The Singular Set of 1-1 Integral Currents.

Tristan Rivière*and Gang Tian ${ }^{\dagger}$

Abstract

We prove that 2 dimensional integer multiplicity 2 dimensional rectifiable currents which are almost complex cycles in an almost complex manifold admitting locally a compatible positive symplectic form are smooth surfaces aside from isolated points and therefore are J-holomorphic curves.

I Introduction

Let $\left(M^{2 p}, J\right)$ be an almost complex manifold. Let $k \in \mathbb{N}, k \leq p$. We shall adopt classical notations from Geometric Measure Theory [Fe]. We say that a $2 k$-current C in $\left(M^{2 p}, J\right)$ is an almost complex integral cycle whenever it fulfills the following three conditions
i) rectifiability : there exists an at most countable union of disjoint oriented $C^{1} 2 k$-submanifolds $\mathcal{C}=\cup_{i} N_{i}$ and an integer multiplicity $\theta \in$ $L_{l o c}^{1}(\mathcal{C})$ such that for any smooth compactly supported in $M 2 k$-form ψ one has

$$
C(\psi)=\sum_{i} \int_{N_{i}} \theta \psi .
$$

ii) closedness : C is a cycle

$$
\partial C=0 \quad \text { i. e. } \forall \alpha \in \mathcal{D}^{2 k-1}(M) \quad C(d \alpha)=0
$$

[^0]iii) almost complex : for $\mathcal{H}^{2 k}$ almost every point x in \mathcal{C} the approximate tangent plane T_{x} to the rectifiable set \mathcal{C} is invariant under the almost complex structure J i.e.
$$
J\left(T_{x}\right)=T_{x}
$$

In this work we address the question of the regularity of such a cycle: Does there exist a smooth almost complex manifold $\left(\Sigma^{2 k}, j\right)$ without boundary and a smooth $j-J$-holomorphic map $u\left(\forall x \in \Sigma\right.$ and $\forall X \in T_{x} \Sigma d u_{x} j \cdot X=$ $\left.J \cdot d u_{x} X\right)$ such that u would realise an embeding in $M^{2 p}$ aside from a locally finite $2 k-2$ measure closed subset of M and such that $C=u_{*}\left[\Sigma^{2 k}\right]$, i.e. $\forall \psi \in C_{0}^{\infty}\left(\wedge^{2 k} M\right)$

$$
C(\psi)=\int_{\Sigma} u^{*} \psi
$$

In the very particular case where the almost complex structure J is integrable, this regularity result is optimal (C is the integral over multiples of algebraic subvarieties of M) and was established in [HS] and [Ale]. There are numerous motivations for studiying the general case of arbitrary almost complex structures J. First, as explained in [RT], the above regularity question for rectifiable almost complex cycles is directly connected to the regularity question of J-holomorphic maps into complex projective spaces. It is conjectured, for instance, that the singular set of $W^{1,2}\left(M^{2 p}, N\right) J$-holomorphic maps between almost complex manifolds M and N should be of finite ($2 p-4$)Hausdorff measure. The resolution of that question leads, for instance, to the caracterisation of stable bundle almost complex structures over almost Kähler manifolds via Hermite-Einstein Structures and extends Donaldson, Uhlenbeck-Yau characterisation in the integrable case (see [Do], [UY]) to the non-integrable one. Another motivation for studying the regularity of almost complex rectifiable cycles is the following. In [Li] and [Ti] it is explained how the loss of compactness of solutions to geometric PDEs having a given conformal invariant dimension q (a dimension at which the PDE is invariant under conforormal transformations - $q=2$ for harmonic maps, $q=4$ for Yang-Mills Fields...etc) arises along $m-q$ rectifiable cycles (if m denotes the dimension of the domain). These cycles happen sometimes to be almost complex (see more details in [Ri1]).

By trying to produce in $\left(\mathbb{R}^{2 p}, J\right)$ an almost complex graph of real dimension $2 k$ in a neighborhood of a point $x_{0} \in \mathbb{R}^{2 p}$ as a perturbation of a complex one ($J_{x_{0}}-$ holomorphic), one realises easily that, for generic almost complex
stuctures J, the problem is overdetermined whenever $k>1$ and well posed for $k=1$. Therefore the case of $2-$ dimensional integer rectifiable almost complex cycles is the generic one from the existence point of view. We shall restrict to that important case in the present paper. After complexification of the tangent bundle to $M^{2 p}$ a classical result asserts that a $2-$ plane is invariant under J if and only if it has a $1-1$ tangent $2-$ vector. Therefore we shall also speak about $1-1$ integral cycles for the almost complex 2 -dimensional integral cycles. In the present work we consider the locally symplectic case : We say that $\left(M^{2 p}, J\right)$ has the locally symplectic property if at a neighborhood of each point x_{0} in $M^{2 p}$ there exists a positive symplectic structure compatible with J : there exists a neighborhood U of x_{0} and a smooth closed 2-form ω such that $\omega(\cdot, J \cdot)$ defines a scalar product. It was proved in [RT] that arbitrary 4 -dimensional almost complex manifolds satisfies the locally symplectic property. This is no more the case in larger dimension : one can find an almost complex structure in S^{6} which admits no compatible positive symplectic form even locally see [Br].

Our main result is the following.
Theorem I. 1 Let $\left(M^{2 p}, J\right)$ be an almost complex manifold satisfying the locally symplectic property above. Let C be an integral 2 dimensional almost complex cycle. Then, there exists J-holomorphic curve Σ in M, smooth aside from isolated points, and a smooth integer valued function θ on Σ such that, for any 2 form $\psi \in C_{0}^{\infty}(M)$,

$$
C(\psi)=\int_{\Sigma} \theta \psi
$$

In the "locally symplectic case" being an almost-complex 2 cycle is equivalent for a 2-cycle of being calibrated by the local symplectic form ω for the local metric $\omega(\cdot, J \cdot)$. Therefore the regularity question for almost complex cycles is embeded into the problem of calibrated current and hence the theory of area minimizing rectifiable 2-cycles. Therefore our result appears to be a consequence of the "Big Regularity Paper" of F.Almgren [Alm] combined with the PhD thesis of his student S.Chang [Ch]. Our attempt here was to present an alternative proof independent of Almgren's monumental work [Alm] and adapted to the case we are interrested with. The motivation is to give a proof that could be modified in order to solve the general case (non
locally symplectic one) which cannot be "embeded" in the theory of area minimizing cycles anymore.

The attempt of writing a proof for the regularity of almost complex cycle in the locally symplectic case, independent of the regularity theory for area minimizing surfaces, was also the main purpose of the work $\mathrm{Gr} \Longrightarrow \mathrm{SW}$ of C.Taubes [Ta] for $p=2$. In this work a proof of theorem I. 1 was given in the particular case where $p=2$. Some argument happened to be incomplete in that proof, and [RT] fills the missing steps in [Ta]. Theorem I. 1 has to be seen as the generalisation to higher dimension $(p>2)$ of these works.

One of the main difficulties arising in dimension $(p>2)$ is the nonnecessary existence of J-holomorphic foliations transverse to our almost complex current C in a neighborhood of a point. This prevents then describing the current as a Q-multivalued graph from D^{2} into $\mathbb{C}^{p-1},\left\{\left(a_{i}^{k}(z)\right)_{k=1^{p-1}}\right\}_{i=1 \cdots Q}$ in a neighborhood of a point of density N solving locally an equation of the form

$$
\begin{equation*}
\partial_{\bar{z}} a_{i}^{k}=\sum_{l=1}^{p-1} A\left(z, a_{i}\right)_{l}^{k} \cdot \nabla a_{i}^{l}+\alpha^{k}\left(a_{i}, z\right) \tag{I.1}
\end{equation*}
$$

where A and α are small in C^{2} norm, as we did for $p=2$ in [RT]. What we can only ensure instead is to describe the current C, in a neighborhood of a point of multiplicity Q, as a "algebraic Q-valued graph" from D^{2} into \mathbb{C}^{p-1} : that is a family of points in $\mathbb{C}^{p-1},\left\{a_{1}(z), \cdots, a_{P}(z), b_{1}(z), \cdots, b_{N}(z)\right\}$ where only $P-N=Q$ is independent on z (neither P nor N are a-priori independent on z), a_{i} are the positive intersection points and b_{j} are the negative ones. This "algebraic Q-valued graph" solves locally a much less attractive equation than (I.1)

$$
\begin{equation*}
\partial_{\bar{z}} a_{i}^{k}=\sum_{l=1}^{p-1} A_{k}^{l}\left(z, a_{i}, \nabla a_{i}\right) \cdot \nabla a_{i}^{l}+\sum_{l=1}^{p-1} B_{k}^{l}\left(z, a_{i}\right) \cdot \nabla a_{i}^{l}+C^{k}\left(z, a_{i}\right) . \tag{I.2}
\end{equation*}
$$

where $A(z, a, p), B(z, a)$ and $C(z, a)$ are also small in C^{2} norm but the dependence in p in $A(z, a, p)$ is linear and therefore as ∇a_{i} gets bigger, which can happen, the right-hand-side of (I.2) can not be handled as a perturbation of the left-hand one in steps such as the "unique continuation argument". This was used in [RT] for proving that singularities of mutiplicity Q cannot have accumulation point in the carrier \mathcal{C} of C.

The strategy of the proof goes as follows. A classical blow-up analysis tells us that, for an arbitrary point x_{0} of the manifold $M^{2 p}$, the limiting
density $\theta\left(x_{0}\right)=\lim _{r \rightarrow 0} r^{-2} M\left(C\left\llcorner B_{r}\left(x_{0}\right)\right)\right.$ - Here M denotes the mass of a current and L is the restriction operator - equals π times an integer Q. Since the density function $r \rightarrow r^{-2} M\left(C\left\llcorner B_{r}\left(x_{0}\right)\right)\right.$ at every point is a monotone increasing function, the complement of the set $\mathcal{C}_{Q}:=\{x \in M ; \theta(x) \leq Q\}$ is closed in M and this permits to perform an inductive proof of theorem I. 1 restricting the current to \mathcal{C}_{Q} and considering increasing integers Q. A point of multiplicity Q is called a singular point of C if it is in the closure of points of non zero multiplicity strictly less than Q. The goal of the proof is then to show that singularities of multiplicity less than Q are isolated. We assume this fact for $Q-1$ and the paper is devoted to the proof that this then holds for Q itself. From a now classical result of B. White (see [Wh]), the dilated currents at a point x_{0} of density $Q \neq 0$ converge in flat norm to a sum of Q flat $J_{x_{0}}$-holomorphic disks, moreover, for any $\varepsilon>0$ and r sufficiently small $C\left\llcorner B_{r}\left(x_{0}\right)\right.$ is supported in the cones whose axis are the limiting disks and angle ε. For $Q>1$, if two of these limiting disks are different it is then easy to observe that x_{0} cannot be an accumulation point of singularities of multiplicity Q, this is the so called "easy case". If the limiting disks are all identical, equal to D_{0}, then we are in the "difficult case" and much more work has to be done in order to reach the same statement. Contrary to the special case of dimension $4(\mathrm{p}=2)$ considered by the authors before in [RT], we could not find nice coordinates that would permit to write C as a Q-valued graph over the limiting disk D_{0}. Considering then some $J_{x_{0}}-$ complex coordinates $\left(z, w_{1}, \cdots, w_{p-1}\right)$ in a neighborhood $B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ such that $\cap_{i} w_{i}^{-1}\{0\}$ corresponds to D_{0}, by the mean of the "lower-epiperimetric inequality" proved by the first author in [Ri2], one can construct a WhitneyBesicovitch covering, $\left\{B_{\rho_{i}}^{2}\left(z_{i}\right)\right\}_{i \in I}$, of the orthogonal projection on D_{0} of the points in $B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ having a positive density strictly less than Q. This covering is such that for every $i \in I$ there exists $x_{i}=\left(z_{i}, w_{i}\right) \in B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ verifying that the restriction of C to the tube $B_{\rho_{i}}^{2}\left(z_{i}\right) \times B_{\rho_{x_{0}}}^{2 p-2}(0)$ is in fact supported in the ball $B_{2 \rho_{i}}^{2 p}\left(x_{i}\right)$ of radius $2 \rho_{i}$, two times the width of the tube. Moreover if one looks inside $B_{\rho_{i}}^{2 p}\left(x_{i}\right), C$ is "split" : this last word means that C restricted to $B_{\rho_{i}}^{2 p}\left(x_{i}\right)$ is at a flat distance comparable to ρ_{i}^{3} from the Q multiple of any graph over $B_{\rho_{i}}^{2}\left(z_{i}\right)$ - this comes from the fact that the density ratio $\rho_{i}^{-2} M\left(B_{\rho_{i}}\left(x_{i}\right)\right)$ is strictly less than πQ minus a constant α depending only on p, Q, J and ω . We then construct an average curve for C. In the 4 -dimensional case since C was a Q-valued graph over D_{0} we took simply the average of the Q points
over any point in D_{0}. Here, in arbitrary dimension, the construction of the average curve is more delicate and uses the covering. We first approximate $C\left\llcorner B_{\rho_{i}}^{2 p}\left(x_{i}\right)\right.$ by a $J_{x_{i}}-$ holomorphic graph C_{i} using a technique introduced in [Ri3], and choosing a $J_{x_{i}}$-holomorphic disk D_{i} approximating D_{0} we can express C_{i} as a Q-valued graph over D_{i} for which we take the average \tilde{C}_{i} that happens to be Lipschitz with a uniformly bounded Lipschitz constant. Therefore the $J_{x_{i}}$-holomorphic curve \tilde{C}_{i} can be viewed as a graph \tilde{a}_{i} over $B_{\rho_{i}}^{2}\left(z_{i}\right)$. Patching the \tilde{a}_{i} together we get a graph \tilde{a} that extends over the whole $B_{\rho_{x_{0}}}^{2}(0)$ as a $C^{1, \alpha}$ graph for any $\alpha<1$ which is almost J-holomorphic and which passes through all the $B_{\rho_{i}}^{2 p}\left(x_{i}\right)$. The fact that the average curve is more regular than the J-holomorphic cycle C from which it is produced is clear in the integrable case (since it it holomorphic) - $(z, \pm \sqrt{z})$ is a $C^{0, \frac{1}{2}}$ 2 -valued graph whereas its average $(z, 0)$ is smooth. This was extended in the non-integrable case in the particular case of the 4 dimension in [ST]. The points of multiplicity Q in C are contained in the average curve \tilde{a}. We then show, by the mean of a unique continuation argument in the spirit of the one developed in [Ta] in 4 dimension, that the points where C get to coincide with \tilde{a} are either isolated or coincide with the whole curve \tilde{a}. We have then showed that any point x_{0} of multiplicity Q is either surrounded by points of multiplicity Q only, and in $B_{\rho_{x_{0}}}^{2 p}, C$ coincides with Q time a smooth graph over D_{0} or x_{0} is not an accumulation point of points of multiplicity Q and is surrounded in $B_{\rho_{x_{0}}}^{2 p}$ by points of multiplicity strictly less than Q. It remains at the end to show that it cannot be an accumulation point of singularities of lower density. This is obtained again using an approximation argument by holomorphic curves introduced in [Ri3].

The paper is organised as follows. In chapter II we establish preliminaries, introduce notations and give the main statement, assertion \mathcal{P}_{Q}, we are going to prove by induction in the rest of the paper. In chapter III, with the help of the "upper-epiperimetric inequality" of B. White, we establish the uniqueness of the tangent cone and a quantitative version of it, see lemma III.2. In chapter IV we prove the relative Lipschitz estimate together with a tilting control of the tangent cones of density Q points in a neighborhood of a density Q point - see lemma IV.2. In chapter V we proceed to the covering argument lemma V. 3 which is based on the "splitting before tilting" lemma - see lemma V. 1 - proved in [Ri2]. In chapter VI we construct the approximated average curve and prove the $C^{1, \alpha}$ estimate for this curve -
lemma VI.3. In chapter VII we perform the unique continuation argument that shows that singularities of multiplicity Q cannot be an accumulation point of singularities of multiplicity Q. In chapter VIII we show that singularities of multiplicity Q cannot be an accumulation point of singularities of multiplicity less than Q either.

II Preliminaries

Notations :We shall adopt standard notations from the Geometric Measure Theory [Fe] such as $M(A)$ for the Mass of a current $A, \mathcal{F}(A)$ for it's flat norm, $A\llcorner E$ for it's restriction to a measurable subset $E \ldots$...tc, we refer the reader to $[\mathrm{Fe}]$.

Preliminaries : Since our result is a local one we shall work in a neighborhood U of a point x_{0}, use a symplectic form ω compatible with J. We denote by g the metric generated by J and $\omega: g(\cdot, \cdot)=\omega(\cdot, J \cdot)$. We also introduce normal coordinates $\left(x_{1}, x_{2}, \cdots, x_{2 p-1}, x_{2 p}\right)$ about x_{0} in U which can be chosen such that

$$
\begin{equation*}
\text { at } x_{0} \quad J_{x_{0}} \cdot \frac{\partial}{\partial x_{2 i+1}}=\frac{\partial}{\partial x_{2 i+2}} \quad \text { for } i=0 \cdots p-1 . \tag{II.1}
\end{equation*}
$$

Since C is a calibrated current in (U, ω, J), it is an area minimizing current and it's generalized mean curvature vanishes (see [All] or [Si]). One may isometrically embed (U, g) into an euclidian space $\mathbb{R}^{2 p+k}$ and the generalised mean curvature of C in $\mathbb{R}^{2 p+k}$ coincides with the mean curvature of the embeding of (U, g) and is therefore a bounded function. Combining this fact together with the monotonicity formula (17.3) of [Si] we get that

$$
\begin{equation*}
\frac{M\left(C\left\llcorner B_{r}\left(x_{0}\right)\right)\right.}{r^{2}}=f(r)+O(r) \tag{II.2}
\end{equation*}
$$

where $f(r)$ is an increasing function, M denotes the Mass of a current and $C\left\llcorner B_{r}\left(x_{0}\right)\right.$ is the restriction of C to the geodesic ball of center x_{0} and radius r. There exists in fact a constant α depending only on g such that $e^{\alpha r} \frac{M\left(C L_{\left.B_{r}\left(x_{0}\right)\right)}\right.}{r^{2}}$ is an increasing function in r (see $[\mathrm{Si}]$). The factor $e^{\alpha r}$ is a perturbation of an order which will have no influence on the analysis below,
therefore, by an abuse of notation we will often omit to write it and consider straight that $\frac{M\left(C L_{\left.B_{r}\left(x_{0}\right)\right)}^{r^{2}}\right.}{}$ is an increasing function.

By the mean of the coordinates $\left(x_{1} \cdots x_{2 p}\right)$ we shall identify U with a subdomain in $\mathbb{R}^{2 p}$ and use the same notation C for the push forward of C in $\mathbb{R}^{2 p}$ by this chart. For small radii r we introduce the dilation function $\lambda^{r, x_{0}}(x)=\frac{x-x_{0}}{r}$, and we introduce the following dilation of C about x_{0} with rate r as being the following current in $\mathbb{R}^{2 p}$

$$
\begin{equation*}
C_{r, x_{0}}:=\left(\lambda^{r, x_{0}}{ }_{*} C\right)\left\llcorner B_{1}^{2 p}(0) .\right. \tag{II.3}
\end{equation*}
$$

Observe that $r^{2} M_{0}\left(C_{r, x_{0}}\right)=M_{0}\left(C\left\llcorner B_{r}^{2 p}(0)\right)\right.$ where M_{0} denotes the mass in for the flat metric g_{0} in $\mathbb{R}^{2 p}$. Since $g=g_{0}+O\left(r^{2}\right)$, we deduce from (II.2) that $M_{0}\left(C_{r, x_{0}}\right)$ is uniformly bounded as r tends to zero. Again since g and g_{0} coincide up to the second order, it does not hurt in the analysis below if one mixes the notations for the two masses M and M_{0} and speaks only about M. Since now C is a cycle in $U, \partial C_{r, x_{0}}\left\llcorner B_{1}^{2 p}(0)=0\right.$ and we can apply Federer-Fleming compactness theorem to deduce that, from any sequence $r_{i} \rightarrow 0$ one can extract a subsequence $r_{i^{\prime}}$ such that $C_{r_{i^{\prime}}, x_{0}}$ converges in Flat norm to a limiting current $C_{0, x_{0}}$ called a tangent cone of C at x_{0}. One of the purpose of the next section will be to establish that $C_{0, x_{0}}$ is independent of the subsequence and that the tangent cone is unique. The lower semi-continuity of the mass under weak convergence implies that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{M\left(C \mathbf{\llcorner} B_{r}\left(x_{0}\right)\right)}{r^{2}}=\lim _{r \rightarrow 0} M\left(C_{r, x_{0}}\right) \geq M\left(C_{0, x_{0}}\right) \tag{II.4}
\end{equation*}
$$

In fact, from the fact that C is calibrated by ω we deduce now that the inequality (II.4) is an equality. Indeed

$$
M\left(C_{r, x_{0}}\right)=r^{-2} C\left\llcorner B_{r}^{2 p}(0)(\omega)=C_{r, x_{0}}\left(r^{2}\left(\lambda^{r, x_{0}}\right)^{*} \omega\right)\right.
$$

It is clear that $\lim _{r \rightarrow 0}\left\|r^{2}\left(\lambda^{r, x_{0}}\right)^{*} \omega-\omega_{0}\right\|_{\infty}$ where $\omega_{0}=\sum_{i=1}^{p} d x_{2 i-1} \wedge d x_{2 i}$ therefore $C_{r, x_{0}}\left(r^{2}\left(\lambda^{r, x_{0}}\right)^{*} \omega-\omega_{0}\right) \longrightarrow 0$ and we get that

$$
\begin{equation*}
\lim _{r \rightarrow 0} M\left(C_{r, x_{0}}\right)=\lim _{i^{\prime} \rightarrow+\infty} C_{r_{i^{\prime}}, x_{0}}\left(\omega_{0}\right)=C_{0, x_{0}}\left(\omega_{0}\right) \tag{II.5}
\end{equation*}
$$

Since the comass of ω_{0} is equal to $1, C_{0, x_{0}}\left(\omega_{0}\right) \leq M\left(C_{0, x_{0}}\right)$. Combining this last fact with (II.4) and (II.5) we have established that

$$
\begin{equation*}
\lim _{r \rightarrow 0} M\left(C_{r, x_{0}}\right)=M\left(C_{0, x_{0}}\right)=C_{0, x_{0}}\left(\omega_{0}\right) \tag{II.6}
\end{equation*}
$$

which means in particular that $C_{0, x_{0}}$ is calibrated by the Kähler form ω_{0} in $\left(R^{2 p}, J_{0}\right) \simeq \mathbb{C}^{p}$ which is equivalent to the fact that $C_{0, x_{0}}$ is J_{0}-holomorphic. Using the explicit form of the monotonicity formula (see [Si] page 202), one observes that for any $s \in \mathbb{R}_{+}^{*}$

$$
C_{0, x_{0}}=\lambda_{*}^{s} C_{0, x_{0}}
$$

which means that \mathcal{H}^{2} almost everywhere on the carrier $\mathcal{C}_{0, x_{0}}$ of $C_{0, x_{0}}, \frac{\partial}{\partial r}$ is in the approximate tangent plane to $C_{0, x_{0}}$, in other words, $C_{0, x_{0}}$ is a cone. Since it is J_{0}-holomorphic, \mathcal{H}^{2}-a.e. x in $\mathcal{C}_{0, x_{0}}$, the approximate tangent cone is given by

$$
T_{x} C_{0, x_{0}}=\operatorname{Span}\left\{\frac{\partial}{\partial r}, J_{0} \frac{\partial}{\partial r}\right\}
$$

Integral curves of $J_{0} \frac{\partial}{\partial r}$ are great-circles, fibers of the Hopf fibration

$$
\left(z_{1}=x_{1}+i x_{2}, \cdots, z_{p}\right) \longrightarrow\left[z_{1}, \cdots, z_{p}\right]
$$

therefore we deduce that $C_{0, x_{0}}$ is the sum of the integrals over radial extensions of such great circles $\Gamma_{1} \cdots \Gamma_{Q}$ in $S^{2 p-1}$ which is the integral over a sum of Q flat holomorphic disks. We adopt the following notation (in fact identical to the one used in [Wh]) for the radial extensions in $B_{1}^{2 p}(0)$ of currents supported in $\partial B_{1}^{2 p}(0)$

$$
C_{0, x_{0}}=\oplus_{i=1}^{Q} 0 \sharp \Gamma_{i} .
$$

Then we deduce that

$$
\begin{equation*}
\lim _{r \rightarrow 0} M\left(C_{r, x_{0}}\right)=\pi Q \in \pi \mathbb{Z} \tag{II.7}
\end{equation*}
$$

For any $x \in U$ one denotes Q_{x} the integer such that

$$
\lim _{r \rightarrow 0} \frac{M\left(C\left\llcorner B_{r}(x)\right)\right.}{\pi r^{2}}=Q_{x}
$$

Using the monotonicity formula, it is straightforward to deduce that for any $Q \in \mathbb{N}$

$$
\mathcal{C}_{Q}=\left\{x \in U \quad \text { s. t. } \quad 0<Q_{x} \leq Q\right\}
$$

is an open subset of $\mathcal{C}_{*}=\left\{x \in U \quad\right.$ s. t. $\left.0<Q_{x}\right\}$. For $Q>1$, let us also denote

$$
\text { Sing }^{Q}=\left\{x \in \mathcal{C}_{*} \quad \text { s. t. } \quad Q_{x}=Q \quad \text { and } x \text { is an acc. point of } \mathcal{C}_{Q-1}\right\}
$$

Observe that, from Allard's theorem, it is clear that $C\left\llcorner\left(U \backslash \cup_{Q} \operatorname{Sing}^{Q}\right)\right.$ is the integral along a smooth surface with a smooth integer multiplicity. Although we won't make use of Allard's theorem this justifies a-priori our notation. The whole purpose of our paper is to show that $\cup_{Q} \operatorname{Sing}^{Q}$ is made of isolated points. As we said, we won't make use of Allard's paper below since the relative Lipschitz estimate we establish in lemma IV. 2 gives Allard's result in our case which is more specific. Because of this nice stratification of C (\mathcal{C}_{Q} is open in \mathcal{C}_{*}) we can argue by induction on Q. Let \mathcal{P}_{Q} be the following assertion

$$
\begin{equation*}
\mathcal{P}_{Q}: \cup_{q \leq Q} \operatorname{Sing}^{q} \text { is made of isolated points . } \tag{II.8}
\end{equation*}
$$

From the begining of chapter IV until chapter VII we will assume either $Q=2$ or that \mathcal{P}_{Q-1} holds and the goal will be to establish \mathcal{P}_{Q}.

III The uniqueness of the tangent cone.

The uniqueness of the tangent cone means that the limiting cone $C_{0, x_{0}}$, obtained in the previous section while dilating at a point following a subsequence of radii $r_{i^{\prime}}$, is independent of the subsequence and is unique. Since our calibrated two dimensional rectifiable cycle is area minimizing, this fact is a consequence of B . White upper-epiperimetric inequality in [Wh] (see also [Ri2] for the justification of the prefix "upper"). We need, however, a more quantitative version of this uniqueness of the tangent cone and express how far we are from the unique tangent cone in terms of the closedness of the density of area $M\left(C\left\llcorner B_{r}\left(x_{0}\right)\right) / \pi r^{2}\right.$ to the limiting density Q. Precisely the goal of this section is to prove the following lemma

Lemma III. 1 (Uniqueness of the tangent cone.) For any $\varepsilon>0$ and $Q \in \mathbb{N}$ there exists $\delta>0$ and $\rho_{\varepsilon} \leq 1$ such that, for any compatible pair (J, ω) almost complex structure-symplectic form over $B_{1}^{2 p}(0)$ satisfying $J(0)=J_{0}(0)$, $\omega(0)=\omega_{0}(0)$

$$
\begin{equation*}
\left\|J-J_{0}\right\|_{C^{2}\left(B_{1}\right)}+\left\|\omega-\omega_{0}\right\|_{C^{2}\left(B_{1}\right)} \leq \delta \tag{III.1}
\end{equation*}
$$

for any J-holomorphic integral 2-cycle C in $B_{1}(0)$ such that $Q_{0}=Q$, if

$$
M\left(C\left\llcorner B_{1}^{2 p}(0)\right) \leq \pi Q+\delta\right.
$$

then, there exists $Q J_{0}$ holomorphic flat discs $D_{1} \cdots D_{Q}$ passing through 0, intersection of holomorphic lines of \mathbb{C}^{p} with $B_{1}^{2 p}(0)$, such that, for any $\rho \leq \rho_{\varepsilon}$

$$
\begin{equation*}
\mathcal{F}\left(C_{\rho, 0}-\oplus_{i=1}^{Q} D_{i}\right) \leq \varepsilon \tag{III.2}
\end{equation*}
$$

and for any $\psi \in C_{0}^{\infty}\left(B^{1} \backslash\left\{x \in B^{1} ; \operatorname{dist}\left(x, \cup_{i} D_{i}\right) \leq \varepsilon|x|\right\}\right)$,

$$
\begin{equation*}
C_{\rho, 0}(\psi)=0 \tag{III.3}
\end{equation*}
$$

Before proving lemma III.1, we first establish the following intermediate result

Lemma III. 2 For any $\varepsilon>0$ and $Q \in \mathbb{N}$ there exists $\delta>0$ such that the following is true. If (J, ω) is a compatible pair of almost complex structuresymplectic form over $B_{1}^{2 p}(0)$ satisfying $J(0)=J_{0}(0), \omega(0)=\omega_{0}(0)$

$$
\left\|J-J_{0}\right\|_{C^{2}\left(B_{1}\right)}+\left\|\omega-\omega_{0}\right\|_{C^{2}\left(B_{1}\right)} \leq \delta
$$

for any J-holomorphic integer rectifiable 2-cycle C such that $Q_{x}=Q$, if

$$
M\left(C\left\llcorner B_{1}^{2 p}(0)\right) \leq \pi Q+\delta\right.
$$

then, there exist $Q J_{0}$ holomorphic flat discs $D_{1} \cdots D_{Q}$ passing through 0, intersection of holomorphic lines of \mathbb{C}^{p} with $B_{1}^{2 p}(0)$, such that,

$$
\mathcal{F}\left(C\left\llcorner B_{1}(0)-\oplus_{i=1}^{Q} D_{i}\right) \leq \varepsilon\right.
$$

Remark III. 1 Lemma III. 2 give much less information than lemma III.1. Since a-priori in lemma III. 2 the disks D_{i} may vary a lot as one dilate C about 0, whereas lemma III. 1 controls such a tilting as one dilates the current further.

