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Abstract We establish that any weakly conformal W 1,2 map from a Riemann surface S
into a closed oriented sub-manifold N n of an euclidian space R

m realizes, for almost every
sub-domain, a stationary varifold if and only if it is a smooth conformal harmonic map form
S into N n .

Mathematics Subject Classification 58E20 · 49Q05 · 53A10 · 49Q15 · 49Q20

1 Introduction

In [5] the author developed a viscosity method in order to produce closed minimal 2 dimen-
sional surfaces into any arbitrary closed oriented sub-manifolds N n of any euclidian spaces
R

m by min-max type arguments. The method consists in adding to the area of an immersion ��
of a surface � into N n a more coercive term such as the L2p norm of the second fundamental
form preceded by a small parameter σ 2:

Aσ ( ��) := Area( ��) + σ 2
∫

�

[
1 + |�I ��|2

]p
dvolg ��

where �I �� is the second fundamental form of the immersion �� and dvolg �� is the volume form
associated to the induced metric. For p > 1 and σ > 0 one proves that the Lagrangians
Aσ are Palais–Smale in some ad-hoc Finsler bundle of immersions complete for the Palais
distance. By applying the now classical Palais–Smale deformation theory in infinite dimen-
sional space one can then produce critical points ��σ to Aσ . It is proved in [4] that, for a
sequence of parameters σk → 0, the sequence of integer rectifiable varifolds associated to
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the immersion of � by ��σk does not necessarily converge1 to a stationary integer rectifiable
varifold. However, by applying Struwe’s monotonicity trick one can always select a sequence
σ j → 0 such that the following additional “entropy estimate” holds

σ j

∫
�

[
1 + |�I ��σ j

|2
]p

dvolg ��σ j
= o

(
1

σ j log σ−1
j

)

Assuming this additional estimate, the main achievement of [5] is to prove that the immersion
of � by ��σ j varifold converges to a stationary integer rectifiable varifold given by the image

of a smooth Riemann surface S by a weakly conformal W 1,2 map �� into N n equipped by
an integer multiplicity. The main result of the paper is to prove that, when this multiplicity is
constant, such a map is smooth and satisfies the harmonic map equation. To state our main
result we need two definitions.

Definition 1.1 A property is said to hold for almost every smooth domain in �, if for any
smooth domain � and any smooth function f such that f −1(0) = ∂� and ∇ f �= 0 on ∂�

then for almost every t close enough to zero and regular value for f the property holds for
the domain contained in � or containing � and bounded by f −1({t}). �

Precisely we define the notion of target harmonic map as follows.

Definition 1.2 Let (�, h) be a smooth closed Riemann surface equipped with a metric com-
patible with the complex structure. A map �� ∈ W 1,2(�, N n) is target harmonic if for almost
every smooth domain � ⊂ � and any smooth function F supported in the complement of
an open neighborhood2 of ��(∂�) we have∫

�

〈
d(F( ��)), d ��

〉
h

− F( ��) A( ��)(d ��, d ��)h dvolh = 0 (1.1)

where h is any3 metric compatible with the chosen conformal structure on S and where
A(�q)( �X , �Y ) denotes the second fundamental form of N n at the point �q and acting on the pair
of vectors ( �X , �Y ) and by an abuse of notation we write

A( ��)(d ��, d ��)h :=
2∑

i, j=1

hi j A( ��)(∂xi
��, ∂x j

��).

�	
Observe that the main difference with the general definition of being harmonic is that, for
target harmonic one restricts (1.1) to test functions F supported in the target while for the
definition of harmonic, one requires (1.1) to hold for any W 1,2 test function defined on the
domain. Therefore, being harmonic implies to be target harmonic and the proof of the reverse
is the goal of the present work. For a weakly conformal W 1,2 map into N n the condition
for �� to be target harmonic is equivalent to saying that the mapping of � in N n defines a
stationary integer rectifiable varifold (see proposition A. 1). Our main result in the present
paper is the following.

1 Even modulo extraction of subsequences and in a weak sense such as the varifold distance topology.
2 Observe that for almost every domain � the restriction of �� to ∂� is Hölder continuous and ��(∂�) is then
closed.
3 One observe that the condition (1.1) is conformally invariant and hence independent of the choice of the
metric h within the conformal class given by �.
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The regularity of conformal target harmonic maps Page 3 of 15 117

Theorem 1.1 Any weakly conformal target harmonic map into an arbitrary closed sub-
manifold N n of Rm in two dimension is smooth and satisfy the harmonic map equation.

�	
It is not known if, without the conformality assumption, a target harmonic map is an harmonic
map in the classical sense. Following the main lines of the proof below one can prove that
this is indeed the case in one dimension.

2 The partial regularity

Since the problem is local we shall work in a chart and hence consider maps in W 1,2(D2, N n)

exclusively. Indeed, being target harmonic in S implies to be target harmonic in any sub-
domain of S. Hence if one proves that target harmonic on a disc implies harmonic on that disc
in the classical sense we deduce that target harmonic on S implies harmonic on S. Therefore
we can reduce to the case S = D2.

