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Abstract : The Second Law of Thermodynamics asserts that the physical
entropy of an adiabatic system is an increasing function in time. In this paper
we will study a more stringent version of this law, according to which the
entropy should not only increase in time, but the rate of increase is optimal
in absolute value among all possible evolutions. We will establish this property
in the framework of non-linear scalar hyperbolic conservation law with strictly
convex fluxes.

1 Introduction

We consider solutions to the following equation

∂tu+ ∂xf(u) = 0 in R+ × R ,
u(x, 0) = u0(x) ,

}

(1)

where the flux f is strictly convex ( f ′′ ≥ c > 0 )and the initial date u0 ∈ L∞.
It is well known, that, even for smooth initial data, the classical solution can
cease to exist in finite time, due to the possible formation of shocks (see
Chapter 4.2 in [Da]). Therefore one has to consider weak solutions of (1),
i.e. solutions, which satisfy (1) in the distributional sense. However it turned
out, that, for a given initial data, the space of weak solutions is huge (see
Chapter 4.4 in [Da]). Therefore additional conditions have to be imposed to
single out the physical relevant weak solutions in some models.

In 1957 Oleinik proved in [Ol] uniqueness of bounded weak solutions,
which satisfy almost everywhere her ’E-condition’

u(y, t)− u(x, t) ≤
y − x

ct
, for x < y , t > 0 , (2)
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where c = inf f ′′. A immediate consequence of this condition (2) is a spectac-
ular regularization phenomena. Oleinik proved, that for bounded measurable
initial data, the weak solution satisfying almost everywhere (2) becomes im-
mediately locally BV in space and locally in space-time in the complement
of the initial line .

A more powerful approach was given by Kruzhkov in [Kr], where he re-
places condition (2) by a family of integral inequalities. This approach covers
also cases, where f is non-convex and the space dimension is bigger than one.
However in the case of convex fluxes one can show, that his entropy condi-
tion is equivalent to Oleinik’s E-condition (see Chapter 8.5 in [Da]). More
precisely for u0 ∈ L∞ he proved existence and uniqueness of weak solutions
satisfying the entropy condition: He considers the family of convex entropy
flux pairs (ηa, ξa)a∈R, where

ηa(u) = (u− a)+ and ξa(u) = sign(u− a)+(f(u) − f(a)) , (3)

and w+ stands for max{w, 0}. Then an entropy solution is a bounded func-
tion u, which satisfies (1) in the sense of distributions and

∂tηa(u) + ∂xξa(u) ≤ 0 . (4)

Equivalently one can replace the one parameter family (ηa, ξa)a∈R and as-
sume, that (4) is fulfilled for all convex η with corresponding entropy flux ξ,
which is defined by ξ =

∫

η′f ′. As a consequence of this one can show, if the
initial data u0 is in BV, that u is in BV for all later times.

Let a∧ b denote min{a, b}. Let u ∈ L∞(R× [0, T )) be a weak solution of
(1), such that

m(x, t, a) = ∂t(u ∧ a) + ∂xf(u ∧ a) ∈ Mloc(R × R+ × R)

where M denotes the space of Radon measures. One can define the absolute
value of the entropy production over a set Ω ⊂ R × R+ as being

EP =

∫

R

|m|(Ω, a) da . (5)

In the case of u being an entropy solution and hence in BV, the measure
m(x, t, a) and therefore the entropy production of u simplifies to

EP =

∫

Ω

∆(u+, u−)H1 Ju , (6)

where Ju denotes the rectifiable set of jump points of u, u+ and u− are
respectively the left and right approximate limits of u for some orientation
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of Ju and

∆(a, b) =
(a− b)2

[

f(a)+f(b)
2

]

− (a− b)
∫ b

a
f(s) ds

[(a− b)2 + (f(a) − f(b))2]
1
2

. (7)

It is natural to compare the different entropic productions of the weak solu-
tions to (1) - BV or not BV ! - and to ask the following questions : does
there exists a weak solution which minimizes the entropy production and, if
so, what properties does a minimizer of (5) have.

In this work we provide a partial answer to this question. We show a
weak solution of (1) whose entropy production increases in time less, than
any other weak solution’s entropy production, has to be the entropy solution.
Precisely

Let W denote the set of defect measures induced by a weak solution of
(1), i.e.

W :=

{

m(x, t, a) ∈ Mloc s.t. m(x, t, a) = ∂t(u ∧ a) + ∂xf(u ∧ a),
where u ∈ L∞ is a weak sol. of (1).

}

(8)

Our main result in the present work is the following.

Theorem 1. Let f ∈ C2(R) such that f ′′ ≥ c > 0 and

lim
|x|→∞

f(x) = ∞ . (9)

Moreover let u0 ∈ L∞(R) be compactly supported. Let u ∈ L∞(R× [0, T )) be
an arbitrary weak solution of (1), such that m(x, t, a) = ∂t(u∧a)+∂xf(u∧a) is
locally a Radon measure in R× [0, T )×R . Assume the ”entropy production”
m satisfies
∫

R

|m| (R × (0, t̄), a) da ≤

∫

R

|q| (R × (0, t̄), a) da ∀ q ∈ W and ∀t̄ ∈ (0, T ) .

(10)
Then u is the entropy solution, i.e. satisfies (2) and equivalently (4).

A similar criteria in a more restrictive setting is considered by Dafermos
in Chapter 9.7 of [Da]. He considers weak solutions u of (1) with initial data

u0(x) =

{

ul if x < 0 ,
ur if x > 0 .

(11)

Since the conservation law is invariant under Galilean transformations it is
reasonable in this case to consider weak solutions of the form

u(x, t) = v
(x

t

)

.
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One can then define ω = x
t

and consider v as a function only dependent of
ω, i.e. v = v(ω). Then v(ω) satisfies the ordinary differential equation

d

dω
(f(v(ω)) − ωv(ω)) + v(ω) = 0

in the sense of distributions and has prescribed end states

lim
ω→−∞

v(ω) = ul and lim
ω→∞

v(ω) = ur .

Furthermore it is assumed that v is in BV and denotes Jv the set of jump
points ω for v. For a given entropy-entropy flux pair (η(u), ξ(u)) C. Dafermos
defines the combined entropy of the shocks in v by

Pv =
∑

ω∈Jv

{ξ(v(ω+))− ξ(v(ω−)) − ω [η(v(ω+))− η(v(ω−))]} . (12)

Furthermore he introduces the rate of change of the total entropy production

Ḣv =
d

dt

∫ ∞

−∞

η(u(x, t)) dx =

∫ ∞

−∞

η(v(ω)) dω ,

for entropy-entropy flux pairs (η, ξ) such that η(ul) = η(ur) = 0.
He shows that in this simple case the rate of change of the total entropy

and the entropy productions are related to each other by

Ḣv = Pv + ξ(ul) − ξ(ur) .

We can now relate the combined entropy Pv to our entropy productions (5).
To do so one notices, that for a T > 0, ψ ∈ C∞

c (R × (0, T )) and an entropy-
entropy flux pair (η, ξ) we get after a change of variable

∫

R×[0,T ]

η(u(x, t))∂tψ + ξ(u(x, t))∂xψ dx dt

=

∫

R

ξ(v(ω))
d

dω
φ(ω) − η(ω)

d

dω
[ω · φ(ω)] dω

=
∑

ω∈Jv

φ(ω) {ξ(v(ω+))− ξ(v(ω−)) − ω [η(v(ω+))− η(v(ω−))]} ,

(13)

where

φ(ω) =

∫ T

0

ψ(ωt, t) dt . (14)
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For a jump point ω we write v+ = v(ω+) and v− = v(ω−), then taking the
particular entropy-entropy flux pair (ηa, ξa), defined in (3) and using identity
(13) gives

∫

R

∫

R×[0,T ]

ψ(x, t)dm(x, t, a) da

= −

∫

R

∑

ω∈Jv

φ(ω) {ξa(v+) − ξa(v−)) − ω [ηa(v+) − ηa(v−)]} da

(15)

A short calculation reveals
∫

R

ξa(v+) − ξa(v−) − ω [ηa(v+) − ηa(v−)] da

= −
1

2
ω
(

v2
− − v2

+

)

−

∫ v+

v−

sf ′(s) ds , (16)

where we used the Rankine-Hugoniot condition for self similar solutions:

f(v+) − f(v−) = ω(v+ − v−) .

Applying (16) in (15) gives

∫

R

∫

R×[0,T ]

ψ(x, t)dm(x, t, a) da

=
∑

ω∈Jv

φ(ω) {ξ(v(ω+))− ξ(v(ω−)) − ω [η(v(ω+))− η(v(ω−))]} da , (17)

where (η, ξ) is the entropy-entropy flux pair

η(v) =
1

2
v2 and ξ(v) =

∫ v

0

sf ′(s) ds . (18)

From (17) we deduce with (14)

1

T

∫

R

m(R × [0, T ], a) da = Pv (19)

where the combined entropy production Pv is taken for the entropy-entropy
flux pair defined in (18). Since T > 0 is arbitrary and Pv independent of T
it follows from (19)

d

dt

∫

R

m(R × [0, t], a) da = Pv for all t > 0 , (20)
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which finally relates (12) to (5).
Then a weak solution u = v

(

x
t

)

of (1) with initial data (11) is said
to satisfy the entropy rate admissibility criterion if it satisfies the following
optimality criterion of the entropy production

Pv ≤ Pṽ

or equivalently
Ḣv ≤ Ḣṽ

holds, for any other weak solution ũ = ṽ
(

x
t

)

of (1) with initial condition
(11).

Using (20) one can express the entropy rate admissibility criterion for the
particular entropy-entropy flux pair in (18) in terms of the entropy production
(5): A solution u = v

(

x
t

)

with initial data (11) and defect measure m(x, t, a)
satisfies entropy rate admissibility criterion if

d

dt

∫

R

m(R × [0, t], a) da ≤
d

dt

∫

R

m̃(R × [0, t], a) da for all t > 0 (21)

for any other weak solution ũ = ṽ
(

x
t

)

of (1) with initial condition (11)
and defect measure m̃(x, t, a). One can also integrate (21) and obtains the
equivalent condition

∫

R

m(R × [0, t], a) da ≤

∫

R

m̃(R × [0, t], a) da for all t > 0 . (22)

Therefore (21) and (22) show, that the entropy rate admissibility criterion
can be interpreted as a growth condition of the entropy production (5), which
is similar to the growth condition (10) in Theorem 1. In Chapter 9.5 of [Da]
it is proved:

Theorem. [Da] A weak solution u of (1) with initial data (11) satisfies the
entropy rate admissibility criterion for an entropy-entropy flux pair (η, ξ) if
and only if u satisfies the E-condition (2).

