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Abstract
We establish regularity results for critical points to energies of immersed surfaces depending
on the first and the second fundamental form exclusively. These results hold for a large class
of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using
uniform ε-regularity estimates which do not degenerate as the Lagrangians approach the
critical regime given by the Willmore integrand.
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1 Introduction andmain results

Let �� : � → R
3 denote the immersion of an oriented two-dimensional closed surface� into

R
3. We denote by A and H the corresponding second fundamental form and mean curvature.

In this paper, we study (weak) critical points of functionals of the types

WF :=
∫

�

F(H2) dvolg and EF :=
∫

�

F(|A|2) dvolg, (1.1)

where g := ��∗gR3 is the pull-back of the Euclidean metric onto �. Here, F is a smooth
function whose properties will be made more precise in due time. We shall denote by �n the
unit Gauss map given by �� and the orientation on �. With this notation, one has

∀ X , Y ∈ Tx� Ax (X , Y ) = −(d �nx X , �Y )g
R3

where �Y := ��∗Y and hence

|A|2 = |d �n|2g.
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When F(H2) = H2, the functional WF is the Willmore energy, which has generated
much interest for more than two centuries. The critical points ofWH2 are known asWillmore
surfaces. TheWillmore energy is invariant under the action of the non-compactMöbius group
of conformal transformationsR3. As such, it does not satisfy the Palais–Smale condition and
it’s critical points are subject to concentration compactness phenomena. For these reasons,
there is some interest of approximating the Willmore energy by more coercive energies of
the form WF or EF where t << F(t) for t >> 1 (for example F(t) = (1 + t)q for q > 1).

In [18], the second author introduced the notion of weak W 2,p immersion for any p ≥ 2.
Let g0 be any smooth reference metric on �, and set

W 2,p
imm(�,R3)

:=
{ �� ∈ W 1,∞ ∩ W 2,p(�,R3) ; denoting g ��(X , Y ) := ( ��∗X , ��∗Y )g

R3

∃ C �� > 1 s. t. C−1
�� g0 ≤ g �� ≤ C �� g0

}

The first part of the paper has to do with regularity properties of functionals of the form
WF . The first result of this paper gives the regularity of the critical points ofWF under some
assumptions on F .

Theorem 1.1 Assume that F : [0,∞) → [0,∞) is a C1 function satisfying1:

(a) C−1 t p ≤ F(t2) ≤ C (1 + t p),
(b) t F ′(t2) is a smooth and invertible function of t ,
(c) C−1 t p−1 ≤ t F ′(t2) ≤ C (1 + t p−1),

where C > 1 and p ≥ 2. Then any critical point �� ∈ W 2,p(�,R3) of

WF ( ��) =
∫

�

F(H2) dvolg

is smooth. If one drops assumption (b) one has at least that H ∈ L∞. �
A proof of this result has been established in the critical case F(s) = s in [17] while a Proof
of Theorem 1.1 can be found in [11] in the subcritical case for F(s) = (1+ s)q with q > 1.

The investigation of sub-critical curvature functionals involving L p norms of the mean
curvature (resp. of the second fundamental forms) with p larger than the dimension has
already been addressed in the past. In [12] a compactness result for immersions of surfaces
in the Euclidean space R3 with L p− > 2—second fundamental form is proved. In [4] the
aforementioned result of Langer is generalized to any dimension and codimension. In [9]
functionals of the type

∫ |A|p or
∫ |H |p are studied in the framework of varifolds. In [14]

the minimizations of the functionals
∫ |A|p and

∫ |H |p are performed in the sub-critical
regime p > m among m-dimensional integral varifolds without boundary in Riemannian
manifolds of arbitrary codimension. Finally, let us mention that, a Proof of Theorem 1.1 has
been established in the critical case F(s) = s in [17] while a Proof of Theorem 1.1 can be
found in [11] in the subcritical case for F(s) = (1 + s)q with q > 1.

In order to establish Theorem 1.1 we are adopting the parametric approach of [17] which
is based on the local existence of isothermal coordinates (a fact which holds “uniformly” for
p ≥ 2). In contrast, the proof in [11] is based on the fact that, for p > 2, any weak W 2,p

immersion is obviously locally a graph. This fails for p = 2, and the proof in [11] “blows-up”
as p → 2.

1 F ′(s) is the derivative of F(s) with respect to s.
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Our next goal is to merge the case p = 2 with the case p > 2 in a single proof by
establishing estimates which remain controlled as p → 2. This is realized in the following
result which is an ε-regularity independent of p ∈ [2, q] for any q > 2.

Theorem 1.2 Let q ∈ (2,∞). For any m > 0, there exists a constant ε0(m) > 0 with the
following property. If a conformal immersion �� ∈ W 2,p(D2(0),R3) with p ∈ [2, q] with
conformal factor λ is a critical point of

Wp :=
∫

(1 + |H |2)p/2 dvolg with wp :=
∫
D2(0)

(1 + |H |2)p/2 dvolg < ∞

satisfying

m := ‖∇λ‖L2,∞(D2(0)) < ∞ and ‖∇�n‖L2(D2(0)) < ε0(m),

then

‖H p e2λ‖L∞(D1(0)) ≤ C(m, wp, q)

∫
D2(0)

(1 + |H |2)p/2 dvolg,

for some positive constant C(m, wp, q) which is uniformly bounded as m, wp and q are
uniformly bounded. �
Remark 1.1 A uniform ε-regularity for relaxations of the Willmore energy has been first
established by the second author in [19] for perturbations of the form

Wσ ( ��) :=
∫

�

| �H ��|2 dvolg �� + σ 2
∫

�

(1 + | �H ��|2)2 dvolg ��

�
Combining Theorem 1.2 with the main weak compactness result of [18] gives the following
corollary which can be seen as a “Sacks–Uhlenbeck type” concentration compactness coun-
terpart theorem for weak immersions which is one of the main contribution of the present
work

Corollary 1.1 Let αk > 0 and αk → 0 and let ��k be a sequence of weak critical points of

Wk( ��) :=
∫

�

(1 + H2)1+αk dvolg

Assuming

lim sup
k→+∞

Wk( ��k) < +∞,

and assuming that the sequence of Riemann surfaces associated to (�, g ��k
) is pre-compact in

the moduli space of�, then, there exists a subsequence k′, finitely many points a1 . . . aQ ∈ �

a sequence �pk′ ∈ R
3, a sequence μk converging either to +∞ or identically equal to 0 and

a map �	∞ ∈ C∞(�,R3) such that

eμk ( ��k′ − �pk′) −→ �	∞ in Cl
loc(�\{a1 . . . aQ},R3) ∀ l ∈ N

moreover, either �	∞ is a constant map or it is a smooth immersion of �\{a1 . . . aQ} critical
point respectively of

W( �	) :=
∫

�

(1 + H2) dvolg �� in case μk ≡ 0.
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or

W ( ��) :=
∫

�

H2 dvolg �� in case μk → +∞.

Moreover, if �	∞(�\{a1 . . . aQ}) is compact, then �	∞ is a critical point respectively of W
or W. �
Remark 1.2 If one skips the assumption that (�, g ��k

) is pre-compact in the moduli space
of � a similar result holds true on each “thick part” of the limiting nodal surface. This is
obtained combining Theorem 1.2 with theorem 0.3 of [13]. �

Functionals of the type Ep are more complicated. To make it short the variations of Ep

generate p-harmonic operator while the variations ofWp are generating standard Laplacians.
When F(|A|2) = (1+|A|2)p/2, it is shown in [11] that critical points of ∫ F dvolg are smooth.
In this paper, beyond regularity matters, we focus on estimates that remain stable in the limit
p ↘ 2. In particular, we prove the following ε-regularity result.

Theorem 1.3 There exist constants δ > 0 and for any m > 0 there exists ε0(m) > 0 with the
following property. If a conformal immersion �� ∈ W 2,p(D1(0),R3) for p ∈ [2, 2+ δ] with
conformal factor λ is a critical point of

Ep( ��) :=
∫
D1(0)

(1 + |d �n|2)p/2 dvolg with ep :=
∫
D1(0)

|d �n|pg dvolg < +∞

satisfying

m := ‖∇λ‖L2,∞(D1(0)) < ∞ and ‖∇�n‖L2(D1(0)) < ε0(m),

then there exists q > 2 + δ such that∥∥∥|∇�n| eλ (2−p)/p
∥∥∥
Lq (D1/2(0))

≤ C(m, ep) e1/pp . (1.2)

for some positive constant C(m, ep). �
Combining Theorem 1.3 this time with the main weak compactness result of [18] gives the
following concentration compactness theorem for weak immersions which is one of the main
contribution of the present work.

Corollary 1.2 Let αk > 0 and αk → 0 and let ��k be a sequence of weak critical points of

Ek( ��) :=
∫

�

(1 + |d �n|2)1+αk dvolg ��

Assuming

lim sup
k→+∞

Ek( ��k) < +∞,

and assuming that the sequence of Riemann surfaces associated to (�, g ��k
) is pre-compact in

the moduli space of�, then, there exists a subsequence k′, finitely many points a1 . . . aQ ∈ �,
a sequence �pk′ ∈ R

3, a sequence μk converging either to +∞ or identically equal to 0 and
a map �	∞ ∈ C∞(�,R3) such that

eμk ( ��k′ − �pk′) −→ �	∞ in C1
loc(�\{a1 . . . aQ},R3).

Moreover, either �	∞ is a constant map or it is a smooth immersion of �\{a1 . . . aQ} critical
point respectively of
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W( �	) :=
∫

�

(1 + H2) dvolg �� in case μk ≡ 0.

or

W ( ��) :=
∫

�

H2 dvolg �� in case μk → +∞.

Moreover, if �	∞(�\{a1 . . . aQ}) is compact, then �	∞ is a critical point respectively of W
or W. �

Remark 1.3 Here again, if one skips the assumption that (�, g ��k
) is pre-compact in the

moduli space of � a similar result holds true on each “thick part” of the limiting nodal
surface. This is obtained combining Theorem 1.3 with theorem 0.3 of [13]. �

As a matter of clarity the whole work is dealing with immersions of surfaces into the
3 dimensional euclidian space. Using the computations performed in [15] the result above
should be extendable with moderate efforts (but using somemore heavy notations) to general
codimension and general riemannian targets.

2 Preliminaries

2.1 First variations ofWF and EF

In local coordinates {x1, x2} on the unit disk, let the pull-back metric by �� be gi j := ∂xi
�� ·

∂x j
��. As usual, we let |g| denote the determinant of the matrix (gi j ). We let �n denote the

outward-unit normal vector.Wewill suppose that �� is conformal, namely, in local coordinates
{x1, x2}, we have ∂xi

�� · ∂x j
�� = e2λδi j . In order to derive the Euler–Lagrange equation

associated with the energies WF and EF , we consider a variation of the type

��t := �� + t �w + o(t),

where �w is a normal vector. The variation of the outward unit normal vector �n is easily found
to be

�nt = �n + te−λ(a1∂x1 �� + a2∂x2 ��) + o(t),

for some a1 and a2. One easily verifies that

d

dt

∣∣∣∣
t=0

�nt = −〈�n · d �w , d ��〉g. (2.1)

The variation of the components of the metric (gt )i j := ∂xi
��t · ∂x j ��t is also easily found to

be
d

dt

∣∣∣∣
t=0

(gt )i j = ∂xi
�� · ∂x j �w + ∂x j

�� · ∂xi �w. (2.2)

From this and the fact that (gt )ki (gt )i j = δ
j
k , it follows that the inverse metric coefficients

vary according to

d

dt

∣∣∣∣
t=0

gi jt = − e−4λ(∂xi �� · ∂x j �w + ∂x j
�� · ∂xi �w)

. (2.3)
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10 Page 6 of 39 Y. Bernard, T. Rivière

Note that the variation of the volume form is

d

dt

∣∣∣∣
t=0

dvolgt = 〈d �� ; d �w〉g dvolg. (2.4)

The variations of themean curvature and of the square of the second fundamental form satisfy
respectively

d

dt

∣∣∣∣
t=0

H2
t = H

(〈d �n ; d �w〉g − d∗g (�n · d �w)
)

(2.5)

and

d

dt

∣∣∣∣
t=0

|d �nt |2g ≡ d

dt

∣∣∣∣
t=0

(
gi jt ∂xi �nt · ∂x j �nt

)

= − 2
〈
d �� .⊗ d �w , d �n .⊗ d �n〉g − 2

〈
d〈�n · d �w , d ��〉g ; d �n〉g, (2.6)

where we have used (2.3) and (2.1). Combining (2.4) and (2.5) gives

d

dt

∣∣∣∣
t=0

WF =
∫

�

[
F(H2)〈d �� ; d �w〉g + HF ′(H2)

(〈d �n ; d �w〉g − d∗g (�n · d �w)
)]

dvolg.

where F ′(H2) is understood as dF(H2)/dH2.
It is a simple matter to integrate the latter by parts. Equating the resulting integral to zero and
recalling that the obtained identity holds for all �w, one concludes that a critical point ofWF

must satisfy the Euler–Lagrange equation

d∗g
[
Fd �� + HF ′d �n − �n d(HF ′)

]
= 0. (2.7)

Combining now (2.4) and (2.6) and using the fact that |A|2 = |d �n|2g gives
d

dt

∣∣∣∣
t=0

EF =
∫

�

[
F〈d �� ; d �w〉g − 2F ′[〈d �� .⊗ d �w , d �n .⊗ d �n〉g

+ 〈
d〈�n · d �w , d ��〉g ; d �n〉g

]]
dvolg, (2.8)

where F ′ := dF(|A|2)/d|A|2.
It is a simple matter to integrate the latter by parts. Equating the resulting integral to zero and
recalling that the obtained identity holds for all �w, one concludes that a critical point of EF
must satisfy the Euler–Lagrange equation

d∗g
[
Fd �� − 2F ′(d �n .⊗ d �n) g d �� + 2

(
d∗g F ′d �n) · d ��)�n] = 0, (2.9)

where (d �n .⊗ d �n) g d �� is the contraction given in local conformal coordinates by

(d �n .⊗ d �n) g d �� = e−2λ
2∑

i, j=1

(
∂xi �n · ∂x j �n

)
∂x j

�� dxi .

