Sequential Weak Approximation for Maps of Finite Hessian Energy

Robert Hardt*and Tristan Rivière[†]

May 31, 2013

Abstract : Consider the space $W^{2,2}(\Omega; N)$ of second order Sobolev mappings v from a smooth domain $\Omega \subset \mathbb{R}^m$ to a compact Riemannian manifold N whose Hessian energy $\int_{\Omega} |\nabla^2 v|^2 dx$ is finite. Here we are interested in relations between the topology of N and the $W^{2,2}$ strong or weak approximability of a $W^{2,2}$ map by a sequence of smooth maps from Ω to N. We treat in detail $W^{2,2}(\mathbb{B}^5,\mathbb{S}^3)$ where we establish the <u>sequential weak</u> $W^{2,2}$ density of $W^{2,2}(\mathbb{B}^5,\mathbb{S}^3) \cap \mathbb{C}^\infty$. The strong $W^{2,2}$ approximability of higher order Sobolev maps has been studied in the recent preprint [BPV] of P. Bousquet, A. Ponce, and J. Van Schaftigen. For an individual map $v \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$, we define a number L(v) which is approximately the total length required to connect the isolated singularities of a strong approximation u of v either to each other or to $\partial \mathbb{B}^5$. Then L(v) = 0 if and only if v admits $W^{2,2}$ strongly approximable by smooth maps. Our critical result, obtained by constructing specific curves connecting the singularities of u, is the bound $L(u) \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 dx$. This allows us to construct, for the given Sobolev map $v \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$, the desired $W^{2,2}$ weakly approximating sequence of smooth maps. To find suitable connecting curves for u, one uses the twisting of a u pull-back normal framing of a suitable level surface of u.

Math. Class. 58D15, 46E35, 49Q99.

Contents

Ι	Introduction			
	I.1	Strong Approximation		
	I.2	Sequential Weak Approximation		
	I.3	Topological Singularity and Bubbling		
	I.4	$W^{2,2}(\mathbb{B}^5,\mathbb{S}^3)$		
	I.5	Connection Length		
II 11	Pre	liminaries		
III A Strongly Dense Family with Isolated Singularities				
	111.1	Strong Approximation by Maps in \mathcal{K}		
	III.2	2 Insertion of an SH Bubble into a Map from \mathbb{B}^4 to \mathbb{S}^3		
	III.3	3 Singularity Cancellation of a Map in \mathcal{R}		

*Department of Mathematics, Rice University, Houston, TX 77251, USA. Research partially supported by the NSF. [†]Forschungsinstitut für Mathematik, ETH Zentrum, CH-8093 Zürich, Switzerland.

IV	Connecting Singularities with Controlled Length	16
	IV.1 Estimates for Choosing the Level Surface $\Sigma = u^{-1}\{p\}$	17
	IV.2 A Pull-back Normal Framing for $\Sigma = u^{-1}\{p\}$	17
	IV.3 Twisting of the Normal Frame $\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3$ About Each Singularity a_i	19
	IV.4 A Reference Normal Framing for $\Sigma = u^{-1}\{p\}$	20
	IV.5 Asymptotic Behavior of γ Near the Singularities a_i and b_j	22
	IV.6 Connecting the Singularities a_i to the b_j or to $\partial \mathbb{B}^5$	23
	IV.7 Estimating the Length of the Connecting Set A	24
	IV.8 Connecting the Singularities b_j to $b_{j'}$	28
	IV.9 Estimating the Length of the Connecting Set B	29
\mathbf{V}	Sequential Weak Density of $W^{2,2}(\mathbb{B}^5,\mathbb{S}^3)$	33
	V.1 Least Connection Length $L(v)$	34

