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Abstract

This work investigates regularity properties of three different mathematical objects by
establishing blow-up rates for them.

In the first chapter we study calibrated 2-cycles on a Riemannian manifold and show
existence and uniqueness of tangent cones for them. Tangent cones are obtained by con-
sidering radial dilations around a point, called “blow-up”, and existence of a limit for these
dilations is derived from a monotonicity formula. The main part of this chapter is then
devoted to proving that these tangent cones are independent of the subsequence chosen
and a blow-up rate for the radial dilations will yield this result. The key step in obtaining
such a blow-up rate is to observe that such currents are locally essentially J-holomorphic
and thus can be pushed forward by the canonical projection π : Cm \ {0} −→ CPm−1 to
yield a calibrated 2-current in CPm−1. A general result for such currents on CPm−1 then
allows us integrate by parts which reduces the situation to the boundary of the intersection
of the current with a suitable small ball. Since this is a 1-dimensional cycle we can prove a
Poincaré type inequality on it which enables us to estimate the mass of the dilated current.
From a suitable choice of radii a blow-up rate is then deduced using an iteration argument.

In the second chapter we apply a similar technique to J-holomorphic maps between almost
Kähler manifolds and obtain regularity results for them. First a monotonicity formula
is used to prove an ε-regularity result giving an estimate on the size of the singular set.
Then a slicing argument using the map π above together with the co-area formula yields
a blow-up rate for radial dilations around each point. From this uniqueness of tangent
maps is deduced.

The third chapter is devoted to proving regularity results for polyharmonic maps in
higher dimensions. We derive their Euler-Lagrange equation and use a sharp Gagliardo-
Nirenberg interpolation inequality proved in the appendix to show regularity of such maps
under certain integrability conditions avoiding the use of moving frames. In view of the
monotonicity formulae for stationary harmonic and biharmonic maps we infer partial re-
gularity in these cases. The same technique is also applied to more general k-th order
elliptic systems with critical growth.





Zusammenfassung

Diese Arbeit untersucht Regularitätseigenschaften dreier verschiedener mathematischer
Objekte mittels Konvergenzraten für geeignete Skalierungen.

Das erste Kapitel behandelt kalibrierte 2-Zykeln auf Riemannschen Mannigfaltigkeiten,
wofür Existenz und Eindeutigkeit des Tangentialkegels gezeigt werden. Wird der Zykel
radial um einen fixierten Punkt gestreckt, folgt die Existenz eines Grenzwerts für eine Teil-
folge von Radien aus einer Monotonieformel und jeder solche Grenzwert wird als Tangen-
tialkegel bezeichnet. Allerdings ist a priori nicht klar, ob dieser Grenzwert von der Wahl
der Teilfolge abhängt, weshalb der Hauptteil des Kapitels der Beantwortung dieser Frage
gewidmet ist. Der wichtigste Schritt besteht darin, zu zeigen, dass solch ein Zykel beinahe
J-holomorph ist, und daher mittels der kanonischen Projektion π : Cm \ {0} −→ CPm−1

auf einen kalibrierten 2-Zykel auf CPm−1 abgebildet werden kann. Danach wird ein all-
gemeines Resultat für 2-Zykeln auf CPm−1 verwendet, um eine partielle Integration zu
rechtfertigen, welche dann wiederum erlaubt, das Problem auf den Rand des Schnitts des
ursprünglichen Zykels mit einem kleinen Ball zu reduzieren. Da dieser Schnitt selbst einen
1-dimensionalen Zykel darstellt, können wir darauf eine Poincaré Ungleichung zeigen,
welche wiederum eine Abschätzung für die Masse des skalierten Zykels liefert. Eine
geeignete Wahl von Radien erlaubt es dann eine Konvergenzrate gegen die Dichte des
Stromes am fixierten Punkt zu finden, woraus wiederum die Eindeutigkeit des Grenz-
werts folgt.

Im zweiten Kapitel wenden wir ähnliche Techniken auf Regularitätsfragen für J-holomor-
phe Abbildungen zwischen beinahe Kählermannigfaltigkeiten an. Zunächst wird dafür
eine Monotonieformel bewiesen, welche die Herleitung von partieller Regularität erlaubt,
woraus eine Abschätzung für die Dimension der Singularitätenmenge folgt. Desweiteren
wird, mittels Schnitten durch die bereits oben erwähnte Abbildung π, eine Konvergen-
zrate der Energie der skalierten Abbildung um jeden Punkt bewiesen. Jene führt dann
zur Existenz einer eindeutigen Tangentialabbildung an jedem Punkt.

Im dritten und letzten Kapitel werden Regularitätsresultate für polyharmonische Ab-
bildungen in höheren Dimensionen bewiesen. Ausgehend von deren Euler-Lagrange Glei-
chung wird eine Interpolationsungleichung aus Appendix A verwendet, wodurch der Be-
weis im Wesentlichen mit elementaren Methoden geführt werden kann. Angesichts der
Monotonieformeln für stationär harmonische und biharmonische Abbildungen, folgt in
diesen Fällen sogar partielle Regularität. Ähnliche Techniken werden danach auch auf
allgemeine elliptische Systeme mit kritischem Wachstum angewandt.
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Chapter 1

Calibrated 2-currents

Abstract

In this chapter we prove uniqueness of tangent cones for calibrated 2-currents. First cali-
brated 2-currents are introduced and an overview of previous results is given. Next we prove
a monotonicity formula and derive first properties from it. The main theorem is obtained
from a projection argument allowing us to deduce a rate of convergence from which unique-
ness of tangent cones immediately follows. Finally, we give an outlook for future research
directions and possible extensions of our techniques.

1.1 Introduction

We begin this chapter by introducing the notion of a calibration on a Riemannian mani-
fold. Although all our arguments later on will be local and hence can be carried out in
Euclidean space, the main motivation for studying calibrations comes from their relevance
in applications in differential geometry, whence the more general setting on manifolds is
used.
Let M be a smooth compact oriented m-dimensional manifold without boundary and let
Ωk(M) denote the smooth k-forms on M . Let g be a smooth Riemannian metric on M
and denote the resulting volume form on M by volM . Given a smooth k-form ω on M we
call ω a calibration if it satisfies

ω|τ ≤ volM |τ
for all k-dimensional subspaces τ ⊂ TpM and all p ∈ M . A smooth k-dimensional
submanifold N is then called calibrated by ω if its volume form agrees with ω at all
points, i.e.

ω|N = volN .

Under the extra assumption on ω to be closed, calibrated submanifolds have the important
property of being homologically volume minimising. To see this, simply let N ′ be a
manifold in the same homology class as N and compute

vol (N) =

∫
N

ω|N =

∫
N ′
ω|N +

∫
N−N ′

ω|N =

∫
N ′
ω|N +

∫
S

dω ≤
∫
N ′

volN ′ = vol (N ′) .
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Historically, calibrations were introduced by R. Harvey and B. Lawson in [38] where they
also gave the following important examples from differential geometry.

Let (M2m, J, ω) be a Kähler manifold where ω is the closed Kähler form compatible with
the complex structure J (this means that ω(·, J ·) is a Riemannian metric on M). Then
the 2k-form given by 1

k!
ωk is a calibration and any complex submanifold of M is calibrated

by it. In fact, it suffices to have an almost Kähler manifold structure on M , i.e. one where
the almost complex structure J need not be integrable. As an interesting extension of
this scenario, in case of the complex projective space CPn with its standard Kähler form
ωCPn , the smooth parts of (complex) k-dimensional algebraic subvarieties can be seen as
2k-dimensional submanifolds calibrated by 1

k!
ωkCPn . The fact that algebraic subvarieties

are homologically area-minimising had already been observed by H. Federer [24], well be-
fore the notion of a calibration was introduced. They serve as a first example to show
that calibrations are of interest even for less regular objects than smooth submanifolds.

On a general closed almost complex manifold (M2m, J) one can define a k−k-submanifold
by requiring N2k to satisfy Jx(TxN) = TxN for any x ∈ N , i.e. to have almost complex
tangent spaces at all points. Notice that the case of 1 − 1-submanifolds is particularly
interesting, since they arise as perturbations of J0-holomorphic graphs and are generic
from the existence point of view — see the introduction of [71] by T. Rivière and G. Tian.
If we can find a closed form which is compatible with J , then we are back in the almost
Kähler case above and 1 − 1-submanifolds are homologically mass-minimising. It turns
out that locally one can indeed find a 2-form ω which is compatible with J , but in general
this ω will not be closed. In real dimensions at most 4, locally the form ω can in fact be
constructed to be closed — see the appendix of [70] by T. Rivière and G. Tian. For higher
dimensions R. Bryant [17] constructed an almost complex structure on S6 which does
not admit any compatible ω even locally. Hence in such a case 1 − 1-submanifolds are
still calibrated by a smooth 2-form ω but no longer area-minimising. However, naturally
1 − 1-submanifolds are of geometric interest even in the absence of a symplectic form
which is one of the reasons why later on we will not assume the calibration to be closed.

Another important example of a calibration is connected to Special Lagrangian subman-
ifolds in Almost Calabi-Yau k-folds. An Almost Calabi-Yau k-fold is a 2k-dimensional
Kähler manifold (M2k, J, ω) for which there exists a non-vanishing (k, 0)-form Ω (similar
to the holomorphic volume form on Calabi-Yau k-folds) satisfying

ωk

k!
= (−1)

k(k−1)
2

(
i

2

)k
Ω ∧ Ω̄ .

Then there exists a metric g̃ on M such that a real k-dimensional submanifold N is called
Special Lagrangian if it is calibrated by Re Ω — the real part of Ω. As a special case one
can consider Special Lagrangian cones C in Ck which are calibrated by Re(dz1∧ . . .∧dzk)
and of the form C = 0 ×× T (see the book [25] by H. Federer for the notation), where T
is a Special Legendrian k− 1-submanifold in the sphere S2k−1. These k− 1-submanifolds
are in turn calibrated by Re (

∑
dz1 ∧ · · · ∧ zidzi+1 ∧ dzi−1 ∧ · · · ∧ dzk) and it is important

to note that again this calibration is not a closed form.
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Given a calibration on a manifold it is not at all clear whether corresponding calibrated
submanifolds exist. In the situation of Special Lagrangians mentioned above a lot of effort
is put into constructing actual examples of such submanifolds – see the lecture notes by
D. Joyce [46] for an overview. One natural approach to resolve this issue, is to relax
the notion of submanifolds and to prove existence results for less regular objects which
have suitable compactness properties. This extension of smooth submanifolds leads to
the notion of k-dimensional current described below.
For this we let M again be a smooth compact oriented m-dimensional manifold without
boundary and let Ωk

0(M) denote the smooth compactly supported k-forms on M . For a
smooth Riemannian metric g on M we define the comass of a k-form ω to be

‖ω‖∗ := sup
x∈M

sup
e1,...,ek∈SxM

|〈ω, e1 ∧ . . . ∧ ek〉| ,

where SxM means the unit sphere in TxM with respect to gx. Given a smooth oriented
k-dimensional submanifold of M we can integrate k-forms over it and hence view this
submanifold as a linear functional on Ωk

0(M). This feature will be used to extend the
notion of ‘k-dimensional submanifold’ to objects which are no longer necessarily smooth.
A k-dimensional current C in M is therefore given as a distribution on Ωk

0(M), i.e. as
a linear functional on Ωk

0(M). The boundary of such a k-current is the (k − 1)-current
defined by ∂C(ω) := C(dω), where ω ∈ Ωk−1

0 (M) and we say that a k-current C is a
k-cycle if ∂C = 0. Using Stokes’ theorem one can see that this notion of boundary indeed
coincides with the usual one for smooth k-dimensional submanifolds.
The comass of k-forms allows us to extend the notion of volume of a submanifold by
defining the mass M(C) of a k-current C as

M(C) := sup
ω∈Ωk0(M),‖ω‖∗≤1

|〈C, ω〉| .

A k-cycle C is called a normal cycle if C satisfies M(C) < +∞. More generally, a normal
k-current is one where both M(C) and M(∂C) are finite.
We call a current an integer multiplicity rectifiable k-current, if C is a normal k-current
and there are k-Hausdorff measurable subsetsNj of oriented k-dimensional C1-submanifolds
Nj with Ni ∩Nj = ∅, i 6= j, and a multiplicity Θ :

⋃∞
j=1Nj → Z such that

〈C,ψ〉 =
∞∑
j=1

∫
ψΘ dHk Nj .

We abbreviate integer multiplicity rectifiable k-cycles by calling them integral k-cycles
and, more generally, integral currents are currents for which both C and ∂C are integer
multiplicity rectifiable currents. As integral currents consist of countably many pieces
of C1-submanifolds they have regularity properties in between smooth submanifolds —
having the mildest — and general normal currents — having the wildest behaviour. In
particular, the mass of an integral current C is given by M(C) =

∑∞
j=1

∫
|Θ| dHk Nj.

The standard references for the terminology introduced above are the books by H. Federer
[25] and by L. Simon [76].
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In the definition of the mass of a k-current we took the supremum over all k-forms
with comass at most 1 which, in general, is difficult to compute. However, we saw that
for submanifolds a calibration played the rôle of the volume form which we now use to
define calibrated currents.

Definition 1.1 Let ω be a smooth k-form on (M, g) with comass equal to 1. Then we
say that a k-current is calibrated by ω if for all open subsets U ⊂M we have

〈C U, ω〉 = M(C U) ,

where C U means the restriction of C to U .

Having obtained a calibrated cycle the next natural goal is to study its regularity.
One intuitive reason why one can hope for extra regularity from the fact that the cycle
is calibrated is that a calibration limits the possible tangent spaces such a current can
have (albeit only at almost every point). The first step in looking for an improvement in
regularity of these cycles is to analyse their blow-up around points, i.e. to prove whether
such a blow-up exists and if it exists whether it is unique. The blow-up analysis of C
around a point x0 ∈ M is done as follows: consider a dilation of C around x0 which in
normal coordinates near x0 is given by the push-forward of the current C under the map
x−x0

r
— here we mean that x−x0

r ∗C(ψ) := C(x−x0

r

∗
ψ). To analyse the behaviour of these

dilations as r → 0 we need to bound the mass of x−x0

r ∗C B1(x0) independently of r

which is done using a monotonicity formula, stating that r−kM(C Br(x0)) is increasing
in r, since M(x−x0

r ∗C B1(0)) ∼= r−kM(C Br(x0)). Using this and the fact that C is a
cycle we apply the compactness theorem of H. Federer and W. Fleming (see [25] 4.2.17)
to deduce that there exists a sequence rn → 0 and a normal k-current C∞,x0 such that
weakly

x− x0

rn ∗
C B1 ⇀ C∞,x0 .

It turns out that C∞,x0 is a cone — called a tangent cone to C at x0 — which is calibrated
by ωx0 (see section 1.3 of this chapter). The main questions related to such a construction
are whether the blow-up limit is unique (i.e. independent of the subsequence of radii given
by the compactness theorem) and whether the dilated currents converge to the limiting
object at a certain rate.
These two questions are in fact related. From the monotonicity formula we know that the
limiting density Θ(‖C‖, x0) := limr→0 α(k)−1r−kM(C Br(x0)) exists at all points x0 ∈M
(here α(k) means the volume of the k-dimensional unit ball) and that this limiting density
is equal to the mass of any possible tangent cone. B. White [94] showed that a rate of
convergence for α(k)−1r−kM(C Br(x0)) to the limiting density Θ(‖C‖, x0) implies the
uniqueness of the tangent cone to C at x0 — see Theorem 3 in [94] —, i.e. if there exist
constants C1 > 0 and γ > 0 such that for all r > 0

M(C Br(x0))

α(k)rk
−Θ(‖C‖, x0) ≤ C1r

γ ,

then the blow-up limit is indeed independent of the subsequence chosen.

The main result of this chapter will make use of this idea. We will deduce the following
theorem:
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Theorem 1.1 Let (M, g) be a closed m-dimensional Riemannian manifold and let ω be
a calibrating 2-form which is C2 but not necessarily closed. Let x0 ∈ M and let C be an
integer rectifiable 2-cycle calibrated by ω. Then there exists a unique tangent cone to C
at x0.

To apply B. White’s result we have to establish a rate of convergence first, to which much
of the remainder of this chapter is devoted. It is instructive to compare our next result
below with Morrey decay rates obtained for harmonic and J-holomorphic maps and refer
to chapter 2 for details.

Theorem 1.2 Let (M, g) be a closed m-dimensional Riemannian manifold and let ω be
a calibrating 2-form which is C2 but not necessarily closed. Then for any x0 ∈ M there
exist r0 > 0, C1 > 0 and γ ∈ (0, 1] such that if C is an integer rectifiable 2-cycle calibrated
by ω and if r ∈ (0, r0) we have

M(C Br(x0))

πr2
−Θ(‖C‖, x0) ≤ C1r

γ .

In the following paragraph we briefly sketch the main ideas of the proof of Theorem
1.2. First we prove an almost monotonicity formula in section 1.2. Furthermore we show
that calibrated 2-cycles are essentially calibrated by a constant 2-form and hence almost
holomorphic cycles in some Cm. The key observation is that due to the monotonicity
formula the restriction of such cycles to small balls around x0 can be pushed forward onto
CPm−1 under the canonical projection π : Cm \ {0} −→ CPm−1. The resulting 2-current
on CPm−1 can then be shown to have small boundary and we prove a general result for
such currents on CPm−1 to show that their support cannot fill all of CPm−1. We use
this to perform an integration by parts which allows us to reduce to the boundary of the
intersection of C with the small ball around x0. This intersection yields a 1-dimensional
integral cycle on which a Poincaré inequality can be proved (see also section 1.9 of this
chapter). Hence we are able to estimate the mass of the dilated current viewed as a
function of the dilating radius r in terms of its derivative. From a suitable choice of radii
this is in turn estimated by the mass of the dilated current albeit with a gap proportional
to r around x0. Filling this hole and applying a standard iteration argument we obtain
the theorem.

Although the problem of uniqueness of tangent cones is such a fundamental question
about singularities of area-minimising or calibrated currents only few results have been ob-
tained so far. The main result related to our work is the one by B. White mentioned above
[94]. Following an idea of E. Reifenberg in [65], he deduced uniqueness of tangent cones
for area-minimising 2-cycles using an epiperimetric inequality coming from a comparison
argument — a completely different argument to the one we use in our proof. His result
was extended to arbitrary Riemannian manifolds by S. Chang in the appendix of [19]. The
problem of uniqueness of tangent cones was also studied by W. Allard and F. Almgren in
[4] for 1-dimensional varifolds and in [5] for general area-minimising currents in case one of
the tangent cones has a special structure. For 2-dimensional area-minimising flat chains
modulo 3 in R3 and soap-film like minimal surfaces uniqueness results were obtained by
J. Taylor in [88] and [89] respectively. Furthermore, L. Simon [77] obtained, amongst many
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other results, uniqueness of tangent cones in case the tangent cone is of multiplicity 1 with
an isolated singularity at 0 using ODE techniques (this work also established uniqueness
of tangent maps for harmonic maps between Riemannian manifolds which is related to our
results in chapter 2 below). Also he established uniqueness of some cylindrical tangent
cones in [78].
In case M is an almost complex manifold with integrable almost complex structure and
compatible calibrating 2-form, our uniqueness result follows from the much stronger reg-
ularity result by Y.-T. Siu in [80] using methods from several complex variables theory.
Further uniqueness and non-uniqueness results in the realm of complex analytic currents
and their relation to our work will be discussed in detail in section 1.10 of this chapter.
Applications of uniqueness of tangent cones results to the regularity of area-minimising 2-
currents were given by S. Chang [19] who combined B. White’s result [94] with techniques
from F. Almgren’s long regularity paper [6]. He proved that area-minimising 2-cycles are
smooth aside from isolated singular points. Furthermore, T. Rivière and G. Tian in [70]
and [71] showed that calibrated 1− 1-cycles are smooth aside from finitely many singular
points (see also the paper [86] by C. Taubes). Although their work is in part also based
on B. White’s result they manage to avoid the use of F. Almgren’s monumental work and
therefore give a much more direct proof.

The chapter is organised as follows. In section 1.2 we prove an almost monotonicity
for calibrated 2-cycles. Existence and structure of tangent cones is derived in section 1.3.
Section 1.4 shows that the current can be projected, whereas section 1.5 proves properties
of currents in CPm−1. In section 1.6 Theorem 1.2 is proved in a special case which is then
generalised in section 1.7. Section 1.8 deduces Theorem 1.1 from this. Finally, in sections
1.9 and 1.10 we explain possible extensions and future research problems related to our
proof of Theorem 1.2.

Acknowledgement: The work in this chapter is the outcome of joint work with my
advisor Tristan Rivière in [64].

1.2 Monotonicity formula

In this section we will compute a monotonicity formula for general calibrated k-cycles.
Although later on we will only need the situation where the cycle is integer rectifiable
and 2-dimensional, we will state and prove the monotonicity formula in its full generality.
In the special case where ω is closed and the cycle C is integer rectifiable the results
for area-minimising currents apply. Thus from [25] Theorem 5.4.3 (2) we know that C
satisfies a monotonicity formula. In the case where C is a normal cycle calibrated by a
constant calibration, R. Harvey and B. Lawson proved a monotonicity formula depending
only on this first order information (see [38] Theorem 5.7). Based on their proof we will
now deduce an almost monotonicity formula in the general case.

As mentioned in the introduction from now on all arguments will be local and can
therefore be carried out in Euclidean space. For the remainder we therefore assume that
the calibration ω is a form on Rm which is at least C2 but again not necessarily closed.
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Thus we know that for any point x0 ∈ Rm there exists a neighbourhood depending only
on the C2-norm of ω such that in this neighbourhood we can write ω(x) = ω0(x) + ω1(x)
with ω0(x) = ω(x0) and ‖ω1(x)‖C2 = O(|x − x0|), i.e. we view the form ω as C2 pertur-
bation of a constant form.

Proposition 1.3 Let C be a k-dimensional normal cycle in Rm. Assume that C is
calibrated by a comass 1 k-form ω. Then there exist C1 > 0, r0 > 0 depending only on
the C2-norm of ω such that given x0 ∈ Rm for any 0 < s < r ≤ r0 we have

eC1r + C1r

rk
M(C Br(x0)) − eC1s + C1s

sk
M(C Bs(x0))

≥
∫
Br\Bs(x0)

1

|x− x0|k

N(x)∑
i=1

λi(x)

∣∣∣∣ξi(x) ∧ ∂

∂r

∣∣∣∣2d‖C‖ , (1.1)

where C is represented by
∫
〈τ, ·〉d‖C‖ and

∑N(x)
i=1 λi(x)ξi(x) is the decomposition of τ(x)

into a convex sum of calibrated simple k-vectors.

Proof. Without loss of generality we can assume x0 to be 0. Using the setting established
above we write ω(x) = ω0(x) +ω1(x) where ω0(x) = ω(x0) and ‖ω1(x)‖C2 = O(|x|). Note
that since ω0 is a constant k-form we know that ω0 = 1

k
d
(
∂
∂r

ω0

)
= 1

k
L ∂
∂r
ω0, where L ∂

∂r

denotes the Lie derivative in the direction of ∂
∂r

with r = |x|. Next we take a smooth
cut-off function φ : R→ R such that φ(t) = 1 for t ≤ 1

2
, φ(t) = 0 for t ≥ 1 and φ′(t) ≤ 0.

Setting γ(x) := φ
(
r
ρ

)
we obtain a smooth version of the characteristic function of Bρ(0).

To replace M(C Bρ(0)) define I(ρ) :=
∫
Rm γ(x)〈τ, ω〉d‖C‖ and, furthermore, denote the

tangential part of ω by

ωt :=
∂

∂r

(
∂

∂r
∧ ω
)
.

Using this notation and the fact that C is a cycle we compute

kI(ρ) = k

∫
Rm

γ(x)〈τ, ω0〉d‖C‖+ k

∫
Rm

γ(x)〈τ, ω1〉d‖C‖

=

∫
Rm

〈
τ, γ(x)d

(
∂

∂r
ω0

)〉
d‖C‖+ k

∫
Rm

γ(x)〈τ, ω1〉d‖C‖

=

∫
Rm

〈
τ, d

(
γ(x)

(
∂

∂r
ω0

))〉
d‖C‖

−
∫

Rm

〈
τ,
d

dr
(γ(x))dr ∧ d

(
∂

∂r
ω0

)〉
d‖C‖+ k

∫
Rm

γ(x)〈τ, ω1〉d‖C‖

= ρ

∫
Rm

〈
τ,

d

dρ
φ

(
r

ρ

)[
dr

r
∧ ∂

∂r
ω0

]〉
d‖C‖+ k

∫
Rm

φ

(
r

ρ

)
〈τ, ω1〉d‖C‖

= ρ

∫
Rm

〈
τ,

d

dρ
φ

(
r

ρ

)
(ω0 − ωt0)

〉
d‖C‖+ k

∫
Rm

φ

(
r

ρ

)
〈τ, ω1〉d‖C‖ .
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Finally, we obtain

kI(ρ) = ρ

∫
Rm

〈
τ,

d

dρ
φ

(
r

ρ

)
ω

〉
d‖C‖ − ρ

∫
Rm

〈
τ,

d

dρ
φ

(
r

ρ

)
ωt
〉
d‖C‖

−ρ
∫

Rm

〈
τ,

d

dρ
φ

(
r

ρ

)
ω1

〉
d‖C‖+ ρ

∫
Rm

〈
τ,

d

dρ
φ

(
r

ρ

)
ωt1

〉
d‖C‖

+k

∫
Rm

φ

(
r

ρ

)
〈τ, ω1〉d‖C‖ .

Setting J(ρ) :=
∫
Rm

〈
τ, φ
(
r
ρ

)
ωt
〉
d‖C‖ the above computation can be summarised as

−kI(ρ)

ρk+1
+
I ′(ρ)

ρk
− J ′(ρ)

ρk
=

1

ρk

∫
Rm

〈
τ,

d

dρ
φ
(r
ρ

)
(ω1 − ωt1)

〉
d‖C‖

− k

ρk+1

∫
Rm

φ
( r
τ

)
〈τ, ω1〉d‖C‖ .

Choosing ρ > 0 is sufficiently small depending only on the C2-norm of ω and using the
definition of φ we obtain the estimate∣∣∣∣−kI(ρ)

ρk+1
+
I ′(ρ)

ρk
− J ′(ρ)

ρk

∣∣∣∣ ≤
≤ C1

ρk

∫
Rm

∣∣∣∣ ddρφ
(
r

ρ

)∣∣∣∣ · |x|d‖C‖+
C2

ρk+1

∫
Rm

φ
( r
τ

)
|x|d‖C‖

≤ C1

ρk−1

∫
Rm

d

dρ
φ

(
r

ρ

)
d‖C‖+

C2

ρk

∫
Rm

φ
( r
τ

)
d‖C‖

=
C1

ρk−1
I ′(ρ) +

C2

ρk
I(ρ)

=
C3

ρk−1
I(ρ) + C3

d

dρ

(
I(ρ)

ρk−1

)
. (1.2)

From this estimate we deduce

d

dρ

(
I(ρ)

ρk

)
+ C3

I(ρ)

ρk
≥ 1

ρk
d

dρ
J(ρ)− C3

d

dρ

(
I(ρ)

ρk−1

)
,

which for ρ > 0 possibly chosen even smaller becomes

d

dρ

(
eC3ρI(ρ)

ρk

)
≥ 1

ρk
d

dρ
J(ρ)− C3

d

dρ

(
I(ρ)

ρk−1

)
.

This implies that for small enough ρ > 0 we have

d

dρ

(
eC3ρ + C3ρ

ρk
I(ρ)

)
≥ 1

ρk
d

dρ
J(ρ) .

Letting φ increase to the characteristic function of (−∞, 1), we obtain that the above
inequality continues to hold in the sense of distributions, i.e.

d

dρ

(
eC3ρ + C3ρ

ρk
M(C Bρ(0))

)
≥ d

dρ

∫
Bρ(0)

1

|x|k
〈τ, ωt〉d‖C‖ .
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Since τ(x) is calibrated by ω(x) for ‖C‖-a.e. x ∈ Bρ(0), with the help of Lemma 5.11 in
[38] (see also Lemma C.2 in appendix C) we can express the integrand on the right-hand
side above as a positive quantity:

〈τ(x), ωt(x)〉 =

N(x)∑
i=1

λi(x)

∣∣∣∣ξi(x) ∧ ∂

∂r

∣∣∣∣2 ,
where τ(x) =

∑N(x)
i=1 λi(x)ξi(x) and the ξj(x) are simple k-vectors calibrated by ω(x).

Integration from 0 < s < r ≤ r0 finishes the proof of the proposition. �

If we use the other inequality given by (1.2) virtually the same proof also shows

eC1r − C1r

rk
M(C Br(x0)) − eC1s − C1s

sk
M(C Bs(x0))

≤ C1

∫
Br\Bs(x0)

1

|x− x0|k

N(x)∑
i=1

λi(x)

∣∣∣∣ξi(x) ∧ ∂

∂r

∣∣∣∣2d‖C‖ , (1.3)

which will be used in the proof of Theorem 1.2. Since we will only look at the situation
where the radii become small the perturbation terms will not play a significant rôle.

1.3 Existence and structure of tangent cones

We now look at some implications of the monotonicity formula for the blow-up be-
haviour of calibrated currents. First of all note that the monotonicity formula im-
plies that r−kM(C Br(x0)) is almost increasing in r and remains bounded for small
radii. Hence we know that the density Θ(‖C‖, x0) of C at x0 defined by the limit
Θ(‖C‖, x0) := limr→0 α(k)−1r−kM(C Br(x0)) exists for all x0 ∈ Rm. Furthermore,
we dilate the current C around x0 by setting

Cr,x0 := (λr,x0
∗ C) B1(x0) ,

where λr,x0
∗ C means the push-forward of C by λr,x0(x) = x−x0

r
. The important fact that

M(Cr,x0) = r−kM(C Br(x0)) then allows us to conclude that M(Cr,x0) is uniformly
bounded as r tends to 0. From the cycle condition on C we get that ∂Cr,x0 B1(x0) = 0
and hence that N (Cr,x0) := M (Cr,x0) + M (∂Cr,x0 B1(x0)) is uniformly bounded in r.
Therefore the compactness theorem of H. Federer and W. Fleming (see [26] or 4.2.17 (1)
in [25]) implies that for any sequence of radii {rn} tending to 0, there exists a subsequence
{rn′} such that as n′ →∞

Crn′ ,x0

F−→ C∞,x0 ,

for some normal k-current C∞,x0 . For reasons that will become apparent later, we call
such a limiting current C∞,x0 a tangent cone to C at x0, whose existence at any point
x0 is a direct consequence of the monotonicity formula. Note that a-priori the limiting
object might very well depend on the sequence of radii chosen and the main part of this
chapter is devoted to showing that this is not the case, i.e. that the blow-up limit is a
unique tangent cone.
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Since we have already obtained existence, the next step is to investigate the structure
of tangent cones. Towards this we now show that tangent cones to a calibrated k-current
are again calibrated k-currents themselves. First note that the lower semi-continuity of
mass under weak convergence implies that

lim
r→0

M(C Br(x0))

rk
= lim

r→0
M(Cr,x0) ≥M(C∞,x0) . (1.4)

For currents calibrated by a k-form ω the above inequality can in fact be improved to an
equality. Since by definition of a calibration M(C Br(x0)) = C Br(x0)(ω) we have

M(Cr,x0) =
1

rk
C Br(x0)(ω) = Cr,x0(r

k(λr,x0)∗ω) ,

i.e. that Cr,x0 is calibrated by rk(λr,x0)∗ω. Since M(Cr,x0) ≤ C1 < ∞ and ω is in C2 we
conclude that as r → 0

|Cr,x0(r
k(λr,x0)∗ω − ω0)| ≤ C1‖rk(λr,x0)∗ω − ω0‖∗ → 0 .

Therefore we obtain

lim
r→0

M(Cr,x0) = lim
n′→∞

Crn′ ,x0(ω0) = C∞,x0(ω0) . (1.5)

Combining this fact with (1.4) we deduce that

M(C∞,x0) ≤ lim
n′→∞

M(Crn′ ,x0) = C∞,x0(ω0) .

Since ω0 has comass equal to 1, we also conclude that C∞,x0(ω0) ≤ M(C∞,x0) and hence
C∞,x0(ω0) = M(C∞,x0), i.e. C∞,x0 is calibrated by ω0. Note that independent of the
properties of ω the constant form ω0 is always closed, so even though calibrated k-cycles
may not be (homologically) mass-minimising their tangent cones always are.