2.2 Conservation laws for critical points ofWF

Proposition 2.1 In a conformal chart, a critical point of WF , respectively EF , satisfies the
Euler–Lagrange Eq. (2.7), which reads

div
[
F(H2)∇ �� + HF ′(H2)∇�n − �n∇(HF ′(H2))

]
= 0. (2.10)
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Respectively for EF the Eq. (2.9) which reads

div

⎡
⎣F∇ �� − 2 e−2λF ′

2∑
j=1

(∇�n · ∂x j �n)∂x j
�� + 2e−2λ�n(div(F ′∇ �n) · ∇ ��)

⎤
⎦ = 0. (2.11)

�
We shall now first concentrate on critical points ofWF . The divergence form (2.10) may

be locally integrated to yield the existence of a potential function �L satisfying

∇⊥ �L = HF ′(H2)∇�n − �n∇(
HF ′(H2)

) + F(H2)∇ ��, (2.12)

where, in terms of the local coordinates {x1, x2}, we have set ∇⊥ := (−∂x2 , ∂x1).
Note that

∇�n · ∇ �� = −�n · � �� = −2e2λH .

Hence (2.12) yields
∇ �� · ∇⊥ �L = 2 e2λ

(
F − H2F ′).

For the sake of our future needs, let Y be a solution of

− �Y = 2e2λ
(
F − H2F ′). (2.13)

Equation (2.13) states that
div

( �L · ∇⊥ �� − ∇Y
) = 0.

This identity is integrated to give the existence of a function S satisfying

∇S = �L · ∇ �� + ∇⊥Y . (2.14)

Next, using that ∇ �� × ∇�n = div(∇ �� × �n) = div∇⊥ �� = 0, we obtain from (2.12) that

∇ �� × ∇⊥ �L = −∇⊥ �� · ∇(
HF ′) = − div

(
HF ′∇⊥ ��)

,

which is an exact divergence equation and may thus be integrated to give the existence of a
potential function �V satisfying

∇ �V = �L × ∇ �� + HF ′∇ ��. (2.15)

We can summarize what we have established so far in the following proposition.

Proposition 2.2 Let �� be a weak critical point of

WF ( ��) :=
∫

�

F(H2) dvolg.

In local conformal coordinate we introduce2 �L such that

∇⊥ �L = HF ′(H2)∇�n − �n∇(
HF ′(H2)

) + F(H2)∇ ��,

Then the following two identities hold
{∇ �� · ∇⊥ �L = 2 e2λ

(
F(H2) − H2F ′(H2)

)
∇ �� × ∇⊥ �L = − div

(
H F ′(H2)∇⊥ ��)

,
(2.16)

where eλ := |∂x1 ��| = |∂x2 ��|. �
2 The local existence of �L is given by Proposition 2.1.
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We now derive central identities linking together the potentials S and �V . Note first that

�n · ∇ �V = �n · ( �L × ∇ ��) = �L · (∇ �� × �n) = �L · ∇⊥ �� = ∇⊥S + ∇Y . (2.17)

The tangential and normal parts of ∇ �V are

πT∇ �V = −( �L · �n)∇⊥ �� + HF ′∇ �� and π�n∇ �V = (∇⊥S + ∇Y
)�n.

Hence

�n × ∇ �V ≡ �n × πT∇ �V = −( �L · �n)∇ �� − HF ′∇⊥ ��
= −πT∇⊥ �V = −∇⊥ �V − (∇S − ∇⊥Y

)�n. (2.18)

We formally decompose à la Hodge the quantity

�n∇⊥Y = ∇�v + ∇⊥�u, (2.19)

and set �R := �V − �u into (2.17) and into (2.18) to discover the following proposition

Proposition 2.3 With the previous notations, the following equation hold

�n × ∇ �R = −∇⊥ �R − �n∇S − �n × ∇⊥�v + ∇�v. (2.20)

�

2.3 Control of the conformal factor

Using F. Hélein’s method of moving Coulomb frames [16], a weak immersion �� ∈
W 2,2

imm(D2(0),R3) of the unit disk D2(0) into R
3 can be re-parametrized by a diffeomor-

phism of D2(0) to become conformal. Our functional being independent of parametrization,
we will without loss of generality suppose that �� is conformal with parameter λ, namely:

∂xi
�� · ∂x j

�� = e2λδi j .

We will henceforth use the notation ∇, div, and � to denote the usual gradient, divergence,
and Laplacian operators in flat local coordinates {x1, x2}.
Assume ∫

D2(0)
|∇�n|2 dx2 ≤ 8π/3 and ‖∇λ‖L2,∞(D2(0)) = m < +∞.

We can call upon Lemma 5.1.4 in [8] to deduce the existence of an orthonormal frame
{�e1, �e2} ∈ W 1,2(D1(0)) satisfying �n = �e1 × �e2 and

‖∇�e1‖L2(D2(0)) + ‖∇�e2‖L2(D2(0)) ≤ C ‖∇�n‖L2(D2(0)), (2.21)

As is easily verified, the conformal parameter satisfies

�λ = ∇�e1 · ∇⊥�e2 in D2(0). (2.22)

Let μ satisfy
{

�μ = ∇�e1 · ∇⊥�e2 , in D2(0)
μ = 0, on ∂D2(0).

(2.23)
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Standard Wente estimates (cf. Theorem 3.4.1 in [8]) give

‖μ‖L∞(D2(0)) + ‖∇μ‖L2(D2(0)) ≤ ‖∇�e1‖L2(D2(0))‖∇�e2‖L2(D2(0)) ≤ C ‖∇�n‖2L2(D2(0))
.

(2.24)

The harmonic function ν := λ − μ satisfies the usual estimate∫
D3/2(0)

|ν − ν̄| dx2 ≤ C ‖∇ν‖L1(D2(0)) ≤ C ‖∇ν‖L2,∞(D2(0)),

where ν̄ denotes the average of ν on D1(0). Hence

‖ν − ν̄‖L∞(D3/2(0)) ≤ C ‖∇ν‖L2,∞(D2(0)),

Combining the latter to (2.24) yields now

‖λ − λ̄‖L∞(D3/2(x)) ≤ C ‖∇λ‖L2,∞(D2(0)) + C ‖∇�n‖2L2(D2(0))
≤ C(m),

where λ̄ denotes the average of λ on D3/2(0), and m is the L2,∞ norm of ∇λ on D2(0),
assumed to be finite. We can summarize this subsection by stating the following lemma.

Lemma 2.1 Let �� ∈ W 2,2
imm(D2(0),R3) be a conformal weak immersion such that

∫
D2(0)

|∇�n|2 dx2 ≤ 8π/3 and ‖∇λ‖L2,∞(D2(0)) = m < +∞.

where eλ := |∂x1 ��| = |∂x2 ��|. Then the following estimate holds

‖∇λ‖L2(D3/2(0)) +
∣∣∣∣∣λ − 1

|D3/2(0)|
∫
D3/2(0)

λ(x) dx2
∣∣∣∣∣ ≤ C ‖∇λ‖L2,∞(D2(0))

+ C ‖∇�n‖2L2(D2(0))
≤ C(m). (2.25)

�
We shall now prove the following extension to general exponents p ∈ [2,+∞).

Lemma 2.2 Let 2 ≤ p < q �� ∈ W 2,p
imm(D2(0),R3) be a conformal weak immersion such

that ∫
D2(0)

|∇�n|2 dx2 ≤ 8π/3 and ‖∇λ‖L2,∞(D2(0)) = m < +∞.

where eλ := |∂x1 ��| = |∂x2 ��|. Then the following estimate holds

‖∇λ‖L p(D3/2(0)) ≤ C(q) ‖∇λ‖L2,∞(D2(0)) + C(q) ‖∇�n‖L p(D2(0)). (2.26)

where C(q) > 0 is independent of p ∈ [2, q]. �
Proof of Lemma 2.2 The first step consists in constructing an orthonormal frame (�e1, �e2) in
W 1,p(D2(0)) satisfying �n = �e1 × �e2 and

‖∇�e1‖L2(D2(0)) + ‖∇�e2‖L2(D2(0)) ≤ C ‖∇�n‖L2(D2(0))

‖∇�e1‖L p(D2(0)) + ‖∇�e2‖L p(D2(0)) ≤ C(q) ‖∇�n‖L p(D2(0)).
(2.27)

We follow step by step the proof of lemma 5.1.4 in [8] where p is replacing 2. The main
ingredient is the use of Lemma A.2 instead of theorem 3.1.7 of [8]. Then the whole argument
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goes through without any further modification. Once �ei satisfying (2.27) is constructed we
recall that λ satisfies on D2

2(0) the equation (2.22). We can then decompose λ into the sum
of it’s harmonic extension λ0 on D2

2 and the function μ satisfying (2.22). Applying one more
time Lemma A.2 but to μ this time one obtains

‖∇μ‖L p(D2(0)) ≤ C(q) ‖∇�e1‖L2(D2(0))‖∇�e2‖L p(D2(0))

≤ C(q) ‖∇�n‖L2(D2(0))‖∇�n‖L p(D2(0)). (2.28)

Standard estimates on harmonic functions give also

‖∇λ0‖L p(D3/2(0)) ≤ C(q) ‖∇λ‖L2,∞(D2(0)) (2.29)

Combining (2.28) and (2.29) give (2.26) and Lemma 2.2 is proved. �

2.4 Controlling the Lp norm of∇�n

We shall now prove the following lemma.

Lemma 2.3 Let 2 < q < +∞ and consider �� ∈ W 2,p
imm(D2(0),R3) for some 2 ≤ p ≤ q. If

∫
D2(0)

|∇�n|2 dx2 ≤ 8π/3 and ‖∇λ‖L2,∞(D2(0)) = m < +∞.

where eλ := |∂x1 ��| = |∂x2 ��|. Then, there exists C(q,m) > 0 such that

∫
D1(0)

|∇�n|p dx2 ≤ C(m, q)

[∫
D3/2(0)

e2λ dx2
](p−2)/2

×
∫
D3/2(0)

| �H |p e2λ dx2 + C(m, q). (2.30)

�
Proof of Lemma 2.3 Denote λ̄ the average of λ on D3/2(0). Using (2.25) together with the
fact that

� �� = 2 e2λ �H
we obtain ∫

D3/2(0)
|� ��|p dx2 ≤ C(m, q) e2λ̄ (p−1)

∫
D3/2(0)

| �H |p e2λ dx2. (2.31)

Using classical elliptic estimates we have

∫
D1(0)

|∇2 ��|p dx2≤C(q)

∫
D3/2(0)

|� ��|p dx2+C(q)

[∫
D3/2(0)

|∇ ��|2 dx2
]p/2

. (2.32)

The following pointwize estimate holds

|∇�n|(x) =
∣∣∣∣∣∣∇

⎛
⎝ ∂x1

�� × ∂x2
��∣∣∣∂x1 �� × ∂x2
��
∣∣∣

⎞
⎠
∣∣∣∣∣∣ (x) ≤ 4 |∇2 ��|(x) e−λ(x). (2.33)
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This gives obviously using one more time (2.25)∫
D1(0)

|∇�n|p dx2 ≤ C(m, q) e− p λ̄

∫
D1(0)

|∇2 ��|p dx2. (2.34)

Combining (2.32) and (2.34) we obtain∫
D1(0)

|∇�n|p dx2 ≤ C(m, q) e− p λ̄

∫
D3/2(0)

|� ��|p dx2

+C(m, q) e− p λ̄

[∫
D3/2(0)

|∇ ��|2 dx2
]p/2

≤ C(m, q) e− p λ̄

∫
D3/2(0)

|� ��|p dx2 + C(m, q) (2.35)

Finally combining (2.31) and (2.35) we obtain∫
D1(0)

|∇�n|p dx2 ≤ C(m, q) eλ̄ (p−2)
∫
D3/2(0)

| �H |p e2λ dx2 + C(m, q). (2.36)

This concludes the proof of Lemma 2.3. �

3 Proof of Theorem 1.1

From now on, we take F(t) as in the statement of Theorem 1.1. In this subsection we
establish regularity from a qualitative perspective exclusively.We shall post-pone quantitative
estimates to the next subsection. We treat the case p > 2 in this subsection. For the most
delicate case p = 2 (already treated in [17]) quantitative estimates as the one derived in the
next subsection are needed.

