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Abstract : Consider the space W 2,2(Ω;N) of second order Sobolev mappings v from a smooth
domain Ω ⊂ Rm to a compact Riemannian manifold N whose Hessian energy

∫

Ω |∇2v|2 dx is finite. Here
we are interested in relations between the topology of N and the W 2,2 strong or weak approximability
of a W 2,2 map by a sequence of smooth maps from Ω to N . We treat in detail W 2,2(B5, S3) where
we establish the sequential weak W 2,2 density of W 2,2(B5, S3) ∩ C∞. The strong W 2,2 approximability of
higher order Sobolev maps has been studied in the recent preprint [BPV] of P. Bousquet, A. Ponce, and J.
Van Schaftigen. For an individual map v ∈ W 2,2(B5, S3), we define a number L(v) which is approximately
the total length required to connect the isolated singularities of a strong approximation u of v either to
each other or to ∂B5. Then L(v) = 0 if and only if v admits W 2,2 strongly approximable by smooth maps.
Our critical result, obtained by constructing specific curves connecting the singularities of u, is the bound
L(u) ≤ c

∫

B5 |∇2u|2 dx . This allows us to construct, for the given Sobolev map v ∈ W 2,2(B5, S3), the
desired W 2,2 weakly approximating sequence of smooth maps. To find suitable connecting curves for u,
one uses the twisting of a u pull-back normal framing of a suitable level surface of u.

Math. Class. 58D15, 46E35, 49Q99.
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I Introduction

To motivate our specific work on weak sequential approximability ofW 2,2 maps from B5 to S3, we will first
describe briefly the background and general problems. Let (N, g) be a compact Riemannian manifold.
Via the Nash embedding theorem, one may assume that N is a submanifold of some Euclidian space Rℓ

and that the metric g is induced by this inclusion. One then has, for any open subset Ω of Rm, k ∈ N,
and p > 1, the nonlinear space of kth order, Sobolev maps

W k,p(Ω, N) = {u ∈ W k,p(Ω,Rℓ) : u(x) ∈ N for almost every x ∈ Ω},

where W k,p(Ω,Rℓ) denotes the Banach space of Rℓ-valued, order k, Sobolev functions on Ω with norm

‖u‖Wk,p =
[

∑k
j=0

(∫

Ω
|∇ju|p dx

)2/p
]1/2

.

I.1 Strong Approximation

A basic question concerning the spaces W k,p(Ω, N) is the approximability of these maps by a sequence
of smooth maps of Ω into N . The issue involves the possible discontinuities in a Sobolev map because
any continuous Sobolev map may be approximated strongly in the Sobolev norm. In fact, here ordinary
smoothing [A] gives both uniform and W 2,2 strong approximation by an Rℓ-valued smooth Sobolev
function whose image lies in a small neighborhood of N ; then composing this with the nearest-point
projection to N gives the desired smooth strong approximation with image in N . It was first observed
in [SU] that for n = 2, a W 1,2 map (which may fail to have a continuous representative) admits strong
W 1,2 approximation by smooth W 1,2 maps into N . However for n = 3, [SU] also showed that the specific
singular Sobolev map x/|x| ∈ W 1,2(B3, S2) is not strongly approximable in W 1,2 by smooth maps from
B3 to S2. For first order Sobolev maps, the general problem of strong W 1,p approximability was treated
by F. Bethuel in [Be2], which (with [BZ]) shows that:

W 1,p(Bm, N) is the sequential strong W 1,p closure of C∞(Bm, N) ⇐⇒ Π[p](N) = 0 .

Here [p] is the greatest integer less than or equal to p. F. Hang and F. H. Lin, in [HaL1] and [HaL2],
updated these results with some new proofs and corrections, which account for the role played by the
topology of the domain in approximability questions. See [HaL2], Th.1.3 for the precise conditions on the
domain. There are many other interesting works on strong approximability of first order Sobolev maps by
smooth maps, e.g. [Be1], [BCL], [Hj], [BCDH], [BBC], [BZ]. Generalization of the strong approximability
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results of [Be2], [HaL1], and [HaL2] to higher order Sobolev mappings has been treated by P. Bousquet,
A. Ponce, and J. Van Schaftigen in [BPV] which (with [BZ]) shows that

W k,p(Bm, N) is the sequential strong W k,p closure of C∞(Bm, N) ⇐⇒ Π[kp](N) = 0 .

I.2 Sequential Weak Approximation

The space W k,p(Ω, N) also inherits the weak topology from W k,p(Ω,Rℓ). A Sobolev map in W k,p(Ω, N)
that is not W k,p strongly approximable by smooth maps may be W k,p weakly approximable by a sequence
of smooth maps. For example, the map x/|x| ∈ W 1,2(B3, S2) is weakly approximable in W 1,2 by some
sequence ui of smooth maps. The well-known construction of such a ui involves changing x/|x| in a thin
cylindrical tunnel U of width 1/i extending from the origin (0, 0, 0) to a point on ∂B3. To prove the
weak W 1,2 weak convergence of ui to x/|x|, the key point of the construction is to keep the energies
∫

B3 |∇ui|2dx bounded independent of i.
To find an example of a map v ∈ W 1,p(Bm, N) which does not have a weakly approximating sequence

of smooth maps, we need both p < m and Π[p](N) 6= 0. Then, if p is not an integer, we simply choose, as
in [Be2], any map v which fails to have strong smooth approximations. Assuming for contradiction that
this map v did admit some weak approximation by smooth maps vi, then, for every point a ∈ Bm, Fubini’s
theorem and Sobolev embedding (because p > [p]), would give strong convergence of the restrictions vi|Sa
to v|Sa for almost every [p] dimensional Euclidean sphere Sa centered at a in Bm. Then by the smoothness
of vi and by [W], the corresponding homotopy classes [[v|Sa]] would all vanish. But Bethuel showed in
[Be1] that precisely this local vanishing homotopy condition on [p] spheres would imply that v does admit
strong smooth approximation, a contradiction.

For integer p the following question is still open:

For any any compact manifold N , any integers k, m ≥ 1 and any integer p ≥ 2, is every Sobolev map

v ∈ W k,p(Bm, N) actually W k,p weakly approximable by a sequence of smooth maps?

This sequential weak density of smooth maps has been verified in the following cases:

(1) [BBC], [ABL] : W 1,p(Bm, Sp).

(2) [Hj]: W 1,p(Bm, N) with N being simply p− 1 connected (i.e. Πj(N) = 0 for 0 ≤ j ≤ p− 1).

(3) [Pa]: W 1,1(M,N) with M and N being arbitrary smooth manifolds with ∂N = ∅ (weak conver-
gence has to be understood in a biting sense here)

(4) [PR]: W 1,2(Bm, N). (See also [Ha] concerning the role of the topology of M in W 1,2(M,N).)

See also a presentation of these results in [Ri]. Another case is the main result of the present paper:

Theorem V. Any map in W 2,2(B5, S3) may be approximated in the W 2,2 weak topology by a sequence of
smooth maps.

In §I.4 below, we will explain how we came to study maps from B5 to S3 and to look forW 2,2 estimates.
But first we review a few of the ideas that were developed to study sequential weak convergence of smooth
maps. The space W 1,2(B3, S2) was studied extensively in the late eighties and early nineties with many
works, e.g. [HL], [BCL], [BZ], [BBC], [GMS1]. The concrete results of these many works has led to
some analogous results and many conjectures for more general k, n, p, and N . To sequentially weakly
approximate a map v ∈ W 1,2(B3, S2), one first finds a W 1,2 strong approximation from the family
R0(B

3, S2) of maps u ∈ W 1,2(B3, S2) which are smooth away from some finite set Sing u. In particular,
we may assume

∫

B3 |∇u|2dx ≤ 2
∫

B3 |∇v|2dx. Here the topology of u near a point a ∈Sing v is given by the
integer d(a) =degree [u|∂Bε(a)], which is independent of a.e. small ε. Then to get the desired completely
smooth weak approximate, it is necessary to essential cancel the singularities of u. One does this by
finding a one-chain or “connection” Γu with ∂Γu in B3 being

∑

a∈Sing v d(a)[[a]] and with the rest of ∂γu
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lying in ∂B3. Then, as with the argument for x/|x|, one constructs smooth maps ui by making changes
in tunnels of radius 1/i centered along the connection. To keep the |∇ui|2 integrals bounded, one needs
to find a bound for the total length of the connection Γu that depends only on v, and is independent of
the approximating u. Here one may find a suitable connection by using the coarea formula. This gives
a good level curve of u which connects the singularities to each other and to ∂B3 and which has length
bounded by

∫

B3 |∇u|2dx, which has the independent bound 2
∫

B3 |∇v|2dx.
The first part of this argument, the strong W 1,2 approximation of an arbitrary Sobolev map v ∈

W 1,2(B3, S2) by a map u ∈ R0(B
3, S2) has been generalized in [Be2] to all W 1,p(Bm, N) and recently

in [BPV] to all W k,p(Bm, N). Here one gets strong approximation by maps in Rm−[p]−1(B
m, N) (re-

spectively, Rm−[kp]−1(B
m, N) which are smooth with singularities lying in finitely many affine planes of

dimension m− [p]− 1 (respectively, m− [kp]− 1).
However, the second part involving canceling the singularities of u has proven very challenging for

generalization. One roughly needs an m− [p] (respectively, m− [kp]− 1) dimensional connection which
has mass bounded in terms of the energy of u and which the connects the singularity. Even with the
connection, one still has to construct the bounded energy, smooth approximate.

I.3 Topological Singularity and Bubbling

In this supercritical dimension m > kp, we see that studying sequential W k,p weak smooth approx-
imation in W k,p(Bm, N) leads to questions about the relationship between the possible energy drop,
∫

Bm |∇ku|pdx < lim infi→∞

∫

Bm |∇kui|pdx , of aW k,p weakly convergent sequence ui ∈ W k,p(Bm, N)∩C∞

and the possible singularities of its weakly convergent limit u ∈ W k,p(Bm, N).
For 0 6= α ∈ Πkp(N), we say a point a ∈ Bm is a type α topological singularity of a W k,p map u if

there is an kp+ 1 dimensional affine plane P containing a so the restrictions of u to a.e. small kp sphere
P ∩ ∂Bε(a) induce (i.e. in the sense of [W]) the homotopy class α. Following the W k,p strong density of
the partially smooth maps Rm−kp−1(B

m, N) in W k,p(Bm, N), one expects the topological singularities,
with their types as coefficients, to form a chain Su having dimension m− kp− 1 and having coefficients
in the group Πkp(N). Recall the criterion of [Be1] that the vanishing of this “u topological singularity”
chain( that is the vanishing of such homotopy classes for a.e. such restrictions at every a ∈ Bm) is
equivalent the W k,p strong approximability of u by smooth maps.

Also for 0 6= α ∈ Πkp(N), the restrictions of ui to generic affine kp planes can, as i → ∞ have |∇k|p
energy concentration at an isolated point b with an associated topological change corresponding to a type
beta “bubble”. Putting such points together with their bubble types as coefficients should give a
“ui bubbled” chain Bui that has dimension m−kp, that has coefficient group Πkp(N), and that is carried
by the |∇k( · )|p energy concentration set of the sequence.

Using these vague definitions, one has the vague general conjecture:

Relative to ∂Bm, the boundary of the ui bubbled chain Bui equals the u topological singularity chain Su.

The vagueness here concerns the precise definition of chain and boundary operation, and how one precisely
obtains the bubbled chain Bui from the sequence ui and the topological singular chain Su from u. From
the cases we know, it is clear there is no single answer; it depends on the Sobolev space W k,p(Bm, N), in
particular the group Πkp(N).

In the special case W 1,2(B3, S2), the relevant homotopy group is Π2(S
2) ≃ Z, and [BBC] and [GMS1]

show that this 1 chain is precisely an integer-multiplicity 1 dimensional rectifiable current of finite mass
(but possibly infinite boundary mass). The special case was essentially generalized to k = 1, N = Sp in
[GMS2] and [ABO]. Here, the bubbled chain, now of dimension m− p, is again a rectifiable current.

The paper [HR1] treated W 1,3(B3, S2). The relevant homotopy group is Π3(S
2), which is again

isomorphic to Z. Here the bubbled 1 chain was shown to be possibly of infinite mass, and the notion
of a “scan” was invented to describe precisely compactness and boundary properties. The paper [HR2]
has able to handle bubbling in weak limits of smooth maps that corresponds to any nonzero homotopy
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class in the infinite nontorsion part of Πp(N). In this situation, the homotopy class of a map w on the
sphere Sm−1 can again be described using a differential m − 1 form Φw on Sm−1. The form is derived
by a special algebro-combinatoric construction (depending on the rational homotopy class) involving a
family of w pullbacks of forms on N and their “d−1 integrals”. For example, in case w : S3 → S2,
Φw = w#ωS2 ∧d∗∆−1w#ωS2 . In general, this representation by a finite family of differential forms allows
useful energy estimates involving certain Gauss integrals. For a weakly convergent sequence of smooth
maps, the bubbled chain, which cannot usually be represented as a finite mass current, can be understood
precisely as a rectifiable scan whose boundary is given by the topological singularities of the limit Sobolev
map. Though we have a somewhat satisfactory description of bubbling and topological singularity in all
nontorsion cases, the question of sequential weak density in these cases are still not resolved, even for the
case W 1,3(B4, S2).

Unfortunately representations of a homotopy class by differential forms are not available for torsion
classes. In particular, if the relevant homotopy group of N is completely torsion, then one requires other
techniques to get energy estimates needed for questions about weak limits of smooth maps. The first
such case is W 1,2(B3,RP 2), and was treated in [PR] . Here Π2(RP

2) ≃ Z2, and, a main result, is that
smooth maps are W 1,2 sequentially weakly dense because p = 2.