I Introduction

To motivate our specific work on weak sequential approximability of $W^{2,2}$ maps from \mathbb{B}^5 to \mathbb{S}^3 , we will first describe briefly the background and general problems. Let (N, g) be a compact Riemannian manifold. Via the Nash embedding theorem, one may assume that N is a submanifold of some Euclidian space \mathbb{R}^{ℓ} and that the metric g is induced by this inclusion. One then has, for any open subset Ω of \mathbb{R}^m , $k \in \mathbb{N}$, and p > 1, the nonlinear space of kth order, Sobolev maps

$$W^{k,p}(\Omega, N) = \{ u \in W^{k,p}(\Omega, \mathbb{R}^{\ell}) : u(x) \in N \text{ for almost every } \mathbf{x} \in \Omega \},\$$

where $W^{k,p}(\Omega, \mathbb{R}^{\ell})$ denotes the Banach space of \mathbb{R}^{ℓ} -valued, order k, Sobolev functions on Ω with norm $\|u\|_{W^{k,p}} = \left[\sum_{j=0}^{k} \left(\int_{\Omega} |\nabla^{j}u|^{p} dx\right)^{2/p}\right]^{1/2}$.

I.1 Strong Approximation

A basic question concerning the spaces $W^{k,p}(\Omega, N)$ is the approximability of these maps by a sequence of smooth maps of Ω into N. The issue involves the possible discontinuities in a Sobolev map because any continuous Sobolev map may be approximated strongly in the Sobolev norm. In fact, here ordinary smoothing [A] gives both uniform and $W^{2,2}$ strong approximation by an \mathbb{R}^{ℓ} -valued smooth Sobolev function whose image lies in a small neighborhood of N; then composing this with the nearest-point projection to N gives the desired smooth strong approximation with image in N. It was first observed in [SU] that for n = 2, a $W^{1,2}$ map (which may fail to have a continuous representative) admits strong $W^{1,2}$ approximation by smooth $W^{1,2}$ maps into N. However for n = 3, [SU] also showed that the specific singular Sobolev map $x/|x| \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ is not strongly approximable in $W^{1,2}$ by smooth maps from \mathbb{B}^3 to \mathbb{S}^2 . For first order Sobolev maps, the general problem of strong $W^{1,p}$ approximability was treated by F. Bethuel in [Be2], which (with [BZ]) shows that:

$$W^{1,p}(\mathbb{B}^m, N)$$
 is the sequential strong $W^{1,p}$ closure of $\mathcal{C}^{\infty}(\mathbb{B}^m, N) \iff \Pi_{[p]}(N) = 0$

Here [p] is the greatest integer less than or equal to p. F. Hang and F. H. Lin, in [HaL1] and [HaL2], updated these results with some new proofs and corrections, which account for the role played by the topology of the domain in approximability questions. See [HaL2], Th.1.3 for the precise conditions on the domain. There are many other interesting works on strong approximability of first order Sobolev maps by smooth maps, e.g. [Be1], [BCL], [Hj], [BCDH], [BBC], [BZ]. Generalization of the strong approximability

results of [Be2], [HaL1], and [HaL2] to higher order Sobolev mappings has been treated by P. Bousquet, A. Ponce, and J. Van Schaftigen in [BPV] which (with [BZ]) shows that

 $W^{k,p}(\mathbb{B}^m, N)$ is the sequential strong $W^{k,p}$ closure of $\mathcal{C}^{\infty}(\mathbb{B}^m, N) \iff \Pi_{[kp]}(N) = 0$.

I.2 Sequential Weak Approximation

The space $W^{k,p}(\Omega, N)$ also inherits the *weak topology* from $W^{k,p}(\Omega, \mathbb{R}^{\ell})$. A Sobolev map in $W^{k,p}(\Omega, N)$ that is not $W^{k,p}$ strongly approximable by smooth maps may be $W^{k,p}$ weakly approximable by a sequence of smooth maps. For example, the map $x/|x| \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ is weakly approximable in $W^{1,2}$ by some sequence u_i of smooth maps. The well-known construction of such a u_i involves changing x/|x| in a thin cylindrical tunnel U of width 1/i extending from the origin (0,0,0) to a point on $\partial \mathbb{B}^3$. To prove the weak $W^{1,2}$ weak convergence of u_i to x/|x|, the key point of the construction is to keep the energies $\int_{\mathbb{R}^3} |\nabla u_i|^2 dx$ bounded independent of i.

