φ‖L2(B+

1/2) ⇐⇒ ‖Φ̂− L‖W 2,2(B1/4) < δ‖∇Φ̂‖L2(B1/2)(6.6.40)

‖λ− ν‖L∞(B+
1/4(0)) < δ ⇐⇒ ‖λΦ̂ − ν‖L∞(B1/4(0)) < δ (6.6.41)

are satisfied. By combining (6.6.39) -(6.6.41), we deduce

‖λΦ̂ − ν‖L∞(B3/4) ≤ ‖λΦ̂ − (λΦ̂)B1‖L∞(B3/4) + |(λΦ̂)B1 − ν|
≤ ‖λΦ̂ − (λΦ̂)B1‖L∞(B3/4) + ‖λΦ̂ − (λΦ̂)B1‖L∞(B1/2) + ‖λΦ̂ − ν‖L∞(B1/2)

≤ C0 + δ,

consequently we point-wise estimate from above and below

C−1
0 (1− δ − o(δ))eν ≤ eλΦ̂

(x) ≤ C0(1 + δ + o(δ))eν for x ∈ B3/4.

We then consider a good-slice choice ρ ∈ [1/8, 1/4] so that Φ̂ and Φ̂−L belong toW 2,2(∂Bρ,Rn)
(equivalently, so that Φ and Φ− L belong to W 2,2(∂Bρ ∩B+

1 ,Rn)) with

‖Φ̂‖W 2,2(∂Bρ) ≤ C‖Φ̂‖W 2,2(B1/4\B1/8),

‖Φ̂− L‖W 2,2(∂Bρ) ≤ C‖Φ̂− L‖W 2,2(B1/4\B1/8), (6.6.42)

hence we consider the solution for such choice of ρ to
∆2ψ0 = 0 in Bρ,

ψ0 = Φ̂ on ∂Bρ,

∇ψ0 = ∇Φ̂ on ∂Bρ,

which satisfies, as in lemma 6.6.4, the estimates

‖ψ0 − L‖W 5/2,2(Bρ) ≤ C0eν(δ + o(δ)), (6.6.43)
‖∇2ψ‖L2(Bρ) ≤ C‖∇2Φ̂‖L2(B1/4\B1/8) ≤ C‖∇2Φ‖L2(B1/4\B1/8), (6.6.44)

and consequently, by Sobolev embedding W 5/2,2 ↪→ C1,α for every 0 < α < 1/2 we have,

‖∇2ψ0‖C1,α(Bρ) ≤ C0eν(δ + o(δ)). (6.6.45)
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The estimates (6.6.43) and (6.6.45) will be crucial for what follows. If T 1
ψ0,(−ρ,0)(x) and

T 1
ψ0,(ρ,0)(x) denote the Taylor polynomial of ψ0 at the points (−ρ, 0) (ρ, 0) respectively, we may

write, for x ∈ Bρ(0),

T 1
ψ0,(−ρ,0)(x) = T 1

Φ,(−ρ,0)(x) := Φ(−ρ, 0) +
〈
∇Φ(−ρ, 0),

(
x1 + ρ
x2

)〉
,

T 1
ψ0,(ρ,0)(x) = T 1

Φ,(ρ,0)(x) := Φ(ρ, 0) +
〈
∇Φ(ρ, 0),

(
x1 − ρ
x2

)〉
,

where the expressions on the right-hand sides have a well-defined meaning because of our
good-slice choice of ρ. Note moreover that T 1

ψ0,(−ρ,0)(x) and T 1
ψ0,(ρ,0)(x) are conformal, they define

a parametrization of the plane span{ε1, ε2} and are so that T 1
ψ0,(−ρ,0)(x1, 0), T 1

ψ0,(ρ,0)(x1, 0) ∈
span{ε1} (in particular they have flat geometric boundary data on ρI according to definition
6.6.6). For every x ∈ Bρ(0), by virtue of Taylor’s theorem there exists ξ ∈ ((−ρ, 0), x) ⊂ Bρ(0)
so that

ψ0(x)− T 1
ψ0,(−ρ,0)(x) =

〈
(∇ψ0(ξ)−∇ψ0(−ρ, 0)),

(
x1 + ρ
x2

)〉
,

consequently we deduce that for every x ∈ Bρ(0) there holds

|ψ0(x)− T 1
ψ0,(−ρ,0)(x)| ≤ [∇ψ0]C0,α(Bρ(0))

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
1+α

, (6.6.46)

|∇ψ0(x)−∇T 1
ψ0,(−ρ,0)| ≤ [∇ψ0]C0,α(Bρ(0))

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
α

, (6.6.47)

and similarly that

|ψ0(x)− T 1
ψ0,(ρ,0)(x)| ≤ [∇ψ0]C0,α(Bρ(0))

∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
1+α

, (6.6.48)

|∇ψ0(x)−∇T 1
ψ0,(ρ,0)| ≤ [∇ψ0]C1,α(Bρ(0))

∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
α

. (6.6.49)

Note also that for every x ∈ Bρ(0) we may estimate

|T 1
Φ,(−ρ,0)(x)− L(x)| =

∣∣∣∣∣T 1
Φ,(−ρ,0)(x)− L(−ρ, 0)−

〈
∇L(−ρ, 0),

(
x1 + ρ
x2

)〉∣∣∣∣∣
≤ |Φ(−ρ, 0)− L(−ρ, 0)|+ |∇Φ(−ρ, 0)−∇L(−ρ, 0)|

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣ ,
|∇T 1

Φ,(−ρ,0) −∇L| = |∇Φ(−ρ, 0)−∇L(−ρ, 0)|,

and similarly

|T 1
Φ,(ρ,0)(x)− L(x)| ≤ |Φ(ρ, 0)− L(ρ, 0)|+ |∇Φ(ρ, 0)−∇L(ρ, 0)|

∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣ ,
|∇T 1

Φ,(ρ,0) −∇L(ρ, 0)| = |∇Φ(ρ, 0)−∇L(ρ, 0)|,
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hence thanks to (6.6.40)–(6.6.42),

‖T 1
Φ,(−ρ,0) − L‖C1(Bρ) ≤ C0eν(δ + o(δ)), (6.6.50)
‖T 1

Φ,(ρ,0) − L‖C1(Bρ) ≤ C0eν(δ + o(δ)). (6.6.51)

Consequently, with (6.6.45) we deduce

‖ψ0 − T 1
Φ,(−ρ,0)‖C1,α(Bρ) ≤ ‖ψ0 − L‖C1,α(Bρ) + ‖T 1

Φ,(−ρ,0) − L‖C1,α(Bρ)

≤ C0eν(δ + o(δ)),

and similarly

‖ψ0 − T 1
Φ,(ρ,0)‖C1,α(Bρ) ≤ C0eν(δ + o(δ)).