Proof of lemma III. 2 : We prove lemma III. 2 by contradiction. Assume there exists $\varepsilon_{0}>0, \delta_{n} \rightarrow 0$, compatible J_{n} and ω_{n} and C_{n} such that
i)

$$
\left\|J_{n}-J_{0}\right\|_{C^{2}}+\left\|\omega_{n}-\omega_{0}\right\|_{C^{2}} \leq \delta_{n}
$$

ii)

$$
\lim _{r \rightarrow 0} \pi^{-1} r^{-2} M\left(C_{n}\left\llcorner B_{r}(0)\right)=Q\right.
$$

iii)

$$
M\left(C_{n}\left\llcorner B_{1}\right) \leq \pi Q+\delta_{n}\right.
$$

iv)

$$
\begin{equation*}
\inf \left\{\mathcal{F}\left(C_{n}\left\llcorner B_{1}-\oplus_{i=1}^{Q} D_{i}\right) \text { s.t. } D_{i} \text { flat holom discs, } 0 \in D_{i}\right\} \geq \varepsilon_{0}\right. \tag{III.4}
\end{equation*}
$$

Since $\partial C_{n}\left\llcorner B_{1}=0\right.$ and since the mass of C_{n} is uniformly bounded, one may assume, modulo extraction of a subsequence if necessarily, that C_{n} converges to a limiting rectifiable cycle C_{∞}. Exactly like in section III we have the fact that for any $0<r \leq 1$

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} M\left(C_{n}\left\llcorner B_{r}\right)=M\left(C_{\infty}\left\llcorner B_{r}\right)=C_{\infty}\left\llcorner B_{r}\left(\omega_{0}\right)\right.\right.\right. \tag{III.5}
\end{equation*}
$$

We deduce then that C_{∞} is calibrated by ω_{0} and is therefore a J_{0}-holomorphic cycle. Using ii) we deduce also that

$$
\lim _{r \rightarrow 0} \pi^{-1} r^{-2} M\left(C_{\infty}\left\llcorner B_{r}(0)\right)=Q\right.
$$

and finally, from iii) and the lower semicontinuity of the mass, we have that $M\left(C_{\infty}\left\llcorner B_{1}\right)=\pi Q\right.$ Thus, since $\pi^{-1} r^{-2} M\left(C_{\infty}\left\llcorner B_{r}(0)\right)\right.$ is an increasing function, we have established that on $[0,1]$

$$
\begin{equation*}
\pi^{-1} r^{-2} M\left(C_{\infty}\left\llcorner B_{r}(0)\right) \equiv Q\right. \tag{III.6}
\end{equation*}
$$

Let, for almost every $r, S_{\infty}^{r}=<C_{\infty}, \operatorname{dist}(\cdot, 0), r>$ be the slice current obtained by slicing C_{∞} with $\partial B_{r}(0)$ (see [Fe] 4.2.1). By Fubini, we have that for a.e. $0<r<1$

$$
M\left(<C_{\infty}, \operatorname{dist}(\cdot, 0), r>\right) \leq 2 \pi Q r
$$

Let $0 \sharp S_{\infty}^{r}$ be the radial extension of S_{∞}^{r} in $B_{r}(0)$.

$$
M\left(0 \sharp S_{\infty}^{r}\right)=\frac{r}{2} M\left(S_{\infty}^{r}\right)=\pi Q r^{2}=M\left(C_{\infty}\left\llcorner B_{r}(0)\right)\right.
$$

Since $\partial\left(C_{\infty}\left\llcorner B_{r}(0)-0 \sharp S_{\infty}^{r}\right)=0\right.$, and since $C_{\infty}\left\llcorner B_{r}(0)\right.$ is area minimizing we have that $0 \sharp S_{\infty}^{r}$ is also area minimizing. Let α such that $d \alpha=\omega$.

$$
M\left(0 \sharp S_{\infty}^{r}\right)=M\left(C_{\infty}\left\llcorner B_{r}(0)\right)=C_{\infty}\left\llcorner B_{r}(0)\left(\omega_{0}\right)=S_{\infty}^{r}(\alpha)=\left(0 \sharp S_{\infty}^{r}\right)\left(\omega_{0}\right)\right.\right.
$$

Therefore $0 \sharp S_{\infty}^{r}$ is an holomorphic cone which is a cycle. So we deduce like in section II that $0 \sharp S_{\infty}^{r}$ is a sum of flat holomorphic disk for any r. Thus C_{∞} is also a sum

$$
C_{\infty}\left\llcorner B_{1}(0)=\sum_{i=1}^{Q} D_{i}\right.
$$

where each D_{i} is the intersection of a complex straight line in \mathbb{C}^{p} with $B_{1}^{2 p}$. From Federer-Fleming compactness theorem we have the fact that the weak convergence of C_{n} to C_{∞} holds in flat norm

$$
\mathcal{F}\left(C_{n}\left\llcorner B_{1}-\sum_{i=1}^{Q} D_{i}\right) \longrightarrow 0\right.
$$

which contradicts iv) and lemma III. 2 is proved.

Proof of lemma III. 1 :

We first prove assertion (III.2). We first recall Brian White's upperepiperimetric inequality adapted to our present context : Brian White's upper-epiperimetric inequality was proved for area minimizing surfaces in $\mathbb{R}^{2 p}$. Here, in the present situation, we are dealing with area minimizing currents which are J-holomorphic for a metric $g=\omega(\cdot, J \cdot)$ which get's as close as we want to the standard one because of assumption (III.1). Therefore very minor changes have to be provided to adapt B.White theorem to the present context. An adaptation of the epiperimetric inequality for ambient non flat metric is also given in [Ch] Appendix A. So we have the following result.

Given an integer Q, there exists a positive number $\varepsilon_{Q}>0$, such that, for any compatible pair ω, J in $B_{2}^{2 p}(0)$ satisfying $\left\|\omega-\omega_{0}\right\|_{C^{2}\left(B_{2}\right)}+\| J-$ $J_{0} \|_{C^{2}\left(B_{2}\right)} \leq \varepsilon_{Q}$ and for any $C J$-holomorphic 2-rectifiable integral current in $B_{2}^{2 p}(0)$, satisfying $\partial C\left\llcorner B_{2}^{2 p}=0\right.$, assuming there exist Q flat holomorphic disks $D_{1} \ldots D_{Q}$ in $\left(B_{1}^{2 p}(0), J\right) \simeq \mathbb{C}^{p} \cap B_{1}^{2 p}(0)$ passing through the origin such that

$$
\begin{equation*}
\mathcal{F}\left(C_{2,0}\left\llcorner B_{1}(0)-\sum_{i=1}^{Q} D_{i}\right) \leq \varepsilon_{Q}\right. \tag{III.7}
\end{equation*}
$$

(where we used a common notation for the oriented 2-disks D_{i} and the corresponding 2 -currents) then

$$
\begin{equation*}
M\left(C\left\llcorner B_{1}^{2 p}\right)-\pi Q \leq\left(1-\varepsilon_{Q}\right)\left(\frac{1}{2} M\left(\partial\left(C\left\llcorner B_{1}^{2 p}\right)\right)-\pi Q\right)\right.\right. \tag{III.8}
\end{equation*}
$$

Remark III. 2 Observe that in the statement of the epiperimetric property in Definition 2 of [Wh] the epiperimetric constant ε_{Q} may a-priori also depend of the cone $\sum_{i=1}^{Q} D_{i}$. It is however elementary to observe that this space of cones made of the intersection of Q holomorphic straight lines passing through the origin with $B_{1}^{2 p}(0)$ is compact for the flat distance. Now using a simple finite covering argument for this space of cones by balls (for the flat distance) permits one to obtain a constant $\varepsilon_{Q}>0$ for which the epiperimetric property holds independently of the cone $\sum_{i=1}^{Q} D_{i}$.

Once again we shall ignore the factor $e^{\alpha r}$ in front of $r^{-2} M\left(C\left\llcorner B_{r}\right)\right.$ which induces lower order perturbations and argue as $r^{-2} M\left(C\left\llcorner B_{r}\right)\right.$ itself would be an increasing function (observe also that α may be taken arbitrarily small because J and ω are chosen as close as we want to J_{0} and ω_{0}).

Let then $\varepsilon>0$ such that $\varepsilon<\varepsilon_{Q}$ and let $\delta>0$ given by lemma III. 2 for that ε. Assuming then $M\left(C\left\llcorner B_{1}\right) \leq \pi Q+\delta\right.$ implies from the monotonicity formula that for any $r<1 r^{-2} M\left(C\left\llcorner B_{r}(0)\right)=M\left(C_{r, 0}\right) \leq(\pi Q+\delta)\right.$. Applying then Lemma III. 2 to $C_{2 r, 0}$ for $r<1 / 2$ we deduce the existence of Q flat disks $D_{1} \cdots D_{Q}$ such that

$$
\begin{equation*}
\mathcal{F}\left(C_{2 r, 0}-\sum_{i=1}^{Q} D_{i}\right) \leq \varepsilon \tag{III.9}
\end{equation*}
$$

We can then apply the epiperimetric inequality to $C_{r, 0}$ and we get, after rescaling, that

$$
\begin{equation*}
M\left(C\left\llcorner B_{r}(0)\right)-\pi Q r^{2} \leq\left(1-\varepsilon_{Q}\right)\left(\frac{r}{2} M\left(\partial\left(C\left\llcorner B_{r}(0)\right)\right)-\pi Q r^{2}\right)\right.\right. \tag{III.10}
\end{equation*}
$$

Denote $f(r)=M\left(C\left\llcorner B_{r}(0)\right)-\pi Q r^{2} . f^{\prime}(r) \geq M\left(\partial\left(C\left\llcorner B_{r}(0)\right)\right)-2 \pi Q r\right.\right.$. Therefore (III.10) implies

$$
\frac{1-\varepsilon_{Q}}{2} r f^{\prime}(r) \geq f(r)
$$

Integrating this differential inequality between s and $\sigma(1 / 2>s>\sigma), f(s) \geq$ $\left(\frac{s}{\sigma}\right)^{\frac{2}{1-\varepsilon_{Q}}} f(\sigma)$. Let $\nu=\frac{2}{1-\varepsilon}-2>0$, we then have

$$
\begin{equation*}
\frac{f(s)}{s^{2}} \geq\left(\frac{s}{\sigma}\right)^{\nu} \frac{f(\sigma)}{\sigma^{2}} \tag{III.11}
\end{equation*}
$$

Let $F(x)=\frac{x}{|x|}$. We have

$$
M\left(F_{*}\left(C\left\llcorner B_{s}(0) \backslash B_{\sigma}(0)\right)\right)=\int_{B_{S}(0) \backslash B_{\sigma}(0)} \frac{1}{|x|^{3}}\left|\tau \wedge \frac{x}{|x|}\right||\theta| d \mathcal{H}^{2}\llcorner\mathcal{C}\right.
$$

where τ denotes the unit 2 -vector associated to the oriented approximate tangent plane to C and defined \mathcal{H}^{2}-a.e. along the carrier \mathcal{C} of the rectifiable current, θ is the $L^{1}(\mathcal{C})$ integer-valued multiplicity of C (i.e using classical GMT notations : $C=<\mathcal{C}, \theta, \tau>)$ and $d \mathcal{H}^{2}\llcorner\mathcal{C}$ is the restriction to \mathcal{C} of the 2-dimensional Hausdorff measure. Using Cauchy-Schwarz and 5.4.3 (2) of [Fe] (the explicit formulation of the monotonicity formula) and (III.11), we have

$$
\begin{align*}
& M\left(F_{*}\left(C\left\llcorner B_{s}(0) \backslash B_{\sigma}(0)\right)\right)\right. \\
& \leq\left[\frac{M\left(C\left\llcorner B_{s}(0)\right)\right.}{s^{2}}-\frac{M\left(C\left\llcorner B_{\sigma}(0)\right)\right.}{\sigma^{2}}\right]^{\frac{1}{2}}\left[\frac{M\left(C\left\llcorner B_{s}(0)\right)\right.}{\sigma^{2}}\right]^{\frac{1}{2}} \\
& \leq\left[\frac{M\left(C\left\llcorner B_{s}(0)\right)\right.}{s^{2}}-\pi Q\right]^{\frac{1}{2}}\left[\frac{M\left(C\left\llcorner B_{s}(0)\right)\right.}{\sigma^{2}}\right]^{\frac{1}{2}} \tag{III.12}\\
& \leq\left[\frac{f(s)}{s^{2}}\right]^{\frac{1}{2}}\left[\frac{s^{2}}{\sigma^{2}} \frac{M\left(C\left\llcorner B_{s}(0)\right)\right.}{s^{2}}\right]^{\frac{1}{2}} \leq K s^{\frac{\nu}{2}} \frac{s}{\sigma}
\end{align*}
$$

Let $r<\rho<1 / 2$, applying (III.12) for $s=2^{-k} \rho$ and $\sigma=2^{-k-1} \rho$ for $k \leq \log _{2} \frac{\rho}{r}$ and summing over k we get

$$
\begin{equation*}
M\left(F_{*}\left(C\left\llcorner B_{\rho}(0) \backslash B_{r}(0)\right)\right) \leq C \rho^{\frac{\nu}{2}}\right. \tag{III.13}
\end{equation*}
$$

Observe that $\partial\left(F_{*}\left(C\left\llcorner B_{\rho}(0) \backslash B_{r}(0)\right)\right)=\partial C_{\rho, 0}-\partial C_{r, 0}\right.$. Therefore we deduce

$$
\begin{equation*}
\mathcal{F}\left(\left(C_{\rho, 0}-C_{r, 0}\right)\left\llcorner B_{1}(0) \backslash B_{\frac{1}{2}}(0)\right) \leq C \rho^{\frac{\nu}{2}}\right. \tag{III.14}
\end{equation*}
$$

Since
$\mathcal{F}\left(\left(C_{\rho, 0}-C_{r, 0}\right)\left\llcorner B_{\frac{1}{2}}(0) \backslash B_{\frac{1}{4}}(0)\right) \leq\left(\frac{1}{3}\right)^{\frac{1}{3}} \mathcal{F}\left(\left(C_{\frac{\rho}{2}, 0}-C_{\frac{r}{2}, 0}\right)\left\llcorner B_{1}(0) \backslash B_{\frac{1}{2}}(0)\right)\right.\right.$
applying then (III.14) for ρ, r replaced by $2^{-k} \rho, 2^{-k} r$ and summing over $k=1, \cdots \infty$ we finally obtain

$$
\begin{equation*}
\mathcal{F}\left(\left(C_{\rho, 0}-C_{r, 0}\right)\left\llcorner B_{1}(0)\right) \leq C \rho^{\frac{\nu}{2}}\right. \tag{III.15}
\end{equation*}
$$

which is the desired inequality (III.2).
It remains to show (III.3) in order to finish the proof of lemma III.1. We argue by contradiction. Assume there exists $\varepsilon_{0}>0, \rho_{n} \rightarrow 0$ and $\psi_{n} \in C_{0}^{\infty}\left(\wedge^{2} B_{1}\right)$ such that

$$
\operatorname{supp} \psi_{n} \subset E_{0}=\left\{x \in B^{1} ; \operatorname{dist}\left(x, \cup_{i} D_{i}\right) \leq \varepsilon_{0}|x|\right\}
$$

where $C_{0,0}=\oplus_{i=1}^{Q} D_{i}$, and

$$
C_{\rho_{n}, 0}\left(\psi_{n}\right) \neq 0
$$

This later fact implies in particular that there exists $x^{n} \in E_{0}$ such that $\lim _{r \rightarrow 0} M\left(C_{r, x_{n}}\right) \neq 0$. Using the monotonicity formula we deduce then that

$$
M\left(C_{\rho_{n}\left|x_{n}\right|, 0}\left\llcorner B_{\varepsilon_{0} / 2}\left(\frac{x_{n}}{\left|x_{n}\right|}\right)\right) \geq \frac{\pi}{4} \varepsilon_{0}^{2}\right.
$$

We may then extract a subsequence such that $\frac{x_{n}}{\left|x_{n}\right|} \rightarrow x_{\infty}$. Thus we have

$$
M\left(C_{\rho_{n}\left|x_{n}\right|, 0}\left\llcorner B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right)\right) \geq \frac{\pi}{4} \varepsilon_{0}^{2}\right.
$$

We have

$$
M\left(C_{\rho_{n}\left|x_{n}\right|, 0}\left\llcorner B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right)\right)=C_{\rho_{n}\left|x_{n}\right|, 0}\left\llcorner B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right)\left(\frac{x}{\rho_{n}\left|x_{n}\right|} \omega^{*} \omega_{n}\right)\right.\right.
$$

Since $\left\|\omega_{n}-\omega_{0}\right\|_{C^{2}} \rightarrow 0$ and since $\omega_{n}(0)=\omega_{0}(0)$ we clearly have that

$$
\left\|\frac{x}{\rho_{n}\left|x_{n}\right|} \omega_{n}-\omega_{0}\right\|_{\infty} \longrightarrow 0
$$

Therefore

$$
\begin{aligned}
& \left\lvert\, C_{\rho_{n}\left|x_{n}\right|, 0}\left\llcorner\left. B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right)\left(\frac{x}{\rho_{n}\left|x_{n}\right|} \omega_{n}-\omega_{0}\right) \right\rvert\,\right.\right. \\
& \leq \leq M\left(C_{\rho_{n}\left|x_{n}\right|, 0}\left\llcorner B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right)\right)\left\|\frac{x}{\rho_{n}\left|x_{n}\right|} \omega_{n}-\omega_{0}\right\|_{\infty} \longrightarrow 0\right.
\end{aligned}
$$

Thus

$$
C_{0,0}\left\llcorner B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right)\left(\omega_{0}\right)=\lim _{n \rightarrow+\infty} C_{\rho_{n}\left|x_{n}\right|, 0}\left\llcorner B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right)\left(\omega_{0}\right) \geq \frac{\pi}{4} \varepsilon_{0}^{2}\right.\right.
$$

which contradicts the fact that $B_{3 \varepsilon_{0} / 4}\left(x_{\infty}\right) \subset E_{0}$. Therefore (III.3) holds and lemma III. 1 is proved.

IV Consequences of lemma III. 1 : No accumulation of points in Sing^{Q} in the easy case - The relative Lipschitz estimate in the difficult case.

In this section we expose two important consequences of lemma III.1. Before explaining them we first observe that proving the implication $\mathcal{P}_{Q-1} \Longrightarrow \mathcal{P}_{Q}$, will require considering two cases separately. The first case (the easy one) is the case where the tangent cone at the point x_{0} of multiplicity Q (i.e. $\left.\pi^{-1} r^{-2} M\left(B_{r}\left(x_{0}\right)\right) \rightarrow Q\right)$ is not made of Q times the same disk. The second case is the case where the tangent case is made of Q times the same disk. In the first case we will deduce almost straight from lemma III. 1 that such an x_{0} cannot be an accumulation point of points of multiplicity Q also, see lemma IV. 1 below. In the second case, much more analysis will be needed to reach the same statement and this is the purpose of chapters IV through IX. We can nevertheless deduce in this chapter an important consequence of our quantitative version of the uniqueness of the tangent cone (lemma III.1) for the difficult case : this is the so called "relative lipshitz estimate" (see lemma IV. 2 below). This property says that, given a point x_{0} of multiplicity Q whose tangent cone is Q times a flat disk and given an $\varepsilon>0$, there exists a radius $r_{\varepsilon, x_{0}}>0$ such that given any two points of $\mathcal{C}_{*} \cap B_{r_{\varepsilon, x_{0}}}\left(x_{0}\right)$, one of the two being also of multiplicity Q, the slope they realise relative to the
tangent cone of x_{0} is less than ε. The condition that one of the two points has multiplicity Q (this could be x_{0} itself for instance) is a crucial assumption. It is indeed straightforward to find counterexamples to any Lipschitz estimates of multivalued graphs of holomorphic curves : take for instance $w^{2}=z$ in $\mathbb{C}^{2} \simeq\{(z, w) z, w \in \mathbb{C}\}$ viewed as a 2 -valued graph over the line $\{w=0\}$, all points have multiplicity $1,(0,0)$ included of course, but the best possible estimate is a Hölder one $C^{0, \frac{1}{2}}$. We cannot exclude that such a configuration exists as we dilate at a point x_{0} of mupltiplicity $Q>1$.

We first then prove the following consequence of lemma III. 1
Lemma IV. 1 (no accumulation - the easy case) Let $Q \in \mathbb{N}, Q \geq$ 2. Let x_{0} be a point in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ (i.e. $\pi^{-1} r^{-2} M\left(B_{r}\left(x_{0}\right)\right) \rightarrow Q$ as $\left.r \rightarrow 0\right)$. Assume that the tangent cone at $x_{0}, C_{0, x_{0}}$, contains at least two different flat $J_{x_{0}}-$ holomorphic disks (i.e. $C_{0, x_{0}} \neq Q D$ for the single flat $J_{x_{0}}-h o l o m o r p h i c$ disk $D)$. Then, there exists $r>0$ sucht that

$$
B_{r}\left(x_{0}\right) \cap\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)=\left\{x_{0}\right\}
$$

Proof of lemma IV.1.

Let x_{0} be as in the statement of the lemma: $x_{0} \in \mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ and $C_{0, x_{0}}=$ $\oplus_{i=1}^{K} Q_{i} D_{i}$ (where $D_{i} \neq D_{j}$ for $i \neq j$ and $K>1$). Let $\varepsilon>0$ be a positive number smaller than $1 / 4 \mathrm{Q}$ times the maximal angle α between the various diks D_{1}, \cdots, D_{K} in the tangent cones in such a way that there exists $i \neq j$ such that

$$
E_{\varepsilon}\left(D_{i}\right) \cap E_{\varepsilon}\left(D_{j}\right)=\left\{x_{0}\right\},
$$

where we are using the following notation

$$
\left.E_{\varepsilon}\left(D_{i}\right)\left\{x \in \mathbb{R}^{2 p} ; \operatorname{dist}\left(x, D_{i}\right) \leq \varepsilon\left|x-x_{0}\right|\right\}\right) .
$$

By taking ε as small as above, we even have ensured that $\cup E_{\varepsilon}\left(D_{i}\right) \backslash x_{0}$ has at least two connected components whose intersections with $\partial B_{1}\left(x_{0}\right)$ are at a distance larger than $\alpha / 2$. We prove now lemma IV. 1 by contradiction : we assume there exists $x_{n} \in \mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ such that $x_{n} \rightarrow x_{0}$ and $x_{n} \neq x_{0}$. Let $\delta>0$ given by lemma III. 1 for ε chosen just above. Let $\rho>0$ such that
$\rho^{-2} M\left(C\left\llcorner B_{\rho}\left(x_{0}\right)\right) \leq \pi Q+\delta / 2\right.$. For any $x \in B_{\rho_{\frac{\delta}{4 \pi Q}}}\left(x_{0}\right)$ we have

$$
\begin{align*}
& M\left(C\left\llcorner B_{\rho\left(1-\frac{\delta}{4 \pi Q}\right)}(x)\right) \leq M\left(C\left\llcorner B_{\rho}\left(x_{0}\right)\right) \leq \rho^{2}\left(\pi Q+\frac{\delta}{2}\right)\right.\right. \\
& \quad \leq\left(\rho\left(1-\frac{\delta}{4 \pi Q}\right)\right)^{2}\left(1-\frac{\delta}{4 \pi Q}\right)^{-2}\left(\pi Q+\frac{\delta}{2}\right) \tag{IV.1}\\
& \quad \leq\left(\rho\left(1-\frac{\delta}{4 \pi Q}\right)\right)^{2}(\pi Q+\delta)
\end{align*}
$$

Choose then $x_{n} \in B_{\rho \frac{\delta}{8 \pi Q}}\left(x_{0}\right)$. Applying (III.3) for x_{0} we know that x_{n} is contained in one of the $E_{\varepsilon}\left(D_{i}\right)$, say $E_{\varepsilon}\left(D_{1}\right)$. Denote E_{1} the connected component of $\cup E_{\varepsilon}\left(D_{i}\right) \backslash\left\{x_{0}\right\}$ that contains $E_{\varepsilon}\left(D_{1}\right) . \varepsilon$ has been chosen small enough such that $\cup E_{\varepsilon}\left(D_{i}\right)$ has at least two connected components. Therefore we can chose D_{j} such that $E_{\varepsilon}\left(D_{j}\right)$ is disjoint from the component containing $E_{\varepsilon}\left(D_{1}\right) \backslash\left\{x_{0}\right\}$. Let α be the angular distance, relative to x_{0}, from $E_{\varepsilon}\left(D_{j}\right)$ and the component containing $E_{\varepsilon}\left(D_{1}\right) \backslash\left\{x_{0}\right\}$. al is clearly bounded from below by a positive number as one choses ε smaller and smaller. Applying lemma III. 1 this time to x_{n}, we know that in $B_{4\left|x_{n}\right|}\left(x_{n}\right) \backslash B_{\left|x_{n}\right|}\left(x_{n}\right)$ the support of C is at the $\varepsilon\left|x_{n}\right|$ distance from a union of flat disks passing through x_{n} (the tangent cone at x_{n}). This implies that the angular distance between the tangent cone at x_{n} and D_{1} is less than $C_{Q} \varepsilon$, where C_{Q} depends on Q only. Therefore

$$
\begin{equation*}
\operatorname{supp}\left(C\left\llcorner B_{2\left|x_{n}\right|}\left(x_{n}\right) \backslash B_{\left|x_{n}\right|}\left(x_{n}\right)\right) \subset \tilde{E}_{1}=\left\{x ; \operatorname{dist}\left(x, D_{1}\right) \leq C_{Q} \varepsilon\left|x_{n}\right|\right\}\right. \tag{IV.2}
\end{equation*}
$$

Observe that $\operatorname{dist}\left\{E_{\varepsilon}\left(D_{j}\right) \cap\left(B_{\left|x_{n}\right|}\left(x_{0}\right) \backslash B_{\left|x_{n}\right| / 2}\left(x_{0}\right)\right) ; \tilde{E}_{1}\right\} \geq \alpha / 4$. This later fact combined with (IV.2) contradicts (III.2). Lemma IV. 1 is then proved.