To find an example of a map $v \in W^{1,p}(\mathbb{B}^m, N)$ which does not have a *weakly* approximating sequence of smooth maps, we need both p < m and $\Pi_{[p]}(N) \neq 0$. Then, *if* p *is not an integer*, we simply choose, as in [Be2], any map v which fails to have *strong* smooth approximations. Assuming for contradiction that this map v did admit some weak approximation by smooth maps v_i , then, for every point $a \in \mathbb{B}^m$, Fubini's theorem and Sobolev embedding (because p > [p]), would give *strong* convergence of the restrictions $v_i|\mathbb{S}_a$ to $v|\mathbb{S}_a$ for almost every [p] dimensional Euclidean sphere \mathbb{S}_a centered at a in \mathbb{B}^m . Then by the smoothness of v_i and by [W], the corresponding homotopy classes $[v|\mathbb{S}_a]$ would all vanish. But Bethuel showed in [Be1] that precisely this local vanishing homotopy condition on [p] spheres would imply that v *does* admit strong smooth approximation, a contradiction.

For integer p the following question is still open:

For any any compact manifold N, any integers k, $m \ge 1$ and any integer $p \ge 2$, is every Sobolev map $v \in W^{k,p}(\mathbb{B}^m, N)$ actually $W^{k,p}$ weakly approximable by a sequence of smooth maps?

This sequential weak density of smooth maps has been verified in the following cases:

(1) [BBC], [ABL] : $W^{1,p}(\mathbb{B}^m, \mathbb{S}^p)$.

(2) [Hj]: $W^{1,p}(\mathbb{B}^m, N)$ with N being simply p-1 connected (i.e. $\Pi_j(N) = 0$ for $0 \le j \le p-1$).

(3) [Pa]: $W^{1,1}(M, N)$ with M and N being arbitrary smooth manifolds with $\partial N = \emptyset$ (weak convergence has to be understood in a *biting* sense here)

(4) [PR]: $W^{1,2}(\mathbb{B}^m, N)$. (See also [Ha] concerning the role of the topology of M in $W^{1,2}(M, N)$.)

See also a presentation of these results in [Ri]. Another case is the main result of the present paper:

Theorem V. Any map in $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$ may be approximated in the $W^{2,2}$ weak topology by a sequence of smooth maps.

In §I.4 below, we will explain how we came to study maps from \mathbb{B}^5 to \mathbb{S}^3 and to look for $W^{2,2}$ estimates. But first we review a few of the ideas that were developed to study sequential weak convergence of smooth maps. The space $W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ was studied extensively in the late eighties and early nineties with many works, e.g. [HL], [BCL], [BZ], [BBC], [GMS1]. The concrete results of these many works has led to some analogous results and many conjectures for more general k, n, p, and N. To sequentially weakly approximate a map $v \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$, one first finds a $W^{1,2}$ strong approximation from the family $\mathcal{R}_0(\mathbb{B}^3, \mathbb{S}^2)$ of maps $u \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ which are smooth away from some finite set $\operatorname{Sing} u$ in particular, we may assume $\int_{\mathbb{B}^3} |\nabla u|^2 dx \leq 2 \int_{\mathbb{B}^3} |\nabla v|^2 dx$. Here the topology of u near a point $a \in \operatorname{Sing} v$ is given by the integer $d(a) = \operatorname{degree} [u|\partial \mathbb{B}_{\varepsilon}(a)]$, which is independent of a.e. small ε . Then to get the desired completely smooth weak approximate, it is necessary to essential cancel the singularities of u. One does this by finding a one-chain or "connection" Γ_u with $\partial \Gamma_u$ in \mathbb{B}^3 being $\sum_{a \in \operatorname{Sing} v} d(a)[[a]]$ and with the rest of $\partial \gamma_u$ lying in ∂B^3 . Then, as with the argument for x/|x|, one constructs smooth maps u_i by making changes in tunnels of radius 1/i centered along the connection. To keep the $|\nabla u_i|^2$ integrals bounded, one needs to find a bound for the total length of the connection Γ_u that depends only on v, and is independent of the approximating u. Here one may find a suitable connection by using the coarea formula. This gives a good level curve of u which connects the singularities to each other and to $\partial \mathbb{B}^3$ and which has length bounded by $\int_{\mathbb{R}^3} |\nabla u|^2 dx$, which has the independent bound $2 \int_{\mathbb{R}^3} |\nabla v|^2 dx$.