We continue our discussion of tangent cones by looking at the density of a tangent cone
at the origin. Below we will use the notation ‖C‖ for the Radon measure associated with
a normal current and the fact that M(C Br(x0)) = ‖C‖(Br(x0)). From the discussion
above we get that

1

rk
‖C∞,x0‖(Br(0)) = lim

n′→∞

1

rk
‖Crn′ ,x0‖(Br(x0))

= lim
n′→∞

1

(rrn′)k
‖C‖(Brrn′

(x0))

= α(k)Θ(‖C‖, x0) ,

where α(k) again denotes the volume of the unit ball in Rk. Thus we conclude that for
all radii r > 0

1

α(k)rk
‖C∞,x0‖(Br(0)) = Θ(‖C∞,x0‖, 0) = Θ(‖C‖, x0) ,

i.e. that the density of C at x0 equals the density of C∞,x0 at the origin. We will now use
this identity together with the monotonicity formula to justify the notion of a tangent
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cone. First note that in case a current is calibrated by a constant form the perturbation
terms in the monotonicity formula disappear. In particular, the right-hand side of (1.2)
vanishes so that instead of an inequality we end up with an equality. Continuing the
proof of proposition 1.3 with this identity one can see that in this easier case (1.1) can be
replaced by the simpler monotonicity formula for 0 < s < r

1

rk
‖C∞,x0‖(Br(0))− 1

sk
‖C∞,x0‖(Bs(0))

=

∫
Br(0)\Bs(0)

1

|x|k

N(x)∑
j=1

λj(x)

∣∣∣∣ξj(x) ∧ ∂

∂r

∣∣∣∣2d‖C∞,x0‖ ,

where as above τ∞(x) =
∑N(x)

j=1 λj(x)ξj(x) — alternatively one can use Theorem 5.7 in the
paper by R. Harvey and B. Lawson [38]. The identity for the density above then ensures

the right-hand side in the monotonicity formula to vanish, i.e. that
∑N(x)

j=1 λj(x)
∣∣ξj(x) ∧

∂
∂r

∣∣2 = 0 at ‖C∞,x0‖-a.e. x. Therefore we get that τ∞(x) ∧ ∂
∂r

= 0, ‖C∞,x0‖-a.e., which
by the homotopy formula 4.1.9 in [25] (applied to the affine homotopy from λ1,x0 to λr,x0)
implies that C∞,x0 is indeed a cone, i.e. that λr,0∗ C∞,x0 = C∞,x0 for all r > 0.

For the remainder of this section we will go back to the special case where the cali-
bration ω0 is a constant 2-dimensional form and investigate the support and structure of
a tangent cone calibrated by it. To do this, we first recall the structure theorem for con-
stant 2-forms of unit comass on Rm (see Theorem 7.16 in [38] or Theorem C.3 in appendix
C). For such a 2-form ω0 we know that there exist coordinates and an almost complex
structure J on a subspace R2n for some n, such that J is compatible with the Euclidean
metric and such that ω0 is the standard symplectic form for J on R2n. This implies that,
without loss of generality, for any x0 ∈ spt ‖C‖ we can assume that the coordinates are
chosen so that x0 = 0, J = J0 and ω0 is the standard symplectic form on R2n ⊂ Rm for
some n. Therefore, calibrated 2-vectors have to vanish in the Rm−2n-direction. Using this
together with the fact that τ∞(x) ∧ ∂

∂r
(x) = 0 for ‖C∞,x0‖-a.e. x ∈ Rm, we deduce that

the set of x ∈ spt ‖C∞,x0‖∩Rm−2n has ‖C∞,x0‖-measure 0 (because of the above for these
x, τ∞(x) ∧ ∂

∂r
(x) 6= 0). Thus the support of ‖C∞,x0‖ can be assumed to be contained in

R2n ⊂ Rm.
Furthermore, since τ∞(x) is calibrated by ω0, we know that the approximate tangent
planes are J0-holomorphic and thus from τ∞(x) ∧ ∂

∂r
(x) = 0 we deduce that τ∞(x) ∧

J0
∂
∂r

(x) = 0. Hence τ∞(x) = ∂
∂r
∧J0

∂
∂r

(x) for ‖C∞,x0‖-a.e. x ∈ Rm. The above arguments
immediately give the following proposition:

Proposition 1.4 Let C∞,x0 be a tangent cone to C at x0 which is calibrated by the 2-form
ω0. Then there are coordinates centred at x0 such that for any 2-form ψ, C∞,x0(ψ) is of
the form:

C∞,x0(ψ) =

〈
φ , ψ

(
∂

∂r
∧ J0

∂

∂r

)〉
,

where φ is a distribution in D′(Rm) with support in R2n ⊂ Rm.

From the fact that C∞,x0 is a J0-holomorphic cone we can deduce more information
on the structure of the distribution φ above:
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Proposition 1.5 Let φ be the distribution given by Proposition 1.4. Then φ is of the
form

〈φ , f〉 =

∫ 1

0

1

t

〈
Γ ,

∫
H−1(p)

f(t, θ) dH1(θ)

〉
dH1(t) ,

where H : S2n−1 → CPn−1 is the Hopf fibration and Γ is a distribution on CPn−1

determining φ.

Proof. From the fact that C∞,x0 is a cone we know that λ0,r
∗ C∞,x0 = C∞,x0 for any

positive r. Thus φ also satisfies 〈φ , f(t, θ)〉 = 〈φ , f(rt, θ)〉 and hence as a distribution φ
is independent of r, i.e. ∂φ

∂r
= 0. From this one immediately deduces that

〈φ , f(t, θ)〉 =

∫ 1

0

1

t
〈Σ , f(t, θ)〉dH1(t) ,

where Σ is a distribution on S2n−1 ⊂ R2n and for fixed t we view f(t, θ) as a function
on S2n−1. Using the fact that C∞,x0 is also J0-holomorphic we get that 〈Σ , f(t, θ)〉 =
〈Σ , f(t, J0θ)〉 and hence that for any s ∈ [0, 2π], 〈Σ , f(t, θ)〉 = 〈Σ , f(t, eis · θ)〉, where by
eis · θ we mean the multiplication of each component by eis. Thus Σ is invariant along the
fibres of the Hopf fibration given as H−1(p) for p ∈ CPn−1. Then Σ defines a distribution
Γ on CPn−1 given by〈

Γ ,

∫
H−1(p)

f(t, θ̃)dH1(θ̃)

〉
:=

〈
Σ ,

∫
H−1(H(θ))

f(t, θ̃)dH1(θ̃)

〉
and the proposition holds. �

So far the arguments in this section were valid even for normal cycles. If one assumes
that the cycles is integer rectifiable even more can be said about its tangent cones. In
the case of tangent cones to integral area-minimising 2-cycles, F. Morgan [58] proved that
then C∞,x0 is a finite union of 2-dimensional disks through x0. For J-holomorphic integral
1 − 1-cycles a more direct proof of the analogous result was given by T. Rivière and G.
Tian in section 2 of [71], where in this case the disks are Jx0-holomorphic. In Proposition
1.5 this corresponds to the situation where the distribution Γ on CPn−1 is given by a sum
of Dirac masses with (positive) integer weights concentrated at points in CPn−1.

1.4 Projecting the current onto CPm−1

In this section we will discuss the geometric observation which we will use in the proof of
Theorem 1.2. First we illustrate this in the case where the manifold M is 2m-dimensional
and for each point x0 ∈M there are coordinates such that the calibration is the standard
symplectic 2-form ω0 on R2m. Thus there exists an almost complex structure J on M
compatible with ω. The extension to the general case will be given at the end of section
1.6.
The main tool is the canonical projection of Cm \ {0} onto CPm−1 denoted by π. Thus,
using homogeneous coordinates on CPm−1, π : Cm \ {0} −→ CPm−1 sends (z1, . . . , zm)
to [z1, . . . , zm]. Note that the push-forward under this map will send any tangent cone
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to C at 0 to the union of points at which the Dirac masses representing it are concen-
trated. As the outcome of several lemmas we relate the mass of the push-forward under
π of C Br(0) to the monotonicity formula allowing us to conclude that the projection of
C Br(0) onto CPm−1 is well-defined and gives a current of small mass. Furthermore, we
also show that the push-forward of ∂ [C Br(0)] is controlled by the monotonicity formula
yielding that π∗C Br(0) is an integral 2-current on CPm−1 with small flat norm.
Since we will be working with an arbitrary complex structure J on M determined by ω
which is also compatible with it, we need to construct a similar projection from (R2m, J)
onto CPm−1 where this time the pre-images of points in CPm−1 are J-holomorphic sur-
faces rather than holomorphic planes. The construction of this map will follow the con-
struction given by T. Rivière and G. Tian in appendix A of [70] and can be found in our
appendix D.

The first Lemma towards the above mentioned projection result is a general estimate
for norms of wedge-products with J-holomorphic vectors and is a crucial observation used
throughout this chapter.

Lemma 1.6 Let τ be a simple 2-vector which calibrated by ω0 on R2m. There exists a
constant C2m > 0 depending only on the dimension 2m such that for any vector ζ ∈ R2m

we have
1

C2m

|τ ∧ ζ|2 ≤ |τ ∧ ζ ∧ Jζ| ≤ C2m|τ ∧ ζ|2 .

Proof. By Wirtinger’s inequality (see 1.8.2 in [25] by H. Federer) we know that τ =
ξ1∧Jξ1 for some ξ1 ∈ R2m of unit length. Since ξ1 and Jξ1 are orthonormal we can extend
them to an ordered orthonormal basis {ξ1, Jξ1, ξ2, Jξ2, . . . , ξm, Jξm} of R2m. Writing an
arbitrary vector ζ =

∑2m
l=1 alξl in this basis we get that

|τ ∧ ζ|2 =

∣∣∣∣∣
2m∑
l=1

alτ ∧ ξl

∣∣∣∣∣
2

=

∣∣∣∣∣
2m∑
l=3

alξ1 ∧ Jξ1 ∧ ξl

∣∣∣∣∣
2

=
2m∑
l=3

|al|2 .

Next we compute |τ ∧ ζ ∧ Jζ|. Writing ζ =
∑m

k=1(a2k−1ξ2k−1 + a2kξ2k) and Jζ =∑m
l=1(a2l−1ξ2l − a2lξ2l−1) we obtain

|τ ∧ ζ ∧ Jζ| =

∣∣∣∣∣ξ1 ∧ Jξ1 ∧

[
m∑

k,l=1

(a2k−1a2l−1ξ2k−1 ∧ ξ2l −

−(a2k−1a2l)ξ2k−1 ∧ ξ2l−1 + (a2ka2l−1)ξ2k ∧ ξ2l − (1.6)

−(a2ka2l)ξ2k ∧ ξ2l−1

]∣∣∣∣∣
≤ C2m

∣∣∣∣∣
2m∑

3≤l<k

a2
l ξ1 ∧ Jξ1 ∧ ξl ∧ ξk

∣∣∣∣∣
≤ C2m

2m∑
3=l

|al|2 = C2m|τ ∧ ζ|2 .
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For the remaining estimate first note that |τ ∧ ζ|4 can be bounded by C2m

∑2m
l=3 |al|4 and

thus it remains to bound this by |τ ∧ ζ ∧ Jζ|2. From the identity in equation 1.6 one
can see that τ ∧ ζ ∧ Jζ contains all terms of the form (a2l−1)2ξ2l−1 ∧ ξ2l − (a2l)

2ξ2l ∧ ξ2l−1

when 3 ≤ l ≤ m and no other terms contain these combinations of ξk ∧ ξl. Therefore
C2m|τ ∧ ζ ∧ Jζ|2 is larger or equal than

∑2m
l=3 |al|4, which completes the argument. �

In the next Lemma we combine the above result with the monotonicity formula from
Proposition 1.3 to estimate the mass of π∗[C Br \Bs(x0)] for small enough radii.

Lemma 1.7 Let C be as in the main theorem. Then there exist constants C1 > 0 and
r0 > 0 such that for any 0 < s < r ≤ r0 and x0 ∈M we have

M(π∗[C Br \Bs(x0)]) ≤ C1

[
M(C Br(x0))

r2
− M(C Bs(x0))

s2

]
.

Proof. Without loss of generality we can assume that the coordinates are centred at x0

and chosen so that ω0 is the standard symplectic form on R2m. Let r0 > 0 be chosen
so that the monotonicity formula is valid for balls of radius less than r0 > 0. Since the
estimates in Lemma 1.6 are invariant under isometries we can apply the Lemma to ζ = ∂

∂r

at each point in Br \Bs(0) and deduce that

1

C2m

∫
Br\Bs(0)

1

|x|2

∣∣∣∣τ(x) ∧ ∂

∂r

∣∣∣∣2d‖C‖
≤
∫
Br\Bs(0)

1

|x|2

∣∣∣∣τ(x) ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣d‖C‖
≤ C2m

∫
Br\Bs(0)

1

|x|2

∣∣∣∣τ(x) ∧ ∂

∂r

∣∣∣∣2d‖C‖ .
Combining this with the monotonicity formula we obtain that∫

Br\Bs(0)

1

|x|2

∣∣∣∣τ(x) ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣d‖C‖
≤ C2m

[
M(C Br(0))

r2
− M(C Bs(0))

s2

]
.

Since π is only a small perturbation of H ◦ x
|x| we deduce that〈

τ(x),
∧

2
π(x)

〉
∼=

1

|x|2

∣∣∣∣τ(x) ∧ ∂

∂r
∧ J0

∂

∂r

∣∣∣∣
and the proof of the lemma is completed. �

We remark that as a direct consequence of this lemma and the monotonicity formula,
since r−2M(C Br(x0)) is almost increasing in r, we get that

lim
r→0

lim
s→0

M(π∗[C Br \Bs(x0)]) = 0 . (1.7)

This already shows that the push-forward of C Br(0) under π is well-defined and has
small mass. The next step is to prove that for certain radii we will also be able to control
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the mass of the push-forward of ∂[C Br(0)].

To do this, we note that it will suffice to prove Theorem 1.2 for radii of the form r = 1
2j

where j ∈ N. From the previous Lemma combined with (1.1) and (1.3) we know that
a rate of convergence for r−2M(C Br(x0)) is equivalent to a rate of convergence for
M(π∗[C Br(x0)]) since

M(π∗C Br(x0)) .
M(C Br(x0))

r2
− πΘ(‖C‖, x0)

'
∫
Br(x0)

1

|x− x0|2

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣2d‖C‖
. M(π∗C Br(x0)) .

To prove a rate of convergence for M(π∗C Br(x0)) to 0 we want to find a constant
θ ∈ (0, 1) independent of j such that for all j

M
(
π∗

[
C B 1

2j+1
(x0)

])
≤ θM

(
π∗

[
C B 1

2j
(x0)

])
, (1.8)

since then the result follows by a standard iteration argument.
We begin by partitioning the set of indices into two subset as follows:

A :=

{
j ∈ N : M

(
π∗

[
C B 1

2j+1
(x0)

])
≤ 1

2
M
(
π∗

[
C B 1

2j
(x0)

])}
,

B :=

{
j ∈ N : M

(
π∗

[
C B 1

2j+1
(x0)

])
>

1

2
M
(
π∗

[
C B 1

2j
(x0)

])}
.

Note that for j ∈ A estimate 1.8 holds true with θ = 1
2
. Thus it remains to show 1.8 when

j ∈ B. To do this we will work on ‘good slices’ of C and we will define these and prove
their existence in the next Lemma.

Lemma 1.8 Given 0 < r < r0, there exists ρ0 ∈
[
r
2
, r
]

such that the following hold:

1. M(〈C, | · |, ρ0〉) ≤ C1ρ0 ,

2.
∫
∂Bρ0 (x0)

|∇π|C |2d〈C, | · |, ρ0〉 ≤ 1
ρ0

∫
Br\B r

2
(x0)
|∇π|C |2d‖C‖ ,

3. M(π∗∂[C Bρ0(x0)]) ≤ C1

∫
−
r

r
2

[∫
∂Bρ

1
|x|

∣∣τ ∧ ∂
∂r

∣∣ d〈C, | · |, ρ〉] dρ ,
where 〈C, | · |, ρ〉 denotes the slice current of C at the radius ρ (see [25] chapter 4.3 for
the definition). For such ρ0 the slice 〈C, | · |, ρ0〉 will be called a ‘good slice’.

Proof. For the first estimate, from 4.2.1 in [25] by H. Federer and the almost monotonicity
formula we know that there exists a constant C1 > 0 such that∫ r

r
2

1

ρ
M(〈C, | · |, ρ〉)dρ . 2

r
M(C Br \B r

2
) .

2

r
M(C Br)

≤ C1
r

2
,
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i.e. that ∫
−
r

r
2

1

ρ
M(〈C, | · |, ρ〉)dρ ≤ C1 .

For the second one, set φ(r) :=
∫
Br\B r

2
(x0)
|∇π|C |2d‖C‖ to obtain∫ r

r
2

r

φ(r)

∫
∂Bρ(x0)

|∇π|C |2d〈C, | · |, ρ〉dρ ≤
r

φ(r)
φ(r) = r .

For the last estimate we denote the orienting vector for π∗∂[C Bρ] by t and apply lemma
1.6 with τ = ∂

∂r
∧ J ∂

∂r
and ζ = t at each point. Therefore,∣∣∣∣t ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣2 ∼= ∣∣∣∣t ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣ · ∣∣∣∣Jt ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣
∼=

∣∣∣∣t ∧ Jt ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣
∼=

∣∣∣∣τ ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣
∼=

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣2 .
As in the proof of lemma 1.7 we use this to compute

M(π∗∂[C Bρ(x0)]) ≤ C1

∫
∂Bρ

1

|x|

∣∣∣∣t ∧ ∂

∂r
∧ J ∂

∂r

∣∣∣∣ d〈C, | · |, ρ〉
≤ C1

∫
∂Bρ

1

|x|

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣ d〈C, | · |, ρ〉 .
Now as for the previous case, set ψ(r) :=

∫
−
r

r
2

[∫
∂Bρ

1
|x|

∣∣τ ∧ ∂
∂r

∣∣ d〈C, | · |, ρ〉] dρ to get that

∫
−
r

r
2

1

ψ(r)
M(π∗∂[C Bρ(x0)])dρ ≤ C1 .

To get a radius ρ0 ∈
[
r
2
, r
]

which works in all three situations, simply add the three
average integrals together to obtain that there is ρ0 with

1

ρ0

M(〈C, | · |, ρ0〉) +
r

φ(r)

∫
∂Bρ0 (x0)

|∇π|C |2d〈C, | · |, ρ0〉+
1

ψ(r)
M(π∗∂[C Bρ0(x0)]) ≤ C2 .

This establishes the assertions of the Lemma. �

In the next Lemma we will use estimate 3. in the previous Lemma 1.8 to bound
M(π∗∂[C Bρj ]) in case j ∈ B.

Lemma 1.9 There exists C1 > 0 such that if j ∈ B and ρj ∈
[

1
2j+1 ,

1
2j

]
denotes a good

slice from Lemma 1.8. Then

M(π∗∂[C Bρj ]) ≤ C1[M(π∗C Bρj ]
1
2 .
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Proof. In estimate 3. in Lemma 1.8 we first apply Cauchy-Schwarz to the inner integral
to obtain∫

∂Bρ

1

|x|

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣ d〈C, | · |, ρ〉 ≤ (∫
∂Bρ

1

|x|2

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣2 d〈C, | · |, ρ〉) 1
2 (
M(〈C, | · |, ρ〉

) 1
2 .

Next we apply Cauchy-Schwarz to the average integral∫
−
r

r
2

[∫
∂Bρ

1

|x|

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣ d〈C, | · |, ρ〉
]
dρ

≤ 2

r

∫ r

r
2

M(〈C, | · |, ρ〉)
1
2

(∫
∂Bρ

1

|x|2

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣2 d〈C, | · |, ρ〉
) 1

2

 dρ


≤
√

2

r

(∫
−
r

r
2

M(〈C, | · |, ρ〉)dρ

) 1
2
(∫ r

r
2

∫
∂Bρ

1

|x|2

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣2 d〈C, | · |, ρ〉dρ
) 1

2

.

For the first integral we use the monotonicity formula like in the proof of the first estimate
of Lemma 1.8 to obtain (∫

−
r

r
2

M(〈C, | · |, ρ〉)dρ
) 1

2

≤ C1

√
r

2
.

Since the second integral is bounded by [M(π∗[C Br \ B r
2
(x0)]

1
2 we can combine these

to get
M(π∗∂[C Bρj ]) ≤ C1[M(π∗[C Br \B r

2
])]

1
2 .

By assumption r = 1
2j

with j ∈ B so that the defining property ofB givesM(π∗[C B 1

2j
]) ≤

2M(π∗∂[C B 1

2j+1
]). Applying first this to the above estimate and then the monotonicity

formula to the resulting inequality (using that 1
2j+1 ≤ ρj) we get

M
(
π∗∂

[
C Bρj

])
≤ C1

[
M
(
π∗
[
C Br \B r

2

])] 1
2

≤ C1

[
M
(
π∗
[
C B r

2

])] 1
2

≤ C1

[
M
(
π∗
[
C Bρj

])] 1
2 ,

which is exactly what we wanted to show and the Lemma holds true. �

1.5 Calibrated 2-currents on CPm−1

The aim of this section is to show that the projected currents π∗
[
C Bρj

]
for j ∈ B

will not cover all of CPm−1 which will be needed later on to integrate by parts. More
precisely, given a small constant η > 0 we will prove that there exists a radius ε > 0 and
a region Aε ⊂ CPm−1 such that the current π∗

[
C Bρj

]
Aε will have mass less than

ηM(π∗
[
C Bρj

]
). This will be deduced from a general Lemma for j-holomorphic integral

2-currents T in CPm−1 with small flat norm which we will then apply to T = π∗[C Bρj ].
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Lemma 1.10 Given a constant C1 > 0 and η > 0 small, there exist δ > 0 and ε > 0 with
the following properties:
For any j-holomorphic integral 2-current T ∈ I2(CPm−1) satisfying:

1. M(T ) +M(∂T ) < δ ,

2. M(∂T ) ≤ C1[M(T )]
1
2 ,

there exists a tubular neighbourhood Aε ⊂ CPm−1 of width ε such that

M(T Aε)

ε2
≤ ηM(T ) , (1.9)

where the core of the tube Aε consists of a CPm−2 inside CPm−1, i.e. a complex (m− 2)-
dimensional hyperplane in CPm−1.

Proof. We will argue by contradiction. If the Lemma is false, then there are η > 0 and
C1 > 0 such that for any δ > 0 and any ε > 0 there exists T with the above properties,
but for which for all tubes Aε ⊂ CPm−1,

M(T Aε)

ε2
> ηM(T ) . (1.10)

We will use the above assertion on T to derive a lower bound for δ which will be given
purely in terms of η, C1 and ε, thus in particular independent of T . However, since we
are free to choose δ as small as we wish this will lead to a contradiction.
To get this estimate we begin by letting N denote the total space of the smooth fibre
bundle of anchored CPm−2 in CPm−1. By this we mean that N is made up of pairs of
the form (x,E), where x ∈ CPm−1 and E ∈ G(m − 1,m), the Grassmanian of complex
(m−1)-planes in Cm. Any such complex hyperplane can be projected down onto CPm−1

and its projection is diffeomorphic to a CPm−2. Thus a point p ∈ N consists of a point
x ∈ CPm−1 and a plane E containing x. By construction N is compact and we let µ
denote the volume measure induced by the standard metric on Cm so that µ(N ) < ∞.
Furthermore, to each point p ∈ N and for any ε > 0 there exists an open tube Aε(p),
which is the open tube with core given by p and width ε.
Next we partition N into two sets P1 and P2 where we have

P1 := {p ∈ N | M(〈T, | · |p, sp〉) = 0 for some sp ∈ [ε, 2ε]} , (1.11)

where | · |p denotes the distance function from the core of the tube given by p. The other
set is then P2 := N \ P1.
We will now analyse P1 and P2 independently. If p ∈ P1, we know that there exists
sp ∈ [ε, 2ε] so that

M(∂[T Asp(p)]− (∂T ) Asp(p)) = M(〈T, | · |p, sp〉) = 0 ,

i.e. ∂[T Asp(p)] = (∂T ) Asp(p) and hence by restricting T to Asp(p) we do not introduce
any extra boundary. Since T is calibrated by ωCPm−1 we can apply the isoperimetric
inequality 4.2.10 in [25] by H. Federer to T Asp(p) to get

M(T Asp(p))
1
2 ≤ C1M(∂[T Asp(p)])

= C1M((∂T ) Asp(p)) .
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Combining this with the assumption that the lemma is false (1.10), we deduce

ε2ηM(T ) < M(T Aε(p))

≤ M(T Asp(p))

≤ C1M((∂T ) Asp(p))
2

≤ C1M((∂T ) A2ε(p))
2 ,

i.e.
ε
√
η
√
M(T ) ≤ C1M((∂T ) A2ε(p)) .

We now derive an estimate for µ(P1) by integrating the above over all of P1

µ(P1)ε
√
η
√
M(T ) ≤ C1

∫
P1

M((∂T ) A2ε(p)) dµ(p) .

Analysing the right-hand side of this expression, we have∫
P1

M((∂T ) A2ε(p)) dµ(p) ≤
∫

(x,E)∈N

∫
y∈∂T

χAε(x,E)(y) d‖∂T‖(y)dµ(x,E) ,

and since there exists E(x, y) such that χAε(x,E)(y) = χAε(y,E(x,y))(x), we get that the
above is less than or equal to∫

E∈G(m−1,m)

∫
x∈CPm−1

∫
y∈∂T

χAε(y,E)(x) d‖∂T‖(y)dµ1(x)dµ2(E) ,

which we estimate by interchanging the order of integration and using the fact that
µ(Aε(p)) ≤ C1ε

2 independent of p∫
y∈∂T

∫
E∈G(m−1,m)

∫
x∈CPm−1

χAε(y,E)(x)dµ1(x)dµ2(E)d‖∂T‖(y) ≤ C1ε
2M(∂T ) .

Hence the estimate on µ(P1) is

µ(P1)ε
√
η
√
M(T ) ≤ C1ε

2M(∂T ) ≤ C1ε
2
√
M(T ) ,

since by assumption we can estimate M(∂T ) by
√
M(T ). This implies that

µ(P1) ≤ ε
C1√
η
,

so that from the fact that 4π ≤ µ(N) <∞ we deduce the estimate for µ(P2),

µ(P2) = µ(N)− µ(P1) ≥ 1

2
, (1.12)

when ε is chosen to be sufficiently small. It is important to observe that any dependence
on T and δ has disappeared. Furthermore, this estimate readily implies that P2 ⊂ N
cannot be empty.
It remains to investigate M(T A2ε(p)) +M((∂T ) A2ε(p)) for p ∈ P2 and we will prove
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that at least one of these two terms has to have a lower bound away from 0. Precisely, we
will prove that there exists C1 > 0 so that the following estimate for this quantity holds

M(T A2ε(p)) +M((∂T ) A2ε(p)) ≥ C1
ε2

4
. (1.13)

To see this, first observe that by definition of P2 we know that M(〈T, | · |p, s〉) > 0 for any
s ∈ [ε, 2ε]. Thus for any interval (ρ1, ρ2) ⊂ [ε, 2ε] we have

M(T Aρ1,ρ2(p)) ≥
∫ ρ2

ρ1

M(〈T, | · |p, s〉) dL1 > 0 ,

where we use the notation Aρ1,ρ2(p) := Aρ2 \ Aρ1(p) for the annular tube with core p.
We will now slice the annular tube Aε,2ε(p) by the distance function to the core, | · |p, to
get regions with and without boundary and derive estimate (1.13) from an estimate on
the measure of them. Precisely, we partition the interval [ε, 2ε] into the set

Q1 := {s ∈ [ε, 2ε] | M(〈∂T, | · |p, s〉) ≥ 1} ,

and Q2 := [ε, 2ε] \Q1 so that

Q2 := {s ∈ [ε, 2ε] | M(〈∂T, | · |p, s〉) = 0} ,

since 〈∂T, | · |p, s〉 is a 0-dimensional integer rectifiable current. Next we take Qε
1 to be an

open set containing Q1 so that L1(Qε
1 \Q1) ≤ ε

1000
, say. If L1(Qε

1) ≥ ε
2

we are done, since
then

M((∂T ) A2ε(p)) ≥
∫
s∈Q1

M(〈∂T, | · |p, s〉) dL1(s)

≥ µ(Q1) ≥ ε

2
− ε

1000
≥ ε

4
≥ ε2

4
,

since ε is assumed to be small.
Thus we can assume L1(Qε

1) < ε
2
, so that since Qε

1 is open, Qε
1 6= [ε, 2ε] and hence Qε

2 is

defined by Qε
2 := [ε, 2ε] \ Qε

1 so that it has L1(Qε
2) ≥ ε

2
and M(〈T, | · |p, s〉) = 0 for any

s ∈ Qε
2.

Writing Qε
2 as union of maximal disjoint intervals Ij = (aj, bj) we note that for each

j, T Aaj ,bj(p) is a cycle in Aaj ,bj(p) and hence satisfies a monotonicity formula. Since
T ∈ I2(CPm−1) this means that for each x ∈ Aaj ,bj(p) ∩ spt ‖T‖ we have Θ(‖T‖, x) ≥ 1.
Hence

M(T Aaj ,bj(p)) ≥ C1 vol(Aaj ,bj(p)) .

Therefore we conclude that

M(T Aε(p)) ≥
∑
i

M(T Aaj ,bj(p))

≥ C1

∑
i

vol(Aaj ,bj(p)) ≥ C1L1(Qε
2)2 ≥ C1

ε2

4
,
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which concludes the proof of estimate (1.13).

Combining this estimate with (1.12) bounding µ(P2) from below we finally deduce the
desired estimate on δ

δ > M(T ) +M(∂T )

≥ C1

∫
p∈P2

M(T A2ε(p)) +M((∂T ) A2ε) dµ(p)

≥ C1
ε2

4
µ(P2) ≥ C1

ε2

8
.

Since this estimate is independent of T , it has to hold for all δ ∈ (0, 1
2
). However, for ε

sufficiently small but fixed, δ cannot be chosen arbitrarily small, which gives the desired
contradiction. �

In the above lemma the tube Aε ⊂ CPm−1 was chosen in such a way that CPm−1 \Aε
satisfies H2(CPm−1 \ Aε) = 0. This allows us to construct a 1-form αA on CPm−1 \ Aε
such that ωCPm−1 = dαA there. More precisely, we have the following Lemma:

Lemma 1.11 Given ε > 0 and a tube Aε ⊂ CPm−1 as above, there is a smooth 1-form
α such that:

1. ωCPm−1 = dαA on CPm−1 \ Aε ,

2. αA = 0 on A ε
2
.

Furthermore, there is a constant C1 > 0 independent of Aε such that ‖ωCPm−1 − dαA‖∗ ≤
C1

1
ε2

and ‖αA‖ ≤ C1.

Proof. Given the tube Aε, let φε be a cut-off function which is 1 on CPm−1 \ A 3ε
4

, 0 on

A ε
2

and decreasing in A ε
2
, 3ε

4
, with ‖∇hφε‖ = 0 and ‖∇vφε‖ ≤ C1

ε2
, where ∇hφε means the

derivative in the direction of the core and ∇vφε the derivatives perpendicular to the core.
Then we have that φεωCPm−1 is a closed form on CPm−1\Aε which is topologically trivial,
whence there exists a form αA with dαA = φεωCPm−1 . We extend αA to Aε by extending
the coefficient functions αiA radially to the core by φεα

i
A. By an abuse of notation we

still denote the extended form by αA and we immediately see that αA = 0 on A ε
2

and

‖ω − dαA‖∗ ≤ C1‖∇vφε‖ ≤ C1

ε2
, which establishes the Lemma. �

For later applications of this lemma it is important to note that the estimates given
are independent of the specific tube Aε ⊂ CPm−1 chosen and we will therefore be free to
choose Aε according to Lemma 1.10.

1.6 Rate of convergence

As mentioned in section 1.4 we will deduce the rate for M(π∗[C Br(x0)]) from a rate for∫
Br(x0)

π∗ωCPm−1|C d‖C‖ ,
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where from now on ωCPm−1 denotes the standard symplectic 2-form which is compatible
with the Fubini-Study metric on (CPm−1, j).

First note that, from the monotonicity formula and Lemma 1.7, for all 0 < r ≤ r0∫
Br(x0)

π∗ωCPm−1|C d‖C‖ = π∗[C Br(x0)](ωCPm−1)

≤ M(π∗[C Br(x0)]) ‖ωCPm−1‖∗

≤ C1

[
M(C Br0(x0))

r0
2

− πΘ(‖C‖, x0)

]
< +∞ .

Furthermore, since the map π is J-j0-holomorphic and C is J holomorphic, we know that
pointwise ‖C‖-a.e. we have |∇π|C |2(x) = π∗ωCPm−1|C(x), i.e. that for all 0 < r ≤ r0 we
have ∫

Br(x0)

|∇π|C |2d‖C‖ =

∫
Br(x0)

π∗ωCPm−1|C d‖C‖ ≤ C1 < +∞ .