Let �� be a W 1,2 map from the disc D2 into N n satisfying the weak conformality condition

|∂x1
��|2 = |∂x2

��|2 and ∂x1
�� · ∂x2

�� = 0 a.e. on D2 (2.1)

For any A > 1 we introduce

GA :=
⎧⎨
⎩

x is a Lebesgue point for �� and ∇ ��
x is a point of L2 app. differentiability

A−1 < |∇ ��|(x) < A

⎫⎬
⎭

We are going to prove the following lemma

Lemma 2.1 Let �� be a target harmonic map on D2. Under the previous notations we have
that

G := ∪A>1GA

is an open subset of D2, �� is smooth and harmonic into N n in the strong sense onG. Moreover

H2
( ��(D2\G)

)
= 1

2

∫
D2\G

|∇ ��|2(y) dy2 = 0. (2.2)

�	
Proof of lemma 2.1 Let A > 0. For such an x ∈ GA we shall denote

eλ(x) := |∂x1
��|(x) = |∂x2

��|(x) and �ei (x) := e−λ(x) ∂xi
��(x).

We have in particular

1

|Br (x)|
∫

Br (x)

|∇ ��(y)|2 dy2 > A2 + o(1)

and hence

lim
r→0

∫
Br (x)

|∇ ��(y) − ∇ ��(x)|2 dy2

∫
Br (x)

|∇ ��(y)|2 dy2
= 0. (2.3)
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And

lim
r→0

∫
Br (x)

r−2 | ��(y) − ��(x) − ∂x1
��(x)(y1 − x1) − ∂x2

��(x)(y2 − x2)|2 dy2

∫
Br (x)

|∇ ��(y)|2 dy2
= 0

(2.4)

For any ε > 0 there exists r0 > 0 such that for any r < r0∫
Br (x)

|∇ ��(y) − ∇ ��(x)|2 + r−2 | ��(y) − ��(x) − ∂x1
��(x)(y1 − x1) − ∂x2

��(x)(y2 − x2)|2 dy2

∫
Br (x)

|∇ ��(y)|2 dy2
< ε2

Using Fubini theorem together with the mean value Theorem, for any such r there exists
ρr,x ∈ [r/2, r ] such that

r

2

∫
∂ Bρr,x (x)

|∇ ��(y) − ∇ ��(x)|2 + r−2 | ��(y) − ��(x) − ∂x1
��(x)(y1 − x1)

−∂x2
��(x)(y2 − x2)|2 dl∂ Bρr,x

< ε2
∫

Br (x)

|∇ ��(y)|2 dy2 = π r2 ε2e2λ(x)(1 + or (1)) (2.5)

then

‖ ��(ρr,x , θ) − ��(ρr,x , 0) − eλ(x) ρr,x [cos θ − 1] �e1 − eλ(x) ρr,x sin θ �e2‖L∞([0,2π ])

≤
∫ 2π

0

∣∣∣∂θ

( ��(ρr,x , θ) − ��(ρr,x , 0) − eλ(x) ρr,x [cos θ − 1] �e1 − eλ(x) ρr,x sin θ �e2

)∣∣∣ dθ

=
∫
∂ Bρr,x (x)

∣∣∣∣∣
1

ρr,x

∂ ��
∂θ

(y) + ∂x1
��(x) sin θ − ∂x2

��(x) cos θ

∣∣∣∣∣ dl∂ Bρr,x

≤
∫
∂ Bρr,x (x)

|∇ ��(y) − ∇ ��(x)| dl∂ Bρr,x
< 2 π ε ρr,x eλ(x)(1 + or (1)) (2.6)

Denote �Lx (y) := ��(x)+∂x1
��(x)(y1 − x1)+∂x2

��(x)(y2 − x2). Considering (2.5), we have
also chosen ρr,x in such a way that

∣∣∣∣∣
∫

∂ Bρr,x (x)

��(y) dl∂ Bρr,x
− ��(x)

∣∣∣∣∣
2

=
∣∣∣∣∣
∫

∂ Bρr,x (x)

��(y) dl∂ Bρr,x
−

∫
∂ Bρr,x (x)

�Lx (y) dl∂ Bρr,x

∣∣∣∣∣
2

≤
∫

∂ Bρr,x (x)

| ��(y) − �Lx (y)|2 dl∂ Bρr,x
≤ 2 ε2 ρ2

r,x e2λ(x)(1 + or (1)) (2.7)

We have ∫
∂ Bρr,x (x)

��(y) dl∂ Bρr,x
= 1

2π

∫ 2π

0

��(ρr,x , θ) dθ (2.8)

We have moreover

1

2π

∫ 2π

0

[ ��(ρr,x , 0) + eλ(x) ρr,x [cos θ − 1] �e1 + eλ(x) ρr,x sin θ �e2

]
dθ

= ��(ρr,x , 0) − eλ(x) ρr,x �e1 (2.9)
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Thus combining (2.6), …,(2.9) we have

| ��(x) − ��(ρr,x , 0) + eλ(x) ρr,x �e1| ≤ [2π + √
2] ε ρr,x eλ(x) (1 + or (1)). (2.10)