Again by (21) and (22) one sees, that this Theorem establishes, similar as
in Theorem 1, a connection between growth rate of the entropy production
(5) and entropy admissibility conditions (2) and (4). In Chapter 9.5 there is
also an extension of this theorem in the case of strictly hyperbolic systems.

Another results relating an optimality criterion to entropic solution is
given by A. Poliakovsky in [Po]. For u : R

n × [0, T ] → R
k he considers a

family of energy functionals

Iε,f(u) =
1

2

∫ T

0

∫

Rn

(

ε|∇xu|
2 +

1

ε
|∇xH|2

)

dx dt+
1

2

∫

Rn

|u(x, T )|2 dx (23)
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where
∆xHu = ∂tu+ divx f(u) .

Under certain assumptions on the flux f he shows, that there exists a mini-
mizer to

inf {Iε,f(u) : u(x, 0) = u0(x)}

and this minimizer satisfies

∂tu+ divx f(u) = ε∆xHu ∀(x, t) ∈ Rn × (0, T ) ,
u(x, 0) = u0(x) ∀x ∈ Rn .

}

In the particular case k = 1, he calculates the Γ-limit of (23) as ε→ 0+ and
finds an alternative variational formulation of the admissibility criterion for
the particular solutions to the scalar conservation laws that can be achieved
by this relaxation procedure.

The result of A.Poliakovsky has been inspired by previous works estab-
lishing a link between some variational optimality condition of a relaxed
problem and the entropy condition at the limit. Among these works we can
quote [RS1], [RS2] and [ALR]. Let us describe the results established in this
3 works here :

We consider for a bounded domain Ω ⊂ R2 the space Mdiv(Ω), which
consists of unit vectorfields u such that u = eiϕ for a φ ∈ L∞(Ω,R) and
div eiϕ∧a is a Radon measure over Ω × R. This space Mdiv was introduced
by S. Serfaty and the second author in [RS1] and [RS2] in connection to a
problem related to micromagnetism. We give here a brief description. Let Ω
be a bounded and simply connected domain, for u ∈W 1,2(Ω, S1) and a ε > 0
we consider

Eε(u) = ε

∫

Ω

|∇u|2 +
1

ε

∫

R2

|H|2 , (24)

where H = ∇(G ∗ û) , û = u on Ω and û = 0 in Ωc and G is the kernel of the
Laplacian on R2.

It was proved in [RS1], [RS2] that from any sequence uεn
∈ W 1,2(Ω, S1)

such that ε → 0 and Eεn
(uεn

) < C one can extract a subsequence uεn′
such

that ϕεn′
converges strongly in Lp(Ω) for any p < ∞ to a limit ϕ such that

eiϕ = u ∈ Mdiv(Ω). Furthermore the authors are conjecturing that the
Γ-Limit should be given by the following functional E0 over Mdiv(Ω) :

E0(u) := 2

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da
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Part of the Γ−convergence has been proved as they established in one hand
the following inequality

E0(u) := 2

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da ≤ lim inf Eεn′
(uεn′

)

and in the other hand that

lim
ε→0

inf
u∈W 1,2

Eε(u) = 2 inf
u∈Mdiv(Ω)

∫

a∈R

∣

∣div
(

eiϕ∧a
)
∣

∣ (Ω) da = 2|∂Ω| , (25)

where |∂Ω| is the perimeter of the set Ω. One can prove (see [RS1]), that
the infimum on the right hand side is achieved by u = −∇⊥ dist(·, ∂Ω) ∈
Mdiv(Ω). The function g = ∇⊥ dist(·, ∂Ω) is the viscosity solution of

|∇g| − 1 = 0 on Ω ,
g = 0 on ∂Ω .

}

(26)

A question, which was left open in [RS1] and [RS2] was to describe the
possible limits u of minimizing sequence of (24). It was conjectured that
u = ±∇⊥dist(·, ∂Ω) are the only possible limits of sequences of minimizers.
A positive answer to this conjecture has been given in [ALR]. Precisely, in
[RS2] it is proved that the limit u of a minimizing sequence of (24) satisfies
the entropy condition

div eiϕ∧a ≥ 0 for all a ∈ R (27)

or div eiϕ∧a ≤ 0 for all a ∈ R. Then in [ALR] the following result is
established

Theorem. [ALR] Let u = −∇⊥g be a divergence free unit vector-field in
the space Mdiv(Ω). The entropy condition (27) holds if and only if g is a
viscosity solution of (26) and therefore g is locally semiconcave in Ω and
u ∈ BVloc(Ω, S

1).

Therefore, as a conclusion, one deduces the following equivalences for this
particular problem

viscosity solution to (26) ⇐⇒ entropy condition (27)

⇐⇒ minimality of the entropy production (25) .

The paper is organized as follows: First, in section 2, we establish some
technical preliminary results. Then in Section 1.2 we will show, that the
measure

∫

R

m(x, t, a) da
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has no points with strictly negative density, outside possibly a set of 1-
dimensional measure 0, i.e. we claim

lim
r→0+

1

r

∫

R

m (Br((x0, t0)), a) da ≥ 0 for H1 a.e. (x0, t0) ∈ R×(0, T ). (28)

In the last section, using an argument similar to the one used to prove the
main result in [ALR], we deduce that the non negativity condition (28) im-
plies that u is entropic.
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1.1 Preliminary results

In this section we define a notion of weak entropy solutions (see Definition
1) of scalar conservation laws on domain of trapezoidal shape (see (30). Af-
terward we will prove Lemma 1, which roughly says that for that kind of
entropy solutions the same properties hold as in the classical case. We will
use this results in Section 2.2 and Section 2.3.

For 0 < t1 < t2 < T and a δ > 0 we define the set

Γt2
t1

:= {(x, t)| t2 > t > γ(x, t1)} (29)

where

γ(x, t) :=







t− λ̂(x+ δ)) if x ≤ −δ ,
t if |x| ≤ δ ,

t+ λ̂(x− δ)) if x ≥ δ .

(30)

for a constant 0 < λ̂ ≤ 1. Further we set

Λt2
t1

:= {(x, t)| (x, t) = (x, γ(x, t1)) and t1 ≤ t < t2} .

Γt2

t1
Λt2

t1

x

t

t2

−δ δ

Figure 1: The set Γt2
t1

As for mentioned we define now a notion of weak respective entropy so-
lution on the domain Γt2

t1

Definition 1. For a v1 ∈ L∞(Λt2
t1
) we say that v ∈ L∞(Γt2

t1
) is weak solution

of
∂tv + ∂xf(x) = 0 in Γt2

t1
,

v = v1 on Λt2
t1
,

}

(31)

if for all ψ ∈ C∞
c (R × [0, t2))

∫

Γ
t2
t1

v∂tψ + f(v)∂xψ dx dt+

∫

Λ
t2
t1

ψ

(

v1

−f(v1)

)

· τ dσ = 0 (32)
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holds, where τ is the unit tangent vector of Λt2
t1
. Furthermore we say that

v ∈ L∞(Γt2
t1
) is an entropy solution of (31), if v additionally satisfies

q(x, t, a) := ∂tv ∧ a + ∂xf(v ∧ a) ∈ Mloc and q(x, t, a) ≥ 0 .

A priory it is unclear if, for an arbitrary boundary condition v1 ∈ L∞(Λt2
t1
),

the conservation law (31) possess a weak solution or not. We can however
prove the following proposition.

Proposition 1. Let v1 ∈ L∞(R × [0, T )) be a weak solution of (1). Then
for all 0 < λ̂ ≤ 1 and for almost every t1 ∈ (0, T ) and all t2 ∈ (t1, T ) the
problem

∂tv + ∂xf(v) = 0 in Γt2
t1
,

v = v1 on Λt2
t1
,

}

has an entropy solution in the sense of Definition 1.

The basic idea for proving Proposition 1 is to use the correspondence
between weak solutions of (1) and viscosity subsolutions of

∂tg + f(∂xg) = 0 ,
g(x, 0) = g0(x) .

}

(33)

Before we are going to prove our assertion, we briefly repeat the definitions
of viscosity sub- and supersolutions. We say that g is a viscosity solution of
(33), if for any point (x0, t0) ∈ R × (0, T ) and for any ψ ∈ C1(R2) such that
g − ψ attains its maximum in (x0, t0) the following inequality holds

∂tψ(x0, t0) + f(∂xψ(x0, t0)) ≤ 0 .

Similarly we say, that g is a viscosity supersolution of (33), if for any point
(x0, t0) ∈ R × (0, T ) and for any for any ψ ∈ C1(R2) such that g − ψ attains
its minimum in (x0, t0) the following inequality holds

∂tψ(x0, t0) + f(∂xψ(x0, t0)) ≥ 0 .

We say that g is a viscosity solution of (33), if g is both a sub- and su-
persolution. Theorem 2 in [CH] establishes a correspondence between weak
solutions of (1) and viscosity subsolutions of (33).

Theorem 2 (Conway, Hopf). Let u ∈ L∞(R × [0, t)) be a weak solution of
(1). Then there exists a g ∈ W 1,∞(R × [0, T )) which satisfies (33) almost
everywhere and is such that u(x, t) = ∂xg(x, t) and u0 = ∂xg(x, 0) for almost
every x ∈ R.
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Proof of Proposition 1. Let v1 ∈ L∞(R × [0, T )) be a weak solution of
(1); then, according to Theorem 2, there exists g1 ∈W 1,∞(R× [0, T )), which
solves (33) almost everywhere. By Fubini’s Theorem we can choose t1 such
that both ∂tg1 and ∂xg1 are in L∞(Λt2

t1
) and such that

∫

Λ
t2
t1

∂tg1 + f(∂xg1) dσ = 0 and v1 = ∂xg1 a.e. on Λt2
t1
. (34)

For t1 < t2 < T we want to show, that there exists a viscosity solution g of

∂tg + f(∂xg) = 0 in Γt2
t1
,

g = g1 on Λt2
t1
.