For the proof of the estimate assume that, using the notation from section 1.4, r = 1
2j

for j ∈ B and let ρj ∈ [ r
2
, r] be the corresponding radius given in Lemma 1.8. The same

lemma also implies that for any k ∈ N there exists as sequence of radii sk ∈ [2−k, 2−k+1]
such that M(π∗∂[C Bsk ]) → 0 as k → ∞. Together with Lemma 1.7 for any r we can
therefore find s0 sufficiently small such that

M(π∗[C Bs0(x0)]) +M(π∗∂[C Bs0(x0)]) ≤M(π∗[C Br \B r
2
(x0)]) . (1.14)

The main estimate will follow provided we can prove that there exists a constant C1 > 0
such that ∫

B r
2
\Bs0 (x0)

|∇π|C |2d‖C‖ ≤ C1

∫
Br\B r

2 (x0)

|∇π|C |2d‖C‖ , (1.15)

for then the estimate on M(π∗[C Bs0(x0)]) in (1.14) implies∫
B r

2
(x0)

|∇π|C |2d‖C‖ ≤ (C1 + 1)

∫
Br\B r

2 (x0)

|∇π|C |2d‖C‖ .

Hence we obtain ∫
B r

2
(x0)

|∇π|C |2d‖C‖ ≤
C1 + 1

C1 + 2

∫
Br(x0)

|∇π|C |2d‖C‖

from which we deduce (1.8) with θ = C1+1
C1+2

. From this the desired rate of convergence will
follow completing the proof of Theorem 1.2.
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To prove the remaining estimate (1.15) first note that∫
B r

2
\Bs0 (x0)

|∇π|C |2d‖C‖ ≤
∫
Bρj \Bs0 (x0)

|∇π|C |2d‖C‖

=

∫
Bρj \Bs0 (x0)

π∗ωCPm−1d‖C‖

=

∫
Bρj \Bs0 (x0)

π∗(dαA)d‖C‖

+

∫
Bρj \Bs0 (x0)

π∗(ωCPm−1 − dαA)d‖C‖ , (1.16)

where Aε ⊂ CPm−1 will be the tube given by Lemma 1.10 for some η > 0 to be determined
later. Using this Lemma and Lemma 1.11 the second term on the right-hand side can be
estimated by η

∫
Br(x0)

|∇π|C |2d‖C‖.
For the first term note that since π is smooth on Br \Bs0(x0)∫

Bρj \Bs0 (x0)

π∗(dαA)d‖C‖ =

∫
Bρj \Bs0 (x0)

d(π∗αA)d‖C‖

=

∫
∂Bρj (x0)

π∗αAd〈C, | · |, ρj〉

−
∫
∂Bs0 (x0)

π∗αAd〈C, | · |, s0〉.

By our choice of s0 the second term is bounded by∫
∂Bs0 (x0)

π∗αAd〈C, | · |, s0〉 ≤ ‖αA‖∗M(π∗〈C, | · |, s0〉)

≤ C1M(π∗C Br \B r
2
(x0)) . (1.17)

Hence it remains to estimate
∫
∂Bρj (x0)

π∗αAd〈C, | · |, ρj〉 which we will do by a Poincaré-

type inequality on ∂Bρj(x0).
Note that, since ∂Bρj(x0) is an integral 1-cycle, we can apply the decomposition theorem
for integral 1-cycles, Theorem 4.2.25 in [25]. We therefore write 〈C, | · |, ρj〉 as 〈C, | · |, ρj〉 =∑∞

i=1 Ti where each Ti is an indecomposable 1-cycle and M(〈C, | · |, ρj〉) =
∑∞

i=1M(Ti).
Furthermore, for each i ∈ N there exists fi : R → R2m with Lip(fi) ≤ 1 such that
Ti = fi∗[[0,M(Ti)]]. Having done this the desired estimate for

∫
∂Bρj (x0)

π∗αAd〈C, | · |, ρj〉
will follow from estimates for ∫

Ti

π∗αAd‖Ti‖ .

Since α is a 1-form on CPm−1 and we can work on CPm−1 \ Aε, we can write α in co-
ordinates on CPm−1 so that 〈π∗α, τi〉, where τi denotes the oriented tangent vector to Ti,
is of the form

〈π∗α(x), τi(x)〉 =
2m−2∑
k=1

αk(π(x))〈dyk, dπ(x)τi〉 .
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Since each of the Ti is closed, integrating the above expression is unchanged when αk(π(x))
is replaced by αk(π(x)) − Ck, where the Ck are arbitrary constants. Applying Cauchy-
Schwarz to the resulting integral, we obtain∫

Ti

〈π∗α, τi〉dTi ≤
2m−2∑
k=1

∫
Ti

∣∣∣αk(π(x))− αk(π)
∣∣∣ |∇π|Ti | d‖Ti‖(x)

≤
2m−2∑
k=1

(∫
Ti

∣∣∣αk(π(x))− αk(π)
∣∣∣2 d‖Ti‖(x)

) 1
2

·

·
(∫

Ti

|∇π|Ti |
2 d‖Ti‖(x)

) 1
2

,

where we have chosen the constants Ck equal to αk(π) which denotes the average of
αk(π) on Ti. We estimate the first term on the right-hand side of this expression using a
Poincaré-type inequality on Ti, where it is important to note that because of Lip(fi) ≤ 1
we can take the constants in the estimate equal to 1 independent of i. This implies(∫

Ti

∣∣∣αk(π)− αk(π)
∣∣∣2 dTi) 1

2

≤M(Ti)

(∫
Ti

|∇αk(π)|Ti |
2 d‖Ti‖

) 1
2

.

From the fact that the αk are smooth we deduce that
∫
Ti
|∇αk(π)|Ti |2d‖Ti‖ is bounded by

C1

∫
Ti
|∇π|Ti |2d‖Ti‖, where C1 is again a constant independent of Ti. Thus, combining the

above steps with the fact that M(Ti) ≤ M(〈C, | · |, ρj〉), we can sum over all i to obtain
the important inequality∫

∂Bρj (x0)

π∗αd〈C, | · |, ρj〉 ≤ C1

∞∑
i=0

M(Ti)

(∫
Ti

|∇π|Ti |
2 d‖Ti‖

) 1
2

·

·
(∫

Ti

|∇π|Ti|
2 dTi

) 1
2

≤ C1M(〈C, | · |, ρj〉)
∫
∂Bρj (x0)

|∇π|C |2 d〈C, | · |, ρj〉 .

Together with Lemma 1.8 we get that∫
∂Bρj (x0)

(π∗αA)|Cd〈C, | · |, ρj〉 ≤ C1M(〈C, | · |, ρj〉)
∫
∂Bρj (x0)

|∇π|C |2d〈C, | · |, ρj〉

≤ C1ρj
1

ρj

∫
Br(x0)\B r

2
(x0)

|∇π|C |2d‖C‖ . (1.18)

Combining estimates (1.16), (1.17) and (1.18) we obtain∫
B r

2
(x0)

|∇π|C |2d‖C‖ ≤ C1

∫
Br\B r

2
(x0)

|∇π|C |2d‖C‖+ η

∫
Br(x0)

|∇π|C |2d‖C‖ .
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Since we assumed η to be smaller than 1, we can subtract η
∫
B r

2
(x0)
|∇π|C |2d‖C‖ from

both sides resulting in the estimate∫
B r

2
(x0)

|∇π|C |2d‖C‖ ≤
C1

(1− η)

∫
Br\B r

2
(x0)

|∇π|C |2d‖C‖ .

Filling the hole by adding C1

(1−η)
times the left-hand side of the above, we get that there

is a constant C1 > 0 (now also depending on η > 0) such that∫
B r

2
(x0)

|∇π|C |2d‖C‖ ≤
C1

C1 + 1

∫
Br(x0)

|∇π|C |2d‖C‖ .

From this a standard iteration argument (see the book by M. Giaquinta [28] for details)
proves Theorem 1.2 in case the calibration ω is compatible with an almost complex struc-
ture J on M2m.

1.7 Perturbation argument

The next step is to extend the result to the general case which, since our proof is very
robust, will follow from a perturbation argument. Hence from now on we are in the
situation where the manifold is of arbitrary dimension m and the calibrating 2-form
may not be closed. Fixing x0 ∈ spt ‖C‖ ⊂ M we want to find a similar projection to
π before. We can assume that we have chosen coordinates so that ω0 = ω(x0) is the
standard symplectic form on R2n ⊂ Rm (see section 1.3). Furthermore, we can assume
to be working in a small ball Br0(0) so that on this ball we have ‖ω(x)− ω0‖C2 = O(|x|)
and the almost monotonicity formula holds true. Since ω0 is the standard symplectic
2-form on R2n, it is compatible with the standard complex structure J0. Therefore, as
before we have the natural projection π : Cn \ {0} −→ CPn−1, where we make the usual
identification Cn = (R2n, J0). We will now extend this to a new projection π̃ on all of
Rm = R2n ×Rm−2n by defining

π̃ : R2n ×Rm−2n \ {0} ×Rm−2n −→ CPn−1

(x, y) 7−→ π(x) .

We now aim at showing that the proof of Theorem 1.2 can still be carried out using
this new projection instead of π. The first step in this direction is the Lemma below
where we analyse the structure of the simple vectors defining C which are calibrated by
ω near 0.

Lemma 1.12 Let x ∈ spt ‖C‖ such that τ(x) exists and is calibrated by ω(x) = ω0+ω1(x),
with ω0 as above. Then we can write τ(x) as τ0(x)+τ1(x) so that ‖τ0(x)‖ = 1, ω0(τ0(x)) =

1 and ‖τ1(x)‖ = O(|x| 12 ).

Proof. From the fact that ω(x) calibrates τ(x) and ω(x) = ω0 + ω1(x) we deduce that
ω0(τ(x)) = 1 + O(|x|). Hence τ is not perpendicular to R2n ⊂ Rm. To construct
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a simple 2-vector τ0 close to τ we first orthogonally project τ(x) onto R2n ⊂ Rm to
obtain a simple 2-vector τ̃(x). Then we get that ω0(τ̃(x)) = 1 +O(|x|) and that therefore

‖τ(x)−τ̃(x)‖ = O
(
|x| 12

)
. Setting τ̄(x) := τ̃

‖τ̃‖ from Lemma 6.13 in the paper by R. Harvey

and B. Lawson (see Lemma C.4 in appendix C) we know that there exists a unitary basis
e1, J0e1, . . . , en, J0en of R2n such that τ̄(x) = e1 ∧ (J0e1 cos θ + e2 sin θ) for some angle
θ ∈ [0, 2π]. Then the 2-vector τ0(x) := e1 ∧ J0e1 is of mass 1 and calibrated by ω0.

Thus it remains to show that ‖τ(x)− τ0‖ = O
(
|x| 12

)
. To see this note that it suffices to

estimate ‖τ̃(x) − τ0‖2 = ‖ ‖τ̃‖e2 − J0e1‖2. From the construction of τ̃ we already know
that ω0(τ̃(x)) = 1 + O(|x|), therefore deduce ‖ ‖τ̃‖e2 − J0e1‖2 = O(|x|) and the proof of
the Lemma is completed. �

Next we will show that if dilated sufficiently far, the current will avoid a conical region
near {0} ×Rm−2n, i.e. where the map π̃ is not defined. Precisely, we have the following
Lemma:

Lemma 1.13 Let R2n ⊂ Rm, C and ω be as above. Then there exists a radius r0 > 0
such that for all radii 0 < r ≤ r0 and any smooth compactly supported 2-form ψ ∈∧2 (B1(0) \

{
x ∈ B1(0) : dist (x,R2n) ≤ 1

2
|x|
})

Cr,0(ψ) = 0 .

Proof. We argue by contradiction. If the Lemma is false, there exist sequences of radii
rn −→ 0 and smooth 2-forms ψn ∈

∧2(B1(0)) such that Crn,0 converges to some tangent
cone C∞,0 and

sptψn ⊂ Ec ,

with E :=
{
x ∈ B1(0) : dist (x,R2n) ≤ 1

2
|x|
}

, yet for all n ∈ N

Crn,0(ψn) 6= 0 .

Then there exist xn ∈ Ec with limr→0M(Cr,xn) 6= 0 and from the monotonicity formula
we get that

M

(
Crn|xn|,0 B 1

2

(
xn
|xn|

))
≥ 1

16
π .

Taking a subsequence so that xn
|xn| −→ x∞ (with x∞ ∈ Ec) we have

M
(
Crn|xn|,0 B 3

8
(x∞)

)
≥ 1

16
π .

Since we also have∣∣∣Crn|xn|,0 B 3
8
(x∞)

(
(rn|xn|)2λrn|xn|,0

∗
ω − ω0

)∣∣∣
≤ M(Crn|xn|,0 B 3

8
(x∞))

∥∥∥(rn|xn|)2λrn|xn|,0
∗
ω − ω0

∥∥∥
∞
−→ 0 ,

we conclude that we would get

C∞,0 B 3
8
(x∞)(ω0) ≥ 1

16
π .
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This contradicts the fact from Proposition 1.5 and the remark following it, namely that
C∞,0 is the union of ω0-calibrated disks which are supported in R2n and thus in E.
Therefore the Lemma holds true. �

The proof is an adaptation of the proof of (III.3) in Lemma III.1 in the paper by T. Riviére
and G. Tian [71] where they arrived at a much stronger conclusion using the additional
fact that the tangent cones are unique which at this point is clearly unavailable for us.

Since the dilated current Cr0,0 is a 2-cycle calibrated by r2
0 (λr0,0)

∗
ω which equals ω0

at the origin, without loss of generality we can assume that the radius r0 given by Lemma
1.13 is in fact equal to 1 for otherwise we replace C by Cr0,0. Consequently, the ‖C‖-
measure of Ec in the proof above equals 0. The next step in the proof is to combine
Lemmas 1.6, 1.12 and 1.13 to obtain an analogous version of (1.7) for π̃ instead of π.
From Lemmas 1.6 and 1.12 we obtain that point-wise ‖C‖-a.e. for r0 sufficiently small〈

τ,
∧

2
π̃
〉
∼= (1± C1|x|

1
2 )
〈
τ̄ ,
∧

2
π
〉

∼=
〈
e1 ∧ (J0e1 cos θ + e2 sin θ),

∧
2
π
〉

∼=
1

|x|2

[
| cos θ|

∣∣∣∣e1 ∧ J0e1 ∧
∂

∂r
∧ J0

∂

∂r

∣∣∣∣± | sin θ| ∣∣∣∣e1 ∧
∂

∂r
∧ J0

∂

∂r

∣∣∣∣]
∼=

1

|x|2

[∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 ± C1|x|
1
2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣
]
. (1.19)

To show (1.7) for π̃ we first estimate the last term of (1.19) by C1|x|
1
2 . For the resulting

term we have that for 0 < s < r ≤ r0 (with r0 the radius given by the almost monotonicity
formula) ∫

Br\Bs(0)

1

|x| 32
d‖C‖ . M(C Br(0))

s
3
2

. r
1
2

(r
s

) 3
2 M(C Br0(0))

r2
0

.

Consequently, iterating this for s ∈ [r/2, r]∫
Br\B r

2n
(0)

1

|x| 32
d‖C‖ .

n−1∑
i=0

( r
2i

) 1
2

≤ C1
r

1
2

1− 2−
1
2

.

Since the right-hand side is independent of n ∈ N we can take the limit n −→ ∞ and
obtain the estimate ∫

Br(0)

1

|x| 32
d‖C‖ ≤ C1r

1
2 .

This allows us to deduce

M(π̃∗[C Br \Bs(0)]) =

∫
Br\Bs(0)

〈
τ,
∧

2
π̃
〉
d‖C‖

∼=
∫
Br\Bs(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖ ± C1r
1
2 .
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Thus, to prove (1.7) for π̃ it suffices to show this for
∫
Br(0)

1
|x|2
∣∣τ0 ∧ ∂

∂r

∣∣2 d‖C‖. However,

essentially the same argument relates this term to the almost monotonicity formula leading
to

M(π̃∗[C Br \Bs(0)])± C1r
1
2 ∼=

M(C Br(0))

r2
− M(C Bs(0))

s2

therefore proving (1.7) for π̃.
In fact, we can prove even more. Going back to the second term on the right-hand side
of (1.19) we note that Cauchy-Schwarz’ inequality and an argument analogous to the one
above shows

∫
Br(0)

1

|x| 32

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣ d‖C‖ ≤
(∫

Br(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
) 1

2 (∫
Br(0)

1

|x|
d‖C‖

) 1
2

≤ C1

(∫
Br(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
) 1

2

r
1
2 .

Combining this with (1.19) we obtain

M(π̃∗[C Br(0)]) ∼=

(∫
Br(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
)

±C1

(∫
Br(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
) 1

2

r
1
2 (1.20)

and analogously for ωCPn−1

〈π̃∗[C Br(0)], ωCPn−1〉 ∼=

(∫
Br(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
)

±C1

(∫
Br(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
) 1

2

r
1
2 . (1.21)

We also have the following version of Lemma 1.8 with exactly the same proof:

Lemma 1.14 Given 0 < r < r0, there exists ρ0 ∈
[
r
2
, r
]

such that the following hold:

1. M(〈C, | · |, ρ0〉) ≤ C1ρ0 ,

2.
∫
∂Bρ0 (x0)

|〈τ,
∧

2π̃〉|d〈C, | · |, ρ0〉 ≤ 1
ρ0

∫
Br\B r

2
(x0)
|〈τ,

∧
2π̃〉|d‖C‖ ,

3. M(π̃∗∂[C Bρ0(x0)]) ≤ C1

∫
−
r

r
2

[∫
∂Bρ

1
|x|

∣∣τ0 ∧ ∂
∂r

∣∣ d〈C, | · |, ρ〉] dρ .
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Before we come to the version of Lemma 1.9 we again restrict to radii of the form r = 1
2j

.
Again we partition the set of indices into two subsets:

A :=

{
j ∈ N : M

(
π̃∗

[
C B 1

2j+1
(x0)

])
≤ 1

2
M
(
π̃∗

[
C B 1

2j
(x0)

])

or

(∫
B 1

2j+1
(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
) 1

2

≤ C1 · 1000 ·
(

1

2j+1

) 1
2

}
,

B :=

{
j ∈ N : M

(
π̃∗

[
C B 1

2j+1
(x0)

])
>

1

2
M
(
π̃∗

[
C B 1

2j
(x0)

])

and

(∫
B 1

2j+1
(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
) 1

2

> C1 · 1000 ·
(

1

2j+1

) 1
2

}
.

As before, the aim of the remainder of this section will be to prove the existence of a
constant θ ∈ (0, 1) for an analogous version of estimate (1.8) for j ∈ B. To see why this
leads to a rate of convergence first note that for j ∈ A either estimate (1.8) holds true
with θ = 1

2
or (1.20) implies that M(π̃∗[C B 1

2j+1
(0)]) ≤ C1

1
2j+1 . Thus for any j ∈ N we

have

M(π̃∗[C B 1

2j
(0)]) ≤

{
C1θ

k2−j+k for some k ∈ [1, j − 1]
θjM(π̃∗[C B1(0)]) otherwise

≤ C1

(
1

2j

)γ
,

where we choose γ so small that θ ≤ 2−γ. Thus it remains to work with j ∈ B which
means that from (1.20) we can assume

M(π̃∗[C B 1

2j+1
(0)]) ∼= C1

(
1± 1

1000

)(∫
B 1

2j+1
(0)

1

|x|2

∣∣∣∣τ0 ∧
∂

∂r

∣∣∣∣2 d‖C‖
)
.

With this we immediately have the result of Lemma 1.9 for π̃

Lemma 1.15 There exists C1 > 0 such that if j ∈ B and ρj ∈
[

1
2j+1 ,

1
2j

]
denotes a good

slice from Lemma 1.14. Then

M(π̃∗∂[C Bρj ]) ≤ C1

[
M(π̃∗C Bρj

] 1
2 .

We now have all the necessary ingredients to formulate the adapted version of Lemma
1.5.

Lemma 1.16 Given a constant C1 > 0 and η > 0 small, there exist δ > 0 and ε > 0 with
the following properties:
Let T ∈ I2(CPn−1) be an integral 2-current satisfying

1. T is almost calibrated by ωCPn−1, i.e. M(T U) ∼=
(
1± 1

1000

)
〈T U, ωCPn−1〉 for all

U ⊂ CPn−1,
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2. M(T ) +M(∂T ) < δ,

3. M(∂T ) ≤ C1[M(T )]
1
2 .

Then there exists a tubular neighbourhood Aε ⊂ CPn−1 of width ε with core consisting of
a CPn−2 ⊂ CPn−1 such that

M(T Aε)

ε2
≤ ηM(T ) .

The only effect on the proof comes in the step where the isoperimetric inequality is
applied. However, suppose that T is as above and that ∂(T Aε) = (∂T ) Aε for some
tube Aε ⊂ CPn−1. Then there exists an integral 2-current R ∈ I2(CPn−1) such that

∂R = ∂(T Aε) with M(R)
1
2 ≤ C1M(∂(T Aε)). Since R is homologous to T Aε, i.e.

there exists an integral 3-current S ∈ I3(CPn−1) such that ∂S = T Aε −R, we have

M(T Aε) ≤ C1〈T Aε, ωCPn−1〉 = C1〈T Aε −R,ωCPn−1〉+ C1〈R,ωCPn−1〉
≤ C1〈S, dωCPn−1〉+ C1M(R) = C1M(R)

showing that M(T Aε)
1
2 ≤ C1M(∂(T Aε)). Other than that the argument can be

carried over word for word.
Furthermore, since all the relevant Lemmas are still valid for π̃, the proof of the rate of
convergence in section 1.6 is not affected by the small perturbation. Hence the proof of
Theorem 1.2 is completed.

1.8 Uniqueness of tangent cones

Although the passage from Theorem 1.2 to Theorem 1.1 had already been shown by
B. White in [94] we will include his proof for the sake of completeness. The proof is
directly taken from part (b) of Theorem 3 in [94].
As before we will assume that the coordinates are chosen so that in these coordinates x0

is identified with 0. Let F : Rm −→ Sm−1 be the radial projection on Rm sending x to
x
|x| . If we can show that for 0 < s < r the quantity M(F∗[C Br \ Bs(0)]) tends to 0 as
first s and then r tend to 0, i.e.

lim
r→0

lim
s→0

M (F∗ [C Br \Bs(0)]) = 0 , (1.22)

then uniqueness of tangent cones will follow immediately — compare this with esti-
mate (1.7) for the projection under π. To see this, first consider two sequences {ρi}
and {ρ̄i} so that λρi,0∗ [C Bρi(0)] B1(0) and λρ̄i,0∗ [C Bρ̄i(0)] B1(0) converge in the
F -norm (see 4.1.24 in [25] for the definition) to tangent cones C∞,0 and C̄∞,0 respec-
tively. As an immediate consequence we also have that ∂λρi,0∗ [C Bρi(0)] B1(0) and
∂λρ̄i,0∗ [C Bρ̄i(0)] B1(0) converge in the F -norm to ∂C∞,0 and ∂C̄∞,0 respectively. By
the structure of tangent cones result in Lemma 1.5 we know that the two tangent cones
are equal provided we can show that ∂C∞,0 = ∂C̄∞,0 in the F -norm. We will do this by
proving that ∂λρi,0∗ [C Bρi(0)] B1(0) − ∂λρ̄i,0∗ [C Bρ̄i(0)] B1(0) converges to 0. Since
for almost all 0 < s < r we have

∂F∗ [C Br \Bs(0)] = ∂λr,0∗ [C Br(0)]− ∂λs,0∗ [C Bs(0)] ,
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the definition of the F -norm implies that

∂λρi,0∗ [C Bρi(0)] B1(0)− ∂λρ̄i,0∗ [C Bρ̄i(0)] B1(0) ≤M(F∗ [C Bρi \Bρ̄i(0)]) ,

which from (1.22) we know tends to 0.
Therefore it remains to prove (1.22). Using first the definitions, Schwarz’ inequality, and
the monotonicity formula for all 0 < s < r ≤ r0 we compute

M (F∗ [C Br \Bs(0)]) =

∫
Br\Bs(0)

〈
τ(x),

∧
2

F (x)

〉
d‖C‖

.
∫
Br\Bs(0)

1

|x|2

∣∣∣∣τ(x) ∧ ∂

∂r

∣∣∣∣ d‖C‖
.

(∫
Br\Bs(0)

1

|x|2

∣∣∣∣τ(x) ∧ ∂

∂r

∣∣∣∣2 d‖C‖
) 1

2

·
(∫

Br\Bs(0)

1

|x|2
d‖C‖

) 1
2

.

(
M(C Br(0))

r2
−Θ(‖C‖, 0)

) 1
2

·
(r
s

)(M(C Br(0))

r2

) 1
2

From Theorem 1.2 we can bound the first term on the right-hand side above by C1r
γ
2

whilst the last one is taken care of by the monotonicity formula. Therefore, if we only
consider r/2 ≤ s < r, we obtain the estimate

M (F∗ [C Br \Bs(0)]) ≤ C1r
γ
2 . (1.23)

Iterating this when s = r
2n

for n ∈ N we have

M
(
F∗
[
C Br \B r

2n
(0)
])

=
n−1∑
i=0

M
(
F∗

[
C B r

2i
\B r

2i+1
(0)
])

≤
n−1∑
i=0

C1

( r
2i

) γ
2

≤ C1
r
γ
2

1− 2−
γ
2

.

Since the right-hand side of this estimate is independent of n, we can immediately deduce
estimate (1.22) which we wanted to show. Thus we proved that Theorem 1.1 is a direct
consequence of Theorem 1.2.

1.9 Outlook I: Poincaré inequalities

In the following two sections we look at possible extensions of the above techniques. As a
first attempt one would like to extend the proof to higher dimensional currents. In other
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words, let C be an integral k-cycle in Rm which is calibrated by a smooth closed k-form
ω — for simplicity we restrict ourselves to the case of a smooth calibration on Rm. In
particular, to illustrate the ideas consider the case where C is calibrated by ω = 1

k!
ωk0 on

R2m, where ω0 is again the standard symplectic form on R2m. The monotonicity formula
for such a 2k-cycle is given by

M(C Br(x0))

α(2k)r2k
− M(C Bs(x0))

α(2k)s2k
∼=
∫
Br\Bs(x0)

1

|x|2k

∣∣∣∣τ ∧ ∂

∂r

∣∣∣∣2 d‖C‖ .
As in the special case when k = 1 we can relate this to the mass of π∗C Br \ Bs(x0)
which is calibrated by 1

k!
ωk

CPm−1 again since π is J0 − j0-holomorphic. We have

M(π∗C Br \Bs(x0)) ∼= 〈C Br \Bs(x0), π∗ωkCPm−1〉 ∼=
M(C Br(x0))

α(2k)r2k
−M(C Bs(x0))

α(2k)s2k
,

showing that as before M(π∗C Br(x0)) is well-defined and converges to 0 as r −→ 0.
Therefore, one of the main ingredients of our proof is still valid in this higher dimensional
setting relating a rate of convergence for C to a rate of convergence for M(π∗C Br(x0)).
Our proof in the special case when k = 1 above can be summarised in two main steps:

Step 1 (Integration by parts): Lemmas 1.5-1.11 allowed us to integrate by parts.
More precisely, we could show the existence of a (2k−1)-form α on CPm−1 with |∇α| ≤ C1

(component-wise in a fixed finite atlas) such that∫
Br(x0)

1

k!
π∗ωkCPm−1 d‖C‖ =

∫
Br(x0)

d(π∗α) d‖C‖ .

Step 2 (Poincaré inequality): The other main estimate in section 1.6 is the Poincaré-
type inequality we proved on 〈C, | · |, r〉 which in this more general case would ask for
existence of a constant C1 such that, when ᾱ denotes the average of α on each connected
component of 〈C, | · |, r〉,∫
∂Br(x0)

|α− ᾱ|2k d〈C, | · |, r〉 ≤ C1M(∂[C Br(x0)])
2k

2k−1 ·
(∫

∂Br(x0)

|∇α|2k d〈C, | · |, r〉
)
.

Combining these estimates as in section 1.6 together with a variant of Lemma 1.8 we
would be able to deduce a rate of convergence as before.

Generalising this even further we suggest the following three open problems leading
to a blow-up rate for k-cycles which are calibrated by certain smooth k-forms ω of unit
comass.

Open Problem 1.1 (Geometric structure of calibrations) For a smooth calibrat-
ing k-form ω on Rm and x0 ∈ Rm, denote the space of oriented k-planes through x which
are calibrated by ω(x) by Gx0(ω). Furthermore, denote the union of the Gx0(ω) by G(ω).
For which calibrations ω do there exist projections π from Rm \{x0} onto a smooth closed
manifold N of dimension n < m such that for some closed calibrating k-form ω̃ on N

1. |∇π(x)| ∼= 1
|x−x0| for all x ∈ Rm ,
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2. 〈τ, π∗ω̃〉 ∼= 1
|x−x0|k

∣∣τ ∧ ∂
∂r

∣∣2 for all τ ∈ G(ω) ?

Open Problem 1.2 (Integration by parts) Using the same notation as above, does
there exist a constant C1 such that for any calibrated k-cycle there exists a smooth (k−1)-
form α on N with |∇α| ≤ C1 and∫

Br(x0)

〈τ, π∗ω̃〉 d‖C‖ =

∫
Br(x0)

〈τ, d(π∗α)〉 d‖C‖ ?

Open Problem 1.3 (Poincaré-type inequality) Does there exist a constant C1 such
that for any (k − 1)-form α above we have, when ᾱ denotes the average of α on each
connected component of C B2r \Br(x0),∫

B2r\Br(x0)

|α− ᾱ|k d‖C‖ ≤ C1M(C B2r(x0)) ·
(∫

B2r\Br(x0)

|∇α|k d‖C‖
)

?

Assuming these steps we now show that a slight modification of the approach in
section 1.6 will give a rate of convergence. To see this, first consider a cut-off function
φ : (0,∞) −→ [0, 1] such that φ(ρ) = 1 for ρ ≤ r, φ(ρ) = 0 for ρ ≥ 2r and φ(ρ) ≤ 0 with
|φ′(ρ)| ≤ C1

1
ρ
. With this and the properties of φ we compute∫

Br(x0)

|∇π|k d‖C‖ ≤
∫
B2r(x0)

|∇π|kφ(|x− x0|) d‖C‖

=

∫
B2r(x0)

π∗ω̃ φ(|x− x0|) d‖C‖ .

Integrating by parts we deduce∫
B2r(x0)

π∗ω̃ φ(|x− x0|) d‖C‖ =

∫
B2r(x0)

π∗dα φ(|x− x0|) d‖C‖

=

∫
B2r(x0)

dπ∗α φ(|x− x0|) d‖C‖

= −
∫
B2r\Br(x0)

π∗α ∧ dφ(|x− x0|) d‖C‖

which we can estimate using the properties of φ and Hölder’s inequality

−
∫
B2r\Br(x0)

π∗α ∧ dφ(|x− x0|) d‖C‖ ≤ C1
1

r

∫
B2r\Br(x0)

|α− ᾱ| |∇π|k−1 d‖C‖

≤ C1
1

r

(∫
B2r\Br(x0)

|α− ᾱ|k d‖C‖
) 1

k

·
(∫

B2r\Br(x0)

|∇π|k d‖C‖
) k−1

k

.

Then the Poincaré-type inequality on C B2r \Br(x0) yields(∫
B2r\Br(x0)

|α− ᾱ|k d‖C‖
) 1

k

≤ C1
1

r
M(C B2r(x0))

1
k

(∫
B2r\Br(x0)

|∇α|k d‖C‖
) 1

k
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which together with the fact that |∇α| ≤ C1, M(C) ≤ C1 < ∞ and the monotonicity
formula applied to M(C B2r(x0)) gives∫

Br(x0)

|∇π|k d‖C‖ ≤ C1
1

r
· r
∫
B2r\Br(x0)

|∇π|k d‖C‖ = C1

∫
B2r\Br(x0)

|∇π|k d‖C‖ .

Filling the hole, a rate of convergence for M(π∗C Br(x0)) would follow as before.

Of these three problems, finding a Poincaré-type inequality seems to be the most
difficult one and is in fact an interesting question in its own right. One possible attempt
in this direction is to embed the problem into the context of analysis on metric spaces.
To do this, first consider the support spt ‖C‖ of the integral k-cycle C in Rm which is
calibrated by a smooth k-form ω. This is a compact subset of Rm which we will consider
as metric space with the distance function d inherited from the usual distance function
on Rm and the triple (spt ‖C‖, d, ‖C‖) forms a metric measure space. Furthermore, from
the fact that M(C) ≤ C1 < ∞, the fact that the density of ‖C‖ is at least 1 almost
everywhere and the monotonicity formula, for all x0 ∈ spt ‖C‖ and all r > 0 we have

‖C‖(B2r(x0)) ≤ C1α(k)2krk ≤ C1α(k)2krk
‖C‖(Br(x0))

α(k)rk
= C12k‖C‖(Br(x0)) .

Therefore ‖C‖ satisfies the doubling property at all x0 ∈ spt ‖C‖. Having shown this
doubling property we can extend the Open problem 1.3 to a Poincaré inequality for the
restriction of arbitrary smooth functions on an open subset of spt ‖C‖.