The first part of this argument, the strong $W^{1,2}$ approximation of an arbitrary Sobolev map $v \in W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$ by a map $u \in \mathcal{R}_0(\mathbb{B}^3, \mathbb{S}^2)$ has been generalized in [Be2] to all $W^{1,p}(\mathbb{B}^m, N)$ and recently in [BPV] to all $W^{k,p}(\mathbb{B}^m, N)$. Here one gets strong approximation by maps in $\mathcal{R}_{m-[p]-1}(\mathbb{B}^m, N)$ (respectively, $\mathcal{R}_{m-[kp]-1}(\mathbb{B}^m, N)$ which are smooth with singularities lying in finitely many affine planes of dimension m - [p] - 1 (respectively, m - [kp] - 1).

However, the second part involving canceling the singularities of u has proven very challenging for generalization. One roughly needs an m - [p] (respectively, m - [kp] - 1) dimensional connection which has mass bounded in terms of the energy of u and which the connects the singularity. Even with the connection, one still has to construct the bounded energy, smooth approximate.

I.3 Topological Singularity and Bubbling

In this supercritical dimension m > kp, we see that studying sequential $W^{k,p}$ weak smooth approximation in $W^{k,p}(\mathbb{B}^m, N)$ leads to questions about the relationship between the possible energy drop, $\int_{\mathbb{B}^m} |\nabla^k u|^p dx < \liminf_{i \to \infty} \int_{\mathbb{B}^m} |\nabla^k u_i|^p dx$, of a $W^{k,p}$ weakly convergent sequence $u_i \in W^{k,p}(\mathbb{B}^m, N) \cap \mathcal{C}^{\infty}$ and the possible singularities of its weakly convergent limit $u \in W^{k,p}(\mathbb{B}^m, N)$.

For $0 \neq \alpha \in \Pi_{kp}(N)$, we say a point $a \in \mathbb{B}^m$ is a type α topological singularity of a $W^{k,p}$ map u if there is an kp + 1 dimensional affine plane P containing a so the restrictions of u to a.e. small kp sphere $P \cap \partial \mathbb{B}_{\varepsilon}(a)$ induce (i.e. in the sense of [W]) the homotopy class α . Following the $W^{k,p}$ strong density of the partially smooth maps $\mathcal{R}_{m-kp-1}(\mathbb{B}^m, N)$ in $W^{k,p}(\mathbb{B}^m, N)$, one expects the topological singularities, with their types as coefficients, to form a chain S_u having dimension m - kp - 1 and having coefficients in the group $\Pi_{kp}(N)$. Recall the criterion of [Be1] that the vanishing of this "u topological singularity" chain(that is the vanishing of such homotopy classes for a.e. such restrictions at every $a \in \mathbb{B}^m$) is equivalent the $W^{k,p}$ strong approximability of u by smooth maps.

Also for $0 \neq \alpha \in \prod_{kp}(N)$, the restrictions of u_i to generic affine kp planes can, as $i \to \infty$ have $|\nabla^k|^p$ energy concentration at an isolated point b with an associated topological change corresponding to a type beta "bubble". Putting such points together with their bubble types as coefficients should give a

" u_i bubbled" chain B_{u_i} that has dimension m - kp, that has coefficient group $\Pi_{kp}(N)$, and that is carried by the $|\nabla^k(\cdot)|^p$ energy concentration set of the sequence.

Using these vague definitions, one has the vague general conjecture:

Relative to $\partial \mathbb{B}^m$, the boundary of the u_i bubbled chain B_{u_i} equals the *u* topological singularity chain S_u .

The vagueness here concerns the precise definition of chain and boundary operation, and how one precisely obtains the bubbled chain B_{u_i} from the sequence u_i and the topological singular chain S_u from u. From the cases we know, it is clear there is no single answer; it depends on the Sobolev space $W^{k,p}(\mathbb{B}^m, N)$, in particular the group $\prod_{kp}(N)$.

In the special case $W^{1,2}(\mathbb{B}^3, \mathbb{S}^2)$, the relevant homotopy group is $\Pi_2(\mathbb{S}^2) \simeq \mathbb{Z}$, and [BBC] and [GMS1] show that this 1 chain is precisely an integer-multiplicity 1 dimensional rectifiable current of finite mass (but possibly infinite boundary mass). The special case was essentially generalized to k = 1, $N = \mathbb{S}^p$ in [GMS2] and [ABO]. Here, the bubbled chain, now of dimension m - p, is again a rectifiable current.