Step 2. We now let f : R→ R be a non-negative smooth function so that

f(t) =

0 for t ≤ −ρ/2,
1 for t ≥ ρ/2,

and we set, for x ∈ Bρ(0),

φ(x) = T 1
Φ,(−ρ,0)(x) + f(x1)(TΦ,(ρ,0)(x)− T 1

Φ,(−ρ,0)(x)).

Such function has range in the plane span{ε1, ε2} and is so that φ(x1, 0) ∈ span{ε1}. Moreover,
since

∂1φ(x) = ∂1T
1
Φ,(−ρ,0)(x) + f ′(x1)(T 1

Φ,(ρ,0)(x)− T 1
Φ,(−ρ,0)(x))

+ f(x1)(∂1T
1
Φ,(ρ,0)(x)− ∂1T

1
Φ,(−ρ,0)(x))

= eλΦ(−ρ,0)ε1 + f ′(x1)(T 1
Φ,(ρ,0)(x)− T 1

Φ,(−ρ,0)(x))
+ f(x1)(eλΦ(ρ,0) − eλΦ(−ρ,0))ε1,

=
(
eλΦ(−ρ,0) + f(x1)(eλΦ(ρ,0) − eλΦ(−ρ,0))

)
ε1

+ f ′(x1)(T 1
Φ,(ρ,0)(x)− T 1

Φ,(−ρ,0)(x))
∂2φ(x) =

(
eλΦ(−ρ,0) + f(x1)(eλΦ(ρ,0) − eλΦ(−ρ,0))

)
ε2,

we have that, if δ > 0 is chosen small enough, it defines an immersion. Indeed, on the one hand
from (6.6.50)-(6.6.51) we can estimate

‖T 1
Φ,(−ρ,0) − T 1

Φ,(ρ,0)‖C0(Bρ) ≤ ‖T
1
Φ,(−ρ,0) − L‖C0(Bρ) + ‖T 1

Φ,(ρ,0) − L‖C0(Bρ)

≤ C0eν(δ + o(δ)),

on the other hand, from (6.6.41) and the mean value theorem we may estimate

|eλΦ(−ρ,0) − eλΦ(ρ,0)| ≤ |λΦ(−ρ, 0)− λΦ(ρ, 0)| sup{eξ : ξ ∈ [λΦ(±ρ, 0), λΦ(∓ρ]}
≤ 2δ sup{eξ : ξ ∈ [ν − δ, ν + δ]}
≤ Cδeν ,
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hence we have the estimates, uniformly in x ∈ Bρ(0),

|∂1φ(x)| ≥ eλΦ(−ρ,0) − Cδeν − C0‖f ′‖L∞((−ρ,ρ))eν(δ + o(δ))
≥ eν

(
e−δ − Cδ − C0‖f ′‖L∞((−ρ,ρ))(δ + o(δ))

)
,

and similarly

|∂2φ(x)| ≥ eν
(
e−δ − Cδ

)
,

and

|〈∂1(x), ∂2φ(x)〉| ≤ e2ν
(
‖f ′‖L∞(−ρ,ρ)C0(δ + o(δ))

)
(eδ + Cδ).

These inequalities imply the immersive nature of φ if δ > 0 is chosen small enough. Note also
that thanks to (6.6.50)–(6.6.51) there holds

|∇2φ(x)| ≤ |f ′′(x1)||T 1
Φ,(ρ,0)(x)− T 1

Φ,(−ρ,0)(x)|+ 2|f ′(x1)||∇T 1
Φ,(ρ,0) −∇T 1

Φ,(−ρ,0)|
≤ C0eν(δ + o(δ)).

Since we may write

ψ0(x)− φ(x) = (1− f(x1))(T 1
Φ,(−ρ,0)(x)− ψ0(x)) + f(x1)(T 1

Φ,(ρ,0)(x)− ψ0(x)),

we deduce thanks to (6.6.46) – (6.6.47) – (6.6.48) – (6.6.49) that

|ψ0(x)− φ(x)| ≤ [∇ψ0]C0,α(Bρ)

(
(1− f(x1))

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
1+α

+ f(x1)
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
1+α )

,

(6.6.52)

|∇ψ0(x)−∇φ(x)| ≤ [∇ψ0]C0,α(Bρ)

(
|f ′(x1)|

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
1+α

+ (1− f(x1))
∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
α

(6.6.53)

+ |f ′(x1)|
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
1+α

+ f(x1)
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
α )

,

|∇2ψ0(x)−∇2φ(x)| ≤ |∇2ψ0(x)|+ C0eν(δ + o(δ)). (6.6.54)

Step 3. In this step we construct a function χ : Bρ(0)→ R, which we will use in a moment,
with the following properties: it is supported in Bρ(0) \ {(−ρ, 0), (ρ, 0)}, it is smooth away from
(−ρ, 0), (ρ, 0) and is so that

χ ≡ 1 in a neighbourhood of (−ρ, ρ)× {0} in Bρ(0) which shrinks at (±ρ, 0),

|∇χ(x)| ∼
∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
−1

as x→ (−ρ, 0), |∇χ(x)| ∼
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
−1

as x→ (ρ, 0),

|∇2χ(x)| ∼
∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
−2

as x→ (−ρ, 0), |∇2χ(x)| ∼
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
−2

as x→ (ρ, 0).

Such function may be constructed as follows. Let k0 : S1 → R be a smooth function so that,
for an angle β to be specified below, it satisfies

k0(θ) =

1 if − β ≤ θ ≤ β,

0 if θ ∈ (−π, π] \ [−β, β].
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We extend it by homogeneity to R2 \ {0}, we choose β = arccos(2/
√

5) and we rescale it of a
factor r = ρ

√
5/4 so to match the construction indicated in figure 6.6.2:

χ0(x) = r k0

(
x

|x|

)
, x ∈ R2 \ {0}.

β
+

−ρ
+
ρ

+
−ρ

2

+
ρ
2

+ ρ
4

+−ρ
4

+ ρ
2

+−ρ
2

r

x1

x2

Figure 6.1: definition of α and r in the construction of χ

Such function will satisfy

|∇χ0(x)| ≤
∣∣∣∣∣χ′0

(
x

|x|

)∣∣∣∣∣
∣∣∣∣∣∇
(
x

|x|

)∣∣∣∣∣ ≤ C

|x|
,

|∇2χ0(x)| ≤
∣∣∣∣∣χ′′0

(
x

|x|

)∣∣∣∣∣
∣∣∣∣∣∇
(
x

|x|

)∣∣∣∣∣
2

+
∣∣∣∣∣χ′0

(
x

|x|

)∣∣∣∣∣
∣∣∣∣∣∇2

(
x

|x|

)∣∣∣∣∣ ≤ C

|x|2
.