Open Problem 1.4 For an integral current C as before let U ⊂ Rm be a bounded open
subset containing spt ‖C‖ and let f ∈ C1

0(U). Does there exist a constant C1 > 0 depend-
ing only on k, m and the mass of C such that for all x0 ∈ spt ‖C‖, all r > 0 and any
1 ≤ p < ∞ (and thus in particular for p = k), when f̄ denotes the average of f on each
connected component of C Br(x0),∫

Br(x0)

|f − f̄ |p d‖C‖ ≤ C1r
p

∫
Br(x0)

|∇f |p d‖C‖ ?

For 1 ≤ p < k such an inequality seems to be a direct consequence of the monotonicity
formula together with the lower density bound and was proved by J. Michael and L. Simon
in [56] (see also chapter 18 in the book [76] by L. Simon). However, in the cases of p ≥ k
more information on spt ‖C‖ is needed and such an inequality is not known to us, although
the question of Poincaré inequalities on doubling metric measure spaces has been studied
intensely. As introduction to this subject we recommend the book by L. Ambrosio and
P. Tilli [7] for a general overview and the book by J. Heinonen [39] for the geometric issues
involved in finding such an inequality. These and in particular the relevance of existence of
large families of curves together with good estimates are discussed further in the lecture
notes by G. David and S. Semmes [21] and the paper by S. Semmes [75]. The book by
P. Haj lasz and P. Koskela [34] (see also their paper [35]) specialises on the relationship
between Poincaré and Sobolev inequalities on doubling metric measure spaces and also
serves as a very good starting point for delving deeper into the subject.
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1.10 Outlook II: Normal currents

Another possible extension would be to reduce the regularity assumptions on the cur-
rent. As we showed in section 1.2, the monotonicity formula for calibrated cycles is still
valid for merely normal currents, dropping the assumptions that the support spt ‖C‖ is
a k-rectifiable set and that the density is almost everywhere at least 1. Apart from the
monotonicity formula leading to the existence of tangent cones, with Lemma 1.7 another
main ingredient of our approach to a rate of convergence and uniqueness of tangent cones
remains available. However, as we will explain below, there is no hope that Lemmas 1.5
and the Poincaré inequality can both be extended to this case, since in the setting of
complex analysis of several complex variables non-uniqueness results were obtained.

For the setting in the theory of several complex variables, we consider Cm with the
closed (1, 1)-form ω = i

2

∑m
j=1 dzk ∧ dz̄k ∈

∧1,1(Cm) which is the same as the standard

symplectic 2-form on R2m we used before. We then define the (p, p)-currents, denoted
Dp,p(Cm), to be the continuous linear functionals on the compactly supported (m −
p,m − p)-forms

∧m−p,m−p
c (Cm) and define a (p, p)-current T to be real if T = T̄ , i.e.

if 〈T, ψ〉 = 〈T, ψ̄〉 for all ψ ∈
∧m−p,m−p
c (Cm). It is important to be aware that these

currents correspond to real 2m− 2p-currents as defined at the beginning of this chapter,
i.e. that a (p, p)-current means a real codimension 2p-current in R2m. Furthermore, a
real (p, p)-current is called positive in case for all η ∈

∧m−p,0
c (Cm),

ip(p−1)/2〈T, η ∧ η̄〉 ≥ 0 .

The notion of a closed real (p, p)-current remains the same, i.e. ∂T = 0. One can then im-
mediately check that for any subset U ⊂ Cm, T U is calibrated by the closed (p, p)-form
given by 1

p!
ωp which implies that a monotonicity formula holds for T . Historically, positive

(p, p)-currents were introduced by P. Lelong as an outcome of his study of plurisubhar-
monic functions (an extension of the usual subharmonic functions) in [50]. He also proved
the monotonicity formula in this case leading to the notion of ‘Lelong numbers’ which, in
geometric measure theory terms, are precisely the densities of the measure ‖T‖ associated
with T . For an introduction to the study of positive (p, p)-cycles and their connection
with plurisubharmonic functions we refer to the book by P. Lelong [51], whereas applica-
tions of such currents to complex analysis are discussed in chapter 3 of the book [31] by
P. Griffiths and J. Harris.
Since in this setting tangent cones exist and are calibrated by 1

p!
ωp it is a natural question

to ask for their uniqueness. Furthermore, since at a point where the 2-density of ‖T‖
equals 0 any tangent cone has to have mass equal to 0, the only problems could arise at
points of positive 2-density. In [37], R. Harvey had conjectured that uniqueness should
hold at all points in the support of T , which was answered negatively by C. Kiselman in
[47]. There he constructed a counter-example by reducing to plurisubharmonic functions
and showing the existence of a plurisubharmonic function with at least two functions tan-
gent to it. In fact, he could prove a much stronger result, in that he precisely described
which subsets M of PSH(Cm), denoting the set of plurisubharmonic functions on Cm, can
be obtained as the set of tangent cones of some plurisubharmonic functions. In particular,
he proved that M is closed and connected in the topology induced by L1

loc(C
m) and gave
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examples of plurisubharmonic functions admitting a whole curve of tangent functions in
PSH(Cm). Further results in this direction were obtained by M. Blel, J.-P. Demailly and
M. Mouzali in [14] as well as by M. Blel in [12] and [13].
Recall that the original goal was to obtain regularity results and in particular estimates
on the size of the singular sets of calibrated currents. Despite the fact that tangent cones
of (p, p)-currents are not unique, Y.-T. Siu could prove a strong regularity result in [80]
completely avoiding the use of tangent cones (non-uniqueness had not been known at the
time). Given a closed positive (p, p)-current T on an open subset Ω ⊂ Cm and a positive
number c > 0, denote the set of points where the 2p-density of ‖T‖ (the Lelong number)
is at least c by Ec ⊂ Ω. Then Y.-T. Siu showed that Ec is an analytic subvariety of
(complex) codimension at least p in Ω.

Using this last result as a guideline, we would like to end this section by showing that
a similar result on almost complex manifolds could have interesting applications. In their
paper [70], T. Rivière and G. Tian proved that the singular set of a weakly approximable
J-holomorphic map u : (M4, J) −→ CP1 from a 4-dimensional almost complex manifold
into CP1 consists of isolated points (see chapter 2 for the precise definitions). There they
showed local existence of a 2-form ω on B4 ⊂ M4 which is compatible with J and of
comass 1. Defining a (1, 1)-current C on B4 by 〈C,ψ〉 :=

∫
B4 u

∗ωCP1 ∧ψ for ψ ∈
∧2

0(B4),
they showed that this C is a finite mass 2-cycle calibrated by ω.
From now on we divert from their approach. Since the map u is weakly and stationary
harmonic (see chapter 2 sections 2.2 and 2.3 or chapter 3 section 3.1 for details), it sat-
isfies a monotonicity formula and the ε0-regularity theorem shows that u is smooth aside
from a singular set singu := {x ∈ B4 |Θu(x) ≥ ε0 > 0} which has 2-Hausdorff measure
equal to 0. The density of u at each point is the same as the density of C so that the
singular set singu corresponds precisely to the set Eε0 in the above paragraph. Supposing
one can show an analogous version of the theorem by Y.-T. Siu in this case, we would
conclude that the singular set of u were a smoothly immersed J-holomorphic curve. Since
the 2-Hausdorff measure of singu vanishes, it would follow that the singular set contains
only finitely many isolated points in B4.
This would give an alternative approach to the problem studied by T. Rivière and G. Tian
in [70], but could also be applicable in other contexts where the singular set is a calibrated
2-current such as anti self-dual instantons on 6-dimensional manifolds (see the survey pa-
per by G. Tian [87]) etc.

This suggests to study the following open problem:

Open Problem 1.5 Let C be a normal 2-cycle in Rm which is calibrated by a smooth
2-form ω on Rm with comass 1. For any c > 0 consider the closed subset Ec := {x ∈
Rm |Θ(‖C‖, x) ≥ c}. Can Ec be identified with a smoothly immersed 2-dimensional
submanifold of Rm ?

Naturally there are many higher dimensional extensions of this question, but finding a
positive answer would already be extremely interesting even in the case when ω is a
symplectic 2-form on R4, since to some extend this could serve as the model situation.



Chapter 2

J-holomorphic maps

Abstract

The aim of this chapter is to prove regularity results for J-holomorphic maps from an
almost complex manifold into a tamed symplectic manifold. First we derive a second order
elliptic equation and a monotonicity formula for them. Next we prove an ε-regularity result
for J-holomorphic maps avoiding the use of moving frames. Under further topological
assumptions on the target, using a slicing argument we then prove a rate of convergence for
them and uniqueness of tangent maps is deduced. Finally, we outline how this assumption
may be removed for the general case.

2.1 Introduction

In this chapter we obtain regularity results for weakly J-holomorphic maps between man-
ifolds and begin by describing the geometric setting. Let (M,JM) and (N, JN) be closed
(compact without boundary) almost complex manifolds, where M has dimension 2m. We
consider N to be given an almost Hermitian structure (N, JN , h) and to be isometrically
embedded in R2n for some n. Furthermore, we assume that on N there exists a closed
2-form ωN such that ω1,1 > 0 and such that there is C1 > 1 with

C−1
1 |X|h|Y |h ≤ |ωN(X, Y )| ≤ C1|X|h|Y |h ,

for all y ∈ N and all X, Y ∈ TyN . This means that we assume the target manifold to
be a tamed symplectic manifold. In addition, let g be a smooth metric on M such that
g(·, JM ·) defines a 2-form ωM on M which need not be closed. For simplicity, one can
always think of M and N as being closed almost Kähler manifolds
We can then define the following Sobolev space of maps from M into N by

W 1,2(M,N) := {u ∈ W k,p(M,R2n) |u(x) ∈ N for a.e. x ∈M} .

A map u ∈ W 1,2(M,N) is called J-holomorphic between M and N if it preserves their
almost complex structures, i.e.

dux(JM(x)X) = JN(u(x))dux(X) for a.e. x ∈M and all X ∈ TxM ,
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which is a non-linear first order equation for the map u. In addition, we will assume that
the map u is locally approximable on M which means that for any ball B̄ ⊂ M there
exists un ∈ C∞(M,N) such that un → u strongly in W 1,2(B,N). Consequently, any such
map in particular satisfies

d(u∗ωN) = 0

in the sense of distributions (see the paper [36] by F. Hang and F. Lin for details).
Throughout this chapter we will assume our J-holomorphic maps to be locally approx-
imable, although it is not clear whether such an assumption is really necessary, as it is
conjectured that all weakly J-holomorphic maps are locally approximable.
Since for m ≥ 2 the canonical projection π : B1 ⊂ Cm −→ CPm−1 is in fact a locally ap-
proximable J-holomorphic map which is in W 1,2(B1,CPm−1), having a singularity at the
origin, it is clear that we cannot expect J-holomorphic maps to be everywhere smooth.
The aim is therefore to describe the singular set of these maps which is defined as

singu := M \ {x ∈M |u ∈ C∞(B,N) for some ball B ⊂M containing x} .

It is conjectured that the singular set of J-holomorphic maps satisfies

H2m−4(singu) <∞ .

As a first result in this direction, in [70] T. Rivière and G. Tian showed this to be true in
case M is an almost complex manifold of real dimension 4 and the target is an algebraic
variety in some CPN . Following their work and the paper [54] by F. Lin, C.-Y. Wang in
[92] obtained, under additional assumptions, that H2m−2(singu) = 0. The aim of the first
part of this chapter is to give a more direct proof of this last fact in the general setting
above.
The theorems we want to prove for J-holomorphic maps are of a local nature, so we restrict
ourselves to the case where M is a smooth bounded open subset Ω of R2m. However, it is
important to note that we do not assume the almost complex structure to be the standard
one. For a map u ∈ W 1,2(Ω, N) and a ball of radius r > 0 centred at x0 ∈ Ω, denoted by
Br(x0), we define the rescaled Dirichlet energy E(u, r, x0) of u on Br(x0) to be

E(u, r, x0) :=
1

r2m−2

∫
Br(x0)

|∇u|2 dx .

The first result we obtain is an ε-regularity theorem which we state as follows:

Theorem 2.1 Let (N, JN , ωN) be a closed, tamed symplectic manifold, isometrically em-
bedded in R2n, and let Ω ⊂ R2m be a smooth bounded open domain. Let u ∈ W 1,2(Ω, N)
be a locally approximable J-holomorphic map. Then there exists ε > 0 depending only on
Ω and (N, JN , ωN) but independent of u, such that for each point x0 ∈ Ω for which there
exists some r > 0 with

E(u, r, x0) ≤ ε

we have

u ∈ C∞(B r
4
(x0), N) .
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The proof of Theorem 2.1 is similar to the proof of the analogous theorem for stationary
harmonic map and one can to some extend view this result as a consequence of the second
order properties of J-holomorphic maps. For a discussion of the regularity theory of
(stationary) harmonic maps we refer the reader to the introduction of chapter 3. We
first derive two second order elliptic equations for u. The first one is shown to imply
that there exists a function f ∈ H1(B 3r0

4
(x0)) (the Hardy space on B 3r0

4
(x0)) such that

∆̃u = f , where ∆̃ is an invertible perturbation of the usual Laplace operator ∆ — this
is obtained without the use of moving frames (see chapter 3 for further references). The
second equation is used to prove an almost monotonicity formula for the rescaled Dirichlet
energy. Combining these two facts with the well-known duality of Hardy space and BMO
(see for instance the book [81] by E. Stein for details) we deduce a Morrey decay rate for
E(u, r, x0), from which the result follows by an iteration and bootstrapping argument.
As an immediate consequence of this Theorem and the almost monotonicity formula, we
obtain the following

Corollary 2.2 Let (N, JN , ωN) and u ∈ W 1,2(Ω, N) be as in Theorem 2.1. Then u is
smooth outside a closed singular set singu with H2m−2(singu) = 0.

For our next result we need an extra assumption on the topology of N . Let H2(N)
denote the second homology group of N . A homology class B ∈ H2(N) is called spherical
if it is in the image of the Hurewicz homomorphism H : π2(N) −→ H2(N). From now
on we assume that N does not have any spherical homology classes which in particular
implies that N does not support any pseudo-holomorphic sphere, i.e. a non-constant
smooth J-holomorphic map φ : (S2, j) −→ (N, JN). We would like to point out that
this assumption seems to be technical and in general unnecessary and refer the reader to
section 2.8 for a possible bypass.
The proof of Theorem 2.1 above produces a (Morrey) decay rate for E(u, r, x0) provided
x0 /∈ singu. From the (almost) monotonicity formula for E(u, r, x0) we deduce that at all
points x0 ∈ Ω the density of u at x0 exists which is defined by

Θu(x0) := lim
r→0

E(u, r, x0) .

Thus, the ε-regularity theorem immediately implies that singu = {x ∈ Ω |Θu(x) 6= 0},
so that the above decay rate shows how fast E(u, r, x0) decays to the density at x0 —
provided x0 /∈ singu. It would of course be interesting to understand what happens
at points in the singular set, i.e. when x0 ∈ singu. Under the additional topological
assumption that there are no pseudo-holomorphic spheres in N , we were able to obtain
such a rate of convergence even at singular points of u.

Theorem 2.3 Let (N, JN , ωN) be a closed, tamed symplectic manifold, isometrically em-
bedded in R2n and assume that there are no pseudo-holomorphic spheres in N . Further-
more, let Ω ⊂ R2m be a smooth bounded open domain. Let u ∈ W 1,2(Ω, N) be a locally
approximable J-holomorphic map. Then there exist r0 > 0, γ ∈ (0, 1) and C > 0 all
independent of u such that for any x0 ∈ Ω and any 0 < r ≤ r0

1

r2m−2

∫
Br(x0)

|∇u|2 dx−Θu(x0) ≤ Crγ .
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The main idea of the proof is to use the projection π : Cm \ {0} −→ CPm−1 already used
in the previous chapter. The monotonicity formula together with the co-area formula
shows that for almost every p ∈ CPm−1 the restriction of u to π−1(p) is a J-holomorphic
map with finite energy. Since N does not support pseudo-holomorphic spheres, these
maps satisfy a common decay rate which upon integration over all planes p ∈ CPm−1

yields the desired rate of convergence.

Naturally, this result should be compared with Theorem 1.2 in the previous chapter
and in fact has similar consequences. For a locally approximable J-holomorphic map
u(x), for any point x0 ∈ Ω and for any radius 0 < r ≤ r0 we define the rescaled
map ur,x0(x) := u(x0 + rx). The monotonicity formula for E(u, r, xo) then implies
‖ur,x0‖W 1,2 ≤ E(u, 1, x0) < ∞, i.e. that the Sobolev norm is bounded independent of
r > 0, so that for any sequence ri −→ 0 there is a subsequence r′i such that ur′i,x0

con-
verges weakly in W 1,2(Ω, N). Following an argument similar to the one in the paper [52]
by J. Li and G. Tian for stationary harmonic maps, one can deduce existence of tangent
maps. However, since there are no pseudo-holomorphic spheres in N we can apply The-
orem D in [92] by C. Wang, which is an adaptation of Theorem D in [54] by F. Lin, to
conclude that the above weak convergence is actually a strong one. Having obtained a
tangent map it is then natural to investigate its dependence on the subsequence chosen,
i.e. whether the tangent map is unique, and the next Theorem gives a positive answer to
this question.

Theorem 2.4 Let Ω, N and u be as in Theorem 2.3. Then at all points x0 ∈ Ω the
tangent map to u is unique. In particular,

lim
r→0

u(x0 + rx)

exists strongly in W 1,2(Ω, N).

In the context of energy minimising harmonic maps, the questions of rates of convergence
and uniqueness of tangent maps were studied before . In the paper [77] L. Simon gave
positive answers to both questions in case the tangent map has an isolated singularity at 0
and the target manifold is real-analytic. B. White actually showed that the latter assump-
tion is crucial by producing a counterexample in [95] when the target manifold is merely
smooth. Furthermore, rates of convergence were studied by D. Adams and L. Simon in
[3] and by R. Gulliver and B. White in [33], showing that a rate of convergence does not
always hold for stationary harmonic maps.

The chapter is organised as follows. In section 2.2 we derive a second order elliptic
equation for J-holomorphic maps which is followed by a proof of an almost monotonicity
formula in section 2.3. The necessary Morrey decay estimates are proved in section 2.4
and the proof of Theorem 2.1 is completed in section 2.5. Section 2.6 is devoted to the
proof of Theorem 2.3 and the proof of Theorem 2.4 is given in section 2.7. In the final
section 2.8 we explain a possible extension of Theorem 2.3 as a future research problem.

Acknowledgement: The results in sections 2.6 and 2.7 of this chapter are the outcome
of joint work with my advisor Tristan Rivière [64].
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2.2 J-holomorphic maps

In this section we will show that J-holomorphic maps satisfy a strictly elliptic second
order equation. We will assume that the target manifold N is given a Hermitian metric
(which is always possible) and then is isometrically embedded in R2n for some n ∈ N.
Using this isometric embedding we can push-forward the almost complex structure on
N to an almost complex structure JN on TN ⊂ TR2n. For y ∈ N ⊂ R2n, JN(y) can
be extended to a map J̃N(y) acting on all of TyR

2n by setting J̃N(y)v := JN(y)v1 where
v ∈ TyR2n and v1 ∈ TyN is chosen so that v = v1 +v2 with v2 ∈ TyN⊥ (see the paper [92]
by C.-Y. Wang for details of this construction). Note that this map J̃N is not an almost

complex structure anymore (since J̃N
2 6= −Id), but the map u satisfies the equation

dux(JΩ(x)v) = J̃N(u(x))dux(v)

for almost every x ∈ Ω and all v ∈ R2m.
Since our result is local we can in fact assume that the domain is a ball B2r0(0) ⊂ Ω for
some r0 > 0. Furthermore, through a change of coordinates we can arrange for JΩ(0) to
coincide with the standard complex structure J0 on R2m yet we do not assume that JΩ

to be J0 on all of B2r0(0).
We also need the following definition of Hardy space on Ω (see the book [81] by E. Stein
as a reference):

Definition 2.1 Given an open subset Ω ⊂ R2m, define H1(Ω) to be the set of restrictions
of functions in H1(R2m) (the usual Hardy space on R2m) to Ω. The norm for a function
f ∈ H1(Ω) is defined as the infimum of the norm of all possible extensions f̃ ∈ H1(R2m)
of f .

Using the above setting we will prove the following Lemma:

Lemma 2.5 Let u ∈ W 1,2(B2r0 , N) be a J-holomorphic map. Then in the above setting
we have that there exists f ∈ H1(B 3r0

2
(0),R2n) so that on B 3r0

2
(0)

∆̃u = f ,

where ∆̃ is a strictly elliptic, invertible second order operator on B2r0(0).

Proof. At x ∈ B2r0 we choose an orthonormal frame
{

∂
∂x1
, . . . , ∂

∂xm
, ∂
∂xm+1

, . . . , ∂
∂x2m

}
such

that for 1 ≤ j ≤ m we have ∂
∂xm+j

= J0
∂
∂xj

. Since u is a J-holomorphic map it satisfies

dux
(
JΩ(x) ∂

∂xj

)
= J̃N(u(x))dux

(
∂
∂xj

)
and hence by construction of the coordinates

dux
(
[JΩ(x)− J0] ∂

∂xj

)
+ dux

(
∂

∂xj+m

)
= J̃N(u(x))dux

(
∂
∂xj

)
.

Writing this expression in the above coordinates yields

2m∑
k=1

∂uα

∂xk
ajk(x) +

∂uα

∂xj+m
=

2n∑
β=1

b(u(x))αβ
∂uβ

∂xj
,
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where we set ajk(x) := ([JΩ(x)− J0])jk and bαβ(u(x)) := (J̃N(u(x)))αβ. Similarly we get

2m∑
k=1

∂uα

∂xk
a(j+m)k(x)− ∂uα

∂xj
=

2n∑
β=1

b(u(x))αβ
∂uβ

∂xj+m
.

Taking one more distributional derivative of these expressions with respect to ∂
∂xj+m

and
∂
∂xj

respectively we can show that

∂

∂xj+m

(
2m∑
k=1

∂uα

∂xk
ajk(x) +

∂uα

∂xj+m

)
=

2n∑
β=1

[
∂

∂xj+m

(
b(u(x))αβ

)∂uβ
∂xj

+b(u(x))αβ
∂

∂xj+m

∂uβ

∂xj

]

and

∂

∂xj

(
2m∑
k=1

∂uα

∂xk
a(j+m)k(x)− ∂uα

∂xj

)
=

2n∑
β=1

[
∂

∂xj

(
b(u(x))αβ

) ∂uβ

∂xj+m

+b(u(x))αβ
∂

∂xj

∂uβ

∂xj+m

]
.

To justify this computation, we need to show that for the distributional derivative in the
xj+m-direction we have

∂

∂xj+m

2n∑
β=1

b(u(x))αβ
∂uβ

∂xj
=

2n∑
β=1

∂b(u(x))αβ
∂xj+m

∂uβ

∂xj
+ b(u(x))αβ

∂

∂xj+m

∂uβ

∂xj

(and an analogous identity for the xj-direction). Note that this would be immediate
if the b(u(x))αβ were smooth coefficients. For b(u(x)) in the present context, this can
be seen as a map from the domain B2r0(0) into the space of 2n × 2n-matrices which
we identify with R4n2

. This map is the composition of the maps u ∈ W 1,2(B2r0(0), N)
and J̃N which is at least C2(N,R4n2

) on the compact set N , and hence b(u(x)) lies in
W 1,2(B2r0(0),R4n2

). Furthermore, since R4n2
is a linear space, b(u(x)) can be strongly

approximated in W 1,2(B2r0(0),R4n2
) by smooth maps bt(u(x)) ∈ C∞(B2r0(0),R4n2

). As
mentioned above for each bt(u(x)) the identity is direct and since we have strong conver-
gence we can pass to the limit on both sides to obtain it for b(u(x)) as well, which implies
that the above equations hold true in the sense of distributions.
Since distributional derivatives commute, we can now subtract and sum over j, which
then yields

∆̃u =
m∑
j=1

2m∑
β=1

[
∂

∂xj+n

(
b(u(x))αβ

)∂uβ
∂xj
− ∂

∂xj

(
b(u(x))αβ

) ∂uβ

∂xj+m

]
, (2.1)
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where we define ∆̃u by

∆̃u =
m∑
j=1

[
∂

∂xj+m

( 2m∑
k=1

(ajk(x) + δ(j+m)k)
∂uα

∂xk

)

+
∂

∂xj

( 2m∑
k=1

(−a(j+m)k(x) + δjk)
∂uα

∂xk

)]
.

From this definition of ∆̃ we see that it coincides with ∆ at x = 0, since ajk(0) = 0, and
in fact that ∆̃ is arbitrarily close to ∆ on all of B2r0 provided r0 is chosen small enough.
Assuming r0 > 0 to be small, ∆̃ is therefore strictly elliptic and invertible.
The fact that the right hand side of equation (2.1) is in Hardy space now follows from the
work [20] by R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes since it is made up of sums
of the form { ∂f

∂xk

∂g
∂xl
− ∂f

∂xl

∂g
∂xk
} for some f, g ∈ W 1,2(B2r0), i.e. has a Jacobian structure.�

2.3 Monotonicity formula

The aim of this section is to derive another second order equation for J-holomorphic maps
and to deduce an almost monotonicity formula for E(u, r, x0) from it, provided that r is
smaller than some fixed r0 independent of u. We will continue to use the setting of the
previous section and begin by showing that a locally approximable J-holomorphic map is
almost a critical point of the Dirichlet energy D(u) :=

∫
B2r0 (0)

|∇u|2 dx for perturbations

in the domain B2r0(0). Given an arbitrary smooth 1-parameter family of diffeomorphisms
of B2r0(0), denoted by Ψt for t ∈ (−ε, ε), we want to compute d

dt

∣∣
t=0
D(u ◦Ψt). First note

that one can easily verify the following alternative expression for the energy:

D(u) =
1

2

∫
B

|∇u+ JN ◦ ∇u ◦ J0|2 dx+

∫
B

〈JN ◦ ∇u,∇u ◦ J0〉 dx .

To simplify the notation we write ut := u ◦ Ψt for the perturbation of u. Note that for
any map ut in the second term above we can use 〈JN ◦∇ut,∇ut ◦J0〉 ∼= 〈ω0, u

∗
tωN〉, where

ωN is the symplectic structure on the target. For smooth perturbations of the domain,
we claim that the second term in the above expression satisfies

d

dt

∣∣∣∣
t=0

∫
B2r0 (0)

〈ω0, u
∗
tωN〉 dx = 0 .

To see this note that on B2r0(0) there exists a smooth 1-form φ such that dφ = ω0 and that
u∗tωN = Ψ∗tu

∗ωN . As u is locally approximable, i.e. in particular d(u∗ωN) = u∗dωN = 0,
we deduce that d(u∗tωN) = Ψ∗td(u∗ωN) = 0. Using Stoke’s theorem and the fact that ut
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has compact support in B2r0(0) we get the claim from∫
B2r0 (0)

〈ω0, u
∗
tωN〉 dx =

∫
B2r0 (0)

〈dφ, u∗tωN〉 dx

= C

∫
B2r0 (0)

d(φ ∧ ω2m−2
0 ) ∧ u∗tωN dx

= C

∫
B2r0 (0)

d(φ ∧ ω2m−2
0 ∧ u∗tωN) dx

= 0 .

Thus it remains to compute the derivative for the first term. We will show that since JΩ

is close to J0 in B2r0(0), u is close to being J0-holomorphic. Note that

∇u+ JN ◦ ∇u ◦ J0 = ∇u+ JN ◦ ∇u ◦ JΩ + JN ◦ ∇u ◦ (JΩ − J0)

so that for ut, using the fact that JN is compatible with h, the metric on N , this means
that∫

B2r0 (0)

|∇ut + JN ◦ ∇ut ◦ J0|2 dx =

∫
B2r0 (0)

|∇ut + JN ◦ ∇ut ◦ JΩ|2 dx (2.2)

+ 2

∫
B2r0 (0)

〈∇ut, JN ◦ ∇ut ◦ (JΩ − J0)〉 dx (2.3)

+

∫
B2r0 (0)

〈∇ut ◦ (J0 + J),∇ut ◦ (JΩ − J0)〉 dx .(2.4)

For the first term on the right-hand side (2.2) note that since u is J-holomorphic we have
|∇u+JN ◦∇u◦J0|2 dx = 0 pointwise a.e. in B2r0(0), i.e. that

∫
B2r0 (0)

|∇u+JN ◦∇u◦J0|2 =

0. Furthermore,∫
B2r0 (0)

|∇ut + JN ◦ ∇ut ◦ JΩ|2 dx ≥
∫
B2r0 (0)

|∇u+ JN ◦ ∇u ◦ JΩ|2 dx = 0 ,

which implies that

d

dt

∣∣∣∣
t=0

∫
B2r0 (0)

|∇ut + JN ◦ ∇ut ◦ JΩ|2 dx = 0 .

For the remaining terms (2.3) and (2.4) we work in local coordinates. Since any 1-
parameter group Ψt is generated by a vector field ξ having compact support in B2r0(0),
we can write ut(x) = u(x+tξ). Writing (JΩ−J0)(x) = [akl](x) and JN(u(x)) = [bαβ](u(x))
as before, we get the following expression for the derivative of the term in (2.3):

d

dt

∣∣∣∣
t=0

∫
B2r0 (0)

〈∇ut, JN ◦ ∇ut ◦ (JΩ − J0)〉 dx =

∫
B2r0 (0)

(− div ξ)
∂uα

∂xk

∂uβ

∂xl
[akl][bβα] dx

+2

∫
B2r0 (0)

∂uα

∂xk

∂uβ

∂xl′

∂ξl
′

∂xl
[akl][bβα] dx ,
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where we sum over repeated indices. For the last term (2.4) we write (JΩ + J0)(x) =
([akl](x) + 2[δ̃kl]), where [δ̃kl] denotes the matrix for J0 in the standard coordinates on
B2r0(0). A direct computation shows that

d

dt

∣∣∣∣
t=0

∫
B2r0 (0)

〈∇ut ◦ (J0 + JΩ),∇ut ◦ (JΩ − J0)〉 dx

=

∫
B2r0 (0)

(− div ξ)
∂uα

∂xk′

∂uα

∂xl′
[ak′l]([al′k] + 2[δ̃l′k]) dx

+2

∫
B2r0 (0)

∂uα

∂xk′

∂uα

∂xl′′

∂ξl
′′

∂xl′
[ak′l]([al′k] + 2[δ̃l′k]) dx .

Combining the above steps we arrive at the following equation for u, which is valid for all
ξ ∈ C∞c (B2r0(0),R2m):∫

B2r0 (0)

∑
i,j

(
|∇u|2δij − 2

〈
∂u

∂xi
,
∂u

∂xj

〉)
∂ξj

∂xi
dx =

= −1

2

∫
B2r0 (0)

∂uα

∂xk

∂uβ

∂xl
[akl][bβα]δij

∂ξj

∂xi
dx

+

∫
B2r0 (0)

∂uα

∂xk

∂uβ

∂xj
[aki][bβα]

∂ξj

∂xi
dx

−1

2

∫
B2r0 (0)

∂uα

∂xk′

∂uα

∂xl′
[ak′l]([al′k] + 2[δ̃l′k])δij

∂ξj

∂xi
dx

+

∫
B2r0 (0)

∂uα

∂xk′

∂uα

∂xj
[ak′l]([aik] + 2[δ̃ik])

∂ξj

∂xi
dx . (2.5)

Note that this equation is very similar to the equation one obtains for stationary harmonic
maps where the right-hand side vanishes identically, whereas in our case the right-hand
side is O(r)‖∇u‖2

L2 . It is clear that for small enough radii (depending only on the C2-
norm of JΩ) the second order operator involved is again only a small perturbation of the
Laplacian, and hence elliptic.

We now use this equation (2.5) by testing it with a special test function ξ to prove an
almost monotonicity formula for E(u, r, x0). Precisely, we have the following Proposition,
where from now on we use the notation R = |x− x0| for the distance between x and x0,
and ∂u

∂R
for the derivative of u in the direction of R.

Proposition 2.6 Let u : B2r0(0) −→ N be a locally approximable J-holomorphic map in
W 1,2(B2r0(0), N). Provided r0 > 0 was chosen sufficiently small, there exists a constant
C > 0 independent of u such that for all x0 ∈ B2r0(0) and all 0 < s < r ≤ r0 with
Br(x0) ⊂ B2r0(0)

eCr − r
r2m−2

∫
Br(x)

|∇u|2 dx− eCs − s
s2m−2

∫
Bs(x)

|∇u|2 dx ≥ 2

∫
Br\Bs(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx .
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Proof. The proof will follow the proof for stationary harmonic maps given in the book
[79] by L. Simon. Given x0 ∈ B2r0(0) define ρ0 to be a radius such that Bρ0(x0) ⊂ B2r0(0).
We use the fact that if

∫
aj

∂ξ
∂xj

= 0 for all ξ ∈ C∞c (Bρ0(x0)), then for a.e. ρ ∈ (0, ρ0) we

have
∫
Bρ(x0)

aj
∂ξ
∂xj

=
∫
∂Bρ(x0)

η · aξ. Using this, we test the above equation (2.5) for u with

ξ defined by ξj(x) = xj − xj0 (so that ∂ξj

∂xi
= δij) which yields the following identity for u:

(2− 2m)ρ1−2m

∫
Bρ(x0)

|∇u|2 dx+ ρ2−2m

∫
∂Bρ

|∇u|2 dx

= ρ1−2m

∫
Bρ(x0)

A(x)|∇u|2 dx− ρ2−2m

∫
∂Bρ(x0)

B(x)|∇u|2 dx+ 2

∫
∂Bρ(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx .

Here
∫
Bρ(x0)

A(x)|∇u|2 dx and
∫
∂Bρ(x0)

B(x)|∇u|2 dx denote terms which can be bounded

by Cρ
∫
Bρ(x0)

|∇u|2 dx and Cρ
∫
∂Bρ(x0)

|∇u|2 dx respectively. This leads to the inequalities∣∣∣∣∣ ddρ
(

1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx− 2

∫
Bρ

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx

)∣∣∣∣∣
≤ C

1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx+ C
1

ρ2m−3

∫
∂Bρ(x0)

|∇u|2 dx

≤ C
1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx+ C
d

dρ

(
ρ2m−3

∫
Bρ(x0)

|∇u|2 dx
)
. (2.6)

Using this estimate we conclude that

d

dρ

(
eCρ

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx
)

= eCρ
d

dρ

(
1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx
)

+
CeCρ

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx

≥ 2
d

dρ

(∫
Bρ(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx

)
+

d

dρ

(
1

ρ2m−3

∫
Bρ(x0)

|∇u|2 dx
)
,

and integration from s to r yields the desired result. �

Remark 2.1 From equation (2.6) in the proof of the monotonicity formula we also get
the estimate∣∣∣∣ ddρ

(
1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx
)∣∣∣∣ ≤ C

1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx+ C
1

ρ2m−3

∫
∂Bρ

|∇u|2 dx

+2

∫
∂Bρ(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx

≤ C
1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx+ Cρ

∣∣∣∣ ddρ
(

1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx
)∣∣∣∣

+2

∫
∂Bρ(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx .

Therefore for ρ so small that 1
2
≤ 1− Cρ we obtain

d

dρ

(
1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx
)
≤ C

1

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx+ C

∫
∂Bρ(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx ,
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i.e. that

d

dρ

(
e−Cρ

ρ2m−2

∫
Bρ(x0)

|∇u|2 dx
)
≤ C

∫
∂Bρ(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx .

Integrating this inequality from s to r yields the useful estimate

e−Cr

r2m−2

∫
Br(x0)

|∇u|2 dx− e−Cs

s2m−2

∫
Bs(x0)

|∇u|2 dx ≤ C

∫
Br\Bs(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx . (2.7)

2.4 Morrey decay estimates

We will deduce Theorem 2.1 from the following Morrey decay estimate (compare this with
the proof of Theorem 3.1 in chapter 3):

Proposition 2.7 Let u ∈ W 1,2(B2r0(0), N) be a locally approximable J-holomorphic map
as above. There are constants ε > 0 and τ ∈ (0, 1) such that for all points x0 ∈ Br0(0) for
which there exists some r > 0 with Br(x) ⊂ Br0(0),

E(u, r, x0) ≤ ε

implies

E(u, τr, x0) ≤ 3
4
E(u, r, x0) . (2.8)

Proof. Since each component of u lies in W 1,2(B2r0(0)) and satisfies

∆̃u = f

for some f ∈ H1(B 3r0
2

(0)), elliptic regularity theory shows that u ∈ W 2,1(Br0(0)).

Then for any r > 0 with Br(x) ⊂ Br0(0) the Dirichlet problem{
∆̃v = 0 in Br(x0)

v = u on ∂Br(x0)

has a unique solution v ∈ W 2,1(Br(x0)), which we will call the almost harmonic extension
of u on Br(x0). Like in the case of harmonic extensions, for such a solution we have a
decay estimate from the book [28] by M. Giaquinta for all 0 < ρ ≤ r∫

Bρ(x)

|∇v|2 dx ≤ C
(ρ
r

)n ∫
Br(x)

|∇v|2 dx+ Cω2(r)

∫
Br(x)

|∇v|2 , dx ,

where ω(r) is the modulus of continuity of ∆̃ on Br(x0). From the previous sections we
know that by choosing r sufficiently small we can make Cω2(r) as small as we wish.
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First we deduce that for ρ ≤ r
2∫

Bρ(x0)

|∇u|2 dx ≤ C

∫
Bρ(x0)

|∇v|2 dx+ C

∫
Bρ(x0)

|∇(u− v)|2 dx

≤ C
(2ρ

r

)n ∫
B r

2
(x0)

|∇v|2 dx+ Cω2
(r

2

)∫
B r

2
(x0)

|∇v|2 dx

+C

∫
B r

2
(x0)

|∇(u− v)|2 dx

≤ C
((ρ

r

)n
+ ω2(r)

)∫
Br(x0)

|∇u|2 dx

+C
(

1 +
(ρ
r

)n
+ ω2(r)

)∫
B r

2
(x0)

|∇(u− v)|2 dx

for different constants C.
Next we apply the Hardy-BMO duality (see the book [81] by E. Stein for details) together
with the Calderon-Zygmund inequality in the special case where ∆̃u ∈ H1(Br(x0)) to
obtain∫

Bρ(x0)

|∇u|2 dx ≤ C
((ρ

r

)n
+ ω2(r)

)∫
Br(x0)

|∇u|2 dx

+C
(

1 +
(ρ
r

)n
+ ω2(r)

)
[u− v]BMO(B r

2
(x0))‖∆̃(u− v)‖H1(B r

2
(x0))

≤ C
((ρ

r

)n
+ ω2(r)

)∫
Br(x0)

|∇u|2 dx

+C
(

1 +
(ρ
r

)n
+ ω2(r)

)
[u− v]BMO(B r

2
(x0))

∫
Br(x0)

|∇u|2 dx ,

since v is an almost harmonic extension. We will show that [u − v]BMO(B r
2

(x0)) ≤ ε in a

separate lemma below. However, once this is established the above inequalities show that

1

ρn−2

∫
Bρ(x0)

|∇u|2 dx ≤ C
(ρ
r

)2 1

rn−2

∫
Br(x0)

|∇u|2 dx

+Cω2(r)
(r
ρ

)n−2 1

rn−2

∫
Br(x0)

|∇u|2 dx

+Cε(1 + ω2(r))
(r
ρ

)n−2 1

rn−2

∫
Br(x0)

|∇u|2 dx

+Cε
(ρ
r

)2 1

rn−2

∫
Br(x0)

|∇u|2 dx . (2.9)

It remains to show how the constants τ > 0 and ε > 0 have to be chosen in order to
finish the proof of the proposition. First we want τ := ρ

r
to be so that

√
C ρ
r
≤ 1

4
, i.e. set

τ equal to 1/4
√
C. Next assume that r0 was chosen so small that ω2(r) ≤ τn−2

4C
for all

0 < r ≤ r0. We finish the proof, apart from the remaining estimate on [u− v]BMO(B r
2

(x0)),

by choosing ε > 0 so small that the following inequalities are both satisfied: ε ≤ τn−2

8C(1+ω2(r))
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and ε ≤ 1
8Cτ2 . To complete the proof insert τ and ε in estimate (2.9) to deduce the desired

estimate (2.8). �

Before we can prove the remaining estimate on the BMO-norm we need the Lemma
below (compare this with Lemma III.6 in [55] by Y. Meyer and T. Rivière):

Lemma 2.8 Let s0 > 0 and let u ∈ W 2,1(B2s0(x0)) with ∆̃u ∈ H1(B2s0(x0)). There
exists a constant C > 0 independent of u such that

sup
Bs(x)⊂Bs0 (x0)

1

sn−1

∫
Bs(x)

|∇u| dx ≤ C sup
Bs(x)⊂B2s0 (x0)

1

sn−2
‖∆̃u‖H1(Bs(x))

+C
1

(2s0)n−1

∫
B2s0 (x0)

|∇u| dx .

Proof. Let Bs(x) ⊂ B2s0(x0) and let ρ ≤ s. We consider the almost harmonic extension
v ∈ W 2,1 solving {

∆̃v = 0 in Bs(x)

v = u on ∂Bs(x) ,

which as before implies that for all 0 < ρ ≤ s∫
Bρ(x)

|∇v| dx ≤ C
(ρ
s

)n ∫
Bs(x)

|∇v| dx+ Cω(s)

∫
Bs(x)

|∇v| dx .

Setting w = u− v we have {
∆̃w = ∆̃u in Bs(x)

w = 0 on ∂Bs(x) .

Then we use Poincaré’s inequality and the Calderon-Zygmund inequality to deduce∫
Bs(x)

|∇w| dx ≤ Csp
∫
Bs(x)

|∇2w| dx

≤ Cs

∫
Bs(x)

|∆̃w| dx

= Cs

∫
Bs(x)

|∆̃u| dx .

Combining the above estimates we derive for u∫
Bρ(x)

|∇u| dx ≤ C
((ρ

s

)n
+ ω(s)

)∫
Bs(x)

|∇v| dx+ C

∫
Bρ(x)

|∇w| dx

≤ C
((ρ

s

)n
+ ω(s)

)∫
Bs(x)

|∇u| dx+ C

∫
Bs(x)

|∇w| dx

≤ C
((ρ

s

)n
+ ω(s)

)∫
Bs(x)

|∇u| dx+ Cs

∫
Bs(x)

|∆̃u| dx .

To simplify the notation we set T (ρ) := ρ1−n ∫
Bρ(x)

|∇u| dx and the above inequality

becomes

T (ρ) ≤ C
(ρ
s

)
T (s) + Cω(s)

(s
ρ

)n−1 1

sn−1

∫
Bs(x)

|∇u| dx+ C
(s
ρ

)n−1 1

sn−2

∫
Bs(x)

|∆̃u| dx .
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Choosing τ := ρ
s

so that Cτ ≤ 1
2

we have

T (τs) ≤ 1

2
T (s) + C

ω(s)

sn−1

∫
Bs(x)

|∇u| dx+ C
1

sn−2

∫
Bs(x)

|∆u| dx .

To obtain the result we set i =
⌊

log s
log τ

⌋
, iterate the above identity between s = 1 and s = τ i

and note that provided s0 > 0 was chosen sufficiently small the term involving ω(s) can
be absorbed in the left-hand side. �

Now we are in a position to prove the desired BMO-estimate to complete the proof
of Proposition 2.7.

Lemma 2.9 Let u be a locally approximable J-holomorphic map satisfying the assump-
tions of proposition 2.7, and let v be its almost harmonic extension on Br(x0). Then we
have

[u− v]BMO(B r
2

(x0)) ≤ Cε .

Proof. Since v is the almost harmonic extension of u on Br(x0), setting w = u − v we
have {

∆̃w = ∆̃u in Br(x0)

w = 0 on ∂Br(x0) ,

and that w ∈ W 2,1(Br(x0)) so that we can apply Lemma 2.8 to w with 2s = r. This,
together with Poincaré’s inequality, gives

[w]BMO(B r
2

(x0)) ≤ sup
Bρ(x)⊂B r

2
(x0)

1

ρn−1

∫
Bρ(x)

|∇w| dx

≤ C sup
Bρ(x)⊂Br(x0)

1

ρn−2

∫
Bρ(x)

|∆̃w| dx

+C
1

rn−1

∫
Br(x0)

|∇w| dx

≤ C sup
Bρ(x)⊂B r

2
(x0)

1

ρn−2

∫
Bρ(x)

|∇u|2 dx

+C
1

(2r)n−1

∫
B2r(x0)

|∇w| dx ,

because of the equations for u and w.
The last term on the right hand side is estimated using Poincaré’s inequality and the
Calderon-Zygmund inequality which yields

C
1

rn−1

∫
Br(x0)

|∇w| dx ≤ C
1

rn−2

∫
Br(x0)

|∆̃w| dx

≤ C
1

rn−2

∫
Br(x0)

|∇u|2 dx

≤ Cε .
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To finish the proof note that, provided r0 > 0 is chosen sufficiently small, for all 0 < r ≤ r0

and for all x ∈ B r
2
(x0) ⊂ Br0(x0) we have Br(x) ⊂ Br0(x) ⊂ B2r0(x0). From this and the

monotonicity formula for u we deduce that for all 0 < ρ ≤ r ≤ r0

E(u, ρ, x) ≤ E(u, r, x) ≤ E(u, r0, x) ≤ CE(u, 2r0, x0) .

Since we can assume ε to be less than 1, this implies

[w]BMO(B r
2

(x0)) ≤ Cε

and the desired estimate for u− v is proved. �

2.5 ε-regularity

We will now show how Theorem 2.1 can be deduced from Proposition 2.7 and also give
a proof of Corollary 2.2. To apply Proposition 2.7 to Theorem 2.1 first assume that
x0 ∈ Br0(x0) such that for some 0 < r ≤ r0

E(u, r, x0) ≤ ε

C22m−2
,

where C > 0 is the constant coming from the almost monotonicity formula, and in
particular, the Proposition can be applied at x0. Given any point y ∈ B r

2
(x0) we have

B r
2
(y) ⊂ Br(x0) and thus E

(
u, r

2
, y
)
≤ 22m−2E(u, r, x0). The monotonicity formula then

implies that for all 0 < ρ ≤ r
2

E(u, ρ, y) ≤ CE
(
u,
r

2
, y
)
≤ C22m−2E(u, r, x) ≤ ε

by our definition of r and the Proposition can therefore also be applied at any y ∈ B r
2
(x0).

Fixing 0 < ρ ≤ r
2

there exists i ∈ N such that τ i+1 r
2
≤ ρ ≤ τ i r

2
and set γ := log 3−log 4

2 log τ
> 0

so that
(

3
4

)i ≤ (τ i)
γ
. Therefore, iterating estimate (2.8) in Proposition 2.7 we obtain

E(u, ρ, y) ≤ τ 2−2mE
(
u, τ i

r

2
, y
)

≤ τ 2−2m

(
3

4

)i
E
(
u,
r

2
, y
)

≤ τ 2−2m
(
τ i
)γ
C22m−2E(u, r, x0)

≤ Cργ .

Since this holds true for all Bρ(y) ⊂ Br(x0) we can use Morrey’s Dirichlet growth theo-
rem (see for instance Theorem 3.5.2 in the book [28] by M. Giaquinta for a reference) to
conclude that u is in the Hölder space u ∈ C0, γ

2 (B r
2
(x0)). From an elliptic bootstrapping

argument we deduce that u is in fact smooth in B r
4
(x0) proving Theorem 2.1.

The proof of Corollary 2.2 now follows from Corollary 3.2.3 in the book [96] by
W. Ziemer by defining

singu := {x ∈ B2r0(0) | lim
r→0

E(u, r, x) > 0}
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so that H2m−2(singu) = 0 as ∇u is in L2(B2r0(0)). Since singu is the complement of the
set of points x0 ∈ B2r0(0) for which Proposition 2.7 applies for some radius 0 < r ≤ r0

and by the above argument the latter set is open, we deduce that singu is a closed subset
of B2r0(0) proving the Corollary.

2.6 Rate of convergence

In this section we prove Theorem 2.3. The argument will be based on slicing by pre-images
of the map π : R2m \ {0} −→ CPm−1 constructed in appendix D which we already used
for the proof of Theorem 1.2. Recall that the argument is local so that we can assume to
work in the case where the domain is B2r0(0) ⊂ R2m equipped with an arbitrary complex
structure J . Fix x0 ∈ B2r0(0) and let r > 0 be sufficiently small so that Br(x0) ⊂ B2r0(0)
and the monotonicity formula given by Proposition 2.6 applies. Taking the limit as s −→ 0
we deduce that for all such radii r > 0 we have∫

Br(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx ≤ C

eCr

r2m−2

∫
Br(x0)

|∇u|2 dx−Θu(x0) <∞ . (2.10)

Through a change of coordinates we can always assume that in the new coordinates
the point x0 becomes the origin and the complex structure J is the standard complex
structure there, i.e. that J(0) = J0. Furthermore, J satisfies ‖J(r) − J0‖C2 = O(r) on
all of Br(0). Using these two facts we now slice by J-holomorphic curves passing through
x0 = 0 parametrised by points in CPm−1. The curves are given as the intersection of pre-
images π−1(p) for p ∈ CPm−1 with Br(0) and in fact form a singular foliation of Br(0)
(see appendix D). It is important to note that the tangent plane to each J-holomorphic
curve π−1(p) is spanned by two vectors X and JX, where near the origin X is only a
small perturbation of ∂

∂R
. More precisely, we have that any tangent plane is spanned by

a vector X for which we have

X =
∂

∂R
+O(r)

∂

∂xi
,

i.e. for a map u we get that

u ·X =
∂u

∂R
+O(r)

∂u

∂xi
.

The aim is to show that for almost every p ∈ CPm−1 the restriction of u to π−1(p) is a
J-holomorphic curve in (N, JN). To see this we will first use the monotonicity formula to
show that for the J-holomorphic map u∫

Br(0)

R2−2m|u ·X|2 dx <∞ . (2.11)

Note that from the properties of X we get the estimate∫ r

0

∫
∂Bρ(0)

R2−2m|u ·X|2 d∂Bρ dρ ≤
∫ r

0

∫
∂Bρ(0)

[
R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 + CR3−2m|∇u|2

]
d∂Bρ dρ

=

∫
Br(0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx+ C

∫
Br(0)

R3−2m|∇u|2 dx .
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Because of bound (2.10), the bound on the first term follows directly from the monotonic-
ity formula, whence it remains to bound the second one. This can be done through and
integration by parts and applying the monotonicity formula to each term:∫ r

0

ρ3−2m

∫
∂Bρ(0)

|∇u|2 d∂Bρ dρ =

=

[
ρ3−2m

∫
Bρ

|∇u|2 dx
]r

0

+ (2m− 3)

∫ r

0

ρ2−2m

∫
Bρ

|∇u|2 dx dρ

≤ Cr

[
sup

0<ρ<1

1

ρ2m−2

∫
Bρ

|∇u|2 dx
]

− lim
ρ→0

(
ρ

[
sup

0<ρ<1

1

ρ2m−2

∫
Bρ

|∇u|2 dx
])

<∞ .

One of the properties of π : Br(0) \ {0} −→ CPm−1 is that the norm of its gradient
satisfies O(1

r
). More precisely, there is a constant C > 0 such that

C − Cr ≤ R2m−2|J2m−2π| ≤ C + Cr ,

where J2m−2π denotes the (2m−2)-Jacobian of π, and consequently, 1 ≤ C+Cr
C−Cr ≤ 1+O(r).

Therefore we can apply the co-area formula to the slicing by π to obtain∫
CPm−1

∫
π−1(p)∩Br(0)

R2−2m|u ·X|2

|J2m−2π|
dσp dp =

∫
Br(0)

R2−2m|u ·X|2 dx <∞ ,

which is what we wanted to show since by Fubini’s theorem it follows that for almost
every p ∈ CPm−1 we have∫

π−1(p)∩Br(0)

|u ·X|2 dσp ≤ C

∫
π−1(p)∩Br(0)

R2−2m|u ·X|2

|J2m−2π|
dσp <∞ . (2.12)

Since the metric h on the target is tamed by the target complex structure JN , we have
that |u · JX|2 ∼= |JN ◦ ∇u(X)|2 ∼= |∇u(X)|2 and hence from the above argument we also
deduce that for almost every p ∈ CPm−1∫

π−1(p)∩Br(0)

|u · JX|2 dσp <∞ . (2.13)

Next we want to show how (2.12) and (2.13) imply that
∫
π−1(p)∩Br(0)

|∇u|2 dσp < ∞ for

almost every p ∈ CPm−1. To see this first note that as X and JX span the tangent space
to π−1(p)

∇u|π−1(p) = (∇u ·X)X + (∇u · JX)JX

from which we conclude that

|u ·X|2 ≤ 1

2− Cr
|∇u|π−1(p)|2 ≤

2 + Cr

2− Cr
|u ·X|2 (2.14)

for some constant C > 0. Therefore we obtain that for r small enough
∫
π−1(p)∩Br(0)

|∇u|2 dσp
is bounded by some constant times the integrals in the X and JX directions which in turn
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are bounded by estimates (2.12) and (2.13). Hence we have shown that for almost every
p ∈ CPm−1 the restriction u|π−1(p) is a J-holomorphic map in W 1,2(π−1(p) ∩Br(0), N).
Since (π−1(p), J) is a Riemann surface for each p ∈ CPm−1, we get that u|π−1(p) is smooth.
Furthermore, as the target N does not admit any pseudo-holomorphic spheres, there exists
δ ∈ (0, 1), independent of u, such that for almost every p ∈ CPm−1∫

π−1(p)∩Br(0)

|∇u|2 dσp < δ

∫
π−1(p)∩B2r(0)

|∇u|2 dσp . (2.15)

Together with equation (2.14) this gives the following estimate∫
π−1(p)∩Br(0)

|u ·X|2 dσp ≤
1

2− Cr

∫
π−1(p)∩Br(0)

|∇u|2 dσp

<
δ

2− Cr

∫
π−1(p)∩B2r(0)

|∇u|2 dσp

≤ δ
2 + Cr

2− Cr

∫
π−1(p)∩B2r(0)

|u ·X|2 dσp ,

where we can assume to have taken r > 0 so small that δ̃ := δ 2+Cr
2−Cr < 1. Integrating both

sides over CPm−1 we then obtain∫
CPm−1

∫
π−1(p)∩Br(0)

|u ·X|2 dσp dp < δ̃

∫
CPm−1

∫
π−1(p)∩B2r(0)

|u ·X|2 dσp dp . (2.16)

Applying the co-area formula again we obtain the estimate∫
Br(0)

|u ·X|2|J2m−2π| dx =

∫
CPm−1

∫
π−1(p)∩Br(0)

|u ·X|2 dσp dp

< δ̃

∫
CPm−1

∫
π−1(p)∩B2r(0)

|u ·X|2 dσp dp

= δ̃

∫
B2r(0)

|u ·X|2|J2m−2π| dx . (2.17)

Provided r > 0 was chosen sufficiently small, estimate (2.17) gives∫
Br(0)

R2−2m|u ·X|2 dx < δ̃

∫
B2r(0)

R2−2m|u ·X|2 dx .

An iteration argument then implies that there exist C > 0 and γ ∈ (0, 1) such that, for
r > 0 sufficiently small, ∫

Br(0)

R2−2m|u ·X|2 dx ≤ C1r
γ .

From this we will deduce a rate of convergence for
∫
Br(0)

R2−2m
∣∣ ∂u
∂R

∣∣2 dx. Note that from

X = ∂
∂R

+O(r) ∂
∂xi

we deduce∫
Br(0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx ≤ ∫

Br(0)

R2−2m|u ·X|2 dx ≤ Crγ + C

∫
Br(0)

R3−2m|∇u|2 dx

≤ Crγ + Cr sup
0<ρ<1

1

ρ2m−2

∫
Bρ(0)

|∇u|2 dx

≤ C(1 + ‖∇u‖2
L2(B2r0 (0)))r

γ = Crγ ,
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where we used the monotonicity formula for the last estimate.
To finish the proof we will use the remark after the proof of the monotonicity formula.
From estimate (2.7) we get that

e−Cr

r2m−2

∫
Br(x0)

|∇u|2 dx−Θu(x0) ≤ C

∫
Br(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx ≤ Crγ

which for r small enough so that e2Cr ≤ 2 becomes

eCr

r2m−2

∫
Br(x0)

|∇u|2 dx− e2CrΘu(x0) ≤ 2Crγ .

Combining these estimates we get

eCr − r
r2m−2

∫
Br(x0)

|∇u|2 dx−Θu(x0) ≤ 2Crγ +
(
e2Cr − 1

)
Θu(x0)

≤ Crγ + C‖∇u‖2
L2(B2r0 (0))r

≤ Crγ ,

which completes the proof of Theorem 2.3.

2.7 Uniqueness of tangent maps

In this section we show how Theorem 2.3 implies the uniqueness of tangent maps at all
x0 ∈M . If x0 /∈ singu, then for all sequences of radii ri −→ 0 we have that E(u, ri, x0) −→
0 as i −→ ∞. Furthermore, also ‖ur,x0‖W 1,2 −→ 0, showing that 0 is the only tangent
map regardless of our choice of sequence of radii.
Now fix x0 ∈M , possibly in singu, and without loss of generality we can assume that we
have chosen coordinates so that x0 = 0. From the proof of Theorem 2.3 we know that
there are constants C > 0 and γ > 0 such that∫

Br(x0)

R2−2m

∣∣∣∣ ∂u∂R
∣∣∣∣2 dx ≤ Crγ ,

where we absorbed the term
(

1 + ‖∇u‖2
L2(B2r0 (0))

)
in the constant C. Setting ur,0(x) :=

u(rx) we note that
∫
B1(0)

R2−2m
∣∣∂ur,0
∂R

∣∣2 dx =
∫
Br(0)

R2−2m
∣∣ ∂u
∂R

∣∣2 dx. Thus∫
B1(0)

R2−2m

∣∣∣∣∂ur,0∂R

∣∣∣∣2 dx ≤ Crγ .

From this we deduce that for any 0 < σ < τ sufficiently small we get

‖uτ,0 − uσ,0‖L2(S2m−1) ≤
∫ τ

σ

∥∥∥∥∂ur,0∂r

∥∥∥∥
L2(S2m−1)

dr

≤
(∫ τ

σ

r1− γ
2

∥∥∥∥∂ur,0∂r

∥∥∥∥2

L2(S2m−1)

dr

) 1
2
(∫ τ

σ

r−(1− γ
2

)dr

) 1
2

≤ Cτ
γ
4 ,
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where the fact that
∫ τ
σ
r1− γ

2

∥∥∂ur,0
∂r

∥∥2

L2(S2m−1)
dr ≤ C follows from an integration by parts.

If we now take a subsequence σj → 0 as j →∞ such that uσj ,0 converges to some tangent
map u∞,0 weakly in W 1,2 but strongly in L2(S2m−1), then by the triangle inequality and
the above estimates for any other sequence τj → 0 we have uτj ,0 → u∞,0 strongly in
L2(S2m−1). Hence uτj ,0 converges weakly to u∞,0 in W 1,2 and therefore u∞,0 is the unique
tangent map. Consequently, Theorem 2.4 is proved.

2.8 Outlook

In the statement of Theorems 2.3 and 2.4, the restriction on the topology of the target
manifold not to admit any pseudo-holomorphic spheres seems artificial. In fact, these
Theorems are conjectured to hold true in general. The only step where we used this
assumption in the proof was for deriving a common decay rate for the restriction of u
to almost every J-holomorphic curve π−1(p). More precisely, it would suffice to derive
a uniform bound for the energy of u|π−1(p)∩Br(0) independent of u and p. Define a map
f : CPm−1 −→ R by setting

f(p) :=

∫
π−1(p)∩Br(0)

|∇u|2 dσp

which by estimate (2.14) lies in L1(CPm−1). It would be important to know further
regularity properties of f and more specifically, if f is subharmonic on CPm−1. If that
were true, f would satisfy a Harnack inequality on CPm−1 implying an L∞-bound on f
only in terms of its L1-norm. Since the latter can be made arbitrarily small by taking
r > 0 to be sufficiently small, the Harnack estimate on f , i.e. the energy of u|π−1(p)∩Br(0),
would imply that the ε-regularity Theorem 2.1 could be applied on almost every slice
π−1(p) ∩Br(0) independent of p. The proof of Theorem 2.3 could then be carried out as
before, which is why we suggest the following open problem:

Open Problem 2.1 Let f : CPm−1 −→ R be defined as above. Is it true that f is
subharmonic on CPm−1 and satisfies a Harnack inequality ?

The method used in the proof of Theorem 2.3 might have applications for obtaining
rates of convergence even in other areas such as anti self-dual instanton (Yang-Mills)
equations and, more generally, whenever there is a suitable slice function reducing the
problem to a dimension where regularity results are already known.



Chapter 3

Polyharmonic maps

Abstract

In this chapter we investigate regularity questions for polyharmonic maps. Starting from
the analysis of the structure of the Euler-Lagrange equation we use a new sharp Gagliardo-
Nirenberg interpolation inequality to obtain regularity results for polyharmonic maps. The
same technique is then applied to general k-th order elliptic systems with critical growth.

3.1 Introduction

We begin this chapter with a brief overview of the development of the regularity theory for
both harmonic and biharmonic maps. Given a closed (domain) manifold M of dimension
m and a closed (target) manifold N of dimension n we can assume N to be embedded
in RN for some N ∈ N sufficiently large using Nash’s embedding theorem in [61]. For
k ∈ N and 1 ≤ p ≤ ∞ we then define the Sobolev spaces of maps from M into N by

W k,p(M,N) :=
{
u ∈ W k,p(M,RN) : u(x) ∈ N for a.e. x ∈M

}
with the topology induced from the linear Sobolev space W k,p(M,RN).
The Dirichlet energy of a map u ∈ W 1,2(M,N) is defined by

D(u) :=

∫
M

|∇u|2 dx

and we will consider three kinds of critical points of this functional on W 1,2(M,N). The
critical points in W 1,2(M,N) for compactly supported variations in the target manifold N
are called weakly harmonic maps (compare with Definition 3.1 below). If u ∈ W 1,2(M,N)
is weakly harmonic and in addition a critical point for compactly supported variations in
the domain manifold M we call u a stationary harmonic map – again compare with Def-
inition 3.2 below. When u ∈ W 1,2(M,N) satisfies D(u) ≤ D(v) whenever compared with
v ∈ W 1,2(M,N) with u−v ∈ W 1,2

0 (M,N), we say that u is (Dirichlet) energy minimising.
Again we refer to the discussion following the analogous definition for polyharmonic maps
(Definition 3.3) later on in this section.
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The study of the regularity properties of these critical points has been an ongoing
search for several decades. Since energy minimising harmonic maps are in some sense
the mildest the first regularity results were obtained for them. In 1948, C.B. Morrey [59]
showed smoothness for every energy minimising harmonic map u ∈ W 1,2(M,N) provided
the dimension of the target manifold M was equal to m = 2. Afterwards the regularity
problem remained open for a long time until (still for the case when m = 2) M. Grüter [32]
proved smoothness of conformal weakly harmonic maps followed by an extension to sta-
tionary harmonic maps by R. Schoen [72]. Finally, F. Hélein in [40], [41] and [42] showed
that every weakly harmonic map in the case m = 2 is smooth.
For higher dimensional domain manifolds the situation is more complicated as the promi-
nent example of the radial projection from B3 into S2 shows. This is a weakly harmonic
map with an isolated singularity at the origin. The first results in the case of m ≥ 3 were
obtained by R. Schoen and K. Uhlenbeck [73]. They showed that if u ∈ W 1,2(M,N) is
energy minimising, then u is smooth except for a closed singular set S ⊂M of Hausdorff
dimension dimH(S) ≤ m − 3. For the case m = 3 they could strengthen the result to
S consisting only of finitely many points. Later on H. Brezis, J.-M. Coron and E. Lieb
[16] proved that the above mentioned radial projection is actually an energy minimising
map thus showing the optimality of the result by R. Schoen and K. Uhlenbeck [73]. For a
different proof of the minimality of the radial projection valid also in higher dimensions
see F. Lin [53].
Using observations made by F. Hélein in [40], L.C. Evans [23] could show partial reg-
ularity for stationary harmonic maps into spheres, which means smoothness of such a
u ∈ W 1,2(M,SN) except for a closed singular set S with Hm−2(S) = 0 — note the dif-
ference to the case of energy minimisers. This was later generalised by F. Bethuel [11] to
include arbitrary target manifolds. The optimality of this result is still unknown.
For weakly harmonic maps in dimensions m ≥ 3 there is no hope for analogous results
since T. Rivière [66] proved existence of everywhere discontinuous weakly harmonic maps
from B3 into S2.
For a detailed overview of many of the results mentioned above and the techniques involved
in proving them we refer the reader to the books by L. Simon [79] for energy minimising
maps and by F. Hélein [43] for weakly and stationary harmonic maps. One reason for the
intensity of the study of the regularity of harmonic maps is the fact that they are one of
the simplest (geometric) variational problems where many of the so interesting features,
later on also discovered in other settings, appeared for the first time. Indeed, similar
phenomena show up for Yang-Mills connections, Ginzburg-Landau vortices, Willmore
surfaces and many other important problems in a wide range from differential geometry
to theoretical physics and applied mathematics. Another possible extension is to consider
critical points for energies involving higher derivatives of the maps, which leads to the
study of biharmonic and even polyharmonic maps.

For biharmonic maps we consider critical points of the Hessian energy of a map u ∈
W 2,2(M,N) defined by

B(u) :=

∫
M

|∆u|2 dx .

As for harmonic maps we assign the notions weakly biharmonic, stationary biharmonic
and energy minimising biharmonic map to the corresponding critical points of B – again
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see Definitions 3.1-3.3 for precise statements.