Hence combining (2.6) and (2.10) we obtain

‖ ��(ρr,x , θ) − ��(x) − eλ(x) ρr,x cos θ �e1 − eλ(x) ρr,x sin θ �e2‖L∞([0,2π ])
≤ 5 π ε ρr,x eλ(x) (1 + or (1)) (2.11)

Denote by �ρr,x the circle in R
m given by �Lx (∂ Bρr,x (x)) and

�ε
ρr,x

=
{

y ∈ N n s. t. dist(y, �ρr,x ) > 6 π ε ρr,x eλ(x)
}

(2.12)

Because of our assumptions, �ρr,x := ��(Bρr,x (x)) ∩ �ε
ρr,x

defines a rectifiable integer sta-
tionary varifold in N n ∩ �ε

ρr,x
. Leon Simon monotonicity formula in R

m gives

ρ−2
r,x H2

(
�ρr,x ∩ Bm

eλ(x) ρr,x
( ��(x))

)
− π e2 λ(x) ≥ −1

4

∫
Bm

eλ(x) ρr,x
( ��(x))

| �HRm |2dH2 �ρr,x

− 1

ρ2
r,x

∫
�q∈Bm

eλ(x) ρr,x
( ��(x))

| �HRm ||�q − ��(x)|dH2 �ρr,x (2.13)

where �HRm is the generalized curvature of the varifold given by �� in R
m . The generalized

curvature is by definition given by∫
�HRm · F(�q) dH2 = −

∫
�

d(F( ��)) · d �� dvolg ��

Using the stationarity in N n we have (A. 2) and then we have

�HRm := − A( ��)(d ��, d ��)g ��.

Hence, since |d ��|g �� = 1 we deduce that | �HRm | ≤ ‖A‖L∞(N n). Inserting this bound in (2.13)
we obtain

ρ−2
r,x H2

(
�ρr,x ∩ Bm

eλ(x) ρr,x
( ��(x))

)
− π e2 λ(x) ≥ − C ρ−1

r,x H2
(
�ρr,x ∩ Bm

eλ(x) ρr,x
( ��(x))

)

(2.14)

Thus

ρ−2
r,x H2

(
�ρr,x ∩ Bm

eλ(x) ρr,x
( ��(x))

)
≥ π e2 λ(x) (1 − C ρr,x ) (2.15)

Thus having chosen r0 < ε2, we have

H2
(
�ρr,x ∩ Bm

eλ(x) ρr,x
( ��(x))

)
≥ π e2 λ(x) ρ2

r,x

(
1 − Cε2) . (2.16)

In the mean time, due to (2.3) we have

H2 (
�ρr,x

) ≤ 1

2

∫
Bρr,x (x)

|∇ ��(y)|2 dy2 ≤ π e2λ(x) ρ2
r,x (1 + C ε2). (2.17)

The tilt excess of �ρr,x in the sense of Allard [1] is given by

E
(
�ρr,x , �e1 ∧ �e2, ��(x), ρr,x

)

= 1

ρ2
r,x

∫
Bρr,x (x)∩G

|e−2λ(y)∂x1
��(y) ∧ ∂x2

��(y) − �e1 ∧ �e2|2 e2λ(y) dy2
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Since we have the pointwize bound

2 |eλ(y) − eλ(x)| = ||∇ ��|(x) − |∇ ��|(y)| ≤ |∇ ��(x) − ∇ ��(y)| (2.18)

hence we deduce from (2.5) that4∫
Bρr,x (x)∩G

|eλ(y) − eλ(x)|2 dy2 ≤ π ε2 ρ2
r,x e2λ(x)

Hence, denoting

Eε := {
y ∈ Bρr,x (x) ∩ G ; |λ(y) − λ(x)| >

√
ε
}
,

we have

|Eε| ≤ ε |Bρr,x (x)|. (2.19)

Observe ∫
Eε

|∇ ��(y)|2 dy2 ≤ 2
∫

Bρr,x (x)

|∇ ��(y) − ∇ ��(x)|2 dy2 + 2
∫

Eε

|∇ ��(x)|2 dy2

≤ 4 π [ε + ε2] ρ2
r,x e2λ(x) ≤ 3 π ε ρ2

r,x e2λ(x) (2.20)

Observe that we have the pointwize bound

|e−2λ(y)∂x1
��(y) ∧ ∂x2

��(y) − �e1 ∧ �e2|2 e2λ(y) = |�e1(y) ∧ ∂x2
�� − �e1(x) ∧ �e2(x) eλ(y)|2

≤ 2 |�e1(x) − �e1(y)|2 e2λ(y) + 2 |�e2(x) − �e2|2 e2λ(y) ≤ 4 |eλ(x) − eλ(y)|2
+2 |∇ ��(x) − ∇ ��(y)|2
≤ 4 |∇ ��(x) − ∇ ��(y)|2

where we have also used (2.18). We have using one more time (2.5) together with (2.20) and
the previous pointwize inequality