We then let f1, f2, f3 : R→ R be a triple of smooth functions so that f1 + f2 + f3 ≡ 1 and

f1(t) =

1 if t ≤ −3ρ/4,
0 if t ≥ −ρ/2,

f2(t) =

1 if − ρ/2 ≤ t ≤ ρ/2
0 if t ≥ 3ρ/4,

f3(t) =

0 if t ≤ 3ρ/4,
1 if t ≥ ρ,

and let η : R2 → R be a smooth function so that

η(x1, x2) =

1 if x2 ∈ [−ρ/4, ρ/4],
0 if x2 ∈ R2 \ [−ρ/2, ρ/2].

The required function χ is then given by

χ(x) = f1(x1)χ0(x+ (ρ, 0)) + f2(x1)η(x) + f3(x1)χ0(x− (ρ, 0)), x ∈ Bρ(0).
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Step 4. We claim that the function ψ in the statement of the lemma is the given by (the
restriction to B+

1 (0) of) the interpolation between ψ and ψ0 through χ, namely

ψ(x) = χ(x)φ(x) + (1− χ(x))ψ0(x), x ∈ Bρ(0).

Indeed, by construction we have that ψ has flat boundary data on ρI according to Definition
6.6.6 and that

ψ = Φ̂, ∇ψ = ∇Φ̂ on ∂Bρ(0).

As the proof of Lemma 6.6.4 shows, to prove all the estimates in the statement, we have to
verify that

‖∇ψ −∇L‖L∞(Bρ) ≤ C0eν(δ + o(δ)), (6.6.55)
‖∇2ψ‖L2(Bρ) ≤ C‖∇2Φ‖L2(B1/4\B1/8) + C0(δ + o(δ))‖∇Φ‖L2(Bρ). (6.6.56)

We may write

ψ(x)− L(x) = ψ(x)− ψ0(x) + ψ0(x)− L(x) = χ(x)(φ(x)− ψ0(x)) + ψ0(x)− L(x).

To see that (6.6.55) holds, note first of all that from the definition of χ we have

∇χ(x) = f ′1(x1)χ0(x+ (ρ, 0))ε1 + f1(x1)∇χ0(x+ (ρ, 0))
+ f ′2(x1)η(x))ε1 + f2(x1)∇η(x)
+ f ′3(x1)χ0(x− (ρ, 0))ε1 + f3(x1)∇χ0(x− (ρ, 0)),

while from the definition of the functions f, f1 and f3 we have for every x1 ∈ [−ρ, ρ] that

f1(x1)f(x1) ≡ 0, f ′1(x1)f(x1) ≡ 0,
f1(x1)(1− f(x1)) ≡ f1(x1), f ′1(x1)(1− f(x1)) ≡ f ′1(x1),

f3(x1)f(x1) ≡ f3(x1), f ′3(x1)f(x1) ≡ f ′3(x1),
f3(x1)(1− f(x1)) ≡ 0, f ′3(x1)(1− f(x1)) ≡ 0,

consequently from (6.6.52) we deduce the estimate

|∇χ(x)(φ(x)− ψ0(x))|

≤ C[∇ψ0]C0,α(Bρ)

(
|f ′1(x1)|

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
1+α

+ f1(x1)
∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
α

+ |f ′2(x1)|
∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
1+α

+ f2(x1)
∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
1+α

+ |f ′2(x1)|
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
1+α

+ f2(x1)
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
1+α

+ |f ′3(x1)|
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
1+α

+ f3(x1)
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
α )

,

which then implies

‖∇χ(φ− ψ0)‖L∞(Bρ) ≤ C[∇ψ0]C0,α(Bρ).
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From estimate (6.6.53) we immediately deduce that

‖χ(∇φ−∇ψ0)‖L∞(Bρ) ≤ C[∇ψ0]C0,α(Bρ),

consequently using (6.6.45) we can estimate

‖∇ψ −∇L‖L∞(Bρ) = ‖∇χ(φ− ψ0)‖L∞(Bρ) + ‖χ(∇φ−∇ψ0)‖L∞(Bρ) + ‖ψ0 − L‖L∞(Bρ)

≤ C[∇ψ0]C0,α(Bρ) + C0eν(δ + o(δ))
≤ C0eν(δ + o(δ)),

which proves (6.6.55). To establish (6.6.56), the argument is similar: from the properties of χ
one deduces the estimates

|∇2χ(x)(φ(x)− ψ0(x))| ≤ C[∇ψ0]C0,α(Bρ)

(
f1(x1)

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
−1+α

+ f3(x1)
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
−1+α )

,

|∇χ(x)(∇φ(x)−∇ψ0(x))| ≤ C[∇ψ0]C0,α(Bρ)

(
f1(x1)

∣∣∣∣∣
(
x1 + ρ
x2

)∣∣∣∣∣
−1+α

+ f3(x1)
∣∣∣∣∣
(
x1 − ρ
x2

)∣∣∣∣∣
−1+α )

,

and, since α > 0, the right-hand sides of these last two inequalities are in L2(Bρ). Consequently
also thanks to (6.6.45) and (6.6.54) we estimate

‖∇2ψ‖L2(Bρ) ≤ ‖∇2χ(φ− ψ0)‖L2(Bρ) + 2‖∇χ(∇φ−∇ψ0)‖L2(Bρ) + ‖χ(∇2φ−∇2ψ0)‖L2(Bρ)

≤ ‖∇2ψ0‖L2(Bρ) + C[∇ψ0]C0,α(Bρ) + C0eν(δ + o(δ))
≤ ‖∇2ψ0‖L2(Bρ) + C0eν(δ + o(δ)),

which then implies, thanks to (6.6.44), the estimate (6.6.56). The rest of the proof now follows
the same lines as in the proof of Lemma 6.6.4.

6.6.3 Morrey–Type Estimates and Conclusion For a conformal map Φ : B1 → Rn which is
a minimizer for the Willmore energy in the class F (B1,Rn,Γ, N0, a) as that in theorem 6.1.2,
there are two possibilities.
The first one is that Φ is a minimal surface, that is

DArea(Φ)w = 0 for all w ∈ C∞c (B1,Rn),

and this implies that Φ satisfies

∆Φi = 0 in D′(B1) for i = 1, . . .m.