}

(35)

Then we claim, that v = ∂xg is an entropy solution of (31), in the sense of
Definition 1. The existence of such a viscosity solution g will be guaranteed
by the existence result of Ishi (see Theorem 3.1 in [Is]). In order to be able
to apply that theorem we must find a viscosity subsolution g and a viscosity

supersolution g of (35), which satisfy pointwise g = g = g1 on Λt2
t1

and g ≤ g

in Γt2
t1
. According to Proposition 5.1 on page 77 in [BC], the fact that g1

satisfies (33) almost everywhere implies, that g1 is a viscosity subsolution of
(33). Thus we can put g = g1 and it remains to find a viscosity supersolution

g such that g ≥ g1 and g = g1 on Λt2
t1
. For two positive constants A, B we

consider the function

gy(x, t) = g1(y, γ(y, t1)) + A|x− y| +B|t− γ(y)| .

We calculate for (x, t) ∈ Γt2
t1

∂tgy(x, t) + f(∂xgy(x, t)) = B sign(t− γ(y)) + f(a sign(x− y)) .

By (9) this is positive, if we choose A large enough. Thus

∂tgy(x, t) + f(∂xgy(x, t)) > 0 for (x, t) ∈ Γt2
t1
.

Proposition 5.1 on page 77 and Proposition 5.4 on page 78 in [BC] imply, that
g is a viscosity supersolution. Further we notice, since g1 ∈W 1,∞(R× [0, T )),
that for all y and suitable choices of A and B

g1(x, t) ≤ g(y, γ(y)) + A|x− y| +B|t− γ(y)| .

By Proposition 2.11 on page 302 in [BC]

g(x, t) = inf
y
gy(x, t)
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is still a supersolution. Furthermore w satisfies by construction g = g1 on
Λt2

t1
and g ≥ g in Γt2

t1
. Hence all assumptions of the existence result (Theorem

3.1) in [Is] are fulfilled. Therefore there exists a viscosity solution g of (35)
such that g1 ≤ g ≤ g. By Example 1 in [Is], the viscosity solution is Lipschitz
continuous, i.e. g ∈ W 1,∞(Γt2

t1
). For (x, t) ∈ Γt2

t1
and (y, s) ∈ Λt2

t1
we notice

that
g1(x, t) − g(y, s) ≤ g(x, t) − g(y, s) ≤ g(x, t) − g1(y, s) .

Using the fact that g1 is Lipschitz continuous and the construction of g we
deduce from the previous line

−‖(x, t) − (y, s)‖C1 ≤ g(x, t) − g(y, s) ≤ C2‖(x, t) − (y, s)‖ ,

which means g ∈W 1,∞(Γt2
t1
∪ Λt2

t1
).

Next we are going to show, that v = ∂xg is a weak solution of (31) in
Γt2

t1
in the sense of Definition 1. Since g satisfies (35) almost everywhere, it

follows for a ψ ∈ C∞
c (R × [0, t2))

∫

Γ
t2
t1

∂xψ∂tg + f(∂xg)∂xψ dx dt = 0 . (36)

We denote the outer unit normal vector of Γt2
t1

by n. Integrating (36) twice
by parts gives

∫

Γ
t2
t1

∂xψ∂tg dx dt =

∫

∂Γ
t2
t1

g

(

−∂tψ
∂xψ

)

· n dσ +

∫

Γ
t2
t1

∂tψ∂xg dx dt . (37)

Rewriting the boundary term in (37) and using the fact that ψ(x, t2) = 0
leads to

∫

∂Γ
t2
t1

g

(

−∂tψ
∂xψ

)

· n dσ =

∫

Λ
t2
t1

g1

(

−∂tψ
∂xψ

)

· n dσ

=

∫ s2

s1

g1(s, γ(s, t1)) [∂tψ(s, γ(s, t1))γ
′(s, t1) + ∂xψ(s, γ(s, t1))] ds . (38)

Integrating the right-hand side of (38) by parts leads to

∫ s2

s1

g1(s, γ(s, t1)) [∂tψ(s, γ(s, t1))∂γ(s, t1) + ∂xψ(s, γ(s, t1))] ds

=

∫ s2

s1

g1(s, γ(s, t1))
d

ds
ψ(s, γ(s, t1)) ds = −

∫ s2

s1

d

ds
g1(s, γ(s, t1)) · ψ ds .

(39)
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Therefore, combining (38) and (39) we can rewrite the boundary term in (37)

∫

∂Γ
t2
t1

g1

(

−∂tψ
∂xφ

)

· n dσ =

∫ s2

s1

[∂xg1 + ∂tg1 · ∂sγ(s, t1)]ψ ds (40)

Using (34), the right-hand side of (40) simplifies to

∫

∂Γ
t2
t1

g1

(

−∂tψ
∂xψ

)

· n dσ =

∫ s2

s1

[∂xg1 − f(∂xg1) · ∂sγ(s, t1)]ψ ds

=

∫

Λ
t2
t1

ψ

(

∂xg1

−f(∂xg1)

)

· τ dσ ,

where τ is the unit tangent vector of Λt2
t1
. We replace now the boundary term

in (37) using the above identity

∫

Γ
t2
t1

∂xψ∂tg dx dt =

∫

Λ
t2
t1

ψ

(

∂xg1

−f(∂xg1)

)

· τ dσ +

∫

Γ
t2
t1

∂tψ∂xg dx dt .

Finally, this together with (36) gives

∫

Λ
t2
t1

ψ

(

∂xg1

−f(∂xg1)

)

· τ dσ +

∫

Γ
t2
t1

∂tψ∂xg + f(∂xg)∂xψ dx dt = 0 .

Since v1 = ∂xg1 and by putting v = ∂xg, we see, that v is a solution of (31)
in the sense of Definition 1. Finally it remains to show, that v is an entropy
solution in the sense, that

∂tv ∧ a+ ∂xf(v ∧ a) ≥ 0 .

By Corollary 1.7.2 in [CS] v satisfies for all (x, t), (y, t) ∈ Γt2
t1

such that x < y

v(y, t) − v(x, t) ≤
y − x

ct
.

This immediately implies q(x, t, a) ≥ 0 (see Section 8.5 in [Da]).

Proposition 1 being proved, we now establish some properties for entropy
solutions to (31) analogous to those in the classical case (see [Da]). Precisely
we are going to show

Lemma 1. Let v1 ∈ L∞(R × (0, T )) be a weak solution of (1). Then there
exists a constant λ0 > 0, depending on f and ‖v1‖∞, such that, for any

14



domain Γt2
t1

satisfying 0 < λ̂ ≤ λ0, the entropy solution v ∈ L∞(Γt2
t1
) of (31)

with boundary condition v1 ∈ L∞(Λt2
t1
) satisfies

lim
ε→0+

∫ s2−ε

s1

|v(s, γ(s, t1 + ε)) − v1(s, γ(s, t1))| ds = 0 , (41)

where

s1 = −
t2 − t1

λ̂
− δ and s2 =

t2 − t1

λ̂
+ δ .

Moreover
‖v‖∞ ≤ ‖v1‖∞ (42)

and there exists a constant C > 0, depending only on ‖v‖1 and λ̂, such that
∫

Γ
t2
t1

q(x, t, a) da dx dt ≤ C(t2 − t1) . (43)

Let now w1, w2 ∈ L∞(R × (0, T )) be weak solutions of (1). Then there there
exists a constant λ1 > 0 depending on f and max{‖w1‖∞, ‖w2‖∞} such that,
for any domain Γt2

t1
satisfying 0 < λ̂ ≤ λ1 and any choice of two entropy so-

lutions respectively v1 ∈ L∞(Γt2
t1
) with boundary condition w1 ∈ L∞(Λt2

t1
)

and v2 ∈ L∞(Γt2
t1
) with boundary condition w2 ∈ L∞(Λt2

t1
) the following

holds : for any t ∈ (t1, t2) and a constant C > 0 depending on Γt2
t1

and
max{‖w1‖∞, ‖w2‖∞}:

∫ θ+(t)

θ−(t)

|v1(x, t) − v2(x, t)| dx ≤ C

∫

Λ
t2
t1

|w1 − w2| dσ , (44)

where

θ±(t) = ±
t− t1

λ̂
± δ .

Remark 1. Inequality (44) implies in particular the uniqueness of the entropy
solution for a given initial data w on Λt2

t1
issued from a weak solution to (1).

Proof of Lemma 1. We start to prove (41). Let R > 0 such that

R + f(±R) ≥ 0 .

We choose λ0 such that

λ−1
0 = max {|f ′(R + 1 + ‖v1‖∞)| , |f ′(−R − 1 − ‖v1‖∞)|} . (45)

We consider now a domain Γt2
t1

such that λ̂ ≤ λ0 and an entropy solution
v ∈ L∞(Γt2

t1
) of (31) exists. From Example 1 in [Is], we know, that

‖v‖∞ ≤ R + 1 . (46)
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Let ψ ∈ C∞
c (R × [0, t2)). From Theorem 1.3.4 in [Da] we get for all ε > 0

and sufficiently small (t1 + ε < t2)

∫

Γ
t2−ε

t1+ε

v∂tψ + f(v)∂xψ dx dt = −

∫

∂Γ
t2−ε

t1+ε

(

v
−f(v)

)

· τψ dσ .

Since ψ(x, t2) = 0 this implies

∫

Γ
t2−ε

t1+ε

v∂tψ + f(v)∂xψ dx dt = −

∫

Λ
t2−ε

t1+ε

(

v
−f(v)

)

· τψ dσ . (47)

As ε → 0+ the left-hand side of (47) converges to
∫

Γ
t2
t1

v∂tψ + f(v)∂xψ dx dt .

Since v is a weak solution of (31) this later fact implies for the right-hand
side of (47)

lim
ε→0+

∫

Λ
t2−ε

t1+ε

(

v
−f(v)

)

· τψ dσ =

∫

Λ
t2
t1

(

v1

−f(v1)

)

· τψ dσ (48)

In order to keep the notation simple we introduce

γ̄(s) =

(

s
γ(s, t1)

)

and vε(x, t) = v(x, t+ ε) .

From (48) we deduce

lim
ε→0+

∫ s2−ε

s1+ε

{

v1(γ̄(s)) − vε(γ̄(s)) + λ̂ [f(vε(γ̄(s))) − f(v1(γ̄(s)))]
}

ψ ds .