E
(
�ρr,x , �e1 ∧ �e2, ��(x), ρr,x

)
≤ 4

ρ2
r,x

∫
Eε

|∇ ��(y)|2 dy2

+ 1

ρ2
r,x

∫
Bρr,x (x)∩G\Eε

|e−2λ(y)∂x1
��(y) ∧ ∂x2

��(y) − �e1 ∧ �e2|2 e2λ(y) dy2

≤ 12 π ε A2 + ε
1

ρ2
r,x

∫
Bρr,x (x)

|∇ ��(y)|2 dy2 ≤ 14 π ε A2. (2.21)

where we recall that x has been chosen in such a way that 2 e2λ(x) ≤ A2. Combining (2.17)
and (2.21) we can apply Allard main regularity result and precisely we obtain for ε small
enough the existence of γ < 1 such that Sr,x := �ρr,x ∩ Bm

γ eλ(x) r
( ��(x)) is a smooth minimal

sub-manifold. Moreover, because of the upper semi-continuity of the density function for
a stationarity varifold we can assume that all points �q ∈ Sr,x have multiplicity 1 (See for
instance the presentation of the absence of hole in [2] section 7). In other words we have that∫

Bm
γ eλ(x) r

( ��(x))

dH2 �ρr,x = Area(Sr,x ) =
∫

��−1(Sr,x )

dvolg �� = 1

2

∫
��−1(Sr,x )

|∇ ��|2 dx2

(2.22)

4 We are restricting to the integration on Bρr,x (x) ∩ G because one requires λ to be defined as a measurable
function.
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The regularity of conformal target harmonic maps Page 7 of 15 117

and, in the area formula, the counting function

H0( ��−1(Sr,x ) ∩ ��−1{�q}) = 1 for H2 − a. e. �q ∈ Sr,x . (2.23)

We claim that for s small enough ��(Bs(x)) ⊂ Sr,x . Assuming there is point �p /∈
Bm

γ r eλ(x)
( ��(x)) but �p ∈ ��(Bs(x)). As s goes to zero we have in one hand, using (2.5),

∫
Bs (x)

|∇ ��|2 dy2 ≤ 2 π s2 (1 + ε) e2λ(x) (2.24)

but the stationarity of �ρs,x := ��(Bρs,x (x)) ∩ �ε
ρ2 s,x

in N n ∩ �ε
ρ2 s,x

together with the mono-
tonicity formula would imply

π(γ r − s)2 e2λ(x) (1 − or (1)) ≤ π(dist( �p, �ε
ρ2 s,x

) (1 − or (1)) ≤ H2(�ρ2 s,x )

≤ 1

2

∫
Bs (x)

|∇ ��|2 dy2

which contradicts5 (2.24) for s very small compared to r . Hence, for s small enough

��(Bs(x)) ⊂ Sr,x = �ρr,x ∩ Bm
γ eλ(x) r (

��(x))

Let � be a smooth conformal diffeomorphism from �ρr,x ∩ Bm
γ eλ(x) r

( ��(x)) into the disc

D2. Denote by e2μ dz2 = �∗gRm and consider f := � ◦ ��. This is in particular a W 1,2

weakly conformal map from Bs(x) into C. Consider any map g ∈ W 1,2(Bρs,x (x)) such that
g = f on ∂ Bρs,x (x). The union of f and g realizes a W 1,2 ∩ L∞ map from S2 into C that we
denote f̃ . The cycle f̃∗[S2] has then an algebraic covering number equal to 0 H2−almost
everywhere in C that is to say6

∫
S2

f̃ ∗dz1 ∧ dz2 = 0.

Away from the compact 1 rectifiable set f (∂ Bρs,x (x)), because of (2.23), the image
f (Bρs,x (x)) has covering number +1, −1 or 0. Hence, g must have an odd covering number
almost everywhere in C\ f (∂ Bρs,x (x)) whenever the covering number of f is non zero. This
homological fact implies

1

2

∫
Bρs,x (x))

e2μ( f ) |∇ f |2 dx2 =
∫

Bρs,x (x))

e2μ( f )|∂x1 f × ∂x2 f | dx1 ∧ dx2

≤
∫

Bρs,x (x))

e2μ(g)|∂x1 g × ∂x2 g| dx1 ∧ dx2 ≤ 1

2

∫
Bρs,x (x))

e2μ(g) |∇g|2 dx2

Hence by the Dirichlet principle f coincides with it’s harmonic extension7 in (D2, e2μ dz2).
The map � ◦ �� is then smooth (holomorphic or anti-holomorphic) on Bρs,x (x)). This implies
Lemma 2.1. �	
5 Observe that based on similar arguments one could prove directly that �� is continuous on the whole �

without using Allard’s result but this is not needed.
6 Indeed due to the W 1,2 nature of f̃ and since we are in 2 dimension we have that d and ∗ commute (this is
clearly not the case in higher dimension) and we have in particular f̃ ∗dz1 ∧ dz2 = d( f̃1 d f̃2)

7 The harmonic extension is unique for r small enough since one is taking value in a convex geodesic ball of
(D2, e2μ dz2).
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3 The harmonicity of conformal target harmonic maps

3.1 The integration by part formula

The goal of the present subsection is to prove the following integration by parts formula.