From now on until the begining of chapter X we will be dealing with the difficult case only : the case where the point x_{0} of multiplicity Q has a tangent cone which is made of Q time the same disk. As we have been doing since chapter II, we will work in a neighborhood of x_{0} where a compatible simplectic form ω for J exists, and we shall use normal coordinates for $g(\cdot, \operatorname{cdot})=\omega(\cdot, J \cdot)$ about x_{0}, compatible with $J_{x_{0}}$ at x_{0}, satisfying (II.1), and we can also assume that the tangent cone at x_{0} is

$$
\begin{equation*}
C_{0, x_{0}}\left\llcorner B_{1}(0)=Q\left[D_{0}\right]\right. \tag{IV.3}
\end{equation*}
$$

where D_{0} is the flat oriented disk whose tangent $2-$ vector is $\frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}$. From now on we will also use the following notations for complex coordinates about
x_{0}

$$
\begin{equation*}
z=x_{1}+i x_{2} \quad \text { and } \quad w_{i}=x_{2 k+1}+i x_{2 k+2} \text { for } k=1 \cdots p-1 . \tag{IV.4}
\end{equation*}
$$

We will also denote $w=\left(w_{1}, \cdots, w_{p-1}\right)$. A second consequence to lemma III. 1 is the following result :

Lemma IV. 2 (the relative Lipschitz estimate) : Let x_{0} be a point of multiplicity Q (i.e. $x_{0} \in \mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$), assume the tangent cone $C_{0, x_{0}}\left\llcorner B_{1}(0)\right.$ at x_{0} is Q times a flat disk (i.e. of the form (IV.3)). Let $\varepsilon>0$, then there exists $r_{\varepsilon, x_{0}}$ such that for any $r \leq r_{\varepsilon, x_{0}}$

$$
\begin{equation*}
\forall x \in B_{r}\left(x_{0}\right) \cap\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right) \quad \mathcal{F}\left(\left(C_{0, x}-C_{0, x_{0}}\right)\left\llcorner B_{1}(0)\right) \leq \varepsilon\right. \tag{IV.5}
\end{equation*}
$$

and $\forall x=(z, w) \in B_{r}\left(x_{0}\right) \cap\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)$ and $x^{\prime}=\left(z^{\prime}, w^{\prime}\right) \in B_{r}\left(x_{0}\right) \cap \mathcal{C}_{*}$ we have

$$
\begin{equation*}
\left|w-w^{\prime}\right| \leq \varepsilon\left|z-z^{\prime}\right| \tag{IV.6}
\end{equation*}
$$

Proof of lemma IV.2. Let $\varepsilon>0$ and $\delta>0$ given by lemma III.1. Choose r_{1} such that

$$
M\left(C\left\llcorner B_{r_{1}}\left(x_{0}\right)\right) \leq r^{2}\left(\pi Q+\frac{\delta}{2}\right)\right.
$$

This implies in particular that for any $r<r_{1}$

$$
\begin{equation*}
\mathcal{F}\left(\left(C_{r, x_{0}}-C_{0, x_{0}}\right)\left\llcorner B_{1}(0)\right) \leq \varepsilon\right. \tag{IV.7}
\end{equation*}
$$

As in the proof of lemma IV.1, see (IV.1) we have that for any $x \in$ $B_{r_{1} \frac{\delta}{4 \pi Q}}\left(x_{0}\right)$ and $r<r_{1}\left(1-\frac{\delta}{4 \pi Q}\right)$

$$
M\left(C\left\llcorner B_{r}(x)\right) \leq r^{2}(\pi Q+\delta)\right.
$$

Let then $x \in B_{r_{1 \frac{\delta}{4 \pi Q}}}\left(x_{0}\right) \cap\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)$, applying lemma III.1, we have then for $r<r_{1}\left(1-\frac{\delta}{4 \pi Q}\right)=r_{2}$

$$
\begin{equation*}
\mathcal{F}\left(\left(C_{r, x}-C_{0, x}\right)\left\llcorner B_{1}(0)\right) \leq \varepsilon\right. \tag{IV.8}
\end{equation*}
$$

Choose now $x \in B_{\varepsilon r_{1}}\left(x_{0}\right) \cap\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)$. $C_{r_{2}, x}$ is fast eine ε-translation from $C_{r_{1}, x_{0}}$, therefore, since $M\left(C_{r, x_{0}}\right) \leq 2 \pi Q$, we have

$$
\begin{equation*}
\mathcal{F}\left(\left(C_{r_{2}, x_{0}}-C_{r_{2}, x}\right)\left\llcorner B_{1}(0)\right) \leq 2 \pi Q\right. \tag{IV.9}
\end{equation*}
$$

Take $r_{\varepsilon, x_{0}}=\min \left\{\varepsilon r_{1}, \frac{\delta}{4 \pi Q} r_{1}\right\}$. Combining (IV.7), (IV.8) and (IV.9), we deduce that

$$
\begin{equation*}
\forall x \in B_{r_{\varepsilon, x_{0}}}\left(x_{0}\right) \cap\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right) \quad \mathcal{F}\left(\left(C_{0, x}-C_{0, x_{0}}\right)\left\llcorner B_{1}(0)\right) \leq(2+2 \pi Q) \varepsilon\right. \tag{IV.10}
\end{equation*}
$$

It remains to check (IV.6) which is in fact an almost direct consequence of (III.3) and (IV.5). Lemma IV. 2 is then proved.

V The covering argument.

Let x_{0} a point of multiplicity $Q>1$ whose tangent cone $C_{0, x_{0}}$ is Q times the integral over the flat disk D_{0} given by $w_{i}=0$ for $i \cdots Q-1$ (we use the system of coordinates introduced in the begining of chapter IV). The purpose of this section is to construct a Whitney-Besicovitch covering $B_{r_{i}}^{2}\left(z_{i}\right)$ of $\Pi\left(\mathcal{C}_{Q-1}\right) \cap B_{\rho}^{2}\left(x_{0}\right)$ where Π is the projection on D_{0} which gives the first complex coordinate of each point $\left(\Pi\left(z, w_{1} \cdots w_{p-1}\right)=z\right)$, for some radius ρ, small enough depending on x_{0}. This covering will be chosen in such a way the following striking facts hold : first $C\left\llcorner\Pi^{-1}\left(B_{r_{i}}^{2}\left(z_{i}\right)\right)\right.$ is in fact supported in a ball of radius $2 r_{i}, B_{2 r_{i}}^{2 p}\left(x_{i}\right)$, moreover $C\left\llcorner B_{2 r_{i}}^{2 p}\left(x_{i}\right)\right.$ is "split". This last word means that the flat distance between $C \mathbf{L} \Pi^{-1}\left(B_{r_{i}}^{2}\left(z_{i}\right)\right)$ and the Q multiple of any single valued graph over D_{0} is larger than $K r_{i}^{3}$ where K only depends on p, J and ω. This will come from the fact that r_{i} may be chosen i such a way that $r_{i}^{-2} M\left(B_{r_{i}}^{2 p}\left(x_{i}\right) \leq \pi-K^{\prime}\right.$ where again $K^{\prime}>0$ only depends on p, Q, J and ω. The existence of such a covering is a consequence of the "splitting before tilting" lemma proved in [Ri2].

Let α be given by lemma V. 1 and let $\varepsilon>0$ to be chosen small enough, compare to α later. Let $r_{\varepsilon, x_{0}}$ be the radius given by lemma IV.2. We may chose also $r_{\varepsilon, x_{0}}$ small enough in such a way that

$$
\begin{equation*}
\forall r \leq r_{\varepsilon, x_{0}} \quad M\left(C_{r, x_{0}}\left\llcorner B_{1}(0)\right) \leq \pi Q+\varepsilon^{2} .\right. \tag{V.1}
\end{equation*}
$$

Using the proof of lemma III. 1 (from (III.12) until the end of the proof), we deduce that

$$
\begin{equation*}
\forall r \leq r_{\varepsilon, x_{0}} \quad \mathcal{F}\left(\left(C_{r, x_{0}}-C_{0, x_{0}}\right)\left\llcorner B_{1}(0)\right) \leq K \varepsilon\right. \tag{V.2}
\end{equation*}
$$

(In fact $\delta=O\left(\varepsilon^{2}\right)$ works in the statement of lemma III.1). In one hand, as in the proof of lemma IV.1, see (IV.1) we have that for any $x \in B_{\varepsilon^{2} r_{\varepsilon, x_{0}}}\left(x_{0}\right)$
and $r \leq r_{\varepsilon, x_{0}}\left(1-\varepsilon^{2}\right)$

$$
\begin{equation*}
M\left(C\left\llcorner B_{r}(x)\right) \leq r^{2}\left(\pi Q+\varepsilon^{2}\right)\right. \tag{V.3}
\end{equation*}
$$

and, on the other hand, arguing like in the proof of lemma IV.2, between (IV.8) and (IV.10), we have, using also (V.23)

$$
\begin{equation*}
\forall x \in B_{\varepsilon^{2}}\left(x_{0}\right) \quad \mathcal{F}\left(C_{\frac{r_{\varepsilon, x_{0}}}{2}, x_{0}}\left\llcorner B_{1}(0)-\pi Q\left[D_{0}\right]\right) \leq K \varepsilon .\right. \tag{V.4}
\end{equation*}
$$

Having chosen $K \varepsilon<\alpha$ we are in a position to apply the "Splitting before tilting" lemma of [Ri2] which is a key step in our proof of the regularity of 1-1 rectifiable cycles.

Lemma V. 1 (splitting before tilting) [Ri2] There exists $\alpha>0$ such that for any $x_{0} \in \mathcal{C}_{Q-1}$ and for any radius $0<\rho<\alpha$ satisfying

$$
\begin{equation*}
\mathcal{F}\left(C_{2 \rho, x_{0}}\left\llcorner B_{1}(0)-Q\left[D_{0}\right]\right) \leq \alpha\right. \tag{V.5}
\end{equation*}
$$

where D_{0} is a flat $J_{x_{0}}$-holomorphic disk passing through x_{0}. Then, for any $r<\rho$ and any $J_{x_{0}}-h o l o m o r p h i c ~ f l a t ~ d i s k, ~ D_{1}$, passing through x_{0} and satisfying

$$
\begin{equation*}
\mathcal{F}\left(\left[D_{0}\right]-\left[D_{1}\right]\right) \geq \frac{1}{4} \tag{V.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathcal{F}\left(C_{r, x_{0}}\left\llcorner B_{1}(0)-Q\left[D_{1}\right]\right) \geq \alpha\right. \tag{V.7}
\end{equation*}
$$

Moreover, there exists $r_{0}<\rho$ and K_{0} a constant depending only on $\|\omega\|_{C^{1}}$ and $\varepsilon_{Q}^{ \pm}$, the epiperimetric constants, such that

$$
\begin{gather*}
M\left(C_{r_{0}, x_{0}}\left\llcorner B_{1}(0)\right)=\pi Q-K_{0} \alpha,\right. \tag{V.8}\\
\mathcal{F}\left(C_{r_{0}, x_{0}}\left\llcorner B_{1}(0)-Q\left[D_{0}\right]\right) \leq K \sqrt{\alpha}\right. \tag{V.9}
\end{gather*}
$$

for some constant K depending also only on $\|\omega\|_{C^{1}}$ and $\varepsilon_{Q}^{ \pm}$. Finally, for any

$$
\begin{equation*}
\forall r \leq r_{0} \quad \mathcal{F}\left(C_{r, x_{0}}\left\llcorner B_{1}(0)-Q[D]\right) \geq \alpha\right. \tag{V.10}
\end{equation*}
$$

For any $x \in \mathcal{C}_{p-1} \cap B_{\varepsilon^{2} r_{\varepsilon, x_{0}}}\left(x_{0}\right)$ we denote by r_{x} the radius r_{0} given by the lemma. We then have

$$
\begin{gather*}
M\left(C_{r_{x}, x}\left\llcorner B_{1}(0)\right)=\pi Q-K_{0} \alpha\right. \tag{V.11}\\
\mathcal{F}\left(C_{r_{x}, x}\left\llcorner B_{1}(0)-\pi Q\left[D_{0}\right]\right) \leq K \sqrt{\alpha}\right. \tag{V.12}
\end{gather*}
$$

for some constant K depending also only on $\|\omega\|_{C^{1}}$ and $\varepsilon_{Q}^{ \pm}$. Moreover, for α chosen small enough and ε small enough compare to α, the following lemma holds

Lemma V. 2 Under the above notations we have that for any $x \in \mathcal{C}_{p-1} \cap$ $B_{\varepsilon r_{\varepsilon, x_{0}}}\left(x_{0}\right)$

$$
\begin{equation*}
\operatorname{supp}\left(C \left\llcorner\Pi^{-1}\left(B_{r_{x}}^{2}(\Pi(x)) \cap B_{\varepsilon_{\varepsilon, x_{0}}}\left(x_{0}\right)\right) \subset B_{r_{x}}^{2}(\Pi(x)) \times B_{r_{x}}^{2 p-2}(0)\right.\right. \tag{V.13}
\end{equation*}
$$

and that

$$
\begin{equation*}
\operatorname{supp}\left(C \left\llcorner\Pi^{-1}\left(B_{r_{x}}^{2}(\Pi(x)) \cap B_{r_{\varepsilon, x_{0}}}\left(x_{0}\right)\right) \subset \mathcal{C}_{p-1}\right.\right. \tag{V.14}
\end{equation*}
$$

Proof of lemma V.2. We claim that for any r between $\frac{r_{\varepsilon, x_{0}}}{2}$ and r_{x} one has

$$
\begin{equation*}
\operatorname{supp}\left(C_{r, x}\left\llcorner B_{1}(0)\right) \subset E\left(\alpha^{\frac{1}{16}}\right)\right. \tag{V.15}
\end{equation*}
$$

where we use the notation

$$
\begin{equation*}
E(\lambda)=\left\{y=(z, w) \in B_{1}(0) \quad \text { s. t. } \quad|w| \leq \lambda\right\} \tag{V.16}
\end{equation*}
$$

We show (V.15) arguing by contradiction. First of all from the proof of lemma V. 1 that we apply to x we have the fact that for any $r \in\left[r_{x}, \frac{r_{\varepsilon, x_{0}}}{2}\right]$

$$
\begin{equation*}
\mathcal{F}\left(C_{r, x}\left\llcorner B_{1}(0)-\pi Q\left[D_{0}\right]\right) \leq K \sqrt{\alpha}\right. \tag{V.17}
\end{equation*}
$$

Let $\omega_{\alpha}=\chi_{\alpha} \omega=\chi\left(\frac{|w|}{\alpha^{\frac{1}{4}}}\right) \omega$ where χ is a smooth cut-off function on \mathbb{R}_{+} satisfying $\chi \equiv 1$ on $[0,1 / 2]$ and $\chi \equiv 0$ in $[1,+\infty)$. Let S and R be a 3 and a $2-$ current satisfying $\left(C_{r, x}\left\llcorner B_{1}(0)-\pi Q\left[D_{0}\right]\right)=\partial S+R\right.$ with $M(S)+M(R) \leq$ $2 K \sqrt{\alpha}$. We have

$$
\begin{aligned}
& \mid\left(C _ { r , x } \llcorner B _ { 1 } (0) - \pi Q [D _ { 0 }]) (\omega _ { \alpha }) \left|=\left|S\left(\omega \wedge d \chi_{\alpha}\right)+R\left(\omega_{\alpha}\right)\right|\right.\right. \\
& \leq\left\|\nabla \chi_{\alpha}\right\|_{\infty}\left\|\omega_{\infty}\right\| M(S)+\left\|\omega_{\alpha}\right\|_{\infty} M(R) \leq K \alpha^{\frac{1}{4}} .
\end{aligned}
$$

Thus we get in particular

$$
\begin{align*}
& \pi Q-K \alpha^{\frac{1}{4}} \leq \left\lvert\, C_{r, x}\left\llcorner B_{1}(0)\left(\omega_{\alpha}\right) \left\lvert\, \leq M\left(C_{r, x}\left\llcorner B_{1}(0) \cap E\left(\alpha^{\frac{1}{4}}\right)\right)\left\|\omega_{\alpha}\right\|_{\infty}\right.\right.\right.\right. \\
& \quad \leq M\left(C_{r, x}\left\llcorner B_{1}(0) \cap E\left(\alpha^{\frac{1}{4}}\right)\right)\right. \tag{V.18}
\end{align*}
$$

Assuming now there exists $y \in\left(\mathcal{C}_{r, x}\right)_{*} \cap B_{1}(0) \cap\left(\mathbb{R}^{2 p} \backslash E\left(\alpha^{\frac{1}{16}}\right)\right)$. From the monotonicity formula we deduce that

$$
\begin{equation*}
M\left(C\left\llcorner B_{\frac{\alpha \frac{1}{16}}{2} r}(y)\right) \geq \frac{\pi}{4} \alpha^{\frac{1}{8}} r^{2}\right. \tag{V.19}
\end{equation*}
$$

Combining (V.18) and (V.19), we obtain that

$$
\begin{equation*}
M\left(C\left\llcorner B_{r}(x)\right) \geq r^{2}\left(\pi Q-K \alpha^{\frac{1}{4}}+\frac{\pi}{4} \alpha^{\frac{1}{8}}\right)\right. \tag{V.20}
\end{equation*}
$$

For α small enough (V.20) contradicts (V.11) and (V.15) holds true for any $r \in\left[r_{x}, \frac{r_{\varepsilon, x_{0}}}{2}\right]$. From this later fact one deduces (V.13).

It remains to prove (V.14). Again we argue by contradiction. Assume there exists $y \in\left(\mathcal{C}_{p} \backslash \mathcal{C}_{p-1}\right) \cap \Pi^{-1}\left(B_{r_{x}}^{2}(\Pi(x)) \cap B_{r_{\varepsilon, x_{0}}}\left(x_{0}\right)\right.$. Because of (V.3) and since $y \in B_{r_{x_{0}, \varepsilon}}\left(x_{0}\right)$ we can apply lemma IV. 2 to y in order to deduce that $\mathcal{C}_{\star} \cap B_{r_{x}}(x)$ is included in a cone of center y, axis parallel to D_{0} and angle ε. This cone of course contains x and then we can deduce that

$$
\begin{equation*}
\operatorname{supp}\left(C_{r_{x}, x}\left\llcorner B_{1}(0)\right) \subset E(4 \varepsilon) .\right. \tag{V.21}
\end{equation*}
$$

(The notation $E(\lambda)$ is introduced in (V.16)). We have $\partial C_{r, x} L B_{1}(0)=0$ moreover, because of (V.17), for α small enough we deduce that the intersection number of $C\left\llcorner B_{r_{x}}^{2}(\Pi(x)) \times B_{r_{x}}^{2 p-2}(0)\right.$ with any vertical current $\Pi^{-1}(z)$ for $z \in B_{r_{x}}^{2}$ is Q. Combining this fact with (V.21), using Fubini, one deduces that

$$
\begin{equation*}
M\left(C_{r_{x}, x}\left\llcorner B_{1}(0)\right) \geq \pi Q-O\left(\varepsilon^{2}\right) .\right. \tag{V.22}
\end{equation*}
$$

For ε small enough compare to α we get a contradiction while comparing (V.22) and (V.11) and (V.14) is proved. This concludes the proof of lemma V.2.

In the following second lemma of this chapter, we show that the covering $\left(B_{r_{x}}^{2}(\Pi(x))\right)_{x \in \mathcal{C}_{p-1} \cap B_{\varepsilon^{2} r_{\varepsilon, x_{0}}}^{2}\left(x_{0}\right)}$ of $\Pi\left(\mathcal{C}_{p-1} \cap B_{\varepsilon^{2} r_{\varepsilon, x_{0}}}^{2 p}\left(x_{0}\right)\right.$ has the "Whitney"
property : two balls intersecting each-other have comparable size. From now on we adopt the following notation granting the fact that α and ε are fixed small enough for the constraint mentionend above to be fulfilled :

$$
\begin{equation*}
\rho_{x_{0}}:=\varepsilon^{2} r_{\varepsilon, x_{0}} . \tag{V.23}
\end{equation*}
$$

Precisely we have.
Lemma V. 3 (Whitney property of the covering.) There exists $\gamma>0$ depending only on Q such that, given $x_{0} \in \mathcal{C}_{p} \backslash \mathcal{C}_{p-1}$ whose tangent cone is $Q\left[D_{0}\right]$ and let $\left(B_{r_{x}}^{2}(\Pi(x))\right)$ for $x \in \mathcal{C}_{p-1} \cap B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$ the covering of $\Pi\left(\mathcal{C}_{p-1} \cap\right.$ $B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ described above, assuming for some $x, y \in \mathcal{C}_{p-1} \cap B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$

$$
B_{r_{x}}^{2}(x) \cap B_{r_{y}}^{2}(y) \neq \emptyset,
$$

then

$$
\begin{equation*}
r_{x} \geq \alpha^{\gamma} r_{y} \tag{V.24}
\end{equation*}
$$

Proof of lemma V.3. This lemma is again a consequence of the upper and lower-epiperimetric inequalities. Assume for instance that $r_{x} \leq r_{y}$. From (V.10) we have

$$
\begin{equation*}
\mathcal{F}\left(C_{r_{y}, y}\left\llcorner B_{1}(0)-Q\left[D_{0}\right]\right) \geq \alpha .\right. \tag{V.25}
\end{equation*}
$$

Which implies that for all $r \leq r_{y}$

$$
\begin{equation*}
\mathcal{F}\left(C\left\llcorner B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)-Q\left[B_{r}^{2}\left(z_{y}\right) \times\{0\}\right]\right) \geq \alpha r^{3}\right. \tag{V.26}
\end{equation*}
$$

where $y=\left(z_{y}, w_{y}\right)$. Since $\left|z_{x}-z_{y}\right| \leq 2 \max \left\{r_{x}, r_{y}\right\}=2 r_{y}$ and $B_{r_{y}}\left(z_{y}\right) \subset$ $B_{3 r_{y}}\left(z_{x}\right)$, (V.26) implies that

$$
\begin{equation*}
\mathcal{F}\left(C\left\llcorner B_{4 r_{y}}^{2}\left(z_{x}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)-Q\left[B_{4 r_{y}}^{2}\left(z_{x}\right) \times\left\{w_{y}\right\}\right]\right) \geq \frac{\alpha}{3} r_{y}^{3}\right. \tag{V.27}
\end{equation*}
$$

This passage from (V.26) to (V.27) is obtained by applying some Fubini type argument. Indeed, let $A=C\left\llcorner B_{4 r_{y}}^{2}\left(z_{x}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)-Q\left[B_{4 r_{y}}^{2}\left(z_{x}\right) \times\left\{w_{y}\right\}\right]\right.$ and let S and R such that $A=\partial S+R$ and $M(S)+M(R)^{\frac{3}{2}} \leq 2 \mathcal{F}(A)$. For almost every r in $\left[r_{y} / 2, r_{y}\right]$ we have

$$
\partial\left(S\left\llcorner B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)\right)=\partial S\left\llcorner B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)\right)+\left\langle S, \operatorname{dist}\left(\cdot,\left\{z=z_{y}\right\}, r\right\rangle\right.\right.
$$

where $\left\langle S, \operatorname{dist}\left(\cdot,\left\{z=z_{y}\right\}\right), r\right\rangle$ is the slice current between S and the boundary of the cylinder $B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)$ and $\operatorname{dist}\left(\cdot,\left\{z=z_{y}\right\}\right)$ denotes the distance function to the axis to this cylinder (see [Fe] 4.2.1 pages 395...). Thus

$$
\begin{align*}
& A \mathbf{\llcorner} B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0) \\
& =\partial\left(S\left\llcorner B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)\right)-\left\langle S, \operatorname{dist}\left(\cdot,\left\{z=z_{y}\right\}, r\right\rangle+R\left\llcorner B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)\right.\right.\right. \tag{V.28}
\end{align*}
$$

We have, see [Fe] 4.2.1 page 395,

$$
\begin{equation*}
\int_{\frac{r_{y}}{2}}^{r_{y}} M\left(\left\langle S, \operatorname{dist}\left(\cdot,\left\{z=z_{y}\right\}, r\right\rangle\right) \leq M\left(S\left\llcorner\left(B_{r_{y}}^{2} \backslash B_{\frac{r_{y}}{2}}^{2}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)\right)\right.\right. \tag{V.29}
\end{equation*}
$$

Using Fubini theorem we may then find $r=r_{1} \in\left[r_{y} / 2, r_{y}\right]$ such that

$$
\begin{equation*}
M\left(\left\langle S, \operatorname{dist}\left(\cdot,\left\{z=z_{y}\right\}, r_{1}\right\rangle\right) \leq \frac{2}{r_{y}} M\left(S\left\llcorner\left(B_{r_{y}}^{2} \backslash B_{\frac{r_{y}}{2}}^{2}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)\right) \leq \frac{2}{r_{y}} M(S)\right.\right. \tag{V.30}
\end{equation*}
$$

Combining (V.28), (V.29) and (V.30) we deduce that

$$
\begin{align*}
& \mathcal{F}\left(C\left\llcorner B_{r_{1}}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)-Q\left[B_{r_{1}}^{2}\left(z_{y}\right) \times\{0\}\right]\right)=\mathcal{F}\left(A\left\llcorner B_{r}^{2}\left(z_{y}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)\right)\right.\right. \\
& \quad \leq M(S)+\left(M(R)+\frac{2}{r_{y}} M(S)\right)^{\frac{3}{2}} \tag{V.31}
\end{align*}
$$

Thus, combining (V.26) for $r=r_{1}$ and (V.31), we have $M(S)+(M(R)+$ $\left.\frac{2}{r_{y}} M(S)\right)^{\frac{3}{2}} \geq \alpha r_{y}^{3}$ and since $\mathcal{F}\left(C\left\llcorner B_{4 r_{y}}^{2}\left(z_{x}\right) \times B_{\rho_{x_{0}}}^{2 p}(0)-Q\left[B_{4 r_{y}}^{2}\left(z_{x}\right) \times\left\{w_{y}\right\}\right]\right) \geq\right.$ $\frac{1}{2}\left[M(S)+M(R)^{\frac{3}{2}}\right]$, we obtain (V.27). Therefore we deduce that

$$
\begin{equation*}
\mathcal{F}\left(C_{4 r_{y}, x}\left\llcorner B_{1}(0)-Q\left[D_{0}\right]\right) \geq \frac{1}{3 \times 4^{3}} \alpha\right. \tag{V.32}
\end{equation*}
$$

Let $\frac{\rho_{x_{0}}}{\varepsilon^{2}}>s_{x}>r_{x}$ such that

$$
\begin{equation*}
M\left(C_{s_{x}, x}\left\llcorner B_{1}(0)\right)=\pi Q\right. \tag{V.33}
\end{equation*}
$$

Because of (V.3), arguing like in the prof of lemma IV.2, between IV.8) and (IV.10), we have

$$
\begin{equation*}
\forall s_{x} \leq r \leq \frac{\rho_{x_{0}}}{\varepsilon^{2}} \quad \mathcal{F}\left(C_{r, x}\left\llcorner B_{1}(0)-Q\left[D_{0}\right]\right) \leq K \varepsilon\right. \tag{V.34}
\end{equation*}
$$

Assuming, as we did above that $\alpha \gg \varepsilon$, comparing (V.32) and (V.26) we deduce that $s_{x}>4 r_{y}$. Let $\lambda=4 \frac{r_{x}}{r_{y}}$. From the proof of lemma V.1, in fact from (V.9) precisely, for any $r \in\left[r_{x}, s_{x}\right]$ we have

$$
\begin{equation*}
\mathcal{F}\left(C_{2 r, x}\left\llcorner B_{1}(0)-\pi Q\left[D_{0}\right]\right) \leq K \sqrt{\alpha} \leq \varepsilon_{Q}^{-}\right. \tag{V.35}
\end{equation*}
$$

which means in particular that we are in the position to apply the lowerepiperimetric inequality and the differential inequality (III.27) in [Ri2] deduced from it. Integrating then this inequality between r_{x} and $4 r_{y}$ we have

$$
\begin{align*}
\pi Q & -M\left(C_{4 r_{y}, x}\left\llcorner B_{1}(0)\right) \leq\left(\frac{1}{2^{2 \varepsilon_{\bar{Q}}^{-}}}\right)^{\log _{2} \lambda}\left[\pi Q-M\left(C_{r_{x}, x}\left\llcorner B_{1}(0)\right)\right]\right.\right. \\
& =\left(\frac{1}{2^{2 \varepsilon_{Q}^{-}}}\right)^{\log _{2} \lambda} \alpha . \tag{V.36}
\end{align*}
$$

Using now (III.28) from [Ri2], we deduce from (V.36)

$$
\begin{align*}
& \mathcal{F}\left(\left(C_{s_{x}, x}-C_{4 r_{y}, x}\right)\left\llcorner B_{1}(0)\right) \leq \sqrt{\pi Q-M\left(C_{4 r_{y}, x}\left\llcorner B_{1}(0)\right)\right.}\right. \\
& \quad=\left(\frac{1}{2^{\varepsilon_{\bar{Q}}}}\right)^{\log _{2} \lambda} \alpha^{\frac{1}{2}} . \tag{V.37}
\end{align*}
$$

Combining (V.34) and (V.37) one gets that

$$
\begin{equation*}
\mathcal{F}\left(C_{4 r_{y}, x}\left\llcorner B_{1}(0)-Q\left[D_{0}\right]\right) \leq\left(\frac{1}{2^{\varepsilon_{Q}^{-}}}\right)^{\log _{2} \lambda} \alpha^{\frac{1}{2}}+K \varepsilon\right. \tag{V.38}
\end{equation*}
$$

Comparing (V.32) and (V.38) we obtain

$$
\begin{equation*}
\frac{1}{3 \times 4^{3}} \alpha \leq\left(\frac{1}{2^{\varepsilon_{Q}^{-}}}\right)^{\log _{2} \lambda} \alpha^{\frac{1}{2}} . \tag{V.39}
\end{equation*}
$$

Since $K \varepsilon \leq \frac{1}{6 \times 4^{3}} \alpha$ we have $\frac{1}{6 \times 4^{3}} \alpha \leq\left(\frac{1}{2^{\varepsilon^{\bar{Q}}}}\right)^{\log _{2} \lambda} \alpha^{\frac{1}{2}}$. Taking the log of this last inequality we obtain

$$
\frac{\log \lambda}{\log 2} \varepsilon_{Q}^{-} \log \frac{1}{2}+\frac{1}{2} \log \alpha \geq \log \alpha-\log \left(6 \times 4^{3}\right)
$$

Thus

$$
\frac{1}{2} \log \frac{1}{\alpha}+\log \left(6 \times 4^{3}\right) \geq \varepsilon_{Q}^{-} \log \lambda
$$

By taking α small enough, we may always assume that $\log \frac{1}{\alpha} \geq 4 \times \log \left(6 \times 4^{3}\right)$ and we finally get that

$$
\frac{1}{\varepsilon_{Q}^{-}} \log \frac{1}{\alpha} \geq \log \lambda
$$

Which leads to the desired inequality (V.24) and lemma V. 3 is proved.