I.4 W 2,2(B5, S3)

The present paper started with the modest goal of understanding analytic estimates for maps of
w : S4 → S3 so as to understand weak convergence and sequential weak density for smooth maps from
B5 to S3. Here, the appropriate homotopy group is Π4(S

3), which is isomorphic to Z2. But geometric
descriptions of this homotopy class of v are not very simple. As discussed in Sections IV.2 and IV.3 below,
they involve considering, for a smooth approximation u of v, the total twisting of a u-pullback normal
framing upon circulation around a generic fiber u−1{y}. The twisting of the normal frame leads to an
element of Π1 (SO(3)) ≃ Z2. To analytically compute such a twisting involves integration of a derivative
of a pull-back framing, hence a second derivative of the original map. So it is natural for this homotopy
group to try to look for estimates in terms of the Hessian energy.

A representative of the single nonzero element in Π4(S
4, S3) is the suspension of the Hopf map,

SH : S5 → S3 , described explicitly in the next section. In Section II below, we slightly adapt [BPV],
Th.5 by defining the subfamily

R = {u ∈ R0(B
5, S3) : u ≡ SH

(

x− a

|x− a|

)

on Bδ0(a) \ {a} for all a ∈ Sing u and some δ0 > 0} (I.1)

and then proving:

Lemma III.2 The family R is W 2,2 strongly dense in W 2,2(B5, S3).

I.5 Connection Length

Given a finite subset A of B5, one may define Z2 connection for A (relative to ∂B5) as a finite disjoint
union Γ of finite length arcs embedded in B5 whose union of endpoints is precisely A∪ (Γ∩∂B5) . Thus,
each point of A is joined by a unique arc in Γ to either another point of A or to a point of ∂B5.

It will simplify some constructions to use a minimal Z2 connection for A, that is, one having least
length. It is not difficult to verify the existence and structure of a minimal Z2 connection for A. It
simply consists of the disjoint union of finitely many closed intervals in B5 and finitely many radially
pointing intervals having one endpoint in ∂B5. In §III.3, we show how individual maps in R can be
weakly approximated by smooth maps by proving:
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Theorem III.1 (Singularity Cancellation) If u ∈ R, Γ is a minimal Z2 connection for Sing v, and
ε > 0, then there exists a smooth uε ∈ W 2,2(B5, S3) ∩ C∞ so that uε(x) = u(x) whenever dist(x,Γ) > ε
and

∫

B5

|∇2uε|2 dx ≤ ε +

∫

B5

|∇2u|2 dx + cSHH1(Γ)

where cSH =
∫

S4

∣

∣∇2
tan(SH)

∣

∣

2
dH4 < ∞.

See Remark III.1 concerning this constant.

The core of our work, however, involves proving:

Theorem IV.2 (Length Bound) For any u ∈ R, Singu has a Z2 connection Γ satisfying

H1(Γ) ≤ c

∫

B5

|∇2u|2 dx ,

for some absolute constant c.

Combining this length bound with Lemma III.2 and Theorem III.1, we readily establish, in Section
V, that any Sobolev map in W 2,2(B5, S3) has a W 2,2 weak approximation by a sequence of smooth maps.

We prove the length bound in Section IV by finding a suitable connection Γ through three applications
of the coarea formula. For a regular value p ∈ S3 for u, the fiber Σ = u−1{p} is a smooth surface with
cone point singularities at Sing u. By the coarea formula, we may choose this p so that

∫

u−1{p}

|∇u|4 + |∇2u|2
J3u

dH2 . (I.2)

Then we need to choose connectiong curves on Σ. To do this we choose an orthonormal frame τ̃1, τ̃2, τ̃3
of the normal bundle of the surface Σ = u−1{p} by ortho-normalizing the v pull-backs of a basis of
Tan (S3, p). Inequality (I.2) gives that

∫

Σ

|∇τ̃j | dH2 ≤ c

∫

B5

|∇2u|2 dx .

We show how a a.e. oriented 2 plane in R5 determines at every point x ∈ Σ, with a finite exceptional
set b1, . . . , bj, an orthogonal basis of Nor(Σ, x), thought of as a reference normal framing. There is a
unique γ(x) ∈ SO(3) ≃ RP3 and one gets some curves on Σ, with total length bounded by a multiple
of c

∫

B5 |∇2u|2dx by choosing γ−1(E) where E is a suitable great RP2 ⊂ SO(3). The curves starting at
the some ai may end in either another ak or in ∂B5 or (unfortunately) in a point bℓ where the reference
framing degenerates. More argument, including another use of the coarea formula is required in sections
IV.8, IV.9 to find additional curves of controlled length connecting bℓ to another bm or to ∂B5. Putting
all these curves together gives a Z2 connection for Sing u satisfying the desired length bound.

II Preliminaries

We will let c denote an absolute constant whose value may change from statement to statement and
which is usually easily estimable. Here for 0 ≤ k ≤ m and various k dimensional subsets A of Rm,

∫

A

f dHk =

∫

A

f(y) dHky

will denote integration with respect to k dimensional Hausdorff measure. However, in top dimension where
Hm coincides with Lebesgue measure, we will use the use the standard notations

∫

A
f dx =

∫

A
f(x) dx.
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Lemma II.1 For each positive integer m, there is a positive constant cm so that

‖v‖2W 2,2(Bm,N) ≤ cm

[

(diamN)2 +

∫

Bm

|∇2v|2 dx
]

for any compact Riemannian submanifold N of Rℓ and v ∈ W 2,2(Bm, N).

Proof. Here ‖v‖2W 2,2(Bm,N) =
∫

Bm

(

|v|2 + |∇v|2 + |∇2v|2
)

dx. We clearly have the estimate

∫

Bm

|v|2dx ≤ Hm(Bm)(diamN)2 .

Moreover, by the Poincaré inequality,

∫

Bm

|∇v|2 dx =

m
∑

i=1

∫

Bm

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

2

dx ≤
m
∑

i=1

2

∫

Bm

∣

∣

∣

∣

∣

∂v

∂xi
−
(

∂v

∂xi

)

avg

∣

∣

∣

∣

∣

2

dx + 2

∫

Bm

∣

∣

∣

∣

∣

(

∂v

∂xi

)

avg

∣

∣

∣

∣

∣

2

dx

≤ 2mCBm

∫

Bm

|∇2v|2 dx +

m
∑

i=1

2Hm(Bm)

∣

∣

∣

∣

∣

(

∂v

∂xi

)

avg

∣

∣

∣

∣

∣

2

.

It only remains to bound
(

∂v
∂xi

)

avg
. We will do the case i = 1, the cases i ≥ 2 being similar. By Fubini’s

theorem and the absolutely continuity of v on a.e. line in the (1, 0, . . . , 0) direction,

Hm(Bm)

∣

∣

∣

∣

∣

(

∂v

∂x1

)

avg

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Bm

∂v

∂x1
dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Bm−1

∫

√
1−|y|2

−
√

1−|y|2

∂v

∂x1
(t, y1, . . . , ym−1) dt dy

∣

∣

∣

∣

∣

≤
∫

Bm−1

∣

∣

∣v(
√

1− |y|2, y1, . . . , ym−1)− v(−
√

1− |y|2, y1, . . . , ym−1)
∣

∣

∣ dy ≤ Hm−1(Bm−1) diamN .

A Formula for the Suspension of the Hopf Map

Let H : S3 → S2 denote the standard Hopf map [HR] :

H(x1, x2, x3, x4) =
(

2x1x2 + 2x3x4 , 2x1x4 − 2x2x3 , x
2
1 + x2

3 − x2
2 − x2

4

)

and SH : S4 → S3 be its suspension:

SH(x0, x1, · · · , x4) =

(

x0 ,
√

1− x2
0 · H

(

x1
√

x2
1 + · · ·+ x2

4

, . . . ,
x4

√

x2
1 + · · ·+ x2

4

))

.

The latter map generates the nonzero element of Π4(S
3) ≃ Z2. Also, its homogeneous degree 0 extension

SH(x/|x|) ∈ W 2,2(B5, S3) .

In particular,
∫

B5

∣

∣∇2 (SH(x/|x|))
∣

∣

2
dx = cSH where

cSH =

∫

S4

∣

∣∇2
tan(SH)

∣

∣

2
dH4 < ∞ . (II.3)

While the explicit formula for a suspension of the Hopf map is handy for simplifying proofs, the constant
cSH, which occurs in the conclusion of Theorem III.1 can, by Remark III.1, be replaced by a more natural
constant.
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III A Strongly Dense Family with Isolated Singularities

Let R denote the class of W 2,2(B5, S3) maps that are smooth except for finitely many suspension Hopf
singularities. That is,

u ∈ R ⇐⇒

u ∈ C∞(B5 \ {a1, . . . , am}, S3) and u(x) = SH

(

x− ai
|x− ai|

)

on Bδ0(ai) \ {ai} (III.4)

for some finite subset {a1, . . . , am} of B5 and some positive δ0 < mini{1− |ai|,minj 6=i |ai − aj |/2} }.

III.1 Strong Approximation by Maps in R
Lemma III.2 R is W 2,2 strongly dense in W 2,2(B5, S3).

Proof. Theorem 5 of [BPV] gives the W 2,2 strongly density of the family R2,2
0 (B5, S3) of maps

v ∈ W 2,2(B5, S3) which are smooth except for a finite singular set {a1, . . . , am} and which satisfy

lim sup
x→ai

(

|x− ai||∇v(x)| + |x− ai|2|∇2v(x)|
)

< ∞ ,

for i = 1, . . . ,m. Thus, it suffices to show:

For each v ∈ R2,2
0 (B5, S3) and ε > 0, there is a map u ∈ R so that ‖u− v‖2W 2,2 < ε .

Assuming Sing v = {a1, . . . , am}, we will obtain u by modifying v near each point ai. First fix a
positive η < 1

2 min {mini6=j |ai − aj |,mink(1− |ak|)} so that

L = max
i

sup
0<|x−ai|<η

(

|x− ai||∇v(x)| + |x− ai|2|∇2v(x)|
)

< ∞ (III.5)

We will proceed in two stages: First we will find a positive δ < η depending only on L and then define a
map w ∈ W 2,2(B5, S3) so that

w ≡ v on B
5 \ ∪m

i=1Bδ(ai) , (III.6)

and, on each ball Bδ/2(ai), w is degree-zero homogeneous about ai, i.e.

w(x) = w

(

ai +
x− ai
|x− ai|

)

for 0 < |x− ai| <
1

2
δ .

Second, we find a positive δ0 << 1
2δ, depending on w| ∪m

i=1 ∂Bδ/2(ai), and a map u ∈ R with u ≡ w on

B5 \ ∪m
i=1Bδ0(ai) and, on each ball Bδ0(ai), u ≡ SH

(

x−ai

|x−ai|

)

.

For the first step, we first fix a smooth monotone increasing λ : [0,∞) → [ 12 ,∞) so that

λ(t) =

{

1/2 for 0 ≤ t ≤ 1
2

t for t ≥ 1 .

Consider the unscaled situation of a map V ∈ C∞(B5 \ B 1

2

(0), S3) with

|∇V |+ |∇2V | ≤ L. Then we define the reparameterized map

W (x) = V (λ(|x|)x) ,

and see that, with respect to the radial variable ρ = |x|,
∂W

∂ρ
≡ ∂V

∂ρ
on ∂B5 ,

∂W

∂ρ
≡ 0 on B 1

2
(0) \ {0} ,
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Moreover, using explicit pointwise bounds for |λ′| and |λ′′|, we readily find an explicit constant C so that

|∇W (x)|+ |∇2W (x)| ≤ C L for
1

2
≤ |x| ≤ 1 ,

|x||∇W (x)| + |x|2|∇2W (x)| ≤ C L for 0 < |x| < 1

2
.

Now we return to the original scale by defining w to satisfy (III.6) and to have, for each point
x ∈ Bδ(ai),

w(x) = W

(

x− ai
δ

)

where V (x) = v(ai + δx) .

Then w belongs to W 2,2(B5, S3) and satisfies the estimate

max
i

sup
0<|x−ai|<δ

(

|x− ai||∇w(x)| + |x− ai|2|∇2w(x)|
)

≤ CL ,

hence,

‖w − v‖2W 2,2 =
∑m

i=1

∫

Bδ(ai)

(

|w − v|2 + |∇w −∇v|2 + |∇2w −∇2v|2
)

dx

≤ 2
∑m

i=1

∫

Bδ(ai)

(

|w|2 + |v|2 + |∇w|2 +∇v|2 + |∇2w|2 + |∇2v|2
)

dx ≤ c(1 + L)2δ .

So we easily choose δ so that ‖w − v‖2W 2,2 < 1
4ε.

For the second step we note that any continuous homotopy between smooth maps of smooth manifolds
can be made smooth; hence :

A smooth map φ : S4 → S
3 is smoothly homotopic

{

either to a constant in case [[φ]] = 0 ∈ Π4(S
4, S3)

or to [[SH]] in case [[φ]] 6= 0 ∈ Π4(S
4, S3)).

For each i = 1, . . . ,m, we apply this to the map φi(x) = w(ai +
1
2δx) to obtain a smooth homotopy

hi : [0, 1]× S4 → S3 which connects φi to SH. Reparameterizing the time variable near 0 and 1, we may
assume

hi(t, y) =

{

φi(y) for t near 0
(SH)(y) for t near 1 .