(49)
By (45) we obtain the existence of some constants C, c > 0 for which the
following holds

c ≤ 1 ± f(α) ≤ C for all α ∈ (−R− 1 − ‖v1‖∞, R+ 1 + ‖v‖∞) .

Therefore we get from (49), that

lim
ε→0+

v(s, γ(s, t1 + ε)) = v1(s, γ(s)) for a.e. s ∈ [s1, s2] . (50)

By dominated convergence, we deduce the claim (41).
To prove the remaining claims of our lemma, we need to introduce the

kinetic formulation of conservation laws, we recommend the introduction to
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this subject given in [Pe]. However we need here a slight modified version of
this formulation. We define for any v ∈ R

χ(v; a) := 1a≤v ,

where 1a≤v is the characteristic function of the set {a ∈ R : a ≤ v}. Then a
weak solution v ∈ L∞(Γt2

t1
) of (31) satisfies in the distributional sense

∂tχ(v(x, t); a) + f ′(a)∂xχ(v(x, t); a) = ∂aq(x, t, a) in Γt2
t1
,

χ(v; a) = χ(v1; a) on Λt2
t1
.

}

(51)

In other words this means, that for all ψ ∈ C∞
c (R × [0, t2) × R)

∫

Γ
t2
t1

∫

R

χ(v; a)∂tψ + f ′(a)χ(v; a)∂xψ da dx dt

=

∫

Γ
t2
t1

+

∫

Λ
t2
t1

∫

R

ψ

(

χ(v1; a)
−f ′(a)χ(v1; a)

)

· τ da dσ . (52)

In order to prove (44), (42) and (43) we need to regularize our kinetic equation
(51). We choose ϕ1(x), ϕ2(t) ∈ C∞

c (R) non-negative functions such that

supp ϕ1 ⊂ (−1, 1) , supp ϕ2 ⊂ [−1, 0]

and
∫

R

ϕ2 dx =

∫

R

ϕ1 dx = 1 .

We define the kernel

ϕε(x, t) =
1

ε2
ϕ1

(x

ε

)

ϕ2

(

t

ε

)

. (53)

For a constant C depending only from λ̂ we have

dist((x, t), ∂Γt2
t1

) > ε for all (x, t) ∈ Γt2−Cε
t1+Cε .

Consequently for (x, t) ∈ Γt2−Cε
t1+Cε

ϕε(x− y, t− s) = 0 for (y, s) ∈ ∂Γt2
t1
. (54)

We define moreover the two mollified functions

χε(x, t, a) =

∫

Γ
t2
t1

ϕε(x− y, t− s)χ(v(y, s); a) dy ds
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and

qε(x, t, a) =

∫

Γ
t2
t1

ϕε(x− y, t− s)q(y, s, a) dy ds .

For qε and (x, t) ∈ Γt2−Cε
t1+Cε we compute

qε(x, t, a) − qε(x, t, b) =

∫

Γ
t2
t1

ϕε(x− y, t− s) [q(y, s, a)− q(y, s, b)] dy ds

=

∫

Γ
t2
t1

∂tϕε(x− y, t− s) [v ∧ a− v ∧ b]

+ ∂xϕε(x− y, t− s) [f(v ∧ a) − f(v ∧ b)] dy ds ,

where we have made use of (54). Since

|v ∧ a− v ∧ b| ≤ ‖v‖∞|b− a|

it follows from the calculation above

|qε(x, t, a) − qε(x, t, b)| ≤

∫

Γ
t2
t1

|∂tϕε| · ‖v‖∞|b− a| + C |∂xϕε| · ‖v‖∞|b− a| dy ds

≤ C|b− a| .

Therefore qε is Lipschitz continuous with respect to the kinetic variable a
and we have for almost every a ∈ R in the classical sense

∂tχε + f ′(a)∂xχε = ∂aqε(x, t, a) in Γt2−Cε
t1+Cε . (55)

Notice that due to the convolution with ϕε both χε and qε are smooth with
respect to (x, t). Furthermore for (x, t) ∈ Γt2−Cε

t1+Cε the function qε satisfies

qε(x, t, a) = 0 if |a| ≥ ‖v‖∞ . (56)

This follows from the classical fact, that

q(x, t, a) = 0 for |a| ≥ ‖v‖∞ .

Indeed for |a| ≥ ‖v‖∞ and ψ ∈ C∞
c (Γt2

t1
) we compute

∫

Γ
t2
t1

q(x, t, a)ψ(x, t) dx dt =

∫

Γ
t2
t1

[∂tv(x, t) ∧ a + ∂xf(v(x, t) ∧ a)]ψ(x, t) dy ds

=

∫

Γ
t2
t1

[∂tv(x, t) + ∂xf(v(x, t))]ψ(x, t) dx dt

= −

∫

Γ
t2
t1

v(x, t)∂tψ(x, t) + f(v(x, t))∂xψ(x, t) dx dt

= 0 .

18



Consider now a convex function η(a) in C1, which satisfies

lim
a→−∞

η(a) = 0

and denote

ξ(a) =

∫

η′(a)f ′(a) da .

We claim that for all (x, t) ∈ Γt2−Cε
t1+Cε the following holds

∂tηε(x, t) + ∂xξε(x, t) = −

∫

Γ
t2
t1

η′′(a)qε(x, t, a) da , (57)

where

ηε(x, t) =

∫

Γ
t2
t1

η(v(y, s))ϕε (x− y, t− s) dy ds

and

ξε(x, t) =

∫

Γ
t2
t1

ξ(v(y, s))ϕε (x− y, t− s) dy ds .

Later will make special choices of η in order to get (42) and (43).

Proof of claim (57). We multiply (55) by η′(a)

η′(a)∂tχε + η′(a)f ′(a)∂xχε = ∂aqε(x, t, a) .

Then integrating this equation with respect to a gives
∫

R

η′(a)∂tχε + η′(a)f ′(a)∂xχε da =

∫

R

η′(a)∂aqε(x, t, a) da . (58)

We compute for the left-hand side
∫

R

η′(a)χε da =

∫

Γ
t2
t1

∫

R

η′(a)χ(v(y, s); a)ϕε (x− y, t− s) da dy ds

=

∫

Γ
t2
t1

η(v(y, s))ϕε (x− y, t− s) dy ds = ηε(x, t)

and similarly for the second term
∫

R

η′(a)f ′(a)χε da =

∫

Γ
t2
t1

ξ(v(y, s))ϕε (x− y, t− s) dy ds = ξε(x, t) .

Thus (58) reduces to

∂tηε(x, t) + ∂xξε(x, t) =

∫

R

η′(a)∂aqε(x, t, a) da . (59)
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Integrating the right-hand side by parts gives
∫

R

η′(a)∂aqε(x, t, a) da = −

∫

R

η′′(a)q(x, t, a) da ,

where we have used the fact, that qε is compactly supported in a. This gives
the result (57) as claimed.

Next we integrate inequality (57) over the set Γt̄
t1+Cε, where t̄ ∈ (t1 +

Cε, t2 − Cε). We will abbreviate t1 + Cε by t̄1. We have
∫

Γt̄
t̄1

∂tηε(x, t) + ∂xξε(x, t) dx dt = −

∫

Γt̄
t̄1

∫

R

η′′(a)q(x, t, a) da . (60)

For the first term on the left-hand side of (60) we compute

∫

Γt̄
t̄1

∂tηε dx dt =

∫ δ

−δ

ηε(x, t̄) − ηε(x, t1) dx

+

∫

(t̄−t̄1)

λ̂
+δ

δ

∫ t̄

λ̂(x−δ)+t̄1

∂tηε(x, t) dt dx

+

∫ −δ

−
t̄−t̄1

λ̂
−δ

∫ t̄

−λ̂(x+δ)+t̄1

∂tηε(x, t) dt dx .

This gives

∫

Γt̄
t1

∂tηε dx dt =

∫ δ

−δ

ηε(x, t̄) − ηε(x, t̄1) dx

+

∫
t̄−t̄1

λ̂
+δ

δ

ηε(x, t̄) − ηε

(

x, λ̂(x− δ) + t̄1

)

dx

+

∫ −δ

−
t̄−t̄1

λ̂
−δ

ηε(x, t̄) − ηε

(

x,−λ̂(x− δ) + t̄1

)

dx .

A regrouping of the terms together with a change of variable leads to

∫

Γt̄
t1

∂tηε dx dt =

∫ θ+
ε (t̄)

θ−ε (t̄)

ηε(x, t̄) dx−

∫ δ

−δ

ηε(x, t̄1) dx

+ λ̂

∫ t̄

t̄1

ηε(θ
−
ε (t), t) − ηε(θ

+
ε (t), t) dt ,

(61)

where

θ±ε (t) = ±
t̄− t̄1

λ̂
± δ . (62)
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Integrating now the second term on the left-hand side of (60) gives

∫

Γt̄
t̄1

∂xξε(x, t) dx dt =

∫ t̄

t1

ξε(θ
+
ε (t), t) − ξε(θ

−
ε (t), t) dt . (63)

Inserting (61) and (63) back in (60) leads to the identity

∫ θ+
ε (t̄)

θ−ε (t̄)

ηε(x, t̄) dx =

∫

Λt̄
t̄1

(

ηε

−ξε

)

· τ dσ −

∫

Γt̄
t̄1

∫

R

η′′(a)q(x, t, a) da . (64)

For suitable choices of η this equality (64) will imply the first two claims of
Lemma 1.

First we prove (42). Let a0 be a real number being fixed later in this
proof. We choose

η(a) =

{

(a− a0) if a− a0 ≥ 0 ,
0 if a− a0 ≤ 0

and we aim to deduce
∫ θ+(t̄)

θ−(t̄)

|v(x, t̄) − a0|
+ dσ ≤ C

∫

Λt̄
t1

|v0(x) − a0|
+ dσ , (65)

from equality (64). The non-negativity of η′′(a) and qε implies
∫

Γt̄
t̄1

∫

R

η′′(a)q(x, t, a) da ≥ 0 .

Using this inequality in equality (64), we obtain the estimate

∫ θ+
ε (t̄)

θ−ε (t̄)

ηε(x, t̄) dx ≤

∫

Λt̄
t̄1

(

ηε

−ξε

)

· τ dσ .

Letting ε→ 0+ we get

∫ θ+(t̄)

θ−(t̄)

η(x, t̄) dx ≤

∫

Λt̄
t1

(

η(v1)
−ξ(v1)

)

· τ dσ .