The paper [HR1] treated $W^{1,3}(\mathbb{B}^3, \mathbb{S}^2)$. The relevant homotopy group is $\Pi_3(\mathbb{S}^2)$, which is again isomorphic to \mathbb{Z} . Here the bubbled 1 chain was shown to be possibly of infinite mass, and the notion of a "scan" was invented to describe precisely compactness and boundary properties. The paper [HR2] has able to handle bubbling in weak limits of smooth maps that corresponds to *any* nonzero homotopy class in the infinite nontorsion part of $\Pi_p(N)$. In this situation, the homotopy class of a map w on the sphere \mathbb{S}^{m-1} can again be described using a differential m-1 form Φ_w on \mathbb{S}^{m-1} . The form is derived by a special algebro-combinatoric construction (depending on the rational homotopy class) involving a family of w pullbacks of forms on N and their " d^{-1} integrals". For example, in case $w : \mathbb{S}^3 \to \mathbb{S}^2$, $\Phi_w = w^{\#} \omega_{\mathbb{S}^2} \wedge d^* \Delta^{-1} w^{\#} \omega_{\mathbb{S}^2}$. In general, this representation by a finite family of differential forms allows useful energy estimates involving certain Gauss integrals. For a weakly convergent sequence of smooth maps, the bubbled chain, which cannot usually be represented as a finite mass current, can be understood precisely as a rectifiable scan whose boundary is given by the topological singularities of the limit Sobolev map. Though we have a somewhat satisfactory description of bubbling and topological singularity in all nontorsion cases, the question of sequential weak density in these cases are still not resolved, even for the case $W^{1,3}(\mathbb{B}^4, \mathbb{S}^2)$.

Unfortunately representations of a homotopy class by differential forms are not available for *torsion* classes. In particular, if the relevant homotopy group of N is completely torsion, then one requires other techniques to get energy estimates needed for questions about weak limits of smooth maps. The first such case is $W^{1,2}(\mathbb{B}^3, \mathbb{R}P^2)$, and was treated in [PR]. Here $\Pi_2(\mathbb{R}P^2) \simeq \mathbb{Z}_2$, and, a main result, is that smooth maps are $W^{1,2}$ sequentially weakly dense because p = 2.

I.4 $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$

The present paper started with the modest goal of understanding analytic estimates for maps of $w : \mathbb{S}^4 \to \mathbb{S}^3$ so as to understand weak convergence and sequential weak density for smooth maps from \mathbb{B}^5 to \mathbb{S}^3 . Here, the appropriate homotopy group is $\Pi_4(\mathbb{S}^3)$, which is isomorphic to \mathbb{Z}_2 . But geometric descriptions of this homotopy class of v are not very simple. As discussed in Sections IV.2 and IV.3 below, they involve considering, for a smooth approximation u of v, the total twisting of a u-pullback normal framing upon circulation around a generic fiber $u^{-1}\{y\}$. The twisting of the normal frame leads to an element of $\Pi_1(\mathbb{SO}(3)) \simeq \mathbb{Z}_2$. To analytically compute such a twisting involves integration of a derivative of a pull-back framing, hence a *second* derivative of the original map. So it is natural for this homotopy group to try to look for estimates in terms of the Hessian energy.

A representative of the single nonzero element in $\Pi_4(\mathbb{S}^4, \mathbb{S}^3)$ is the suspension of the Hopf map, $\mathbb{SH} : \mathbb{S}^5 \to \mathbb{S}^3$, described explicitly in the next section. In Section II below, we slightly adapt [BPV], Th.5 by defining the subfamily

$$\mathcal{R} = \{ u \in \mathcal{R}_0(\mathbb{B}^5, \mathbb{S}^3) : u \equiv \mathbb{SH}\left(\frac{x-a}{|x-a|}\right) \text{ on } \mathbb{B}_{\delta_0}(a) \setminus \{a\} \text{ for all } a \in \operatorname{Sing} u \text{ and some } \delta_0 > 0 \}$$
(I.1)

and then proving:

Lemma III.2 The family \mathcal{R} is $W^{2,2}$ strongly dense in $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$.