By smoothness, K = supi ‖hi‖W 2,2 < ∞, and we will, for some δ0 << 1
2δ, define the map u by

u ≡ w on B
5 \ ∪m

i=1Bδ0(ai) ,

u(x) = hi

(

2− 2
|x− ai|

δ0
,
x− ai
δ0

)

for x ∈ Bδ0(ai) \ B 1

2
δ0(ai) ,

u(x) = SH

(

x− ai
|x− ai|

)

for x ∈ B 1

2
δ0(ai) \ {0} ,

for i = 1, . . . ,m. One readily checks that u ∈ R. Moreover, as in Step 1, we find that

‖u− w‖2W 2,2 =

m
∑

i=1

∫

Bδ(ai)

(

|u− w|2 + |∇u−∇w|2 + |∇2u−∇2w|2
)

dx ≤ c(1 +K)4δ0 .

So we easily choose δ0 small enough so that ‖u− w‖2W 2,2 < 1
4ε and obtain the desired estimate

‖u− v‖2W 2,2 ≤ 2‖u− w‖2W 2,2 + 2‖w − v‖2W 2,2 < ε .
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III.2 Insertion of an SH Bubble into a Map from B4 to S3

Arguing as in the proof of Lemma III.2, we first fix a monotone increasing smooth function µ on [0,∞)
so that

µ(t) =

{

0 for 0 ≤ t ≤ 1
2

t for t ≥ 1 ,

|µ′| ≤ 3, and |µ′′| ≤ 16. We readily prove the following:

Lemma III.3 (Initial Reparameterization) There an absolute constant C so that, for any smooth
f : B4 → S3 and 0 < σ < 1, the map

fσ : B4 → S
3 , fσ(y) = f

(

µ
(

σ−1|y|
)

|y|−1σy
)

for y ∈ B
4 ,

coincides with f on B4 \ B4
σ, is identically equal to f(0) on B4

σ/2, and satisfies

sup
B4
σ

|∇fσ| ≤ C sup
B4
σ

|∇fσ| , sup
B4
σ

|∇2fσ| ≤ Cσ−1 sup
B4
σ

|∇2f | .

In particular,
∫

B4
σ

|∇2fσ|2 dx ≤ C2H4(B4) sup
B4
σ

|∇2f |2 σ2 . (III.7)

Construction of an SH Bubble

Recalling that SH(0, 1, 0, 0, 0) = (0, 0, 0, 1), we will first slightly modify SH to be constant near
(0, 1, 0, 0, 1). Consider the spherical coordinate parameterization,

Υ : [0, π]× S
3 → S

4 , Υ(ρ, ω) = ((sin ρ)ω1, cos ρ, (sin ρ)ω2, (sin ρ)ω3, (sin ρ)ω4) .

Arguing again as in the proofs of Lemma III.2 and Lemma III.3, we let

Mρ0
(ρ, ω) =

(

µ(ρ−1
0 ρ)ρ0ρ , ω

)

for 0 ≤ ρ ≤ ρ0 << 1 and ω ∈ S
3 ,

and define Φρ0
: S4 → S4 by

Φρ0
(y) =

{

Υ ◦Mρ0
◦Υ−1{y} for y ∈ Υ

(

[0, ρ0]× S
4
)

y otherwise .

Then Φρ0
is surjective, and maps the entire spherical cap

Ωρ0/2 = Υ
(

[0, ρ0/2)× S
4
)

= S
4 ∩ B

5
2 sin(ρ0/4)

((0, 1, 0, 0, 0))

to its center point (0, 1, 0, 0, 0).
We now consider the composition SH ◦ Φρ0

The homotopy class is unchanged

[[SH ◦ Φρ0
]] = [[SH]] 6= 0 ∈ Π4(S

3) . (III.8)

Noting that ρ0
∂2Mρ0

∂ρ2 is bounded independent of ρ0 and has support in Υ
(

[0, ρ0]× S3
)

, we readily verify,

as in (III.7), that

∫

S4
|∇2

tan(SH◦Φρ0
)|2dH4 =

∫

S4\Ωρ0

|∇2
tan(SH)|2dH4+

∫

Ωρ0

|∇2
tan(SH◦Φρ0

)|2dH4 → cSH + 0 , (III.9)

as ρ0 → 0.
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Since the stereographic projection

Π : S4 \ {(0, 1, 0, 0, 0)} → R
4 , Π(x0, x1, x2, x3, x4) =

(

x0

1− x1
,

x2

1− x1
,

x3

1− x1
,

x4

1− x1

)

is conformal, we get the conformal diffeomorphism

Λρ0
: B4 → S

4 \ Ωρ0/2 , Λρ0
(y) = Π−1

[(

sin(ρ0/2)

1− cos(ρ0/2)

)

y

]

.

We see that
SH ◦ Φρ0

◦ Λρ0
: B4 → S

3

is a smooth surjection which sends ∂B4 identically to SH(0, 1, 0, 0, 0) = (0, 0, 0, 1).
We wish to have a similar map that has boundary values being a a possibly different constant ξ ∈ S3.

To get a suitable formula, it will be handy to recall that S3, being identified with the unit quaternions,

{ x1 + x2i+ x3j+ x4k : x2
1 + x2

2 + x2
3 + x2

4 = 1 }

has a product ⋆ and, in particular, that

(0, 0, 0,−1) ⋆ (0, 0, 0, 1) = (−k) ⋆ k = 1 = (1, 0, 0, 0) .

So now we define, for every ρ0 > 0 and ξ ∈ S
3, the bubble

Bρ0,ξ : B
4 → S

3 , Bρ0,ξ ≡ ξ ⋆ (−k) ⋆ SH ◦ Φρ0
◦ Λρ0

, (III.10)

which is identically equal to ξ on ∂B4. By the conformal invariance of the Hessian energy and (III.9),
∫

B4

|∇2Bρ0,ξ|2 dy =

∫

S4
|∇2

tan(SH ◦Φρ0
)|2 dH4 →

∫

S4
|∇2

tan(SH)|2 dH4 = cSH as ρ0 → 0 . (III.11)

Now, for a smooth map f : B4 → S
3, 0 < σ < 1, and 0 < ρ0 << 1, we define the “bubbled” map

fσ,ρ0
: B4 → S3,

fσ,ρ0
(y) =

{

fσ(y) for σ/2 < |y| < 1 ,
Bρ0,f(0)(2y/σ) for |y| ≤ σ/2 .

(III.12)

Note that fσ,ρ0
is continuous because both expressions equal f(0) on ∂B4

σ/2. Moreover, all the positive

order derivatives of both expressions vanish here because the smooth map fσ is constant on B4
σ/2 while

the smooth reparameterization Φρ0
is constant on Ωρ0/2. So the map fσ,ρ0

is, in fact, smooth. Moreover,
since the Hessian energy is invariant under change of scale,
∫

B4

∣

∣∇2fσ,ρ0

∣

∣

2
dy =

∫

B4\B4

σ/2

∣

∣∇2fσ
∣

∣

2
dy +

∫

B4

σ/2

∣

∣∇2
[

Bρ0,f(0)

(

2
σ (·)

)]∣

∣

2
dy

=
∫

B4\B4
σ

∣

∣∇2f
∣

∣

2
dy +

∫

B4
σ\B

4

σ/2

∣

∣∇2fσ
∣

∣

2
dy +

∫

B4

∣

∣∇2Bρ0,f(0)

∣

∣

2
dy

→
∫

B4

∣

∣∇2f
∣

∣

2
dy + 0 +

∫

B4

∣

∣∇2Bρ0,f(0)

∣

∣

2
dy as σ → 0 .

(III.13)

Note that the middle equation also gives, with (III.7) the bound
∫

B4

∣

∣∇2fσ,ρ0

∣

∣

2
dy ≤ (1 + C2) sup

B4

|∇2f |2 +

∫

B4

∣

∣∇2Bρ0,f(0)

∣

∣

2
dy, (III.14)

independent of σ.
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III.3 Singularity Cancellation of a Map in R

Theorem III.1 If u ∈ R, Γ is a minimal Z2 connection for Sing v, and ε > 0, then there exists a smooth
uε ∈ W 2,2(B5, S3) ∩ C∞ so that uε(x) = u(x) whenever dist(x,Γ) > ε and

∫

B5

|∇2uε|2 dx ≤ ε +

∫

B5

|∇2u|2 dx + cSHH1(Γ) .

Proof. Note that, by slightly rescaling near ∂B5, we may assume that u extends smoothly to a neighbor-
hood of B5.

First, using (III.11), we fix a positive ρ0 to be small enough so that,
∣

∣

∣

∣

cSH −
∫

B4

|∇2Bρ0,ξ|2 dy
∣

∣

∣

∣

<
ε

4(1 +H1(Γ))
(III.15)

for all ξ ∈ S3. Also we recall that a minimal Z2 connection for u is the union of a finite family I of
disjoint closed intervals I = [aI , bI ] where

aI ∈ Sing u and bI ∈
{

either Sing u
or ∂B5 with I ⊥ ∂B5 .

(III.16)

Second, we fix a positive δ0 so that:

(1) δ0 < 1
2 mina∈Singu{1− |a|,mina 6=ã∈Sing u |a− ã| }

(2) δ0 < 1
2 min{|x− x̃| : x ∈ I, x̃ ∈ Ĩ , I 6= Ĩ ∈ I }.

(3) u ∈ C∞(B5
1+δ0

\ Sing u, S3).

(4) δ0 < (1 + cSH)
−1 (1 + card(Sing u))

−1
ε/5

Our main step in constructing uε will be to use, for each I ∈ I, the bubble insertion of §III.2 in each
cross-section of a pinched cylindrical region VI of radius δ0/9. Near the singular endpoints of I, VI is
pinched to be a round cone with opening angle 2 arctan(19 ).

To describe the explicit construction, we need some notation. With I = [aI , bI ] ∈ I as above in
(III.16), let

|I| = |bI − aI |, eI = (bI − aI)/|I| ∈ S
4, ΠI : R5 → R, ΠI(x) = x · eI − aI · eI ,

and BI(t, r) be the open ball in the 4 dimensional affine plane Π−1
I {t} with center aI + teI and radius r.

We now define VI to be the pinched cylindrical region

VI =
⋃

0<t<|I|

BI (t, rI(t)) ,

by using a fixed smooth function ν : [0,∞) → [0, 1] with

ν(t) =

{

t for 0 ≤ t ≤ 1
2

1 for 1 ≤ t ,

to define the smooth radius function

rI(t) =



























(δ0/9)t for 0 ≤ t ≤ 1
2δ0

(δ0/9)ν(t/δ0) for 1
2δ0 ≤ t ≤ δ0

δ0/9 for δ0 ≤ t ≤ |I| − δ0
(δ0/9)ν((|I| − t)/δ0) in case bI ∈ Sing u and |I| − δ0 ≤ t ≤ |I| − 1

2δ0
(δ0/9) (|I| − t) in case bI ∈ Sing u and |I| − 1

2δ0 ≤ t ≤ |I|
δ0/9 in case bI ∈ ∂B5 and |I| − δ0 ≤ t ≤ |I| .
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Thus ∂VI is a smooth hypersurface except for the conepoint(s) aI (and bI in case bI ∈ Sing u).
For convenience, we fix an orthonormal basis eI1, . . . , e

I
4 for the orthogonal complement of ReI . For

each t ∈ R, we will use the affine similarity

AI,t : R
4 → R

5 , AI,t(y1, . . . , y4) = aI + teI + rI(t)
[

y1e
I
1 + · · ·+ y4e

I
4

]

so that AI,t(B
4) = BI (t, rI(t)).

For 0 < σ < 1, we recall (III.12) and define the smooth reparameterized map

vσ(x) =

{

u(x) for x ∈ B5 \⋃I∈I VI ∪ {aI} ∪ {bI}
(u ◦AI,t)σ,ρ0

(

A−1
I,t (x)

)

for x ∈ BI (t, rI(t)) .

Observe that vσ actually coincides with u(x) outside the “σ thin” set
⋃

I∈I V
σ
I ∪ {aI} ∪ {bI} where

V σ
I =

⋃

0<t<|I|

BI (t, σrI(t)) .

The explicit formulas given above and in the earlier parts of §III.3 show the qualitative smoothness
of vσ on B5 \ Sing u. Our next goal is to verify that

lim sup
σ→0

∑

I∈I

∫

V σ
I

∣

∣∇2vσ
∣

∣

2
dx < cSHH(Γ) +

ε

2
. (III.17)

We define

JI =

{

t :
1

2
δ0 ≤ t ≤

{

|I| − 1
2δ0 in case bI ∈ Sing u

|I| in case bI ∈ ∂B5 ,

}

and note that on JI , the scaling factor rI(t) satisfies 1
18δ ≤ rI(t) ≤ 1

9δ0 while |r′I(t)| and |r′′I (t)| are
bounded. We will use the corresponding truncated sets

WI ≡ VI ∩ Π−1
I (JI) =

⋃

t∈JI

BI (t, rI(t)) , W σ
I ≡ V σ

I ∩ Π−1
I (JI) =

⋃

t∈JI

BI (t, σrI(t)) .

We have the pointwise bound
L = sup

WI

(

|∇u|2 + |∇2u|2
)

< ∞ ; (III.18)

hence, by (III.14),

sup
t∈JI

sup
0<σ<1

∫

B4

∣

∣∇2(u ◦AI,t)σ,ρ0

∣

∣

2
dy < ∞ .