We observe
|ξ(a)| ≤ max

|b|≤‖v1‖∞
|f ′(b)| · η(a) , (66)

which implies
∫ θ+(t̄)

θ−(t̄)

η(x, t̄) dx ≤ C

∫

Λt̄
t1

η(v1) dx .
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This is our desired result (65) and choosing a0 = ‖v1‖∞ in (65) gives

∫ θ+(t̄)

θ−(t̄)

|v(x, t̄) − a0|
+ dσ = 0

and thus (42) follows:

|v(x, t)| ≤ ‖v1‖∞ a.e. in Γt2
t1
.

In order to prove (43), we choose now

η(a) :=







2a2 if a ≥ −‖v‖∞ ,
(a+ ‖v‖∞) + 2‖v‖2

∞ if −(‖v‖∞ + 2‖v‖2
∞) ≤ a ≤ −‖v‖∞ ,

0 if a ≤ −(‖v‖∞ + 2‖v‖2
∞) .

Since η is non-negative, we deduce from (64)

2

∫

Γ
t2−Cε

t1+Cε

∫

R

qε(x, t, a) da dx dt ≤

∫

Λt̄
t̄1

(

ηε

−ξε

)

· τ dσ . (67)

Since η(a) = 2a2 for a ∈ [−‖v‖∞, ‖v‖∞] we get

|ξ(a)| =

∫ a

−‖v‖∞

|η′(b)f ′(b)| db ≤ f ′(‖v‖∞)

∫ |a|

−‖v‖∞

|η′(b)| db .

Hence, by letting ε→ 0 in (67), we obain
∫

Γ
t2
t1

∫

R

q(x, t, a) da dx dt ≤ C(δ + t2 − t1) ,

as announced in (43).
Finally we are going to prove (44). We choose the domain Γt2

t1
in such a

way that
0 < λ̂ ≤ λ1 ,

where
λ1 = (max {f(−R − 1 − α), f(R+ 1 + α)})−1

and

α = max{‖w1‖∞, ‖w2‖∞} .

(68)

For the two entropy solutions v1, v2 with boundary conditions w1 and w2 we
consider the kinetic equations

∂tχi + f ′(a)∂xχi = ∂aqi in D′(Γt2
t1
× R)

χi = χ(wi; a) on Λt2
t1

}
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where χi = χ(vi(x, t); a) for i = 1, 2 . Then, as before, we can regularize our
kinetic equations with the kernel defined in (53)

∂tχ
ε
i + f ′(a)∂xχ

ε
i = ∂aq

ε
i (x, t, a) in Γt2−Cε

t1+Cε

where

χε
i (x, t, a) =

∫

Γ
t2
t1

χ(vi(x, t); a)ϕε(x− y, t− s) dx dt for i = 1, 2

and C > 0 is again chosen such that for (x, t) ∈ Γt2−Cε
t1+Cε

ϕε(x− y, t− s) = 0 for (y, s) ∈ ∂Γt2
t1
.

Then the function (χε
1 − χε

2)
2 satisfies for (x, t) ∈ Γt2−Cε

t1+Cε and almost every
a ∈ R

∂t (χε
1 − χε

2)
2+f ′(a)∂x (χε

1 − χε
2)

2 = χε
1∂aq

ε
1 +χε

2∂aq
ε
2−χ

ε
2∂aq

ε
1−χ

ε
1∂aq

ε
2 . (69)

We make use again of the following abbreviation: t1 + Cε = t̄1. Let t̄ ∈
(t̄1,+t2 − Cε), then we integrate (69) in Γt̄

t̄1
× R, which leads to

∫

Γt̄
t̄1

∫

R

∂t (χ
ε
1 − χε

2)
2 + f ′(a)∂x (χε

1 − χε
2)

2 da dx dt

=

∫

Γt̄
t̄1

∫

R

χε
1∂aq

ε
1 + χε

2∂aq
ε
2 − χε

2∂aq
ε
1 − χε

1∂aq
ε
2 da dx dt . (70)

We recall, that χ(v; a) = 1a≤v and

q1(x, t, a) = q2(x, t, a) = 0 for |a| ≥ max{‖v1‖∞, ‖v2‖∞} .

Therefore we can calculate for (x, t) ∈ Γt̄
t̄1

and i, j ∈ {1, 2}

∫

R

χε
i∂aq

ε
j da =

∫

R

∫

Γ
t2
t1

χ(vi(y, s); a)ϕε(x− y, t− s)qε
j (x, t, a) dy ds da

=

∫

Γ
t2
t1

qε
j (x, t, vi(y, s))ϕε(x− y, t− s) dy ds .

This implies, since ϕε and qε are non-negative

∫

R

χε
2∂aq

ε
1 da ≥ 0 and

∫

R

χε
1∂aq

ε
2 da ≥ 0 ,
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which applied in (70) leads to the inequality

∫

Γt̄
t̄1

∫

R

∂t (χ
ε
1 − χε

2)
2 + f ′(a)∂x (χε

1 − χε
2)

2 da dx dt

≤

∫

Γt̄
t̄1

∫

R

χε
1∂aq

ε
1 + χε

2∂aq
ε
2 da dx dt . (71)

For the left hand-side of (71) we compute
∫

R

∫

Γt̄
t̄1

∂t (χ
ε
1 − χε

2)
2 + f ′(a)∂x (χε

1 − χε
2)

2 dx dt da

=

∫

R

∫ θ+
ε (t̄)

θ−ε (t̄)

(χε
1 − χε

2)
2 (x, t̄) dx da−

∫

R

∫ δ

−δ

(χε
1 − χε

2)
2 (x, t̄1) dx da

+ λ̂

∫

R

∫ t̄

t̄1

(χε
1 − χε

2)
2 (θ+

ε (t), t) − (χε
1 − χε

2)
2 (θ−ε (t), t) dt da

+

∫

R

∫ t̄

t̄1

f ′(a)
[

(χε
1 − χε

2)
2 (θ−ε (t), t) − (χε

1 − χε
2)

2 (θ+
ε (t), t)

]

dt da ,

(72)

where θ±ε are defined in (62). After a change of variable this expression
simplifies to
∫

R

∫

Γt̄
t̄1

∂t (χ
ε
1 − χε

2)
2 + f ′(a)∂x (χε

1 − χε
2)

2 dx dt da

=

∫

R

∫ θ+
ε (t̄)

θ−ε (t̄)

(χε
1 − χε

2)
2 (x, t̄) dx da−

∫

Λt̄
t̄1

∫

R

(

(χε
1 − χε

2)
2

f ′(a) (χε
1 − χε

2)
2

)

· τ da dσ .

(73)

Using identity (73) in (71) gives

∫

R

∫ θ+
ε (t̄)

θ−ε (t̄)

(χε
1 − χε

2)
2 (x, t̄) dx da

≤

∫

Γt̄
t̄1

∫

R

χε
1∂aq

ε
1 + χε

2∂aq
ε
2 da dx dt+

∫

Λt̄
t̄1

∫

R

(

(χε
1 − χε

2)
2

f ′(a) (χε
1 − χε

2)
2

)

· τ da dσ .

(74)

We claim

lim
ε→0+

∫

Γt̄
t1

∫

R

χε
i∂aq

ε
i da dx dt = 0 for i ∈ {1, 2} . (75)
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Proof of Claim (75). We consider the function χε
i − (χε

i )
2 which satisfies

satisfies pointwise for (x, t) ∈ Γt2−Cε
t1+Cε and almost every a ∈ R

∂t

[

χε
i − (χε

i )
2]+ f ′(a)∂x

[

χε
i − (χε

i )
2] = ∂aq

ε
i + 2χε

i∂aq
ε
i .

Integrating this in Γt̄
t̄1
× R leads to

∫

R

∫

Γt̄
t̄1

∂t

[

χε
i − (χε

i )
2]+ f ′(a)∂x

[

χε
i − (χε

i )
2] dx dt da

=

∫

R

∫

Γt̄
t̄1

2χε
i∂aq

ε
i dx dt da , (76)

where we made use of the fact, that qε
i is compactly supported in a. For the

left-hand side of (76) one can compute following step by step (72) and (73)
∫

R

∫

Γt̄
t̄1

∂t

[

χε
i − (χε

i )
2]+ f ′(a)∂x

[

χε
i − (χε

i )
2] dx dt da

=

∫

R

∫ θ+
ε (t̄)

θ−ε (t̄)

[

χε
i − (χε

i )
2] (x, t̄) dx da−

∫

Λt̄
t̄1

∫

R

(

χε
i − (χε

i )
2

f ′(a)
[

χε
i − (χε

i )
2]

)

·τ da dσ .

(77)

For the right-hand side of (77) we observe

lim
ε→0+

∫

R

∫ θ+
ε (t̄)

θ−ε (t̄)

[

χε
i − (χε

i )
2] (x, t̄) dx da

=

∫

R

∫ θ+(t̄)

θ−(t̄)

[

χi − (χi)
2] (x, t̄) dx da (78)

and

lim
ε→0+

∫

Λt̄
t̄1

∫

R

(

χε
i − (χε

i )
2

f ′(a)
[

χε
i − (χε

i )
2]

)

· τ da dσ

=

∫

Λt̄
t1

∫

R

(

χi − (χi)
2

f ′(a)
[

χi − (χi)
2]

)

· τ da dσ . (79)

Since
χi = (χi)

2

the right-hand side of (78) and (79) are zero. Thus

lim
ε→0+

∫

R

∫ θ+
ε (t̄)

θ−ε (t̄)

[

χε
i − (χε

i )
2] (x, t̄) dx da−

∫

Λt̄
t̄1

∫

R

(

χε
i − (χε

i )
2

f ′(a)
[

χε
i − (χε

i )
2]

)

·τ da dσ = 0 .
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With (77) one concludes

lim
ε→0+

∫

R

∫

Γt̄
t̄1

∂t

[

χε
i − (χε

i )
2]+ f ′(a)∂x

[

χε
i − (χε

i )
2] dx dt da = 0 .

Finally taking limits on both sides of (76) we get

lim
ε→0+

∫

Γt̄
t1

∫

R

χε
i∂aq

ε
i da dx dt for i ∈ {1, 2} ,

as announced.