Following the path set out for harmonic maps S.-Y.A. Chang, L. Wang and P. Yang
in [18] began their study of (extrinsic) weakly biharmonic maps. For weakly biharmonic
maps into the sphere they could show smoothness for m ≤ 4 and prove partial regular-
ity for stationary biharmonic maps when m ≥ 5, i.e. that u ∈ W 2,2(M,N) is smooth
except for a singular set S of Hausdorff measure Hm−4(S) = 0. C.-Y. Wang later gener-
alised these results for arbitrary target manifolds in [90] and [91]. For a different proof of
smoothness of weakly biharmonic maps see also the papers by P. Strzelecki [84] and more
recently T. Lamm and T. Rivière [49] — see also the following paragraphs.

As motivation for the approach set out for polyharmonic maps below we would like to
focus on some of the aspects common to both the regularity theory for harmonic but also
for biharmonic maps. One common feature is the fact that all the improvements were
made after observing small gains in regularity coming from the algebraic structure of the
quantities involved. For instance, when we consider harmonic maps into spheres Sn the
harmonic map equation becomes

∆u = u|∇u|2, (3.1)

where the right-hand side is a-priori only in L1. This prevents the direct use of standard
regularity estimates from harmonic analysis since the Laplace operator is not invertible
there. However, J. Shatah discovered the conservation law

÷(ui∇uj − uj∇ui) = 0 for all 1 ≤ i, j ≤ m

for weakly harmonic u ∈ W 1,2(M,Sn). Later on, based on observations by H. Wente
[93], F. Hélein [42] used this to prove that the Laplace operator is actually invertible
on the right-hand side of (3.1) with the result that u is continuous. By the results
of S. Hildebrandt and K.-O. Widman [44], O. Ladyzhenskaya and N. Ural’tseva [48] and
C.B. Morrey [59] u is therefore smooth. See also the book by F. Hélein [43] for details.
In the case of target manifolds without symmetry, another important tool for proving
(partial) regularity for harmonic and biharmonic maps is the technique of moving frames.
This was introduced for harmonic maps in two dimensions by F. Hélein [42] and later on
applied to stationary harmonic maps by F. Bethuel [11]. For an application to (station-
ary) biharmonic maps see C.-Y. Wang in [90] and [91].
Only very recently, in [67], T. Rivière succeeded to rephrase the harmonic map system
as a conservation law when m = 2, allowing him (amongst other results) to give a di-
rect proof of regularity of weakly harmonic maps in two dimensions avoiding the use of
moving frames. Prompted by [69], where T. Rivière and M. Struwe developed a related
gauge-theoretic approach to prove partial regularity in higher dimensions. Moreover, this
new approach allows the authors to reduce Hélein’s C5-assumption on the target mani-
fold to C2, which seems to be the natural assumption in order to ensure that the second
fundamental form is well defined. Finally, T. Lamm and T. Rivière in [49] could show
smoothness for weakly biharmonic maps in four dimensions avoiding moving frames, and
M. Struwe [82] proves partial regularity for stationary biharmonic maps in higher dimen-
sions again via gauge theory.
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Strengthening the natural hypotheses for the regularity of a stationary biharmonic map
u slightly, by assuming some higher integrability of the leading order derivative, we show
here similar partial regularity results for biharmonic maps without using moving frames.
Our method is not restricted to this fourth order problem and provides regularity results
for polyharmonic maps. Therefore, we now switch to the more general setting of polyhar-
monic maps below.

More precisely, for k ∈ N and u ∈ W k,2(Ω, N), we consider the k-harmonic energy
functional

E(u) =

∫
Ω

|∇ku|2 dx .

Define the BMO space and the Morrey spaces Mp,λ for the domain Ω as

BMO(Ω) := {u ∈ L1(Ω) : [u]BMO(Ω) := sup
Br⊂Rm

{r−m
∫
Br∩Ω

|u− uBr∩Ω| dx} <∞}

and

Mp,λ(Ω) := {u ∈ Lp(Ω) : [u]p
Mp,λ(Ω)

:= sup
Br⊂Rm

{rλ−m
∫
Br∩Ω

|u|p dx} <∞} ,

where uBr := −
∫
Br

u dx.

Definition 3.1 A map u ∈ W k,2(Ω, N) is called weakly k-harmonic if u is a critical point
of the k-harmonic energy functional with respect to compactly supported variations on N ,
that is, if for all ξ ∈ C∞0 (Ω,RN) we have

d

dt

∣∣∣∣
t=0

E(π(u+ tξ)) = 0 ,

where π denotes the nearest point projection onto N .

Definition 3.2 A weakly k-harmonic map in W k,2(Ω, N) is called stationary k-harmonic
if, in addition, u is a critical point of the k-harmonic energy E(·) with respect to compactly
supported variations on the domain manifold, i.e. if

d

dt

∣∣∣∣
t=0

E (u ◦ (id+ tξ)) = 0 for all ξ ∈ C∞0 (Ω,Rm) , (3.2)

where id denotes the identity map.

Remark 3.1 (Stationary) 1-harmonic maps are (stationary) harmonic maps. Observing
that |∇2u|2 and |∆u|2 only differ by a divergence term, we conclude that the (stationary)
2-harmonic maps are precisely the (stationary) biharmonic maps.

Definition 3.3 A map u ∈ W k,2(Ω, N) is called k-energy minimising if for all v ∈
W k,2(Ω, N) with u− v ∈ W k,2

0 (Ω, N)

E(u) ≤ E(v) .
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Our main result then reads

Theorem 3.1 For p > 1 and 2kp ≤ m, let u ∈ W k,2p(Ω, N) be weakly k-harmonic. There
exists ε > 0, such that for each point x0 ∈ Ω for which there exists some r0 > 0 with

k∑
µ=1

[∇µu]
M

2k
µ ,2k(Br0 (x0))

≤ ε ,

we have
u ∈ C∞(B r0

4
(x0), N) .

Remark 3.2 For 2kp > m, Sobolev’s embedding theorem implies that every map u in
W k,2p(Ω, N) is Hölder-continuous. Smoothness then follows at once from elliptic boot-
strapping arguments.

In view of the monotonicity formulae for stationary harmonic and biharmonic maps, the
condition on the Morrey estimate is, in these cases, satisfied almost everywhere. More
precisely, we deduce the following

Corollary 3.2 For k ∈ {1, 2} and p > 1, let u ∈ W k,2p(Ω, N) be stationary k-harmonic.
Then, u is smooth outside a closed set S with Hm−2kp(S) = 0.

Conceivably, a monotonicity formula allowing to guarantee the Morrey norm condition in
Theorem 3.1 will also hold for k ≥ 3.

The proof of Theorem 3.1 is based on Morrey decay estimates for the rescaled polyhar-
monic energy. We apply an interpolation inequality by Y. Meyer and T. Rivière in [55]
and by P. Strzelecki in [84] (see also our appendix A) in order to bound the W k,2p-norm
by the BMO- and W 2k,p-norms.
The idea of proving ε-regularity results using improved interpolation inequalities first ap-
peared in the paper [55] by Y. Meyer and T. Rivière in the context of Yang-Mills fields
and was also used in the paper [68] by T. Rivière and P. Strzelecki for more general elliptic
systems.
Of course, the critical case p = 1 would be the natural exponent for the present problem.
Moreover, for k = 1 and k = 2, Corollary 3.2 directly follows from F. Bethuel [11] respec-
tively C.-Y. Wang [91] and Poincaré’s inequality. However, our proof is more direct and
avoids the moving frame technique.

We want to remark that polyharmonic maps have already been studied by A. Gastel in
[27], where he considered the polyharmonic map heat flow in the critical dimension.

For another application of the techniques used to prove Theorem 3.1 we consider
slightly different 2k-th order elliptic systems. This time we are interested in nonlinear
elliptic systems of the type

∆ku = Q(x, u, . . . ,∇k−1u) , (3.3)



62 Polyharmonic maps

where k ≥ 2 and the nonlinearity in Q satisfies

|Q(x, u, . . . ,∇k−1u)| ≤ C
k−1∑
j=1

|∇ju|
2k
j

for some constant C > 0 independent of u but without further assumptions on the struc-
ture of Q. We will consider solutions of (3.3) which are a priori in W k,2∩L∞(Ω, N). Then
we have the following result

Theorem 3.3 Let u ∈ W k,2(Ω, N) be weak solution to equation (3.3). There exists ε > 0
independent of u, such that for each point x0 ∈ Ω for which there exists some r0 > 0 with

k∑
µ=1

[∇µu]
M

2k
µ ,2k(Br0 (x0))

≤ ε ,

we have
u ∈ C∞(B r0

4
(x0), N) .

This result was recently conjectured by P. Strzelecki and A. Zatorska-Goldstein in [85],
where they obtained this result for k = 2. The above system is of interest as from the
outset the right hand side again is in L1 but has at first no higher integrability. Because of
the much simpler structure of the non-linearity when compared with the one for polyhar-
monic maps, this time we are in fact able to derive higher integrability of the right-hand
side of (3.3) from a reverse Hölder’s inequality — see Lemma 3.12. In the proof of this
inequality again the sharp Gagliardo-Nirenberg inequality has to be used.

The chapter is organised as follows. Section 3.2 gives the Euler-Lagrange equation for
polyharmonic maps. In 3.3 we prove the Morrey decay estimates. In 3.4 we deduce The-
orem 3.1 and in 3.5, we conclude Corollary 3.2. Finally, a proof of Theorem 3.3 is given
in section 3.6.
A proof of the sharp Gagliardo-Nirenberg inequality is given in appendix A.

Acknowledgement: Sections 3.2–3.5 are based on the joint work with Gilles Angelsberg
in [9].

3.2 Euler-Lagrange equation for polyharmonic maps

In this section we derive the geometric form of the Euler-Lagrange equation for weakly
polyharmonic maps and analyse its structure. We consider, for δ > 0 sufficiently small,
the tubular neighbourhood Vδ of N in RN and the smooth nearest point projection ΠN :
Vδ −→ N . For p ∈ N , P (p) := ∇Π(p) is the orthonormal projection onto the tangent
space TpN . The orthonormal projection onto the normal space will be denoted by P⊥.
Recall that P + P⊥ = id. Then, we have

Lemma 3.4 (Euler-Lagrange) If u ∈ W k,2(Ω, N) is weakly k-harmonic, then it satis-
fies

P (u)(∆ku) = 0 (3.4)

in the sense of distributions.
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Proof. For ξ ∈ C∞0 (Ω,RN), we compute

0 =
d

dt

∣∣∣∣
t=0

∫
Ω

|∇k(ΠN ◦ (u+ tξ))|2 dx

= 2

∫
Ω

∇ku∇k(P (u)(ξ)) dx .

�

Remark 3.3 For a weakly polyharmonic map u in C∞(Ω, N) ∩ W k,2(Ω, N) and ξ ∈
C∞0 (Ω,RN), with ξ(x) parallel to Tu(x)N for all x ∈ Ω, we have P (u)(ξ) = ξ. The proof
of Lemma 3.4 then shows that

∆ku ⊥ TuN

in the sense of distributions.

In order to formulate the following lemma, we introduce the l-divergence ∇(l)· as follows.
We define ∇(1) · u := ∇ · u and ∇(l) · u := ∇ ·

(
∇(l−1) · u

)
for l ≥ 2.

Lemma 3.5 If u ∈ W k,2(Ω, N) is weakly k-harmonic, then there exist f and gjl with

∆ku = f +
∑
j,l≥0

1≤2j+l≤k

∇(l) ·∆jgjl , (3.5)

where

|f | ≤ C
∑
λ∈Λ

k∏
µ=0

|∇µu|γλ,µ with
∑
µ

µγλ,µ = 2k for every λ ∈ Λ ,

|gjl| ≤ C
∑
λ∈Λ

k∏
µ=0

|∇µu|γλ,µ with
∑
µ

µγλ,µ = 2k − (2j + l) for every λ ∈ Λ ,

with Λ consisting of finitely many indices and γλ,µ ≥ 0 for every λ ∈ Λ and 0 ≤ µ ≤ k.

Remark 3.4 Note that the representations in Lemma 3.5 are not unique. See for example
Remark 3.5.

Proof. We observe that

∆k(a · b) =
∑

0≤i,j,q≤k

i+j+q=k

ckijq∆
i∇qa ·∆j∇qb

where ckijq are positive integers. In particular, we have ckk00 = ck0k0 = 1. Combining this
with equation (3.4) shows that u satisfies

0 = P (u)(∆ku)

= ∆k−1(P (u)(∆u))−
∑

0≤i,j,q≤k−1

i+j+q=k−1

(i,j,q) 6=(0,k−1,0)

ck−1
ijq ∆i∇q(P (u))∆j+1∇qu
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in the sense of distributions. Let A(·)(·, ·) denote the second fundamental form of N in
RN and use the property P (u)(∆u) = ∆u+ A(u)(∇u,∇u) to derive

∆ku =
∑
i,j,q

i+j+q=k−1

(i,j,q)6=(0,k−1,0)

ck−1
ijq ∆i∇q(P (u))∆j+1∇qu−∆k−1(A(u)(∇u,∇u)) . (3.6)

First we consider the case when k is even and analyse the Euler-Lagrange equation (3.6)
term by term. It suffices to show that every term in (3.6) can be written in the desired
form.

For i, q such that i+ q
2

= k
2
, we have that ck−1

ijq ∆i∇q(P (u))∆j+1∇qu is of the form f . Here
we used the fact that

|∇βP (u)| ≤ C
∑
λ∈Λ

β∏
µ=0

|∇µu|γλ,µ with
∑
µ

µγλ,µ = β for every β ≤ k and λ ∈ Λ . (3.7)

Indeed, the chain rule gives ∇(P (u)) = ∇P (u)∇u and ∇2(P (u)) = ∇2P (u)∇u∇u +
∇P (u)∇2u. We infer estimate (3.7) by iterating this computation and taking the smooth-
ness of the nearest point projection into account.

For i, q such that i+ q
2
> k

2
, we compute

∆i∇q(P (u))∆j+1∇qu

= ∇ · (∆i−1∇q+1(P (u))∆j+1∇qu)−∆i−1∇q+1(P (u))∆j+1∇q+1u

and/or

∆i∇q(P (u))∆j+1∇qu

= ∇ · (∆i∇q−1(P (u))∆j+1∇qu)−∆i∇q−1(P (u))∆j+2∇q−1u .

Iterating these computations, we get with estimate (3.7) that ck−1
ijq ∆i∇q(P (u))∆j+1∇qu

is of the form

f +
∑
j̃,l≥0

1≤2j̃+l≤k

∇(l) ·∆j̃gj̃l

whenever i + q
2
> k

2
. The terms for i, q such that i + q

2
< k

2
are estimated similarly.

Moreover, we have

∆k−1(A(u)(∇u,∇u)) = ∇ ·∆γgγ1,with γ =
k

2
− 1 ,

completing the case when k is even.
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For k odd we distinguish between the three cases i+ q
2

= k+1
2

, i+ q
2
> k+1

2
and i+ q

2
< k+1

2
,

and proceed similarly to the case when k is even. Moreover, we get

∆k−1(A(u)(∇u,∇u)) =

{
f for k = 1
∆γgγ0, with γ = k−1

2
for k ≥ 3 odd .

This completes the proof. �

Remark 3.5 Observe that harmonic maps (k = 1) satisfy

∆u = −A(u)(∇u,∇u) in D′ .

Thus, the harmonic map equation is of the form ∆u = f with

f = −A(u)(∇u,∇u) ≤ C|∇u|2.

Weakly biharmonic maps (k = 2) satisfy

∆2u = ∆P (u)∆u+ 2∇P (u)∆∇u−∆(A(u)(∇u,∇u))

= −∆P (u)∆u+∇ · (2∇P (u)∆u−∇(A(u)(∇u,∇u))) in D′ ,

i.e. the biharmonic map equation is of the form ∆2u = f +∇ · g01 with

f = −∆P (u)∆u ≤ C|∇2u|2

and

g01 = 2∇P (u)∆u−∇(A(u)(∇u,∇u)) ≤ C|∇2u||∇u| .

However, we could also write the biharmonic map equation as

∆2u = −∆P (u)∆u+∇ · (2∇P (u)∆u) + ∆(−A(u)(∇u,∇u)) in D′,

i.e. it is also of the form ∆2u = f +∇ · g01 + ∆g10 with

f = −∆P (u)∆u ≤ C|∇2u|2 ,

g01 = 2∇P (u)∆u ≤ C|∇2u||∇u|

and

g10 = −A(u)(∇u,∇u) ≤ C|∇u|2 .

This illustrates the non-uniqueness of the representation mentioned in Remark 3.4.

3.3 Morrey decay estimates

We will deduce Theorem 3.1 from the following
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Proposition 3.6 For p > 1, let u ∈ W k,2p(Ω, N) be weakly k-harmonic. There exist
ε > 0 and τ ∈ (0, 1) such that for each point y0 ∈ Ω for which there exists a radius r0 > 0
with

k∑
µ=1

[∇µu]
M

2k
µ ,2k(Br0 (y0))

≤ ε ,

we have

(τr)2kp−m
k∑

µ=1

∫
Bτr(x0)

|∇µu|
2kp
µ dx ≤ 3

4
r2kp−m

k∑
µ=1

∫
Br(x0)

|∇µu|
2kp
µ dx , (3.8)

for all x0 ∈ Br0(y0), 0 < 4r < dist(x0, ∂Br0(y0)).

Proof. We consider the k-harmonic extension v of u, defined as the unique solution to
the following Dirichlet problem:{

∆kv = 0 in Br(x0)
∂lv
∂νl

= ∂lu
∂νl

on ∂Br(x0) ,

for 0 ≤ l ≤ k − 1, where ν denotes the unit normal vector to ∂Br(x0). According to
Lemma B.4, we have∫

Bρ(x0)

|∇µv|
2kp
µ dx ≤ C

(ρ
r

)m k∑
λ=1

∫
B r

4
(x0)

|∇λv|
2kp
λ dx (3.9)

for 0 < ρ ≤ r
4

and 1 ≤ µ ≤ k. It follows that

k∑
µ=1

∫
Bρ(x0)

|∇µu|
2kp
µ dx

≤ C
k∑

µ=1

∫
Bρ(x0)

|∇µv|
2kp
µ dx+ C

k∑
µ=1

∫
Bρ(x0)

|∇µ(u− v)|
2kp
µ dx

≤ C
(ρ
r

)m k∑
µ=1

∫
B r

4
(x0)

|∇µv|
2kp
µ dx+ C

k∑
µ=1

∫
B r

4
(x0)

|∇µ(u− v)|
2kp
µ dx

≤ C
(ρ
r

)m k∑
µ=1

∫
Br(x0)

|∇µu|
2kp
µ dx+ C

k∑
µ=1

∫
B r

4
(x0)

|∇µ(u− v)|
2kp
µ dx . (3.10)

In view of Lemma 3.5, we introduce the auxiliary maps uf and ugjl for all j, l ≥ 0 such
that 1 ≤ 2j + l ≤ k as the solutions to the Dirichlet problems

∆kuf = f with uf − u ∈ W k,2p
0 (Br(x0)) ,

∆kugjl = ∇(l) ·∆jgjl with ugjl ∈ W
k,2p
0 (Br(x0)) ,

where f and gjl satisfy (3.5). Observe that the uniqueness of the Dirichlet problem implies

u = uf +
∑
j,l≥0

1≤2j+l≤k

ugjl . (3.11)
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Moreover, uf − v ∈ W k,2p
0 (Br(x0)) satisfies

∆k(uf − v) = f .

Lemma 3.5, Hölder’s inequality and Nirenberg’s interpolation inequality (A.1) give

‖f‖Lp(Br(x0)) ≤ C

∥∥∥∥∥∑
λ∈Λ

k∏
µ=0

|∇µu|γλ,µ
∥∥∥∥∥
Lp(Br(x0))

≤ C
∑
λ∈Λ

k∏
µ=0

‖∇µu‖γλ,µ
L

2kp
µ (Br(x0))

≤ C
∑
λ∈Λ

k∏
µ=0

‖u‖γλ,µ(1−µ
k

)

L∞(Br(x0)) ‖u‖
µγλ,µ
k

Wk,2p(Br(x0))

≤ C‖u‖2
Wk,2p(Br(x0)) <∞ ,

and

‖gjl‖Lrjl (Br(x0)) ≤ C

∥∥∥∥∥∑
λ∈Λ

k∏
µ=0

|∇µu|γλ,µ
∥∥∥∥∥
L
rjl (Br(x0))

≤ C
∑
λ∈Λ

k∏
µ=0

‖∇µu‖γλ,µ
L

2kp
µ (Br(x0))

≤ C
∑
λ∈Λ

k∏
µ=0

‖u‖γλ,µ(1−µ
k

)

L∞(Br(x0))‖u‖
µγλ,µ
k

Wk,2p(Br(x0))

≤ C‖u‖ηjl
Wk,2p(Br(x0))

<∞ , (3.12)

where

rjl =
2kp

2k − (2j + l)
and 1 ≤ ηjl :=

2k − (2j + l)

k
< 2 .

Thus, Corollary B.2 and Lemma B.7 imply that

uf − v ∈ W 2k,p(Br(x0)), ugjl ∈ W 2k−(2j+l),rjl(Br(x0)) ,

and

‖∇2k(uf − v)‖Lp(Br(x0)) ≤ C‖f‖Lp(Br(x0)) ,

‖∇2k−(2j+l)ugjl‖Lrjl (Br(x0)) ≤ C‖gjl‖Lrjl (Br(x0)) . (3.13)

We remark that the only place where we need p > 1 is to ensure the first estimate for
uf − v.
We have∫
B r

4
(x0)

|∇µ̃(u−v)|
2kp
µ̃ dx ≤ C

∫
B r

4
(x0)

|∇µ̃(uf−v)|
2kp
µ̃ dx+C

∑
j,l≥0

1≤2j+l≤k

∫
B r

4
(x0)

|∇µ̃ugjl |
2kp
µ̃ dx

(3.14)
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for 1 ≤ µ̃ ≤ k. We apply the Gagliardo-Nirenberg interpolation inequality (A.2), Lemma
B.3, estimates (3.13) and Lemma 3.5 to obtain

‖∇µ̃(uf − v)‖
L

2kp
µ̃ (B r

4
(x0))

≤ C [uf − v]
1− µ̃

2k

BMO(B r
4

(x0)) ‖uf − v‖
µ̃
2k

W 2k,p(B r
4

(x0))

≤ C [uf − v]
1− µ̃

2k

BMO(B r
4

(x0)) ‖∇
2k(uf − v)‖

µ̃
2k

Lp(Br(x0))

≤ C [uf − v]
1− µ̃

2k

BMO(B r
4

(x0)) ‖f‖
µ̃
2k

Lp(Br(x0))

≤ C [uf − v]
1− µ̃

2k

BMO(B r
4

(x0))

∥∥∥∥∥∑
λ∈Λ

k∏
µ=0

|∇µu|γλ,µ
∥∥∥∥∥
µ̃
2k

Lp(Br(x0))

,

with
∑

µ µγλ,µ = 2k for every λ ∈ Λ. Next we use Hölder’s inequality and Young’s
inequality to deduce

∥∥∥∥∥∑
λ∈Λ

k∏
µ=0

|∇µu|γλ,µ
∥∥∥∥∥
Lp(Br(x0))

≤
∑
λ∈Λ

k∏
µ=0

‖∇µu‖γλ,µ
L

2kp
µ (Br(x0))

≤ C
k∑

µ=1

‖∇µu‖
2k
µ

L
2kp
µ (Br(x0))

,

where we remark that
∑k

µ=1
µγλ,µ

2k
= 1 and the L∞-norm of u enters into the constant C.

Combining the above estimates we obtain

∫
B r

4
(x0)

|∇µ̃(uf − v)|
2kp
µ̃ dx ≤ C [uf − v]

(1− µ̃
2k)

2kp
µ̃

BMO(B r
4

(x0))

k∑
µ=1

∫
Br(x0)

|∇µu|
2kp
µ dx . (3.15)

For the second term in (3.14), as before, the Gagliardo-Nirenberg interpolation inequality
(A.2) gives

‖∇µ̃ugjl‖
L

2kp
µ̃ (B r

4
(x0))

≤ C
[
ugjl
]1− µ̃

k
θjl

BMO(B r
4

(x0))
‖ugjl‖

µ̃
k
θjl

W
2k−(2j+l),rjl (B r

4
(x0))

, (3.16)

where

1

2
< θjl :=

k

2k − (2j + l)
= η−1

jl ≤ 1

for all j, l ≥ 0 such that 1 ≤ 2j + l ≤ k. Furthermore, we again apply Lemma B.3 with
µ = 2k−(2j+ l), estimates (3.13), Lemma 3.5, Hölder’s inequality and Young’s inequality
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to get

‖ugjl‖W 2k−(2j+l),rjl (Br(x0))
≤ ‖∇2k−(2j+l)ugjl‖Lrjl (Br(x0))

≤ C‖gjl‖Lrjl (Br(x0))

≤ C

∥∥∥∥∥∑
λ∈Λ

k∏
µ=0

|∇µu|rjlγλ,µ
∥∥∥∥∥

1
rjl

L1(Br(x0))

≤ C
∑
λ∈Λ

k∏
µ=0

‖|∇µu|rjlγλ,µ‖
1
rjl

L
2kp

rjlµγλ,µ (Br(x0))

≤ C
∑
λ∈Λ

k∏
µ=0

‖∇µu‖γλ,µ
L

2kp
µ (Br(x0))

≤ C

k∑
µ=1

‖∇µu‖
kηjl
µ

L
2kp
µ (Br(x0))

, (3.17)

where

ηjl :=
2k − (2j + l)

k
= θ−1

jl .

Combining (3.16) and (3.17) gives∫
B r

4
(x0)

|∇µ̃ugjl |
2kp
µ̃ dx ≤ C

[
ugjl
](1− µ̃

k
θjl) 2kp

µ̃

BMO(B r
4

(x0))

k∑
µ=1

∫
Br(x0)

|∇µu|
2kp
µ dx . (3.18)

Thus, we conclude with (3.14), (3.15) and (3.18) that∫
B r

4
(x0)

|∇µ̃(u− v)|
2kp
µ̃ dx (3.19)

≤ C

(
[uf − v]

(1− µ̃
2k)

2kp
µ̃

BMO(B r
4

(x0)) +
∑
j,l

[
ugjl
](1− µ̃

k
θjl) 2kp

µ̃

BMO(B r
4

(x0))

)
k∑

µ=1

∫
Br(x0)

|∇µu|
2kp
µ dx .

From Lemma 3.8 below we infer

[uf − v]
(1− µ̃

2k)
2kp
µ̃

BMO(B r
4

(x0)) +
∑
j,l

[
ugjl
](1− µ̃

k
θjl) 2kp

µ̃

BMO(B r
4

(x0)) ≤ Cεβ (3.20)

for some β > 0, all 1 ≤ µ̃ ≤ k and all j, l ≥ 0 such that 1 ≤ 2j + l ≤ k. Then we can
combine this with inequalities (3.10) and (3.19) into

ρ2kp−m
k∑

µ=1

∫
Bρ(x0)

|∇µu|
2kp
µ dx ≤ C

((ρ
r

)2kp

+ εβ
(ρ
r

)2kp−m
)
r2kp−m

k∑
µ=1

∫
Br(x0)

|∇µu|
2kp
µ dx.

We conclude the proof of this proposition by setting τ := ρ
τ

equal to (2C)−
1

2kp and choosing
ε > 0 sufficiently small so that Cεβτ 2kp−m ≤ 1

4
. �

Now it remains to show (3.20). In a first step, we prove the subsequent lemma.
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Lemma 3.7 There exists a constant C > 1 such that

k∑
µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Br(x0))

≤ C
k∑

µ=1

[∇µu]
2k
µ

M
2k
µ ,2k(B4r(x0))

+ Cr2k−m
k∑

µ=1

∫
Br(x0)

|∇µugjl |
2k
µ dx .

(3.21)

Proof. For Bs(x) ⊂ B4r(x0), we consider the k-harmonic extension vjl of ugjl on Bs(x),

where ugjl is set to zero outside Br(x0). Then wjl := ugjl − vjl ∈ W
k,2
0 (Bs(x)) satisfies

∆kwjl = ∇(l) ·∆j g̃jl ,

where g̃jl := χBr(x0)gjl. Analogously to (3.12) we conclude that wjl ∈ W 2k−(2j+l),rjl(Bs(x)),
and similarly to (3.17) we get

‖wjl‖W 2k−(2j+l),rjl (Bs(x))
≤ C

k∑
µ=1

‖∇µu‖
kηjl
µ

L
2k
µ (Bs(x))

.

Here and henceforth in the proof of Lemma 3.7, we set p = 1. Observe that the second
estimate in (3.13) is still valid in this case.
Applying the Gagliardo-Nirenberg inequality (A.2) and the preceding estimate gives∫

B s
4

(x)

|∇λwjl|
2k
λ dx ≤ C [wjl]

2k( 1
λ
− 1

2k−(2j+l))
BMO(B s

4
(x))

2k−(2j+l)∑
µ=0

∫
B s

4
(x)

|∇µwjl|rjl dx

≤ C [wjl]
2k( 1

λ
− 1

2k−(2j+l))
BMO(B s

4
(x))

k∑
µ=1

∫
Bs(x)

|∇µu|
2k
µ dx (3.22)

for 1 ≤ λ ≤ k. As vjl is the k-harmonic extension of ugjl , we obtain with Hölder’s
inequality, Poincaré’s inequality and Lemma B.6

[wjl]
2k
BMO(B s

4
(x)) ≤ sup

B⊂B s
2

(x)

{
−
∫
B

|wjl − wjlB| dx
}2k

≤ C [∇wjl]2kM2,2(B s
2

(x))

≤ C
[
∇ugjl

]2k
M2,2(B s

2
(x))

+ C [∇vjl]2kM2,2(B s
2

(x))

≤ C
[
∇ugjl

]2k
M2,2(B s

2
(x))

+ C

(
k∑

µ=1

∫
Bs(x)

|∇µugjl |
2k
µ dx

)µ

. (3.23)

Arguing with the help of Poincaré’s inequality and (3.12) we show that

‖ugjl‖Wk,2(Br(x0)) ≤ C‖∇kugjl‖L2(Br(x0)) ≤ C‖gjl‖L2(Br(x0)) ≤ C‖u‖Wk,2(Br(x0)) ≤ Cε ≤ 1 ,

provided ε > 0 is sufficiently small. Using this we can omit the exponent µ in the last
term of (3.23) and estimate

[wjl]
2k
BMO(B s

4
(x)) ≤ C

k∑
µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Bs(x))

. (3.24)
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Combining estimates (3.22) and (3.24) with Young’s inequality yields

∫
B s

4
(x)

|∇λwjl|
2k
λ dx ≤ C

(
k∑

µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Bs(x))

)( 1
λ
− 1

2k−(2j+l)) k∑
µ=1

∫
Bs(x)

|∇µu|
2k
µ dx

≤ Cγ

k∑
µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Bs(x))

+ C(γ)
k∑

µ=1

‖∇µu‖
2kC(λ)
µ

L
2k
µ (Bs(x))

, (3.25)

with γ > 0 and C(λ) > 1 for 1 ≤ 2j + l, λ ≤ k. With a rescaling argument this gives

∫
B s

4
(x)

|∇λwjl|
2k
λ dx ≤ Csm−2kγ

k∑
µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Bs(x))

+ C(γ)
k∑

µ=1

∫
Bs(x)

|∇µu|
2k
µ dx ,

(3.26)
where the constants are now independent of s and λ. Here we also used the fact that
‖∇µu‖

L
2k
µ (B4r(x0))

< 1 for 1 ≤ µ ≤ k, provided ε > 0 is sufficiently small. Combining

estimate (3.26) with Lemma B.4, we estimate for 0 < ρ ≤ s
4

as in (3.10)

k∑
µ=1

∫
Bρ(x)

|∇µugjl |
2k
µ dx ≤ C

(ρ
s

)m k∑
µ=1

∫
B s

4
(x)

|∇µugjl |
2k
µ dx+ C

k∑
µ=1

∫
B s

4
(x)

|∇µwjl|
2k
µ dx

≤ C
(ρ
s

)m k∑
µ=1

∫
Bs(x)

|∇µugjl|
2k
µ dx+ C(γ)

k∑
µ=1

∫
Bs(x)

|∇µu|
2k
µ dx

+Csm−2kγ
k∑

µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Bs(x))

. (3.27)

The proof of the lemma is completed by the following iteration argument. To simplify

notation, we define T (ρ) := ρ2k−m∑k
µ=1

∫
Bρ(x)

|∇µugjl|
2k
µ dx so that the above estimate

becomes

T (ρ) ≤ C
(ρ
s

)2k

T (s) + C(γ)
(ρ
s

)2k−m
s2k−m

k∑
µ=1

∫
Bs(x)

|∇µu|
2k
µ dx

+Cγ
(ρ
s

)2k−m k∑
µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Bs(x))

.