Lemma 3.1 Let F( �p) = (Fi j ( �p))1≤i≤m 1≤ j≤k be a C1 map on N n taking values into m × k
real matrices. Then, for any smooth compactly supported function ϕ in D2 and for almost
every regular value t > 0 of ϕ one has

m∑
i=1

∫
∂�t

F( ��)i j
∂ ��i

∂ν
dl∂�t −

∫
�t

∇(F( ��)i j)∇ ��i dy2

+
∫

�t

F( ��)i j Ai ( ��)(d ��, d ��) dy2 = 0 (3.1)

where �t = ϕ−1((t,+∞)) and ν is the exterior unit normal to the level set ν := ∇ϕ/|∇ϕ|.
�	

In order to prove lemma 3.1, we will first establish some intermediate results.
Let x ∈ D2 and choose r such that

1

2ε

∫ r+ε

r−ε

ds
∫

∂ Bs (x)

|∇ ��|2 dl∂ Bs =
∫

∂ Br (x)

|∇ ��|2 dl∂ Br < +∞ (3.2)

Hence the restriction of �� to ∂ Br (x) is W 1,2 and the continuous image of ∂ Br (x) by ��,
�r,x := ��(∂ Br (x)) has finite length and is rectifiable and compact.

We denote B := D2\G. Because of the previous lemma 2.1 we have that B is closed.
Hence

B =
⋂
ε>0

Bε where Bε := {
x ∈ D2 ; dist(x,B) ≤ ε

}

Since the integral of |∇ ��|2 over B is zero, we clearly have

lim
ε→0

∫
Bε

|∇ ��|2(y) dy2 = 0 (3.3)

We denote also

Gε := D2\Bε

Finally we denote byBε the rectifiable image ofBε by �� that is the image by the approximate
continuous representative of �� of the intersection of Bε with the points of approximate
differentiability of ��. We claim the following.

Lemma 3.2 Under the previous notations we have

lim
ε→0

∫
D2∩ ��−1(Bε)

|∇ ��|2(y) dy2 = 0 (3.4)

Proof of lemma 3.2 Identity (3.3) implies that

lim
ε→0

H2(Bε) = 0 (3.5)
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Hence for any δ > 0 there exists εδ > 0 and for any ε < εδ there exists a covering of Bε by
balls (Bm

rl
( �pl))l∈� such that

∑
l∈�

r2
l < δ

Using the monotonicity formula for stationary varifolds we obtain
∫

D2∩ ��−1(Bε)

|∇ ��|2(y) dy2 ≤
∑
i∈I

∫
��−1(Bm

rl
( �pl ))

|∇ ��|2(y) dy2 ≤ C
∑
l∈�

r2
l < C δ

which implies the lemma. �	

We shall prove the following.

Lemma 3.3 Under the previous notations we have

lim
s→0

∫
Gε

[
1 + |∇ ��|2(y)

] ∣∣∣∣∣∣
H2

(
Bε ∩ Bm

s ( ��(y))
)

π s2 − θ2
ε ( ��(y))

∣∣∣∣∣∣ dy2 = 0 (3.6)

where

θ2
ε ( �p) := lim

s→0

H2
(
Bε ∩ Bm

s ( �p)
)

π s2

exists H2 almost everywhere since Bε ⊂ ∪η>0 ��(Gη) is 2-rectifiable. Moreover since �� is a
smooth immersion on Gε, θ2

ε ( ��(y)) is a well defined measurable function on Gε.

Proof of lemma 3.3 Since |∇ ��| is uniformly bounded on Gε we have

∫
Gε

[
1 + |∇ ��|2(y)

] ∣∣∣∣∣∣
H2

(
Bε ∩ Bm

s ( ��(y))
)

π s2 − θ2
ε ( ��(y))

∣∣∣∣∣∣ dy2

≤
[
1 + ‖∇ ��‖L∞(Gε)

] ∫
Gε

∣∣∣∣∣∣
H2

(
Bε ∩ Bm

s ( ��(y))
)

π s2 − θ2
ε ( ��(y))

∣∣∣∣∣∣ dy2

Since �� is a smooth immersion on Gε, θ2
ε ( ��(y)) is a well defined measurable function on Gε

and we have for almost y

lim
s→0

H2
(
Bε ∩ Bm

s ( ��(y))
)

π s2 = θ2
ε ( ��(y))

The monotonicity formula for the stationary varifold given by the image of D2 by �� gives

sup
s>0; y∈D2

H2
(
Bε ∩ Bm

s ( ��(y))
)

π s2 ≤ sup
s>0; y∈D2

H2
( ��(D2) ∩ Bm

s ( ��(y))
)

π s2 ≤ C

for some C . The lemma follows by a direct application of dominated convergence. �	
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Proof of lemma 3.1 In order to simplify the presentation we shall restrict to �t to be balls.
Because of (3.4), for every x ∈ D2 and almost every r > 0 we have

lim
ε→0

∫
��−1(Bε)∩∂ Br (x)

|∇ ��|(y) dl∂ Br = 0 (3.7)

We choose r such that (3.7) holds true and such that also

lim
s→0

∫
Gε∩∂ Br (x)

[
1 + |∇ ��|2(y)

] ∣∣∣∣∣∣
H2

(
Bε ∩ Bm

s ( ��(y))
)

π s2 − θ2
ε ( ��(y))

∣∣∣∣∣∣ dl∂ Br = 0.