Letting ε → 0+ in (74) and using (75) leads to

∫

R

∫ θ+(t̄)

θ−(t̄)

(χ1 − χ2)
2 (x, t̄) dx da ≤

∫

Λt̄
t1

∫

R

(

(χ1 − χ2)
2

f ′(a) (χ1 − χ2)
2

)

·τ da dσ . (80)

We compute
∫

R

(χ(v1(x, t); a) − χ(v2(x, t); a))
2 da = |v1(x, t) − v2(x, t)| , (81)

and
∫

R

(

(χ1 − χ2)
2

f ′(a) (χ1 − χ2)
2

)

· τ da =

(

|w1 − w2|
sign(w1 − w2)(f(w1) − f(w2))

)

· τ . (82)

Applying (81) and (82) in (80) gives

∫ θ+(t̄)

θ−(t̄)

|v1(x, t̄) − v2(x, t̄)| dx ≤

∫

Λt̄
t1

(

|w1 − w2|
sign(w1 − w2)(f(w1) − f(w2))

)

· τ dσ .

(83)
For the right hand side, we compute

∫

Λt̄
t1

(

|w1 − w2|
sign(w1 − w2)(f(w1) − f(w2))

)

· τ dσ

=

∫ s2

s1

|w1(s, γ(s, t1)) − w2(s, γ(s))|

+ ∂sγ(s, t1) [sign(w1 − w2)(f(w1) − f(w2))] (s, γ(s, t1) ds

=

∫ s2

s1

|w1(s, γ(s, t1)) − w2(s, γ(s))| · (1 ± ∂sγ(s, t1)f
′(α))

≤ C

∫ s2

s1

|w1(s, γ(s, t1)) − w2(s, γ(s))| ds ,
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for a function α. From (83) we obtain

∫ θ+(t̄)

θ−(t̄)

|v1(x, t̄) − v2(x, t̄)| dx ≤ C

∫

Λt̄
t1

|w1(s, γ(s, t1)) − w2(s, γ(s))| dσ

as claimed.

1.2 Blow up at the points of negative density.

In this section we aim to prove the following lemma

Lemma 2. Let u ∈ L∞(R× [0, T )) be a weak solution of (1), which satisfies
(10). Then for H1 almost every (x0, t0) ∈ R × (0, T )

lim sup
r→0+

1

r

∫

R

m (Br(x0, t0), a) da ≥ 0 .

A useful lemma that will be used to prove Lemma 2 is the following.

Lemma 3. Let u ∈ L∞(R × (0, T )) be a weak solution of (1). Let rn → 0+.
For (x0, t0) ∈ R × (0, T ) define

un(x, t) := (D−1
n )

∗
u(x, t)

and

µn :=
1

rn

∫

R

(Dn)∗mda ,

where

Dn(x, t) =

(

x− x0

rn

,
t− t0
rn

)

. (84)

Then there exists for H1 almost every (x0, t0) ∈ R × (0, T ) a subsequence rk

such that
uk → u∞ in L1

loc(R
2) .

And furthermore
µk ⇁ µ∞ in Mloc(R

2) .

Which means in other words
∫

R2

ψ dµk →

∫

R2

ψ dµ∞ for all ψ ∈ C0
c (R

2) .
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Lemma 3 will be a consequence of of the following proposition, which is
proved in Appendix A of [Le].

Proposition 2. For any constant M ≥ 0, for any bounded set Ω, the set

{

u ∈ L∞(Ω) : ‖u‖∞ +

∫

Ω

∫

R

|m(x, t, a)| ≤M

}

is compact in L1(Ω) with respect to the strong topology.

Proof of Lemma 3. By construction we already have

‖un‖∞ ≤ ‖u‖∞ . (85)

For this reason it remains to show that for all R > 0 |µn|(BR(0, 0)) and for
H1 almost every (x0, t0) ∈ R×(0, T ) there exists a constant C > 0, such that

lim sup
n→∞

µn(Brn
(0, 0)) ≤ C . (86)

But this is a direct consequence of Theorem 2.56 in [AFP]. Since (85) and
(86) hold, the assumptions of Proposition 2 are fulfilled and we can extract
a subsequence rk′ such that

uk′ → u∞ in L1
loc(R

2) .

Additionally we have by the weak∗ compactness of measures (see Theorem
1.59 in [AFP]), that, possibly after extracting a further subsequence rk,

µk ⇁ µ∞ in M ,

Altogether we have for the sequence rk

uk → u∞ in L1
loc(R

2)

and
µk ⇁ µ∞ in Mloc(R

2) ,

which is what we aimed to prove.

Proof of Lemma 2. We argue by contradiction. Therefore we assume that
there exists a point (x0, t0) such that

lim sup
r→0+

1

r

∫

Br((x0,t0))

∫

R

m(x, t, a) da dx dt < 0 . (87)
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For a sequence rn → 0+ we define

un(x, t) := (D−1
n )

∗
u(x, t)

and

µn :=
1

rn

∫

R

(Dn)∗mda .

Let uk and µk be the subsequences given by Lemma 3, with limits u∞, µ∞.
Then we have by strong convergence, that u∞ is a weak solution of

∂tu∞ + ∂xf(u∞) = 0 .

Furthermore, by the uniqueness of the distributional limit, we conclude that

µ∞ =

∫

R

∂t(u∞ ∧ a) + ∂xf(u∞ ∧ a) da .

From (87) we want to conclude now, that

µ∞(BR(0, 0)) < 0 for all R > 0 . (88)

Proof of (88). For the sake of contradiction, we assume, that there exists
a R0 such that

µ∞(BR0(0, 0)) ≥ 0 .

In [Le] it is proved, that there exits a set K, which is either a line, or a
half-line, or the empty set, such that

∂tu∞ ∧ a + ∂xf(u∞ ∧ a) =
(

(X(u+
∞ ∧ a) −X(u−∞ ∧ a)

)

· ωK H1 K , (89)

where

X(u) =

(

f(u)
u

)

and ωK =
|u+

∞ − u−∞|

|X(u+
∞) −X(u−∞)|

(

1

−f(u+
∞)−f(u−

∞)

u+
∞−u−

∞

)

. (90)

Moreover therein it is proved, that u∞ is H1-a.e. approximately continuous
in Kc and has H1-a.e. constant approximate jump points u±∞ on K .

A short calculation reveals
∫

R

(

(X(u+
∞ ∧ a) −X(u−∞ ∧ a)

)

· ωK

= sign(u−∞ − u+
∞)

∫ max{u+
∞,u−

∞}

min{u+
∞,u−

∞}

f(u+
∞) + f(u−∞)

2
− f(a) da . (91)
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By convexity of f we get

f(u+
∞) + f(u−∞)

2
> f(a) for a ∈

[

min{u+
∞, u

−
∞},max{u+

∞, u
−
∞}
]

.

This and (91) imply, that sign of µ∞ is completely determined by sign(u−∞ −
u+
∞). Henceforth

µ∞(BR0(0, 0)) ≥ 0

can only be fulfilled, if
u−∞ ≥ u+

∞ .

But this implies that the measure is µ∞ has a sign, i.e.

µ∞ ≥ 0 .

Let µ±
k be the positive respective negative part of µk, i.e. µ±

k are non-negative
measures such that

µk = µ+
k − µ−

k .

Then we can extract a further subsequence k′ such that

µ+
k′ ⇁ ν+ and µ−

k′ ⇁ ν− in Mloc(R
2) .

For R > 0 and non-negative ψ ∈ C∞
c (BR(0, 0)) we get

∫

BR0
(0,0)

ψ dµ∞ = lim
k′→∞

∫

BR(0,0)

ψ dµk′ =

∫

BR(0,0)

ψ dν+ −

∫

BR(0,0)

ψ dν− .

Since µ∞ is non-negative we get for all non-negative ψ ∈ C∞
c (BR0(0, 0))

∫

BR0
(0,0)

ψ dν− ≤

∫

BR(0,0)

ψ dν+ .

Hence
ν−(BR(0, 0)) ≤ ν+(BR(0, 0)) (92)

By Theorem 1.2 in [Le] (see also Theorem 1.1 in [AKLR]) we have for a
rectifiable set Ju and an H1 measurable function h : Ju → R

∫

R

|m(x, t, a)| da = h · H1 Ju + δu , (93)

where δu satisfies

∀ B Borel H1(B) <∞ =⇒ δu(B) = 0 .
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Therefore we can choose R1, such that for all k′

µ−
k′(∂BR1(0, 0)) ≤

1

rk′

∫

D−1
k′

(∂BR1
(0,0))

h dH1 Ju = 0 .

Hence
ν−(∂BR1(0, 0)) = lim

k′→∞
µ−

k′(∂BR1(0, 0)) = 0 .

This and (92) imply

lim sup
k′→∞

µ−
k′(BR1(0, 0) ≤ ν−(B̄R1(0, 0)) = ν−(BR1(0, 0))

≤ ν+(BR1(0, 0)) ≤ lim inf
k′→∞

µ+
k′(BR1(0, 0)) .

lim sup
k′→∞

µk′(BR1(0, 0)) ≥ lim inf
k′→∞

µ+
k′BR1(0, 0)) − lim sup

k′→∞
µ−

k′(BR1(0, 0)) ≥ 0 ,

which obviously contradicts (87) and we get (88).
Inequality (88) implies, that the set K in (89) is non-empty and

µ∞ < 0 ,

which gives, again from above considerations

u−∞ < u+
∞ .

Moreover the convexity of f implies for every a ∈ (u−∞, u
+
∞)

∂tu∞ ∧ a + ∂xf(u∞ ∧ a)

=

(

f(a) − f(u−∞)

a− u−∞
−
f(u+

∞) − f(u−∞)

u+
∞ − u−∞

)

(

a− u−∞
)

H1 K ≤ 0 .

In other words, we get

∂tu∞ ∧ a+ ∂xf(u∞ ∧ a) ≤ 0 .

For P = (xp, tp) ∈ R2 let K = P + Rω⊥
K if K is a line or K = P + R+ω

⊥
K if

K is a halfline. Define

H+ := {(x, t) : ((x, t) − P ) · ωK > 0}

and

H− := {(x, t) : ((x, t) − P ) · ωK < 0}
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if K is a line and

H+ := {(x, t) : ((x, t) − P ) · ωK > 0 and x > f ′(u+
∞)(t− tp) + xp}

H− := {(x, t) : ((x, t) − P ) · ωK < 0 and x < f ′(u−∞)(t− tp) + xp} ,

if K is a half-line. From the proof of Proposition 3.3 in [Le] (see also Theorem
6.2 in [AKLR] for a similar proof) we get, that

u∞(x, t) = u−∞ on H− and u∞(x, t) = u+
∞ on H+ .