Constructing a partition of unity adapted to the covering.

From the covering $\left(B_{r_{x}}^{2}(x)\right)$ for $x \in \mathcal{C}_{p-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)$ of $\Pi\left(\mathcal{C}_{p-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ we extract a Besicovitch covering $\left(B_{r_{x_{i}}}^{2}\left(x_{i}\right)\right)$ for $i \in I$ (I is a countable set) of $\Pi\left(\mathcal{C}_{p-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ that is a covering such that

$$
\begin{equation*}
\forall z \in B_{\rho_{x_{0}}}^{2}\left(x_{0}\right) \quad \operatorname{Card}\left\{i \in I \quad \text { s. t. } \quad z \in B_{r_{x_{i}}}^{2}\left(x_{i}\right)\right\} \leq n \tag{V.40}
\end{equation*}
$$

where N is some universal number (see $[\mathrm{Fe}]$). To simplify the notation we will simply write r_{i} for $r_{x_{i}}$. Remark that since balls intersecting each-other have comparable size (see lemma V.3), each ball $B_{r_{i}}^{2}\left(z_{i}\right)$ intersects a uniformly bounded number of other balls : there exists $N_{Q, \alpha}$ such that

$$
\begin{equation*}
\forall i \in I \quad \operatorname{Card}\left\{j \in I \quad \text { s. t. } \quad B_{r_{j}}^{2}\left(z_{j}\right) \cap B_{r_{i}}^{2}\left(z_{i}\right) \neq \emptyset\right\} \leq N_{Q, \alpha} \tag{V.41}
\end{equation*}
$$

We now construct a partition of unity adapted to a slightly modified covering. Considering the covering $\left(B_{r_{z_{i}}}^{2}\left(z_{i}\right)\right)$ for $i \in I$ (I is a countable set) of $\Pi\left(\mathcal{C}_{p-1} \cap\right.$ $\left.B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)\right)$, we can apply lemma A. 1 and obtain δ depending on α and Q such that (A.3) holds true for some $P \in \mathbb{N}$. Let $i \in I$ we can deduce from (A.3) and (V.24) that the radii r_{j} of balls $B_{r_{j}}^{2}\left(z_{j}\right)$ intersecting $B_{r_{i}(1+\delta)}^{2}\left(z_{i}\right)$ satisfy $\alpha^{\gamma P} r_{i} \leq r_{j} \leq \alpha^{-\gamma P} r_{i}$. From this later fact we deduce that there exists a number $M \in \mathbb{N}$ depending only on α and Q such that

$$
\begin{equation*}
\operatorname{Card}\left\{j \in I \quad \text { s. t. } B_{r_{i}}\left(z_{i}\right) \cap B_{(1+\delta) r_{j}}\left(z_{j}\right) \neq \emptyset\right\} \leq M . \tag{V.42}
\end{equation*}
$$

Indeed, assuming $B_{r_{i}}\left(z_{i}\right) \cap B_{r_{j}}\left(z_{j}\right)=\emptyset$, if $B_{r_{i}}\left(z_{i}\right) \cap B_{(1+\delta) r_{j}}\left(z_{j}\right)$ we just have seen that $\alpha^{\gamma P} r_{j} \leq r_{i} \leq \alpha^{-\gamma P} r_{j}$: the two radii have comparable size which is of course also comparable with the distance $\left|z_{i}-z_{j}\right|$. From (V.40) it
is then clear that the number of such ball $B_{r_{j}}\left(z_{j}\right)$ is bounded by a constant depending only of the variables α and Q. It is now not difficult to deduce that $\left(B_{r_{i}\left(1+\frac{\delta}{2}\right)}^{2}\right)_{i \in I}$ realizes a locally finite covering of $\Pi\left(\mathcal{C}_{p-1} \cap B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)\right)$ satisfying
$\forall i \in I \quad \operatorname{Card}\left\{j \in I \quad\right.$ s. t. $\left.B_{\left(1+\frac{\delta}{2}\right) r_{i}}\left(z_{i}\right) \cap B_{\left(1+\frac{\delta}{2}\right) r_{j}}\left(z_{j}\right) \neq \emptyset\right\} \leq M+P$
Indeed assuming for instance that $r_{i} \geq r_{j}$, then $B_{\left(1+\frac{\delta}{2}\right) r_{i}}\left(z_{i}\right) \cap B_{\left(1+\frac{\delta}{2}\right) r_{j}}\left(z_{j}\right) \neq \emptyset$ implies clearly that $B_{(1+\delta) r_{i}}\left(z_{i}\right) \cap B_{r_{j}}\left(z_{j}\right) \neq \emptyset$ and the numer of such a j is controled by P (see A.3), whereas if $r_{i} \leq r_{j}, B_{\left(1+\frac{\delta}{2}\right) r_{i}}\left(z_{i}\right) \cap B_{\left(1+\frac{\delta}{2}\right) r_{j}}\left(z_{j}\right) \neq \emptyset$ implies clearly that $B_{r_{i}}\left(z_{i}\right) \cap B_{r_{j}(1+\delta)}\left(z_{j}\right) \neq \emptyset$ and the numer of such a j is controled by M (see V.42). Thus (V.43) holds true. And we shall use from now on the notation

$$
\begin{equation*}
\forall i \in I \quad \rho_{i}:=r_{i}\left(1+\frac{\delta}{2}\right) \tag{V.44}
\end{equation*}
$$

For any $i \in I$ we define χ_{i} to be a smooth non-negative function satisfying
i)

$$
\begin{equation*}
\chi_{i} \equiv 1 \quad \text { in } B_{r_{i}}^{2}\left(z_{i}\right) \tag{V.45}
\end{equation*}
$$

ii)

$$
\begin{equation*}
\chi_{i} \equiv 0 \quad \text { in } \mathbb{R}^{2} \backslash B_{\left(1+\frac{\delta}{2} r_{i}\right)}^{2}\left(z_{i}\right) \tag{V.46}
\end{equation*}
$$

iii)

$$
\begin{equation*}
\forall k \in \mathbb{N} \quad\left\|\nabla^{k} \chi_{i}\right\|_{\infty} \leq \frac{K_{k}}{r_{i}^{k}} \tag{V.47}
\end{equation*}
$$

where K_{k} depends only on k and Q.
We define now

$$
\begin{equation*}
\varphi_{i}:=\frac{\chi_{i}}{\sum_{i \in I} \chi_{i}} . \tag{V.48}
\end{equation*}
$$

It is clear that $\left(\varphi_{i}\right)$ defines a partition of unity adapted to $B_{\left(1+\frac{\delta}{2} r_{i}\right)}^{2}\left(z_{i}\right)$ and satisfying the following estimates

$$
\begin{equation*}
\forall k \in \mathbb{N} \quad\left\|\nabla^{k} \varphi_{i}\right\|_{\infty} \leq \frac{K_{k}}{r_{i}^{k}} \tag{V.49}
\end{equation*}
$$

where K_{k} depends only on k and Q.

VI The approximated average curve.

This chapter is another step towards the proof that $\mathcal{P}_{Q-1} \Longrightarrow \mathcal{P}_{Q}$ which goes until chapter VIII. We thus assume that \mathcal{P}_{Q-1} holds (or that $Q=1$). Again in this part we consider the difficult case which is the case where we are blowing-up the current at a point x_{0} of multiplicity $Q>1$ whose tangent cone $C_{0, x_{0}}$ is Q times the integral over the flat disk D_{0} given by $w_{i}=0$ for $i \cdots Q-1$ (we use the system of coordinates introduced in the begining of chapter II) and where x_{0} belongs to the closure of \mathcal{C}_{Q-1}. The purpose of this chapter is to approximate first our current over each ball of the covering introduced in the previous section $C\left\llcorner\Pi^{-1}\left(B_{r_{i}}^{2}\left(z_{i}\right)\right)\right.$ by a Q-valued graph $\left\{a_{i}^{k}\right\}_{k=1 \cdots Q}$ over $B_{r_{i}}^{2}\left(z_{i}\right)$ which is almost J-holomorphic ($J_{x_{i}}$-holomorphic in fact where $x_{i} \in \mathcal{C}_{*}$ and $\Pi\left(x_{i}\right)=z_{i}$) and glueing the average curves $\tilde{a}_{i}=$ $\frac{1}{Q} \sum_{k=1}^{Q} a_{i}^{k}$ of each of these $J_{x_{i}}$-holomorphic Q-valued graphs together we shall produce a single-valued graph \tilde{a} over $B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$ which approximates C and for which we will study regularity properties that will be used in the following chapter VII devoted to the unique continuation argument . Finally in the second subsection of this chapter we construct new coordinates adapted to the average curve.

VI. 1 Constructing the average curve.

Let $\rho_{x_{0}}$ given by (V.23) and let $\left(B_{\rho_{i}}^{2}\left(z_{i}\right)\right)_{i \in I}$ be the Besicovitch-Whitney covering of $\Pi\left(\mathcal{C}_{Q-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ obtained at the end of the previous chapter. As we have seen above, for any $i \in I, \mathcal{C}_{*} \cap \Pi^{-1}\left(B_{\rho_{i}}^{2}\left(z_{i}\right)\right) \subset \mathcal{C}_{Q-1} \cap B_{\rho_{i}}^{2}\left(z_{i}\right) \times B_{2 \rho_{i}}^{2 p-2}\left(w_{i}\right)$ where $x_{i}=\left(z_{i}, w_{i}\right)$ is in \mathcal{C}_{*} (see lemma V.2). For convenience we shall adopt the following notation

$$
\begin{equation*}
N_{r}^{i}:=B_{r}^{2}\left(z_{i}\right) \times B_{2 \rho_{i}}^{2 p-2}\left(w_{i}\right) \tag{VI.1}
\end{equation*}
$$

Assuming $\mathcal{P}_{Q-1}, C\left\llcorner N_{2 \rho_{i}}\right.$ is a J-holomorphic curve : there exists a smooth Riemannian surface and a smooth J-holomorphic map

$$
\begin{align*}
\Psi_{i}: \Sigma_{2, i} & \longrightarrow N_{2 \rho_{i}}^{i} \tag{VI.2}\\
\xi & \longrightarrow \Psi_{i}(\xi)
\end{align*}
$$

such that $\Psi_{*}\left[\Sigma_{2, i}\right]=C \mathbf{L} N_{2 \rho_{i}}$. Let $H_{ \pm}^{0}\left(\Sigma_{2, i}\right)$ be the sets respectively of holomorphic and antiholomorphic functions on $\Sigma_{2, i}$. We introduce now η_{i}
the map from $\Sigma_{2, i}$ into $\mathbb{R}^{2 p-2}$ chosen such that the perturbation $\Psi_{i}+\eta_{i}$ is $J_{x_{i}}-$ holomorphic, precisely η_{i} is given by

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \xi_{1}}\left(\Psi_{i}+\eta_{i}\right)+J_{x_{i}} \frac{\partial}{\partial \xi_{2}}\left(\Psi_{i}+\eta_{i}\right)=0 \quad \text { in } \Sigma_{2, i} \tag{VI.3}\\
\forall h \in H\left(\Sigma_{2, i}\right) \quad \int_{\partial \Sigma_{2, i}} h d \eta_{i}=0
\end{array}\right.
$$

where (ξ_{1}, ξ_{2}) are local coordinates on $\Sigma_{2, i}$ compatible with the complex structure. The existence of η_{i} is justified in a few lines below. To this aim we shall make use of the following notations. Since J is smooth the inverse function theorem gives the existence of a smooth map $\Lambda: B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right) \times \mathbb{R}^{2 p} \longrightarrow \mathbb{R}^{2 p}-$ for $\rho_{x_{0}}$ chosen small enough such that
i)

$$
\begin{equation*}
\Lambda_{x}:=\Lambda(x, .) \quad \text { is a linear isomorphism of } \mathbb{R}^{2 p} \tag{VI.4}
\end{equation*}
$$

ii)

$$
\begin{equation*}
\Lambda_{x_{0}}=i d \tag{VI.5}
\end{equation*}
$$

iii)

$$
\forall x \in B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right) \quad J_{x_{0}}=\left(\begin{array}{ccccc}
0 & -1 & 0 \cdots & 0 & 0 \tag{VI.6}\\
1 & 0 & 0 & \cdots & 0 \\
0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdots & 0 & -1 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)=\Lambda_{x} J_{x} \Lambda_{x}^{-1}
$$

We shall denote by $\left(z^{i}=x_{1}^{i}+i x_{2}^{i}, w_{1}^{i}=x_{3}^{i}+i x_{4}^{i}, \cdots, w_{p}^{i}=x_{2 p-1}^{i}+i x_{2 p}^{i}\right)$ the following complex coordinates in $N_{2 \rho_{i}}$

$$
\left(\begin{array}{c}
x_{1}^{i} \tag{VI.7}\\
x_{2}^{i} \\
\cdot \\
\cdot \\
\cdot \\
x_{2 p-1}^{i} \\
x_{2 p}^{i}
\end{array}\right)=\Lambda_{x_{i}} \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{2 p-1} \\
x_{2 p}
\end{array}\right)-x_{i}
$$

We will also denote by Π_{i} the map that assign to any point x in $N_{\rho_{i}}^{i}$ the complex coordinate z^{i} and by D^{i} we denote the $J_{x_{i}}$-holomorphic 2-disk

$$
\begin{equation*}
D^{i}:=\left\{x ; \forall k=1 \cdots p-1 \quad w_{k}^{i}=0\right\}=\Lambda_{x_{i}}^{-1} D_{0} \tag{VI.8}
\end{equation*}
$$

Using these complex coordinates in $N_{2 \rho_{i}}^{i}$, (VI.3) means

$$
\begin{cases}\bar{\partial} \eta_{i}=-\bar{\partial} \Psi_{i} \quad \text { in } \Sigma_{2, i} \tag{VI.9}\\ \forall h \in H\left(\Sigma_{2, i}\right) \quad \int_{\partial \Sigma_{2, i}} h d \eta_{i}=0\end{cases}
$$

The existence and uniqueness of η_{i} is given by proposition A. 3 of [Ri3]. Since Ψ_{i} is J-holomorphic we have $\partial_{\xi_{1}} \Psi_{i}+J\left(\Psi_{i}(\xi)\right) \partial_{\xi_{2}} \Psi_{i}=0$, thus $\mid \partial_{\xi_{1}} \Psi_{i}+$ $J\left(x_{i}\right) \partial_{\xi_{2}} \Psi_{i}\left|\leq\left|J\left(\Psi_{i}(\xi)\right)-J\left(x_{i}\right)\right|\right| \nabla \psi \mid$. Combining this fact with the second part of proposition A. 3 (i.e. estimate (A.13) of [Ri3]) we obtain

$$
\begin{equation*}
\int_{\Sigma_{2, i}}\left|\nabla \eta_{i}\right|^{2} \leq K r_{i}^{2} \int_{\Sigma_{2, i}}\left|\nabla \Psi_{i}\right|^{2} \leq K r_{i}^{4} \tag{VI.10}
\end{equation*}
$$

For $\lambda \leq 2$, we denote by $\Sigma_{\lambda, i}$ the surface $\Sigma_{\lambda, i}=\Sigma_{2, i} \cap \Psi_{i}^{-1}\left(N_{\lambda \rho_{i}}^{i}\right)$ so that

$$
\begin{equation*}
\Psi_{i *}\left[\Sigma_{i}\right]=C\left\llcorner B_{\rho_{i}}^{2}\left(z_{i}\right) \times B_{\rho_{x_{0}}}^{n-2}(0)\right. \tag{VI.11}
\end{equation*}
$$

We then prove in [Ri3] the following lemma

Lemma VI. 1 Under the above notations one has

$$
\begin{equation*}
\left\|\eta_{i}\right\|_{L^{\infty}\left(\Sigma_{\frac{3}{2}, i}\right)} \leq K r_{i}^{2} \tag{VI.12}
\end{equation*}
$$

where K is a constant depending only on $\|\nabla J\|_{\infty}$ and the choice of α made in the previous chapter.

Consider now the $J_{x_{i}}$-holomorphic curve C^{i} given by the image by $\Psi_{i}+$ η_{i} of $\Sigma_{\frac{3}{2}, i}$. Since $\partial \Psi_{i *}\left[\Sigma_{\frac{3}{2}, i}\right]$ is supported in $\Pi^{-1}\left(\partial B_{\frac{3}{2} \rho_{i}}^{2}\right)$, we know from Lemma VI. 1 that $\left|\eta_{i}\right|_{\infty} \leq C r_{i}^{2}$ therefore $\partial \Psi_{i}+\eta_{i *}\left[\Sigma_{\frac{3}{2}, i}\right]$ is supported in an r_{i}^{2} neighborhood of $\Pi^{-1}\left(\partial B_{\frac{3}{2} \rho_{i}}^{2}(0)\right)$ (for r_{i} small enough : that holds if ε has been chosen small enough in section VI). Thus we have that $\left.\Psi_{i *}\left[\Sigma_{\frac{3}{2}, i}\right]\right)$ is a cycle in $\Pi_{i}^{-1}\left(B_{\frac{5}{4} \rho_{i}}^{2}(0)\right)$ and the part of the image of $\Sigma_{\frac{3}{2}, i}$ included in $\Pi_{i}^{-1}\left(B_{\frac{5}{4} \rho_{i}}^{2}(0)\right)$ by $\Psi_{i}+\eta_{i}$ is a $J_{x_{i}}$-holomorphic cycle and therefore it is a Q-valued graph over D^{i} for the complex coordinates given by $\left(z^{i}, w^{i}\right)$. We denote by $\left\{a_{k}^{i}\right\}_{k=1 \cdots Q}$ this Q-valued graph (i.e. $a_{k}^{i}\left(z_{0}^{i}\right)$ are the w^{i} coordinates, in the chart $\left(z^{i}, w^{i}\right)$, of the Q intersection points between the $J_{x_{i}}$-holomorphic curve $\Psi_{i}+\eta_{i}\left(\Sigma_{\frac{3}{2}, i}\right)$ and the $J_{x_{i}}$-holomorphic submanifold given by $z^{i}=z_{0}^{i}$). We now define \tilde{C}^{i} to be the $J_{x_{i}}$ holomorphic curve in $\Pi_{i}^{-1}\left(B_{\rho_{i}}^{2}\right)$ given by

$$
\begin{equation*}
\tilde{C}^{i}:=\left\{x=\Lambda_{x_{i}}^{-1}\left(\left(z^{i}, \tilde{a}_{i}^{i}\left(z_{i}\right)=\frac{1}{Q} \sum_{k=1}^{Q} a_{k}^{i}\left(z^{i}\right)\right)+x_{i}\right) \quad \forall z^{i} \in B_{\frac{5}{4} \rho_{i}}^{2}(0)\right\} \tag{VI.13}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\frac{\partial}{\partial z^{i}} \tilde{a}_{i}^{i}=0 \quad \text { in } \mathcal{D}^{\prime}\left(B_{\frac{5}{4} \rho_{i}}^{2}(0)\right) \tag{VI.14}
\end{equation*}
$$

Moreover, the conformal invariance of the Dirichlet energy gives

$$
\begin{align*}
& \int_{B_{\frac{5}{4} \rho_{i}}^{2}(0)} \sum_{k=1}^{Q}\left|\nabla a_{k}^{i}\right|^{2}\left(z^{i}\right) d z^{i} \wedge d \bar{z}^{i} \tag{VI.15}\\
& \quad=\int_{\left(\Psi_{i}+\eta_{i}\right)^{-1}\left(C_{i} \cap \Pi_{i}^{-1}\left(B_{\frac{5}{4} \rho_{i}}^{2}(0)\right)\right)}\left|\nabla\left(\Psi_{i}+\eta_{i}\right)\right|^{2}(\xi) d \xi \leq K r_{i}^{2} .
\end{align*}
$$

We then deduce that

$$
\begin{equation*}
\int_{B_{\frac{5}{4} \rho_{i}}^{2}(0)}\left|\nabla \tilde{a}_{i}^{i}\right|^{2}\left(z^{i}\right) d z^{i} \leq K r_{i}^{2} \tag{VI.16}
\end{equation*}
$$

Combining (VI.15) and (VI.16) and using standard elliptic estimates we get that for any $l \in \mathbb{N}$

$$
\begin{equation*}
\left\|\nabla^{l} \tilde{a}_{i}^{i}\right\|_{L^{\infty}\left(B_{\frac{⿺}{5} \rho_{i}}^{2}(0)\right)} \leq K_{l} r_{i}^{-l+1} \tag{VI.17}
\end{equation*}
$$

The subscript i in the notation \tilde{a}_{i}^{i} is here to recall that we express \tilde{C}^{i} as a graph in the $\left(z^{i}, w^{i}\right)$ coordinates. The same $J_{x_{i}}$-holomorphic curve \tilde{C}^{i} can also, due to (VI.17), be expressed as a graph in a neighborhing system of coordinate $\left(z^{j}, w^{j}\right)$ where $B_{\rho_{i}}\left(z_{i}\right) \cap B_{\rho_{j}}\left(z_{j}\right) \neq \emptyset$ (indeed the passage from $\left(z^{i}, w^{i}\right)$ to $\left(z^{j}, w^{j}\right)$ is given by a transformation matrix in $\mathbb{R}^{2 p}$ close to the identity at a distance of the order r_{i}). In such system of coordinates $\left(z^{j}, w^{j}\right)$, we shall denote $\tilde{a}_{j}^{i}\left(z^{j}\right)$ the graph corresponding to \tilde{C}^{i}.

Since \tilde{C}^{i} is a graph over $w^{i}=0$ given by $\left(z^{i}, \tilde{a}_{i}^{i}\left(z^{i}\right)\right)$ whose gradient is bounded (see (VI.17)), and since the passage from the (z, w) coordinates to $\left(z^{i}, w^{i}\right)$ coordinates is given by a transformation $\Lambda_{x_{i}}$ whose distance to the identity is bounded by $\left|x_{i}\right|$ that tends to zero, \tilde{C}^{i} is then also realised by a graph over $B_{\frac{7}{6} \rho_{i}}^{2}\left(\Pi\left(x_{i}\right)\right)$ that we shall now denote $\left(z, \tilde{a}_{i}(z)\right)$:

$$
\begin{equation*}
\tilde{C}^{i}\left\llcorner\Pi^{-1}\left(B_{\frac{7}{6} \rho_{i}}^{2}\left(\Pi\left(x_{i}\right)\right)\right)=\left(z, \tilde{a}_{i}(z)\right)_{*}\left[B_{\frac{7}{6} \rho_{i}}^{2}\left(\Pi\left(x_{i}\right)\right)\right]\right. \tag{VI.18}
\end{equation*}
$$

Consider now i and j such that $B_{\rho_{i}}\left(z_{i}\right) \cap B_{\rho_{j}}\left(z_{j}\right) \neq \emptyset$. We shall compare \tilde{a}_{i} and \tilde{a}_{j} in $\Pi^{-1}\left(B_{\rho_{i}}\left(z_{i}\right) \cap B_{\rho_{j}}\left(z_{j}\right)\right)$. Precisely we have the following lemma

Lemma VI. 2 Under the above notations one has

$$
\begin{equation*}
\forall l \in \mathbb{N} \quad\left\|\nabla^{l}\left(\tilde{a}_{i}-\tilde{a}_{j}\right)\right\|_{L^{\infty}\left(B_{\rho_{i}}^{2}\left(z_{i}\right) \cap B_{\rho_{j}}^{2}\left(z_{j}\right)\right)} \leq K_{l} \rho_{i}^{2-l} \tag{VI.19}
\end{equation*}
$$

Proof of lemma VI.2.

First of all we compare C_{i} and C_{j} in $\Pi^{-1}\left(B_{\rho_{i}}\left(z_{i}\right) \cap B_{\rho_{j}}\left(z_{j}\right)\right)$. We can always assume that $\Sigma_{2, i}$ and $\Sigma_{2, j}$ are part of a same Riemannian surface Σ with a joint parametrization $\Psi=\Psi_{i}$ on $\Sigma_{2, i}$ and $\Psi=\Psi_{j}$ on $\Sigma_{2, j}$ and such that $\Psi_{*}[\Sigma]=C$ L $N_{2 \rho_{i}}^{i} \cup N_{2 \rho_{j}}^{j}$. Let $\Sigma^{i j}:=\Psi^{-1}\left(\operatorname{supp}(C) \cap N_{2 \rho_{i}}^{i} \cap N_{2 \rho_{j}}^{j}\right.$. We consider the following mapping

$$
\begin{align*}
& \Xi^{i j} \quad \Sigma^{i j} \times[0,1] \longrightarrow N_{3 \rho_{i}}^{i} \cap N_{3 \rho_{j}}^{j} \tag{VI.20}\\
&(\xi, t) \longrightarrow \\
& \Psi(\xi)+t \eta_{j}(\xi)+(1-t) \eta_{i}(\xi) .
\end{align*}
$$

Clearly for any $\lambda<\frac{3}{2}$

$$
\begin{equation*}
\partial \Xi^{i j}{ }_{*}\left[\Sigma^{i j}\right] \times[0,1]\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}=C^{j}-C^{i}\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j} .\right.\right. \tag{VI.21}
\end{equation*}
$$

We have

$$
\begin{equation*}
M\left(\Xi^{i j}{ }_{*}\left[\Sigma^{i j}\right] \times[0,1]\right)=\int_{0}^{1} \int_{\Sigma^{i j}} J_{3} \Xi^{i j} \tag{VI.22}
\end{equation*}
$$

where $\left(J_{3} \Xi^{i j}\right)^{2}$ is the sum of the squares of the determinants of the 3×3 submatrices of $D \Xi^{i j}$. Clearly

$$
\begin{equation*}
\left|J_{3} \Xi^{i j}\right|(\xi, t) \leq K\left[\left\|\eta_{i}\right\|_{\infty}+\left\|\eta_{j}\right\|_{\infty}\right]\left[|\nabla \Psi|^{2}(\xi)+\left|\nabla \eta_{i}\right|^{2}(\xi)+\left|\nabla \eta_{j}\right|^{2}(\xi)\right] . \tag{VI.23}
\end{equation*}
$$

Combining Lemma V.3, Lemma VI.1, (VI.22) and (VI.23), we get that for any $\lambda<\frac{3}{2}$

$$
\begin{equation*}
M\left(\Xi^{i j}{ }_{*}\left[\Sigma^{i j}\right] \times[0,1]\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}\right) \leq K r_{i}^{4}\right. \tag{VI.24}
\end{equation*}
$$

Therefore, combining (VI.21) and (VI.24), using a standard slicing and Fubini type argument, we may find $\lambda \in\left(\frac{5}{4}, \frac{3}{2}\right)$ such that

$$
\begin{equation*}
\mathcal{F}\left(\left(C^{i}-C^{j}\right)\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}\right) \leq K r_{i}^{4} .\right. \tag{VI.25}
\end{equation*}
$$

We shall now compare \tilde{C}^{i} and \tilde{C}^{j}. Denote $\left(x_{1}^{t}, x_{2}^{t} \cdots x_{2 p}^{t}\right)$ the coordinates given by $\left(x_{1}^{t}, x_{2}^{t} \cdots x_{2 p}^{t}\right)^{T}=\Lambda_{x_{t}} \cdot\left[\left(x_{1}, x_{2} \cdots x_{2 p}\right)^{T}-x_{i}\right]$ where we keep denoting ($x_{1}, x_{2} \cdots x_{2 p}$) our original normal coordinates vanishing at the center x_{0} introduced in (II.1) and $\Lambda_{x_{t}}$ is the transformation matrix introduced in (VI.4). Observe that with these notations $\left(x_{1}^{0}, x_{2}^{0} \cdots x_{2 p}^{0}\right)=\left(x_{1}^{i}, x_{2}^{i} \cdots x_{2 p}^{i}\right)$ that $\left(x_{1}^{1}, x_{2}^{1} \cdots x_{2 p}^{1}\right)=\left(x_{1}^{j}, x_{2}^{j} \cdots x_{2 p}^{j}\right)+\Lambda_{x^{j}} \cdot\left(x_{i}-x_{j}\right)$ and that $\left(x_{1}^{t}, x_{2}^{t} \cdots x_{2 p}^{t}\right)$ has been chosen in order to vanish at a fixed point x_{i}. Observe also that

$$
\begin{equation*}
\left|\frac{d}{d t} \Lambda_{x^{t}}\right| \leq K r_{i} \quad, \quad\left\|\frac{d}{d t} x^{t}\right\|_{L^{\infty}\left(B_{4 r_{i}}^{2 p}\left(x_{i}\right)\right)}+\left\|\frac{d}{d t} y^{t}\right\|_{L^{\infty}\left(B_{4 r_{i}}^{2 p}\left(x_{i}\right)\right)} \leq K r_{i}^{2} . \tag{VI.26}
\end{equation*}
$$