I.5 Connection Length

Given a finite subset A of \mathbb{B}^5 , one may define \mathbb{Z}_2 connection for A (relative to $\partial \mathbb{B}^5$) as a finite disjoint union Γ of finite length arcs embedded in $\overline{\mathbb{B}^5}$ whose union of endpoints is precisely $A \cup (\Gamma \cap \partial \mathbb{B}^5)$. Thus, each point of A is joined by a unique arc in Γ to either another point of A or to a point of $\partial \mathbb{B}^5$.

It will simplify some constructions to use a minimal \mathbb{Z}_2 connection for A, that is, one having least length. It is not difficult to verify the existence and structure of a minimal \mathbb{Z}_2 connection for A. It simply consists of the disjoint union of finitely many closed intervals in \mathbb{B}^5 and finitely many radially pointing intervals having one endpoint in $\partial \mathbb{B}^5$. In §III.3, we show how individual maps in \mathcal{R} can be weakly approximated by smooth maps by proving: **Theorem III.1 (Singularity Cancellation)** If $u \in \mathcal{R}$, Γ is a minimal \mathbb{Z}_2 connection for Singv, and $\varepsilon > 0$, then there exists a smooth $u_{\varepsilon} \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3) \cap \mathcal{C}^{\infty}$ so that $u_{\varepsilon}(x) = u(x)$ whenever $dist(x, \Gamma) > \varepsilon$ and

$$\int_{\mathbb{B}^5} |\nabla^2 u_{\varepsilon}|^2 dx \leq \varepsilon + \int_{\mathbb{B}^5} |\nabla^2 u|^2 dx + c_{\mathbb{SH}} \mathcal{H}^1(\Gamma)$$

where $c_{\mathbb{SH}} = \int_{\mathbb{S}^4} |\nabla_{tan}^2(\mathbb{SH})|^2 d\mathcal{H}^4 < \infty$. See Remark III.1 concerning this constant.

0

The core of our work, however, involves proving:

Theorem IV.2 (Length Bound) For any $u \in \mathcal{R}$, Singu has a \mathbb{Z}_2 connection Γ satisfying

$$\mathcal{H}^1(\Gamma) \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 dx$$

for some absolute constant c.

Combining this length bound with Lemma III.2 and Theorem III.1, we readily establish, in Section V, that any Sobolev map in $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$ has a $W^{2,2}$ weak approximation by a sequence of smooth maps.

We prove the length bound in Section IV by finding a suitable connection Γ through three applications of the coarea formula. For a regular value $p \in \mathbb{S}^3$ for u, the fiber $\Sigma = u^{-1}\{p\}$ is a smooth surface with cone point singularities at Sing u. By the coarea formula, we may choose this p so that

$$\int_{u^{-1}\{p\}} \frac{|\nabla u|^4 + |\nabla^2 u|^2}{J_3 u} \, d\mathcal{H}^2 \,. \tag{I.2}$$

Then we need to choose connectiong curves on Σ . To do this we choose an orthonormal frame $\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3$ of the normal bundle of the surface $\Sigma = u^{-1}\{p\}$ by ortho-normalizing the v pull-backs of a basis of Tan (\mathbb{S}^3, p). Inequality (I.2) gives that

$$\int_{\Sigma} |\nabla \tilde{\tau}_j| \, d\mathcal{H}^2 \, \leq \, c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx$$

We show how a a.e. oriented 2 plane in \mathbb{R}^5 determines at every point $x \in \Sigma$, with a finite exceptional set b_1, \ldots, b_j , an orthogonal basis of $\operatorname{Nor}(\Sigma, x)$, thought of as a reference normal framing. There is a unique $\gamma(x) \in \mathbb{SO}(3) \simeq \mathbb{RP}^3$ and one gets some curves on Σ , with total length bounded by a multiple of $c \int_{\mathbb{R}^5} |\nabla^2 u|^2 dx$ by choosing $\gamma^{-1}(E)$ where E is a suitable great $\mathbb{RP}^2 \subset \mathbb{SO}(3)$. The curves starting at the some a_i may end in either another a_k or in $\partial \mathbb{B}^5$ or (unfortunately) in a point b_ℓ where the reference framing degenerates. More argument, including another use of the coarea formula is required in sections IV.8, IV.9 to find additional curves of controlled length connecting b_ℓ to another b_m or to $\partial \mathbb{B}^5$. Putting all these curves together gives a \mathbb{Z}_2 connection for Sing u satisfying the desired length bound.