The regularity up to the boundary for the first case is classic, and is essentially the one for the
Plateau problem, for which we refer to [DHT10, DHS10].
We now study the second possibility.

Lemma 6.6.8 (Interior Morrey-type Estimates). Let Φ : B1 → Rn be a conformal Lipschitz
W 2,2 immersion which is an interior minimizer for the Willmore energy in F (B1,Rn) at a fixed
area value, that is

W2(Φ) ≤ W2(Ψ)
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for every map Ψ ∈ F (B1,Rn) coinciding with Φ outside some compact subset of B1 and so that
Area(Ψ) = Area(Φ). Assume that Φ is not a minimal surface and set

ζ = ‖DArea(Φ)‖ > 0. (6.6.57)

Then, there exists some r0 > 0 such that

sup
{
r−γ

∫
Br(p)

(|∇2Φ|2g + 1)dσg : p ∈ B1/2, 0 < r < r0

}
≤ C0,

for constants γ > 0 and C0 > 0 depending only on ζ and ‖∇λ‖L(2,∞)(B1).

Proof of Lemma 6.6.8. In what follows, we denote by C a positive constant (possibly varying
line to line) which is independent of Φ, and with C0 a positive constant which depend on
‖∇λ‖L(2,∞)(B1) and ζ.
Step 1: constructing a suitable competitor. Since Φ is not a minimal surface, we may choose

some non-zero w ∈ C∞c (B1,Rn) such that DArea(Φ)w > ζ/2. We let δ, ε0 > 0 to be as in
Lemma 6.6.4 and whose size is specified in what follows. Let r0 > 0 be sufficiently small so that

sup
{∫

B4r0 (p)
|∇2Φ|2g dσg : p ∈ B1/2(0)

}
< ε0.

We now fix arbitrary p ∈ B1/2(0) and 0 < r < r0 and (similarly as done as in the proof of
Lemma 6.6.4) for ε0 sufficently small as in Lemma 6.6.1, we have that

‖λ− (λ)B4r(p)‖L∞(B3r(p)) ≤ C0, (6.6.58)

where (λ)B4r(p) denotes the average of λ over B4r(p). If ε0 is sufficiently small as in Lemma
6.6.3, then there exists a conformal affine immersion L whose conformal factor we denote by eν ,
such that the estimates

‖Φ− L‖W 2,2(Br(p)) < δ‖∇Φ‖L2(B2r(p)),

‖λ− ν‖L∞(Br(p)) < δ, (6.6.59)

are satisfied.
By combining (6.6.58)–(6.6.59), we deduce

‖λ− ν‖L∞(B3r(p)) ≤ ‖λ− (λ)B4r(p)‖L∞(B3r(p)) + |(λ)B4r(p) − ν|
≤ ‖λ− (λ)B4r(p)‖L∞(B3r(p)) + ‖λ− (λ)B4r(p)‖L∞(Br(p)) + ‖λ− ν‖L∞(Br(p))

≤ C0 + δ,

consequently we pointwise estimate from above and below

C−1
0 (1− δ − o(δ))eν ≤ eλ(x) ≤ C0(1 + δ + o(δ))eν for x ∈ B3r(p). (6.6.60)

Hence we consider

Ψ =

ψ in Bρ(p),
Φ in B1 \Bρ(p).
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where ρ ∈ [r/2, r] and ψ are given as in Lemma 6.6.4.
Thanks to (6.6.23), we have that, if δ is chosen sufficiently small, there holds

|DArea(Ψ)w −DArea(Φ)w| = |DArea(ψ)w −DArea((Φ|Bρ(p))w| <
ζ

4 ,

and consequently,

DArea(Ψ)w >
ζ

4 > 0.

We consider the function given by

a(t) = Area(Ψ + tw), t ∈ R.

Let ε > 0 be sufficiently small so that, for every t ∈ [−ε, ε], Ψ + tw defines a Lipschitz W 2,2

immersion. Then a is continuously differentiable in [−ε, ε] with

a′(t) = DArea(Ψ + tw)w = −2
∫
B1
〈HΨ+tw, w〉, dσgΨ+tw, for t ∈ [−ε, ε],

and in particular

a′(0) > ζ

4 > 0.

By the inverse function theorem, we deduce that, after possibly shrinking ε, a defines a C1-
diffeomorphism of [−ε, ε] onto [Area(Ψ)− ε,Area(Ψ) + ε] and

ζ

8 ≤ a′(t) ≤ ζ

2 for t ∈ [−ε, ε].

Thanks to (6.6.23), we have that, if δ is chosen sufficiently small, there holds

|Area(Ψ)− Area(Φ)| = |Area(ψ)− Area((Φ|Bρ(p))| ≤
ε

2 ,

so we may find a unique t ∈ [−ε, ε] so that

Area(Ψ + tw) = Area(Φ).

We then set

Ψ = Ψ(x) + tw(x) for x in B1.

Then Ψ is a Lipschitz W 2,2 immersion, and by construction there holds Area(Ψ) = Area(Φ).
Step 2: comparison of Φ with Ψ. By the minimality of Φ we then have

1
4

∫
B1
|A|2g dσg ≤

1
4

∫
B1
|AΨ|

2
gΨ
dσgΨ

, (6.6.61)

Following a computation analogous to ([MR13, Lemma A.5]), the term on the right-hand-side
can be expanded to

1
4

∫
B1
|AΨ|

2
gΨ
dσgΨ

=W2(Ψ + tw) =W2(Ψ) + tDW2(Ψ)w +RΨ
w(t),
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where RΨ
w(t) is a remainder term satisfying

|RΨ
w(t)| ≤ CΨ,wt

2
,

and, since Φ is a minimiser for the Willmore energy with prescribed area, we may write (we use
the divergence form of the Willmore equation, valid for weak immersions), there holds for some
c ∈ R,

DW2(Ψ)w =
∫
Bρ(p)

〈
∇HΨ + 〈A◦Ψ, HΨ〉]gΨ + 〈AΨ, HΨ〉]gΨ + cHΨ,∇w

〉
gΨ
dσgΨ ,

so that we can simply estimate: |DW2(Ψ)w| ≤ CΦ,w.
By the mean value theorem and the estimates (6.6.22) and (6.6.60) it holds

|t| = |a−1(a(t))− a−1(a(0))|
≤ sup

ξ∈J
|(a−1)′(ξ)||a(t)− a(0)|

≤ 8
ζ
|Area(Ψ + tw)− Area(Ψ)|

≤ C|Area(Φ)− Area(Ψ)|
≤ C(δ + o(δ)) Area(Φ|Bρ(0))
≤ C0(δ + o(δ))e2ν ,

It follows that∫
B1
|AΨ|

2
gΨ
dσΨ ≤

∫
B1
|AΨ|2gΨ

dσgΨ + C0e2ν(δ + o(δ)).