Note that the orthogonality of the five vectors eI , e
I
1, · · · , eI4 lead to the decomposition of the squared

Hessian norm into pure second partial derivatives

|∇2(·)|2 = |∇eI ,eI (·)|2 +
∣

∣

∣(∇
e
I
1
,eI

1

(·)
∣

∣

∣

2

+ · · · +
∣

∣

∣(∇
e
I
4
,eI

4

(·)
∣

∣

∣

2

,

which we will abbreviate as
∣

∣∇2
eI
(·)
∣

∣

2
+
∣

∣

∣∇2
e
⊥

I

(·)
∣

∣

∣

2

.

It follows from Fubini’s Theorem, the conformal invariance of the 4 dimensional Hessian energy,
(III.13), dominated convergence, and (III.15) that
∫

Wσ
I

∣

∣

∣∇2
e
⊥

I
vσ

∣

∣

∣

2

dx =
∫

t∈JI

∫

BI (t,rI(t))

∣

∣

∣∇2
e
⊥

I
vσ

∣

∣

∣

2

dH4 dt

=
∫

t∈JI

∫

B4

∣

∣

∣∇2 (u ◦AI,t)σ,ρ0

∣

∣

∣

2

dy dt

→
∫

t∈JI

[

0 +
∫

B4

∣

∣∇2Bρ0,u(aI+teI )

∣

∣

2
dy
]

dt ≤ cSH|I| + ε|I|
4(1+H1(Γ)) ,

(III.19)
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as σ → 0. Thus

lim sup
σ→0

∑

I∈I

∫

Wσ
I

∣

∣

∣∇2
e
⊥

I
vσ

∣

∣

∣

2

dx ≤
∑

I∈I

[

cSH|I|+
ε|I|

4(1 +H1(Γ))

]

≤ cSHH1(Γ) + ε/4 . (III.20)

To get the full squared Hessian integral
∫

Wσ
I

∣

∣∇2vσ
∣

∣

2
dx, we also need to consider

∫

Wσ
I

∣

∣∇2
eI
vσ
∣

∣

2
dx,

which involves computing ∂2

∂t2 of various terms. To estimate the last integral, it again suffices by Fubini’s
theorem, Lemma III.3, (III.12), and changing variables to consider

∫

t∈JI

[

∫

B4
σ\B

4

σ/2

∣

∣

∣

∣

∂2

∂t2
(u ◦AI,t)

∣

∣

∣

∣

2

dy dt +

∫

B4

σ/2

∣

∣

∣

∣

∂2

∂t2

[

Bρ0,u(aI+teI )

(

2

σ
(·)
)] ∣

∣

∣

∣

2

dy

]

dt . (III.21)

The chain rule and the bounds of |r′| and |r′′| on JI give the pointwise bound
∣

∣

∣

∣

∂2

∂t2
(u ◦AI,t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂2

∂t2
[u (aI + teI + rI(t)y)]

∣

∣

∣

∣

≤ cL ,

and definition (III.10) gives the bound
∣

∣

∣

∣

∂2

∂t2
Bρ0,u(aI+teI)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂2

∂t2
[u (aI + teI) ⋆ (−k) ⋆ SH ◦ Φρ0

◦ Λρ0
]

∣

∣

∣

∣

≤ L .

Integrating implies that (III.21) is bounded by (c+ 1)L|I|H4(B4
σ) , and we deduce that

lim
σ→0

∫

Wσ
I

∣

∣∇2
eI
vσ
∣

∣

2
dx = 0 . (III.22)

Next we consider the conical end(s) V σ
I \W σ

I . By our choice of δ0, u is degree-0 homogeneous about
aI on the region B5

δ0
(aI). It follows that all of the normalized bubbled functions (u ◦ AI,t)σ,ρ0

coincide

for 0 < t ≤ σ/2. Thus, in the one conical end V σ
I ∩Π−1

I (0, δ0/2] , vσ is also degree-0 homogeneous about
aI . So we can easily estimate the Hessian integral there by using spherical coordinates about aI . Note
that radial projection of the 4 dimensional Euclidean ball V σ

I ∩ Π−1{δ0/2} onto the small spherical
cap V σ

I ∩ ∂B5
δ0/2

is a smooth diffeomorphism with easily computed C2 bounds on it and its inverse. In
particular, we see that, for σ sufficiently small,

Eσ ≡
∫

V σ
I ∩∂B5

δ0/2
(aI)

∣

∣∇2
tanvσ

∣

∣

2
dH4 ≤ 2

∫

B4
σ

∣

∣

∣∇2
(

u ◦AI,δ0/2

)

σ,ρ0

∣

∣

∣

2

dy < 2 + 2cSH .

By our initial choice (4) of δ0 we find that, for such σ,
∫

V σ
I ∩Π−1

I (0,δ0/2]

∣

∣∇2vσ
∣

∣

2
dx ≤ (δ0/2)Eσ ≤ (1 + card(Sing u))

−1
ε/5 .

In case bI ∈ Sing u, we make a similar estimate near bI . In any case, we now have

lim sup
σ→0

∑

I∈I

∫

V σ
I \Wσ

I

∣

∣∇2vσ
∣

∣

2
dx ≤ ε/5 ,

which together with (III.19) and (III.22), gives the desired Hessian integral estimate (III.17) for vσ.
Now using (III.17), we are ready to fix a positive σ0 < 1 so that

∑

I∈I

∫

V
σ0

I

∣

∣∇2vσ0

∣

∣

2
dx ≤ cSHH1(Γ) + ε/2 . (III.23)
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The final step will be to modify vσ0
to get uε. The map vσ0

is smooth on B5 \ Sing u and is degree-0
homogeneous about each point a ∈ Sing u, in the ball B5

δ0/2
(a).

For each such a, consider the normalized map given by rescaling vσ0
| ∂B5

δ0/2
(a), namely,

ga : S
4 → S

3 , ga(x) = vσ0
[a+ (δ0/2)x]

We claim that, in Π4(S
3) ≃ Z2, the homotopy class [[ ga]] is zero. To see this, suppose that a = aI and

first note that the restriction of the original map u | ∂B5
δ0/2

(a) gives the nonzero class [[SH]] ∈ Π4(S
3) by

the definition of R. Second, we slightly reparameterized u | ∂B5
δ0/2

(a) near the point a+(δ0/2)eI to have

constant value ξaI = (SH)(eI) in a small spherical cap of radius σ0δ0/2. The resulting reparameterized
map ũa still induces the nonzero homotopy class in Π4(S

3). Third, in forming the map vσ | ∂B5
δ0/2

(a), we

inserted a bubble in the small cap of constancy of ũa. This insertion gives the resulting sum in Π4(S
3) :

[[ga]] = [[ũa]] + [[ξaI ⋆ SH ◦ Φρ0
]] = [[SH]] + [[SH ◦ Φρ0

]] = 2[[SH]] = 0

by (III.8). The same is true in case a is a second endpoint bI .
Now, as in the proof of Lemma III.2, ga is homotopic to a constant, and we may we may fix a smooth

homotopy ha : [0, 1]× S4 → S3 so that

ha(t, y) =

{

ga(y) for t near 0
(1, 0, 0, 0) for t near 1
.

Thus the map

Ha : B5 → S
3 , Ha(x) = ha (1− |x|, x/|x|) for 0 < |x| ≤ 1 , Ha(0) = (1, 0, 0, 0) ,

is smooth. Moreover, for 0 < τ ≤ δ0/2,

wτ :
⋃

a∈Sing u

B
5
τ (a) → S

3 , wτ (x) = Ha

(

x− a

τ

)

for x ∈ B
5
τ (a) ,

satisfies
∫

B5
τ (a)

|∇2wτ |2 dx = τ

∫

B5

|∇Ha|2 dx ,

and we can fix a positive τ0 ≤ δ0/2 so that

∑

a∈Singu

∫

B5
τ0

(a)

|∇2wτ0 |2 dx < ε/2 . (III.24)

Finally we define the desired map uε : B
5 → S3 by :

uε(x) =







vσ0
(x) for x ∈ ∪I∈IV

σ0

I \ ∪a∈Sing uB
5
τ0(a)

wτ0(x) for x ∈ ∪a∈SinguB
5
τ0(a)

u(x) otherwise .

We easily verify that uε is smooth and coincides with u outside an ε neighborhood of Γ because σ0δ0/9 < ε
and τ0 ≤ δ0/2 < ε. Moreover, by (III.23) and (III.24),

∫

B5

|∇2uε|2 dx ≤
∑

I∈I

∫

V
σ0

I

|∇2vσ0
|2 dx +

∑

a∈Singu

∫

B5
τ0

(a)

|∇2wτ0 |2 dx +

∫

B5

|∇2u|2 dx

≤ cSHH1(Γ) +
ε

2
+

ε

2
+

∫

B5

|∇2u|2 dx .
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Corollary III.1 If u and uε are as in Theorem III.1, then uε approaches u , W 2,2 weakly as ε → 0.

Proof. One has the strong L2 convergence limε→0 ‖uε−u‖L2 = 0 , because the uε are uniformly bounded
(by 1) and approach u pointwise on B

5 \ Sing u. Moreover, for any sequence 1 ≥ εi ↓ 0, we have by
Theorem III.1 and Lemma II.1, the bound

sup
i

‖uεi‖2W 2,2 < cm

(

4 +

∫

B5

|∇2u|2 dx+ cSHH1(Γ)

)

< ∞ .

By the weak*(=weak) compactness of the closed ball in W 2,2(B5,Rℓ), the sequence uεi contains a sube-
quence uεi′ that is W 2,2 weakly convergent to some w ∈ W 2,2(B5,Rℓ). But, w, being by Rellich’s
theorem, the strong L2 limit of the uεi′ , must necessarily be the original map u. Since any subsequence
of uε subconverges to the same limit u and since the weak* (=weak) W 2,2 topology on bounded sets is
metrizable, the original family uε converges W 2,2 weakly to u.

Remark III.1 In Theorem III.1, one may replace cSH by the optimal constant

c̃SH = inf

{
∫

S4

∣

∣∇2
tanω

∣

∣

2
dH4 : ω ∈ C∞(S4, S3) and [[ω]] = [[SH]]

}

.

Here, for any ω as above, we can first W 2,2 strongly approximate u by a map which equals ω(x−a)/|x−a|
in Bδ1(a) for all a ∈ Sing u and some 0 < δ1 << δ0. Then we repeat the proofs with SH replaced by ω.

IV Connecting Singularities with Controlled Length

Suppose u ∈ R with Sing u = {a1, a2, . . . , am} as above. Our goal in this section is to connect the
singular points ai, together in pairs or to ∂B5, by some union of curves whose total length is bounded by
an absolute constant multiple of the Hessian energy, that is,

c

∫

B5

|∇2u|2 dx .

This is therefore a bound on the length of a minimal connection for Sing u, which will allow us, in Theorem
V.3 below, to combine Lemma III.2 and Theorem III.1 to obtain the desired sequential weak density of
C∞(B5, S3) in W 2,2(B5, S3).

Using the surjectivity of the suspension of the Hopf map, we readily verify that each regular value
p ∈ S

3 \ {(−1, 0, 0, 0), (1, 0, 0, 0)} of u gives a level surface

Σ = u−1{p}

which necessarily contains all the singular points ai of u. Note that Σ = u−1{p} is smoothly embedded
away from the ai with standard orientation ωΣ ≡ ∗u#ωS3/|u#ωS3 |, induced from u. Concerning the
behavior near ai, the punctured neighborhood

Σ ∩ Bδ0(ai) \ {ai}

is simply a truncated cone whose boundary

Γi = Σ ∩ ∂Bδ0(ai)

is a planar circle in the 3-sphere ∂Bδ0(ai) ∩
(

{δp0} × R4
)

where p = (p0, p1, p2, p3).

We will eventually choose the desired “connecting” curves all to lie on one such level surface Σ.
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IV.1 Estimates for Choosing the Level Surface Σ = u−1{p}
We first recall the 3 Jacobian J3u = ‖ ∧3 Du‖ and apply the coarea formula [Fe], §3.2.12 with

g =
|∇u|4 + |∇2u|2

J3u
,

to obtain the relation
∫

S3

∫

u−1{p}

|∇u|4 + |∇2u|2
J3u

dH2 dH3p =

∫

B5

(

|∇u|4 + |∇2u|2
)

dx . (IV.25)

Moreover, since ‖u‖L∞ = 1, we also have (see [MR]) the integral inequality
∫

B5

|∇u|4 ≤ c

∫

B5

|∇2u|2 dx . (IV.26)

In case u is constant on ∂B5, we may verify this by computing
∫

B5

|∇u|4 =

∫

B5

(∇u · ∇u) |∇u|2 dx

=

∫

B5

[

div
(

u∇u|∇u|2
)

− u ·∆u|∇u|2 − u∇u · ∇
(

|∇u|2
)]

dx

≤ 0 + 5

∫

B5

|∇2u||∇u|2 dx + 2

∫

B5

|∇2u||∇u|2 dx

≤ 1

2

∫

B5

|∇u|4 dx +
49

2

∫

B5

|∇2u|2 dx.

In the general case, we write u =
∑∞

i=1 λiu where {λi} is a partition of unity adapted to a family of
Whitney cubes for B5. See [MR]. (The above inequality is true even with the constraint ‖u‖BMO ≤ 1 in
place of ‖u‖L∞ ≤ 1 [MR].)

By (IV.25) and (IV.26) we may now choose a regular value p ∈ S3 of u so that

∫

u−1{p}

|∇u|4 + |∇2u|2
J3u

dH2 ≤ c

∫

B5

|∇2u|2 dx . (IV.27)

By increasing c we will also insist that |p0| is small, say, |p0| < 1/100 . This smallness will be useful in
guaranteeing that each tangent plane Tan (Σ, x), for x ∈ Σ ∩ ∪m

i=1Bδ0 (ai) \ {ai}, is close to {0} × R4.