We also adopt the notations $z^{t}:=x_{1}^{t}+i x_{2}^{t}$ and for $k=1 \cdots p-1 w^{t}:=x_{2 k+1}^{t}+$ $i x_{2 k+2}^{t}$. Observe then that $z^{t}=$ constant or $w_{k}^{t}=$ constant are $J_{x^{t}}$-holomorphic $2 p-2$ submanifolds, or simply complex variety in $\left(\mathbb{R}^{2 p}, J_{x^{t}}\right)$. In order to compare \tilde{C}^{i} and \tilde{C}^{j} we shall perturb $\Xi^{i j}$ in the following way : denote first Ψ^{t}, η_{i}^{t} and η_{j}^{t} the maps Ψ, η_{i} and η_{j} expressed in the coordinates $\left(z^{t}, w^{t}\right)$, and consider the map $s^{t}:\left(\Sigma^{\prime}\right)^{i j} \rightarrow \mathbb{C}^{p}$ solving

$$
\begin{align*}
& \partial_{\bar{\xi}} s^{t}=\partial_{\bar{\xi}}\left(\Psi^{t}+t \eta_{j}^{t}+(1-t) \eta_{i}^{t}\right) \quad \text { in }\left(\Sigma^{\prime}\right)^{i j} \\
& \forall h \in H\left(\Sigma^{i j}\right) \quad \int_{\partial \Sigma^{i j}} s^{t} d h=0 . \tag{VI.27}
\end{align*}
$$

where $\Sigma^{i j}:=\Psi^{-1}(\operatorname{supp}(C)) \cap N_{\frac{3}{2} p_{i}}^{i} \cap N_{\frac{3}{2} \rho_{j}}^{j}$. The existence and uniqueness of s^{t} is given by proposition A. 3 of [Ri3] We shall now replace the map $\Xi^{i j}$ on $\left(\Sigma^{\prime}\right)^{i j}$ by the map

$$
\begin{align*}
\left(\Xi^{\prime}\right)^{i j}:\left(\Sigma^{\prime}\right)^{i j} \times[0,1] & \longrightarrow N_{3 \rho_{i}}^{i} \cap N_{3 \rho_{j}}^{j} \\
(\xi, t) & \longrightarrow \Lambda_{x^{t}}^{-1} \cdot\left[\Psi^{t}(\xi)+t \eta_{j}^{t}(\xi)+(1-t) \eta_{i}^{t}(\xi)-s^{t}\right]+x_{i} . \tag{VI.28}
\end{align*}
$$

Observe that for each $t \in[0,1]$ the map $\Xi^{\prime i j}(\cdot, t)$ is a $J_{x^{t}}$-holomorphic curve. Observe also that, for $t=0 s^{t}=0$ and that for $t=1, \partial_{\bar{\xi}}\left(\Psi^{1}+\eta_{j}^{1}\right)=0$, since $\Psi+\eta_{j}$ is $J_{x^{j}}$-holomorphic and $\left(z^{1}, w^{1}\right)$ are $J_{x^{j}}$ coordinates, thus we have also $s^{1}=0$. One can easily verify, like for proving (VI.10) that for all $t \in[0,1]$

$$
\int_{\left(\Sigma^{\prime}\right)^{i j}}\left|\partial_{\bar{\xi}}\left(\Psi^{t}+t \eta_{j}^{t}+(1-t) \eta_{i}^{t}\right)\right|^{2} \leq K r_{i}^{4}
$$

and using lemma VI. 1 we have

$$
\left\|s^{t}\right\|_{L^{\infty}\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)} \leq K r_{i}^{2}
$$

where

$$
\left(\Sigma^{\prime \prime}\right)^{i j}:=\Psi^{-1}(\operatorname{supp}(C)) \cap N_{\frac{5}{4} \rho_{i}}^{i} \cap N_{\frac{5}{4} \rho_{j}}^{j} .
$$

Therefore for any $\lambda<\frac{6}{5}$ we have

$$
\begin{equation*}
\partial\left(\Xi^{\prime}\right)^{i j}{ }_{*}\left[\left(\Sigma^{\prime}\right)^{i j}\right] \times[0,1]\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}=C^{j}-C^{i}\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j} .\right.\right. \tag{VI.29}
\end{equation*}
$$

We consider now the following interpolation between \tilde{C}^{i} and \tilde{C}^{j} : let $\tilde{\Xi}^{i j}$ be the following map

$$
\begin{array}{cl}
\tilde{\Xi}^{i j} \Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right) \times[0,1] \longrightarrow & N_{3 \rho_{i}}^{i} \cap N_{3 \rho_{j}}^{j} \tag{VI.30}\\
(z, t) \longrightarrow & \Lambda_{x^{t}}^{-1} \cdot\left[\left(z, \tilde{a}^{t}(z)\right]+x_{i},\right.
\end{array}
$$

where the $p-1$ complex components are given by the slices of $C^{t}:=\left(\Xi^{\prime}\right)^{i j}{ }_{*}\left[\left(\Sigma^{\prime}\right)^{i j}\right] \times$ $\{t\}$ by $z^{t}=\xi$ evaluated on the functions w_{k}^{t}. Precisely using the notations of $[\mathrm{Fe}] 4.3$

$$
\begin{equation*}
\tilde{a}_{k}^{t}(z):=\left\langle C^{t}, z^{t}, z\right\rangle\left(w_{k}^{t}\right) . \tag{VI.31}
\end{equation*}
$$

It is clear that for any $\lambda<\frac{6}{5}$

$$
\begin{equation*}
\tilde{\Xi}_{*}^{i j}\left[\Pi_{i}\left(\Psi\left(\left(\Sigma^{\prime}\right)^{i j}\right)\right)\right] \times[0,1]\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}=\tilde{C}^{j}-\tilde{C}^{i}\left\llcorner N^{i} \lambda \rho_{i} \cap N_{\lambda \rho_{j}}^{j} .\right.\right. \tag{VI.32}
\end{equation*}
$$

In order to get a bound for $\mathcal{F}\left(\tilde{C}^{j}-\tilde{C}^{i}\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}\right)\right.$, it remains to evaluate the mass of $\tilde{\Xi}_{*}^{i j}\left[\Pi_{i}\left(\Psi\left(\left(\Sigma^{\prime}\right)^{i j}\right)\right)\right] \times[0,1]\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}\right.$ for $\lambda=\frac{6}{5}$ for instance. We have

$$
\begin{equation*}
\left|J_{3} \tilde{\Xi}^{i j}\right|(z, t) \leq \left\lvert\, \frac{\partial}{\partial t} \Lambda_{x^{t}}^{-1} \cdot\left[\left(z, \tilde{a}^{t}(z)\right] \mid(z, t)\left[1+\left|\nabla_{z} \tilde{a}^{t}(z)\right|^{2}\right] .\right.\right. \tag{VI.33}
\end{equation*}
$$

Because of the same arguments developed to prove (VI.17), since $\tilde{a}^{t}(\xi)$ is holomorphic, we have

$$
\begin{equation*}
\left\|\nabla_{z} \tilde{a}^{t}(z)\right\|_{L^{\infty}\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)} \leq K . \tag{VI.34}
\end{equation*}
$$

Thus

$$
\begin{align*}
& M\left(\tilde{\Xi}_{*}^{i j}\left[\Pi \Psi\left(\left(\Sigma^{\prime}\right)^{i j}\right)\right] \times[0,1]\left\llcorner N^{i} \lambda \rho_{i} \cap N_{\lambda \rho_{j}}^{j}\right) \leq \int_{0}^{1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)}\left|J_{3} \tilde{\Xi}^{i j}\right|\right. \\
& \quad \leq K \int_{0}^{1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)} \left\lvert\, \frac{\partial}{\partial t} \Lambda_{x^{t}}^{-1} \cdot\left[\left(z, \tilde{a}^{t}(z)\right] \mid d z \wedge d \bar{z} \wedge d t\right.\right. \\
& \quad \leq K \int_{0}^{1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)}\left[r_{i}\left|\left(z, \tilde{a}^{t}(z)\right)\right|+\left|\frac{\partial \tilde{a}^{t}}{\partial t}\right|\right] . \tag{VI.35}
\end{align*}
$$

On the one hand, since $\Pi_{i}\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)\left|\left(z, \tilde{a}^{t}(z)\right)\right| \leq K r_{i}$, we have

$$
\begin{equation*}
\int_{0}^{1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)} r_{i}\left|\left(z, \tilde{a}^{t}(z)\right)\right| \leq K r_{i}^{4} \tag{VI.36}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\int_{0}^{1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j)}\right)\right)}\left|\frac{\partial \tilde{a}^{t}}{\partial t}\right|=\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{l=1}^{N-1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)} N\left|\tilde{a}^{\frac{l}{N}}(z)-\tilde{a}^{\frac{l+1}{N}}(z)\right| d z \wedge d \bar{z} . \tag{VI.37}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left|\tilde{a}_{k}^{\frac{l}{N}}(z)-\tilde{a}_{k}^{\frac{l+1}{N}}(z)\right|=\left|<C^{\frac{l}{N}}, z^{\frac{l}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)-<C^{\frac{l+1}{N}}, z^{\frac{l+1}{N}}, z>\left(w_{k}^{\frac{l+1}{N}}\right)\right| \\
& \leq\left|<C^{\frac{l}{N}}-C^{\frac{l+1}{N}}, z^{\frac{l}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)\right| \\
& +\left|<C^{\frac{l+1}{N}}, z^{\frac{l}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)-<C^{\frac{l+1}{N}}, z^{\frac{l+1}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)\right| \\
& +\left|<C^{\frac{l+1}{N}}, z^{\frac{l+1}{N}}, z>\left(w_{k}^{\frac{l}{N}}-w_{k}^{\frac{l+1}{N}}\right)\right| \tag{VI.38}
\end{align*}
$$

We have to control the sum over l of the integral over $\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)$ of the 3 absolute values in the right-hand-side of (VI.38) one by one. For the first term of the r.h.s. of (VI.38) we have, using [Fe] 4.3.1, since $\left\|w_{k}^{\frac{l}{N}}\right\|_{\infty}+\left\|d w_{k}^{\frac{l}{N}}\right\|_{\infty} \leq 1$,

$$
\begin{align*}
& \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)}\left|<C^{\frac{l}{N}}-C^{\frac{l+1}{N}}, z^{\frac{l}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)\right| d z \wedge d \bar{z} \\
& \leq \operatorname{Lip}\left(z^{\frac{k}{N}}\right) \mathcal{F}_{N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}}\left(C^{\frac{k}{N}}-C^{\frac{k+1}{N}}\right) \leq K \mathcal{F}_{N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}}\left(C^{\frac{k}{N}}-C^{\frac{k+1}{N}}\right) \tag{VI.39}
\end{align*}
$$

Similarly as the way we have established estimate (VI.25) we can show that

$$
\begin{equation*}
\mathcal{F}_{N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}}\left(C^{\frac{k}{N}}-C^{\frac{k+1}{N}}\right) \leq K \frac{1}{N} r_{i}^{4} . \tag{VI.40}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \sum_{l=1}^{N-1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)}\left|<C^{\frac{l}{N}}-C^{\frac{l+1}{N}}, z^{\frac{l}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)\right| \leq K r_{i}^{4} \tag{VI.41}
\end{equation*}
$$

For the second term of the r.h.s. of (VI.38) we use 4.3 .9 (3) of [Fe] and we get

$$
\begin{align*}
& \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)}\left|<C^{\frac{l+1}{N}}, z^{\frac{l}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)-<C^{\frac{l+1}{N}}, z^{\frac{l+1}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)\right| \\
& K \int_{\frac{l}{N}}^{\frac{l+1}{N}} d t \int_{\left(z^{t}\right)^{-1}\left(\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)\right)}\left|z^{\frac{l}{N}}-z^{\frac{l+1}{N}}\right| d\left\|C^{\frac{l+1}{N}}\right\| \tag{VI.42}\\
& K \frac{r_{i}^{2}}{N} M\left(C^{\frac{l+1}{N}}\left\llcorner N^{i} \lambda \rho_{i} \cap N_{\lambda \rho_{j}}^{j}\right)\right. \\
& \leq K \frac{r_{i}^{4}}{N}
\end{align*}
$$

where we have used (VI.26). Therefore we obtain

$$
\begin{equation*}
\lim _{l \rightarrow+\infty} \sum_{l}^{N-1} \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)}\left|<C^{\frac{l+1}{N}}, z^{\frac{l}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)-<C^{\frac{l+1}{N}}, z^{\frac{l+1}{N}}, z>\left(w_{k}^{\frac{l}{N}}\right)\right| \leq K r_{i}^{4} \tag{VI.43}
\end{equation*}
$$

Finally for the second term of the r.h.s. of(VI.38), we use again (VI.26) and 4.3.2 (2) of [Fe] to obtain that

$$
\begin{align*}
& \int_{\Pi\left(\Psi\left(\left(\Sigma^{\prime \prime}\right)^{i j}\right)\right)}\left|<C^{\frac{l+1}{N}}, z^{\frac{l+1}{N}}, z>\left(w_{k}^{\frac{l}{N}}-w_{k}^{\frac{l+1}{N}}\right)\right| \tag{VI.44}\\
& \leq M\left(C^{\frac{l+1}{N}}\left\llcorner N^{i} \lambda \rho_{i} \cap N_{\lambda \rho_{j}}^{j}\right) \frac{r_{i}^{2}}{N} \leq K \frac{r_{i}^{4}}{N} .\right.
\end{align*}
$$

Combining (VI.35), (VI.36), (VI.37), (VI.38), (VI.41), (VI.43) and (VI.44), we obtain that

$$
\begin{equation*}
M\left(\tilde{\Xi}_{*}^{i j}\left[\Pi \Psi\left(\left(\Sigma^{\prime}\right)^{i j}\right)\right] \times[0,1]\left\llcorner N_{\lambda \rho_{i}}^{i} \cap N_{\lambda \rho_{j}}^{j}\right) \leq r_{i}^{4}\right. \tag{VI.45}
\end{equation*}
$$

Combining this last inequality with (VI.32) and a Fubini type argument we obtain that there exists $\lambda \in\left[\frac{7}{6}, \frac{6}{5}\right]$ such that

$$
\begin{equation*}
\mathcal{F}\left(\left(\tilde{C}_{i}-\tilde{C}_{j}\right)\left\llcorner N^{i} \lambda \rho_{i} \cap N_{\lambda \rho_{j}}^{j}\right) \leq r_{i}^{4}\right. \tag{VI.46}
\end{equation*}
$$

From this fact we then deduce, since \tilde{C}_{i} and \tilde{C}_{j} are single valued graphs with uniformly bounded gradients

$$
\begin{equation*}
\int_{\Pi_{i}\left(N^{i} \frac{\rho_{6}}{\rho_{i} \cap N_{\frac{7}{6} \rho_{j}}^{j}}\right.}\left|\tilde{a}_{j}^{i}\left(z^{i}\right)-\tilde{a}_{j}^{j}\right| \leq K r_{i}^{4} \tag{VI.47}
\end{equation*}
$$

Using the notations introduced in (VI.4) and (VI.13), we have that for any z there exists ξ such that

$$
\begin{equation*}
\left(z-z_{i}, \tilde{a}_{i}(z)-w_{i}\right)=\Lambda_{x_{i}}^{-1}\left(\xi, \tilde{a}_{i}^{i}(\xi)\right) \tag{VI.48}
\end{equation*}
$$

where $\left|\Lambda_{x_{i}}-i d\right| \leq K\left|x_{i}\right| \leq K \rho_{x_{0}}$. Let $z^{\prime}:=\rho_{i}^{-1}\left(z-z_{i}\right)$ and $\hat{a}_{i}\left(z^{\prime}\right):=$ $\rho_{i}^{-1}\left(\tilde{a}_{i}(z)-w_{i}\right)$. Let also $\xi^{\prime}:=\rho_{i}^{-1} \xi$ and $\hat{a}_{i}^{i}\left(\xi^{\prime}\right):=\tilde{a}_{i}^{i}(\xi)$. Since \tilde{a}_{i}^{i} is holomorphic (see (VI.14), \hat{a}_{i}^{i} is also clearly holomorphic and since $\left\|\hat{a}_{i}^{i}\right\|_{L^{\infty}\left({ }_{3}\left(B_{\frac{3}{2}}(0)\right)\right.} \leq K$, we have that for any $l \in \mathbb{N}$

$$
\begin{equation*}
\left\|\nabla^{l} \hat{a}_{i}^{i}\right\|_{L^{\infty}\left(B_{\frac{5}{4}}(0)\right)} \leq K_{l} . \tag{VI.49}
\end{equation*}
$$

Using the above notations we have

$$
\begin{equation*}
\left(z^{\prime}, \hat{a}_{i}\left(z^{\prime}\right)\right)=\Lambda_{x_{i}}^{-1}\left(\xi^{\prime}, \hat{a}_{i}^{i}\left(\xi^{\prime}\right)\right) \tag{VI.50}
\end{equation*}
$$

From the inverse function theorem, since $\left|\Lambda_{x_{i}}-i d\right| \leq K\left|x_{i}\right| \leq K \rho_{x_{0}}$ can be taken as small as we want by taking $\rho_{x_{0}}$ small enough, we have that for all $l \in \mathbb{N}$ there exists K_{l} such that

$$
\begin{equation*}
\left\|\nabla_{z^{\prime}}^{l} \xi^{\prime}\right\|_{\infty} \leq K_{l} \tag{VI.51}
\end{equation*}
$$

Therefore, combining (VI.49), (VI. 50 and (VI.51, we obtain

$$
\begin{equation*}
\left\|\nabla_{z^{\prime}}^{l} \hat{a}_{i}\left(z^{\prime}\right)\right\|_{\infty} \leq K_{l} . \tag{VI.52}
\end{equation*}
$$

From that estimate we then deduce

$$
\begin{equation*}
\left\|\nabla_{z}^{l} \tilde{a}_{i}\right\|_{L^{\infty}\left(B_{\frac{7}{6} \rho_{i}}^{2}\left(z_{i}\right)\right)} \leq K_{l} r_{i}^{l-1} \tag{VI.53}
\end{equation*}
$$

Since \tilde{C}^{i} is $J_{x_{i}}$-holomorphic, we have the existence of $\lambda_{1}^{i}, \mu_{1}^{i}, \lambda_{2}^{i}, \mu_{2}^{i}$ such that

$$
\left\{\begin{align*}
& J_{x_{i}} \cdot\left(\begin{array}{c}
1 \\
0 \\
\frac{\partial \tilde{a}_{i}}{\partial x}
\end{array}\right)=\lambda_{1}^{i}\left(\begin{array}{c}
1 \\
0 \\
\frac{\partial \tilde{a}_{i}}{\partial x}
\end{array}\right)+\mu_{1}^{i}\left(\begin{array}{c}
0 \\
1 \\
0 \\
\frac{\partial \tilde{a}_{i}}{\partial y}
\end{array}\right) \tag{VI.54}\\
& J_{x_{i}} \cdot\left(\begin{array}{c}
1 \\
1 \\
\frac{\partial \tilde{a}_{i}}{\partial y}
\end{array}\right)=\lambda_{2}^{i}\left(\begin{array}{c}
0 \\
0 \\
\frac{\partial \tilde{a}_{i}}{\partial x}
\end{array}\right)+\mu_{2}^{i}\left(\begin{array}{c}
1 \\
1 \\
\frac{\partial \tilde{a}_{i}}{\partial y}
\end{array}\right)
\end{align*}\right.
$$

Writing $J_{x_{i}}=J_{0}+\delta\left(x_{i}\right)$, we first observe that

$$
\begin{equation*}
\left|\delta\left(x_{i}\right)\right| \leq\|J\|_{C^{1}}\left|x_{i}\right| \leq K \rho_{x_{0}} . \tag{VI.55}
\end{equation*}
$$

Using this notation we deduce from (VI.54)

$$
\left\{\begin{array}{l}
\lambda_{1}^{i}=\delta_{1,1}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{1, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial x} \tag{VI.56}\\
\mu_{1}^{i}=1+\delta_{2,1}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{2, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial x} \\
\lambda_{2}^{i}=-1+\delta_{1,2}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{1, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial y} \\
\mu_{2}^{i}=\delta_{2,2}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{2, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial y}
\end{array}\right.
$$

Therefore the equation solved by \tilde{a}_{i} is for any $k=1 \cdots p-1$

$$
\left\{\begin{align*}
\frac{\partial \tilde{a}_{i}^{2 k+1}}{\partial x}-\frac{\partial \tilde{a}_{i}^{2 k+2}}{\partial y} & =\left[\delta_{1,1}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{1, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial x}\right] \frac{\partial \tilde{a}_{i}^{2 k+2}}{\partial x} \\
& +\left[\delta_{2,1}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{2, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial x}\right] \frac{\partial \tilde{a}_{i}^{2 k+2}}{\partial y} \\
& -\delta_{2 k+2,1}\left(x_{i}\right)-\sum_{l=3}^{2 p} \delta_{2 k+2, l} \frac{\partial \tilde{a}_{i}^{l}}{\partial x} \\
\frac{\partial \tilde{a}_{i}^{2 k+1}}{\partial y}+\frac{\partial \tilde{a}_{i}^{2 k+2}}{\partial x} & =\left[\delta_{1,2}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{1, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial y}\right] \frac{\partial \tilde{a}_{i}^{2 k+2}}{\partial x} \tag{VI.57}\\
& +\left[\delta_{2,2}\left(x_{i}\right)+\sum_{l=3}^{2 p} \delta_{2, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial y}\right] \frac{\partial \tilde{a}_{i}^{2 k+2}}{\partial y} \\
& -\delta_{2 k+2,1}\left(x_{i}\right)-\sum_{l=3}^{2 p} \delta_{2 k+2, l}\left(x_{i}\right) \frac{\partial \tilde{a}_{i}^{l}}{\partial y}
\end{align*}\right.
$$

Then we deduce that there exists a linear map

$$
A\left(x_{i}, \cdot\right): \mathbb{R}^{2} \otimes \mathbb{R}^{2 p-2} \longrightarrow \mathbb{C}^{p-1} \otimes_{\mathbb{R}}\left(\mathbb{R}^{2} \otimes \mathbb{R}^{2 p-2}\right)^{*}
$$

and an element

$$
B\left(x_{i}, \cdot\right) \in \mathbb{C}^{p-1} \otimes_{\mathbb{R}}\left(\mathbb{R}^{2} \otimes \mathbb{R}^{2 p-2}\right)^{*}
$$

such that \tilde{a}_{i} solves

$$
\begin{equation*}
\frac{\partial \tilde{a}_{i}}{\partial \bar{z}}=A\left(x_{i}, \nabla \tilde{a}_{i}\right) \cdot \nabla \tilde{a}_{i}+B\left(x_{i}, \nabla \tilde{a}_{i}\right)+D\left(x_{i}, \tilde{a}_{i}\right) \tag{VI.58}
\end{equation*}
$$

Observe also that the dependence of A and B in $B_{\rho_{x_{0}}}\left(x_{0}\right)$ is smooth and that $A\left(x_{0}, \cdot\right)=0, B\left(x_{0}, \cdot\right)=0, D\left(x_{0}\right)=0$ and because of (VI.55) we have an estimate of the sort

$$
\begin{equation*}
\forall p \in \mathbb{R}^{2} \otimes \mathbb{R}^{2 p} \quad\left|A\left(x_{i}, p\right)\right|+\left|B\left(x_{i}, p\right)\right| \leq K\left|x_{i}\right|(1+|p|) \tag{VI.59}
\end{equation*}
$$

Consider now i and j such that $B_{\rho_{i}}^{2}\left(z_{i}\right) \cap B_{\rho_{j}}^{2}\left(z_{j}\right) \neq \emptyset$. On $B_{\frac{7}{6} \rho_{i}}^{2}\left(z_{i}\right) \cap B_{\frac{7}{6} \rho_{j}}^{2}\left(z_{j}\right)$ $\tilde{a}_{i}-\tilde{a}_{j}$ solves the following equation

$$
\begin{align*}
\partial_{\bar{z}}\left(\tilde{a}_{i}-\tilde{a}_{j}\right) & =A\left(x_{i}, \nabla \tilde{a}_{i}\right) \cdot \nabla \tilde{a}_{i}+B\left(x_{i}, \nabla \tilde{a}_{i}\right) \\
& -A\left(x_{j}, \nabla \tilde{a}_{j}\right) \cdot \nabla \tilde{a}_{j}-B\left(x_{j}, \nabla \tilde{a}_{j}\right) \\
& =C\left(x_{i}, \nabla \tilde{a}_{i}, \nabla \tilde{a}_{j}\right) \cdot \nabla\left(\tilde{a}_{i}-\tilde{a}_{j}\right) \tag{VI.60}\\
& +E\left(x_{i}, \nabla \tilde{a}_{j}\right)-E\left(x_{j}, \nabla \tilde{a}_{j}\right),
\end{align*}
$$

where

$$
\begin{align*}
C\left(x_{i}, \nabla \tilde{a}_{i}, \nabla \tilde{a}_{j}\right) \cdot \nabla\left(\tilde{a}_{i}-\tilde{a}_{j}\right) \quad & :=A\left(x_{i}, \nabla \tilde{a}_{i}\right) \cdot \nabla \tilde{a}_{i}-A\left(x_{i}, \nabla \tilde{a}_{j}\right) \cdot \nabla \tilde{a}_{j} \\
& +B\left(x_{i}, \nabla \tilde{a}_{i}\right)-B\left(x_{i}, \nabla \tilde{a}_{j}\right), \tag{VI.61}
\end{align*}
$$

(where we have used the linear dependance in p of $A\left(x_{i}, p\right)$ and $B\left(x_{i}, p\right)$), and where

$$
\begin{equation*}
E(x, p):=A(x, p) \cdot p+B(x, p)+D(x) \tag{VI.62}
\end{equation*}
$$

Observe, on the one hand, that $C(x, p, q)$ has a linear dependence in p and q in $\mathbb{R}^{2} \otimes \mathbb{R}^{2 p-2}$, that

$$
\begin{equation*}
|C(x, p, q)| \leq K|x|(1+|p|+|q|), \tag{VI.63}
\end{equation*}
$$

and that following estimates hold for $D(x, p)$, forall $l \in \mathbb{N}$

$$
\begin{equation*}
\left|\nabla_{x}^{l} E(x, p)\right| \leq K_{l}\left(1+|p|^{2}\right) . \tag{VI.64}
\end{equation*}
$$

On $B_{\frac{7}{6}}^{2}\left(\rho_{i}^{-1} z_{i}\right) \cap B_{\frac{7}{6}}^{2}\left(\rho_{i}^{-1} z_{j}\right)$ the function $f\left(z^{\prime}\right):=a_{i}\left(\rho_{i} z^{\prime}\right)-a_{j}\left(\rho_{i} z^{\prime}\right)$ solves

$$
\begin{equation*}
\partial_{\bar{z}^{\prime}} f-C\left(z^{\prime}\right) \cdot \nabla f=g\left(z^{\prime}\right) \tag{VI.65}
\end{equation*}
$$

where

$$
C\left(z^{\prime}\right):=C\left(x_{i}, \nabla \tilde{a}_{i}, \nabla \tilde{a}_{j}\right)\left(\rho_{i} z^{\prime}\right)
$$

and

$$
g\left(z^{\prime}\right):=\rho_{i}\left[D\left(x_{i}, \nabla \tilde{a}_{j}\left(\rho_{i} z^{\prime}\right)\right)-D\left(x_{j}, \nabla \tilde{a}_{j}\left(\rho_{i} z^{\prime}\right)\right)\right] .
$$

Using (VI.53), observe that for any $l \in \mathbb{N}$

$$
\begin{align*}
& \left\|\nabla_{z^{\prime}}^{l}\left(C\left(x_{i},\left(\nabla_{z} \tilde{a}_{i}\right)\left(\rho_{i} z^{\prime}\right),\left(\nabla_{z} \tilde{a}_{j}\right)\left(\rho_{i} z^{\prime}\right)\right)\right)\right\|_{\infty} \\
& \leq K\left|x_{i}\right| \rho_{i}^{l}\left[\left\|\nabla_{z}^{l+1} \tilde{a}_{i}\right\|_{\infty}+\left\|\nabla_{z}^{l+1} \tilde{a}_{j}\right\|_{\infty}\right] \leq K_{l} \rho_{x_{0}} \tag{VI.66}
\end{align*}
$$

Therefore, for $\rho_{x_{0}}$ small enough, $L:=\partial_{\bar{z}^{\prime}}-C\left(z^{\prime}\right) \cdot \nabla_{z^{\prime}}$ is an elliptic coercive first order operator with smooth coefficients whose derivatives are uniformly bounded. Observe also that, using again (VI.53),

$$
\begin{align*}
& \left\|\nabla_{z^{\prime}}^{l} \rho_{i}\left[D\left(x_{i}, \nabla \tilde{a}_{j}\left(\rho_{i} z^{\prime}\right)\right)-D\left(x_{j}, \nabla \tilde{a}_{j}\left(\rho_{i} z^{\prime}\right)\right)\right]\right\|_{\infty} \\
& \leq K \rho_{i}^{2}\left[\rho_{i}^{l} \sum_{s=0}^{[l / 2]}\left\|\nabla_{z}^{s+1} \tilde{a}_{j}\right\|_{\infty}\left\|\nabla_{z}^{l-s+1} \tilde{a}_{j}\right\|_{\infty}+\rho_{i}^{l}\left\|\nabla_{z^{\prime}}^{l+1} \tilde{a}_{j}\right\|_{\infty}\right] \tag{VI.67}
\end{align*}
$$

Then we have

$$
\begin{equation*}
\left\|\nabla_{z^{\prime}}^{l} g\right\|_{\infty} \leq K_{l} \rho_{i}^{2} \tag{VI.68}
\end{equation*}
$$

From (VI.46) we deduce that

$$
\begin{equation*}
\int_{B_{\frac{7}{\delta}}^{2}\left(\rho_{i}^{-1} z_{i}\right) \cap B_{\frac{7}{\delta}}^{2}\left(\rho_{i}^{-1} z_{j}\right)}|f| \leq K \rho_{i}^{2} . \tag{VI.69}
\end{equation*}
$$

Thus combining (VI.65)...(VI.69) and using standard elliptic estimates we obtain that for any $l \in \mathbb{N}$

$$
\begin{equation*}
\left\|\nabla^{l} f\right\|_{L^{\infty}\left(B_{1}^{2}\left(\rho_{i}^{-1} z_{i}\right) \cap B_{1}^{2}\left(\rho_{i}^{-1} z_{j}\right)\right)} \leq K_{l} \rho_{i} \tag{VI.70}
\end{equation*}
$$

which yields, going back to the original scale, the estimate (VI.19) and lemma VI. 2 is proved.