By hypothesis, ∇2 �� lies in L p , and thus

∇�n ∈ L p. (3.1)

Hence H lie in L p . From hypothesis (a) on F , we find that F(H2)e2λ, and thus F(H2), are
integrable. Per hypothesis (c), it follows that

|HF ′| ∈ L p′
(D), where

1

p′ := 1 − 1

p
, (3.2)

so that
H2F ′(H2) ∈ L p · L p′ ∈ L1. (3.3)

Accordingly, writing (2.12) in the form

∇⊥ �L = −∇(HF ′ �n) + 2HF ′∇ �n + F∇ ��
shows that

�L ∈ L p′ + W 1,1 ⊂ L p′
. (3.4)

We also get from (2.13) that �Y is integrable, so that3

∇Y ∈ L2,∞. (3.5)

3 L2,∞ is the weak Marcinkiewicz space. Refer to the Appendix for details. That ∇Y lies in L2,∞ follows
from the fact that �Y lies in L1. See Theorem 3.3.6 in [8].

123



10 Page 12 of 39 Y. Bernard, T. Rivière

Bringing (3.4) and (3.5) into (2.14) and (4.18) shows that

∇S, ∇ �V ∈ L p′ + L2,∞ ⊂ L p′
, (3.6)

since p′ < 2.
From the Hodge decomposition (2.19), we see that

��v = ∇⊥Y · ∇�n. (3.7)

According to the conditions (3.5) and (3.1), since p > 2, by classical rules on products in
Lorentz spaces, we have that ∇⊥Y · ∇�n ∈ L2p/(p+2),p and by Lorentz–Sobolev embeddings
we obtain

∇�v ∈ L p and ∇2�v ∈ Lr for all 1 ≤ r <
2p

p + 2
, (3.8)

which, along with (3.5) and (2.19), gives us

∇�u ∈ L2,∞. (3.9)

As �R := �V − �u, we obtain from the latter and (3.6) that

∇S, ∇ �R ∈ L p′
. (3.10)

Next, we differentiate the first order system (2.20) to obtain the second order system in
divergence form

{
� �R = ∇�n × ∇⊥ �R + ∇�n · ∇⊥S − div

(�n × ∇�v)
�S = −∇�n · ∇⊥ �R + div

(�n · ∇�v). (3.11)

We will now call upon another result of integration by compensation (see [5]).

Lemma 3.1 Let D := Dr (x) be an arbitrary disk in R
2. Let q ∈ [2,∞), 2 ≤ p ≤ q and let

p′ = p

p − 1
. Consider two functions a ∈ W 1,p(D) and b ∈ W 1,p′

(D). The solution of the

problem {
�ϕ = ∇⊥a · ∇b , in D

ϕ = 0, on ∂D,

satisfies
‖∇2ϕ‖L1(D) ≤ Cq‖∇a‖L p(D)‖∇b‖L p′ (D)

,

for some constant Cq > 0 depending only on q. �
With this result at our disposal, we can now use the hypotheses (3.1), (3.10) and simple
regularity estimates to derive from the system (3.11) that

∇2S, ∇2 �R ∈ L1. (3.12)

In order to weave this information back to the level of curvature, we need a new identity. On
one hand, from (2.19), we find

∇ �V × ∇⊥ �� = ∇ �R × ∇⊥ �� + ∇�u × ∇⊥ �� = ∇ �R × ∇⊥ �� + (∇�v − �n∇⊥Y
) × ∇ ��

= ∇ �R × ∇⊥ �� + ∇�v × ∇ �� + ∇Y · ∇ ��. (3.13)
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On the other hand, using (2.15) and (2.14), there holds

∇ �V × ∇⊥ �� = ( �L × ∇ ��) × ∇⊥ �� + HF ′(H2)∇ �� × ∇⊥ ��
= ( �L · ∇⊥ ��) · ∇ �� − 2e2λHF ′(H2)�n
= ∇⊥S · ∇ �� + ∇Y · ∇ �� − 2e2λHF ′(H2)�n.

Combining the latter to (3.13) yields the identity

− 2e2λHF ′(H2)�n = ∇S · ∇⊥ �� + ∇ �R × ∇⊥ �� + ∇�v × ∇ ��. (3.14)

Recall that the regularity of the Gauss curvature is tied to that of the Gauss map, namely,
e2λK is as regular as ∇�n is. In particular, the Liouville equation

− �λ = e2λK (3.15)

and the fact that �n ∈ W 1,p show that λ ∈ W 2,p ↪→ L∞, and thus that

e±λ ∈ W 2,p and ∇ �� ∈ W 2,p. (3.16)

Combining (3.8), (3.12), and (3.16) into (3.15) shows that

HF ′(H2) ∈ W 1,1 ⊂ L2.

Since |HF ′(H2)| � |H |p−1 by hypothesis (c), it follows that

H ∈ L2(p−1), (3.17)

which, because p > 2, is an improvement to the original assumption that H ∈ L p . Recall
that the Gauss map satisfies a perturbed harmonic map equation,4 namely:

��n = − |∇�n|2�n − 2 div
(
H∇ ��) + 4 e2λH2�n. (3.18)

Owing to ∇�n being in L p (for p > 2) and to (3.17), it follows easily that ∇�n ∈ L2(p−1). We
now introduce this information along with (3.12) and (3.8) into the system (3.11) to discover

that �S and �R lie in Lr for all 1 ≤ r <
2p

p + 2
. As p > 2, we obtain the improvement

∇2S, ∇2 �R ∈ Lr , ∀ 1 ≤ r <
2p

p + 2
. (3.19)

Just as we did above, we conclude that

HF ′(H2) ∈ W 1,r , ∀ r <
2p

p + 2
, (3.20)

and thus
H ∈ Lq ∀ q < p(p − 1).

Put into (3.18), the latter easily shows that

∇�n ∈ Lq ∀ q < p(p − 1). (3.21)

4 cf. Appendix B in [3].
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We also have that F(H2) and H2F ′(H2) lie in the space Ls for s < p − 1. Per (2.13), it
follows that ∇Y lies in the space W 1,s , for s < p − 1. Coupled to (3.21) and brought into
(3.7), this information yields now

∇2�v ∈ La ∀
⎧⎨
⎩
a <

2p(p − 1)

−p2 + 3p + 2
if p ≤ 3

a < p(p − 1) if p > 3.

This can now be bootstrapped along with (3.21) and (3.19) back into the system (3.11) to
obtain that

∇2S ,∇2 �R ∈ Ls, ∀ 1 ≤ s < p − 1,

which is an improvement to (3.19).
The above routine can of course be run again, improving with each step the integrability of
the quantities involved. Without much effort, one eventually reaches that

HF ′(H2) ∈ W 1,s, ∀ s < ∞. (3.22)

To transfer this information back to H , it suffices to use hypothesis (b), which states that
HF ′(H2) is a smooth and invertible function of H . In particular,

H ∈ W 1,s, ∀ s < ∞.

The equation � �� = 2e2λH �n now gives that �� ∈ W 3,s for all finite s. Classical methods
easily imply that the immersion �� is in fact smooth, by repeatedly differentiating all equations
and applying standard elliptic estimates. This concludes the Proof of Theorem 1.1.

Remark 3.1 In the special case when F(H) = |H |p , we have HF ′(H2) = p
2 |H |p−1, which

is not invertible near H = 0. A glance at the proof reveals however that (3.22) still holds. In
particular, H is a bounded function.

4 Proof of Theorem 1.2

The proof is accomplished in several steps.

4.1 Improved integrability: from Lp
′,∞ to Lp

′

Wewill work within the context ofweak immersions with bounded second fundamental form.
That is, we requires �� : � → R

3 to be Lipschitz and have a non-degenerate pull-back metric
g := ��∗gR3 . Moreover, we demand that the second fundamental form of the immersion lie
in the space L2: ∫

�

|d �n|2g dvolg < ∞.

These immersions are well-understood [16]. In particular, it is known since the work of F.
Hélein, that locally about every point, it is possible to conformally reparametrize the surface.
Since our results will be local in nature, we will thus assume that �� is conformal, namely,
g = e2λδ, where δ denotes the Cartesian metric on R

2, and λ is the conformal parameter.
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Localizing, we assume that there holds5

∫
D2(0)

|∇�n|2 ≤ ε0 (4.1)

for some suitably chosen constant 8π/3 > ε0 > 0 (to be made precise in the sequel). We
will also suppose that

m := ‖∇λ‖L2,∞(D2(0)) < ∞.

From Lemma 2.1 we have
∣∣∣∣∣λ − 1

|D3/2(0)|
∫
D3/2(0)

λ(x) dx2
∣∣∣∣∣ ≤ C(m). (4.2)

We focus on values of p within the interval [2, q] for some fixed q > 2. We set p′ :=
p/(p − 1). Using Lemma 2.3 we have

‖∇�n‖L p(D1(0)) ≤ C(m, q) eλ (1−2/p)

[∫
D3/2(0)

(1 + H2)p/2 e2λ dx2
]1/p

+ C(m, q)

≤ C(m, q) [eλ (1−2/p) w
1/p
p + 1] ≤ C(m, q)

√
wp. (4.3)

where we used e2 λ ≤ wp . In this subsection, we study critical points �� of the energy

Wp(�) :=
∫

�

(1+|H |2)p/2e2λdx with wp :=
∫
D3/2(0)

(1+|H |2)p/2e2λdx < ∞.

As we have seen in the first section, critical points of the energy Wp satisfy

div
( − ∇(HF ′ �n) + 2HF ′∇ �n + F∇ ��) = 0 on D2(0), (4.4)

with F(H2) = (1 + H2)p/2. Note that

F ′ = p

2
(1 + H2)p/2−1 satisfies ‖F ′‖L p/(p−2)(D1(0)) ≤ C(q) e− (2−4/p) λ w

1−2/p
p .

and we have moreover

∥∥HF ′∥∥
L p′ (D1(0))

≤ e−2 λ (1−1/p) w
1−1/p
p (4.5)

Owing to (4.3), we also have

∥∥HF ′∇ �n∥∥L1(D1(0))
≤ ‖HF ′∥∥

L p′ (D1(0))
‖∇�n‖L p(D1(0)). (4.6)

We can call upon Lemma A.12 to integrate (4.4) on the disk D1(0) and find there exists an
element �L (unique up to the addition of a constant) satisfying

∇⊥ �L = −∇(
HF ′ �n) + 2HF ′∇ �n + F∇ �� on D1(0), (4.7)

5 For simplicity, we have switched to the “flat” coordinates notation: |d �n|2g dvolg = |∇�n|2dx1dx2, where
∇ := (∂x1 , ∂x2 ).
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and such that
∥∥ �L∥∥L p′,∞(D1(0))

≤ Cq
∥∥HF ′∥∥

L p′ (D1(0))
+ ∥∥HF ′∇ �n∥∥L1(D1(0))

+ ∥∥F eλ
∥∥
L1(D1(0))

≤ C(m, q) e−2 λ (1−1/p) w
1−1/p
p

[
1 + ‖∇�n‖L p(D1(0))

] + e−λ wp (4.8)

where we are choosing �L to have average 0 on D1(0).
Using that ∇�n · ∇ �� = −2e2λH , we find from (4.7)

∇ �� · ∇⊥ �L = 2HF ′∇ �n · ∇ �� + F |∇ ��|2 = 4e2λ(F − H2F ′). (4.9)

Let Y be the solution of {
�Y = 4e2λ(F − H2F ′) in D1(0)
Y = 0 on ∂D1(0).

(4.10)

Clearly,

‖�Y‖L1(D1(0)) ≤ C ‖F e2λ‖L1(D1(x)) + C ‖H2F ′(H) e2λ‖L1(D1(0)) ≤ C(m) wp,

so that, owing to a classical linear elliptic result (see e.g. Theorem 3.3.6 in [8]):

‖∇Y‖L2,∞(D1(0)) ≤ C(m) wp. (4.11)

Let next �v be the unique solution of the following problem:
{

��v = ∇⊥Y · ∇�n in D1(0)
�v = 0, on ∂D1(0).