(3.8)

Hence in particular H1( ��(Bε ∩ ∂ Br (x))) is converging to zero as ε goes to zero. Since �� is
continuous on ∂ Br (x) and since Bε is a closed set we have that ��(Bε ∩ ∂ Br (x)) is a compact
subset of N n . Because of the previous, for any δ > 0, there exists εδ > 0 such that for any
ε < εδ , we can include ��(Bε ∩ ∂ Br (x)) in finitely many balls (Bm

rl
( �pl))l∈� such that

∑
l∈�

rl < δ. (3.9)

We also choose εδ > 0 such that for any ε < εδ

∫
��−1(Bε)∩∂ Br (x)

|∇ ��|(y) dl∂ Br < δ. (3.10)

Let χ be a cut-off function on R+ such that χ ≡ 1 on [2,+∞) and χ ≡ 0 on [0, 1]. We
introduce

ξε( ��(y)) :=
∏
l∈�

χ

(
| ��(y) − �pl |

rl

)

Observe that ξε( ��(y)) is zero on Bε ∩ ∂ Br (x). For any s > 0 we also introduce

ηs( ��(y)) := χ

(
dist( ��(y), �r,x )

s

)

where we recall that �r,x := ��(∂ Br (x)). Using the assumption (1.1) we have for any F as
in the statement of the lemma

m∑
i=1

−
∫

Br (x)

∇(ξε( ��) ηs( ��) F( ��)i j )∇ ��i dy2

+
∫

Br (x)

ξε( ��) ηs( ��)F( ��)i j Ai ( ��)(d ��, d ��) dy2 = 0 (3.11)
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We have∣∣∣∣
∫

Br (x)

∇(ξε( ��)) ηs( ��) F( ��)i j ∇ ��i dy2
∣∣∣∣

≤ C ‖F‖∞
∑
l∈�

1

rl

∫
Br (x)

|χ ′|
(

| ��(y) − �pl |
rl

)
|∇ ��|2(y) dy2

≤ C ‖F‖∞
∑
l∈�

r−1
l

∫
��−1(Bm

rl
( �pl ))

|∇ ��|2(y) dy2 ≤ C ‖F‖∞
∑
l∈�

rl ≤ C ‖F‖∞ δ

(3.12)

where we observe that the bound is independent of s. We now write
∫

Br (x)

ξε( ��)∇(ηs( ��)) F( ��)i j ∇ ��i dy2 =
∫

Br (x)∩Bε

· · · +
∫

Br (x)∩Gε

· · · (3.13)

We have ∣∣∣∣
∫

Br (x)∩Bε

ξε( ��)∇(ηs( ��)) F( ��)i j ∇ ��i dy2
∣∣∣∣

≤ C ‖F‖∞
s

∫
Br (x)∩Bε

1dist( ��(y),�ε
r,x )<s |∇ ��|2(y) dy2 (3.14)

Where �ε
r,x is the smooth immersed curve ��(∂ Br (x)) ∩ Gε and 1dist( ��(y),�ε

r,x )<s(y) is the

characteristic function of the set of y such that ��(y) is at the distance at most s to �ε
r,x .

The fact that we can restrict to �ε
r,x instead of �r,x is due to the fact that we are cutting off

�r,x\�ε
r,x by multiplying by ξε( ��). Observe that since the curve �ε

r,x is a smooth immersion
of the open subset of ∂ Br (x) given by ∂ Br (x) ∩ Gε we have for s small enough

1dist( �p,�ε
r,x )<s ≤ 1

s

∫
�ε

r,x

1dist( �p,�q)<2s dH1(�q)

≤ 1

s

∫
∂ Br (x)∩Gε

1dist( �p, ��(z))<2s |∇ ��|(z) dl∂ Br (3.15)

Inserting this inequality in (3.14) gives
∣∣∣∣
∫

Br (x)∩Bε

ξε( ��)∇(ηs( ��)) F( ��)i j ∇ ��i dy2
∣∣∣∣

≤ C ‖F‖∞
s2

∫
∂ Br (x)∩Gε

|∇ ��|(z) dl∂ Br

∫
Br (x)∩Bε

1dist( ��(y), ��(z))<2s |∇ ��|2(y) dy2

≤ C ‖F‖∞
∫

∂ Br (x)∩Gε

|∇ ��|(z) H2(Bε ∩ Bm
s ( ��(z))

s2 dl∂ Br (3.16)