IV.2 A Pull-back Normal Framing for Σ = u−1{p}
.

Suppose again that p = (p0, p1, p2, p3) ∈ S3 \ {(−1, 0, 0, 0), (1, 0, 0, 0)} is a regular value of u. Then

η1 =

(

−
√

1− p20 ,
p0p1

√

1− p20
,

p0p2
√

1− p20
,

p0p3
√

1− p20

)

is the unit vector tangent at p to the geodesic that runs from (1, 0, 0, 0) through p to (−1, 0, 0, 0). We
may choose two other vectors

η2 , η3 ∈ Tan

(

{p0} ×
√

1− p20 S
2, p

)

⊂ Tan(S3, p)
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so that η1, η2, η3 becomes an orthonormal basis for Tan(S3, p). Since p is a regular value for u, these three
vectors lift to three unique smooth linearly independent normal vectorfields τ1, τ2, τ3 along Σ = u−1{p}.
That is, at each point x ∈ Σ,

τj(x) ⊥ Σ at x and Du(x) [τj(x)] = ηj

for j = 1, 2, 3.
Near each singularity ai the lifted vectorfields τ1, τ2, τ3 are also orthonormal. In fact, for any point

x ∈ Σ ∩ Bδ0(ai),
x0−ai0

|x−ai|
= p0, and

τ1(x) =

(

−
√

1− p20 ,
p0

√

1− p20

x1 − ai1
|x− ai|

,
p0

√

1− p20

x2 − ai2
|x− ai|

,
p0

√

1− p20

x3 − ai3
|x− ai|

)

. (IV.28)

Also τ1(x), τ2(x), τ3(x) are orthonormal for such x because the Hopf map is horizontally orthogonal and
the lifts τ2(x), τ3(x) are tangent to the 3 sphere {p0} ×

√

1− p20 S
3.

On the remainder of the surface Σ \ ∪m
i=1Bδ0(ai), the linearly independent vectorfields τ1, τ2, τ3 are

not necessarily orthonormal, and we use their Gram-Schmidt orthonormalizations

τ̃1 =
τ1
|τ1|

,

τ̃2 =
τ2 − (τ̃1 · τ2)τ̃1
|τ2 − (τ̃1 · τ2)τ̃1|

=
τ2 − (τ̃1 · τ2)τ̃1

|τ̃1 ∧ τ2|
,

τ̃3 =
τ3 − (τ̃1 · τ3)τ̃1 − (τ̃2 · τ3)τ̃2
|τ3 − (τ̃1 · τ3)τ̃1 − (τ̃2 · τ3)τ̃2|

=
τ3 − (τ̃1 · τ3)τ̃1 − (τ̃2 · τ3)τ̃2

|τ̃1 ∧ τ̃2 ∧ τ3|
,

which provide an orthonormal framing for the unit normal bundle of Σ.

We need to estimate the total variation of these orthonormalizations. Noting that |∇
(

τ
|τ |

)

| ≤ 2 |∇τ |
|τ |

for any differentiable τ , we see that

|∇τ̃1| ≤ 2
|∇τ1|
|τ1|

≤ 2
|∇τ1||τ1||τ2||τ3|
|τ1||τ1 ∧ τ2 ∧ τ3|

= 2
|τ2||τ3||∇τ1|
|τ1 ∧ τ2 ∧ τ3|

,

|∇τ̃2| = 2

[

τ2 − (τ̃1 · τ2)τ̃1
|τ̃1 ∧ τ2|

]

≤ 2

[

2|∇τ2|+ 2|τ2||∇τ̃1|
|τ1 ∧ τ2||τ1|−1

]

≤ 8

[ |τ1‖∇τ2|+ |τ2||∇τ1|
|τ1 ∧ τ2|

· |τ1 ∧ τ2||τ3|
|τ1 ∧ τ2 ∧ τ3|

]

= 8

[ |τ2||τ3||∇τ1|+ |τ1||τ3||∇τ2|
|τ1 ∧ τ2 ∧ τ3|

]

,

|∇τ̃3| ≤ 2

[

3|∇τ3|+ 2|τ3||∇τ̃1|+ 2|τ3||∇τ̃2|
|τ̃1 ∧ τ̃2 ∧ τ3|

]

≤ 32





|∇τ3|+ |τ3||τ1|−1|∇τ1|+ |τ3|
(

|τ1‖∇τ2|+|τ2||∇τ1|
|τ1∧τ2|

)

| τ1
|τ1|

∧
(

τ2
||τ1|−1τ1∧τ2|

)

∧ τ3|





≤ 32

[ |τ1||τ2||∇τ3|+ |τ2||τ3||∇τ1|+ |τ1||τ3||∇τ2|
|τ1 ∧ τ2 ∧ τ3|

]

.

Inasmuch as
|τj | ≤ |∇u| , |∇τj | ≤ |∇2u| , |τ1 ∧ τ2 ∧ τ3| = J3u ,
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we deduce the general pointwise estimate

|∇τ̃j | ≤ c
|∇u|2|∇2u|

|J3u|
≤ c

|∇u|4 + |∇2u|2
|J3u|

,

which we may integrate using (IV.27) to obtain the variation estimate along Σ = u−1{p},
∫

Σ

|∇τ̃j | dH2 ≤ c

∫

B5

|∇2u|2 dx . (IV.29)

IV.3 Twisting of the Normal Frame τ̃1, τ̃2, τ̃3 About Each Singularity ai

.
First we recall from[MS], §5-6 that the Grassmannian

G̃2(R
5)

of oriented 2 planes through the origin in R5 is a compact smooth manifold of dimension 6. It may be
identified with the set of simple unit 2 vectors in R5,

{v ∧w ∈ ∧2R
5 : v ∈ S

4, w ∈ S
4, v · w = 0} .

We will use the distance |P −Q| on G̃2(R
5) given by this embedding into ∧2R

5 ≈ R10.
For a fixed plane P ∈ G̃2(R

5), the set of nontransverse 2 planes

QP =
{

Q ∈ G̃2(R
5) : P ∩Q 6= {0}

}

is a (Schubert) subvariety of dimension 1 + 3 = 4 because every Q ∈ QP \ {P} equals v ∧ w for some
w ∈ S4 ∩P and some v ∈ S4 ∩w⊥. These subvarieties are all orthogonally isomorphic and, in particular,
have the same finite 4 dimensional Hausdorff measure. Also

YP = {Q ∈ QP : P⊥ ∩Q 6= {0}}

is a closed subvariety of dimension 3, and QP \ YP is a smooth submanifold.
Then, near each singularity ai, the set of 2 planes nontransverse to the cone Σ ∩ Bδ0(ai) \ {ai},

W =
⋃

x∈Σ∩Bδ0
(ai)\{ai}

QTan(Σ,x) =
⋃

x∈Γi

QTan(Σ,x) ,

has dimension only 1 + 4 = 5 < 6 = dim G̃2(R
5). Note also its location, that W is, by the smallness of

|p0|, contained in the tubular neighborhood

V ≡ {Q ∈ G̃2(R
5) : dist

(

Q, G̃2({0} × R
4
)

< 1/50},

of the 4 dimensional subgrassmannian G̃2({0} × R4).
We now describe explicitly how the framing τ̃1(x), τ̃2(x), τ̃3(x) twists once as x goes around each circle

Γi. The problem is that the vectors τ̃j(x) lie in the normal space Nor(Σ, x) which also varies with x. To
measure the rotation of the frame τ̃1(x), τ̃2(x), τ̃3(x), as x traverses the circle Γi, it is necessary to use
some reference frame for Nor(Σ, x).
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We can induce such a frame from some fixed unit vectors in R5 as follows: Consider a fixed Q ∈
G̃2(R

5) \W , and suppose Q = v ∧ w with v, w being an orthonormal basis for Q. For each x ∈ Γi, the
orthogonal projections of v, w onto Nor(Σ, x) are linearly independent; let σ1(x), σ2(x) be their Gram-
Schmidt orthonormalizations. We then get σ3(x) by using the map u to pull-back the orientation of S3

to Nor(Σ, x) so that the resulting orienting 3 vector is σ1(x) ∧ σ2(x) ∧ σ3(x) for a unique unit vector
σ3(x) ∈ Nor(Σ, x) orthogonal to σ1(x), σ2(x). We view

σ1(x) , σ2(x) , σ3(x)

as the reference frame determined by the fixed vectors v, w. For each x ∈ Γi, there is then a unique
rotation γ(x) ∈ SO(3) so that

γ(x) [σj(x)] = τ̃j(x) for j = 1, 2, 3 .

In the next paragraph we will check that γ : Γi → SO(3) is a single geodesic circle in SO(3). The
twisting of the frame τ̃1, τ̃2, τ̃3 around the circle Γi is reflected in the fact that such a circle induces the
nonzero element in Π1(SO(3)) ≃ Z2.

In the special case v = (1, 0, 0, 0), the normalized orthogonal projection of v onto Nor(Σ, x) is, by
(IV.4), simply

σ1(x) = τ̃1(x) .

So in this case, each orthogonal matrix γ(x) is a rotation about the first axis, and one checks that, as x
traverses the circle Γi once, these rotations complete a single geodesic circle in SO(3). For another choice
of v, the geodesic circle γ : Γi → SO(3) involves a circle of rotations about a different axis combined with
a single orthogonal change of coordinates.

IV.4 A Reference Normal Framing for Σ = u−1{p}
.

The above calculations near the ai suggest comparing on the whole surface u−1{p} the pull-back
normal framing τ̃1(x), τ̃2(x), τ̃3(x) with some reference normal framing σ1(x), σ2(x), σ3(x) induced by
two fixed vectors v, w. Unfortunately, there may not exist fixed vectors v, w so that the corresponding
reference framing σ1, σ2, σ3 is defined everywhere on Σ. In this section we show that any orthonormal
basis v, w of almost every oriented 2 plane Q ∈ G̃2(R

5) gives a reference framing on Σ which is well-defined
and smooth except at finitely many discontinuities

b1, b2, . . . , bn .

We will then need to connect the original singularities ai to the bj (or to ∂B5) and, in §IV.6, choose
other curves to connect the bj to each other (or to ∂B5), with all curves having total length bounded by
a multiple of

∫

B5 |∇2u|2 dx.
To find a suitable Q = v ∧ w, we will first rule out the exceptional planes that contain some nonzero

vector normal to Σ at some point x ∈ Σ. The really exceptional 2 planes that lie completely in some
normal space

X = ∪x∈ΣXx where Xx = {Q ∈ G̃2(R
5) : Q ⊂ Nor(Σ, x)} .

Then X has dimension at most 2 + 2 = 4 < 6 = dim G̃2(R
5) because dimΣ = 2 and dim G̃2(R

3) = 2.
The remaining set of exceptional planes

Y = ∪x∈ΣYx where Yx = {Q ∈ G̃2(R
5) : dim (Q ∩ Nor(Σ, x)) = 1}

has dimension at most 2 + 2 + 1 = 5 < 6 = dim G̃2(R
5) because

Yx = {e ∧w : e ∈ S
4 ∩Nor(Σ, x) and w ∈ S

4 ∩ Tan(Σ, x)} .
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In terms of our previous notation, YTan(Σ,x) = Xx ∪ Yx.

Any unit vector e /∈ Nor(Σ, x) has a nonzero orthogonal projection

eT (x)

onto Tan(Σ, x).
Normalizing

ẽT (x) =
eT (x)

|eT (x)|
,

we find a unique unit vector eΣ(x) ∈ Tan(Σ, x) orthogonal to eT (x) so that ẽT (x)∧ eΣ(x) is the standard
orientation of Tan(Σ, x). Then

e · eΣ(x) = (e− eT (x)) · eΣ(x) + eT (x) · eΣ(x) = 0 + 0

because e− eT (x) ∈ Nor(Σ, x). Thus,

ẽT (x), eΣ(x), τ̃1(x), τ̃2(x), τ̃3(x),

is an orthonormal basis for R5.
Away from the 4 dimensional unit normal bundle

NΣ = {(x, e) : x ∈ Σ, e ∈ S
4 ∩ Nor(Σ, x)} ,

we now define the basic map

Φ : (Σ× S
4) \ NΣ → G2(R

5) , Φ(x, e) = e ∧ eΣ(x) ,

to parameterize the planes nontransverse to Σ in G̃2(R
5) \ Y . Incidentally, these do include the 2

dimensional family of tangent planes

Z = {Q ∈ G̃2(R
5) : Q = Tan(Σ, x) for some x ∈ Σ} .

In terms of the notation at the beginning of this section, for any 2 plane Q /∈ Y ,

Q ∈ QTan(Σ,x) ⇐⇒ Q = Φ(x, e) for some e ∈ S
4 \Nor(Σ, x) .

Note that Φ(x,−e) = Φ(x, e), and, in fact,

Φ(x, e′) = Φ(x, e) ∈ G̃2(R
5) \ Y ⇐⇒ e′ = ± e .

It is also easy to describe the behavior of Φ at the singular set NΣ. A 2 plane Q belongs to Y , that
is, Q = v ∧ w for some v ∈ Nor(Σ, x) ∩ S4 and w ∈ Tan(Σ, x) ∩ S4, if and only if Q = limn→∞ Φ(xn, vn)
for some sequence (xn, vn) ∈ (Σ× S4) \ NΣ approaching (x, v). The map Φ essentially “blows-up” the 4
dimensional NΣ to the 5 dimensional Y , and, in particular, any smooth curve in G̃2(R

5) transverse to Y
lifts by Φ to a pair of antipodal curves in Σ× S4 extending continuously transversally across NΣ.