(4.12)

To obtain estimates on �v, we will use Lemma A.2 in the range p ∈ [2, q] to the system (4.12)
using (4.3) and (4.11). This yields the estimate

‖∇�v‖L p(D1(0)) ≤ Cq ‖∇Y‖L2,∞(D1(0)) ‖∇�n‖L p(D1(0)) ≤ C(m) wp ‖∇�n‖L p(D1(0)).

(4.13)
and

‖∇�v‖L2(D1(0)) ≤ Cq ‖∇Y‖L2,∞(D1(0)) ‖∇�n‖L2(D1(0)) ≤ C(q) wp ε0. (4.14)

Note that div(�n∇⊥Y −∇�v) ≡ 0 holds on D1(0). This equation can be integrated to yield the
existence of �u satisfying

∇⊥�u = �n ∇⊥Y − ∇�v. (4.15)

Owing to the fact that L2 ⊂ L2,∞. Combining (4.11) and (4.13) then gives

‖∇�u‖L2,∞(D1(0)) ≤ C(m, q) wp. (4.16)

Let us return to (4.9) and (4.10). Together they give that div( �L · ∇⊥ �� − ∇Y ) ≡ 0.
Integrating this equation yields the existence of a potential S satisfying

∇⊥S = �L · ∇⊥ �� − ∇Y = �L · ∇⊥ �� + �n · (∇�u − ∇⊥�v), (4.17)

where we have used (4.15). Next, from the definition of ∇ �L given in (4.7) and using the fact
that �n × ∇ �� = −∇⊥ �� (and hence that ∇�n × ∇ �� = 0), we find

div
( − �L × ∇⊥ ��) = ∇⊥ �L × ∇ �� = div

(
HF ′∇⊥ ��)

.
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This exact divergence form is also locally integrated to yield a potential function �V satisfying

∇ �V = �L × ∇ �� + HF ′∇ ��. (4.18)

As in the previous section, we set �R := �V − �u to obtain the system
{

� �R = −∇⊥�n × ∇ �R − ∇⊥�n · ∇S − div
(�n × ∇�v)

�S = ∇⊥�n · ∇ �R + div
(�n · ∇�v). (4.19)

We shall denote

Sp := e(1−2/p) λ S, �Rp := e(1−2/p) λ �R and �vp := e(1−2/p) λ �v. (4.20)

and by homogeneity we have
{

� �Rp = −∇⊥�n × ∇ �Rp − ∇⊥�n · ∇Sp − div
(�n × ∇�vp

)
�Sp = ∇⊥�n · ∇ �Rp + div

(�n · ∇�vp
)
.

(4.21)

Using the definition of S and Sp , combining (4.8) and (4.11) we obtain

‖∇Sp‖L p′,∞(D1(0))
≤ C(m, q) w

1−1/p
p

[
1 + ‖∇�n‖L p(D1(0))

]+C(m) e(1−2/p) λ wp (4.22)

Recall that e2 λ ≤ wp , hence, combining (4.3) with (4.22) we obtain

‖∇Sp‖L p′,∞(D1(0))
≤ C(m, q) w

1−1/p
p [e(1−2/p) λ w

1/p
p + 1] + C(m) e(1−2/p) λ wp

≤ C(m, q) w
1−1/p
p [√wp + 1] (4.23)

Combining (4.13) and (4.3) we obtain

‖∇�vp‖L p(D1(0)) ≤ C(m) e(1−2/p) λ wp ‖∇�n‖L p(D1(0)) ≤ C(m)w
1−1/p
p [wp+√

wp] (4.24)

and using (4.14) we obtain

‖∇�vp‖L2(D1(0)) ≤ C(m) w
1−1/p
p

√
wp. (4.25)

We also obtain
‖∇�u p‖L2,∞(D1(0)) ≤ C(m, q) w

1−1/p
p

√
wp. (4.26)

Similarly to Sp we have

‖∇ �Vp‖L p′,∞(D1(0))
≤ C(m, q) w

1−1/p
p [√wp + 1] (4.27)

and hence we deduce from (4.26) and (4.27)

‖∇ �Rp‖L p′,∞(D1(0))
≤ C(m, q) w

1−1/p
p [√wp + 1] (4.28)

Applying Lemma A.4 for q = ∞ to the system (4.21) with (4.3), (4.26) and (4.28) we first
find

‖∇Sp‖L p′,2(D4/5(0))
+ ‖∇ �Rp‖L p′,2(D4/5(0))

≤ C(m, q) w
1−1/p
p [wp + 1]. (4.29)

and then, applying the same lemma but for q = 2 we obtain

‖∇Sp‖L p′,1(D3/4(0))
+ ‖∇ �Rp‖L p′,1(D3/4(0))

≤ C(m, q) w
1−1/p
p [wp + 1]. (4.30)
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4.2 Power decays

The case p − 2 away from 0 We assume first that there exists 1 > δ > 0 such that 0 <

δ ≤ p − 2 ≤ δ−1 < +∞. In this case each step of the bootstrap argument in the Proof of
Theorem 1.1 can be made quantitative with constants depending only on δ.

The case p − 2 sufficiently small This is the most delicate case. Let x ∈ D1/2(0) and r < r0
where r0 will be fixed later independent of x , �� and p ∈ [2, q]. We decompose Sp and �Rp

in Dr (x) as follows

Sp = S0p + S1p where

{
�S0p = 0 in Dr (x)
S0p = Sp on ∂Dr (x)

and �Rp = �R 0
p + �R 1

p

where

{
� �R 0

p = 0 in Dr (x)
�R 0
p = �Rp on ∂Dr (x)

Lemma A.1 implies that for any t ∈ (0, 1/2)
∫
Dt r (x)

|∇S0p|p
′
(y) + |∇ �R 0

p |p′
(y) dy2 ≤ C t2

∫
Dr (x)

|∇S0p|p
′
(y) + |∇ �R 0

p |p′
(y) dy2

(4.31)

Using Lemma A.2 as well as standard elliptic estimates we have
∫
Dr (x)

|∇S1p|p
′
(y) + |∇ �R 1

p |p′
(y) dy2 ≤ Cq ε

p′
0

∫
Dr (x)

|∇Sp|p′
(y) + |∇ �Rp|p′

(y) dy2

+Cq

∫
Dr (x)

|∇�vp|p′
(y) dy2 (4.32)

Combining (4.31) and (4.32) we obtain
∫
Dt r (x)

|∇Sp|p′
(y) + |∇ �Rp|p′

(y) dy2

≤ Cq (ε
p′
0 + t2)

∫
Dr (x)

|∇Sp|p′
(y) + |∇ �Rp|p′

(y) dy2

+Cq

∫
Dr (x)

|∇�vp|p′
(y) dy2 (4.33)

We return to (4.10). Recall that

F − H2F ′ = F (p−2)/p + 1

p
(p − 2)H2F ′.

hence

�Y = 4e2λF (p−2)/p + 4

p
(p − 2)e2λH2F ′ on D1(0), with Y

∣∣
∂D1(0)

= 0.

(4.34)
We denote Yp := e(1−2/p)λY and decompose Yp = Z p + Wp where

{
�Z p = 4 e(1−2/p)λ e2λF (p−2)/p in D1(0)
Z p = 0 on ∂D1(0)

(4.35)
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We have, for p/(p − 2) > 4/3

‖∇Z p‖L4(D1(0)) ≤ C e(1+2/p)λ
[∫

D1(0)
F(H2) e2λ dx2

](p−2)/p

≤ C w
1−1/p
p

√
wp.

(4.36)
This gives in particular that

sup
x∈D1/2(0), r<r0

r−1 ‖∇Z p‖L2(Dr (x)) ≤ ‖∇Z p‖L4(D1(0)) ≤ C w
1−1/p
p

√
wp. (4.37)

Decomposing as above the function Wp = W 0
p + W 1

p on the ball Dr (x) into an harmonic
and a trace zero function we obtain, using Lemma A.1, for any t ∈ (0, 1/2)

‖∇Wp‖L2,∞(Dt r (x)) ≤ C t ‖∇Wp‖L2,∞(Dr (x))

+C(m, q) (p − 2) e(1−2/p)λ
∫
Dr (x)

H2 F ′(H2) e2λ dy2

(4.38)

We write H2 F ′(H2) = H H F ′(H2) and from (3.14) we deduce
∫
Dr (x)

H2 F ′(H2) e2λ dy2

≤ w
1/p
p

[
‖∇Sp‖L p′ (Dr (x))

+ ‖∇ �Rp‖L p′ (Dr (x))
+ ‖∇�vp‖L p′ (Dr (x))

]
(4.39)

Hence combining (4.37), (4.38) and (4.39) we obtain

‖∇Yp‖L2,∞(Dt r (x)) ≤ C t ‖∇Yp‖L2,∞(Dr (x)) + C w
1−1/p
p

√
wp r

+C(m, q) (p − 2)
√

wp

[
‖∇Sp‖L p′ (Dr (x))

+ ‖∇ �Rp‖L p′ (Dr (x))

+‖∇�vp‖L p′ (Dr (x))

]
(4.40)

Decomposing as above the map �vp = �v 0
p + �v 1

p on the ball Dr (x) into an harmonic and a
trace zero function we obtain, using Lemma A.1, for any t ∈ (0, 1/2) we obtain, using also
Lemma A.2,

‖∇�vp‖p′
L p′ (Dt r (x))

≤ C t2 ‖∇�vp‖p′
L p′ (Dr (x))

+ C ε
p′
0 ‖∇Yp‖p′

L2,∞(Dr (x))
(4.41)

Combining now (4.33), (4.40) as well as (4.41) for r and for r/t we obtain
∫
Dt r (x)

|∇Sp|p′
(y) + |∇ �Rp|p′

(y) + |∇�vp|p′
(y) dy2 + ‖∇Yp‖p′

L2,∞(Dt r (x))

≤ C(m, q)
(
ε
p′
0 + t2 + (p − 2)p

′
w

p′/2
p

) ∫
Dr (x)

|∇Sp|p′
(y)

+|∇ �Rp|p′
(y) + |∇�vp|p′

(y) dy2

+Cq t p
′
∫
Dr/t (x)

|∇�vp|p′
dy2 + C (ε0 + t p

′
) ‖∇Yp‖p′

L2,∞(Dr/t (x))
+ C wp w

p′/2
p r p

′

(4.42)
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For ε0, t and p − 2 chosen to be small enough we then have
∫
Dt r (x)

|∇Sp|p′
(y) + |∇ �Rp|p′

(y) + |∇�vp|p′
(y) dy2 + ‖∇Yp‖p′

L2,∞(Dt r (x))

≤ 2−1
∫
Dr/t (x)

|∇Sp|p′
(y) + |∇ �Rp|p′

(y) + |∇�vp|p′
(y) dy2

+‖∇Yp‖p′
L2,∞(Dr/t (x))

+ C wp w
p′/2
p r p

′
(4.43)

We choose r0/t < 1/4 and by a standard iteration argument, using (4.25) and (4.30), we
deduce the following power decay

∫
Dr (x)

|∇Sp|p′
(y) + |∇ �Rp|p′

(y) + |∇�vp|p′
(y) dy2 + ‖∇Yp‖p′

L2,∞(Dr (x))

≤ C(m, q) rα wp [wp + 1]p′/2 (4.44)

where α > 0 only depends on q and not on p ∈ [2, q].

4.3 Improved integrability and uniform "-regularity estimate

The obtained power decay, by the mean of (3.14), namely

−2e2λHF ′ �n = ∇S · ∇⊥ �� + ∇ �R × ∇⊥ �� + ∇�v × ∇ ��.

gives

e2λ/p′ |H |p/p′ ≤ C(m, q)
[
|∇Sp| + |∇ �Rp| + |∇�vp|

]
(4.45)

Combining (4.44) and (4.45) gives then

sup
x∈D1/2(0) ; r<r0

r−α

∫
Dr (x)

H p e2λ dy2 ≤ C(m, q) wp [wp + 1]p′/2. (4.46)

Combining (4.46) with Lemma 2.3 we obtain

sup
x∈D1/2(0) ; r<r0

r−α/p′
∫
Dr (x)

|H F ′(H) ∇�n| dy2

≤ C(m, q) e−2λ/p′
w

1/p′
p (

√
wp + 1)

√
wp. (4.47)

moreover we have

sup
x∈D1/2(0) ; r<r0

r−α

∫
Dr (x)

F(H) |∇ ��| dy2 ≤ C(m, q) e−λ wp [wp + 1]p′/2. (4.48)

Inserting these power decays in the r-h-s of the Willmore PDE

�(HF ′ �n) = div
(
2HF ′∇ �n + F∇ ��)

on D3/4(0), (4.49)

gives, by the mean of Adams estimates [1], a higher integrability to HF ′ �n of the form

‖H F ′‖Lr (D1/4(0)) ≤ C(m, q)
[
e−2λ/p′

w
1/p′
p (

√
wp + 1)

√
wp + e−λ wp [wp + 1]p′/2

]
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for some r > p′.We can nowbootstrap this estimate in (4.49) to reach the desired ε-regularity
statement

e2λ(0)H p(0) ≤ C(m, q) wp

[
(1 + √

wp)
p′ + wp

p′/2 [1 + wp](p′)2/2
]
. (4.50)

4.4 Proof of Corollary 1.1

Let ��k be a sequence of conformal immersions from a constant curvature surface of volume
1 (�, hk) such that ��k is a critical point of Wk and such that

lim sup
k→+∞

Wk( ��k) = lim sup
k→+∞

∫
�

(1 + H2)1+αk dvolg ��k
< +∞ where αk → 0.