Next we choose τ := ρ
s

sufficiently small such that Cτ 2k ≤ 1
2
, which implies

T (τs) ≤ 1

2
T (s) + C(γ)τ 2k−ms2k−m

k∑
µ=1

∫
Bs(x)

|∇µu|
2k
µ dx

+Cγτ 2k−m
k∑

µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Bs(x))

. (3.28)
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Now we consider Bσ(x) ⊂ B2r(x0). There exists i ∈ N (simply set i =
⌊
log σ

2r
/ log τ

⌋
)

with τ i+12r ≤ σ ≤ τ i2r and note that therefore (τ i2r)2k−m ≤ σ2k−m ≤ (τ (i+1)2r)(2k−m).
We estimate

T (σ) = σ2k−m
k∑

µ=1

∫
Bσ(x)

|∇µugjl |
2k
µ dx

≤
(
τ (i+1)2r

)(2k−m)
k∑

µ=1

∫
Bτi2r(x)

|∇µugjl |
2k
µ dx

≤ CT (τ i2r) . (3.29)

Furthermore, estimate (3.28) gives

T (τ i2r) ≤ 1

2
T (τ i−12r) + C(γ) (τ2r)2k−m τ (i−1)(2k−m)

k∑
µ=1

∫
Bτi−12r(x)

|∇µu|
2k
µ dx

+Cγτ 2k−m
k∑

µ=1

[
∇µugjl

] 2k
µ

M
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µ ,2k(Bτi−12r(x))

≤ 1

2
T (τ i−12r) + C(γ)τ 2k−m
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[∇µu]
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µ

M
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+Cγτ 2k−m
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[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Br(x0))

,

where in the last term we used the fact that ugjl is supported in Br(x0) allowing us to
reduce to the Morrey norm on Br(x0). Setting

S := C(γ)τ 2k−m
k∑

µ=1

[∇µu]
2k
µ

M
2k
µ ,2k(B4r(x0))

+ Cγτ 2k−m
k∑

µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Br(x0))

the above becomes

T (τ i2r) ≤ 1

2
T (τ i−12r) + S(r)

which after iteration yields

T (τ i2r) ≤ T (2r) +
i∑

µ̃=1

1

2µ̃
S

≤ T (2r) + S .

Combining this with (3.29) gives

T (σ) ≤ C(γ)
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[∇µu]
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µ

M
2k
µ ,2k(B4r(x0))

+ Cr2k−m
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µ=1

∫
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|∇µugjl |
2k
µ dx

+Cγ
k∑

µ=1

[
∇µugjl

] 2k
µ

M
2k
µ ,2k(Br(x0))

.
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The desired result now follows by taking the supremum over all such balls Bσ(x), and
choosing γ > 0 sufficiently small to absorb the last term on the right-hand side. �

Now we are able to complete the proof of Proposition 3.6 with the following

Lemma 3.8 We have

[uf − v]BMO(B r
4

(x0)) +
∑
j,l

[
ugjl
]
BMO(B r

4
(x0))
≤ Cεβ

for some β > 0 and all j, l ≥ 0 such that 1 ≤ 2j + l ≤ k.

Proof. Similarly to (3.22) and (3.25) we estimate∫
Br(x0)

|∇λugjl |
2k
λ dx ≤ Cγ

[
ugjl
]2k
BMO(Br(x0))

+ C(γ)
k∑

µ=1

‖∇µu‖
2k
µ

L
2k
µ (Br(x0))

(3.30)

for 1 ≤ λ ≤ k and every γ > 0. Lemma 3.7, estimate (3.30) and Poincaré’s inequality
give

[
∇ugjl

]2k
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≤ Cγ
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ugjl
]2k
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+ C(γ)
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M
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+ C(γ)
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µ=1

[∇µu]
2k
µ

M
2k
µ ,2k(B4r(x0))

which for γ > 0 sufficiently small implies

[
∇ugjl

]2k
M2k,2k(Br(x0))

≤ C
k∑
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[∇µu]
2k
µ

M
2k
µ ,2k(B4r(x0))

.

Applying Hölder’s inequality and Poincaré’s inequality together with the above estimate
we infer [

ugjl
]2k
BMO(B r

4
(x0))

≤ C
[
∇ugjl

]2k
M2k,2k(Br(x0))

≤ C

k∑
µ=1

[∇µu]
2k
µ

M
2k
µ ,2k(B4r(x0))

≤ Cεβ

for some β > 0. From (3.11), we deduce

[uf − v]BMO(B r
4

(x0)) ≤ C
∑
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[
ugjl
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BMO(B r

4
(x0))

+ C [u− v]BMO(B r
4

(x0)) . (3.31)
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Hölder’s inequality and Poincaré’s inequality imply

[u− v]2kBMO(B r
4

(x0)) ≤ C [∇(u− v)]2kM2,2(B r
2

(x0))

≤ C
(

[∇u]2kM2,2(B r
2

(x0)) + [∇v]2kM2,2(B r
2

(x0))

)
. (3.32)

As v is the k-harmonic extension of u, Lemma B.6 and Hölder’s inequality yield

[∇u]2kM2,2(B r
2

(x0)) + [∇v]2kM2,2(B r
2

(x0)) ≤ C
k∑
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M
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µ ,2k(B2r(x0))

≤ Cεβ (3.33)

for some β > 0. Estimate (3.20) now follows from (3.31)-(3.33). This completes the
proof. �

3.4 Proof of Theorem 3.1

Theorem 3.1 now follows from Proposition 3.6 (compare with section 2.5 in chapter 2).
Consider x0 ∈ B r0

4
(y0). An iteration of estimate (3.8) implies(

τ ir0
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(3.34)
for all i. For 0 < ρ ≤ r0

4
, choose i ∈ N such that τ i+1 r0

4
≤ ρ ≤ τ i r0

4
, set γ = log 3−log 4

2 log τ
> 0

and observe that
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3
4

)i ≤ (τ i)
γ
. Thus, inequality (3.34) implies
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µ=1

∫
Br0 (y0)

|∇µu|
2kp
µ dx

≤

((τr0

4

)2kp−m−γ k∑
µ=1

∫
Br0 (y0)

|∇µu|
2kp
µ dx

)
ργ

≤ Cργ .

for allBρ(x0) ⊂ B r0
4

(y0). Hence from Morrey’s Dirichlet growth theorem, Theorem 3.5.2 in

[60] by C.B. Morrey, we conclude that u ∈ C0, γ
p in a neighbourhood of y0. The smoothness

of u near y0 follows now from elliptic bootstrapping arguments. This completes the proof
of Theorem 3.1.
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3.5 The harmonic and biharmonic cases

Here we give a derivation of Corollary 3.2. For stationary harmonic maps, i.e. k = 1,
Corollary 3.2 follows from Theorem 3.1 and the monotonicity formula below.

Proposition 3.9 (Monotonicity formula [63]) For u ∈ W 1,2(B2, N) stationary har-
monic and 0 ≤ ρ ≤ r ≤ 1, we have

ρ2−m
∫
Bρ

|∇u|2 dx ≤ r2−m
∫
Br

|∇u|2 dx . (3.35)

Indeed, consider u ∈ W 1,2p(Ω,RN) stationary harmonic and define the set

S :=

{
x0 ∈ Ω : lim

r→0
sup r2p−m

∫
Br(x0)

|∇u|2p dx ≥ γp
}
,

with γ > 0 small. By Corollary 3.2.3 in the book by W. Ziemer [96] we haveHm−2p(S) = 0.
Applying Hölder’s inequality, we get that for any y0 ∈ Ω \S, there exists R > 0 such that

R2−m
∫
BR(y0)

|∇u|2 dx ≤ C

(
R2p−m

∫
BR(y0)

|∇u|2p dx
) 1

p

< γ.

Hence, the monotonicity formula (3.35) implies for x0 ∈ BR
2
(y0) that

ρ2−m
∫
Bρ(x0)

|∇u|2 dx ≤ CR2−m
∫
BR

2
(x0)

|∇u|2 dx

≤ C

∫
BR(y0)

|∇u|2 dx

≤ C2γ .

Fix γ := ε
C2

, where ε is given by Theorem 3.1, and the claim follows.

For stationary biharmonic maps, i.e. k = 2, we replace Proposition 3.9 by Theorem 3.10
below which was proved in [8] by G. Angelsberg.

Theorem 3.10 (Monotonicity formula) For K > 0 and u ∈ W 2,2(BK , N) (extrinsi-
cally) stationary biharmonic, it holds for a.e. 0 < ρ < r ≤ K

2

r4−m
∫
Br

|∆u|2 dx− ρ4−m
∫
Bρ

|∆u|2 dx = P +R ,

where

P = 4

∫
Br\Bρ

(
(uj + xiuij)

2

|x|m−2 +
(m− 2)(xiui)

2

|x|m
)
dx

R = 2

∫
∂Br\∂Bρ

(
−x

iujuij
|x|m−3

+ 2
(xiui)

2

|x|m−1 − 2
|∇u|2

|x|m−3

)
dσ .
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We observe that Nirenberg’s interpolation inequality (A.1) implies that ∇u ∈ L4p(Ω), and
define

S :=

{
x0 ∈ Ω : lim

r→0
sup r4p−m

∫
Br(x0)

(
|∇2u|2p + |∇u|4p

)
dx ≥ ηp

}
with η > 0 small. By Corollary 3.2.3 in the book by W. Ziemer [96] we now have
Hm−4p(S) = 0. For any y0 ∈ Ω \ S, there exists R > 0 such that

R4−m
∫
BR(y0)

(|∇u|4 + |∇2u|)2 dx ≤ C

(
R4p−m

∫
BR(y0)

(|∇u|4p + |∇2u|2p) dx
) 1

p

< η .

We have the following proposition by C.-Y. Wang in [91] and also M. Struwe in [82].

Proposition 3.11 Let u ∈ W 2,2(B2, N) be stationary biharmonic and 0 < R ≤ 1. There
exists ε > 0 and ρ0 > 0 sufficiently small such that if

R4−m
∫
BR

(|∇u|4 + |∇2u|2) dx < ε,

we have
[∇u]M4,4(Bρ0 ) + [∇2u]M2,4(Bρ0 ) ≤ Cε.

Thus the monotonicity formula implies the existence of ρ0 > 0 and ε0 > 0 such that if
R4−m ∫

BR(y0)
(|∇u|4 + |∇2u|2) dx ≤ ε ≤ ε0, we have

ρ4−m
∫
Bρ(x0)

(|∇u|4 + |∇2u|2) dx ≤ C3ε

for all Bρ(x0) ⊂ Bρ0(y0). Fix ε := min( ε
C3
, ε0) > 0 and η := ε > 0, where ε > 0 is given by

Theorem 3.1. This completes the proof of Corollary 3.2.

3.6 Applications to 2k-th order elliptic systems

The aim of this section is to use the results from section 3.3 to prove Theorem 3.3. From
the assumptions on the right-hand side of the equation we deduce that we have a structure
similar to the one of the Euler-Lagrange equation for polyharmonic maps in Lemma 3.5
where this time the terms involving gjl vanish. Therefore we would be able to apply our
results from section 3.3 except for the lack of a priori higher integrability. In contrast to
the case of polyharmonic maps, where such higher integrability had to be assumed, this
time we will show a reverse Hölder inequality and deduce this higher regularity from it.
More precisely, we have the following Lemma

Lemma 3.12 Let u ∈ W k,2(Ω,RN) ∩ L∞(Ω) be a solution of equation 3.3. Then there
exists ε > 0, C > 0 and s > 0 depending only on the dimensions and ‖u‖L∞(Ω) such that
if u satisfies

k∑
µ=1

[∇µu]
M

2k
µ ,2k(Br0 (y0))

≤ ε
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for some r0 > 0, then−∫
Br

(
k∑

µ=1

|∇µu|
k
µ

)2(1+s)

dx

 1
1+s

≤ C
k∑

µ=1

−
∫
B2r

|∇µu|
2k
µ dx (3.36)

for all balls Br ⊂ B4r ⊂⊂ Br0(x0).

In the course of the proof of this Lemma we will make use of the following Lemma
by F. Gehring, M. Giaquinta and G. Modica stated in the book by M. Giaquinta [28] as
Proposition V.1.1.

Lemma 3.13 Let Ω ⊂ Rm be a bounded open subset and let g ∈ Lploc(Ω) with 1 < p <∞
be a nonnegative function. There exists a constant κ0 > 0 depending only on m and p
with the following property: if for every ball Br with B4r ⊂⊂ Ω we have

−
∫
Br

gp dx ≤ b

(
−
∫
B4r

g dx

)p
+ κ−

∫
B4r

gp dx

for some b > 1 and 0 < κ ≤ κ0, then there exists s0 > 0 depending also on b > 1 so that
g ∈ Lsloc(Ω) for all 1 < s < s0 and

−
∫
Br

gs dx ≤ C

(
−
∫
B4r

gp dx

) 1
p

.

We are now in position to prove Lemma 3.12.

Proof. The proof is in some way similar to the proof of Lemma 3.2 in the paper by
P. Strzelecki and A. Zatorska-Goldstein [85]. We begin by constructing a suitable test
function for equation (3.3). Fixing a ball B4r ⊂⊂ Ω we can assume it to be centred at
0 ∈ Rm. Take a cut-off function η ∈ C∞0 (B2r) satisfying 0 ≤ η ≤ 1, η ≡ 1 on Br and
|∇µη| ≤ 1

rµ
. We will construct the test function ψ := ηk

(
u− P

(
xk−1

))
where P

(
xk−1

)
is

a suitable polynomial of order k−1 in the entries of x with constant coefficients depending
on u. The top coefficient pk−1 of P

(
xk−1

)
is defined to be pk−1 := ∇kuB2r , which as

before denotes the average, so that ∇k
(
u− P

(
xk−1

))
= ∇ku − ∇kuB2r . The remaining

coefficients are determined recursively by pk−j := ∇k−juB2r −∇k−jP (xk−1)− P (xk−j)B2r

so that this time∇k−j (u− P (xk−1
))

= ∇k−ju−∇k−juB2r+∇k−jP (xk−1)− P (xk−j)B2r
−

P
(
xk−1

)
−P (xk−j). The reason for this choice of coefficients is that it ensured the averages

over B2r of all derivatives of u− P
(
xk−1

)
to vanish, which will be of use later on.

Testing equation (3.3) with the ψ constructed above we obtain∫
Ω

∇ku∇kψ dx =

∫
Ω

ψQ(x, u,∇u, . . . ,∇k−1u) dx (3.37)

for which we will estimate right- and left-hand side separately. For the left-hand one we
immediately compute that it equals∫

B2r

[
ηk|∇ku|2 +

k∑
j=1

∇ku∇jηk∇k−j (u− P (xk−1
))]

dx
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which using the properties of η we bound by∫
B2r

ηk|∇ku|2 dx+
k∑
j=1

1

rj

∫
B2r

|∇ku|
∣∣∇k−j (u− P (xk−1

))∣∣ dx . (3.38)

Next we set p := 2n
n+1

, 1
p

+ 1
q

= 1 and estimate for each j the appropriate term in (3.38)

applying Hölder’s, Poincaré’s (j − 1-times) and Sobolev’s inequalities

rn−j −
∫
B2r

|∇ku|
∣∣∇k−j (u− P (xk−1

))∣∣ dx
≤ rn−j

(
−
∫
B2r

|∇ku|p dx
) 1

p
(
−
∫
B2r

∣∣∇k−j (u− P (xk−1
))∣∣q dx) 1

q

≤ Crn−1

(
−
∫
B2r

|∇ku|p dx
) 1

p
(
−
∫
B2r

∣∣∇k−1
(
u− P

(
xk−1

))∣∣q dx) 1
q

≤ Crn
(
−
∫
B2r

|∇ku|p dx
) 1

p
(
−
∫
B2r

∣∣∇k
(
u− P

(
xk−1

))∣∣q∗ dx) 1
q∗

, (3.39)

where q∗ := nq
n+q

= p. Thus with the properties of P
(
xk−1

)
we summarise the above

inequalities into

rn−j −
∫
B2r

|∇ku|
∣∣∇k−j (u− P (xk−1

))∣∣ dx ≤ Crn
(
−
∫
B2r

|∇ku|p dx
) 2

p

. (3.40)

Therefore together with (3.38) for the left-hand side of (3.37) this yields∫
Ω

∇ku∇kψ dx ≥
∫
Br

|∇ku|2 dx− Crn
(
−
∫
B2r

|∇ku|
2n
n+1 dx

)n+1
n

. (3.41)

Next we will bound the right-hand side of (3.37) using the sharp Gagliardo-Nirenberg
inequality. First we get∫
B2r

ψQ(x, u,∇u, . . . ,∇k−1u) dx ≤ C (‖u‖L∞ + ε)
k∑

µ=1

∫
B2r

|∇µu|
2k
µ dx

≤ C (‖u‖L∞ + ε)
k∑

µ=1

(∫
B2r

∣∣∇µ
(
u− P

(
xk−1

))∣∣ 2kµ dx+ rn
∣∣∇µuB2r

∣∣ 2kµ ) .
From Theorem A.2 we estimate∫

B2r

∣∣∇µ
(
u− P

(
xk−1

))∣∣ 2kµ dx ≤ C
∥∥u− P (xk−1

)∥∥2( 2k
µ
−1)

BMO(B2r)

∥∥u− P (xk−1
)∥∥2

W 2k,2(B2r)

≤ C
∥∥u− P (xk−1

)∥∥2( 2k
µ
−1)

BMO(B2r)

∫
B2r

∣∣∇ku
∣∣2 dx (3.42)

≤ Cε2
∫
B2r

∣∣∇ku
∣∣2 dx , (3.43)
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provided ε > 0 was chosen sufficiently small. Thus, combining the above estimates for
the right-hand side of (3.37) we get∫

B2r

ψQ(x, u,∇u, . . . ,∇k−1u) dx ≤ Cε2
∫
B2r

∣∣∇ku
∣∣2 dx+ C

k∑
µ=1

rn
∣∣∇µuB2r

∣∣ 2kµ
≤ Cε2

∫
B2r

∣∣∇ku
∣∣2 dx+ Crn

(
−
∫
B2r

k∑
µ=1

|∇µu|
2k
µ

n
n+1 dx

)n+1
n

.(3.44)

Putting both estimates for (3.37) and (3.42) together we have

−
∫
Br

k∑
µ=1

|∇µu|
2k
µ dx ≤ C

−∫
B2r

(
k∑

µ=1

|∇µu|
2k
µ

) n
n+1

dx

n+1
n

+ Cε2 −
∫
B2r

k∑
µ=1

|∇µu|
2k
µ dx ,

which, provided ε > 0 is chosen possibly even smaller, implies that we can apply Lemma

3.13 with g =
∑k

µ=1 |∇µu|
2k
µ and p = n+1

n
to obtain the desired reverse Hölder inequality.�

Having obtained higher integrability, the proof of Proposition 3.6 together with section
3.5 shows Theorem 3.3.
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Appendix A

Sharp Gagliardo-Nirenberg
interpolation inequalities

In this section we prove the sharp Gagliardo-Nirenberg interpolation inequality used in
the proofs of Theorems 3.1 and 3.3. The following interpolation inequality was proved by
L. Nirenberg in [62].

Theorem A.1 (Gagliardo-Nirenberg inequality) For k ∈ N and 1 < q, r ≤ ∞, let
u ∈ Dk,r(Rm) ∩ Lq(Rm). Then, for 0 ≤ j < k, we have

‖∇ju‖Lp(Rm) ≤ C‖∇ku‖aLr(Rm)‖u‖1−a
Lq(Rm) , (A.1)

where
1

p
− j

m
= a

(
1

r
− k

m

)
+ (1− a)

1

q
,

for all
j

k
≤ a ≤ 1 .

The constant C is independent of u.

Remark A.1 For a bounded domain Ω with smooth boundary, the result remains true if
we add to the right-hand side of (A.1) the term C‖u‖Lq̃(Ω) for any q̃ > 0. The constants
then also depend on the domain.

In particular, we infer from Theorem A.1 that for a = 1
2

and q =∞

‖∇ju‖2
Lp(Rm) ≤ C‖∇ku‖Lr(Rm)‖u‖L∞(Rm) ,

where
1

p
− j

m
=

1

2r
− k

2m
.

However, for our purposes to prove partial regularity for polyharmonic maps in section
3.3, this is insufficient as the L∞-norm of u cannot be made small. Therefore we need
to improve the preceding inequality, where the L∞-norm is substituted by the BMO-
seminorm. Such an inequality was mentioned in [2] by D. Adams and M. Frazier. Later
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it was proved in [55] by Y. Meyer and T. Rivière for the case j = 1, k = 2 and p = 4 and,
using different tools, in [84] by P. Strzelecki in the general case. For another proof using
symmetrization we refer to the paper by J. Martin and M. Milman [57]. Here we state and
prove the general case using the techniques of Y. Meyer and T. Rivière in [55], showing
that their method can actually be extended to cover all situations.

Theorem A.2 (Gagliardo-Nirenberg type inequality) Let Ω be a bounded domain
with smooth boundary. Assume that u ∈ W k,r(Ω) for some r > 1 and 1 ≤ j < k, with
j, k ∈ N. If u ∈ BMO(Ω), then ∇ju ∈ Lp(Ω) for p := k

j
r and

‖∇ju‖Lp ≤ C [u]1−θBMO ‖u‖
θ
Wk,r , (A.2)

where θ := j
k
, for some constant C = C(k, j, r).

The proof of this Theorem will be done in three steps. First, using Besov spaces,
we will prove the Theorem in case j = 1 and k = 2 on Rn. Next, we use a Whitney
decomposition to extend this to arbitrary domains Ω with smooth boundary, still in the
case j = 1, k = 2. Finally, a double induction argument as in [84] by P. Strzelecki shows
the general result.

Step 1.
The proof will show an even sharper inequality and uses the fact that derivatives of
BMO-functions are in the homogeneous Besov maximal space Ḃ−1,∞

∞ (see the book [1] by
R. Adams and J. Fournier for details). Therefore we will first prove the following theorem
on Rn.

Theorem A.3 Let f ∈ Ḃ−1,∞
∞ (Rn) ∩W 1,q(Rn). Then there is a constant C depending

only on n and q such that

‖f‖2
L2q ≤ C‖f‖Ḃ−1,∞

∞
‖∇f‖Lq .

Proof. From the Littlewood-Paley decomposition of f (see again the book [1] by R. Adams
and J. Fournier for details) we know that

‖f‖L2q ≤ C

∥∥∥∥∥(∑
j

|∆jf |2
) 1

2

∥∥∥∥∥
L2q

.

Therefore we estimate

‖f‖2q
L2q ≤ C

∫
Rn

(∑
j

|∆jf |2
)q
dx

≤ C

∫
Rn

(∑
j

∑
j′

|∆jf |2|∆j′f |2
) q

2
dx

≤ C‖f‖q
Ḃ−1,∞
∞

∫
Rn

(∑
j

∑
j′

22j|∆j′f |2
) q

2
dx

≤ C‖f‖q
Ḃ−1,∞
∞

∫
Rn

(∑
j

22j|∆jf |2
) q

2
dx

≤ C‖f‖q
Ḃ−1,∞
∞
‖∇f‖qLq ,
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which proves the Theorem. �

Applying this in the case where f = ∇u, with u as in Theorem A.2, we immediately
deduce inequality (A.2) for Rn when j = 1 and k = 2. In fact only the Lr-norm of ∇2u
is needed on the right-hand side.

Step 2.
To apply the previous result we need the following definition:

Definition A.1 Given an open (not necessarily bounded) subset Ω ⊂ Rn, define Ḃ−1,∞
∞ (Ω)

to be the set of restrictions of functions in Ḃ−1,∞
∞ (Rn) to Ω. The norm for a func-

tion f ∈ Ḃ−1,∞
∞ (Ω) is defined as the infimum of the norm of all possible extensions

f̃ ∈ Ḃ−1,∞
∞ (Rn) of f .

In case j = 1 and k = 2, the interpolation inequality follows from the next Theorem
which is a consequence of Theorem A.3.

Theorem A.4 Let Ω ⊂ Rn be either a convex bounded open and regular subset of Rn or
a half-space Rn

+ = {(x1, . . . , xn) : xn ≥ 0}. There is a constant C depending only on Ω

and q such that for any f ∈ W 1,q(Ω) ∩ Ḃ−1,∞
∞ (Ω), we have

‖f −mΩf‖2
L2q(Ω) ≤ C(Ω, q)‖∇f‖Lq(Ω)‖f‖Ḃ−1,∞

∞ (Ω) ,

where mΩf is the average of f on Ω.

Proof. We first prove the Theorem for the half space Rn
+ from which the result for gen-

eral domains will follow using a partition of unity together with the results for Rn and Rn
+.

Consider a decomposition of Rn
+ by Whitney cubes

∏n−1
j=1 [pj2

−i, (pj+1)2−i]×[2−j, 2−j+1].

Call these cubes Q, their centres xQ and dQ = 2−i their sizes. Let φ be a smooth func-

tion with support in Q̃0 = [−2, 2]n equal to 1 on the cube 1
2
Q̃0 = [−1, 1]n. Setting

φQ(x) := φ
(x−xQ

dQ

)
we obtain that 1 =

∑
Q φQ on Rn. Similarly, given θ ∈ C∞0

(
1
2
Q̃0

)
verifying

∫
Rn θ = 1 we consider θQ := d−nQ θ

(x−xQ
dQ

)
.

In the proof we will need the following Lemma about Besov spaces (see the book [1] by
R. Adams and J. Fournier for details):

Lemma A.5 The Banach space Ḃ−1,∞
∞ (Rn) is a module over the Schwartz space S(Rn)

for n ≥ 1. More precisely, if we denote the norm on Ḃ−1,∞
∞ (Rn) by ‖ · ‖∗, for any

g ∈ S(Rn) there exists Cg such that for any R > 0 the following holds∥∥∥g( x
R

)∥∥∥
∗
≤ C‖f‖∗ .

Using the above decomposition we write any f ∈ Ẇ 1,q(Rn
+) as f = v1 + v2, where

v2 =
∑
Q

γQφQ

v1 =
∑
Q

(f − γQ)φQ ,

with γQ :=
∫
Rn fθQdx. Then we have the following Proposition for v1:
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Proposition A.6 Using the above notation we have

‖v1‖Ẇ 1,q ≤ ‖f‖Ẇ 1,q

and ∑
Q

∫
Q

|f − γQ|q|∇φQ|q dx ≤ C‖∇f‖qLq .

Proof. Choosing p so that 1
q
− 1

p
= 1

n
, from Poincaré’s inequality we deduce that

(∫
Q

|f − γQ|p dx
) 1

p

≤ C

(∫
Q

|∇f |q dx
) 1

q

.

Here we modified the standard Poincaré inequality which involves the average mΩf . This
modification follows from Poincaré’s inequality since(∫

Q

|mQ − γQ|p dx
) 1

p

= |mQ − γQ||Q|
1
p

and

|mQ − γQ| ≤
1

|Q|

∫
Q

|f(x)−mQ| dx ≤
(

1

|Q|

∫
Q

|f −mQ|p dx
) 1

p

.

Thus we deduce that ∫
Q

|f − γQ|q dx ≤ CdqQ

∫
Q

|∇f |q dx ,

which implies the result. �

From this Proposition we deduce that v1 ∈ W 1,q(Rn
+) and hence that v2 ∈ W 1,q(Rn

+)
also.
Setting FQ := (f − γQ)φQ, we apply Theorem A.3 to FQ to obtain

‖FQ‖2q
L2q ≤ C‖∇FQ‖qLq‖FQ‖

q
∗ .

From the above Proposition it follows that
∑

Q ‖∇FQ‖
q
Lq ≤ C‖∇f‖qLq . The other term

can be estimated by

‖FQ‖∗ ≤ ‖fφQ‖∗ + |γQ|‖φQ‖∗

where |γQ| in turn is estimated by

|γQ| ≤ ‖f‖∗d−1
Q .

The estimate is completed applying Lemma A.5 to ‖fφQ‖∗ since functions with compact
support are in S(Rn). Hence

‖v2‖2q
L2q ≤ C‖∇f‖qLq‖f‖

q
∗ .
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The aim of the rest of the proof is to establish the same inequality for v1. Note that

|v1(x)| ≤
∑
Q

|γQ(x)||φQ(x)|

≤
∑
Q

‖f‖∗
dQ
|φQ(x)|

≤ C
‖f‖∗
xn

.

The remaining inequality will follow from the next Lemma:

Lemma A.7 Let f be a function from Rn
+ into C with

|f(x)| ≤ m

xn

and (∫
Rn

+

|∇f |q dx
) 1

q

≤M ,

then we have
‖f‖L2q ≤ C(q)

√
mM .

Proof. Let us first consider the one dimensional case where we write t for xn. We have∫ ∞
0

|f |2q dt ≤
∫ (m

M
)

q
2q−1

0

|f |2q dt+

∫ ∞
(m
M

)
q

2q−1

|f |2q dt

≤
(m
M

) q
2q−1

sup[
0,(m

M
)

q
2q−1

] |f |2q +
1

2q − 1
m2q

(m
M

)−q
.

The first hypothesis implies that∣∣∣f((m
M

) q
2q−1
)∣∣∣ ≤ m

q−1
2q−1M

q
2q−1

and
|f(t)− f(t′)| ≤M |t′ − t|

q−1
q ≤ m

q−1
2q−1M

q
2q−1 .

From this it follows that on [0, (m
M

)
q

2q−1 ]

‖f‖L∞ ≤ 2m
q−1
2q−1M

q
2q−1

which completes the proof of the lemma in the one dimensional case. In higher dimensions
we integrate the one dimensional inequality in x′ = (x1, . . . , xn) and the lemma follows.�

Therefore we have proved the remaining inequality for v1, i.e. that

‖v1‖2q
L2q ≤ C‖∇f‖qLq‖f‖

q
∗ .
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Combining the estimates for v1 and v2 we obtain the desired estimate for f on Rn
+.

For a regular bounded domain in Rn and f ∈ W 1,q(Ω) ∩ Ḃ−1,∞
∞ (Ω) we use a partition

of unity and diffeomorphisms to reduce the problem to the case of the whole Rn or Rn
+.�

Step 3.
Having obtained the result in case j = 1 and k = 2 we now prove the general case from
a double induction argument following [84] by P. Strzelecki. We work on Rn first. Note
that from the remark at the end of step 1, we have

‖∇u‖L2p(Rn) ≤ C [u]
1
2

BMO(Rn) ‖∇
2u‖

1
2

Lp(Rn) ,

which, assuming the conditions of Theorem A.2 on j, k, r, and θ, we will show to imply

‖∇ju‖Lp(Rn) ≤ C [u]1−θBMO(Rn) ‖∇
ku‖θLr(Rn) . (A.3)

The general case of a smooth bounded domain Ω then follows by an extension argument.
Assume estimate (A.3) to hold for fixed 1 ≤ j < k and all r > 1. For the first induction

step we will show that it continues to hold for k + 1, so we let r > 1, define s := (k+1)r
j

and set p := (k+1)r
k

. The induction hypothesis yields

‖∇ju‖Ls(Rn) ≤ C[u]
1− j

k

BMO(Rn)‖∇
ku‖

j
k

Lp(Rn)

and from the usual Gagliardo-Nirenberg inequality, estimate (A.1), applied to ∇ju we
derive

‖∇ku‖Lp(Rn) ≤ C‖∇ju‖1−θ
Ls(Rn)‖∇

ku‖θLr(Rn) ,

where θ = k−j
k−j+1

. Combining the last two estimates and cancelling a suitable power of

‖∇ju‖Ls(Rn) we deduce (A.3) for k + 1.
For the second induction step, again using (A.1), we have for r > 1 and m+ 1 < k fixed

‖∇j+1u‖Lp(Rn) ≤ C‖∇ju‖1−θ
Ls(Rn)‖∇

ku‖θLr(Rn) ,

where this time s := kr
j

, p := kr
j+1

and θ = 1
k−j . Estimating the term involving ‖∇ju‖Ls(Rn)

by invoking the induction hypothesis

‖∇ju‖Ls(Rn) ≤ C[u]
1− j

k

BMO(Rn)‖∇
ku‖

j
k

Lr(Rn)

inequality (A.3) again follows from combining these estimates since (1−θ)(1− j
k
) = 1− j+1

k

and (1 − θ) j
k

+ θ = j+1
k

. Thus the induction argument is completed and Theorem A.2
holds.



Appendix B

Linear Estimates for polyharmonic
equations

Singular Integral Operators

We recall the following singular integral theorem (Theorem II.3.2) in the book [81] by
E. Stein.

Theorem B.1 Let K : Rm −→ R be a measurable function such that

|K(x)| ≤ C|x|−m for |x| > 0 , (B.1)∫
|x|≥2|y|

|K(x− y)−K(x)| dx ≤ C for |y| > 0 (B.2)

and ∫
R1<|x|<R2

K(x) dx = 0 for all 0 < R1 < R2 <∞ . (B.3)

For ε > 0, 1 < p <∞ and f ∈ Lp(Rm), we set

Tεf(x) :=

∫
|y|≥ε

f(x− y)K(y)dy .

Then, we have
‖Tεf‖Lp ≤ C‖f‖Lp ,

where C is independent of ε and f . Moreover, there exists Tf ∈ Lp(Rm) such that

Tεf −→ Tf in Lp ,

as ε→ 0, for all f ∈ Lp(Rm).