Definition of the approximated average curve. On $B_{\rho_{x_{0}}}^{2}(0)=$ $\Pi\left(B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ we define the approximated average curve as follows. Let φ be the partition of unity of $\Pi\left(\mathcal{C}_{Q-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ defined in (V.48). We denote

$$
\begin{cases}\tilde{a}\left(z_{0}\right):=\sum_{i \in I} \varphi\left(z_{0}\right) \tilde{a}_{i}\left(z_{0}\right) & \forall z_{0} \in \Pi\left(\mathcal{C}_{Q-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right) \tag{VI.71}\\ \tilde{a}\left(z_{0}\right):=<C, z, z_{0}>(w) & \forall z_{0} \in \Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right) \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)\end{cases}
$$

Observe that, because of lemma IV.2, for any $z_{0} \in \Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right) \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ the slice $<C, z, z_{0}>$ consists of exactly one point and $\tilde{a}\left(z_{0}\right)$ is simply the w coordinates of that point. The following estimates for \tilde{a} holds :

Lemma VI. 3 Under the above notations, for any $q<+\infty$ there exists a constant K_{q} independent of $\rho_{x_{0}}$ such that

$$
\begin{equation*}
\int_{B_{\frac{\rho_{x_{0}}^{2}}{2}}(0)}\left|\nabla^{2} \tilde{a}\right|^{q} \leq K_{q} \rho_{x_{0}}^{2} \tag{VI.72}
\end{equation*}
$$

Proof of lemma VI.3.

We claim first that \tilde{a} is a Lipschitz map over $B_{\rho_{x_{0}}}^{2}(0)$. In $\Pi\left(\mathcal{C}_{Q-1} \cap\right.$ $\left.B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$, by the assumptions of the inductive procedure, we know that \tilde{a} is smooth and using both (VI.53) and (VI.19), because also of (V.49), we have

$$
\begin{equation*}
\|\nabla \tilde{a}\|_{L^{\infty}\left(\Pi\left(\mathcal{C}_{Q-1} \cap B_{\rho x_{0}}\left(x_{0}\right)\right)\right)} \leq K . \tag{VI.73}
\end{equation*}
$$

Consider now two arbitrary points x and y of $B_{\rho_{x_{0}}}^{2}(0)$, either the segment $[x, y]$ in $B_{\rho_{x_{0}}}^{2}(0)$ is included in $\Pi\left(\mathcal{C}_{Q-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ and then we can integrate (VI.73) all along that segment to get

$$
\begin{equation*}
|\tilde{a}(x)-\tilde{a}(y)| \leq K|x-y| \tag{VI.74}
\end{equation*}
$$

or there exists $z \in[x, y] \cap \Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right) \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ and using this time (IV.6) we also get (VI.74), which proves the desired claim. Using the equation (VI.58) solved by the \tilde{a}_{i} s we obtain that, in $\Pi\left(\mathcal{C}_{Q-1} \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right), \tilde{a}$ is a solution of

$$
\begin{equation*}
\partial_{\bar{z}} \tilde{a}-A((z, \tilde{a}(z)), \nabla \tilde{a}) \cdot \nabla \tilde{a}-B((z, \tilde{a}(z)), \nabla \tilde{a})-D(z, \tilde{a}(z))=\zeta(z) \tag{VI.75}
\end{equation*}
$$

where

$$
\begin{align*}
\zeta(z) & :=\sum_{i \in I} \varphi_{i}\left[A\left(x_{i}, \nabla \tilde{a}_{i}\right) \cdot \nabla \tilde{a}_{i}-A((z, \tilde{a}(z)), \nabla \tilde{a}) \cdot \nabla \tilde{a}\right] \\
& +\sum_{i \in I}\left[B\left(x_{i}, \nabla \tilde{a}_{i}\right)-B((z, \tilde{a}(z)), \nabla \tilde{a})\right] \tag{VI.76}\\
& +\sum_{i \in I} \partial_{\bar{z}} \varphi_{i}\left[\tilde{a}_{i}-\tilde{a}\right] .
\end{align*}
$$

Observe that $\sum_{i \in I} \partial_{\bar{z}} \varphi_{i} \tilde{a}$ was added at the end because this quantity vanishes. Since for any x_{i} and r_{i}, (V.10) holds, since also for any $z \in \Pi\left(\left(\mathcal{C}_{Q} \backslash\right.\right.$ $\left.\mathcal{C}_{Q-1}\right) \cap B_{\rho_{x_{0}}}\left(x_{0}\right)$) we have for an ε as small as we want (recall α was fixed independently of ε), the relative Lipschitz estimate (IV.6) holds and granting the fact that $\Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right) \cap B_{\rho_{x_{0}}}\left(x_{0}\right)\right)$ is a compact subset of $B_{\rho_{x_{0}}}\left(x_{0}\right)$, it is clear that

$$
\begin{align*}
& \forall \eta>0 \quad \exists \delta>0 \quad \text { s. t. } \forall i \in I \\
& \qquad \operatorname{dist}\left(B_{\rho_{i}}\left(z_{i}\right), \Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right)\right) \leq \delta \quad \Longrightarrow \quad\left|\rho_{i}\right| \leq \eta \quad . \tag{VI.77}
\end{align*}
$$

Observe that

$$
\begin{align*}
|\zeta(z)| \leq & \leq \sum_{i, j \in I} \varphi_{i}(z) \varphi_{j}(z)\left|\tilde{a}_{j}-w_{i}\right| \\
& \sum_{i, j \in I} \varphi_{i}(z) \varphi_{j}(z)\left|\nabla\left(\tilde{a}_{i}-\tilde{a}_{j}\right)\right| \tag{VI.78}\\
& \sum_{i, j \in I}\left|\nabla \varphi_{i}(z)\right| \varphi_{j}(z)\left|\tilde{a}_{i}(z)-\tilde{a}_{j}(z)\right|
\end{align*}
$$

using (VI.19), we have that
$|\zeta(z)| \leq K \max \left\{r_{i} i \in I ;\right.$ s. t. $\left.z \in B_{\rho_{i}}^{2}\left(z_{i}\right)\right\} \leq K \operatorname{dist}\left(z, \Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right)\right)$
Combining (VI.77) and (VI.79), we have that $\zeta(z)$ converge uniformly to 0 as z tends to $\Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right)$. We then extend ζ by 0 in $\Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right)$. ζ is now a continuous function in $B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$ and we claim that
$\partial_{\bar{z}} \tilde{a}-A((z, \tilde{a}(z)), \nabla \tilde{a}) \cdot \nabla \tilde{a}-B((z, \tilde{a}(z)), \nabla \tilde{a})=\zeta(z) \quad$ in $\mathcal{D}^{\prime}\left(B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)\right)$.

Since \tilde{a} is a Lipschitz function in $B_{\rho_{x_{0}}}^{2}\left(x_{0}\right), \partial_{\bar{z}} \tilde{a}-A((z, \tilde{a}(z)), \nabla \tilde{a}) \cdot \nabla \tilde{a}-$ $B((z, \tilde{a}(z)), \nabla \tilde{a})$ is a bounded function in $B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$ and therefore, in order to prove (VI.80), it suffices to prove that for \mathcal{H}^{2} almost every z in $\Pi\left(\left(\mathcal{C}_{Q} \backslash\right.\right.$ $\left.\left.\mathcal{C}_{Q-1}\right)\right) \cap B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$

$$
\begin{equation*}
\partial_{\bar{z}} \tilde{a}-A((z, \tilde{a}(z)), \nabla \tilde{a}) \cdot \nabla \tilde{a}-B((z, \tilde{a}(z)), \nabla \tilde{a})-D(z, \tilde{a}(z))=0 \tag{VI.81}
\end{equation*}
$$

This later equality, because of the computations leaded between (VI.54)...(VI.58), is just equivalent to the fact that the tangent plane of the graph $(z, \tilde{a}(z))$ at that point is J-holomorphic, which is the case at every point of $\Pi\left(\left(\mathcal{C}_{Q} \backslash\right.\right.$ $\left.\left.\mathcal{C}_{Q-1}\right)\right) \cap B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$ due to lemma IV.2. Thus (VI.80) is proved. Using again (VI.19) we observe that

$$
\begin{align*}
|\nabla \zeta(z)| & \leq K \sum_{i, j \in I} \varphi_{i}(z) \varphi_{j}(z)\left[\left|\nabla \tilde{a}_{j}\right|+\left|\nabla \tilde{a}_{j}\right|^{3}\right] \\
& \sum_{i, j \in I} \varphi_{i}(z) \varphi_{j}(z)\left|\nabla \tilde{a}_{i}\right|(z)\left|\nabla^{2}\left(\tilde{a}_{i}-\tilde{a}_{j}\right)\right|(z) \\
& \sum_{i, j \in I}\left[\left|\nabla^{2} \varphi_{i}(z)\right| \varphi_{j}(z)+\left|\nabla \varphi_{i}\right|(z)\left|\nabla \varphi_{j}(z)\right|\right]\left|\tilde{a}_{i}(z)-\tilde{a}_{j}(z)\right|+\left|\tilde{a}_{j}-w_{i}\right| \\
& \leq K \tag{VI.82}
\end{align*}
$$

We claim now that ζ is Lipschitz in $B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$. Indeed, arguing like for \tilde{a}, given x and y in $B_{\rho_{x_{0}}}^{2}\left(x_{0}\right)$, if the segment $[x, y]$ has no intersection with $\Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right)$, then, integrating (VI.78) on that segment gives

$$
\begin{equation*}
|\zeta(x)-\zeta(y)| \leq K|x-y| \tag{VI.83}
\end{equation*}
$$

Otherwise, if there exist $z \in[x, y] \cap \Pi\left(\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right)$, then, (VI.79) gives

$$
|\zeta(x)|+|\zeta(y)| \leq K|x-z|+|y-z|
$$

which gives (VI.83) and the claim is proved. We claim now that $\tilde{a} \in$ $W^{2, q}\left(B_{\rho_{x_{0}} / 2}^{2}(0)\right)$ for any $q<+\infty$. Let e be a unit vector in $B_{\rho_{x_{0}} / 2}^{2}(0)$. For small h we denote $\tilde{a}_{h}(z):=\tilde{a}(z+h)$ and $\zeta_{h}(z):=\zeta(z+h)$. We have, using
the linear dependencies of

$$
\begin{align*}
\partial_{\bar{z}}\left(\tilde{a}-\tilde{a}_{h}\right) & -A((z, \tilde{a}), \nabla \tilde{a}) \cdot \nabla\left(\tilde{a}-\tilde{a}_{h}\right)-A\left((z, \tilde{a}), \nabla\left(\tilde{a}-\tilde{a}_{h}\right)\right) \cdot \nabla \tilde{a}_{h} \\
& -B\left((z, \tilde{a}), \nabla\left(\tilde{a}-\tilde{a}_{h}\right)\right) \\
& =\zeta-\zeta_{h}+A\left((z, \tilde{a}), \nabla \tilde{a}_{h}\right) \cdot \nabla \tilde{a}_{h}-A\left(\left(z+h, \tilde{a}_{h}\right), \nabla \tilde{a}_{h}\right) \cdot \nabla \tilde{a}_{h} \\
& B\left((z, \tilde{a}), \nabla \tilde{a}_{h}\right)-B\left(\left(z+h, \tilde{a}_{h}\right), \nabla \tilde{a}_{h}\right)+D(z, \tilde{a})-D\left(z+h, \tilde{a}_{h}\right) . \tag{VI.84}
\end{align*}
$$

Denote Δ_{h} the right-hand side of (VI.84) and observe that there exists a constant K such that

$$
\begin{equation*}
\left|\Delta_{h}\right| \leq K h . \tag{VI.85}
\end{equation*}
$$

Let $\chi_{\rho_{x_{0}}}$ be a cut-off function such that $\chi_{\rho_{x_{0}}} \equiv 1$ in $B_{\frac{\rho_{x_{0}}}{2}}^{2}(0)$ and $\chi_{\rho_{x_{0}}} \equiv 0$ in $\mathbb{R}^{2} \backslash B_{\rho_{x_{0}}}^{2}(0)$. Let $f_{h}:=\chi_{\rho_{x_{0}}}\left(\tilde{a}-\tilde{a}_{h}\right)$, and let L_{h} be the operator such that

$$
\begin{equation*}
L_{h} f:=\partial_{\bar{z}} f-A((z, \tilde{a}), \nabla \tilde{a}) \cdot \nabla f-A((z, \tilde{a}), \nabla f) \cdot \nabla \tilde{a}_{h}-B((z, \tilde{a}), \nabla f) \tag{VI.86}
\end{equation*}
$$

we have

$$
\begin{align*}
L_{h} f_{h} & =\chi_{\rho_{x_{0}}} \Delta_{h}+\left(\tilde{a}-\tilde{a}_{h}\right) \partial_{\bar{z}} \chi_{\rho_{x_{0}}}-A((z, \tilde{a}), \nabla \tilde{a}) \cdot\left(\tilde{a}-\tilde{a}_{h}\right) \nabla \chi_{\rho_{x_{0}}} \\
& -A\left((z, \tilde{a}),\left(\tilde{a}-\tilde{a}_{h}\right) \nabla \chi_{\rho_{x_{0}}}\right) \cdot \nabla \tilde{a}_{h}-B\left((z, \tilde{a}),\left(\tilde{a}-\tilde{a}_{h}\right) \nabla \chi_{\rho_{x_{0}}}\right) . \tag{VI.87}
\end{align*}
$$

Since \tilde{a} is Lipschitz, using (VI.85) and (VI.59), we have that

$$
\begin{equation*}
\left|L_{h} f_{h}\right| \leq K h \tag{VI.88}
\end{equation*}
$$

Observe that $\left|L_{h} f_{h}\right| \geq\left|\partial_{\bar{z}} f_{h}\right|-K \rho_{x_{0}}\left|\nabla f_{h}\right|$. Since $f_{h}=0$ on $\partial B_{\rho_{x_{0}}}^{2}(0)$, for any $p<+\infty$ we have that

$$
\begin{equation*}
\int_{B_{\rho_{x_{0}}(0)}^{2}}\left|\nabla f_{h}\right|^{q} \leq K_{q} \int_{B_{\rho_{x_{0}}}^{2}(0)}\left|\partial_{\bar{z}} f_{h}\right|^{q} \leq K_{q} \int_{B_{\rho_{x_{0}}}^{2}(0)}\left|L_{h} f_{h}\right|^{q}+K \rho_{x_{0}}^{q}\left|\nabla f_{h}\right|^{q} . \tag{VI.89}
\end{equation*}
$$

Dividing by h^{q} and making h tend to zero, we get that for $\rho_{x_{0}}$ small enough inequality (VI.72) holds and lemma VI. 3 is proved.

VI. 2 Constructing adapted coordinates to C in a neighborhood of $x_{0} \in \mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$.

We consider a point x_{0} in the support of our J-holomorphic current C and we assume, as above, that the multiplicity at x_{0} is Q and that the tangent cone $C_{0, x_{0}}$ is Q times a $J_{x_{0}}$-holomorphic disk D. We start with the coordinates $\left(z, w_{1}, \cdots, w_{p-1}\right)$ chosen in (II.1) such that $C_{0, x_{0}}=Q[D]$ is Q times the "horizontal" disk given by $w_{i}=0$ for $i=1, \cdots, p-1$ and we work in the ball $B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ whose radius $\rho_{x_{0}}$ is given by (V.23). The purpose of this subsection is to construct new coordinates $\left(\xi, \lambda_{1}, \cdots, \lambda_{p-1}\right)$ in $B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ such that the set $\lambda_{i}=0$ for $i=1, \cdots, p-1$ coincides with the graph of the average map \tilde{a} constructed in the previous subsection.

On the graph $\tilde{A}(z):=(z, \tilde{a}(z))$ we consider the complex structure j given by the metric induced by $g:=\omega(J \cdot, \cdot)$. Let X be a vector tangent to \tilde{A} at $(z, \tilde{a}(z))$. We compare $j X_{\tilde{a}}$ and $J X$ in $\mathbb{R}^{2 p}$. Let $n(z, \tilde{a}(z))$ be the $2 p-2$-unit vector normal to $T_{(z, \tilde{a}(z))} \tilde{A}$, making the identification between $2 p-1$-vectors and vector given by the ambient metric, we have

$$
j X:=n \wedge X
$$

We have seen that

$$
|J n-n|(z, \tilde{a}(z)) \leq r_{(z, \tilde{a}(z))}
$$

Therefore
$|j J X-J j X| \leq|n \wedge J X-J(n \wedge X)| \leq|n \wedge J X-J n \wedge J X| \leq r_{(z, \tilde{a}(z))}|X|$.
Thus we get that $|(J-j)(J+j) X| \leq r_{(z, \tilde{a}(z))}|X|$ where we extend j to the normal bundle to \tilde{A} again by the mean of the induced metric. Since $|(J+j) X|$ and $|X|$ are comparable independent of X, we have

$$
\begin{equation*}
\forall X \in T_{(z, \tilde{a}(z))} \tilde{A} \quad|(J-j) X| \leq K r_{(z, \tilde{a}(z))}|X| \tag{VI.90}
\end{equation*}
$$

We choose now coordinates $\xi=\left(\xi_{1}, \xi_{2}\right)$ on \tilde{A} compatible with j (i.e. $j \frac{\partial}{\partial \xi_{1}}=$ $\left.\frac{\partial}{\partial \xi_{2}}\right)$. Let $\left(z^{\prime}, \hat{a}\left(z^{\prime}\right)\right):=\left(\rho_{x_{0}}^{-1}, \rho_{x_{0}}^{-1} \tilde{a}\left(\rho_{x_{0}} z^{\prime}\right)\right)$ and in $B_{1}^{2 p}(0)$ we consider the metric $\hat{g}\left(z^{\prime}, w^{\prime}\right):=\rho_{x_{0}}^{-2}\left(\rho_{x_{0}} z^{\prime}, \rho_{x_{0}} w^{\prime}\right)^{*} g$ where g in $B_{\rho_{x_{0}}}^{2 p}(0)$ is the original metric $g(\cdot, \cdot)=\omega(J \cdot, \cdot)$. After this scaling we have, using (VI.72)

$$
\begin{equation*}
\int_{B_{1}^{2}}\left|\nabla^{2} \hat{a}\right|^{p} d z^{\prime} \leq K_{q} \rho_{x_{0}}^{q} \tag{VI.91}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{g}^{i j}=\delta^{i j}+h^{i j} \quad \text { where } h^{i j}(0,0)=0 \quad \text { and }\left\|\nabla h^{i j}\right\|_{\infty} \leq K \rho_{x_{0}} . \tag{VI.92}
\end{equation*}
$$

We look for isothermal coordinates $\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}\right)$ in $\hat{A}=\left\{\left(z^{\prime}, \hat{a}\left(z^{\prime}\right)\right) \quad z^{\prime} \in B_{1}^{2}(0)\right\}$ of the form $\xi^{\prime}=z^{\prime}+\delta\left(z^{\prime}\right)$ where δ will be small in $W^{2, p}$. On $B_{1}^{2}(0)$ we consider the metric $\hat{k}=\left(z^{\prime}, \hat{a}\left(z^{\prime}\right)\right)^{*} \hat{g}=\left(1+k_{11}\right)\left(d x_{1}^{\prime}\right)^{2}+2 k_{12} d x_{1}^{\prime} d x_{2}^{\prime}+\left(1+k_{22}\right)\left(d x_{2}^{\prime}\right)^{2}$. From the estimates above we have for any $q>0$, (since $\nabla \hat{a}(0,0)=0$ and $\left\|\nabla^{2} \hat{a}\right\|_{q} \leq \rho_{x_{0}}$ we have $\left.\|\nabla \hat{a}\|_{\infty} \leq \rho_{x_{0}}\right)$

$$
\begin{equation*}
\int_{B_{1}^{2}}|\nabla k|^{q} \leq K_{q} \rho_{x_{0}}^{2 q} \tag{VI.93}
\end{equation*}
$$

Following [DNF] page 110-111 it suffices to find δ_{1} solving

$$
\begin{equation*}
-\frac{\partial}{\partial x_{1}^{\prime}}\left[\frac{\left(1+k_{11}\right) \frac{\partial \delta_{1}}{\partial x_{1}^{\prime}}-k_{12} \frac{\partial \delta_{1}}{\partial x_{2}^{\prime}}}{\sqrt{\left(1+k_{11}\right)\left(1+k_{22}\right)-k_{12}^{2}}}\right]-\frac{\partial}{\partial x_{2}^{\prime}}\left[\frac{\left(1+k_{22}\right) \frac{\partial \delta_{1}}{\partial x_{2}^{\prime}}-k_{12} \frac{\partial \delta_{1}}{\partial x_{1}^{\prime}}}{\sqrt{\left(1+k_{11}\right)\left(1+k_{22}\right)-k_{12}^{2}}}\right]=0 . \tag{VI.94}
\end{equation*}
$$

Taking $\delta_{1}=0$ on $\partial B_{1}^{2}(0)$ we get a well-posed elliptic problem and we obtain the existence of δ_{1} satisfying

$$
\sum_{i=1}^{2} a_{i j} \frac{\partial^{2} \delta_{1}}{\partial x_{i}^{\prime} \partial x_{j}^{\prime}}=F \cdot \nabla \delta_{1}
$$

where $a_{i j}$ are Hölder continuous $\left\|a_{i j}-\delta_{i j}\right\|_{C^{0, \alpha}\left(B_{1}^{2}\right)} \leq K_{\alpha} \rho^{2}$ and $F \in L^{q}$ with $\int|F|^{q} \leq K_{p} \rho_{x_{0}}^{2 q}$. Standard elliptic estimates give then

$$
\begin{equation*}
\left\|\delta_{1}\right\|_{W^{2, q}\left(B_{1}^{2}\right)} \leq K \rho_{x_{0}}^{2} . \tag{VI.95}
\end{equation*}
$$

Therefore, going back to the original scale, we have found coordinates $\xi_{i}=$ $x_{i}+\rho_{x_{0}} \delta_{i}\left(\rho_{x_{0}}^{-1} z\right)=x_{i}+\alpha_{i}(z)$ such that

$$
\begin{equation*}
\|\nabla \alpha\|_{\infty} \leq K \rho_{x_{0}}^{2} \quad \text { and } \quad j \frac{\partial}{\partial \xi_{1}}=\frac{\partial}{\partial \xi_{2}} . \tag{VI.96}
\end{equation*}
$$

We translate these coordinates in such a way that $\alpha(0,0)=(0,0)$.
Inside $G l\left(\mathbb{R}^{2 p}\right)$, the space of invertible $2 p \times 2 p$ matrices with real coefficients we denote $U(p)$ the subspace of matrices M which commute with J_{0}.
$U(p)$ is a compact submanifold of $G l\left(\mathbb{R}^{2 p}\right)$ and for some metric in $G l\left(\mathbb{R}^{2 p}\right)$ we denote $\pi_{U(p)}$ the orthogonal projection from a neighborhood of $U(p)$ onto $U(p)$. We consider $M(z)$ the matrix which is given by

$$
\begin{equation*}
M(z):=\Lambda_{(z, \tilde{a}(z))}^{-1} \pi_{U(p)}\left(\Lambda_{(z, \tilde{a}(z))}\right) \tag{VI.97}
\end{equation*}
$$

where we recall that Λ_{x} is given by (VI.6). We have clearly, since $\|\nabla \tilde{a}\| \leq K$ and $\int_{B_{\rho_{x_{0}}}^{2}(0)}\left|\nabla^{2} \tilde{a}\right|^{q} \leq K_{q} \rho_{x_{0}}^{2}$ for any $p<+\infty$,

$$
\begin{equation*}
\|\nabla M(z)\|_{L^{\infty}\left(B_{\rho x_{0}}^{2}(0)\right)} \leq K \quad \text { and } \quad\left\|\nabla^{2} M(z)\right\|_{L^{q}\left(B_{\rho_{x_{0}}}^{2}(0)\right)} \leq K_{q} \rho_{x_{0}}^{\frac{2}{\bar{x}}} \tag{VI.98}
\end{equation*}
$$

We keep denoting $e_{1}, e_{2}, \cdots, e_{2 p}$ the canonical basis of $\mathbb{R}^{2 p}$. Let

$$
\begin{equation*}
\varepsilon_{k}(z):=M(z) \cdot e_{i} \tag{VI.99}
\end{equation*}
$$

We have for all $i=1 \cdots p$ that

$$
\begin{align*}
& J\left((z, \tilde{a}(z)) \cdot \varepsilon_{2 i-1}(z)=J\left((z, \tilde{a}(z)) \cdot \Lambda_{(z, \tilde{a}(z))}^{-1} \pi_{U(p)}\left(\Lambda_{(z, \tilde{a}(z))}\right) \cdot e_{2 i-1}\right.\right. \\
& =\Lambda_{(z, \tilde{a}(z))}^{-1} J_{0} \pi_{U(p)}\left(\Lambda_{(z, \tilde{a}(z))}\right) \cdot e_{2 i-1} \\
& =\Lambda_{(z, \tilde{a}(z))}^{-1} \pi_{U(p)}\left(\Lambda_{(z, \tilde{a}(z))}\right) J_{0} \cdot e_{2 i-1}=\Lambda_{(z, \tilde{a}(z))}^{-1} \pi_{U(p)}\left(\Lambda_{(z, \tilde{a}(z))}\right) \cdot e_{2 i}=\varepsilon_{2 i}(z) . \tag{VI.100}
\end{align*}
$$

In $B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ we consider the new coordinates (ξ, λ) given by

$$
\begin{equation*}
\Psi:(\xi, \lambda) \longrightarrow \Psi(\xi, \lambda):=(z(\xi), \tilde{a}(z(\xi)))+\sum_{l=1}^{2 p} \lambda_{l} \varepsilon_{l+2}(z(\xi)) \tag{VI.101}
\end{equation*}
$$

Let \tilde{J} be the expression of the almost complex structure in these coordinates (i.e. $\tilde{J}_{(\xi, \lambda)} \cdot X:=d \Psi^{-1} J_{\Psi(\xi, \lambda)} \cdot d \Psi \cdot X$), we shall now estimate $\left|\tilde{J}-J_{0}\right|$ for points satisfying $|\lambda| \leq r_{\Psi(\xi, \lambda)}$ - recall that r_{x} was defined in the beginning of chapter VI (see (V.11) and (V.12)) - which corresponds in $B_{\rho_{x_{0}}}^{2 p}\left(x_{0}\right)$ to a neighborhood of $\tilde{A}(z)=(z, \tilde{a}(z))$ containing the support of C. We have first for $i=1,2$, using (VI.90),

$$
\begin{align*}
& d \Psi \tilde{J}_{(\xi, 0)} e_{i}=J_{\Psi(\xi, 0)} \cdot \frac{\partial}{\partial \xi_{i}}=j_{\Psi(\xi, 0)} \cdot \frac{\partial}{\partial \xi_{i}}+\left(J_{\Psi(\xi, 0)}-j_{\Psi(\xi, 0)}\right) \cdot \frac{\partial}{\partial \xi_{i}} \\
& \quad=(-1)^{i+1} \frac{\partial}{\partial \xi_{i+1}}+O\left(r_{\Psi}(\xi, 0)\right), \tag{VI.102}
\end{align*}
$$

where we are using the convention $\frac{\partial}{\partial \xi_{i+1}}=\frac{\partial}{\partial \xi_{i-1}}$. We have then for $1<l \leq p$

$$
\begin{equation*}
d \Psi \tilde{J}_{(\xi, 0)} e_{2 l}=J_{\Psi(\xi, 0)} \frac{\partial}{\partial \lambda_{2 l}}=J_{\Psi(\xi, 0)} \varepsilon_{2 l}=-\varepsilon_{2 l-1}=\frac{\partial}{\partial \xi_{2 l+1}} . \tag{VI.103}
\end{equation*}
$$