We now choose and fix Q ∈ G2(R5) so that neither Q nor −Q belong to the 5 dimensional exceptional

set X ∪ Y ∪ Z and both are regular values of Φ. We may also insist that Q is close to the 3 dimensional
Schubert cycle

H = {(1, 0, . . . , 0) ∧ (0, v1, v2, v3, v4) : v21 + · · ·+ v24 = 1 } ,

say dist (Q,H) < 1/100. This will guarantee that Q is well separated from the open region V that
contains W .
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Since
dim(Σ× S

4) = 6 = dim G̃2(R
5) ,

Φ−1{Q,−Q} is a finite set, say

Φ−1{Q,−Q} = {(b1, e1), (b1,−e1), (b2, e2), (b2,−e2), . . . , (bn, en), (bn,−en)} .

We now see that the reference framing σ1(x), σ2(x), σ3(x) of Nor(Σ, x) corresponding to any fixed or-
thonormal basis v, w of Q fails to exist precisely at the points b1, b2, . . . , bn. As before, we now have the
smooth mapping

γ : Σ \ {a1, . . . , am, b1, . . . , bn} → SO(3) ,

which is defined by the condition γ(x) [σj(x)] = τ̃j(x) for j = 1, 2, 3 or, in column-vector notation,

γ = [σ1σ2σ3]
−1 [τ̃1τ̃2τ̃3] .

IV.5 Asymptotic Behavior of γ Near the Singularities ai and bj

.
As discussed in §3.1, the map u, the surface Σ = u−1{p}, the frames τ̃1, τ̃2, τ̃3 and σ1, σ2, σ3, and the

rotation field γ are all precisely known near a singularity ai in the cone neighborhood Σ∩Bδ0(ai) \ {ai}.
In particular, γ is homogeneous of degree 0 on Σ∩Bδ0(ai)\{ai}; on its boundary γ|Γi is a constant-speed
geodesic circle.

At each bj , the frame τ̃1, τ̃2, τ̃3 is smooth, but the frame σ1, σ2, σ3, and hence the rotation γ, has an
essential discontinuity. Nevertheless, we may deduce some of the asymptotic behavior at bj because ±Q
were chosen to be regular values of Φ. In fact, we’ll verify:
The tangent map γj of γ at bj,

γj : Tan(Σ, bj) ∩ B1(0) → SO(3) , γj(x) = lim
r→0

γ
[

expΣbj (rx)
]

,

exists and is the homogeneous degree 0 extension of some reparameterization of a geodesic circle in SO(3).
In particular, for small positive δ, γ | (Σ ∩ ∂Bδ(bj)) is an embedded circle inducing the nonzero element
of Π1(SO(3)) ≃ Z2.

To check this, we use, as above, the more convenient orthonormal basis {ej, ejΣ} for Q; that is,

ejΣ = ejΣ(bj) ∈ Tan(Σ, bj) and Q = ej ∧ ejΣ = Φ(bj ,±ej) .

Then, for x ∈ Σ, let
eNj (x) , e N

jΣ (x)

denote the orthogonal projections of the fixed vectors ej , ejΣ onto Nor(Σ, x), and

êNj (x)

denote the cross-product of e N
jΣ (x) and eNj (x) in Nor(Σ, x). These three vectorfields are smooth near bj

with
eNj (bj) 6= 0 , e N

jΣ (bj) = 0 , êNj (bj) = 0 .

Here our insistence that ±Q /∈ Z guarantees that Q is not tangent to Σ at bj . Let gj denote the orthogonal
projection of R5 onto the 2 plane

Pj = Nor(Σ, bj) ∩
[

eNj (bj)
]⊥

.
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Then Gj(x) = gj ◦ eNj (x) defines a smooth map from a Σ neighborhood of bj to Pj , which has, by the
regularity of Φ at (bj, ẽj), a simple, nondegenerate zero at bj (of degree ±1). It follows that as x circulates
Σ ∩ ∂Bδ(bj) once, for δ small, Gj(x) and similarly gj ◦ êNj (x), circulate 0 once in Pj . Returning to the
original basis v, w of Q, we now check that, as x circulates Σ∩∂Bδ(bj) once, the frame σ1(x), σ2(x), σ3(x)
approximately, and asymptotically as δ → 0, rotates once about the vector eNj (bj). Since the frame
τ̃1(x), τ̃2(x), τ̃3(x) is smooth at bj , we see that the map γ has, at bj, a tangent map γj as described above.

IV.6 Connecting the Singularities ai to the bj or to ∂B5

.
Here we will find curves reaching all the ai and bj. Concerning the ai, we recall from [Br],§III,10] that

SO(3) is isometric to RP3 ≃ S3/{x ∼ −x}. Any geodesic circle Γ in SO(3) generates Π1(SO(3)) ≃ Z2

and lifts to a great circle Γ̃ in S
3. The rotations at maximal distance from Γ form another geodesic circle

Γ⊥ and the nearest point retraction
ρΓ : SO(3) \ Γ → Γ⊥

is induced by the standard nearest point retraction

ρΓ̃ : S3 \ Γ̃ → Γ̃⊥ .

In particular,

|∇ρΓ(ζ)| ≤ c

dist(ζ,Γ)
for ζ ∈ SO(3) . (IV.30)

Any geodesic circle Γ′ in SO(3) that does not intersect Γ is mapped diffeomorphically by ρΓ onto the
circle Γ⊥. We deduce that if Γ is chosen to miss the asymptotic circles

γ(Γi) and γj
(

Tan(Σ, bj) ∩ S
4
)

associated with the singularities ai and bj, then, on Σ, the composition ρΓ ◦ γ maps every sufficiently
small circle

Σ ∩ ∂Bδ(ai) and Σ ∩ ∂Bδ(bj)

diffeomorphically onto the circle Γ⊥.
Under the identification of SO(3) with RP3, SO(4) acts transitively by isometry on

G = {geodesic circles Γ ⊂ SO(3) } .

Then G is compact and admits a positive invariant measure µG . For µG almost every circle Γ,

Γ ∩ γ(Γi) = ∅ for i = 1, . . . ,m , Γ ∩ γj
(

Tan(Σ, bj) ∩ S
4
)

= ∅ for j = 1, . . . , n ,

and Γ is transverse to the map γ. In particular, γ−1(Γ) is a finite subset

{c1, c2, . . . , cℓ}

of Σ. For such a circle Γ and any regular value z ∈ Γ⊥ of

ρΓ ◦ γ : Σ \ {a1, . . . , am, b1, . . . , bn, c1, . . . , cℓ} → Γ⊥ ,

the fiber
A = (ρΓ ◦ γ)−1{z}
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is a smooth embedded 1 dimensional submanifold with

(ClosA) \A ⊂ {a1, . . . , am, b1, . . . , bn, c1, . . . , cℓ} ∪ ∂B5 .

We also can deduce the local behavior ofA near each of the points ai, bj , ck. From the above description
of the asymptotic behavior of γ near ai and bj, we see that

Bδ0(ai) ∩ ClosA

is simply a single line segment with one endpoint ai while

Bδ(bj) ∩ ClosA

is, for δ sufficiently small, a single smooth segment with one endpoint bj . On the other hand,

Bδ(ck) ∩ ClosA

is, for δ sufficiently small, a single smooth segment with an interior point ck. To see this, observe that,
for the lifted map ρΓ̃ : S3 \ Γ̃ → Γ̃⊥ and any point z̃ ∈ Γ̃⊥, the fiber ρ−1

S̃
{z} is an open great hemisphere,

centered at z, with boundary Γ̃. It follows for the downstairs map ρΓ that Ez = Clos
(

ρ−1
Γ {z}

)

} is a full
geodesic 2 sphere containing z and the circle Γ. Since the surface γ(Σ) intersects the circle Γ transversely
at a finite set, this sphere Ez is also transverse to γ(Σ) near this set. Thus, for δ sufficiently small,
Bδ(ck) ∩ ClosA, being mapped diffeomorphically by γ onto the intersection Ez ∩ γ (Σ ∩ Bδ(ck)), is an
open smooth segment containing ck in its interior.

Combining this boundary behavior with the interior smoothness of the 1 manifold A, we now conclude
that

B5 ∩ ClosA globally consists of disjoint smooth segments joining pairs of points from

{a1, . . . , am, b1, . . . , bn} ∪ ∂B5 .

Moreover, each point ai or bj is the endpoint of precisely one segment.

IV.7 Estimating the Length of the Connecting Set A

.
The definition of the A depends on many choices:

(1) the point p ∈ S3 near {0} × R4, which determines the surface Σ = u−1{p},

(2) the vectors η2, η2, η3 ∈ Tan(S3, p), which determine the pull-back normal framing τ̃1, τ̃2, τ̃3,

(3) the vectors v, w ∈ S4, which determine the reference normal framing σ1, σ2, σ3 and the rotation

field γ = [σ1σ2σ3]
−1

[τ̃1τ̃2τ̃3] : Σ \ {b1, . . . , bm} → SO(3),

(4) the circle Γ ⊂ SO(3), which determines the retraction ρΓ : SO(3) \ Γ → Γ⊥, and

(5) the point z ∈ Γ⊥, which finally gives A = (ρΓ ◦ γ)−1{z}.

We need to make suitable choices of these to get the desired length estimate for A. In §IV.1 we already
used one coarea formula to choose p ∈ S3 to give the basic estimate (IV.25)

∫

Σ

|∇u|4 + |∇2u|2
J3u

dH2 ≤ c

∫

B5

|∇2u|2 dx ,
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and the pull-back frame estimate (IV.29)

∫

Σ

|∇τ̃j | dH2 ≤ c

∫

B5

|∇2u|2 dx ,

independent of the choice of η1, η2, η3, then followed. For the choice of z ∈ S⊥, we want to use another
coarea formula, ([Fe], §3.2.22)

∫

Γ⊥

H1(ρΓ ◦ γ)−1{z} dz =

∫

Σ

|∇(ρΓ ◦ γ)| dH2 . (IV.31)

To bound the righthand integral, we first use the chain rule and (IV.30) for the pointwise estimate

|∇(ρΓ ◦ γ)(x)| = |∇(ρΓ) (γ(x)) ||∇γ(x)| ≤ c

dist (γ(x),Γ)
|∇γ(x)| . (IV.32)

Next we observe the finiteness of the integral

C =

∫

G

1

dist(ζ,Γ)
dµGΓ < ∞ ,

independent of the point ζ ∈ SO(3). To verify this, we note that µG(G) < ∞ and choose a smooth
coordinate chart for SO(3) near ζ that maps ζ to 0 ∈ R3 and that transforms circles into affine lines in
R3. Distances are comparable, and an affine line in R3 \ {0} is described by its nearest point a to the
origin and a direction in the plane a⊥. Since

µG{Γ ∈ G : ζ ∈ Γ} = 0 ,

the finiteness of C now follows from the finiteness of the 3 dimensional integral

∫

R3∩B1

|y|−1 dy .

We deduce from Fubini’s Theorem, (IV.31), and (IV.32) that

∫

G

∫

Γ⊥

H1(ρΓ ◦ γ)−1{z} dz dµGΓ ≤ c

∫

Σ

|∇γ(x)|
∫

G

1

dist (γ(x),Γ)
dµGΓ dH2x

≤ cC

∫

Σ

|∇γ(x)| dH2x .

Thus there exists a Γ ∈ G and z ∈ Γ⊥ so that

H1(ρΓ ◦ γ)−1{z} ≤ c

∫

Σ

|∇γ(x)| dH2x . (IV.33)

To estimate the righthand side, recall the matrix formula

γ = [σ1σ2σ3]
−1

[τ̃1τ̃2τ̃3] .

and use Cramer’s rule and the product and quotient rules to deduce the pointwise bound

|∇γ(x)| ≤ c

3
∑

j=1

( |∇σj(x)| + |∇τ̃j(x)| ) . (IV.34)
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In light of (IV.29), it remains to bound each term
∫

Σ
|∇σj(x)| dH2x for j = 1, 2, 3.

For the first one, note that

|∇σ1| = |∇
(

vN

|vN |

)

| ≤ 2
|∇vN |
|vN | (IV.35)

where vN (x) is the orthogonal projection of v onto the normal space Nor(Σ, x) for each x ∈ Σ. The
formula

vN =

3
∑

j=1

(v · τ̃j)τ̃j

and the product rule give the pointwise estimate for the numerator,

|∇vN | ≤ c

3
∑

j=1

|∇τ̃j | , (IV.36)

independent of the choice of v ∈ S4.
To estimate the denominator, we let vL denote the orthogonal projection of v to any fixed 3 dimensional

subspace L of R5, and observe the finiteness

C1 =

∫

S4

1

|vL| dH
4v < ∞ ,

independent of L. To verify this, we note that the projection of S4 to L vanishes along a great circle, and,
near any point of this circle, the projection is bilipschitz equivalent to an orthogonal projection of R4 to
R3. So the finiteness of C1 again follows from the finiteness of the 3 dimensional integral

∫

R3∩B1

|y|−1 dy.

By Fubini’s Theorem, (IV.35), (IV.36), and (IV.29),
∫

S4

∫

Σ

|∇σ1(x)| dH2x dH4v ≤ 2

∫

Σ

|∇vN (x)|
∫

S4

1

|vN (x)| dH
4v dH2x

≤ 2C1

∫

Σ

|∇vN (x)| dH2x

≤ c
3
∑

j=1

∫

Σ

|∇τ̃j(x)| dH2x

≤ c

∫

B5

|∇2u|2 dx .