Using (3.8) we then obtain

lim sup
s→0

∣∣∣∣
∫

Br (x)∩Bε

ξε( ��)∇(ηs( ��)) F( ��)i j ∇ ��i dy2
∣∣∣∣

≤ C ‖F‖∞
∫

∂ Br (x)∩Gε

|∇ ��|(z) θ2
ε ( ��(y)) dl∂ Br (z) (3.17)
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and using the uniform bound on the density which itself comes from the monotonicity formula

lim sup
s→0

∣∣∣∣
∫

Br (x)∩Bε

ξε( ��)∇(ηs( ��)) F( ��)i j ∇ ��i dy2
∣∣∣∣

≤ C ‖F‖∞
∫

∂ Br (x)∩Gε∩ ��−1(Bε)

|∇ ��|(z) dl∂ Br (z) ≤ C ‖F‖∞ δ (3.18)

where we have used (3.10). Observe that since we have cut-off �r,x\�ε
r,x by multipying by

ξε( ��) we have for s small enough

lim
s→0

∫
Br (x)∩Gε

ξε( ��)∇(ηs( ��)) F( ��)i j ∇ ��i dy2

lim
s→0

∫
Br (x)∩Gε

ξε( ��)∇
(

η

(
dist( ��(y), �ε

r,x )

s

))
F( ��)i j ∇ ��i dy2 (3.19)

Using the coarea formula this gives

lim
s→0

m∑
i=1

∫
Br (x)∩Gε

ξε( ��)∇
(

η

(
dist( ��(y), �ε

r,x )

s

))
F( ��)i j ∇ ��i dy2

= lim
s→0

1

s

∫ 2s

0
χ ′ (σ

s

)
dσ

∫
dist( �p,�ε

r,x )=σ

ξε( �p) Fj ( �p) · ν dH1 �ε
r,x (3.20)

where �ε
r,x is the immersed sub-manifold ��(Br (x))∩Gε and �ν is the unit exterior vector in this

sub-manifold orthogonal to the level set dist( �p, �ε
r,x ) = σ and Fj ( �p) · ν = ∑m

i=1 Fji ( �p) νi .

Since �� is an immersion in a neighborhood of ∂ Br ∩ Gε, for σ small enough and being a
regular value of f ε

r,x ( �p) := dist( �p, �ε
r,x ) the level set is made of the following union

(
f ε
r,x

)−1
(σ ) = γ ε

r,x (σ ) ∪α∈Aσ ∂ωα(σ )

where γ ε
r,x (σ ) is a smooth curve converging to �ε

r,x and ωα(σ ) are subdomains of Br (x)

included in dist( ��(y), �ε
r,x )

−1([0, σ ]). The Taylor expansion of �� with respect to each point
y ∈ ∂ Br (x) gives

lim
σ→0

∫
γ ε

r,x (σ )

ξε( �p) Fj ( �p) · ν dH1 �ε
r,x =

∫
∂ Br (x)∩Gε

ξε( ��)

m∑
i=1

Fi j ( ��)
∂ ��i

∂r
dl∂ Br

(3.21)

Hence

lim
s→0

1

s

∫ 2s

0
χ ′ (σ

s

)
dσ

∫
γ ε

r,x (σ )

ξε( �p) Fj ( �p) · ν dH1 �ε
r,x

=
∫

∂ Br (x)∩Gε

ξε( ��)

m∑
i=1

Fi j ( ��)
∂ ��i

∂r
dl∂ Br (3.22)

For the other contributions we have

lim
s→0

1

s

∫ 2s

0
χ ′ (σ

s

)
dσ

∑
α∈Aσ

∫
∂ωα(σ )

ξε( �p) Fj ( �p) · ν dH1 �ε
r,x

lim
s→0

1

s

∫ 2s

0
χ ′ (σ

s

)
dσ

∑
α∈Aσ

∫
ωα(σ)

div�ε
r,x

(
ξε( �p) Fj ( �p)

)
dH2 �ε

r,x (3.23)
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Since ωα(σ ) is included in a σ neighborhood of the smooth curve �ε
r,x , using the monotonicity

formula, for σ small enough, covering such a neighborhood by� σ−1 H1(�ε
r,x ) balls of radius

2σ we have the following bound

∑
α∈Aσ

H2(ωα(σ )) ≤ C σ H1(�ε
r,x ) sup

t, �p
H2(�ε

r,x ∩ Bm
t ( �p))

t2 ≤ Cε σ (3.24)

Hence we have

lim
s→0

1

s

∫ 2s

0
χ ′ (σ

s

)
dσ

∑
α∈Aσ

∫
∂ωα(σ )

ξε( �p) Fj ( �p) · ν dH1 �ε
r,x

≤ lim
s→0

Cε

s

∫ 2s

0
‖χ ′‖∞ ‖div�ε

r,x

(
ξε( �p) Fj ( �p)

) ‖L∞(�ε
r,x ) σ dσ ≤ Cε σ (3.25)