For $|\lambda| \leq r_{\Psi(\xi, \lambda)}$ we have for $i=1,2$

$$
\begin{align*}
& d \Psi \tilde{J}_{(\xi, \lambda)} e_{i}=J_{\Psi(\xi, \lambda)} \cdot d \Psi_{(\xi, \lambda)} e_{i}=J_{\Psi(\xi, 0)} \cdot d \Psi_{(\xi, 0)} e_{i} \\
& +J_{\Psi(\xi, 0)} \cdot\left[d \Psi_{(\xi, \lambda)} e_{i}-d \Psi_{(\xi, 0)} e_{i}\right]+\left[J_{\Psi(\xi, \lambda)}-J_{\Psi(\xi, 0)}\right] \cdot d \Psi_{(\xi, \lambda)} e_{i} \tag{VI.104}
\end{align*}
$$

Using the fact that $\left|J_{\Psi(\xi, \lambda)}-J_{\Psi(\xi, 0)}\right| \leq\|J\|_{C^{1}}|\Psi(\xi, \lambda)-\Psi(\xi, 0)| \leq K r_{\Psi(\xi, \lambda)}$ and that $d \Psi_{(\xi, \lambda)} e_{i}-d \Psi_{(\xi, 0)} e_{i}=\frac{\partial \Psi}{\partial \xi_{i}}(\xi, \lambda)-\frac{\partial \Psi}{\partial \xi_{i}}(\xi, 0)=\sum_{l=1} \lambda_{l} \partial_{\xi_{i}} \varepsilon_{l+2}$, we have then

$$
\begin{equation*}
\left|d \Psi \tilde{J}_{(\xi, \lambda)} e_{1}-J_{\Psi(\xi, 0)} \cdot d \Psi_{(\xi, 0)} e_{1}\right| \leq O\left(r_{\Psi(\xi, \lambda)}\right) \tag{VI.105}
\end{equation*}
$$

Using (VI.90) again, we have $\left|\left[J_{\Psi(\xi, 0)}-j(\Psi(\xi, 0))\right] \cdot d \Psi_{(\xi, 0)} e_{i}\right| \leq O\left(r_{\Psi(\xi, 0)}\right)$, thus, since Ψ is Lipschitz $r_{\Psi(\xi, \lambda)}$ and $r_{\Psi(\xi, 0)}$ from lemma V. 3 are comparable and (VI.105) implies
$\left|d \Psi \tilde{J}_{(\xi, \lambda)} e_{1}-d \Psi_{(\xi, \lambda)} \cdot e_{2}\right| \leq\left|d \Psi \tilde{J}_{(\xi, \lambda)} e_{1}-d \Psi_{(\xi, 0)} \cdot e_{2}\right|+\left|d \Psi_{(\xi, 0)} \cdot e_{2}-d \Psi_{(\xi, \lambda)} \cdot e_{2}\right|$
and using again the fact that $\left|d \Psi_{(\xi, 0)} \cdot e_{2}-d \Psi_{(\xi, \lambda)} \cdot e_{2}\right|=\left|\frac{\partial \Psi}{\partial \xi_{2}}(\xi, \lambda)-\frac{\partial \Psi}{\partial \xi_{2}}(\xi, 0)\right|=$ $\left|\sum_{l=1} \lambda_{l} \partial_{\xi_{2}} \varepsilon_{l+2}\right| \leq O\left(r_{\Psi(\xi, \lambda)}\right)$, we have finally that

$$
\begin{equation*}
\left|d \Psi \tilde{J}_{(\xi, \lambda)} e_{1}-d \Psi_{(\xi, \lambda)} \cdot e_{2}\right| \leq O\left(r_{\Psi(\xi, \lambda)}\right) . \tag{VI.107}
\end{equation*}
$$

Finally, we have for $1<l \leq p$

$$
\begin{align*}
& d \Psi \tilde{J}_{(\xi, \lambda)} e_{2 l}=J_{\Psi(\xi, \lambda)} \cdot d \Psi_{(\xi, \lambda)} e_{2 l}=-d \Psi_{(\xi, \lambda)} e_{2 l-1} \\
& \quad+\left[d \Psi_{(\xi, \lambda)}-d \Psi_{(\xi, 0)}\right] e_{2 l-1}+J_{\Psi(\xi, 0)} \cdot\left[d \Psi_{(\xi, \lambda)}-d \Psi_{(\xi, 0)} e_{2 l}\right] \tag{VI.108}\\
& \quad+\left[J_{\Psi(\xi, \lambda)}-J_{\Psi(\xi, 0)}\right] \cdot d \Psi_{(\xi, \lambda)} .
\end{align*}
$$

Using the estimates we used in the above lines, (VI.108) becomes for $1<l \leq$ p

$$
\begin{equation*}
\left|d \Psi \tilde{J}_{(\xi, \lambda)} e_{2 l}+d \Psi_{(\xi, \lambda)} e_{2 l-1}\right| \leq O\left(r_{\Psi(\xi, \lambda)}\right) \tag{VI.109}
\end{equation*}
$$

Thus combining (VI.107) and (VI.109), we obtain that

$$
\begin{equation*}
\forall(\xi, \lambda) \quad \text { s. t. }|\lambda| \leq r_{\Psi(\xi, \lambda)} \quad\left|\tilde{J}_{(\xi, \lambda)}-J_{0}\right| \leq K r_{\Psi(\xi, \lambda)} . \tag{VI.110}
\end{equation*}
$$

VII The unique continuation argument.

In this part we show that, assuming \mathcal{P}_{Q-1} (recall that the definition is given by (II.8)), a point x_{0} in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ is isolated in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ unless all points in \mathcal{C}_{*} in a neighborhood from x_{0} ar of multiplicity Q. This fact has been already proved in chapter IV in the case where $C_{0, x_{0}}$ was not Q times the same flat holomorphic disk (the easy case). Here we assume that we are in the difficult case $C_{0, x_{0}}=Q\left[D_{0}\right]$ where D_{0} is the horizontal unit disk as before. We adopt the coordinate system about x_{0} constructed in section VIII.2. We denote by Π the map that assigns the first complex coordinate $\xi=\xi_{1}+i \xi_{2}$. Assuming there exists a sequence of points $x_{n} \in \mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ different from x_{0} and converging to x_{0}, the goal of this chapter is to show that C in a neighborhood is a Q times the same graph. The strategy is inspired by [Ta] chapter 1: in our coordinates, the points in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ are contained in the disk $\lambda_{i}=0$ for $i=1, \cdots, 2 p-2$ and we shall use a unique continuation argument based on the proof of some Carleman estimate to show that our assumption implies that the whole cycle in the neighborhood of x_{0} is included in that disk. Let $\left(\xi_{n}, 0\right)$ be the coordinates of $x_{n} \rightarrow x_{0}$. We can always extract a subsequence such that $\left|\xi_{n+1}\right| \leq\left|\xi_{n}\right|^{2}$. We then introduce the function $g_{N}(\xi):=\prod_{j=1}^{N}\left(\xi-\xi_{n}\right)$. Because of the speed of convergence of our sequence ξ_{n} to zero it is not difficult to check that there exists a constant K independent of N such that for any $\xi \in B_{\rho_{x_{0}}}^{2}$ the following holds

$$
\begin{equation*}
\frac{K^{-1}}{|\xi|^{N-N_{\xi}}} \frac{1}{\left|\xi-\xi_{N_{\xi}}\right|} \prod_{j=1}^{N_{\xi}-1} \frac{1}{\left|\xi_{j}\right|} \leq\left|g_{N}^{-1}\right|(\xi) \leq \frac{K}{|\xi|^{N-N_{\xi}}} \frac{1}{\left|\xi-\xi_{N_{\xi}}\right|} \prod_{j=1}^{N_{\xi}-1} \frac{1}{\left|\xi_{j}\right|} \tag{VII.1}
\end{equation*}
$$

where N_{ξ} is the index less than N such that $\left|\xi-\xi_{N_{\xi}}\right|$ is minimal among the $\left|\xi-\xi_{n}\right|$. It is also straightforward to check that

$$
\begin{align*}
& \left|\nabla g_{N}^{-1}\right|(\xi) \leq \frac{K\left(N-N_{\xi}\right)}{|\xi|^{N-N_{\xi}+1}} \frac{1}{\left|\xi-\xi_{N_{\xi}}\right|} \prod_{j=1}^{N_{\xi}-1} \frac{1}{\left|\xi_{j}\right|} \\
& +\frac{K}{|\xi|^{N-N_{\xi}}} \frac{1}{\left|\xi-\xi_{N_{\xi}}\right|^{2}} \prod_{j=1}^{N_{\xi}-1} \frac{1}{\left|\xi_{j}\right|}+\frac{K}{|\xi|^{N-N_{\xi}}} \frac{1}{\left|\xi-\xi_{N_{\xi}}\right|} \sum_{l=1}^{N_{\xi}-1} \frac{1}{\left|\xi_{l}\right|} \prod_{j=1}^{N_{\xi}-1} \frac{1}{\left|\xi_{j}\right|} \tag{VII.2}
\end{align*}
$$

and we have a corresponding estimate for $\left|\nabla^{k} g_{N}^{-1}\right|(\xi)$ for arbitrary k in general. Let $\xi \in \Pi\left(\mathcal{C}_{Q-1}\right)$. ξ belong to some $B_{\rho_{i}}^{2}\left(\xi_{i}\right)$ of the covering con-
structed in chapter VI. To every such a i we assign k_{i} an index such that $\left|\xi_{k_{i}}\right|+\rho_{k_{i}} \leq\left|\xi_{i}\right|-\rho_{i}$ and such that $\left|\xi_{k_{i}}-\xi_{i}\right| \leq K \rho_{i}$ and such that ρ_{i} and $\rho_{k_{i}}$ are comparable :

$$
\begin{equation*}
K^{-1} \rho_{i} \leq \rho_{k_{i}} \leq K \rho_{i} \tag{VII.3}
\end{equation*}
$$

This is always possible due to the Whitney-Besicovitch nature of our covering, moreover for every k there exists a uniformly bounded number of i such that $k_{i}=k$. Observe also, because of the relative Lipshitz estimate (IV.6) with constant ε and because of the "splitting stage" of $C_{\xi_{i}, \rho_{i}}$ characterised by (V.10) we have that for any $\delta>0$ one may choose ε small enough compared to α defined in chapter V such that for any $\xi \in \Pi\left(\mathcal{C}_{Q-1}\right)$

$$
\begin{equation*}
\operatorname{dist}\left(\xi, \Pi\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right) \geq \delta^{-1} \rho_{i} \tag{VII.4}
\end{equation*}
$$

where $\xi \in B_{\rho_{i}}^{2}\left(\xi_{i}\right)$. Combining (VII.3) and (VII.4) we get that

$$
\begin{align*}
& \forall i \in I \quad \forall \xi \in B_{\rho_{i}}^{2}\left(\xi_{i}\right) \quad \forall \zeta \in B_{\rho_{k_{i}}}^{2}\left(\xi_{k_{i}}\right) \\
& \quad \frac{1}{2} \operatorname{dist}\left(\xi, \Pi\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right) \leq \operatorname{dist}\left(\zeta, \Pi\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right) \leq 2 \operatorname{dist}\left(\xi, \Pi\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)\right) \tag{VII.5}
\end{align*}
$$

From (VII.1), (VII.2) and (VII.5) we get that for any $N \in \mathbb{N}$, for any $\xi \in$ $B_{\rho_{i}}^{2}\left(\xi_{i}\right)$ and for any $\zeta \in B_{\rho_{k_{i}}}^{2}\left(\xi_{k_{i}}\right)$

$$
\begin{equation*}
\left|g_{N}^{-1}\right|(\xi) \leq K\left|g_{N}^{-1}\right|(\zeta) \tag{VII.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{i} \frac{\left|\nabla g_{N}\right|}{\left|g_{N}\right|^{2}}(\xi)+\rho_{i}^{2} \frac{\left|\nabla^{2} g_{N}\right|}{\left|g_{N}\right|^{2}}(\xi) \leq K \frac{1}{\left|g_{N}\right|}(\zeta) . \tag{VII.7}
\end{equation*}
$$

Let $\chi_{\rho_{x_{0}}}$ be a cut-off function identically equal to 1 in $B_{\rho_{x_{0}} / 2}^{2}(0)$ and equal to 0 outside $B_{\rho_{x_{0}}}^{2}$. In $B_{\rho_{x_{0}}}^{2}\left(z_{0}\right) \times \mathbb{R}^{2 p-2}$ we introduce the cycle $C^{g_{N}}$ which is given by

$$
\begin{equation*}
\forall \xi \in B_{\rho_{x_{0}}}^{2} \quad\left\langle C^{g_{N}}, \Pi, \xi\right\rangle:=g_{N}^{-1}(\xi)_{*}\langle C, \Pi, \xi\rangle \tag{VII.8}
\end{equation*}
$$

In other words if $\Psi: \Sigma \rightarrow B_{\rho_{x_{0}}}^{2}(0) \times \mathbb{R}^{2 p-2}$ is a parametrisation of a piece of C, a parametrisation of the corresponding piece in $C^{g_{N}}$ is given by $\left(\Psi_{\xi}, g_{N}^{-1} \circ \Pi \circ \Psi \Psi_{\lambda}\right)$ where $\left(\Psi_{\xi}, \Psi_{\lambda}\right)$ are the coordinates of Ψ. Since $C^{g_{N}}$ is a cycle in $B_{\rho_{x_{0}}}^{2}\left(z_{0}\right) \times \mathbb{R}^{2 p-2}$, we have, denoting $\left.\Omega:=\sum_{l=1}^{p-1} d \lambda_{2 l-1} \wedge d \lambda_{2 l}\right)$

$$
\begin{equation*}
C^{g_{N}}\left(\chi_{\rho_{x_{0}}} \circ \Pi \Omega\right)=-C^{g_{N}}\left(d \chi_{\rho_{x_{0}}} \circ \Pi \wedge \sum_{l=1}^{p-1} \lambda_{2 l-1} d \lambda_{2 l}\right) \tag{VII.9}
\end{equation*}
$$

We split $C^{g_{N}}\left(\chi_{\rho_{x_{0}}} \circ \Pi \Omega\right)=C^{g_{N}}\left\llcorner B_{\rho_{x_{0}} / 2}^{2} \times \mathbb{R}^{2 p-2}(\Omega)+C^{g_{N}}\left\llcorner\left(B_{\rho_{x_{0}}}^{2} \backslash B_{\rho_{x_{0}} / 2}^{2}\right) \times\right.\right.$ $\mathbb{R}^{2 p-2}\left(\chi_{\rho_{x_{0}}} \circ \Pi \Omega\right)$ and we have

$$
\begin{equation*}
C^{g_{N}}\left\llcorner B_{\rho_{x_{0}} / 2}^{2} \times \mathbb{R}^{2 p-2}(\Omega)=\sum_{i \in I} C^{g_{N}}\left\llcorner B_{\rho_{x_{0}} / 2}^{2} \times \mathbb{R}^{2 p-2}\left(\varphi_{i} \circ \Pi \sum_{l=1}^{p-1} \Omega\right)\right.\right. \tag{VII.10}
\end{equation*}
$$

where we recall that the partition of unity was constructed in (V.48) adapted to the covering $B_{\rho_{i}}^{2}\left(\xi_{i}\right)$. Let $\Psi_{i}: \Sigma_{i} \rightarrow B_{2 \rho_{i}}^{2}\left(\xi_{i}\right) \times B_{2 \rho_{i}}^{2 p-2}(0)$ be a smooth parametrisation of $C\left\llcorner B_{2 \rho_{i}}^{2}\left(\xi_{i}\right) \times B_{\rho_{x_{0}}}^{2 p-2}(0)\right.$ and denote by η_{i} the map from Σ_{i} into $\mathbb{R}^{2 p}$ given by $[\mathrm{Ri} 3]$ - Proposition A. 3 - such that $\Psi_{i}+\eta_{i}$ is J_{0}-holomorphic. Since J in $B_{2 \rho_{i}}^{2 p}\left(\left(\xi_{i}, 0\right)\right)$ is closed to J_{0} at a distance comparable to ρ_{i} - see (VI.110) - we have

$$
\begin{equation*}
\left\|\nabla \eta_{i}\right\|_{L^{2}\left(\Sigma_{\frac{3}{2}, i}\right.} \leq \rho_{i}^{2} \tag{VII.11}
\end{equation*}
$$

where we recall that $\Sigma_{\frac{3}{2}, i}=\Sigma_{i} \cap \Psi_{i}^{-1}\left(B_{\frac{3 \rho_{i}}{2}}^{2}\left(\xi_{i}\right) \times \mathbb{R}^{2}\right)$. Using now lemma II. 2 of [Ri3], which does not require J to be $\stackrel{2}{C}^{1}$ in these coordinates but just the metric g to be close to the flat one, one has

$$
\begin{equation*}
\left\|\eta_{i}\right\|_{L^{2}\left(\Sigma_{\frac{4}{3}, i}\right)} \leq \rho_{i}^{3} \tag{VII.12}
\end{equation*}
$$

Using the parametrisation $\Psi_{i}=\left(\Psi_{i, \xi}, \Psi_{i, \lambda}\right)$, we have

$$
\begin{align*}
& C^{g_{N}}\left\llcorner B_{\rho_{x_{0}} / 2}^{2} \times \mathbb{R}^{2 p-2}\left(\varphi_{i} \circ \Pi \Omega\right)\right. \\
& =\int_{\Sigma_{i}} \varphi\left(\Psi_{i, \xi}\right) \sum_{l=1}^{p-1} d\left[\frac{\Psi_{i, \lambda}^{2 l-1}}{g\left(\Psi_{i, \xi}\right)}\right] \wedge d\left[\frac{\Psi_{i, \lambda}^{2 l}}{g\left(\Psi_{i, \xi}\right)}\right] \tag{VII.13}
\end{align*}
$$

We compare this quantity with

$$
\begin{align*}
& C_{i}^{g_{N}}\left\llcorner\left(\varphi_{i} \circ \Pi \Omega\right)\right. \\
& :=\int_{\Sigma_{i}} \varphi\left(\Psi_{i, \xi}\right) \sum_{l=1}^{p-1} d\left[\frac{\Psi_{i, \lambda}^{2 l-1}+\eta_{i, \lambda}^{2 l-1}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right] \wedge d\left[\frac{\Psi_{i, \lambda}^{2 l}+\eta_{i, \lambda}^{2 l}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right] . \tag{VII.14}
\end{align*}
$$

One has

$$
\begin{align*}
& \left|\left(C_{i}^{g_{N}}-C^{g_{N}}\right)\left(\varphi_{i} \circ \Pi \sum_{l=1}^{p-1} d \lambda_{2 l-1} \wedge d \lambda_{2 l}\right)\right| \leq \\
& K \int_{\Sigma_{i}}\left|\nabla\left[\frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}-\frac{\Psi_{i, \lambda}}{g\left(\Psi_{i, \xi}\right)}\right]\right|\left|\nabla\left[\frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right]\right| \tag{VII.15}\\
& \leq \delta K \int_{\Sigma_{i}} \varphi_{k_{i}}\left|\nabla\left[\frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right]\right|^{2} \\
& +\frac{K}{\delta} \int_{\Sigma_{i}}\left|\nabla\left[\frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}-\frac{\Psi_{i, \lambda}}{g\left(\Psi_{i, \xi}\right)}\right]\right|^{2}
\end{align*}
$$

We have

$$
\begin{align*}
& \int_{\Sigma_{i}}\left|\nabla\left[\frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}-\frac{\Psi_{i, \lambda}}{g\left(\Psi_{i, \xi}\right)}\right]\right|^{2} \\
& \leq \int_{\Sigma_{i}}\left|\nabla\left[\Psi_{i}\left(\frac{1}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}-\frac{1}{g\left(\Psi_{i, \xi}\right)}\right)\right]\right|^{2} \tag{VII.16}\\
& +\int_{\Sigma_{i}}\left|\nabla \eta_{i}\right| \sup _{\xi \in B_{\rho_{i}}^{2}\left(\xi_{i}\right)} \frac{1}{|g(\xi)|^{2}}+\int_{\Sigma_{i}}\left|\eta_{i}\right|^{2} \sup _{\xi \in B_{p_{i}}^{2}\left(\xi_{i}\right)} \frac{|\nabla g|^{2}}{|g|^{4}}(\xi) .
\end{align*}
$$

Let $f_{0}(\xi)$ be the flat norm of the slice of $C^{g_{N}}$ minus the average curve, $\Psi_{\lambda}=0$, by $\Pi^{-1}(\xi)$,

$$
f_{N}(\xi)=\mathcal{F}\left(<C^{g_{N}}, \Pi, \xi>-Q \delta_{0}\right)
$$

Using (V.8), (observe that the difference of the densities for the metrics $\omega(\cdot, J \cdot)$ and $\omega_{0}\left(\cdot, J_{0} \cdot\right)$ is as small as we want for $\rho_{x_{0}}$ chosen small enough, using also (VII.11), (VII.12), (VII.6) and (VII.7), we have

$$
\begin{align*}
& \int_{\Sigma_{i}}\left|\nabla \eta_{i}\right|^{2} \sup _{\xi \in B_{p_{i}}^{2}\left(\xi_{i}\right)} \frac{1}{|g(\xi)|^{2}}+\int_{\Sigma_{i}}|\eta|^{2} \sup _{\xi \in B_{p_{i}}^{2}\left(\xi_{i}\right)} \frac{\left|\nabla g_{N}\right|^{2}}{\left|g_{N}\right|^{4}}(\xi) \\
& \leq K \int_{B_{p_{k_{i}}^{2}}\left(\xi_{k_{i}}\right)}\left|f_{N}\right|^{2} \tag{VII.17}
\end{align*}
$$

where we have also used the fact that $\int_{\Sigma_{k_{i}}} \varphi_{k_{i}}\left|\Psi_{k_{i}, \lambda}\right|^{2} \geq K \rho_{i}^{4}$. This lower bound is a crucial point in our paper it comes from the fact that C restricted
to $B_{\rho_{k_{i}}}\left(x_{k_{i}}\right)$ is split : we have that $\rho_{k_{i}}^{-2} M\left(C\left\llcorner B_{\rho_{k_{i}}}\left(x_{k_{i}}\right)\right)\right.$ is less that $\pi Q-$ $K_{0} \alpha$ (see (V.11)) where K_{0} and α only depend on p, Q, J and ω. If $\Psi_{k_{i}, \lambda}$ would have been too close to 0 in L^{2} norm, since the intersection number between $\left(\Psi_{k_{i}}\right)_{*}\left[\Sigma_{k_{i}}\right]$ and the $2 p-2$-planes $\Pi^{-1}(\xi)$ for $\xi \in B_{\rho_{k_{i}}}^{2}\left(\xi_{k_{i}}\right)$ is Q, $\rho_{k_{i}}^{-2} M\left(C\left\llcorner B_{\rho_{k_{i}}}\left(x_{k_{i}}\right)\right)\right.$ would have been too large would have contradicts the upper bound (V.11). The first term in the right-hand-side of (VII.16) can be bounded as follows

$$
\begin{align*}
& \int_{\Sigma_{i}}\left|\nabla\left[\Psi_{i}\left(\frac{1}{g_{N}\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}-\frac{1}{g_{N}\left(\Psi_{i, \xi}\right)}\right)\right]\right|^{2} \\
& \leq \int_{\Sigma_{i}}\left|\frac{1}{g_{N}\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}-\frac{1}{g_{N}\left(\Psi_{i, \xi}\right)}\right|^{2}+\int_{\Sigma_{i}} \rho_{i}^{2}\left|\nabla\left(\frac{1}{g_{N}\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}-\frac{1}{g_{N}\left(\Psi_{i, \xi}\right)}\right)\right|^{2} \\
& \leq K \int_{\Sigma_{i}} \rho_{i}^{4}\left|\sup _{\xi \in B_{p_{i}}^{2}\left(\xi_{i}\right)} \frac{\left|\nabla g_{N}\right|}{\left|g_{N}\right|^{2}}\right|^{2}(\xi) \\
& +\left.K \int_{\Sigma_{i}} \rho_{i}^{2}\left|\nabla \eta_{i}\right|^{2} \sup _{\xi \in B_{p_{i}}^{2}\left(\xi_{i}\right)} \frac{\left|\nabla g_{N}\right|}{\left|g_{N}\right|^{2}}\right|^{2}(\xi) \\
& +K \int_{\Sigma_{i}} \rho_{i}^{2}\left|\eta_{i}\right|^{2} \sup _{\xi \in B_{p_{i}}^{2}\left(\xi_{i}\right)}\left|\frac{\left|\nabla g_{N}\right|^{2}}{\left|g_{N}\right|^{3}}\right|^{2}(\xi) \\
& +K \int_{\Sigma_{i}} \rho_{i}^{2}\left|\eta_{i}\right|^{2} \sup _{\xi \in B_{p_{i}}^{2}\left(\xi_{i}\right)}\left|\frac{\left|\nabla^{2} g_{N}\right|}{\left|g_{N}\right|^{2}}\right|^{2}(\xi) \tag{VII.18}
\end{align*}
$$

Using (VII.6) and (VII.7) like above and combining (VII.15)...(VII.18), we have finally for every $\delta>0$

$$
\begin{align*}
& \left|\left(C_{i}^{g_{N}}-C^{g_{N}}\right)\left(\varphi_{i} \circ \Pi \sum_{l=1}^{p-1} d \lambda_{2 l-1} \wedge d \lambda_{2 l}\right)\right| \leq \\
& \delta K \int_{\Sigma_{i}} \varphi_{i}\left|\nabla\left[\frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right]\right|^{2}+\frac{K}{\delta} K \int_{B_{p_{k_{i}}\left(\xi_{k_{i}}\right)}\left|f_{N}\right|^{2}} \tag{VII.19}
\end{align*}
$$

Since $\Psi_{i}+\eta_{i} / g \circ \Pi \circ \Psi_{i}+\eta_{i}$ is an holomorphic map into \mathbb{C}^{p}, the λ-coordinates of it, $\Psi_{i, \lambda}+\eta_{i, \lambda} / g \circ \Pi \circ \Psi_{i}+\eta_{i}$ is also a holomorphic map but into \mathbb{C}^{p-1} and
one has

$$
\begin{align*}
& \left.\frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)} * \sum_{l=1}^{p-1} d \lambda_{2 l-1} \wedge d \lambda_{2 l}\right)=\frac{1}{2}\left(\Psi_{i, \lambda}+\eta_{i, \lambda}\right)^{*}\left(\sum_{l=1}^{p-1} d \Lambda_{l} \wedge d \bar{\Lambda}_{l}\right) \\
& =\left|\nabla \frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right|^{2} d \zeta \wedge d \bar{\zeta} \tag{VII.20}
\end{align*}
$$

where ζ denotes local complex coordinates on Σ_{i}, and Λ_{l} is the complex coordinate $\Lambda_{l}=\lambda_{2 l-1}+i \lambda_{2 l}$. Therefore, combining (VII.19) and (VII.20) we have for δ chosen such that $\delta K<\frac{1}{2}$

$$
\begin{align*}
& C^{g_{N}}\left(\varphi_{i} \circ \Pi \sum_{l=1}^{p-1} d \lambda_{2 l-1} \wedge d \lambda_{2 l}\right) \geq \\
& \frac{1}{2} \int_{\Sigma_{i}} \varphi_{i}\left|\nabla \frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right|^{2}-\frac{K}{\delta} \int_{B_{\rho_{k_{i}}\left(\xi_{k_{i}}\right)}}\left|f_{N}\right|^{2} \tag{VII.21}
\end{align*}
$$

Let $\left\{a_{i}^{l}(\xi)\right\}_{l=1 \cdots Q}$ be the holomorphic Q-valued graph realised by $\left(\Psi_{i, \xi}+\right.$ $\left.\eta_{i, \xi}, g_{N}^{-1}\left(\Psi_{i, \xi}+\eta_{i, \xi}\right) \Psi_{i, \lambda}+\eta_{i, \lambda}\right)$, we have that

$$
\begin{equation*}
\int_{\Sigma_{i}} \varphi_{i}\left|\nabla \frac{\Psi_{i, \lambda}+\eta_{i, \lambda}}{g\left(\Psi_{i, \xi}+\eta_{i, \xi}\right)}\right|^{2}=\int_{B_{p_{i}}^{2}} \varphi_{i} \sum_{l=1}^{p-1}\left|\nabla a_{i}^{l}\right|^{2}(\xi) d \xi \wedge d \bar{\xi} \tag{VII.22}
\end{equation*}
$$

Clearly this quantity is larger than $\int_{B_{p_{i}}^{2}} \varphi_{i}\left|\nabla \tilde{f}_{N}\right|^{2}$ where $\tilde{f}_{N}(\xi)$ is the Flat norm of the slice by $\Pi^{-1}(\xi)$ of the difference between $C_{i}^{g_{N}}$ and the average curve. Replacing \tilde{f}_{N} by f_{N} itself, the slice by $\Pi^{-1}(\xi)$, of $C^{g_{N}}$ minus the average curve, in the integral $\int_{B_{p_{i}}^{2}} \varphi_{i}\left|\nabla \tilde{f}_{N}\right|^{2}$, induces error terms which can be controlled by $\int_{B_{\rho_{k_{i}}}^{2}\left(\xi_{k_{i}}\right)}\left|f_{N}\right|^{2}$ like in the computation of the error between $C^{g_{N}}$ and $C_{i}^{g_{N}}$ above. Therefore we have

$$
\begin{equation*}
C^{g_{N}}\left(\varphi_{i} \circ \Pi \Omega\right) \geq \frac{1}{2} \int_{\Sigma_{i}} \varphi_{i}\left|\nabla f_{N}\right|^{2}-\frac{K}{\delta} \int_{B_{p_{k_{i}}}^{2}\left(\xi_{k_{i}}\right)}\left|f_{N}\right|^{2} \tag{VII.23}
\end{equation*}
$$

Because of the relative Lipschitz estimate, f_{N} extends as a $W^{1,2}$ function on all of $B_{\rho_{x_{0}}}^{2}(0)$. Standard Poincaré estimates yield

$$
\begin{equation*}
\int_{B_{\rho_{x_{0}}}^{2}}\left|\chi_{\rho_{x_{0}}} f_{N}\right|^{2} \leq K \rho_{x_{0}}^{2} \int_{B_{\rho_{x_{0}}}^{2}}\left|\nabla\left(\chi_{\rho_{x_{0}}} f_{N}\right)\right|^{2} \tag{VII.24}
\end{equation*}
$$

Taking $\rho_{x_{0}}$ small enough we can ensure that $K \rho_{x_{0}}^{2}>O(\delta)$ and combining (VII.9), (VII.23) and (VII.24) we finally get that

$$
\begin{equation*}
\int_{B_{\rho_{x_{0}} / 2}^{2}}\left|f_{N}\right|^{2} \leq K_{1} \int_{B_{\rho_{x_{0}}}^{2} \backslash B_{\rho_{x_{0}} / 2}^{2}}\left|f_{N}\right|^{2}+\left|\nabla f_{N}\right|^{2}+C^{g_{N}}\left(d \chi_{\rho_{x_{0}}} \circ \Pi \wedge \sum_{l=1}^{p-1} \lambda_{2 l-1} d \lambda_{2 l}\right) \tag{VII.25}
\end{equation*}
$$

Where K_{1} is a constant independent of N. By taking the sequence ξ_{n} such that the largest $\left|\xi_{1}\right|$ satisfies $\left|\xi_{1}\right| \leq \frac{\rho_{x_{0}}}{4}$, if C does not coincide with the average curve (f_{N} is not identically zero) near the origin we would have that $\left(\frac{\rho_{x_{0}}}{4}\right)^{2 N} \int_{B_{\rho_{x_{0}} / 2}^{2}}\left|f_{N}\right|^{2}$ would tend to infinity, whereas, it is not difficult to check that the right-hand-side of (VII.25) which involves quantities supported in $B_{\rho_{x_{0}}}^{2} \backslash B_{\rho_{x_{0}} / 2}^{2}$ is bounded by $K_{\rho_{x_{0}}} N^{2}\left(\frac{\rho_{x_{0}}}{2}\right)^{-2 N}$. The multiplication of it by $\left(\frac{\rho_{x_{0}}}{4}\right)^{2 N}$ tends clearly to zero as N tend to infinity. We have then obtained a contradiction and we have proved that any point inside $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ is surrounded in \mathcal{C}_{*} by points which are all in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ or by points which are all in \mathcal{C}_{Q-1}. It remains to show that a point in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ is not an accumulation point of $\cup_{q \leq Q-1} \operatorname{Sing}^{q}$. This is the purpose of the next chapter.