So there exists a v ∈ S4 giving the σ1 estimate
∫

Σ

|∇σ1(x)| dH2x ≤ c

∫

B5

|∇2u|2 dx . (IV.37)

Next we observe that σ2 = w2

|w2|
where w2(x) is the orthogonal projection onto the 2 dimensional

subspace Nor(Σ, x) ∩ σ⊥
1 . We again find

|∇σ2| = |∇
(

w2

|w2|

)

| ≤ 2
|∇w2|
|w2|

. (IV.38)

Now the formula

w2 =





3
∑

j=1

(w · τ̃j)τ̃j



 − (w · σ1)σ1 ,
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and the product rule give the pointwise estimate for the numerator,

|∇w2| ≤ c



|∇σ1| +
3
∑

j=1

|∇τ̃j |



 , (IV.39)

independent of the choice w ∈ S4.
To estimate the denominator, we let wM denote the orthogonal projection of w to any fixed 2 dimen-

sional subspace M of the hyperplane v⊥ = σ⊥
1 , and observe the finiteness of the integral

C2 =

∫

S4∩v⊥

1

|wM | dH
3w < ∞ ,

independent of the choices of v or M . To verify this, we note that the projection of the 3 sphere S4 ∩ v⊥

to M vanishes along a great circle, where it is now bilipschitz equivalent to an orthogonal projection
of R3 to R2. So the finiteness of C2 this time follows from the finiteness of the 2 dimensional integral
∫

R2∩B1

|y|−1 dy.

By Fubini’s Theorem, (IV.29), (IV.36), (IV.37), (IV.38) and (IV.39),
∫

S4∩v⊥

∫

Σ

|∇σ2(x)| dH2x dH3w ≤ 2

∫

Σ

|∇w2(x)|
∫

S4∩v⊥

1

|w2(x)|
dH3w dH2x

≤ 2C2

∫

Σ

|∇w2(x)| dH2x

≤ c

∫

Σ



|∇σ1(x)| +

3
∑

j=1

|∇τ̃j(x)|



 dH2x

≤ c

∫

B5

|∇2u|2 dx .

So there exists a w ∈ S4 ∩ v⊥ giving the σ2 estimate
∫

Σ

|∇σ2(x)| dH2x ≤ c

∫

B5

|∇2u|2 dx . (IV.40)

Finally we may use the product rule and the formula

σ3 = [(σ1 · τ̃2)(σ2 · τ̃3)− (σ1 · τ̃3)(σ2 · τ̃2)] τ̃1

+ [(σ1 · τ̃3)(σ2 · τ̃1)− (σ1 · τ̃1)(σ2 · τ̃3)] τ̃2

+ [(σ1 · τ̃1)(σ2 · τ̃2)− (σ1 · τ̃2)(σ2 · τ̃1)] τ̃3
along with (IV.29), (IV.37), and (IV.40) to obtain the σ3 estimate

∫

Σ

|∇σ3(x)| dH2x ≤ c

∫

B5

|∇2u|2 dx . (IV.41)

Now we may combine (IV.33), (IV.34), (IV.29), (IV.37), (IV.40), and (IV.41) to obtain the desired
length estimate

H1(A) = H1(ρΓ ◦ γ)−1{z} ≤ c

∫

B5

|∇2u|2 dx . (IV.42)
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IV.8 Connecting the Singularities bj to bj′

.
Although we now have a good description and length estimate for A, we are not done. The problem

is that the set ClosA does not necessarily connect each of the original singularities ai to another ai′ or to
∂B5. The path in ClosA starting at ai may end at some bj . To complete the connections between pairs
of ai, it will be sufficient to find a different union B of curves which connect each frame singularity bj to
∂B5 or to another unique frame singularity bj′ . Then adding to ClosA some components of B will give
the desired curves connecting every ai to a distinct ai′ or to ∂B5. In this section we will use the map
Φ from §IV.4 to construct this additional connecting set B, and we will, in §IV.9, obtain the required
estimate on the length of B.

First we recall the description in [MS] of G̃2(R
5) as a 2 sheeted cover of the Grassmannian of unoriented

2 planes in R5. With Q ∈ G̃2(R
5) chosen as before in §IV.3, consider the 5 dimensional Schubert cycle

SQ = {P ∈ G̃2(R
5) : dim

(

P ∩Q⊥
)

≥ 1}

and the 4 dimensional subcycle

TQ = {P ∈ G̃2(R
5) : dim

(

P ∩Q⊥
)

≥ 2} = {P ∈ G̃2(R
5) : P ⊂ Q⊥} .

As in [MS], we see that SQ \ TQ is a smooth embedded open 5 dimensional submanifold of G̃2(R
5) and

that G̃2(R
5) \ SQ consists of two open 6 dimensional antipodal cells, D+ centered at Q and D− centered

at −Q.
Next we will carefully define a (nearest-point) retraction map

ΠQ : G̃2(R
5) \ {Q,−Q} → SQ .

For P ∈ D+ \{Q}, there is a unique vector v ∈ P ∩S4 which is at maximal distance in P ∩S4 from Q∩S4

and a unique vector w in Q ∩ S4 that is closest to v; in particular, 0 < w · v < 1. Choose AP ∈ so(5)
so that the corresponding rotation expAP ∈ SO(5) maps w to v and maps w̃ to ṽ where P = v ∧ ṽ and
Q = w ∧ w̃. Thus expAP maps Q to P , preserving orientation. Here (exp tAP )(w) defines a geodesic
circle in S4, and

tP ≡ inf{t > 0 : w · (exp tAP )(w) = 0 } > 1 .

Then (exp 2tpAP )(w) = −w and exp 4tpAP = id. It follows that, in G̃2(R
5), as t increases,

(exp tAP )(Q) ∈ D+ for 0 ≤ tP and (exp tAP )(Q) ∈ D− for tP < t ≤ 2tP ,

(exp 0AP )(Q) = Q, (expAP )(Q) = P, (exp tpAP )(Q) ∈ SQ, (exp 2tpAP )(Q) = −Q ,

and we let ΠQ(P ) = (exp tpAP )(Q).
As P approaches ∂D+ = SQ, tP ↓ 1 and |ΠQ(P )− P | → 0. Thus, let

ΠQ(P ) = P for P ∈ SQ .

Also, let
ΠQ(P ) = −ΠQ(−P ) for P ∈ D− \ {−Q} .

Next recall that the small tubular neighborhood V of the 4 dimensional subgrassmannian G̃2({0}×R4)
was well-separated from Q. It follows that ΠQ(V ) is in a small neighborhood of the 4 dimensional cycle

ΠQ

(

G̃2({0} × R4)
)

. In particular, the 5 dimensional measure of ΠQ(V ) is small, and one easily finds

P ∈ SQ \ΠQ(V ) so that p /∈ ΠQ(W ).
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For P ∈ SQ \TQ, the intersection P ∩Q⊥∩S4 consists of 2 antipodal points in P ∩S4 that are uniquely
of maximal distance from Q ∩ S4, and one sees that

ClosΠ−1
Q {P}

contains a single semi-circular geodesic arc joining Q and −Q. For almost all P ∈ SQ\TQ, this semi-circle
meets transversely both Y , and, near ±Q, each small surface

Φ ( [Σ ∩ Bδ(bj)]× {ej}) .

We will choose P ∈ SQ \ TQ also to be a regular value of ΠQ ◦ Φ. Since, near P , SQ is is a smooth
transverse (in fact, orthogonal) to Π−1

Q {P}, we find, using IV.4, that the set

(ΠQ ◦ Φ)−1 {P} = Φ−1(Π−1
Q {P})

is an embedded 1 dimensional submanifold, containing {(b1,±e1), . . . , (bm,±em)}. In small neighbor-
hoods of any two points (bj , ej), (bj ,−ej) the set Clos (ΠQ ◦ Φ)−1{P} consists of two smooth segments
(antipodal in the S4 factor) which both project, under the projection

pΣ : Σ× S
4 → Σ ,

onto a single segment in Σ which contains bj . Continuing these two antipodal segments one direction in
(ΠQ ◦ Φ)−1{P} gives antipodal paths whose final endpoints are (bj′ , ej′), (bj′ ,−ej′) for some j′ distinct
from j. Here

ej′ ∧ ej′Σ = Φ(bj′ ,±ej′) = −Φ (bj ,±ej) = −ej ∧ ejΣ .

Composing either antipodal path with the projection pΣ gives the same path connecting bj and bj′ .
Similarlly, by continuing in the other direction and projecting gives Thus the whole set

B = pΣ
[

(ΠQ ◦ Φ)−1{P}
]

provides the desired connection in Σ.
Also note that these two paths upstairs have similar orientations induced as fibers of the map ΠQ ◦Φ.

That is, in the notation of slicing currents [Fe], §4.3,

pΣ#

〈

[[Σ× S
4]] , ΠQ ◦ Φ , Q

〉

= 2(H2 B) ∧ ~B , (IV.43)

where ~B is a unit tangent vectorfield along B (in the direction running from bj to bj′).

IV.9 Estimating the Length of the Connecting Set B

.
The definition of B depends on the choices of:
(1) the point p ∈ S3 near {0} × R4 which gives the surface Σ = u−1{p} and the map

Φ : (Σ× S
4) \ NΣ → G̃2(R

5) , Φ(x, e) = e ∧ eΣ(x) ,

(2) the 2 plane Q ∈ G̃2(R
5) near H which determines the retraction ΠQ of G̃2(R

5) \ {Q,−Q} onto
the 5 dimensional Schubert cycle SQ, and

(3) the 2 plane P ∈ SQ \ ΠQ(V ) which gives B = pΣ
[

(ΠQ ◦ Φ)−1{P}
]

. Having chosen p ∈ S3 as

before to obtain estimate (IV.29), we need to chose Q and P to get the desired length estimate for B.
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Concerning Q, we first readily verify that the retraction ΠQ is locally Lipschitz in G̃2(R
5) \ {Q,−Q}

and deduce the estimate

|∇ΠQ(S)| ≤ c

|S −Q||S +Q| for S ∈ G̃2(R
5) \ {Q,−Q} . (IV.44)

Using (IV.43) and [Fe], 4.3.1, we may integrate the slices to find that

∫

SQ\ΠQ(V )

pΣ#〈 [[Σ× S
4]],ΠQ ◦ Φ, P 〉 dH5P ≤ pΣ#

∫

SQ

〈 [[Σ× S
4]],ΠQ ◦ Φ, P 〉 dH5P

= pΣ#

(

[[Σ× S
4]] (ΠQ ◦ Φ)#ωSQ

)

,

where ωSQ is the volume element of SQ. By (IV.43) and Fatou’s Lemma,

∫

SQ

2H1
(

pΣ[(ΠQ ◦ Φ)−1{P}]
)

dH5P =

∫

SQ

M[pΣ#〈[[Σ× S
4]],ΠQ ◦ Φ, P 〉]dH5P

≤ M
[

pΣ#

(

[[Σ× S
4]] (ΠQ ◦ Φ)#ωSQ

)]

= sup
α∈D1(Σ),|α|≤1

∫

Σ

∫

S4
(ΠQ ◦ Φ)#ωSQ ∧ p#Σα .

(IV.45)

To estimate this last double integral, we recall from §IV.3 that, for each fixed x ∈ Σ \ {a1, . . . , am},

Φ(x, ·) : S
4 \Nor(Σ, x) → Qx ≡ QTan(Σ,x) \ Yx

is a the smooth, orientation-preserving, 2-sheeted cover map. Each map Φ(x, ·) depends only on Tan(Σ, x),
and any two such maps are orthogonally conjugate. We will derive the formula

[

(ΠQ ◦ Φ)#ωSQ ∧ p#Σα
]

(x, ·) = β(x, ·)p#ΣωΣ(x) ∧ Φ(x, ·)#ωQx (IV.46)

where ωΣ and ωQx denote the volume elements of Σ and Qx and β(x, ·) is a smooth function on S4 \
Nor(Σ, x) satisfying

|β(x, e)| ≤ c

|Φ(x, e)−Q|5|Φ(x, e) +Q|5
3
∑

j=1

|∇τ̃j(x)| for e ∈ S
4 . (IV.47)

Before proving (IV.46), note that the decomposition on the righthand side is not necessarily smooth in
x since the different Qx may overlap for x near a critical point of Φ(·, e) for some e ∈ S4. Nevertheless,
the formula does imply the measurability of β(x, e) in x, and so may be integrated over Σ.

To derive (IV.46), we first note that, with the factorization Σ × S4, there are only two terms in the
(p, q) decomposition of the 5 form,

(ΠQ ◦ Φ)#ωSQ = Ω2,3 + Ω1,4 .

Thus,
(ΠQ ◦ Φ)#ωSQ ∧ p#Σα = 0 + Ω1,4 ∧ p#Σα (IV.48)

because the term Ω2,3 ∧ p#Σα, being of type (2 + 1, 3), must vanish.
For each S = Φ(x,±e) ∈ Qx \ Yx, we also have the factorization

Tan(G̃2(R
5), S) = Nor(Qx, S) × Tan(Qx, S) .
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Let µ1, µ2, µ3, µ4, ν1, ν2 be an orthonormal basis of ∧1Tan(G̃2(R
5), S) so that

µ1, µ2, µ3, µ4 ∈ ∧1Tan(Qx, S) , ν1, ν2 ∈ ∧1Nor(Qx, S) , µ1 ∧ µ2 ∧ µ3 ∧ µ4 = ωQx(S) ;

thus, 0 = ν1(v) = ν2(v) = µ1(w) = µ2(w) = µ3(w) = µ4(w) whenever v ∈ Tan(Qx, S) and w ∈
Nor(Qx, S). We may expand the 5 covector

Π#
Q(ωSQ)(S) = λ1 ν2 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 + λ2 ν1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 + λ3 ν1 ∧ ν2 ∧ µ2 ∧ µ3 ∧ µ4

+λ4 ν1 ∧ ν2 ∧ µ1 ∧ µ3 ∧ µ4 + λ5 ν1 ∧ ν2 ∧ µ1 ∧ µ2 ∧ µ4 + λ6 ν1 ∧ ν2 ∧ µ1 ∧ µ2 ∧ µ3

where
|λi| ≤

c

|S −Q|5|S +Q|5 , (IV.49)

by (IV.44). Applying Φ# (that is, ∧1DΦ(x, e) ) to all covectors and taking the (1, 4) component, we find
that only the first two terms survive so that

Ω1,4(x, e) =
[

λ1Φ
#ν2 + λ2Φ

#ν1
]

(1,0)
∧ Φ#µ1 ∧Φ#µ2 ∧Φ#µ3 ∧ Φ#µ4

=
[

λ1Φ
#ν2 + λ2Φ

#ν1
]

(1,0)
∧ Φ(x, ·)#ωQx(S) .