Now we choose t̄ ∈ R and δ > 0 in the definition of the sets Λt̄+1
t̄

and Γt̄+1
t̄

(see (29)), in such a way that

[

−
δ

2
,
δ

2

]

× {t} ∩K 6= ∅ ∀ t ∈ (t̄, t̄+ 1) .

Furthermore Γt̄+1
t̄

is defined such that the conclusions of Lemma 1 applies to
this trapeze. In particular the strong convergence of uk in L1

loc(R
2) implies

uk → u∞ in L1
(

Γt̄+1
t̄

)

,

which directly implies by a change of variable

∫ t̄+1

t̄

∫

Λt̄+1
t′

|uk − u∞| dσ dt′ → 0 .

Thus for almost every t1 ∈ (t̄, t̄+ 1) we get

∫

Λt̄+1
t1

|uk − u∞| dσ → 0 (94)

and moreover by (93)

µk(Λ
t̄+1
t1

) =

∫

D−1
k

(Λt̄+1
t1

)

hH1 Ju = 0 . (95)

We set t2 := t̄ + 1, then, according to Proposition 1, we can choose a t1 ∈
(t̄, t̄+ 1) such that for all k ∈ N (94), (95) holds and for k ∈ N ∪ {∞} there
exists an entropy solution wk of

∂twk + ∂xf(wk) = 0 in Γt2
t1
,

wk = uk on Λt2
t1
.

}

(96)
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By Lemma 1 we have for all t1 ≤ t < t2

∫ θ+(t)

θ−(t)

|wk(x, t) − w∞(x, t)| dx ≤

∫

Λ
t2
t1

|uk − u∞| dσ .

This and (94) imply
wk → w∞ in L1

(

Γt2
t1

)

.

By our choice of t1, we have for an x1 ∈
[

− δ
2
, δ

2

]

u∞(x, t1) =

{

u−∞ if x < x1

u+
∞ if x > x1 .

This structure of u∞ at the time t1 allows us to compute w∞ explicitly. Since
u−∞ < u+

∞, the two states u−∞ and u+
∞ are connected by a rarefaction wave

w∞(x, t) :=











u−∞ if x− x1 < f ′(u−∞)(t− t1) ,

(f ′)−1
(

x−x1

t−t1

)

if f ′(u−∞)(t− t1) < x− x1 < f ′(u+
∞)(t− t1) ,

u+
∞ if x− x1 > f ′(u∞)+(t− t1) .

We observe, that w∞ is a Lipschitz function and this implies pointwise almost
everywhere in Γt2

t1

∂tw∞ + ∂xf(w∞) = 0 .

Hence

q∞(x, t, a) = ∂t(w∞ ∧ a) + ∂xf(w∞ ∧ a)

= 1w≤a [∂tw∞ + f ′(w∞ ∧ a)∂xw∞] = 0 in Γt2
t1
.

Furthermore the strong convergence of wk in L1(Γt2
t1
) implies

qk ⇁ q∞ in Mloc(R
2) ,

where
qk = ∂twk ∧ a + ∂xf(wk ∧ a) .

To simplify notations, we define

Γk :=
{

(x, t) ∈ R × (0, T ) : Dk(x, t) ∈ Γt2
t1

}

and

Λk :=
{

(x, t) ∈ R × (0, T ) : Dk(x, t) ∈ Λt2
t1

}

,
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where the map Dk is defined in (84). Then we define the rescaled function

w̃k(x, t) =

{

(Dk)
∗wk if (x, t) ∈ Γk ,

u if (x, t) ∈ R × (0, t0 + rkt2)\Γk .

and claim, that wk ∈ L∞(R × (0, t0 + rkt2)) is a weak solution of (1) for all
k ∈ N. To do so, we first observe that uk itself is a weak solution of (96).
With that knowledge we calculate.

∫

Γk

w̃k∂tψ + f(w̃k)∂xψ dx dt = r2

∫

Γ
t2
t1

w̃k∂tψ + f(w̃k)∂xψ dx dt

= −r2
k

∫

Λ
t2
t1

ψ

(

uk

−f(uk)

)

· τ dσ

= r2
k

∫

Γ
t2
t1

uk∂tψ + f(uk)∂xψ dx dt

=

∫

Γk

u∂tψ + f(u)∂xψ dx dt .

Using this equality we see
∫

R×[0,t0+rnt2]

w̃n∂tψ + f(w̃k)∂xψ dx dt =

∫

Γk

w̃k∂tψ + f(w̃k)∂xψ dx dt

+

∫

R×(0,t0+rkt2)\Γk

u∂tψ + f(u)∂xψ dx dt

=

∫

Γk

u∂tψ + f(u)∂xψ dx dt

+

∫

R×(0,t0+rkt2)\Γk

u∂tψ + f(u)∂xψ dx dt

=

∫

R×[0,t0+rnt2]

u∂tψ + f(u)∂xψ dx dt

=

∫

R

u0(x)ψ(x, 0) dx ,

which means, that w̃k is indeed a weak solution of (1). Therefore the mini-
mality condition (10) of u applies and we deduce
∫

R×(0,t0+rkt2)×R

|m(x, t, a)| da dx dt ≤

∫

R×(0,t0+rkt2)×R

|q̃k(x, t, a)| da dx dt .

But since

m(x, t, a) = q̃k(x, t, a) on R × (0, t0 + rkt2)\Γ̄k
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we get
∫

R

|m|(Γk ∪ Λk, a) da ≤

∫

R

|q̃k|(Γk ∪ Λk, a) da . (97)

We claim now
|q̃k|(Λk, a) = 0 for all k ∈ N . (98)

Proof of (98). We define the domain Λε such that

∂Λε = Λt2
t1+ε ∪ Λt2

t1−ε ∪ Il ∪ Ir (99)

and
Λt2

t1
⊂ Λε ,

where

Il =

[

t2 − (t1 + ε)

λ̂
+ δ,

t2 − (t1 − ε)

λ̂

]

and

Ir =

[

−
t2 − (t1 − ε)

λ̂
− δ,−

t2 − (t1 + ε)

λ̂
− δ

]

Then for Γ ε
k := D−1

k (Λε) and ψ ∈ C∞
c (R×(0, t0+t2rk)) it follows by Theorem

1.3.4 in [Da]

∫

Λε
k

w̃ ∧ a ∂tψ + f(u∧ a)∂xψ dx dt =

∫

∂Λε
k

(

f(w̃)
w̃

)

· nψ dσ +

∫

Λε
k

ψ dq̃(x, t, a) ,

(100)
where n is the outer unit normal of Λε

k. The boundary term can be separated
in three parts

∫

∂Λε
k

(

f(w̃)
w̃

)

· nψ dσ =

∫

D−1
k

(Λ
t2
t1−ε)

(

f(u)
u

)

· nψ dσ −

∫

D−1
k

(Λ
t2
t1+ε)

(

f(w̃)
w̃

)

· nψ dσ

+

∫

D−1
k

(Il)

w̃(x, t0 + rkt2) dx+

∫

D−1
k

(Ir)

w̃(x, t0 + rkt2) dx

(101)

As ε → 0+ the two last quantities in the right-hand side of in (101) vanish.
For the first expression on the right hand side of (101) one concludes

lim
ε→0+

∫

D−1
k

(Λ
t2
t1−ε)

(

f(u)
u

)

· nψ dσ =

∫

D−1
k

(Λ
t2
t1

)

(

f(u)
u

)

· nψ dσ . (102)
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With a change of variable and with Lemma 1 it follows

lim
ε→0+

∫

D−1
k

(Λ
t2
t1+ε)

(

f(w̃)
w̃

)

· nψ dσ = lim
ε→0+

rk

∫

Λ
t2
t1+ε

(

f(w)
w

)

· nψ dσ

= rk

∫

Λ
t2
t1+ε

(

f(uk)
uk

)

· nψ dσ

=

∫

D−1
k

(Λ
t2
t1

)

(

f(u)
u

)

· nψ dσ .

(103)

From (101), (102) and (103) we conclude

lim
ε→0+

∫

∂Λε
k

(

f(w̃)
w̃

)

· nψ dσ = 0 .

Therefore we can conclude from (100)

lim
ε→0+

∫

Λε
k

ψ dq̃(x, t, a) = 0 for ψ ∈ C∞
c (R × (0, t0 + rkt2)) .

From this it follows,
|q̃k|(Λk, a) = 0

as claimed.

In a next step we show, that (98) induces

lim
k→∞

∫

R

qk(Γ
t2
t1
, a) da =

∫

R

q∞(Γt2
t1
, a) da . (104)

Proof of (104). Since wk is an entropy solution we deduce from (98) that
|q̃k|(∂Γk, a) = 0 and therefore

1

rk

∫

R

(Dk)∗ |q̃k|(∂Γ
t2
t1
, a) da = 0 . (105)

Lemma 1 and (105) imply for a constant C > 0

1

rk

∫

R

(Dk)∗ |q̃k|(Γ̄
t2
t1
, a) da =

1

rk

∫

R

(Dk)∗ |q̃k|(∂Γ
t2
t1
, a) da+

∫

R

qk(Γ
t2
t1
, a) da

=

∫

R

qk(Γ
t2
t1
, a) da < C .

Hence one gets for a positive measure ν ∈ M(Γ̄t1
t1
) after possibly extracting

a subsequence
1

rk

∫

R

(Dk)∗ |q̃k|⇁ ν in M(Γ̄t1
t1
) .
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Then Proposition 1.62 in [AFP] and (105) imply

lim
k→∞

1

rk

∫

R

(Dk)∗ |q̃k|(∂Γ
t2
t1
, a) da = ν(∂Γt2

t1
) = 0 . (106)

But ν(∂Γt2
t1

) = 0 and Proposition 1.62 in [AFP] give again

lim
k→∞

1

rk

∫

R

(Dk)∗ |q̃k|(Γ
t2
t1
, a) da = lim

k→∞

∫

R

qk(Γ
t2
t1
, a) da =

∫

R

q∞(Γt2
t1
, a) da .

Since (95) and (98) holds we deduce from (97)

|µk|(Γ
t2
t1
) ≤

∫

R

qk(Γ
t1
t1
, a) da .