Thanks to (6.6.21), the above estimate and (6.6.61) then imply∫
Bρ(p)

|A|2 dσg ≤ C0

∫
Br(p)\Br/2(p)

|∇2Φ|2g dσg + C0e2ν(δ + o(δ)). (6.6.62)

Step 3: monotonicity of Area. Thanks to (6.6.60), for every 0 < s < r we can estimate

Area(Φ|Bs(p)) =
∫
Bs(p)
|∇Φ|2 dx (6.6.63)

= 2
∫
Bs(p)

e2λ dx ≤ C0e2νs2 ≤ C0e4ν s
2

r2

∫
Br(p)
|∇Φ|2dx.

Step 4: obtaining the Morrey decrease. For any 0 < η < 1/2, thanks to the identity
|∇2Φ|2 = 4e−2λ|∇λ|2 + |A|2 and Lemma 6.6.1, there exists C > 0 independent of p and r so
that ∫

Bηr(p)
(|∇2Φ|2g dσg + 1) dσg ≤

(
η2

2 + Cε0

)∫
Br(p)
|∇2Φ|2g dσg

+
∫
Bηr(p)

|A|2 dσg + Area(Φ|Bηr(p)),
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and so by estimate (6.6.62) we deduce that there holds
∫
Bηr(p)

(|∇2Φ|2g + 1)dσg ≤
(
η2

2 + Cε0

)∫
Br(p)
|∇2Φ|2g dσg

+ C0

∫
B2ηr(p)\Bηr(p)

|∇2Φ|2g dσg

+ C0
(
(δ + o(δ)) + η2r2

)
e2ν .

By using (6.6.60) and (6.6.63) and adding C0
∫
Bηr(p) |∇

2Φ|2g dσg to both hand-sides and dividing
by 1 + C0 yields

∫
Bηr(p)

(|∇2Φ|2g + 1)dσg ≤
(
η2/2 + Cε0 + C0

C0 + 1

)∫
Br(p)
|∇2Φ|2g dσg

+
(
C0(δ + o(δ) + η2)

C0 + 1

)
Area(Φ|Br(p)).

If η and δ are chosen sufficiently small so that

β := max
{
η2/2 + Cε0 + C0

C0 + 1 ,
C0(δ + o(δ) + η2)

C0 + 1

}
< 1,

we deduce that∫
Bηr(p)

(|∇2Φ|2g + 1) dσg ≤ β
∫
Br(p)

(|∇2Φ|2g + 1) dσg

for any p ∈ B1/2(0) and any 0 < r < r0 where 0 < β < 1 does not depend on r or p. This
inequality can be now iterated and interpolated to yield∫

Br(p)
(|∇2Φ|2g + 1) dσg ≤ rlog1/η(1/β) 1

r
log1/η(1/β)
0

∫
Br0 (p)

(|∇2Φ|2g + 1) dσg

for any r < ηr0, where β and η depend only on ζ and ‖∇λΦ‖L(2,∞)(B1). After relabelling r0, and
setting γ := log1/η(1/β) we can concludes of the proof of the lemma.

For boundary points, we have the following. Recall that we write ∂B+
1 = I + S, where I is

the base diameter and S is the upper semi-circle, and when we say that a Lipschitz immersion
“has geometric boundary data of class C1,1” if its boundary curve and boundary Gauss map are
C1,1 up to re-parametrization and not in a point-wise sense, see definition 6.1.5–(ii).

Lemma 6.6.9 (Boundary Morrey–type Estimates). Let Φ : B1
+ → Rn be a conformal Lipschitz

W2, 2 immersion so that

W2(Φ) ≤ W2(Ψ)

for every map Ψ ∈ F (B+
1 ,Rn) that coincides with Φ outside some subset K of B+

1 with
dist(K,S) > 0 and having the same geometric boundary data of Ψ in I, that is

Ψ(I) = Φ(I) and NΨ(I) = N(I),
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and the same area, that is Area(Φ) = Area(Φ). Assume that the boundary geometric data of Φ
on I are of class C1,1 and that Φ is not a minimal surface. Let ζ > 0 be as in (6.6.57). Then,
there exist some 0 < r < r0 < 1 so that

sup
{
r−γ

∫
B+
r (p)
|∇2Φ|2g dσg : p ∈ r0I, 0 < r < r

}
< +∞,

for some constant γ > 0.

Remark 6.6.10 Two elementary facts that will be used in the proof of lemma 6.6.9 are the
following:

(i) If e = (e1, e2) denotes the coordinate frame of the map Φ, then we have

e(x) = (t, ?(t ∧N0)(σ(x1)), x1 ' (x1, 0) ∈ I,

where t denotes the tangent vector of the boundary curve and σΦ is some homeomorphism
with σ′(x1) = eλ(x1,0). In particular, since the boundary data are assumed of class C1,1, we
see that for i = 1, 2 we can estimate, for every 1 < p <∞,

‖∂τei‖Lp(I) ≤ C0‖eλ(·,0)‖Lp(I),

where C0 depends only on the geometric boundary data. Furthermore, for every 1 < p <∞,
if we set Φr(x) = Φ(rx), x ∈ B+

1 one can compute that ‖eλΦr (·,0)‖Lp(I) = r
p−1
p ‖eλ(·,0)‖Lp(rI)

and thus deduce that the Lp-norm of eλ(·,0) is decreasing with respect to rescaling in the
domain, for 0 < r < 1.

(ii) For a generic immersion of an open domain Ω ⊂ Rn, X : Ω→ Rn and a diffeomorphism
f : Rn → Rn, denoting for brevity denoting ϑ = O(‖∇f − 1m×m‖L∞(Rn)) and η =
O(‖∇2f‖L∞(Rn)), we can deduce the point-wise estimates

(1− ϑ) gX ≤ gf◦X ≤ (1 + ϑ)gX ,
(1− ϑ)dσgX ≤ dσgf◦X ≤ (1 + ϑ)dσgX ,

|∇2(f ◦X)|2gf◦X ≤ (1 + ϑ)(η + ϑ|∇2X|2gX ) ≤ C0(1 + |∇2X|2gX ),

where C0 is a constant depending only on f .