(IV.50)

Being of type (2, 0), the 2 covector
(

[

λ1Φ
#ν2 + λ2Φ

#ν1
]

1,0
∧ p#Σα

)

(x, e) = β(x, e)p#ΣωΣ(x) (IV.51)

for some scalar β(x, e), and (IV.48), (IV.50), and (IV.51) now give the desired formula (IV.46). This
formula readily implies the smoothness of β(x, ·) on S4 \Nor(Σ, x).

To verify the bound (IV.47), observe that

|
[

Φ#νi
]

1,0
| = sup

v∈S4∩Tan(Σ,x)

νi[∇vΦ(x, e)] , (IV.52)

where ∇vΦ(x, e) = DΦ(x,e)(v, 0) ∈ Tan(G̃2(R
5), S). For any unit vector v ∈ Tan(Σ, x) and any w ∈ R5,

v ∧ w ∈ Tan(Qx, S)

because we may assume w /∈ Tan(Σ, x) and then choose a curve y(t) in S4 ∩ v⊥ \Nor(Σ, x) with y′(0) =
w − (w · v)v, hence,

v ∧ w = v ∧ y′(0) =
d

dt t=0
(v ∧ y(t)) = − d

dt t=0
Φ (x, y(t)) .

Thus, for any 2 vector ξ ∈ Nor(Qx, S), |ξ| = |ξ ∧ v|; in particular, |ξ| = |ξ ∧ ẽT (x)|, |ξ| = |ξ ∧ eΣ(x)|,
and hence,

|ξ| = | ξ ∧ (ẽT (x) ∧ eΣ(x)) | .
Since νi ∈ ∧1Nor(Qx, S) and |νi| = 1, we now find that

νi[∇vΦ(x, e)] = νi

[

(∇vΦ(x, e))Nor(Σ,x)

]

≤ |∇vΦ(x, e) ∧ (ẽT (x) ∧ eΣ(x)) | . (IV.53)

Moreover,

| ∇vΦ ∧ (ẽT ∧ eΣ)| ≤ | (∇v(e ∧ eΣ)) ∧ (ẽT ∧ eΣ)| ≤ | (∇veΣ) ∧ (ẽT ∧ eΣ)|

= | eΣ ∧ ∇v(ẽT ∧ eΣ)| ≤ |∇v(ẽT ∧ eΣ)|

= | ∇v (∗( τ̃1 ∧ τ̃2 ∧ τ̃3)) | ≤ c
∑3

j=1 |∇τ̃j | ,

(IV.54)
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where ∗ is the Hodge ∗ : ∧3R
5 → ∧2R

5 ≈ R5 [F,1.7.8]) The desired pointwise bound (IV.47) now follows
by combining (IV.49), (IV.51), (IV.52), (IV.53) and (IV.54).

For each x ∈ Σ, the pull-back Φ(x, ·)#ωQx is point-wise a positive multiple of the volume form of S4.
So we may first integrate over S4 and use (IV.47) to see that

∫

S4
β(x, ·)Φ(x, ·)#ωQx ≤

∫

S4
|β(x, ·)|Φ(x, ·)#ωQx

≤ c





3
∑

j=1

|∇τ̃j(x)|





∫

S4

Φ(x, ·)#ωQx

|Φ(x, ·) −Q|5|Φ(x, ·) +Q|5

= c





3
∑

j=1

|∇τ̃j(x)|





∫

Qx

ωQx(S)

|S −Q|5|S +Q|5

≤ c





3
∑

j=1

|∇τ̃j(x)|





∫

Qx

dH4S

|S −Q|5|S +Q|5 .

(IV.55)

To handle the denominator, we note that the Grassmannian G̃2(R
5) is a 6 dimensional homogeneous

space, and we readily use local coordinates to verify that

C3 =

∫

G̃2(R5)

1

|S −Q|5|S +Q|5 dH6Q < ∞ , (IV.56)

independent of S.
Now we recall (IV.45) and fix a sequence of 1 forms αi ∈ D1(Σ) with |αi| ≤ 1 so that

M
[

pΣ#

(

[[Σ× S
4]] (ΠQ ◦ Φ)#ωSQ

)]

= lim
i→∞

∫

Σ

∫

S4
(ΠQ ◦ Φ)#ωSQ ∧ p#Σαi ,

let βi be the corresponding function from the formula (IV.46), and use (IV.45), Fatou’s Lemma, (IV.46),
(IV.55), Fubini’s Theorem, (IV.56), and (IV.29) to obtain our final integral estimate

∫

G̃2(R5)

∫

SQ

2H1
(

pΣ[(ΠQ ◦ Φ)−1{P}]
)

dH5P dH6Q

≤
∫

G̃2(R5)

lim
i→∞

∫

Σ

∫

S4
(ΠQ ◦ Φ)#ωSQ\ΠQ(V ) ∧ p#Σαi

≤ lim inf
i→∞

∫

G̃2(R5)

∫

Σ

∫

S4
βi(x, ·)ωΣ(x) ∧ Φ(x, ·)#ωQx

≤ c

∫

Σ





3
∑

j=1

|∇τ̃j(x)|





∫

Qx

∫

G̃2(R5)

1

|S −Q|5|S +Q|5 dH6Q dH4S dH2x

≤ cC3

3
∑

j=1

∫

Σ

|∇τ̃j(x)| dH2x ≤ c

∫

B5

|∇2u|2 dx .

The Schubert cycles SQ are all orthogonally equivalent and have the same positive 5 dimensional Hausdorff

measure. So we can use the final integral inequality to choose first a 2 plane Q ∈ G̃2(R
5) and then a 2

plane P ∈ SQ so that the corresponding connecting set

B = pΣ[(ΠQ ◦ Φ)−1{P}]
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satisfies the desired length estimate

H1(B) ≤ c

∫

B5

|∇2u|2 dx .

Theorem IV.2 (Length Bound) For any u ∈ R, Singu has a Z2 connection Γ satisfying

H1(Γ) ≤ c

∫

B5

|∇2u|2 dx ,

for some absolute constant c.

Proof. To form the connection Γ, one takes the union of the curves from A and B. The behavior of the
individual curves near the points ai and bj has been discussed in subsection IV.5. The set A ∪ B will
pass through each point bj , likely having a corner at bj. One easily replaces the corner with an embedded
smooth curve near bj. Also the curves contributing to A and B may cross. In B5, it is easy to perturb the
curves to eliminate such crossings. The result is the desired Z2 connection Γ. (Alternately one can observe
that A ∪B already defines a one dimensional integer multiplicity chain modulo 2 (see [Fe][4.2.26] which
has boundary

∑m
i=1 [[ai]] relative to ∂B5. As mentioned before, the minimal (mass-minimizing) connection

will automatcally consist of non-overlapping intervals. Those that reach ∂B5 meet it orthogonally.

V Sequential Weak Density of W 2,2(B5, S3)

We are now ready to prove:

Theorem V.3 Any map v in W 2,2(B5, S3) may be approximated in the W 2,2 weak topology by a sequence
of smooth maps.

Proof. First we may, by Lemma III.2, chose, for each positive integer i, a map ui ∈ R so that ‖ui −
v‖W 2,2 < 1

i ; in particular,

‖ui − v‖L2 <
1

i
and I = sup

i

∫

B5

|∇2ui|2 dx < ∞ .

Applying Lemma III.1 to each ui, we note that, as ε → 0, the smooth approximates ui,ε approach ui

pointwise on B5 \Sing ui. Inasmuch as the ui,ε are pointwise bounded (by 1), Lebesgue’s theorem implies

‖ui,ε − ui‖L2 → 0 as ε → 0 .

Thus we can choose a positive εi, so that the smooth map wi = ui,εi has ‖wi − ui‖L2 < 1
i ; in particular,

‖wi − v‖L2 < 2
i , and the smooth maps wi converge to v strongly in L2.

On the other hand, by Lemma II.1 , Lemma III.1, Theorem IV.2, and (V),

sup
i

‖wi‖2W 2,2 < 2cm(1 + I) < ∞ .

By the weak*(=weak) compactness of the closed ball in W 2,2(B5,Rℓ), the sequence wi contains a sube-
quence wi′ that is W

2,2 weakly convergent to some w ∈ W 2,2(B5,Rℓ). But, w, being by Rellich’s theorem,
the strong L2 limit of the wi′ , must necessarily be the original map v.
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V.1 Least Connection Length L(v)

By Lemma III.2, one may now define, for any Sobolev map v ∈ W 2,2(B5, S3), the nonnegative number

L(v) = lim
ε→0

inf{H1(Γ) : Γ is a Z2 connection for Sing u for some u ∈ R with ‖u− v‖W 2,2 < ε} .

Any u ∈ R has a minimal Z2 connection, and L(u) is its length. In general:

Theorem V.4 For any v ∈ W 2,2(B5, S3), L(v) = 0 ⇐⇒ v is the W 2,2 strong limit of smooth maps.

Proof. The sufficiency is immediate from the definition of L(v). To prove the necessity, we assume
L(v) = 0. Then we may choose, for each i, a map ui ∈ R along with a Z2 connection Γi of Sing ui so
that ‖ui − v‖W 2,2 < 1/i and H1(Γi) < 1/i. As in the previous proof, there is an εi < 1/i so that the
smooth maps wi = ui,εi converge strongly in L2 and weakly in W 2,2 to v. The lower-semicontinuity

∫

B5

|∇2v|2 dx ≤ lim inf
i→∞

∫

B5

|∇2wi|2 dx

follows. On the other hand, we have from Theorem III.1 the inequality
∫

B5

|∇2wi|2 dx −
∫

B5

|∇2ui|2 dx ≤ 1

i
+

cSH
i

.

as well as, from Lemma III.2, the W 2,2 strong convergence

lim
i→∞

∫

B5

|∇2ui|2 dx =

∫

B5

|∇2v|2 dx ,

which together imply the upper semi-continuity
∫

B5

|∇2v|2 dx ≥ lim sup
i→∞

∫

B5

|∇2wi|2 dx.

The convergence of the total Hessian energies of the wi to that of v, along with theW 2,2 weak convergence,
now implies the W 2,2 strong convergence of the smooth maps wi to v.
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[GMS2] M. Giaquinta, G. Modica, and J. Souček. “Cartesian Currents in the Calculus of Variations I,
II”. Ergebnisse der Mathematik und ihrer Grenzgebiete. A Series of Modern Surveys in Mathematics,
37, 38. Springer, Berlin–Heidelberg, 1998.

[Ha] F. Hang. “On the weak limits of smooth maps for the Dirichlet energy between manifolds”. Comm.
Anal. Geom., 13 (2005), no. 5, 929–938.

[HaL1] F. Hang and F.H. Lin. “Topology of Sobolev mappings”. Math. Res. Lett. 8 (2001), no. 3, 321–330.

[HaL2] F. Hang and F.H. Lin. “Topology of Sobolev mappings”. II. Acta Math. 191 (2003), no. 1, 55107.

[HL] R. Hardt and F.H. Lin. “A remark on H1 mappings”. Manuscripta Math. 56 (1986), no. 1, 1–10.

[HR] R. Hardt and T. Rivière. “Connecting topological Hopf singularities”, Ann. Sc. Norm. Super. Pisa
Cl. Sci. (5)2 (2003), no. 2, 287–344.

[Hj] P. Hajlasz. “Approximation of Sobolev mappings”. Nonlinear Anal. 22 (1994), no. 12, 1579–1591.

[MS] J. Milnor and J. Stasheff. “Characteristic Classes” Princeton University Press, 1974.

[MR] T. Rivière and Y. Meyer. “Partial Regularity for a class of stationary Yang-Mills Fields”, Rev.
Math. Iberoamericana, 19(2003), 195–219.

[Pa] M.R. Pakzad ”Weak density of smooth maps in W 1,1(M,N) for non-abelian π1(N)”. Ann. Global
Anal. Geom. 23 (2003), no. 1, 112.

[PR] M. R. Pakzad and T. Rivière. “Weak density of smooth maps for the Dirichlet energy between
manifolds”. Geom. Funct. Anal. 13 (2003), no. 1, 223–257.

[Ri] T. Rivière, ”Sobolev critical exponents of rational homotopy groups.” Pure Appl. Math. Q. 3 (2007),
no. 2, Special Issue: In honor of Leon Simon. Part 1, 615630.

[SU] R. Schoen and K. Uhlenbeck.“Approximation theorems for Sobolev mappings”, Preprint (1984).

[W] B. White. “Homotopy classes in Sobolev spaces and the existence of energy minimizing maps”. Acta.
Math., 160 (1988), 1–17.

35