Taking the limit on both sides and applying (104) gives

|µ∞|(Γt2
t1
) ≤ lim inf

k→+∞
|µk|(Γ

t2
t1
) ≤ lim inf

k→+∞

∫

R

qk(Γ
t2
t1
, a) da

=

∫

R

q∞(Γt2
t1
, a) da = 0 .

But
|µ∞|(Γt2

t1
) = 0

is contradiction to (88). Therefore

lim sup
r→0+

1

r

∫

R

m(Br((x0, t0)), a) da ≥ 0 ,

which is, what we aimed to prove.

1.3 Proving that u is entropic

In this last section we are going to prove

Lemma 4. Let u ∈ L∞(R × [0, T ) be a weak solution of (1). Let m(x, t, a)
its entropy defect measure. If for H1 almost every (x0, t0) ∈ R × (0, T )

lim sup
r→0+

1

r

∫

Br(x0,t0)

∫

R

m(x, t, a) da dx dt ≥ 0 , (107)

then u is the entropy solution of (1).
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Proof of Lemma 4. We follow closely [ALR]. Without loss of generality
we can assume f(0) = 0 and f ≥ 0. According to Theorem 2 there exists a
g ∈W 1,∞(R × [0, T )) such that u = ∂xg and it satisfies almost everywhere

∂tg + f(∂xg) = 0 ,
∂xg(x, 0) = u0(x) .

}

(108)

We want to show, that g is a viscosity solution of (108), i.e. we want to
prove, that g is a sub- and supersolution of (108). This immediately implies
by Corollary 1.7.2 in [ALR], that u is an entropy solution. We already now,
that g satisfies (108) almost everywhere, then Proposition 5.1 in [BC] implies,
that g is a subsolution. Therefore it remains to show, that g is a supersolution
of (108). Let ψ ∈ C1(R×R+) such that g−ψ has a local minimum in (x0, t0).
Without loss of generality we can assume g(x0, t0) = ψ(x0, t0). We want to
show that

∂tψ(x0, t0) + f (∂xψ(x0, t0)) ≥ 0 .

We argue by contradiction, therefore we assume

∂tψ(x0, t0) + f (∂xψ(x0, t0)) < 0 .

Since f ≥ 0 this immediately implies

∂tψ(x0, t0) < 0 . (109)

For a sequence rn → 0+ we introduce

un(x, t) = u(x0 + rnx, t0 + rnt),

ψn(x, t) =
1

rn

(ψ(x0 + λrnx, t0 + rnt) − ψ(x0, t0)) ,

gn(x, t) =
1

rn

(g(x0 + rnx, t0 + rnt) − g(x0, t0)) ,

where 0 < λ < 1 is a constant, which we choose later. According to Lemma
3 we can extract a subsequence rk such that

uk → u∞ in L1(B1)

Since ∂xgk = uk and ∂tgk = f(uk) we have by Arzela-Ascoli, that gk converges
uniformly to a Lipschitz function g∞ such that ∂xu∞ = g∞ and g∞ fulfills
(108) almost everywhere. Furthermore we have for ψ∞ := ∇ψ(x0, t0)·(λx, t)

T

lim
k→∞

ψk(x, t) = ψ∞ .
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We notice, that for all 0 < λ < 1 and for all k the functions gk − ψk have
a local minimum in (0, 0) . By uniform convergence the function g∞ − ψ∞

admits also a local minimum in (0, 0) . Moreover

µk =
1

rk

∫

R

(Dk)∗mda ⇁ µ∞ in M(B1) .

Similar as in Section 1.2 from

lim
k→∞

∫

B1(0,0)

µk(B1(0, 0)) ≥ 0 ,

we can conclude

m∞(x, t, a) := ∂tu∞ ∧ a+ ∂xf(u∞ ∧ a) ≥ 0 .

Let δ > 0, then the function

hδ(x, t) := g∞ − ψ∞ +
δ

2

[

(1 − λ)x2 + t2
]

is defined on B1 and has a strict minimum in (0, 0). Notice that hδ(0, 0) = 0
and h ≥ 0 in B1. We claim that

|∇hδ| > 0 a.e. in B1 . (110)

Proof of (110). Let (x, t) ∈ B1 such that hδ is differentiable in (x, t) and
∇hδ(x, t) = 0. It follows since g∞ solves (108)

0 = ∂tg∞ + f(∂xg∞)

= ∂tψ(x0, t0) − δt+ f(λ∂xψ(x0, t0) + (1 − λ)δx)

≤ ∂tψ(x0, t0) + λf(∂xψ(x0, t0)) + ((1 − λ)f(δx) − δt) .

Since (109) holds, we can choose δ and λ small enough the expression

∂tψ(x0, t0) + λf(∂xψ(x0, t0)) + δ(f(δx) − t)

becomes strictly negative, which is a contradiction. Therefore the claim (110)
is proved.

Further we choose δ and λ small enough such that

|∂tψ(x0, t0)| > λ∂xψ(x0, t0) · sup
s∈[−‖u‖∞,‖u‖∞]

f ′(s) + δ((1 − λ)x+ t) . (111)

By τ > 0 we denote the minimum of hδ on ∂B1 and by a the essential
supremum of u∞ on {hδ < τ}. If a > 0 let a be close to a such that

39



0 < a < a. Let A := {hδ < τ} ∩ {a < u∞}. The set A has positive Lebesgue
measure. Therefore by the Coarea Formula and by |∇hδ| > 0 it follows for
Es := {hδ = s}

0 <

∫

A

|∇hδ(x, t)| dx dt =

∫ τ

0

H1(A ∩Es) ds .

Hence the set

S :=
{

s ∈ (0, τ) : H1({a < u∞} ∩Es) > 0, H1({u∞ > a} ∩ Es) = 0
}

has positive Lebesgue measure. For a vector v = (v1, v2) we define v⊥ :=
(−v2, v1) and for a s ∈ S the function

s→ l(s) :=

∫

Es

[

X(u∞ ∧ a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
]

· ν

where ν = ∇hδ

|∇hδ|
and the X is the vectorfield from (90). We choose s ∈ S

such that

lim
ε→0

1

ε

∫ s

s−ε

l(s′)ds′ = l(s) .

We define ζε(x, t) := 1 ∧ (s− hδ)
+/ε and calculate

∇ζε =

{

0 if hδ > s or hδ < s− ε
−1

ε
∇hδ if s− ε < hδ < s .

The choice of s ∈ S an the Coarea Formula implies

lim
ε→0

∫

B1

[

X(u∞ ∧ a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
]

· ∇ζε

= − lim
ε→0

1

ε

∫ s

s−ε

l(s′)ds′ = l(s) .

The sign of m∞ gives

0 ≤ −

∫

B1

[

X(u∞ ∧ a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
]

· ∇ζε .

As ε → 0 this implies

0 ≤

∫

Es

[

X(u∞ ∧ a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
]

· ν .

Now define E+
s := Es∩{u∞ > a} and E−

s := Es∩{u∞ ≤ a}. For (x, t) ∈ E−
s

we notice
[

X(u∞ ∧ a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
]

· ν = ∇⊥hδ · ∇hδ = 0 .
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Therefore it follows

0 ≤

∫

E+
s

[

X(a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
]

· ∇hδ .

In order to get a contradiction we claim
(

X(a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
)

· ∇hδ < 0 . (112)

We rearrange terms

[

X(a) −∇⊥ψ∞ + δ((1 − λ)x, t)⊥
]

· ∇hδ

= X(a) · ∇g∞ + (∇ψ∞ − δ((1 − λ)x, t))
(

∇⊥g∞ −X(a)
)

. (113)

We show (112), by proving that each term on the right hand side of (113)
is negative respectively strictly negative. Firstly we treat the first term and
claim

X(a) · ∇g∞ < 0 . (114)

A short calculation reveals

X(a) · ∇g∞ = f(a)u∞ − f(u∞)a

= f(a)(u∞ − a) + (f(a) − f(u∞))a

= a(u∞ − a)

(

f(a) − f(0)

a
−
f(u∞) − f(a)

u∞ − a

)

.

By convexity of f we have in the case a < u∞ < a < 0

f(u∞) − f(a)

u∞ − a
<
f(a) − f(a)

a− a
<
f(a) − f(0)

a
.

This implies

a

(

f(a) − f(0)

a
−
f(u∞) − f(a)

u∞ − a

)

≤ 0

and henceforth (114), if a ≤ 0. On the other hand if 0 < a < a, we get for
ξ ∈ (0, a), α ∈ (a, u∞)

f(a) − f(0)

a
= f ′(ξ) < f ′(a) < f ′(α) =

f(u∞) − f(a)

u∞ − a
,

which implies (114). Hence the first term of (113) is non-positive and it
remains to treat the second term. A short calculation gives

(∇ψ∞ − δ((1 − λ)x, t))
(

∇⊥g∞ −X(a)
)

= (u∞ − a)

[

∂tψ(x0, t0) + λ∂xψ(x0, t0)
f(u∞) − f(a)

u∞ − a
+ δ((1 − λ)x+ t)

]

.
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Our choice of δ and λ (see (111)) imply, that

(∇ψ∞ − δ((1 − λ)x, t))
(

∇⊥g∞ −X(a)
)

< 0

and thus (112). Finally (112) implies

∫

E+
s

(

X(a) − λ∇⊥ψ(x0, t0) + (1 − λ)δ(x, t)⊥
)

· ∇hδ = 0 .

Since
(

X(a) − λ∇⊥ψ(x0, t0) + (1 − λ)δ(x, t)⊥
)

· ∇hδ < 0

it follows H1(E+
s ) = 0, which is a contradiction to our choice of s ∈ S. Thus

∂tψ(x0, t0) + f (∂xψ(x0, t0)) ≥ 0

as claimed. Henceforth g is the viscosity solution of (108) and u = ∂xg the
entropy solution of (1) as claimed.

Proof of Theorem 1 Thanks to Lemma 2 and Lemma 4 we can conclude
the proof of Theorem 1. Indeed, we see that a weak solution u ∈ L∞(R ×
[0, T )) satisfying the assumptions of Theorem 1, has by Lemma 2 H1-a.e.
points of positive density, i.e.

lim sup
r→0+

1

r

∫

Br(x0,t0)

∫

R

m(x, t, a) da dx dt ≥ 0 for H1 a.e. (x0, t0) ∈ R×(0, T ) .

By Lemma 4 we know then, that u has to be entropic.
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