Proof of Lemma 6.6.9. In what follows, we denote by C a positive constant (possibly varying
line to line) which is independent of Φ, and with C0 a positive constant dependeding only on
‖∇λ‖L(2,∞)(B1), and on the geometric boundary data at I of Φ.
Step 1: preliminaries and reductions. We fix p > 1 and a suitably small ε0 that will be

specified below. Since the boundary data of Φ along I are of class C1,1, we may find some
0 < r0 < 1 and a C1,1-homeomorphism f : Rn → Rn (that is, f and its inverse belong to
C1,1(Rn,Rn)), so that (f ◦ Φ)|B+

r0
has flat boundary data along r0I as in the sense of Definition

6.6.6. Up to further reducing r0, we also assume that∫
B+
r0

(|∇2Φ|2gΦ
+ 1) dσg + ‖eλ‖Lp(r0I) < ε0. (6.6.64)

Note that, since the Lagrangian Φ 7→
∫

(1 + |∇2Φ2|2g) dσg is invariant with respect to re-
parametrizations and the conformal factor is decreasing with respect to rescalings (see Remark
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6.6.10–(i)), (6.6.64) implies in particular that, having set for brevity Φr0(x) = Φ(r0x), there
holds

sup
{∫

B+
4r(x)

(|∇2Φr0 |2gΦr0
+ 1) dσgΦr0

+ ‖eλΦr0 ‖Lp(x+rI) : x ∈ 1
2I, 0 < r ≤ 1

16

}
< ε0.

We will work from now on, omitting the subscript, with Φr0(x) = Φ(r0x) in place of Φ. Also,
since Φ is not a minimal surface, there exists some w ∈ C∞c (B+

1 ,Rn) so that

DArea(Φ)w ≥ ζ/2 > 0. (6.6.65)

Finally, thanks to Lemma 6.1.6 there exist some bi-Lipschitz homeomorphism φ : B+
1 → B+

1 so
that f ◦ Φ ◦ φ is conformal moreover up to further composing with a conformal self-map of B+

1
we may suppose that φ(±1) = ±1 and φ(0) = 0, hence that the geometric boundary data on I
are sent (globally) onto themselves: f(Φ(I)) = f(Φ(φ(I))).
Step 2. For simplicity of notation we will prove the Morrey-type decay at x = 0; the one for

other points in (1/2)I is analogous. Since φ is bi-Lipschitz, we may find a sufficiently big P ∈ N
and a sufficiently big M = M(P ) so that, for every 0 < r < 1, we have

B+
r/2M ⊂ φ(Br/2P ) ⊂ B+

r . (6.6.66)

Let 0 < r ≤ 1/16 be fixed. For a sufficiently small ε0, thanks to Lemma 6.6.7 we may find a
ρ ∈ [r/2P+1, r/2P ] and an immersion ψ ∈ C1,α(B+

ρ ,Rn) which satisfies

ψ = f ◦ Φ ◦ φ on ∂Bρ ∩B+
1 ,

∇ψ = ∇(f ◦ Φ ◦ φ) on ∂Bρ ∩B+
1 ,

has flat boundary data on ρI and satisfies the estimates (6.6.36), (6.6.37) and (6.6.38) with
r/2P in place of r and f ◦ Φ ◦ φ in place of Φ, and in particular∫

B+
r/2P+1

|∇2ψ|2gψ dσgψ ≤ C0

∫
B+
r/2P

\B
r/2P+1

|∇2(f ◦ Φ ◦ φ)|2dσgf◦Φ◦φ (6.6.67)

+ C0

∫
B+
r/2P

dσgf◦Φ◦φ .

Hence we set

Ψ =

f−1 ◦ ψ ◦ φ−1 in φ(B+
ρ ),

Φ in B+
1 \ φ(B+

ρ )

From (6.6.37) and (6.6.38) we deduce

|Area(Φ|φ(B+
ρ ))− Area(f−1 ◦ ψ ◦ φ−1)| ≤ C0(δ + o(δ)) Area(Φ|φ(B+

ρ )),
‖DArea(Φ|φ(B+

ρ ))−DArea(f−1 ◦ ψ ◦ φ−1)‖ ≤ C0(δ + o(δ)) Area(Φ|φ(B+
r/2N

)),

where C0 > 0 depends on ‖∇λ‖L2∞(B+
1 ) and on f . Thanks to (6.6.65), we have that, if δ (and

accordingly ε0) is chosen sufficiently small, there holds

|DArea(Φ|φ(B+
ρ ))w −DArea(f−1 ◦ ψ ◦ φ−1)w| < ζ

4 ,
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and consequently, DArea(Ψ)w > ζ/4. We then consider the function given by

a(t) = Area(Ψ + tw), t ∈ R.

Let ε > 0 be sufficiently small so that, for every t ∈ [−ε, ε], Ψ + tw defines a Lipschitz W 2,2

immersion. Then a is continuously differentiable in [−ε, ε] with

a′(t) = DArea(Ψ + tw)w = −2
∫
B+

1

〈HΨ+tw, w〉, dσgΨ+tw , for t ∈ [−ε, ε],

and in particular a′(0) > ζ/4 > 0. By the inverse function theorem, we deduce that, after
possibly shrinking ε, a defines a C1-diffeomorphism of [−ε, ε] onto [Area(Ψ)− ε,Area(Ψ) + ε]
and

ζ

8 ≤ a′(t) ≤ ζ

2 for t ∈ [−ε, ε].

By choosing δ sufficiently small we may suppose that

|Area(Φ)− Area(Ψ)| = |Area(Φ|φ(B+
ρ (p)))− Area(f−1 ◦ ψ ◦ φ−1)| ≤ ε

2 ,

so we may find a unique t ∈ [−ε, ε] so that Area(Ψ + tw) = Area(Φ). We then set

Ψ = Ψ(x) + tw(x) for x in B+
1 .

Then Ψ is a Lipschitz W 2,2 immersion , and by construction there holds Area(Ψ) = Area(Φ).
Similarly as done in the proof of Lemma 6.6.8, following a computation analogous to ([MR13,
Lemma A.5]), the Willmore energy of Ψ can be expanded with respect to t as

1
4

∫
B+

1

|AΨ|
2
gΨ
dσgΨ

=W2(Ψ + tw) =W2(Ψ) + tDW2(Ψ)w +RΨ
w(t),

with |DE(Ψ)w| ≤ CΦ,w and RΨ
w(t) satisfies |RΨ

w(t)| ≤ CΨ,wt
2
. By the mean value theorem, we

have the estimate

|t| = |a−1(a(t))− a−1(a(0))|
≤ sup

ξ∈J
|(a−1)′(ξ)||a(t)− a(0)|

≤ 8
ζ
|Area(Ψ)− Area(Ψ)|

= 8
ζ
|Area(Φ)− Area(Ψ)|

≤ C0(δ + o(δ)) Area(Φ|φ(B+
ρ )),

where C0 depends on ‖∇λ‖L2∞(B+
1 ), on f and on ζ and this yields the estimate∫

B1
|AΨ|

2
gΨ
dσgΨ

≤
∫
B1
|AΨ|2gΨ

dσgΨ + C0(δ + o(δ)) Area(Φ|φ(B+
ρ )).