We moreover assume that (�, hk) is compact in the Moduli Space.
A now classical argument (see for instance [16]) gives the existence of a subsequence

that we keep denote ��k , the existence of μk ∈ R+ and the existence of finitely many points
{a1 . . . aQ} in � such that, for any compact K ⊂ �\{a1 . . . aQ}

lim sup
k→+∞

‖λk + μk‖L∞(K ) < +∞ and μk ≡ 0 or μk → +∞. (4.51)

where

g ��k
= eλk hk .

Moreover, there exists �pk ∈ �R3 such that

eμk ( ��k − �pk)⇀ �	∞ weakly in W 2,2
loc ∩ (W 1,∞)∗loc(�\{a1 . . . aQ}).

To simplify the presentation we give the proof in the case μk ≡ 0 and �pk ≡ �0. Let φk be
a conformal chart from U ⊂ K into D2 such that the expression of hk strongly converge
in any Cl norm in this chart. We keep denoting ��k the composition of ��k with φ−1

k and
eλk := |∂x1 ��k | = |∂x2 ��k |. Using (4.50) and (4.51) we have

lim sup
k→+∞

‖λk‖L∞(D2)+‖Hk‖L∞(D2) < +∞ �⇒ lim sup
k→+∞

‖� ��k‖L∞(D2) < +∞. (4.52)

Hence, since ‖∇ ��k‖L2(D2)
is uniformly bounded, standard elliptic estimates gives a uniform

upper-bound on ‖∇2 ��k‖L p(D2
1/2)

for any p < +∞ and consequently

lim sup
k→+∞

∥∥∥∇�n ��k

∥∥∥
L p(D2

1/2)
< +∞ for any p < +∞. (4.53)

Using now (4.49) and classical elliptic estimates we deduce that

lim sup
k→+∞

∥∥∇ (
Hk F

′
k(H

2
k ) �nk

)∥∥
L p(D2

1/4)
< +∞, ∀ p < +∞. (4.54)

Recall that F ′(t) = (1 + αk) (1 + t)αk . Hence we have

∇ (
Hk F

′
k(H

2
k ) �nk

) = (1 + αk) ∇(Hk(1 + H2
k )αk �nk)

= (1 + αk) [(1 + H2
k )αk + 2 αk H2

k (1 + H2
k )αk−1] ∇Hk �nk + Hk(1 + H2

k )αk ∇�nk
Hence we deduce from (4.53) and (4.54)

lim sup
k→+∞

‖∇Hk‖L p(D2
1/4)

< +∞ for any p < +∞.
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By taking successive derivatives of the PDE � �� = 2 H ∂x1
�� × ∂x2

�� as well as successive
derivatives of (4.49), iterating the arguments above we finally obtain

∀ l ∈ N lim sup
k→+∞

‖∇l ��k‖Cl
loc(�\{a1...aQ }) < +∞

which implies Corollary 1.1. �

5 Proof of Theorem 1.3

5.1 Rewriting the Euler Lagrange Equation of Ep and preliminary estimates

We place ourselves in the same context as in Sect. 4. We assume 2 ≤ p ≤ 3. We consider a
local conformal parametrization �� : D2(0) → R

3 with conformal parameter λ. We suppose
that ∫

D2(0)
|∇�n|2 ≤ ε20, (5.1)

for some suitably chosen constant ε0 > 0 (to be made precise in the sequel). We will also
suppose that

m := ‖∇λ‖L2,∞(D2(0)) < ∞.

Following Lemma 2.1 we have

‖∇λ‖L2(D3/2(0)) +
∣∣∣∣∣λ − 1

|D3/2(0)|
∫
D3/2(0)

λ(x) dx2
∣∣∣∣∣

≤ C ‖∇λ‖L2,∞(D2(0)) + C ‖∇�n‖2L2(D2(0))
. (5.2)

Hélein’s construction of the moving frame (see [8] lemma 5.1.4) gives not only a Coulomb
frame (�e1, �e2) satisfying (2.21) but it also satisfies

‖∇�e1‖L p(D2(0)) + ‖∇�e2‖L p(D2(0)) ≤ C ‖∇�n‖L p(D2(0)) (5.3)

where C is independent of p ∈ [2, 3]. Indeed, it is proved that there exists ν ∈ W 1,2
0 (D2)

such that

∇ν = (�e1,∇⊥�e2)
Hence ν is the solution of {

�ν = (∇�e1; ∇⊥�e2) in D2(0)
ν = 0 on ∂D2(0)

Using Lemma A.2 we have the a-priori estimate (using (2.21))

‖∇ν‖L p(D2(0)) ≤ C ‖∇�e1‖L2(D2(0)) ‖∇�e2‖L p(D2(0)) ≤ C ε0 ‖∇�e2‖L p(D2(0)) (5.4)

where C is independent of p ∈ [2, 3]. We have also the pointwize identity

|∇�e1|2 + |∇�e2|2 = 2 |∇ν|2 + |∇�n|2. (5.5)

Hence we deduce the a-priori inequality

‖∇�e1‖L p(D2(0)) + ‖∇�e2‖L p(D2(0)) ≤ C ε0 ‖∇�e2‖L p(D2(0)) + ‖∇�n‖L p(D2(0)) (5.6)
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and (5.3) follows by a density argument as in [8]. With (5.3) at hand, using one more time
the full strength of Lemma A.2, we can adapt step by step the Proof of Lemma 2.1 to deduce

‖∇λ‖L p(D3/2(0)) ≤ C ‖∇λ‖L2,∞(D2(0)) + C ‖∇�n‖L p(D2(0)), (5.7)

where C is independent of p ∈ [2, 3].
As in the Proof of Lemma 2.3 we have∫

D6/5(0)
|∇2 ��|p dx2 ≤ C(m) e2λ(p−1)

∫
D2(0)

| �H |p e2λ dx2

+C

[∫
D3/2(0)

|∇ ��|2 dx2
]p/2

. (5.8)

We set p′ := p/(p − 1), and in this section, we study critical points �� of the energy

Ep(�) :=
∫

�

(1 + |A|2)p/2 dvolg with ep :=
∫
D2(0)

(1 + |A|2)p/2e2λ dx < ∞.

For notational convenience, we will set

F = (1 + |A|2)p/2 and F ′ = p

2
(1 + |A|2)p/2−1.

where |A|2 = e−2λ |∇�n|2. With these notations we have

‖∇2 ��‖L p(D1(0)) ≤ C(m) e2 λ/p′
e1/pp + C eλ (5.9)

For future reference, note that

‖F ′(|A|2) |∇�n|2‖L1(D1(0)) ≤ ep (5.10)

and
‖F ′(|A|2) |∇�n|‖L p′ (D1(0))

≤ eλ (1−2/p′) e1/p
′

p (5.11)

As we have seen in Sect. 2.1, critical points of Ep satisfy (2.9):

d∗g
[
Fd �� − 2F ′(d �n .⊗ d �n) g d �� + 2

(
d∗g (F ′d �n) · d ��)�n] = 0.

In conformal coordinates, this expression reads

div
[
F∇ �� − 2 e−2λF ′

2∑
j=1

(∇�n · ∂x j �n)∂x j
�� + 2e−2λ�n(div(F ′∇ �n) · ∇ ��)] = 0. (5.12)

We have

∣∣∣F∇ �� − 2 e−2λF ′
2∑
j=1

(∇�n · ∂x j �n)∂x j
��
∣∣∣ ≤ eλ F + 2 e−λ |∇�n|2 F ′,

so that owing to (5.10),

∥∥∥F∇ �� − 2 e−2λF ′
2∑
j=1

(∇�n · ∂x j �n)∂x j
��
∥∥∥
L1(D1(0))

≤ C(m) e−λ ep. (5.13)

where we have used that p′ ≤ 2. We also have
∥∥div(F ′∇ �n)

∥∥
W−1,p′ (D1(0))

≤ ‖F ′∇ �n‖L p′ (D1(0))
≤ eλ (1−2/p′) e1/p

′
p , (5.14)
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where we have used (5.11). From (5.7) we have

‖eλ‖L∞∩W 1,p(D1(0)) ≤ C(m)
[
eλ + e2 λ/p′

e1/pp

]
, (5.15)

from (5.9)

‖∇ ��‖L∞∩W 1,p(D1(0)) ≤ C(m)
[
eλ + e2 λ/p′

e1/pp

]
, (5.16)

and
‖�n‖L∞∩W 1,p(D1(0)) ≤ 1 + e−2λ/p e1/pp (5.17)

where C(m) is independent of p. We have also

‖e−2λ �n ⊗ ∇ ��‖L∞∩W 1,p(D1(0)) ≤ C(m)
[
e−λ + e− 2 λ/pe1/pp

]
. (5.18)

Recall that there exists a constant C independent of p ∈ [2, 3] such that for all f ∈ C∞
0

‖ f ‖L∞(D1(0)) ≤ C ‖∇ f ‖L p,1(D1(0)).

Hence, combining (5.11) and (5.18)

sup
‖ f ‖

W
1,(p,1)
0 (D1(0))

≤1

∫
D1(0)

f (x) e−2λ�n(div(F ′∇ �n) · ∇ ��)
dx2

≤ C(m)
[
e−2 λ/p′

e1/p
′

p + e− λ ep
]

(5.19)

Hence∥∥e−2λ�n(div(F ′∇ �n) · ∇ ��)∥∥
W−1,(p′,∞)(D1(0))

≤ C(m)
[
e−2 λ/p′

e1/p
′

p + e− λ ep
]

(5.20)

Let �L be the distribution (unique up to a constant) such that

∇⊥ �L = F∇ �� − 2e−2λF ′
2∑
j=1

(∇�n · ∂x j �n)∂x j
�� + 2e−2λ�n(div(F ′∇ �n) · ∇ ��)

(5.21)

Combining (5.13) and (5.20) we obtain

‖∇⊥ �L‖L1(D1(0))+W−1,(p′,∞)(D1(0))
≤ C(m)

[
e−2 λ/p′

e1/p
′

p + e− λ ep
]
, (5.22)

from which we deduce

‖ �L‖L p′,∞(D1(0))
≤ C(m)

[
e−2 λ/p′

e1/p
′

p + e− λ ep
]

(5.23)

where we normalized �L to have average 0 on D1(0). We compute

∇ �� · ∇⊥ �L = 2e2λF − 2F ′|∇�n|2
= e2λ

(
1 + e−2λ|∇�n|2)p/2−1(2 + (2 − p)e−2λ|∇�n|2). (5.24)

where we have used that |∇�n|2 = e2λA2. Let us next introduce{−�Y = 2e2λF − 2F ′|∇�n|2 , in D1(0)
Y = 0, on ∂D1(0).