Combining (3.19) …(3.25) we obtain

lim
s→0

∫
Br (x)∩Gε

ξε( ��)∇(ηs( ��)) F( ��)i j ∇ ��i dy2

=
∫

∂ Br (x)∩Gε

ξε( ��)

m∑
i=1

Fi j ( ��)
∂ ��i

∂r
dl∂ Br (3.26)

Collecting (3.10), (3.12), (3.18) and (3.26) we obtain∣∣∣∣∣
m∑

i=1

∫
∂ Br (x)

F( ��)i j
∂ ��i

∂r
dl∂ Br −

∫
Br (x)

∇(F( ��)i j)∇ ��i dy2

+
∫

Br (x)

F( ��)i j Ai ( ��)(d ��, d ��) dy2
∣∣∣∣ < C(‖F‖∞) δ (3.27)

This holds for any δ > 0 and hence lemma 3.1 is proved. �	
3.2 Proof of Theorem 1.1

Let ϕ ∈ C∞
0 (D2), be a non negative function. The co-area formula gives
∫

D2
�ϕ �� dx2 = −

∫
D2

∇ϕ · ∇ �� =
∫ +∞

0
dt

∫
ϕ−1{t}

∂ν
�� dlϕ−1{t} (3.28)

Using lemma 3.1 for Fi j := δi j , we obtain
∫

D2
�ϕ �� dx2 = −

∫ +∞

0
dt

∫
ϕ−1((t,+∞))

A( ��)(d ��, d ��) dy2

= −
∫ +∞

0

∫
D2

1ϕ(x)>t A( ��)(d ��, d ��) dy2

dt = −
∫

D2
ϕ(x) A( ��)(d ��, d ��) dy2 (3.29)

This implies that �� satisfies weakly the harmonic map equation into N n

−� �� = A( ��)(d ��, d ��) in D′(D2)

and using Hélein’s regularity result [3], we prove theorem 1.1. �	
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A Appendix

Proposition A. 1 Let N n be a C2 sub-manifold of the euclidian space R
m. Let (�, h) be a

compact Riemann surface (equipped with a metric compatible with the complex structure)
possibly with boundary. Let �� be a map in W 1,2(�, N n). Assume �� is weakly conformal
and continuous on ∂�. The integer rectifiable varifold associated to ( ��,�) is stationary in
N n\ ��(∂�) if and only if

∀ F ∈ C∞
0 (N n\ ��(∂�),Rm)

∫
�

[〈
d(F( ��)), d ��

〉
h
−F( ��) A( ��)(d ��, d ��)h

]
dvolh =0

where A(�q)( �X , �Y ) denotes the second fundamental form of N n at the point �q and acting on
the pair of vectors ( �X , �Y ) and by an abuse of notation we write

A( ��)(d ��, d ��)h :=
2∑

i, j=1

hi j A( ��)(∂xi
��, ∂x j

��).

�	
Proof of proposition A. 1 For any �q ∈ N n one denotes by PT (�q) the symmetric matrix giving
the orthogonal projection onto T�q N n . The integer rectifiable varifold given by ( ��,�) is by
defintion the following Radon measure on G2(TR

m) the Grassman bundle of un-oriented
2-planes over Rm given by

∀ φ ∈ C∞(G2(TR
m)) v ��(φ) =

∫
G2(TRm )

φ(S, �q) dV ��(S, �q)

:=
∫

�

φ( ��∗(Tx�), ��(x)) dvolg ��

By definition (see [1]), the varifold v �� is stationary in N n if

∀ F ∈ C∞
0 (N n\ ��(∂�),Rm)

∫
�

divS(PT F)(�q) dV ��(S, �q) = 0 (A. 1)

In local conformal coordinates at a point where |∂x1
��| = |∂x2

��| = eλ, introducing the
orthonormal basis of S := ��∗Tx� given by �ei := e−λ∂xi

��, one has by definition

div ��∗Tx �(PT F)( ��) :=
2∑

i=1

∂�ei (PT F)( ��) · �ei =
2∑

i=1

m∑
k=1

ek
i ∂zk (PT F)( ��) · �ei

where �ei := ∑m
k=1 ek

i ∂zk . Hence we have

div ��∗Tx �(PT F)( ��) = e−2λ
2∑

i=1

m∑
k=1

∂xi �
k ∂zk (PT F)( ��) · ∂xi

��

= e−2λ ∇(F( ��)) · ∇ �� − F( ��)

2∑
i=1

e−2λ A( ��)(∂xi
��, ∂xi

��)
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where we used respectively that PT ( ��)∇ �� = ∇ �� and that A(�q)( �X , �Y ) = − ∂ �X PT (�q) · �Y .
Multiplying by dvolg �� = e2λ dx1∧dx2 we obtain at almost every point x where ∇ ��(x) �= 0

div ��∗Tx �(PT F)( ��) dvolg �� =
[〈

d(F( ��)), d ��
〉
g ��

− F( ��) A( ��)(d ��, d ��)g ��

]
dvolg ��

(A. 2)

This concludes the proof of the lemma. �	
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