We write∫
φ(B

r/2P+1 )
|∇2Φ|2g dσg =

∫
φ(B

r/2P+1 )
|A|2 dσg + 4

∫
φ(B+

r/2P+1 )
|∇λ|2 dx.
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We have, on the one hand, thanks to Lemma 6.6.2 and the choice of P , the estimate∫
φ(B+

r/2P+1 )
|∇λ|2 dx ≤

∫
B+
r/2

|∇λ|2 dx (6.6.68)

≤ 1
8

∫
B+
r (0)
|∇2Φ|2g dσg + C0ε0

(∫
B+
r (0)
|∇2Φ|2g dσg + C0‖eλ‖Lp(rI)

)
,

where C0 depends only on ζ and N0; on the other hand, the comparison of Φ with Ψ yields (we
use the pointwise a.e. estimates in remark 6.6.10–(ii))

∫
φ(B+

r/2P+1 )
|AΦ|2gΦ

dσg

≤
∫
φ(B+

r/2P+1 )
|Af−1◦ψ◦φ|2gf−1◦ψ◦φ

dσgf−1◦ψ◦φ

=
∫
B+
r/2P+1

|Af−1◦ψ|2gf−1◦ψ
dσgf−1◦ψ

≤
∫
B+
r/2P+1

|∇2(f−1 ◦ ψ)|2gf−1◦ψ
dσgf−1◦ψ

≤ C0

∫
B+
r/2P+1

(1 + |∇2ψ|2gψ) dσgψ (by (6.6.67))

≤ C0

∫
B+
r/2P+1

dσgψ

+ C0

∫
B+
r/2P

\B+
r/2P+1

|∇2(f ◦Ψ ◦ φ)|2gf◦Ψ◦φ dσgψ + C0

∫
B+
r/2P

dσgf◦Ψ◦φ

≤ C0

∫
φ(B+

r/2P
)
dσg + C0

∫
φ(B+

r/2P
\B+

r/2P+1 )
|∇2Φ|2gΦ

dσg,

and so all in all,∫
φ(B+

r/2P+1 )
|A|2 dσg ≤ C0

∫
φ(B+

r/2P
)
dσg + C0

∫
φ(B+

r/2P
\B+

r/2P+1 )
|∇2Φ|2g dσg (6.6.69)

By combining (6.6.68) and (6.6.69) we deduce that∫
φ(B+

r/2P+1 )
|∇2Φ|2g dσg ≤ C0

∫
φ(B+

r/2P
)
dσg + C0

∫
φ(B+

r/2P
\B+

r/2P+1 )
|∇2Φ|2g dσg

+ 1
2

∫
B+
r

|∇2Φ|2g dσg + C0ε0

(∫
B+
r

|∇2Φ|2g dσg + C0‖eλ‖Lp(rI)

)

and so adding C0
∫
φ(B+

r/2P+1 ) |∇2Φ|2g dσg to both hand–sides

∫
φ(B+

r/2P+1 )
|∇2Φ|2g dσg ≤

(
1/2 + C0ε0 + C0

C0 + 1

)∫
B+
r

|∇2Φ|2g dσg

+ C0

∫
B+
r

dσg + C0‖eλ‖Lp(rI).
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Choosing ε0 sufficiently small so that C0ε0 ≤ 1/4, with (6.6.66) and the above inequality we
deduce that, for every 0 < r < 1/4 there holds∫

B+
r/2M+1

|∇2Φ|2g dσg ≤ β
∫
B+
r

|∇2Φ|2g dσg + C0‖eλ‖L∞(B+
1 )r,

where 0 < β < 1 depends only on C0. As in the proof of lemma 6.6.8, this equality can now be
iterated and interpolated to yield the existence of some γ > 0 so that

sup
r<r<r

{
r−γ

∫
B+
r

|∇2Φ|2g dσg
}
< +∞,

for some suitably small r < 1/16. After going back to the original scale, this yields to the
conclusion of the proof of the lemma.

The last ingredient we are going to use concerns the vanishing of first residues for minimizers.
If Φ is any conformal map in F (B1,Rn,Γ, N0, a), which is Willmore outside its branch points
a1, . . . , a` ∈ B1 then it satisfies the Willmore equation in divergence form, plus a Lagrange
multiplier term for the area constraint, in the sense of distributions, away from such points.
Being however H = e−2λ∆Φ/2 in L2(B1), at each ai the distributional equation can gain, at
most, a contribution consisting in a Dirac mass. In other words:

div
(
∇H + 〈A◦, H〉]g + 〈A,H〉]g + c∇Φ

)
=
∑̀
i=1

αiδai , in D′(B1,Rn),

for some α1, . . . α` ∈ Rn and c ∈ R. Each αi is called first residue of Φ at ai, and needs not to
vanish, in general. For minimizers however a simple implicit function theorem argument reveals
that this is true.

Note that the vanishing of the first residues means Φ satisfies W(Φ + tϕ) =W(Φ) + o(t) for
every ϕ ∈ C∞c (B1,Rn), that is, Φ is a“true”, possibly branched, Willmore immersion, (using a
terminology from [Riv21, RM]).

Lemma 6.6.11 (Vanishing of the first residue for area-constrained minimisers). Let Φ ∈
F (B1,Rn,Γ, N0, a) be a conformal immersion, possibly branched at 0, which minimises the
Willmore energy in this class. Then Φ satisfies the Willmore equation

div
(
∇H + 〈A◦, H〉]g + 〈A,H〉]g + c∇Φ

)
= 0 in D′(B1,Rn),

which is to say, the first residue at 0 vanishes.

Proof. We may assume that Φ is not a minimal surface (otherwise there is nothing to prove),
and in particular that there exists some γ > 0 and some v ∈ C∞c (B1,Rn) so that

DArea(Φ)v > γ/2 > 0, and 0 /∈ supp v.