(5.25)

According to (5.24), we thus have an exact divergence form which may be locally integrated
to yield a new potential S satisfying

∇S = �L · ∇ �� + ∇⊥Y . (5.26)
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We next compute

∇ �� × ∇⊥ �L = −2 e−2λ(∇ �� · div(F ′∇ �n)
) · (�n × ∇ ��)

= −2 e−2λ
2∑
j=1

(
∂x j

�� · div(F ′∇ �n)
)
(�n × ∂x j

��)

= −2 �n × div
(
F ′∇ �n) = − div

[
2F ′ �n × ∇�n

]

= − div
[
2F ′∇⊥�n + 4 HF ′∇⊥ ��

]
, (5.27)

where we have used that ∇ �� × ∇�n = 0 and that ∇ �� × �n = ∇⊥ ��. We have also used the
elementary identity

∇⊥�n = �n × ∇�n − 2H∇⊥ ��. (5.28)

Equivalently, (5.27) reads

div
[ �L × ∇⊥ �� + 2F ′ ∇⊥�n + 4 HF ′∇⊥ ��

]
= 0. (5.29)

Integrating this identity yields a potential �V satisfying

∇⊥ �V = �L × ∇⊥ �� + 2F ′∇⊥�n + 4HF ′∇⊥ ��. (5.30)

Observe that

�n · ∇ �V = �n · ( �L × ∇ ��) = �L · (∇ �� × �n) = �L · ∇⊥ �� = ∇⊥S + ∇Y (5.31)

We decompose
2 F ′(|A|2)∇�n = −∇�σ + ∇⊥�τ (5.32)

where �τ is zero on ∂D1(0) and
�n ∇Y = ∇�u − ∇⊥ �w (5.33)

where �w is equal to zero on ∂D1(0). We have

∇( �V + �σ) = �L × ∇ �� + 4 H F ′(|A|2)∇ �� + ∇⊥�τ
= −( �L · �n) ∇⊥ �� + �L · ∇⊥ �� �n + 4 H F ′(|A|2)∇ �� + ∇⊥�τ
= −( �L · �n) ∇⊥ �� − �n ∇⊥S − �n ∇Y + 4 H F ′(|A|2)∇ �� + ∇⊥�τ
= −( �L · �n) ∇⊥ �� + 4 H F ′(|A|2)∇ �� − �n ∇⊥S − ∇�u

+∇⊥(�τ + �w) (5.34)

Denote

�R := �V + �σ + �u and �v := �τ + �w
We have the following

Proposition 5.1 With the previous notations the following equation hold

�n × ∇ �R = −∇⊥ �R + �n ∇S − ∇�v + �n × ∇⊥�v. (5.35)

�
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Proof of Proposition 5.1 Observe that
{ �n × ∇⊥ �� = ∇ ��

�n × ∇ �� = −∇⊥ �� (5.36)

Using these identities we deduce in one hand

�n × ∇ �R = −( �L · �n) ∇ �� − 4 H F ′(|A|2)∇⊥ �� + �n × ∇⊥�v, (5.37)

and in the other hand

∇⊥ �R = ( �L · �n) ∇ �� + 4 H F ′(|A|2)∇⊥ �� + �n ∇S − ∇�v. (5.38)

Combining the two previous lines gives the proposition. �

5.2 Improved integrability: from Lp
′,∞ to Lp

′

Let r0 < 1/4 to be fixed later. We proceed to the following renormalization

Yp := e(1−2/p) λ Y , Sp := e(1−2/p) λ S, �Rp := e(1−2/p) λ �R and

�vp := e(1−2/p) λ �v.

Using (5.25) we have
‖∇Yp‖L2,∞(D1(0)) ≤ C e1−1/p

p
√
ep. (5.39)

Using (5.23), (5.26) and (5.39) we have

‖∇Sp‖L p′,∞(D1(0))
≤ C(m) e1/p

′
p + C e1−1/p

p
√
ep. (5.40)

Using (5.11), (5.23), (5.30) and the fact that |H |2 ≤ e−2 λ |∇�n|2 we have
‖∇ �Vp‖L p′,∞(D1(0))

≤ C(m) e1/p
′

p + C e1−1/p
p

√
ep. (5.41)

From (5.39) we deduce using standard elliptic estimates

‖∇�u p‖L2,∞(D1(0)) +‖∇ �wp‖L2,∞(D1(0)) ≤ C ‖∇Yp‖L2,∞(D1(0)) ≤ C e1−1/p
p

√
ep. (5.42)

where we used the fact that �wp satisfies the following system
{−� �wp = ∇⊥Yp∇�n in D1(0)

�wp = 0 on D1(0)
(5.43)

Using Lemma A.2 we deduce

‖∇ �wp‖L2(D1(0)) ≤ C ‖∇Yp‖L2,∞(D1(0)) ‖∇�n‖L2(D1(0)) ≤ C ε0 e
1−1/p
p

√
ep (5.44)

and from (5.11) and (5.32) we have using again standard elliptic estimates

‖∇�σp‖L p′ (D1(0))
+ ‖∇�τp‖L p′ (D1(0))

≤ C eλ (1−2/p) ‖F ′(|A|2) |∇�n|‖L p′ (D1(0))

≤ C(m) e1/p
′

p (5.45)

where the constant C is independent on p ∈ [2, 3]. Hence we deduce from (5.41), (5.42) and
(5.45)

‖∇ �Rp‖L p′,∞(D1(0))
≤ C(m) e1/p

′
p + C e1−1/p

p
√
ep. (5.46)
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Combining (5.44) and (5.45) we deduce

‖∇�vp‖L p′ (D1(0))
≤ C(m) e1/p

′
p + C ε0 e

1−1/p
p

√
ep. (5.47)

From Proposition 5.1 we have that (Sp, �Rp) satisfies the following system
{

� �Rp = ∇Sp · ∇⊥�n + ∇ �Rp × ∇⊥�n + div(�n × ∇�vp)

�Sp = ∇ �Rp · ∇⊥�n + div(�n · ∇�vp)
(5.48)

Applying Lemma A.4 for q = ∞ to the system (5.48) with (5.40), (5.46) and (5.47)

‖∇Sp‖L p′,2(D4/5(0))
+ ‖∇ �Rp‖L p′,2(D4/5(0))

≤ C(m) e1−1/p
p [ep + 1]. (5.49)

and then, applying the same lemma but for q = 2 we obtain

‖∇Sp‖L p′,1(D3/4(0))
+ ‖∇ �Rp‖L p′,1(D3/4(0))

≤ C(m) e1−1/p
p [ep + 1]. (5.50)

5.3 Power decays

Consider now an arbitrary point x ∈ D1/2(0) and a radius 0 < r < r0 where r0 < 1/4
will be fixed later. Exactly as in the proof of (4.33), by exploiting the system (5.48) one first
establishes that for t ∈ (0, 1)∫

Dt r (x)
|∇Sp|p′

(y) + |∇ �Rp|p′
(y) dy2 ≤ C (ε

p′
0 + t2)

∫
Dr (x)

|∇Sp|p′
(y)

+|∇ �Rp|p′
(y) dy2

+C
∫
Dr (x)

|∇�vp|p′
(y) dy2 (5.51)

where C is independent of p ∈ [2, 3].
As in the previous section for the LagrangianWp , we proceed to the following decompo-

sition Yp := Z p + Wp where{−�Z p = 2 e(1−2/p) λ e2λ
(
1 + e−2λ|∇�n|2)p/2−1 in D1(0)

Z p = 0 on ∂D1(0)

We have for p/(p − 2) > 4/3

‖∇Z p‖L4(D1(0)) ≤ C(m) e(1+2/p) λ

[∫
D1(0)

(1 + e−2λ|∇�n|2)p/2 e2λ dx2
](p−2)/p

≤ C(m) e1−1/p
p

√
ep. (5.52)

This implies in particular

sup
x∈D1/2(0) ; r<r0

r−1 ‖∇Z p‖L2(Dr (x)) ≤ C(m) e1−1/p
p

√
ep. (5.53)

By decomposing Wp = W 0
p + W 1

p as in the previous section into the sum of an harmonic
and a trace free part on ∂Dr (x) we obtain a similar estimate as (4.38)

‖∇Wp‖L2,∞(Dt r (x)) ≤ C t ‖∇Wp‖L2,∞(Dr (x))

+C(m) (p − 2) e(1−2/p)λ
∫
Dr (x)

(
1 + e−2λ|∇�n|2)p/2 e2λ dy2. (5.54)
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Combining (5.53) and (5.54) gives then

‖∇Yp‖L2,∞(Dt r (x)) ≤ C t ‖∇Yp‖L2,∞(Dr (x))

+C(m) (p − 2) e(1−2/p)λ
∫
Dr (x)

(
1 + e−2λ|∇�n|2)p/2 e2λ dy2 + C r . (5.55)

Taking the dot of (5.38) with ∇⊥ �� we obtain

8 e2λ H F ′(|A|2) = ∇ �� · ∇ �R − ∇ �� · ∇⊥�v, (5.56)

from which we deduce
∫
Dr (x)

|H |p e2λ dy2 ≤ C(m)

∫
Dr (x)

|∇ �Rp|p′ + |∇�vp|p′
dy2. (5.57)

Recall the structural equation

− ∇�n = �n × ∇⊥�n + 2 H ∇ ��. (5.58)

Taking the divergence gives

− ��n = ∇�n × ∇⊥�n + 2 div(H ∇ ��) (5.59)

Decomposing again �n into the sum of an harmonic part and a trace free part in Dr (x) and
making use of the Lemma A.2 as well as Lemma A.1 we obtain for any t ∈ (0, 1)

∫
Dt r (x)

|∇�n|p e−λ p e2λ ≤ C(m) (t2 + ε2)

∫
Dr (x)

|∇�n|p e−λ p e2λ

+C(m)

∫
Dr (x)

|H |p e2λ dy2 (5.60)

Combining (5.57) and (5.60) gives then

∫
Dt r (x)

|∇�n|p e−λ p e2λ dy2 ≤ C(m) (t2 + ε2)

∫
Dr (x)

|∇�n|p e−λ p e2λ

+C(m)

∫
Dr (x)

|∇ �Rp|p′ + |∇�vp|p′
dy2. (5.61)

Observe that since λ − λ is bounded by a constant C(m) one has

∫
Dt r (x)

e2λ dy2 ≤ C(m) t2
∫
Dr (x)

e2λ dy2 (5.62)

Hence, combining (5.61) and (5.62) we have

∫
Dt r (x)

(1 + |∇�n|2 e−2 λ)p/2 e2λ dy2 ≤ C(m) (t2 + ε2)

∫
Dr (x)

(1 + |∇�n|2 e−2 λ)p/2 e2λ

+C(m)

∫
Dr (x)

|∇ �Rp|p′ + |∇�vp|p′
dy2. (5.63)
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Now it remains to establish some decay of the L p′
norm of ∇�vp . Recall ∇�vp := ∇ �wp +

∇�τp . For the ∇ �wp the argument follows the lines similar to what we did in the previous
section for �vp : Using equation (5.43) together with Lemma A.1, for any t ∈ (0, 1) we
obtain, using also Lemma A.2, exactly as we did for proving (4.41)

‖∇ �wp‖p′
L p′ (Dt r (x))

≤ C t2 ‖∇ �wp‖p′
L p′ (Dr (x))

+ C ε
p′
0 ‖∇Yp‖p′

L2,∞(Dr (x))
(5.64)

where C is independent of p ∈ [2, 3].
In order to establish some interesting decay for the L p′

norm of �τp we have to use some
fundamental lemma in p-harmonic theory which is the only new ingredient in this section in
comparison with the previous one. We decompose �τp := �τ 0

p + �τ 1
p where �τ 0

p is harmonic in
Dr (x) and equal to �τp on ∂Dr (x). Hence, using (5.32), �τ 1

p satisfies
⎧⎨
⎩

−��τ 1
p = p e

2−p
p′ λ

div

((
e2λ + e−2 (λ−λ)|∇⊥�n|2

)p/2−1 ∇⊥�n
)

in Dr (x)

�τ 1
p = 0 on ∂Dr (x)

(5.65)

Using (A.27) we have for any p − 2 < α < 1/2

‖∇�τ 1
p ‖L p/(p−1)(D2

r (x))

≤ C e
2−p
p′ λ (p − 2)

α

(
‖∇�n‖p−1

L p(D2
r (x))

+ (r2/p eλ)(p−2)+α ‖∇�n‖1−α

L p(D2
r (x))

)
, (5.66)

Observe that 1 − (1 − α)/(p − 1) = (p − 2 + α)/(p − 1) thus a p−2+α b(1−α)/(p−1) ≤
Cα [a p−1 + b] where Cα is uniformly bounded for α < 1/2 bounded from below away from
0. We choose α = 1/4 and we have

‖∇�τ 1
p ‖L p/(p−1)(D2

r (x)) ≤ C(m) e
2−p
p′ λ

(p − 2)
(
‖∇�n‖p−1

L p(D2
r (x))

+ (r2 ep λ)(p−1)/p
)

.

(5.67)

Which gives for any t < 1∫
Dt r (x))

|∇ �τp|p′
(y) dy2 ≤ C t2

∫
Dr (x))

|∇ �τp|p′
(y) dy2

+C [p − 2]p
′
e(2−p) λ

∫
Dr (x)

|∇�n|p dy2 + C (p − 2)p
′
r2 e2 λ

≤ C t2
∫
Dr (x))

|∇ �τp|p′
(y) dy2 + C [p − 2]p

′
∫
Dr (x)

(1 + |∇�n|2 e−2 λ)p/2 e2λ dy2

(5.68)

Combining (5.51), (5.55), (5.63), (5.64) and (5.68) we obtain∫
Dt r (x)

|∇Sp|p′ + |∇ �Rp|p′ + |∇ �wp|p′ + |∇ �τp|p′ + (1 + |∇�n|2 e−2 λ)p/2 e2λ dy2

+‖∇Yp‖p′
L2,∞(Dt r )

≤ δ

[∫
Dr

t
(x)

|∇Sp|p′ + |∇ �Rp|p′ + |∇ �wp|p′ + |∇ �τp|p′

+(1 + |∇�n|2 e−2 λ)p/2 e2λ dy2 + ‖∇Yp‖p′
L2,∞(Dr

t
)

]
+ C r p

′
(5.69)

123



10 Page 30 of 39 Y. Bernard, T. Rivière

where δ = C(m) (ε
p′
0 + t2 + t p

′ + (p − 2)p
′
). Taking ε0, t and p − 2 small enough we can

choose δ = 1/2 and we deduce, as in the previous section, the following power decay

sup
x∈D1/2(0) ; r<1/4

r−α

∫
D2
r (x)

|∇Sp|p′ + |∇ �Rp|p′ + |∇ �wp|p′ + |∇ �τp|p′

+(1 + |∇�n|2 e−2 λ)p/2 e2λ dy2

≤ C(m) ep [1 + ep
′

p ] (5.70)

for some α > 0 independent of p � 2, where we also used (5.47) and (5.50).