For m ≥ 2k + 1, the fundamental solution of ∆k on Rm is

Γk(x− y) = c|x− y|2k−m ,

i.e.
∆kΓk(x− y) = δ(x− y) for x, y ∈ Rm .

The kernel K := ∇2kΓk verifies the hypotheses of Theorem B.1. Thus, we conclude
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Corollary B.2 Let f ∈ Lp(Ω), 1 < p < ∞, K = ∇2kΓk and u = Tf . Then, u ∈
W 2k,p(Ω),

∆ku = f a.e.

and

‖∇2ku‖Lp(Ω) ≤ C‖f‖Lp(Ω)

where C depends only on n and p.

Remark B.1 Corollary B.2 also follows from the proof of Theorem 9.9 in [30] by D. Gilbarg
and N. Trudinger. The arguments can be carried over line by line to the case of general
k.

Furthermore, we have

Lemma B.3 For 1 < p <∞, µ ∈ N∩ (k, 2k] and u ∈ W µ,p(Ω)∩W k,p
0 (Ω), there exists a

constant C (independent of u) such that

‖u‖Wµ,p(Ω) ≤ C‖∆
µ
2 u‖Lp(Ω) for µ even,

and

‖u‖Wµ,p(Ω) ≤ C‖∇∆
µ−1

2 u‖Lp(Ω) for µ odd.

Proof. We follow the scheme of Lemma 9.17 in [30] by D. Gilbarg and N. Trudinger. We
consider the case µ even. If Lemma B.3 is not true, there exists {ul}l∈N ⊂ W µ,p(Ω) ∩
W k,p

0 (Ω) satisfying

‖ul‖Wµ,p(Ω) = 1 and ‖∆
µ
2 ul‖Lp(Ω) → 0 ,

as l→∞. After passing to a subsequence, we may assume the existence of u ∈ W µ,p(Ω)∩
W k,p

0 (Ω) such that ‖u‖Wµ,p(Ω) = 1 and

ul ⇀ u in W µ,p(Ω) ,

as l→∞. Since ∫
Ω

g∇αul dx→
∫

Ω

g∇αu dx

for all |α| ≤ µ and g ∈ L
p
p−1 (Ω), we must have∫

Ω

g∆
µ
2 u dx = 0

for all g ∈ L
p
p−1 (Ω). Thus, ∆

µ
2 u = 0 and u = 0 by the uniqueness assertion, contradicting

the condition ‖u‖Wµ,p(Ω) = 1. For µ odd, the proof is similar. �
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Decay Lemmas

Here we prove the following decay lemmas used in the proofs of partial regularity.

Lemma B.4 Let u ∈ W k,2(Ω) be a weakly k-harmonic function with ‖u‖Wk,p(Ω) ≤ 1. For
x0 ∈ Ω, 0 < ρ ≤ r ≤ dist(x0, ∂Ω) and 2 ≤ p <∞ we have

ρ−m
k∑
l=1

∫
Bρ(x0)

|∇lu|
kp
l dx ≤ Cr−m

k∑
l=1

∫
Br(x0)

|∇lu|
kp
l dx ,

where C is independent of u and ρ.

Proof. Due to the Weyl Lemma we know that u is smooth. Moreover, we have the
following Cacciopoli type estimate. For all BR ⊂ Ω and for all γ ∈ N, it holds

‖u‖W γ,2(BR
2

) ≤ C(γ,R)‖u‖Wk−1,2(BR) . (B.4)

To see this choose η ∈ C∞0 (BR) satisfying 0 ≤ η ≤ 1, η ≡ 1 on BR
2
. For ψ := ηk+1u, we

obtain with ∫
BR

∇ku∇kψ dx = 0

that ∫
BR

ηk+1|∇ku|2 dx

= −2
k∑

α=2

∫
BR

∇α(ηk+1)∇ku∇k−αu dx

−
∫
BR

∇ηk+1∇k−1u∇ku dx

= 2
k∑

α=2

∫
BR

(∇α+1(ηk+1)∇k−αu+∇α(ηk+1)∇k+1−αu)∇k−1u dx

1

2

∫
BR

∇2ηk+1|∇k−1u|2 dx

≤ C(R)
∑
α≤k−1

∫
BR

|∇αu|2 dx .

Thus we have shown estimate (B.4) for γ = k. For γ ≥ k + 1, we observe that ∇u is
k-harmonic. Repeating the preceding argument for ∇u we deduce the case γ = k+ 1 and
by iteration we conclude (B.4) for all γ.
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Now let ρ < r
2
. Applying equation (B.4) to ∇lu (which is k-harmonic) and Sobolev

embedding theorem, we infer with s sufficiently large

ρ−m
∫
Bρ(x0)

|∇lu|
kp
l dx ≤ C sup

x∈Bρ(x0)

|∇lu|
kp
l (x)

≤ C(r)‖∇lu‖
kp
l

W s,2(B r
2

)

≤ C(r)

( k−1∑
α=l

∫
Br

|∇αu|2 dx
) kp

2l

≤ C(r)
k−1∑
α=l

(∫
Br

|∇αu|2 dx
) kp

2l

Using the fact that ‖u‖Wk,p(Ω) ≤ 1 this can be estimated by

C(r)
k−1∑
α=l

(∫
Br

|∇αu|2 dx
) kp

2α

from which by Jensen’s inequality we deduce that

ρ−m
∫
Bρ(x0)

|∇lu|
kp
l dx ≤ C(r)

k−1∑
α=l

∫
Br

|∇αu|
kp
α dx .

To get the desired we apply a rescaling argument showing that C(r) = Cr−m and sum
over all 1 ≤ l ≤ k. �

Lemma B.5 Let u ∈ W k,2(Ω) be a weakly k-harmonic function. For x0 ∈ Ω, 0 < ρ ≤
r ≤ dist(x0, ∂Ω) and 2 ≤ p <∞ we have

ρ−m
∫
Bρ(x0)

|∇ku|p dx ≤ Cr−m
∫
Br(x0)

|∇ku|p dx ,

where C is independent of u and ρ.

Proof. We begin by observing that we can add any polynomial of order k − 1 to a k-
harmonic function and still obtain a k-harmonic function. Therefore the estimate in (B.4)
remains valid if one subtracts the average of u on BR from u, i.e. together with Poincaré’s
inequality we get

∫
BR

2

|∇ku|2 dx ≤ C
1

R2k

∫
BR

|u− uBR(x0)|2 dx+ C
k−1∑
α=1

1

R2(k−α)

∫
BR

|∇αu|2 dx

≤ C

k−1∑
α=1

1

R2(k−α)

∫
BR

|∇αu|2 dx .
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For ∇u we define the polynomial p1(x) =
∑m

i=1 xi∂xiuBR(x0) where we note that ∇p1 =

∇uBR(x0). Since the previous inequality still remains valid for u− p1 we apply Poincaré’s
inequality again which yields∫

BR
2

|∇ku|2 dx ≤ C
1

R2(k−1)

∫
BR

|∇u−∇uBR(x0)|2 dx+ C
k−1∑
α=2

1

R2(k−α)

∫
BR

|∇αu|2 dx

≤ C
k−1∑
α=2

1

R2(k−α)

∫
BR

|∇αu|2 dx .

Iterating this procedure for ∇α for 2 ≤ α ≤ k− 1 in the same way we note that (B.4) can
actually be sharpened to only involve the term with ∇k−1u on the right-hand side. Thus
we deduce a better Cacciopoli-type inequality for ∇ku

‖∇ku‖2
L2(BR

2
) ≤ C

1

R2
‖∇k−1u‖2

L2(BR) ,

and iterating again as in the previous lemma

‖∇ku‖W γ,2(BR
2

) ≤ C(γ,R)‖∇ku‖L2(BR) . (B.5)

To deduce the decay estimate we proceed similarly to the above proof. Letting ρ < r
2

we
apply Sobolev embedding, inequality (B.5) and Jensen’s inequality (noting that p ≥ 2)
to get

ρ−m
∫
Bρ(x0)

|∇ku|p dx ≤ C sup
x∈Bρ(x0)

|∇ku|p(x)

≤ C(r)‖∇ku‖pW s,2(B r
2

)

≤ C(r)

(∫
Br

|∇ku|2 dx
) p

2

≤ C(r)

∫
Br

|∇ku|p dx .

The same scaling argument as before shows that C(r) = Cr−m and the lemma is proved.�

Lemma B.6 For r > 0 we consider u ∈ W k,2(Br) and its k-harmonic extension on Br,
i.e. v solves the Dirichlet problem{

∆kv = 0

u− v ∈ W k,2
0 (Br) .

We have
k∑

µ=1

[∇µv]2M2,2µ(B r
2

) ≤ C
k∑

µ=1

∫
Br

|∇µu|2 dx .
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Proof. Observe that v satisfies the Cacciopoli type estimate (B.4). For all ρ < r
4
, x ∈ B r

2

and s > 0 sufficiently large, Sobolev embedding theorem and the Cacciopoli type estimate
imply

ρ−m
∫
Bρ(x)

|∇µv|2 dx ≤ C sup
x∈Bρ(x)

|∇µv|2

≤ C

s∑
λ=0

∫
B r

4
(x)

|∇λv|2 dx

≤ C
k∑

λ=0

∫
B r

2
(x)

|∇λv|2 dx ,

It follows that

ρ2µ−m
∫
Bρ(x)

|∇µv|2 dx ≤ C
k∑

λ=0

∫
Br

|∇λv|2 dx (B.6)

≤ C
k∑

λ=0

(∫
Br

|∇λu|2 dx+

∫
Br

|∇λ(v − u)|2 dx
)
.

Applying Poincaré’s inequality yields∫
Br

|∇λ(v − u)|2 dx ≤ C

∫
Br

|∇k(v − u)|2 dx . (B.7)

As v is k-harmonic, we have ∫
Br

∇kv∇k(u− v) dx = 0 ,

i.e. ∫
Br

|∇kv|2 dx ≤
∫
Br

|∇ku|2 dx . (B.8)

Combining (B.6) - (B.8) completes the proof. �

Divergence form

This section is devoted to the proof of the following lemma.

Lemma B.7 Consider a ball B ⊂ Rm, g ∈ Lr(B), k > 1 and j, l ≥ 0 with 1 ≤ 2l+j ≤ k.
There exists a unique weak solution u ∈ W k,2

0 (B,RN) of

∆ku = ∇(l) ·∆jg

satisfying
‖∇2k−(2j+l)u‖Lr(B) ≤ C‖g‖Lr(B)

for 1 < r <∞.
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The proof is based on results in the book [30] by D. Gilbarg and N. Trudinger and the
books [28] and [29] by M. Giaquinta. In a first step we prove existence of a unique solution.

Lemma B.8 Consider a ball B ⊂ Rm and g ∈ L2(B). Then there exists a unique weak
solution u ∈ W k,2

0 (B,RN) of

∆ku = ∇(l) ·∆jg

for j, l ≥ 0 with 1 ≤ 2l + j ≤ k.

Proof. This follows from a direct application of the Lax-Milgram theorem. On the space
W k,2

0 (B,RN) we define the functional F (v) =
∫
B
g∇(l) ·∆jv dx for v ∈ W k,2

0 (B,RN). Then

by Hölder’s inequality this functional is bounded on W k,2
0 (B,RN). Also note that the

bilinear form defined by L(u, v) =
∫
B
∇ku∇kv dx is again bounded by Hölder’s inequality

but also coercive since

L(u, u) = ‖∇ku‖2
L2(B) ≥

1

C
‖u‖2

Wk,2
0 (B)

by Poincaré’s inequality. Thus we apply the Lax-Milgram theorem (see for instance
Theorem 5.8 in [30]) to deduce existence of a unique weak solution. �

In a second step, using the method of difference quotient, we show

Lemma B.9 Consider a ball B ⊂ Rm and g ∈ L2(B). If u ∈ W k,2
0 (B,RN) is a weak

solution of

∆ku = ∇(l) ·∆jg

for j, l ≥ 0 with 1 ≤ 2l + j < k, then

u ∈ W 2k−(2j+l),2(B,RN) .

Proof. We define
(
∆h
νu
)

(x) := 1
h
(u(x + heν) − u(x)) for 1 ≤ ν ≤ m. Choose the test

function ∆h
νψ with ψ ∈ W k,2

0 (B,RN). It follows that

(−1)l
∫
B

g∇l∆j∆−hν ψ dx =

∫
B

∇ku∇k∆−hν ψ dx =

∫
B

∇ku∆−hν ∇kψ dx

=

∫
B

∆h
ν∇ku∇kψ dx =

∫
B

∇k∆h
νu∇kψ dx . (B.9)

Now we choose ψ = ηk+1∆h
νu for arbitrary η ∈ C∞0 (B) with 0 ≤ η ≤ 1. We compute∫

B

∇k∆h
νu∇kψ dx =

∫
B

ηk+1|∇k∆h
νu|2 dx+ C

k∑
α=1

∫
B

∇α(ηk+1)∇k∆h
νu∇k−α∆h

νu dx

=

∫
B

ηk+1|∇k∆h
νu|2 dx+ C

k∑
α=1

∫
B

∇α(ηk+1)∇k−1∆h
νu∇k+1−α∆h

νu dx

+C
k∑

α=1

∫
B

∇α+1(ηk+1)∇k−1∆h
νu∇k−α∆h

νu dx , (B.10)
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where −∞ < ci < ∞ for 1 ≤ i ≤ 3. Moreover, we define ηh,ν(x) := η(x + heν). We
estimate

(−1)l
∫
B

g∆−hν ∇l∆jψ dx ≤
∫
B

|g∇l∆j(∆−hν (ηk+1∆h
νu))| dx

=

∫
B

|g∇l∆j(ηk+1
−h,ν∆

−h
ν (∆h

νu) + ∆−hν (ηk+1)∆h
νu)| dx

≤
∫
B

|g ηk+1
−h,ν∇

l∆j(∆−hν (∆h
νu))| dx

+

2j+l∑
α=1

∫
B

|g||∇αηk+1
h,ν ||∇

2j+l−α∆−hν ∆h
νu| dx

+

2j+l∑
α=0

∫
B

|g||∇α∆−hν ηk+1||∇2j+l−α∆h
νu| dx . (B.11)

Combining (B.9)-(B.11) with Young’s inequality for some ε > 0 to be chosen later gives
(using also that 0 ≤ η(x) ≤ 1 and that |∇ηk+1|2 ≤ C(|∇η|)ηk+1)∫

B

ηk+1|∇k∆h
νu|2 dx ≤

1

2

∫
B

ηk+1
h,ν |∇

2j+l∆−hν ∆h
νu|2 dx+ C

k−1∑
α=0

∫
spt η
|∇α∆h

νu|2 dx

+C

2j+l∑
α=1

∫
spt ηh,ν

|∇2j+l−α∆−hν ∆h
νu|2 dx+ C

∫
B

g2 dx

+Cε

∫
B

ηk+1|∇k∆h
νu|2 dx , (B.12)

where we can therefore absorb the last term in the left-hand side provided ε > 0 is chosen
sufficiently small. For h > 0 sufficiently small, we infer that the second and the third
term on the right-hand side are uniformly bounded. For example, applying Lemma 8.2.1
in the book [45] by J. Jost to ∇αu, we estimate∫

sptη
|∇α∆h

νu|2 dx ≤
∫

sptη
|∆h

ν∇αu|2 dx ≤
∫
B

|∇α+1u|2 dx ≤ C

for 0 ≤ α ≤ k − 1.
If 2j+ l+ 1 < k, we similarly show that the first term on the right-hand side is uniformly
bounded. Otherwise 2j+ l+ 1 = k, and we again apply Lemma 8.2.1 in [45] twice (noting
that the presence of a cut-off function does not affect the proof) to obtain

1

2

∫
B

ηk+1
h,ν |∇

2j+l∆−hν ∆h
νu|2 dx ≤

1

2

∫
B

ηk+1
h,ν |∆

h
ν∇ku|2 dx .

Using the continuity of η and choosing h > 0, ε > 0 sufficiently small we can absorb the
terms involving ηk+1

h,ν |∆h
ν∇ku|2 in the left-hand side of (B.12). Combining the above steps

shows that from (B.12) we can deduce∫
{x∈B:η(x)≡1}

|∇k∆h
ν |2 dx ≤ C .
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Now we observe that for all Ω ⊂⊂ B there exists η ∈ C∞0 (B) such that 0 ≤ η ≤ 1 and
η ≡ 1 on Ω. We conclude ∫

Ω

|∇k∆h
ν |2 dx ≤ C

for all Ω ⊂⊂ B. Hence, from Lemma 8.2.2 in [45] we infer that u ∈ W k+1,2(B). The
existence of higher derivatives now follows by induction which completes the proof. �

Thus, we look at solutions u ∈ W 2k−(2j+l),2(B,RN) ∩W k,2
0 (B,RN) satisfying

(−1)k
∫
B

∇2k−(2j+l)u∇2j+lψ dx =

∫
B

g∇l∆jψ dx (B.13)

for every test function ψ ∈ W 2j+l
0 (B,RN).

Set T (g) := ∇2k−(2j+l)u. Lemma B.10 below states that T is a continuous linear operator

T : L2(B) −→ L2(B) ,

respectively
T : L∞(B) −→ BMO(B) .

Thus, Stampacchia’s interpolation theorem (see Theorem 4.6 in [29]) then implies that
T : Lq(B) −→ Lq(B) is also continuous for 2 < q <∞.
For 1 < q < 2 we deduce continuity from a duality argument as follows. Let f ∈ Lq,
g ∈ Lp with 1

q
+ 1

q′
= 1, where by density we can assume that f, g ∈ C∞0 (B). Thus

noting that then the fundamental solution of ∆ku = ∇(l) · ∆jg is given by ug(x) =
C(−1)l

∫
B
∇l
y∆

j
yΓk(x− y)g(y)dy we compute

∫
B

(Tf)(x)g(x) dx =

∫
B

∇2k−(2j+l)
x uf (x)g(x) dx

= (−1)2k−(2j+l)

∫
B

uf (x)∇2k−(2j+l)
x g(x) dx

= (−1)2k−(2j+l)C

∫
B

∫
B

∇l
y∆

j
yΓk(x− y)f(y) dy∇2k−(2j+l)

x g(x) dx

= (−1)2k−(2j+l)C

∫
B

∫
B

∇l
y∆

j
yΓk(x− y)f(y)∇2k−(2j+l)

x g(x) dxdy

= C

∫
B

f(y)

∫
B

∇2k−(2j+l)
x ∇l

y∆
j
yΓk(x− y)g(x) dxdy

= C

∫
B

f(y)

∫
B

∇2k−(2j+l)
y ∇l

x∆
j
xΓk(x− y)g(x) dxdy

= C

∫
B

f(y)∇2k−(2j+l)
y

∫
B

∇l
x∆

j
xΓk(x− y)g(x) dxdy

= C

∫
B

f(y)∇2k−(2j+l)
y ug(y) dy

= C

∫
B

f(x)(Tg)(x) dx

≤ C‖f‖Lq‖Tg‖Lq′ .
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Since q′ > 2 we can apply the above continuity result to g to obtain∫
B

(Tf)g ≤ C‖f‖Lq‖g‖Lq′ .

After taking the supremum over all ‖g‖Lq′ = 1 by the dual characterisation of the norm
this enables us to conclude that

‖Tf‖Lq ≤ C‖f‖Lq

for q > 1. The proof of Lemma B.7 is thus complete.

It remains to show

Lemma B.10 Consider a ball B ⊂ Rm, g ∈ L2(B), k > 1 and j, l > 0 with 1 ≤ 2l+ j ≤
k. If u ∈ W k,2

0 (B,RN) is a weak solution of

∆ku = ∇(l) ·∆jg ,

then g ∈ L2,λ
loc (B) implies that ∇2k−(2j+l)u ∈ L2,λ

loc (B) for 0 ≤ λ < m+ 2, where L2,λ
loc (B) :={

u ∈ L2
loc(B) : [u]L2,λ

loc (B) := supBρ(x0)⊂B ρ
−λ ∫

Bρ(x0)
|u− uBρ(x0)|2 dx <∞

}
is the Campanato

space.

Proof. The proof is similar to the one of Theorem 3.3 in the book [29] by M. Giaquinta.
Set α = 2k − (2j + l). Consider Br(x0) ⊂ B and let v be the α-harmonic extension of
u on Br(x0), i.e. w := u − v ∈ Wα,2

0 (Br(x0)) and ∆αv = 0 on Br(x0). From Poincaré’s
inequality and the application of Lemma B.5 we can estimate∫

Bρ(x0)

|∇αv −∇αvBρ(x0)|2 dx ≤ Cρ2

∫
Bρ(x0)

|∇α+1v|2 dx

≤ Cρ2
(ρ
r

)m ∫
B r

2
(x0)

|∇α+1v|2 dx

≤ C
(ρ
r

)m+2
∫
Br(x0)

|∇αv −∇αvBr(x0)|2 dx . (B.14)

for ρ ≤ r
2
. On the other hand, w satisfies (B.13) and ψ = ∇2k−2(2j+l)w ∈ W 2j+l,2

0 is an
admissible test function. Thus we estimate∫

Br(x0)

|∇αw|2 dx = (−1)k
∫
Br(x0)

(g − gBr(x0))∇l∆jw dx

≤ 1

2

∫
Br(x0)

|g − gBr(x0)|2 dx+
1

2

∫
Br(x0)

|∇αw|2 dx ,

i.e. ∫
Br(x0)

|∇αw|2 dx ≤ C

∫
Br(x0)

|g − gBr(x0)|2 dx ≤ C[g]2L2,λ(B)r
λ . (B.15)
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Combining (B.14) and (B.15) yields∫
Bρ(x0)

|∇αu−∇αuBρ(x0)|2 dx

≤
∫
Bρ(x0)

|∇αv −∇αvBρ(x0)|2 dx+

∫
Bρ(x0)

|∇αw −∇αwBρ(x0)|2 dx

≤ C
(ρ
r

)m+2
∫
Br(x0)

|∇αu−∇αuBr(x0)|2 dx+ C

∫
Br(x0)

|∇αw|2 dx

≤ C
(ρ
r

)m+2
∫
Br(x0)

|∇αu−∇αuBr(x0)|2 dx+ C[g]2L2,λ(B)r
λ .

The conclusion now follows as in the proof of Theorem III.2.2 in [28] by M. Giaquinta. Fi-
nally, we apply Lemma III.2.1, Theorem III.1.2 and Theorem III.1.3 in [28] to conclude.�
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Appendix C

Structure results for calibrated
currents

In this section we recall some structure theorems and other results proved in the funda-
mental paper [38] by R. Harvey and B. Lawson on calibrated geometries. The first one is
a result on the structure of calibrated k-vectors.

Lemma C.1 (Lemma 7.1 in [38]) Let ω be a constant coefficient k-form on Rm with
comass equal to 1. Then for any unit k-vector τ with ω(τ) = 1 there are N unit simple
k-vectors ξi with ω(ξi) = 1 and real numbers 0 ≤ λi ≤ 1 with

∑N
i=1 λi = 1 such that

τ =
N∑
i=1

λiξi .

The structure Theorem below was used in the proof of the monotonicity formula in
section 1.2.

Theorem C.2 (Theorem 5.11 in [38]) Let τ =
∑N

i=1 λiξi be the decomposition from
Lemma C.1 for a unit k-vector which is calibrated by a constant form ω. Then

〈τ, ωt〉 =
N∑
i=1

λi

∣∣∣∣ξi ∧ ∂

∂r

∣∣∣∣2 .

For the perturbation argument in section 1.7 we used the following two results:

Theorem C.3 (Theorem 7.16 in [38]) Let ω be a constant coefficient 2-form on Rm

with comass equal to 1. Then there exists a subspace R2n ⊂ Rm of even dimension, a
complex structure J on R2n such that ω = dx1 ∧ Jdx1 + · · ·+ dxn ∧ Jdxn. In particular,
any simple vector calibrated by ω is a J-holomorphic 2-vector in R2n.

Lemma C.4 (Lemma 6.13 in [38]) Let ξ be a unit simple k-vector in R2n equipped
with a complex structure J . Then there exist coordinates x1, Jx1, . . . , xn, Jxn on R2n and
angles

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk−1 ≤
π

2
, θk−1 ≤ θk ≤ π ,
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such that

ξ =
∂

∂x1

∧
(
J
∂

∂x1

cos θ1 +
∂

∂x2

sin θ1

)
∧ ∂

∂x3

∧
(
J
∂

∂x3

cos θ2 +
∂

∂x4

sin θ2

)
∧ · · · ∧

∧ ∂

∂x2k−1

∧
(
J

∂

∂x2k−1

cos θk +
∂

∂x2k

sin θk

)
.



Appendix D

Constructing the projection

The existence of the map π immediately follows from the Lemma below (compare with
Lemma A.2 in the appendix of [70] by T. Rivière and G. Tian). From now on we denote
by D2

r the disk of radius r > 0 in R2 and by B2m−2
r the ball of radius r > 0 in R2m−2.

Lemma D.1 Given ε > 0 there exists α > 0 such that for any almost complex structure
J on D2

2 ×B2m−2
2 verifying

1. J(0) = J0 ,

2. ‖J − J0‖Cl,ν ≤ α for l ≥ 3, 0 < ν < 1 ,

and for any p ∈ CPm−1 such that p = [p1, . . . , pm] with |pi| ≤ |p1| for all 1 ≤ i ≤ m, there
exists an embedded J-holomorphic disk Dp in (R2m, J) such that

1. Dp = {(z1, . . . , zm) ∈ (R2m, J0) | (z1, . . . , zm) = (z1, hp(z1)) for z1 ∈ D2
1} , where

hp : D2
1 −→ B2m−2

2 is smooth ,

2.
∥∥∥hp(z1)−

(
p2
p1
z1, . . . ,

pm
p1
z1

)∥∥∥
Cl,ν
≤ ε ,

3. T0Dp = p .

Furthermore, given any w = (w1, . . . , wm) ∈ D2
1×B2m−2

1 \{(0, . . . , 0)} with |wi| ≤ |w1|
2

for
all 1 ≤ i ≤ m, there exists a unique p ∈ CPm−1 with |pi| ≤ |p1| for all 1 ≤ i ≤ m such
that w ∈ Dp.

Proof. The proof will follow from constructing a suitable perturbation of the J0-holomorphic
disk defined by p. In fact, given w = (w1, . . . , wm) ∈ D2

2 × B2m−2
2 and p as above, we

denote the J0-holomorphic disk defined by p passing through w by

D0
w,p = {(z1, . . . , zm) ∈ (R2m, J0) | (z1, . . . , zm) = (z1, h

0
w,p(z1)) for z1 ∈ D2

2} ,

where the map defining this disk, namely h0
w,p : D2

2 −→ B2m−2
2 , is given by h0

w,p(z1) =(
p2
p1

(z1 − w1) + w2, . . . ,
pm
p1

(z1 − w1) + wm

)
. In other words, we first write D0

w,p as graph

H0
w,p of h0

w,p over D2
2 and now look for a small perturbation of the form Ĥw,p(z1) :=(

z1 + µ(z1), h0
w,p(z1) + λ(z1)

)
with µ : D2

2 −→ D2
2 and λ : D2

2 −→ B2m−2
2 . The aim is to
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turn Ĥw,p into a J-holomorphic curve in D2
2 × B2m−2

2 , i.e. we require Ĥw,p to solve for
z1 = x+ iy

∂Ĥw,p

∂y
= J(Ĥw,p)

∂Ĥw,p

∂x
= i

∂Ĥw,p

∂x
+ (J − J0)(Ĥw,p)

∂Ĥw,p

∂x

or, since H0
w,p is J0-holomorphic, written alternatively as

∂Tw,p
∂z̄1

= i(J − J0)(Ĥw,p)
∂H0

w,p

∂x
+ i(J − J0)(Ĥw,p)

∂Tw,p
∂x

, (D.1)

where Ĥw,p = H0
w,p +Tw,p. To solve equation (D.1) for Tw,p first note that the following is

a well-posed elliptic problem from C l,ν(D2
1) into C l+1,ν(D2

1){
∂u
∂z̄1

= F in D2
1

u|∂D2
1
∈ span{e−iθk | k ∈ N} . (D.2)

Provided ‖J − J0‖Cl,ν(D2
2×B

2m−2
2 ) is sufficiently small, we can apply (D.2) to solving (D.1)

by a fixed point argument in C l,ν(D2
1) and C l+1,ν(D2

1). Furthermore, the solution Tw,p
obtained this way satisfies ‖Tw,p‖Cl+,ν(D2

1) ≤ C(α) with C(α) −→ 0 as α −→ 0 and there
are estimates ∥∥∥∥∂i+jTw,p∂wi∂pj

∥∥∥∥
Cl+1−i−j,ν(D2

1)

≤ C(α) (D.3)

for the derivatives along the variables w, p defining H0
w,p. Since the fact that Tw,p is small

in C l+1,ν implies the same for the perturbation µ, defining the shifting of z1 by µ(z1) as
ζ(z1) := z1 + µ(z1) we denote the composition with Ĥw,p by H̃w,p := Ĥw,p ◦ ζ−1 so that
H̃w,p(z1) = (z1, h̃w,p(z1)) for some smooth function h̃w,p : D2

1 −→ B2m−2
1 .

Before we can use h̃w,p to finally define hp, we need the following map which we will
see is a perturbation of the identity

Ψ : B2m−2
1 ×CPm−1 −→ B2m−2

1 ×CPm−1

((w2, . . . , wm), q) 7−→

(
h̃w,q,

[
∂Ĥw,q

∂z1

(ζ−1(0))

])
,

where as before
[
∂Ĥw,q
∂z1

(ζ−1(0))
]

denotes the point in CPm−1 defined by ∂Ĥw,q
∂z1

(ζ−1(0)).

Since Ĥw,q and ζ are small perturbations of H0
w,q and respectively the identity, the map

Ψ can indeed be written as Ψ = id +K, where from (D.1) K satisfies ‖∇K‖Cl,ν(B2m−2
1 ) ≤

C(α). Since we can choose α > 0 sufficiently small, Ψ becomes a local diffeomorphism
from B2m−2

1 × U , where U ⊂ CPm−1 is the open subset defined by our condition on p.
Using the implicit function theorem there exist smooth functions wp : B2m−2

1 −→ B2m−2
1

and qp : CPm−1 −→ CPm−1 such that on B2m−2
1 × U we have Ψ(wp, qp) = (0, p).

Having obtained this, we can finally define the map hp(z1) := h̃wp,qp(z1) leading to the
definition

Dp = {(z1, . . . , zm) ∈ (R2m, J0) | (z1, . . . , zm) = (z1, hp(z1)) for z1 ∈ D2
1} .
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By construction, Dp is a J-holomorphic disk passing through the origin since Ĥwp,qp ◦
ζ−1(0) = H̃wp,qp(wp) = (0, . . . , 0). Furthermore, since Ĥwp,qp is J-holomorphic and J(0) =

J0, we also deduce that p =
[
∂Ĥwp,qp
∂z1

(ζ−1(0))
]

coincides with T0Dp completing the proof

of the first assertions of the Lemma.

To prove the last assertion, let w = (w1, . . . , wm) be a point with |wi| ≤ |w1|
2

for all
i. We need to show that there is a unique p ∈ U ⊂ CPm−1 such that w ∈ Dp. In other
words, we look for a unique p ∈ U ⊂ CPm−1 such that w = (w1, h̃Ψ−1(0,p)(w1)), where we

will abbreviate h̃Ψ−1(0,p) by h̃p. As above, we will use a perturbation argument to prove
this. Define a map

Φw : U −→ CPm−1

p 7−→ [w1, h̃p(w1)] ,

which we claim to be a small perturbation of the identity independent of w where

id : U −→ U

p 7−→ [w1, h
0
0,p(w1)] .

Using coordinates on U given by φ : U −→ Cm−1, φ(p) = φ([p1, . . . , pm]) =
(
p2
p1
, . . . , pm

p1

)
,

we thus have to verify that for α sufficiently small but independent of w,∥∥∥∥ ∂

∂φi
(Φw − id)(φ(p))

∥∥∥∥
∞

=

∥∥∥∥∥ ∂

∂φi

(
h̃p(w1)

w1

−
h0

0,p(w1)

w1

)∥∥∥∥∥
∞

≤ ε .

Defining rp := h̃p− h0
0,p and noting that rp(0) = h̃p(0)− h0

0,p(0) = 0 with the same for the
first derivative, we therefore estimate

‖∇(Φw − id)‖∞ ≤
∥∥∥∥ 1

w1

(
∂rp(w1)

∂φi
− ∂rp(0)

∂φi

)∥∥∥∥
∞
≤
∥∥∥∥∇w1

∂rp
∂φi

∥∥∥∥
∞
≤ C(α) ,

where the last estimate follows from estimate (D.3). Consequently, for α sufficiently
small Ψw is a diffeomorphism onto its image which is close to U . We then define
pw := Ψ−1

w ([w1, . . . , wm]) and the disk Dpw defined by it is the unique disk containing
w. Therefore the Lemma is proved. �
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