VIII Points in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ are not accumulation points of $\cup_{q \leq Q-1}$ Sing q.

In this chapter we prove, Assuming \mathcal{P}_{Q-1}, that points in $\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$ are not accumulation points of $\cup_{q \leq Q-1} \operatorname{Sing}^{q}$ and combining this fact with the result in the previous chapter we will have proved \mathcal{P}_{Q}.

Let then $x_{0} \in \mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}$, and assume then that x_{0} is an accumulation point of \mathcal{C}_{Q-1}, which means, using the monotonicity formula, lemma IV. 1 together with the result obtained in the previous chapter, that there exists a radius ρ such that $\mathcal{C}_{*} \cap B_{\rho}\left(x_{0}\right) \subset \mathcal{C}_{Q}$ and that $\left(\mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right) \cap B_{\rho}\left(x_{0}\right)=\left\{x_{0}\right\}$. From the assumed hypothesis \mathcal{P}_{Q-1}, we have then that there exists a Riemann surface Σ and a smooth J-holomorphic map Ψ such that $C\left\llcorner B_{r_{0}}\left(x_{0}\right)=\Psi_{*}[\Sigma]\right.$. The goal is to show that Σ has a finite topology and that it is a closed Riemann Surface. The idea is to perturb Ψ by finding $\eta \in L^{\infty}(\Sigma)$ such that $\Psi+\eta$ is J_{0}-holomorphic and $(\Psi+\eta)_{*}[\Sigma]$ is a cycle.

For any $r<r_{0}$, we denote Σ_{r} the finite Riemann surface obtained by
taking $\Sigma \cap \Psi^{-1}\left(B_{\rho}\left(x_{0}\right) \backslash B_{r}\left(x_{0}\right)\right)$ and we shall denote Γ_{r} the part of the boundary of Σ_{r} which is disjoint from $\partial \Sigma \subset\left(\left|\Psi-x_{0}\right|\right)^{-1}\left(r_{0}\right)$. On Σ_{r} we consider η_{r} the map which is given by Proposition A. 3 in [Ri3]. It satisfies in particular, using the complex coordinates induced by J_{0},

$$
\begin{align*}
& \bar{\partial}\left(\Psi+\eta_{r}\right)=0 \quad \text { in } \Sigma_{r} \\
& \forall r \leq r_{0} \quad \int_{\Sigma_{r}}\left|\nabla \eta_{r}\right|^{2} \leq \int_{\Sigma_{r}}\left|J(\Psi)-J_{0}\right|^{2}|\nabla \Psi|^{2} \leq K r_{0}^{4}, \tag{VIII.1}
\end{align*}
$$

where we have used that, for the induced metric by Ψ on Σ, (Ψ is an isometry) we have $\int_{\Sigma}|\nabla \Psi|^{2}=M\left(C\left\llcorner B_{r_{0}}\left(x_{0}\right)\right) \leq K r_{0}^{2}\right.$. Using local $\xi_{1} \xi_{2}$ coordinates in Σ_{r}, we have for all $k=1 \cdots 2 p$

$$
\frac{\partial \Psi_{i}^{k}}{\partial \xi_{1}}=-\sum_{l=1}^{2 p} J_{l}^{k}\left(\Psi_{i}\right) \frac{\partial \Psi^{l}}{\partial \xi_{2}} \quad \text { and } \quad \frac{\partial \Psi_{i}^{k}}{\partial \xi_{2}}=\sum_{l=1}^{2 p} J_{l}^{k}\left(\Psi_{i}\right) \frac{\partial \Psi^{l}}{\partial \xi_{1}}
$$

Taking respectively the ξ_{1} derivative and the ξ_{2} derivative of these two equations we obtain

$$
\begin{equation*}
\forall k=1 \cdots 2 p \quad \Delta_{\Sigma_{r}} \Psi_{i}^{k}=*\left(\sum_{l=1}^{2 p} d\left(J_{l}^{k}\left(\Psi_{i}\right)\right) \wedge d \Psi_{i}^{l}\right) \tag{VIII.2}
\end{equation*}
$$

From (VIII.1) we deduce that $\Delta_{\Sigma_{r}}\left(\Psi+\eta_{r}\right)=0$ therefore this yields

$$
\begin{equation*}
\forall k=1 \cdots 2 p \quad \Delta_{\Sigma_{r}} \eta_{r}^{k}=-*\left(\sum_{l=1}^{2 p} d\left(J_{l}^{k}\left(\Psi_{i}\right)\right) \wedge d \Psi_{i}^{l}\right) \tag{VIII.3}
\end{equation*}
$$

Let δ_{r}^{k} given by

$$
\left\{\begin{array}{l}
\Delta_{\Sigma_{r}} \delta_{r}^{k}=*\left(\sum_{l=1}^{2 p} d\left(J_{l}^{k}\left(\Psi_{i}\right)\right) \wedge d \Psi_{i}^{l}\right) \quad \text { in } \Sigma_{r} \tag{VIII.4}\\
\delta_{r}^{k}=0 \quad \text { on } \partial \Sigma_{r}
\end{array}\right.
$$

From [Ge] and [To] there exists a universal constant K such that

$$
\begin{equation*}
\left\|\delta_{r}\right\|_{L^{\infty}\left(\Sigma_{r}\right)}+\|\nabla \delta\|_{L^{2}\left(\Sigma_{r}\right)} \leq K\|J\|_{C^{1}} \int_{\Sigma_{r}}|\nabla \Psi|^{2} \leq K r_{0}^{2} \tag{VIII.5}
\end{equation*}
$$

Because of the above estimates, taking some sequence $r_{n} \rightarrow 0$, one can always extract a subsequence $r_{n^{\prime}}$ such that $\eta_{r_{n^{\prime}}}$ and $\delta_{r_{n^{\prime}}}$ converge to limits η_{0} and δ_{0} that satisfy in particular

$$
\begin{align*}
& \bar{\partial}\left(\Psi+\eta_{0}\right)=0 \quad \text { in } \Sigma \\
& \Delta_{\Sigma}\left(\eta_{0}+\delta_{0}\right)=0 \quad \text { in } \Sigma \tag{VIII.6}\\
& \left\|\nabla \delta_{0}\right\|_{L^{2}(\Sigma)}+\left\|\delta_{0}\right\|_{L^{\infty}(\Sigma)} \leq K r_{0}^{2}
\end{align*}
$$

For any $k=1, \cdots, 2 p$ we consider the harmonic function $u^{k}:=\eta^{k}+\delta^{k}$. Using the coarea formula we have for any $r<r_{0}$

$$
\begin{equation*}
\int_{0}^{r} d s \int_{\Gamma_{s}}\left|\nabla u^{k}\right|=\int_{\Sigma \backslash \Sigma_{r}}\left|\nabla u^{k}\right||\nabla| \Psi| | \leq r\left(\int_{\Sigma \backslash \Sigma_{r}}\left|\nabla u^{k}\right|^{2}\right)^{\frac{1}{2}} . \tag{VIII.7}
\end{equation*}
$$

Therefore using a mean formula, for any $\varepsilon>0$ there exists $s>0$ such that

$$
\begin{equation*}
\int_{\Gamma_{s}}\left|\nabla u^{k}\right| \leq \varepsilon . \tag{VIII.8}
\end{equation*}
$$

We have

$$
\begin{equation*}
0=\int_{\Sigma_{s}} \Delta_{\Sigma} u^{k}=\int_{\Gamma_{s}} \frac{\partial u^{k}}{\partial \nu}+\int_{\partial \Sigma} \frac{\partial u^{k}}{\partial \nu} \tag{VIII.9}
\end{equation*}
$$

By choosing ε smaller and smaller and taking the corresponding s given by (VIII.8), one gets

$$
\begin{equation*}
\int_{\partial \Sigma} \frac{\partial u^{k}}{\partial \nu} \tag{VIII.10}
\end{equation*}
$$

Let $m<M$ be two values such that $\sup _{\partial \Sigma} u^{k}<m$ and consider the truncation $T_{m}^{M} u^{k}$ equal to m if $u^{k} \leq m$ equal to M if $u^{k} \geq M$ and equal to u^{k} otherwise. We have

$$
\begin{equation*}
0=\int_{\Sigma_{s}} T_{m}^{M} u^{k} \Delta_{\Sigma} u^{k}=-\int_{\Sigma_{s}}\left|\nabla T_{m}^{M} u^{k}\right|^{2}+\int_{\Gamma_{s}} T_{m}^{M} u^{k} \frac{\partial u^{k}}{\partial \nu}+m \int_{\partial \Sigma} \frac{\partial u^{k}}{\partial \nu} \tag{VIII.11}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int_{\Sigma_{s}}\left|\nabla T_{m}^{M} u^{k}\right|^{2} \leq M \int_{\Gamma_{s}}\left|\nabla u^{k}\right| \tag{VIII.12}
\end{equation*}
$$

and by choosing againg s tending to zero according to (VIII.8), one gets that $T_{m}^{M} u^{k}$ is identically equal to m and we deduce that $u^{k} \leq m$ in Σ. Similarly one gets that u^{k} is bounded from below and then we have proved that $\|u\|_{L^{\infty}(\Sigma)}<+\infty$. Combining this fact with (VIII.6) we have that

$$
\begin{equation*}
\left\|\eta_{0}\right\|_{L^{\infty}(\Sigma)}<+\infty \tag{VIII.13}
\end{equation*}
$$

Being more careful above by taking eventually Σ_{r} instead of Σ for some $r \in\left[r_{0} / 2, r_{0}\right]$, and using [Ri3] we could have shown that $\left\|\eta_{0}\right\|_{L^{\infty}(\Sigma)}<K r_{0}^{2}$. We claim now that $\partial\left(\Psi+\eta_{0}\right)_{*}[\Sigma]=\left(\Psi+\eta_{0}\right)_{*}[\partial \Sigma]$, that is : for any smooth 1 -form ϕ equal to zero in a neighborhood of $\left(\Psi+\eta_{0}\right)(\partial \Sigma)$, one has

$$
\begin{equation*}
\int_{\Sigma}\left(\Psi+\eta_{0}\right)^{*} d \phi=0 \tag{VIII.14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|\int_{\Sigma_{s}}\left(\Psi+\eta_{0}\right)^{*} d \phi\right|=\left|\int_{\Gamma_{s}}\left(\Psi+\eta_{0}\right)^{*} \phi\right| \leq K_{\phi} \int_{\Gamma_{s}}\left|\nabla \Psi+\eta_{0}\right| . \tag{VIII.15}
\end{equation*}
$$

Arguing like for proving (VIII.8), for any ε we can find s such that $\int_{\Gamma_{s}} \mid \nabla \Psi+$ $\eta_{0} \mid \leq \varepsilon$ and we then deduce (VIII.14). Thus in $B_{r_{0}}^{2 p}\left(x_{0}\right) \backslash \Psi+\eta_{0}(\partial \Sigma)$, $\left(\Psi+\eta_{0}\right)_{*}[\Sigma]$ is a integer-multiplicity rectifiable holomorphic cycle. Using the results of Harvey-Shiffman and King ([HS] and [Ki]) we have that there exists a compact Riemann surface with boundary Σ^{\prime} and an holomorphic map Ψ^{\prime} such that $\left(\Psi+\eta_{0}\right)_{*}[\Sigma]=\Psi_{*}^{\prime}\left[\Sigma^{\prime}\right] .(\phi+\eta)(\Sigma)$ is therefore an holomophic curve - with boundary - in $\mathbb{C}^{2 p}$. We claim that $\Psi+\eta_{0}$ is a holomorphic simple covering of Σ^{\prime}. Indeed let ω_{Σ} be the pull-back by Ψ of the symplectic form ω in $\mathbb{R}^{2 p}$ we have $\int_{\Sigma} \omega_{\Sigma}=\int_{\Sigma} \Psi^{*} \omega=\int_{\Sigma}|\nabla \Psi|^{2} \geq \pi Q r_{0}^{2}$, because of the monotonicity formula $\left(x_{0} \in \mathcal{C}_{Q} \backslash \mathcal{C}_{Q-1}\right)$. Let $\omega_{\Sigma^{\prime}}$ be the restriction of ω_{0} to Σ^{\prime}. We have $\int_{\Sigma}\left(\Psi+\eta_{0}\right)^{*} \omega_{\Sigma^{\prime}}=\int_{\Sigma}\left(\Psi+\eta_{0}\right)^{*} \omega_{0}=\int_{\Sigma}\left|\nabla\left(\Psi+\eta_{0}\right)\right|^{2}$. Because of (VIII.1), we have that the holomorphic covering $\Psi+\eta_{0}$ from Σ onto Σ^{\prime} satisfies

$$
\begin{equation*}
\left|\int_{\Sigma} \omega_{\Sigma}-\int_{\Sigma}\left(\Psi+\eta_{0}\right) \omega_{\Sigma^{\prime}}\right|=o_{r_{0}}\left(\int_{\Sigma} \omega_{\Sigma}\right) \tag{VIII.16}
\end{equation*}
$$

Therfore, for r_{0} small enough this covering has to be a simple one and Σ is a compact Riemann surface. Ψ is now a J-holomorphic map from a compact Riemann surface Σ into $\left(B^{2 p}, J\right)$, it is then smooth and $C \mathbf{L} B_{r_{0}}^{2 p}$ is a J-holomorphic curve.

A Appendix

Lemma A. 1 Let U be an open subset of \mathbb{R}^{2}, let $0<\lambda<1$ and let $\left(B_{r_{i}}^{2}\left(z_{i}\right)\right)_{i \in I}$ a covering of U which is locally finite : there exists $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall z \in U \quad \operatorname{Card}\left\{i \in I \quad \text { s.t. } \quad z \in B_{r_{z_{i}}}^{2}\left(z_{i}\right)\right\} \leq N, \tag{A.1}
\end{equation*}
$$

moreover one assumes that

$$
\begin{equation*}
\forall i, j \in I \quad B_{r_{i}}\left(z_{i}\right) \cap B_{r_{j}}\left(z_{j}\right) \neq \emptyset \quad \Longrightarrow \quad r_{i} \geq \lambda r_{j} \tag{A.2}
\end{equation*}
$$

Then there exists δ and $P \in \mathbb{N}$ depending on λ only such that

$$
\begin{equation*}
\forall i \in I \quad \operatorname{Card}\left\{j \in I \quad \text { s. t. } B_{r_{j}}\left(z_{j}\right) \cap B_{(1+\delta) r_{i}}\left(z_{i}\right) \neq \emptyset\right\} \leq P . \tag{A.3}
\end{equation*}
$$

Proof of lemma A.1. We argue by contradiction. Assume there exist $\delta_{n} \rightarrow 0$, a sequences of coverings of $U,\left(B_{r_{n, i}}^{2}\left(z_{n, i}\right)\right)$ for $i \in I$ satisfying (A.1) and (A.2) and a sequence of indices i_{n} such that
$\operatorname{Card}\left\{j \in I \quad\right.$ s. t. $\left.B_{r_{j, n}}\left(z_{j, n}\right) \cap B_{\left(1+\delta_{n}\right) r_{i_{n}, n}}\left(z_{i_{n}, n}\right) \neq \emptyset\right\} \rightarrow+\infty \quad$ as $n \rightarrow+\infty$
After a possible rescaling of the whole covering and a translation we can assume that $r_{i_{n}, n}=1$ and $z_{i_{n}, n}=0$. After extraction of a subsequence, we can ensure that there exists $A \in \partial B_{1}(0)$ such that for any $r>0$

$$
\begin{equation*}
\operatorname{Card}\left\{j \in I \quad \text { s. t. } B_{r_{j, n}}\left(z_{j, n}\right) \cap B_{r}(A) \neq \emptyset\right\} \rightarrow+\infty \quad \text { as } n \rightarrow+\infty \tag{A.5}
\end{equation*}
$$

For a given r and n we take the longest sequence of distinct balls of our covering $B_{r_{j_{p}, n}}\left(z_{j_{p}, n}\right)$ for $p=0 \cdots P_{n}$ satisfying
i)

$$
B_{r_{j_{0}, n}}\left(z_{j_{0}, n}\right)=B_{1}(0)
$$

ii)

$$
\forall p \leq P_{n}-1 \quad B_{r_{j_{p}, n}}\left(z_{j_{p}, n}\right) \cap B_{r_{j_{p+1}, n}}\left(z_{j_{p+1}, n}\right) \neq \emptyset,
$$

iii)

$$
\forall p \leq P_{n} \quad B_{r_{j_{p}, n}}\left(z_{j_{p}, n}\right) \cap B_{r}(A) \neq \emptyset .
$$

It is clear that for a given $r P_{n} \rightarrow+\infty$, indeed if it would not be the case, i.e. $P_{n} \leq P_{*}<+\infty$ this would imply that the minimal radius for the balls of the covering intersecting $B_{r}(A)$ is $\lambda^{P_{*}}$ and combining this fact with (A.5) would contradict (A.1). Therefore we can then find $r_{m} \rightarrow+\infty$ and $n_{m} \rightarrow+\infty$ as $m \rightarrow+\infty$ and sequences $\left(B_{r_{j_{p}, n_{m}}}\right)$ for $1 \leq p \leq Q_{m}$ and for $m=0 \cdots+\infty$ such that
i)

$$
B_{r_{j_{0}, n_{m}}}\left(z_{j_{0}, n_{m}}\right)=B_{1}(0)
$$

ii)

$$
\begin{equation*}
\forall p \leq Q_{m-1} \quad B_{r_{j_{p}, n_{m}}}\left(z_{j_{p}, n_{m}}\right) \cap B_{r_{j_{p+1}, n_{m}}}\left(z_{j_{p+1}, n_{m}}\right) \neq \emptyset, \tag{A.6}
\end{equation*}
$$

iii)

$$
\begin{equation*}
\forall p \leq Q_{m} \quad B_{r_{j_{p}, n_{m}}}\left(z_{j_{p}, n_{m}}\right) \cap B_{r_{m}}(A) \neq \emptyset \tag{A.7}
\end{equation*}
$$

iv)

$$
Q_{m} \rightarrow+\infty
$$

Since $\lambda \leq r_{j_{1}, n_{m}} \leq \lambda^{-1}$ and since the distance $\left|z_{j_{1}, n_{m}}\right|$ is bounded, we can extract from n_{m} a subsequence that we still denote n_{m} such that $B_{r_{j_{1}, n_{m}}}\left(z_{j_{1}, n_{m}}\right)$ converges to a limiting ball $B_{r_{1, \infty}}\left(z_{1, \infty}\right)$ with $\lambda \leq r_{1, \infty} \leq \lambda^{-1}, z_{1, \infty} \leq 2$ and $A \in \overline{B_{r_{1, \infty}}\left(z_{1, \infty}\right)}$. This procedure can be iterated and using a diagonal argument we can assume that

$$
\forall p \in \mathbb{N} \quad r_{j_{p}, n_{m}} \rightarrow r_{p, \infty} \quad z_{j_{p}, n_{m}} \rightarrow z_{p, \infty}
$$

such that

$$
\forall p \in \mathbb{N} \quad \lambda^{p} \leq r_{p, \infty} \leq \lambda^{-p} \quad\left|z_{p, \infty}\right| \leq 2 \quad \text { and } A \in \overline{B_{r_{p, \infty}}\left(z_{p, \infty}\right)}
$$

Moreover because of (A.1) we have that

$$
\begin{equation*}
\forall z \in \mathbb{R}^{2} \quad \operatorname{Card}\left\{p \in \mathbb{N} \quad \text { s. t. } \quad z \in B_{r_{p, \infty}}^{2}\left(z_{p, \infty}\right)\right\} \leq N \tag{A.8}
\end{equation*}
$$

Because of this later fact, since $A \in \overline{B_{r_{p, \infty}}\left(z_{p, \infty}\right)}$ for all p it is clear that $r_{p, \infty} \rightarrow+\infty$ as $p \rightarrow+\infty$. Because of (A.8) again, the number of open balls
$B_{r_{p, \infty}}\left(z_{p, \infty}\right)$ containing A is bounded by N and we can therefore forget them while considering the sequence and assume that

$$
\forall p \quad A \in \partial B_{r_{p, \infty}}^{2}\left(z_{p, \infty}\right)
$$

Let $\vec{t}_{p}(A) \in S^{1}$ be the unit exterior normal to $\partial B_{r_{p, \infty}}^{2}\left(z_{p, \infty}\right)$ at A. Let \vec{t}_{∞} be an accumulation unit vector of the sequence $\vec{t}_{p}(A)$. Given a direction \vec{t} and an open disk containing A in it's boundary and whose exterior normal at A is given by \vec{t} any other open disk containing A in it's boundary and whose exterior unit at A is not $-\vec{t}$ as a non empty intersection with that disk. Taking $B_{r_{p_{0}, \infty}}^{2}\left(z_{p_{0}, \infty}\right)$ such that $\vec{t}_{p_{0}}(A) \neq-\vec{t}_{\infty}$, there exists then infinitely many disks $B_{r_{p}, \infty}^{2}\left(z_{p, \infty}\right)$ having a non empty intersection with $B_{r_{p_{0}, \infty}}^{2}\left(z_{p_{0}, \infty}\right)$ but then, because of (A.2) that passes to the limit, all these infinitely many disks have a radius which is bounded from below by a positive number and this contradicts the fact that $r_{p, \infty} \rightarrow+\infty$ implied by (A.8). Thus lemma A. 1 is proved.

Acknowledgements : The authors are very gratefuhl to Robert Bryant for having pointed out to them almost complex structures admitting no locally compatible positive symplectic forms.

References

[Ale] H. Alexander "Holomorphic chains and the support hypothesis conjectures", J. Amer. Math. Soc., 10 (1997), no1, 123-138.
[All] W.K. Allard, "On the first variation of a varifold", Ann. Math., 95 (1972), 417-491.
[Alm] F. Almgren "Almgren's Big Regularity Paper" World Sci. Mono. Series in Math. vol. 1, Ed. V.Scheffer, J. Taylor, World Scientific, 2000.
[Br] R.Bryant "Submanifolds and special structures on the octonians" J.Diff. Geo. 17 (1982), 182-232.
[Ch] S.X.-D. Chang "Two dimensional area minimizing integral currents are classical minimal surfaces" J. A.M.S., 1, no 4, (1988), 699-778.
[Do] S.K. Donaldson "Infinite determinants, stable bundles and curvature" Duke Math. J. 54 (1987), 231-247.
[DNF] B.Dubrovine, A.Fomenko and S.Novikov "Modern Geometry - Methods and applications" Part I, Springer, GTM 93, (1992).
[FK] H.M. Farkas and I. Kra "Riemann Surfaces", GTM 71, Springer Verlag, 1991.
[Fe] H. Federer "Geometric Measure Theory", Springer-Verlag, 1969.
[Ge] Y. Ge "Estimations of the best constant involving the L^{2} norm in Wente's inequality and compact H-Surfaces in Euclidian space. C.O.C.V., 3, (1998), 263-300.
[Gi] M. Giaquinta "Multiple Integrals in the calculus of variations and nonlinear elliptic systems" Annals of Math. Studies, 105, Princeton University Press, (1983).
[HS] F.R.Harvey and B.Shiffman "A characterization of holomorphic chains" Ann. of Math., 99, (1974), 553-587.
[Ki] J.R.King "The currents defined by analytic varieties", Acta. Math. 127, (1971), 185-220.
[Li] F.H.Lin "Gradient estimates and blow-up analysis for stationary harmonic maps" Ann. Math., 149, (1999), 785-829.
[Re] E.R. Reifenberg "An epiperimetric inequality related to the analyticity of minimal surfaces" Ann. of Math., 80 (1964), 1-14.
[Ri1] T. Rivière "Bubbling and regularity issues in geometric non-linear analysis" Proceedings of the I.C.M. Beijing, High. Edu. Press, 2002, vol. III, 197-208.
[Ri2] T. Rivière "A lower Epiperimetric Inequality for Minimizing Surfaces" C.P.A.M., 57 (2004).
[Ri3] T. Rivière "Approximating J-holomorphic curves by holomorphic ones" Calc. Var. P.D.E., 21 (2004).[?]
[RT] T. Rivière and G. Tian "The Singular set of J-holomorphic maps into projective algebraic varieties" J. Reine Angewan. Math., 570 (2004).
[ST] B. Siebert and G. Tian "Weierstrass polynomials and plane pseudoholomorphic curves" Chinese Ann. Math. Ser. B, 23, (2002), 1-10.
[Si] L. Simon "Lectures on geometric measure theory" Proc. Center for Math. Ana., vol. 3, Australian National University, 1984.
[Ta] C.Taubes "Seiberg-Witten and Gromov Invariants for symplectic 4manifolds" International Press (2000).
[Ti] G.Tian "Gauge theory and calibrated geometry, I" Ann. Math., 151 (2000), 193-268.
[To] P. Topping "The optimal constant in Wente's L^{∞} estimate, Comm. Math. Helv. 72, (1997), 316-328.
[UY] K.Uhlenbeck and S.T.Yau "On the existence of Hermitian-Yang-Mills connections in stable vector bundles" C.P.A.M. 39, (1986), S257-S293.
[Wh] B. White "Tangent cones to two-dimensional area-minimizing integral currents are unique" Duke Math. J., 50, no 1, (1983), 143-160.

[^0]: *D-Math, ETH Zentrum, 8049 Zürich, Switzerland.
 ${ }^{\dagger}$ Department of Mathematics, Princeton University, Princeton NJ 08544, USA.