5.4 Improved integrability and uniform "-regularity estimate

First of all we establish improved integrability for the following quantities : �n ·∇ �Rp , �n ·∇�vp ,
�n × ∇ �Rp + ∇�vp , ∇Sp . We deduce from (5.21)

�n · ∇⊥ �Rp = ∇Sp − �n · ∇�vp (5.71)

This gives in particular ⎧⎨
⎩
div

(
�n · ∇ �Rp

)
= ∇�n · ∇⊥�vp

curl
(
�n · ∇ �Rp

)
= −∇�n · ∇⊥ �Rp

(5.72)

Observe that∫
D2
2

(1 + |∇�n|2 e−2 λ)p/2 e2λ dy2 ≤ ep ⇒ e2λ ≤ C(m) ep and

∫
D2
1

|∇�n|p dx2 ≤ C(m) ep/2p . (5.73)

Combining (5.70) and (5.72) and (5.73) gives

sup
x∈D1/2(0) ; r<1/4

r−α/p′
∫
D2
r (x)

∣∣∣div
(
�n · ∇ �Rp

)∣∣∣+
∣∣∣curl

(
�n · ∇ �Rp

)∣∣∣ ≤ C(m) e1/p
′

p [1+ep] e1/2p

(5.74)
Adams elliptic estimates from [1] gives then that for any q <

2−α/p′
1−α/p′

‖�n · ∇ �Rp‖Lq (D2
1/4)

≤ C(m) e1/p
′

p
[
1 + ep

] [
1 + e1/2p

]
. (5.75)

From (5.32) and (5.33) we have

�n · ∇⊥�vp = −∇Yp + �n · ∇ (�σp + �u p
)

(5.76)

This gives in particular
{
div

(�n · ∇�vp
) = −∇�n · ∇⊥(σp + �u p)

curl
(�n · ∇�vp

) = −∇�n · ∇⊥�vp
(5.77)

and arguing exactly as for �n · ∇ �Rp we obtain that for any q <
2−α/p′
1−α/p′

‖�n · ∇�vp‖Lq (D2
1/4)

≤ C(m) e1/p
′

p [1 + ep]
[
1 + e1/2p

]
. (5.78)
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Combining (5.71), (5.75) and (5.78) we obtain that for any q <
2−α/p′
1−α/p′

‖∇Sp‖Lq (D2
1/4)

≤ C(m) e1/p
′

p [1 + ep]
[
1 + e1/2p

]
. (5.79)

Using now (5.35), we have
⎧⎨
⎩
div

(
�n × ∇ �Rp + ∇�vp

)
= −∇�n × ∇⊥�vp + div(∇Sp �n)

curl
(
�n × ∇ �Rp + ∇�vp

)
= −∇�n · ∇⊥ �Rp

(5.80)

Combinining (5.80) and (5.79) we obtain as before that for any q <
2−α/p′
1−α/p′

‖�n × ∇ �Rp + ∇�vp‖Lq (D2
1/4)

≤ C(m) e1/p
′

p [1 + ep]
[
1 + e1/2p

]
. (5.81)

and combining (5.75) and (5.81) we obtain that for any q <
2−α/p′
1−α/p′

‖�n × ∇�vp − ∇ �Rp‖Lq (D2
1/4)

≤ C(m) e1/p
′

p [1 + ep]
[
1 + e1/2p

]
. (5.82)

Combining (5.74) and (5.43) we obtain

sup
x∈D1/2(0) ; r<1/4

r−α/p′
∫
D2
r (x)

∣∣� �wp
∣∣ dy2 ≤ C(m) e1/p

′
p [1 + ep] e1/2p (5.83)

and we deduce as before that for any q <
2−α/p′
1−α/p′

‖∇ �wp‖Lq (D2
1/4)

≤ C(m) e1/p
′

p [1 + ep]
[
1 + e1/2p

]
. (5.84)

From (5.59), using again the decomposition of �n = �n 0 + �n 1 into an harmonic part and a
trace free part, we deduce by standard elliptic estimates that, for any x ∈ D1/8(0) and any
r < 1/16,

∫
Dr/2(x)

|∇�n|p ≤ C

[∫
Dr (x)

|∇�n|2 p/3 dy2
]3/2

+ C
∫
Dr (x)

H p epλ dy2 (5.85)

From which we deduce (still for a constant C(m) > 0 independent of r , x and 3 ≥ p ≥ 2
but possibly depending on m)

−
∫
Dr/2(x)

|∇�n|p e(2−p) λ dy2 ≤ C(m)

[
−
∫
Dr (x)

|∇�n|2 p/3 e(4−2p)/3dy2
]3/2

+C(m) −
∫
Dr (x)

H p e2λ dy2 (5.86)

Using (5.57), we have also

−
∫
Dr (x)

|H |p e2λ dy2 ≤ C(m) −
∫
Dr (x)

[
|∇ �Rp − �n × ∇�vp|p′ + |∇ �wp|p′ + |∇ �τp|p′]

dy2.

(5.87)
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Decomposing again �τ := �τ 0 + �τ 1 into an harmonic part and a trace free part, using (5.67),
we deduce from (5.67) by standard elliptic estimates that, for any x ∈ D1/8(0) and any
r < 1/16,

−
∫
Dr (x)

|∇ �τp|p′
dy2 ≤ C(m)

[
−
∫
D2r (x)

|∇ �τp|3/2 dy2
]2 p′/3

+C(m) [p − 2]p
′ −
∫
D2r (x)

(1 + |∇�n|2 e−2 λ)p/2 e2λ dy2 (5.88)

Combining (5.86), (5.87) and (5.88) we obtain

−
∫
Dr/2(x)

[
(1 + |∇�n|2 e−2 λ)p/2 e2λ + |∇�τp|p′]

dy2

≤ C(m)

[
−
∫
D2r (x)

[[
(1 + |∇�n|2 e−2 λ

)p
e2λ + |∇�τp|p′]2/3

dy2
]3/2

+C(m) −
∫
D2 r (x)

[
|∇ �Rp − �n × ∇�vp|p′ + |∇ �wp|p′]

dy2

+C(m) [p − 2]p
′ −
∫
D2r (x)

(1 + |∇�n|2 e−2 λ)p/2 e2λ dy2 (5.89)

Using Gehring type lemma given by proposition 1.1 of [7] as well as estimates (5.82) and
(5.84), we obtain for p − 2 small enough the existence of q > max{p, 2 + β} where β is
independent of p larger or equal than 2 and sufficiently close to 2 such that∥∥∥|∇�n| eλ (2−p)/p

∥∥∥
Lq (D1/8(0))

≤ C(m) e1/p
′

p [1 + ep] [1 + e1/2p ]. (5.90)

This implies Theorem 1.3. �
Acknowledgements This work has been initiated while the first author was visiting the Forschungsinstitut für
Mathematik at the ETH in Zürich. He would like to thank the institute for the excellent working conditions and
stimulating environment. The authors would like to thank the referee for useful suggestions and comments.

A Appendix

The following lemma is well known but we give a proof for the reader’s convenience.

Lemma A.1 Let f be an harmonic function on the unit disc D1(0), then for any p ∈ [1, 2]
and any t ∈ (0, 1) the following inequality holds∫

Dt (0)
| f |p dx2 ≤ C t2

∫
D1(0)

| f |p dx2, (A.1)

where C > 0 is universal. Similarly, the following inequality holds for any t ∈ (0, 1)

‖ f ‖L2,∞(Dt (0)) ≤ C t ‖ f ‖L2,∞(D1(0)). (A.2)

�
Proof of Lemma A.1
Since f is harmonic we have

�| f |2 = 2 |∇ f |2 ≥ 0
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This implies that ∫
∂Dr (0)

∂r | f |2 ≥ 0

from which we deduce that

d

dr

[
1

r2

∫
Dr (0)

| f |2 dx2
]

= d

dr

[∫
D1(0)

| f (r x)|2 dx2
]

= r
∫ 1

0
ds

∫
∂Ds (0)

∂r | f |2(r x) ≥ 0

Let t < 1/2 we have using Hölder for p ∈ [1, 2]
∫
Dt (0)

| f |p dx2 ≤ π1−p/2 t2−p
[∫

Dt (0)
| f |2(x) dx2

]p/2

≤ π1−p/2 t2−p

[
4 t2

∫
D1/2(0)

| f |2(x) dx2
]p/2

Since f is harmonic, classical elliptic estimates give
[∫

D1/2(0)
| f |2(x) dx2

]p/2

≤ C
∫
D1(0)

| f |p(x) dx2.

where C is a universal constant. Combining the two previous identities gives (A.1). The
inequality (A.2) is derived in a similar way. �

We now prove the following integrability by compensation result due to Y. Ge in the case
p = 2 [6] and to the authors for p �= 2 (Lemma IV.2 in [2]).

Lemma A.2 Let D be a disk. Consider the divergence-form problem{
�ϕ = ∇⊥a · ∇b , in D

ϕ = 0, on ∂D,

where ∇a ∈ L2,∞(D) and ∇b ∈ L p(D), for some p ∈ (1,∞). There holds

‖∇ϕ‖L p(D) ≤ Cp‖∇a‖L2,∞(D)‖∇b‖L p(D), (A.3)

for some constant Cp > 0 depending only on p which satisfies the estimate

Cp ≤ C(p0, p1) ∀ 1 < p0 ≤ p ≤ p1 < ∞, (A.4)

for some constant C(p0, p1) independent of p.

Proof The inequality (A.3) is proved in details in the aforementioned references. The estimate
(A.4) can be reached using the Marcinkiewicz interpolation theorem. Let 1 < p0 ≤ p ≤
p1 < ∞. As the operator ∇b �→ ‖∇a‖−1

L2,∞∇ϕ is strongly continuous from L(p0+1)/2 to

itself and from L p1+1 to itself with norms M(p0+1)/2 and Mp1+1 respectively, then it is also
strongly continuous from L p to L p with norm

p1/p
( M (p0+1)/2

(p0+1)/2

p − (p0 + 1)/2
+ Mp1+1

p1+1

p1 + 1 − p

)
≤ 3

2

(
2

p0 − 1
M (p0+1)/2

(p0+1)/2 + Mp1+1
p1+1

)
,

which depends only on p0 and p1, as desired. �
We will need a Wente-type result.
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Lemma A.3 Let q ∈ (2,∞) and p ∈ [2, q]. Consider the divergence-form problem{
�ϕ = ∇⊥a · ∇b , in D

ϕ = 0, on ∂D,

where ∇a ∈ L p(D) and ∇b ∈ L p′,∞(D), for some s ∈ (1,∞) with p′ := p/(p− 1). There
holds

‖∇ϕ‖L2,p(D) ≤ Cq‖∇a‖L p(D)‖∇b‖L p′,∞(D)
, (A.5)

for some constant Cq > 0 depending only on q.

Proof The estimate (A.5) holds for p = 2, as shown by Y. Ge in [6]. Let now p > 2 so that
p′ < 2. By a continuous embedding of L. Tartar (see Lemma 31.2 in [21]) and the Hölder
inequality for Lorentz spaces, we find:

b∇⊥a ∈ W 1,(p′,∞) · L p ⊂ L
2p
p−2 ,∞ · L p,p ⊂ L2,p.

Since �ϕ = div(b∇⊥a), the estimate (A.5) follows accordingly for p > 2.
Now, if p < 2 so that p′ > 2, the Sobolev–Lorentz embedding theorem along with the
Hölder inequality for Lorentz spaces, we find

a∇⊥b ∈ W 1,s · L p′,∞ ⊂ L
2p
2−p ,p · L p′,∞ ⊂ L2,p,

which again proves (A.5) for p < 2, since �ϕ = −div(a∇⊥b).

Consider the operator
B : (∇a,∇b) �−→ ∇ϕ.