We denote by α the first residue of Φ at 0. Let also w ∈ C∞c (B1,Rn) and ε > 0 be so that

w(x) =

α in Bε,

0 in B1 \B2ε,
and suppw ∩ supp v = ∅.
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We then define:

Φt,u(x) := Φ(x) + tw(x) + uv(x) x ∈ B1,

where t ∈ [−t0, t0] and u ∈ [−u0, u0] are parameters whose range will be specified below. We
note first of all that

NΦt,u ≡ N in Bε,

∇Φt,u ≡ ∇Φ in Bε,

AΦt,u ≡ A in Bε,

HΦt,u ≡ H in Bε,

consequently, Φt,u and in particular, if t0, u0 are sufficiently small Φt,u defines an element of
F (B1,Rn), possibly branched only at 0. Let us now consider the function

a(t, u) = Area(Φt,u) (t, u) ∈ [−t0, t0]× [−u0, u0].

Then a is of class C1 (it has continuous first derivatives) and

∂a

∂u
(0, 0) = DArea(Φ)v 6= 0,

so by the Implicit Function Theorem, possibly reducing t0 there will be some C1-diffemorphism
ϕ : [−t0, t0]→ R with φ(0) = 0 so that

a(t, ϕ(t)) ≡ a(0, 0) = Area(Φ) t ∈ [−t0, t0].

As usual, differentiating in 0 this equation yields

0 = ∂a(0, 0) + ∂ua(0, 0)ϕ′(0) = DArea(Φ)w + (DArea(Φ)v)ϕ′(0).

For every such value of t, the immersion Φt,ϕ(t) has the same area as Φ and is then a suitable
competitor for Φ:

W2(Φ) ≤ W2(Φt,ϕ(t)).

Now, we see that we may write∫
B1
|AΦt,ϕ(t) |

2 dσgΦt,ϕ(t)
=
∫
Bε
|A|2 dσg (since AΦt,u ≡ A)

+
∫
B2ε\Bε

|AΦt,0|2 dσgΦt,0
(since supp v ∩B2ε = ∅)

+
∫

supp v
|AΦ0,ϕ(t) |

2 dσgΦ0,ϕ(t)
(since supp v ∩ suppw = ∅)

+
∫
B1\(B2ε∪supp v)

|A|2 dσg.

Let us analyse the terms on the right-hand-side in detail. If we expand the second term in t, we
get as t→ 0,∫

B2ε\Bε
|AΦt,0|2 dσgΦt,0

=
∫
B2ε\Bε

|A|2 dσg +
(
∂

∂t

∫
B2ε\Bε

|AΦt,0|2 dσgΦt,0

∣∣∣∣∣
t=0

)
t+ o(t),
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but, by construction, it is

∂

∂t

∫
B2ε(0)\Bε

|AΦt,0|2 dσgΦt,0

∣∣∣∣∣
t=0

= −|α|2 − cDArea(Φ)w,

so that we deduce that as t→ 0,∫
B2ε\Bε

|AΦt,0|2 dσgΦt,0
=
∫
B2ε\Bε

|A|2 dσg −
(
|α|2 + cDArea(Φ)w

)
t+ o(t).

If we expand the third term (using the mean value theorem: φ(t) = ϕ′(ξ)t for some ξ ∈ (0, t))
we get as t→ 0∫

supp v
|AΦ0,ϕ(t) |

2 dσgΦ0,ϕ(t)

=
∫

supp v
|A|2 dσg +

(
∂

∂u

∫
supp v

|AΦ0,u |2 dσgΦ0,u

∣∣∣∣∣
u=φ(0)=0

)
ϕ(t) + o(ϕ(t))

=
∫

supp v
|A|2 dσg +

(
∂

∂u

∫
supp v

|AΦ0,u |2 dσgΦ0,u

∣∣∣∣∣
u=φ(0)=0

)
ϕ′(ξ)t+ o(t),

but
∂

∂u

∫
supp v

|AΦ0,u |2 dσgΦ0,u

∣∣∣∣∣
u=0

=
∫

supp v
〈∇H + 〈A◦, H〉]g + 〈A,H〉]gs,∇v〉 dx

= −c
∫

supp v
〈∇Φ,∇v〉 dx

= −cDArea(Φ)v,

so we deduce that at t→ 0∫
supp v

|AΦ0,ϕ(t) |
2 dσgΦ0,ϕ(t)

=
∫

supp v
|A|2 dσg − cDArea(Φ)v φ′(ξ)t+ o(t).

All in all, we have that, as t→ 0,

W2(Φt,ϕ(t) =W2(Φ) + t

4

(
− |α|2 − c(DArea(Φ)w + ϕ′(ξ)DArea(Φ)v)

)
+ o(t)

From the minimality of Φ: W2(Φ) ≤ W2(Φt,ϕ(t)), we then deduce:

0 ≤ t

(
− |α|2 − c(DArea(Φ)w + ϕ′(ξ)DArea(Φ)v)

)
+ o(t)

so, dividing by t and letting t→ 0+ (hence also ξ → 0),

0 ≤ −|α|2 − c (DArea(Φ)w + ϕ′(0)DArea(Φ)v)︸ ︷︷ ︸
=0

= −|α|2,

and this necessarily implies α = 0.
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Proof of Theorem 6.1.3. Let Φ be a conformal map which is a minimizer Willmore energy
in F (B1,Rn,Γ, N0, a), and let a1, . . . , a` be its branch points (recall that none of them lays on
the boundary). For every sufficiently small δ > 0, the conformal factor of Φ, eλ = |∇Φ|2/

√
2 is

then uniformly bounded from above and below in B1 \ ∪`i=1Bδ(ai), and consequently, covering
B1 \ ∪`i=1Bδ(ai) with finitely many balls, thanks to Lemma 6.6.8 and Lemma 6.6.9, we deduce
that its Hessian ∇2Φ belongs to the Morrey space L2,a(B1 \ ∪`i=1Bδ(ai)) for some a > 0 (see
e.g. [Gia83, GM12]), and consequently, by Morrey’s Dirichlet growth theorem ([Mor66], see also
[GM12, Theorem 5.7]) that Φ ∈ C1,a/2(B1 \ ∪`i=1Bδ(ai)).
Thanks to Lemma 6.6.11, Φ satisfies the Euler-Lagrange equation for the Poisson problem

(i.e. the Willmore equation in divergence form plus a Lagrange multiplier term for the area
constraint), through the branch points, i.e. each of the first residues vanishes. From the analysis
of singularities for Willmore surfaces [Riv08, BR13, KS04, KS07], this implies that Φ is of class
C1,α for every 0 < α < 1 through the branch points.
We have thus proved that Φ is of class C1,α-up to the boundary, for some 0 < α < 1 (and

accordingly the Gauss map N extends to a map of class C0,α-up to the boundary) and this
concludes the proof of the theorem.
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