Aswe have seen above, B maps Lq ′ ×Lq,∞ continuously into L2,q ′
with norm M0(q) ; and it

maps continuously Lq × Lq ′,∞ into L2,q with norm M1(q). The bilinear interpolation result
of Lions and Peetre given in Lemma 28.3 of [21] implies now that B maps continuously the
spaces6

(
Lq ′

, Lq)
θ,p × (

Lq,∞, Lq ′,∞)
θ,∞ ≡ L

(
1−θ
q′ + θ

q

)−1
,p × L

(
1−θ
q + θ

q′
)−1

,∞

into (
L2,q ′

, L2,q)
θ,p ≡ L2,p,

for all 0 ≤ θ ≤ 1 and p−1 = (1 − θ)/q ′ + θ/q . Equivalently, B maps continuously

L p × L p′,∞ into L2,p for p ∈ [q ′, q]
with a norm Cq = Cq(M0(q), M1(q), q) depending only on q , owing to the nature of
interpolation. �
Lemma A.4 Let D be a disk. Consider the divergence-form problem{

�ϕ = ∇⊥a · ∇b , in D
ϕ = 0, on ∂D,

where ∇a ∈ L2(D) and ∇b ∈ L p,q(D), for some p ∈ (1,∞) and 2 ≤ q ≤ ∞. There holds

‖∇ϕ‖L p,q∗
(D) ≤ Cp‖∇a‖L2(D)‖∇b‖L p,q (D), (A.6)

6 See [21] for the notation and basic results about interpolation spaces.
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where 1/q∗ = 1/2+ 1/q for some constant Cp > 0 depending only on p which satisfies the
estimate

Cp ≤ C(p0, p1) ∀ 1 < p0 ≤ p ≤ p1 < ∞, (A.7)

for some constant C(p0, p1) independent of p. �
Proof of Lemma A.4 It suffices to consider the case when ∞ > p1 > 2 and 1 < p0 < 2.
According to the Hölder inequality for Lorentz spaces, it holds

L2 · L p1,q = L2,2 · L p1,q ⊂ L
2p1
2+p1

,
2q
2+q . (A.8)

Since p1 > 2, we call upon the usual Calderon-Zygmund theorem and the Sobolev–Lorentz

embedding theorem of L. Tartar (Lemma 31.2 in [21]) to obtain that ∇ϕ ∈ W
1,( 2p1

2+p1
,

2q
2+q ) ⊂

L p1,
2q
2+q with the estimate (A.6) with a constant independent of q .

Next, for 1 < p0 ≤ 2, we use the divergence-form structure of the equation. Note that

�ϕ = div (b∇⊥a), (A.9)

and that

b∇⊥a ∈ W 1,(p0,q) · L2 ⊂ L
2p0
2−p0

,q · L2,2 ⊂ L p0,
2q
2+q , (A.10)

where we have again used the Sobolev–Lorentz embedding theorem of J.Peetre and the
Hölder inequality for Lorentz spaces. The desired (A.6) follows immediately from (A.9) and
(A.10).
Now for p ∈ (p0, p1) the estimate (A.7) can be reached using the Marcinkiewicz interpola-
tion theorem just as is done in the proof of Lemma A.2. �
Lemma A.5 Let a(x) be a positive function on the disc D2 which satisfies c0 > a(x) > c−1

0 ,
for some positive constant c0 and let A > 0. Let p ∈ [2, 3] and define the operator

S( f ) :=
[(

A2 + a2(x)| f |2)(p−2)/2

(
A2 + ‖ f ‖2p

)(p−2)/2

]
f .

If T is a continuous operator from Ls(D2) to itself for any s ∈ [4/3, 6] then, for any
α ∈ (p − 2, 1/2) one has

‖T S( f ) − S(T f )‖p/(p−1) ≤ 2C α−1 (p − 2) ‖T ‖
[
‖ f ‖α

p +
(
A2 + ‖ f ‖2p

)α/2
]

‖ f ‖1−α
p .

(A.11)
where ‖T ‖ := sups∈[4/3,6] ‖T ‖Ls→Ls . �
Proof of Lemma A.5 We follow an idea from complex interpolation introduced in [20] and
also used in [10]. For z = a + ib ∈ D2

1/2 we introduce

Sz( f ) :=
[(

A2 + a2(x)| f |2)1/2(
A2 + ‖ f ‖2p

)1/2
]z

f .

Denote

pa := p

1 + a
∈ (2 p/3, 2p) ⊂ (4/3, 6) and p′

a = pa
pa − 1

= p′

1 − p′a/p
.

123



10 Page 36 of 39 Y. Bernard, T. Rivière

It is not difficult to see that Sz maps L p into L pa and we shall now compute the norm of Sz
between these two spaces. We have

∫
D2

|Sz( f )|pa dx2 ≤
∫
D2

∣∣∣∣∣
(
A2 + a2(x)| f |2)1/2(
A2 + ‖ f ‖2p

)1/2
∣∣∣∣∣
ap/(1+a)

| f |p/(1+a) dx2

We first assume ‖ f ‖p > A. In this first case we have
∫
D2

|Sz( f )|pa dx2 ≤ C ‖ f ‖−ap/(1+a)
p

×
∫
D2

∣∣∣(A2 + a2(x)| f |2)1/2
∣∣∣ap/(1+a) | f |p/(1+a) dx2

≤ C ‖ f ‖−ap/(1+a)
p

∫
| f |>A

| f |p dx2 + C ‖ f ‖−ap/(1+a)
p

×
∫

| f |≤A
Aap/(1+a) | f |p/(1+a) dx2. (A.12)

for a ≥ 0 first one has
∫

| f |≤A
Aap/(1+a) | f |p/(1+a) dx2 ≤ ‖ f ‖ap/(1+a)

p ‖ f ‖p/(1+a)
p , (A.13)

and combining (A.12) and (A.13) one obtains
∫
D2

|Sz( f )|pa dx2 ≤ C ‖ f ‖pa
p . (A.14)

Nor for a < 0, still under the assumption that ‖ f ‖p > A one has
∫

| f |≤A
Aap/(1+a) | f |p/(1+a) dx2 ≤

∫
| f |≤A

| f |p dx2. (A.15)

Combining (A.12) and (A.15) gives again (A.14). We assume now ‖ f ‖p ≤ A. In this case
we have∫

D2
|Sz( f )|pa dx2 ≤ C A−ap/(1+a)

∫
D2

∣∣∣(A2 + a2(x)| f |2)1/2
∣∣∣ap/(1+a) | f |p/(1+a) dx2

≤ C A−ap/(1+a)

∫
| f |>A

| f |p dx2 + C A−ap/(1+a)

×
∫

| f |≤A
Aap/(1+a) | f |p/(1+a) dx2. (A.16)

First, for a > 0, under this assumption ‖ f ‖p ≤ A one gets

A−ap/(1+a)

∫
| f |>A

| f |p dx2 ≤ ‖ f ‖−ap/(1+a)
p ‖ f ‖p

p = ‖ f ‖pa
p . (A.17)

and in this case again we have (A.14). Now, for a < 0 and ‖ f ‖p ≤ A we have from (A.16)

∫
D2

|Sz( f )|pa dx2 ≤ C

(
A

‖ f ‖p

)−ap/(1+a)

‖ f ‖pa
p . (A.18)
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This gives in all cases

‖Sz( f )‖pa ≤ C

⎡
⎣1 +

( ‖ f ‖2p
A2 + ‖ f ‖2p

)a/2
⎤
⎦ ‖ f ‖p. (A.19)

Denote

Qz(g) :=
(‖g‖p′

|g|
) z p′

p

g.

Observe that we have
‖Qz(g)‖p′

a
= ‖g‖p′ (A.20)

Let f ∈ L p(D2) and g ∈ L p′
(D2) and let T be a continuous operator from Ls(D2) into

Ls(D2) for any s ∈ [4/3, 6] such that
‖T ‖ := sup

s∈[4/3,6]
‖|T ‖|Ls→Ls < +∞.

We introduce the function defined on the disc D2 by

ϕ(z) :=
∫
D2

[
T Sz( f ) − Sz(T f )

]
Qz(g) dx

2.

ϕ is obviously holomorphic and one has

|ϕ(z)| ≤ ‖T ‖ ‖Sz( f )‖pa ‖Qz(g)‖p′
a

≤ C ‖T ‖
⎡
⎣1 +

( ‖ f ‖2p
A2 + ‖ f ‖2p

)�(z)/2
⎤
⎦ ‖ f ‖p ‖g‖p′ .

(A.21)
Hence

sup
|z|≤α

|ϕ(z)| ≤ C ‖T ‖
⎡
⎣1 +

(
A2 + ‖ f ‖2p

‖ f ‖2p

)α/2
⎤
⎦ ‖ f ‖p ‖g‖p′ (A.22)

Using Schwartz lemma we obtain the pointwise estimate on D2
α

|ϕ(z)| ≤ C α−1 |z| ‖T ‖
⎡
⎣1 +

(
A2 + ‖ f ‖2p

‖ f ‖2p

)α/2
⎤
⎦ ‖ f ‖p ‖g‖p′ (A.23)

Hence, using (A.20), after observing that for g = (h ‖h‖−z p′/p
p′
a

)1/(1−z p′/p) one has Qz(g) =
h, we deduce that

sup
‖h‖p′a≤1

∫
D2

[
T Sz( f ) − Sz(T f )

]
h dx2

≤ 2C α−1 |z| ‖T ‖
⎡
⎣1 +

(
A2 + ‖ f ‖2p

‖ f ‖2p

)α/2
⎤
⎦ ‖ f ‖p (A.24)

We apply (A.24) to z = p − 2 and we obtain

‖T Sp−2( f ) − Sp−2(T f )‖p/(p − 1)

≤ 2C α−1 |z| ‖T ‖
[
‖ f ‖α

p +
(
A2 + ‖ f ‖2p

)α/2
]

‖ f ‖1−α
p . (A.25)
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which implies the lemma. �

Lemma A.6 Let p ∈ [2, 3), r < 1, B ∈ R, a(x) ∈ L∞(D2
r ) and �n such that ∇�n ∈ L p(D2

r )

and assume c−1
0 ≤ a(x) ≤ c0. Denote ζ ∈ L p/(p−1) to be the solution of

⎧⎨
⎩

−��ζ = div

((
B2 + a2(x) |∇⊥�n|2

)p/2−1 ∇⊥�n
)

in D2
r

�ζ = 0 on ∂D2
r

(A.26)

Then the following inequality holds for any p − 2 < α < 1/2

‖∇�ζ‖L p/(p−1)(D2
r ) ≤ C

(p − 2)

α

(
‖∇�n‖p−1

L p(D2
r )

+ (r2/p B)(p−2)+α ‖∇�n‖1−α

L p(D2
r )

)
, (A.27)

where C is independent of p, α, r , B and �n. �

Proof of Lemma A.6 Let �nr (x) := �n(r x) and �ζr (x) := �ζ (r x). The following system is
satisfied⎧⎨

⎩
−��ζr = r−p+2div

((
B2 r2 + a2(x) |∇⊥�nr |2

)p/2−1 ∇⊥�nr
)

in D2
1

�ζr = 0 on ∂D2
1

(A.28)

Let T be the operator which to an Ls(D2) vector Field X assigns ∇u the solution to

−div(∇u) = div(X) on ∂D2

u = 0 on ∂D2

Calderon Zygmund Theory gives that T is continuous from Ls(D2) into Ls(D2) and
sups∈[4/3,6] ‖T ‖Ls→Ls = ‖T ‖ < +∞. Observe that

T

((
B2 r2 + a2(x) |∇⊥�nr |2

)p/2−1 ∇⊥�nr
)

= r p−2 ∇ �ζr and T (∇⊥�nr ) = 0 (A.29)

Denote A := B r and

S( f ) :=
(
A2 + a2(x) | f |2
A2 + ‖ f ‖2p

)p/2−1

f

Combining (A.11) with (A.29) one obtains

r p−2 ‖∇�ζr‖L p/(p−1)(D2
1 )(

A2 + ‖∇�nr‖2p
)p/2−1

≤ 2C α−1 (p − 2) ‖T ‖
[
‖∇�nr‖α

p +
(
A2 + ‖∇�nr‖2p

)α/2
]

‖∇�nr‖1−α
p . (A.30)

Observe that

‖∇�nr‖L p(D2
1 )

= r1−2/p ‖∇�n‖L p(D2
r ) and

‖∇�ζr‖L p/(p−1)(D2
1 )

= r−1+2/p ‖∇�ζ‖L p/(p−1)(D2
r ).
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Then

‖∇�ζ‖L p/(p−1)(D2
r ) ≤ 2C

(p − 2)

α
‖T ‖

(
‖∇�n‖p−1

L p(D2
r )

+ (r2/p B)(p−2)+α ‖∇�n‖1−α

L p(D2
r )

)

(A.31)

which implies the lemma. �
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