II Preliminaries

We will let c denote an absolute constant whose value may change from statement to statement and which is usually easily estimable. Here for $0 \le k \le m$ and various k dimensional subsets A of \mathbb{R}^m ,

$$\int_A f \, d\mathcal{H}^k = \int_A f(y) \, d\mathcal{H}^k y$$

will denote integration with respect to k dimensional Hausdorff measure. However, in top dimension where \mathcal{H}^m coincides with Lebesgue measure, we will use the use the standard notations $\int_A f \, dx = \int_A f(x) \, dx$.

Lemma II.1 For each positive integer m, there is a positive constant c_m so that

$$||v||^{2}_{W^{2,2}(\mathbb{B}^{m},N)} \leq c_{m} \left[(\operatorname{diam} N)^{2} + \int_{\mathbb{B}^{m}} |\nabla^{2}v|^{2} dx \right]$$

for any compact Riemannian submanifold N of \mathbb{R}^{ℓ} and $v \in W^{2,2}(\mathbb{B}^m, N)$.

Proof. Here $\|v\|^2_{W^{2,2}(\mathbb{B}^m,N)} = \int_{\mathbb{B}^m} \left(|v|^2 + |\nabla v|^2 + |\nabla^2 v|^2 \right) dx$. We clearly have the estimate

$$\int_{\mathbb{B}^m} |v|^2 dx \le \mathcal{H}^m(\mathbb{B}^m)(\operatorname{diam} N)^2 .$$

Moreover, by the Poincaré inequality,

$$\begin{split} \int_{\mathbb{B}^m} |\nabla v|^2 \, dx &= \sum_{i=1}^m \int_{\mathbb{B}^m} \left| \frac{\partial v}{\partial x_i} \right|^2 \, dx \le \sum_{i=1}^m 2 \int_{\mathbb{B}^m} \left| \frac{\partial v}{\partial x_i} - \left(\frac{\partial v}{\partial x_i} \right)_{avg} \right|^2 \, dx \, + \, 2 \int_{\mathbb{B}^m} \left| \left(\frac{\partial v}{\partial x_i} \right)_{avg} \right|^2 \, dx \\ &\le 2m \mathbf{C}_{\mathbb{B}^m} \int_{\mathbb{B}^m} |\nabla^2 v|^2 \, dx \, + \, \sum_{i=1}^m 2\mathcal{H}^m(\mathbb{B}^m) \left| \left(\frac{\partial v}{\partial x_i} \right)_{avg} \right|^2 \, . \end{split}$$

It only remains to bound $\left(\frac{\partial v}{\partial x_i}\right)_{avg}$. We will do the case i = 1, the cases $i \ge 2$ being similar. By Fubini's theorem and the absolutely continuity of v on a.e. line in the $(1, 0, \ldots, 0)$ direction,

$$\mathcal{H}^{m}(\mathbb{B}^{m}) \left| \left(\frac{\partial v}{\partial x_{1}} \right)_{avg} \right| = \left| \int_{\mathbb{B}^{m}} \frac{\partial v}{\partial x_{1}} dx \right| = \left| \int_{\mathbb{B}^{m-1}} \int_{-\sqrt{1-|y|^{2}}}^{\sqrt{1-|y|^{2}}} \frac{\partial v}{\partial x_{1}}(t, y_{1}, \dots, y_{m-1}) dt dy \right|$$

$$\leq \int_{\mathbb{B}^{m-1}} \left| v(\sqrt{1-|y|^{2}}, y_{1}, \dots, y_{m-1}) - v(-\sqrt{1-|y|^{2}}, y_{1}, \dots, y_{m-1}) \right| dy \leq \mathcal{H}^{m-1}(\mathbb{B}^{m-1}) \operatorname{diam} N .$$

A Formula for the Suspension of the Hopf Map

Let $\mathbb{H}: \mathbb{S}^3 \to \mathbb{S}^2$ denote the standard Hopf map [HR]:

$$\mathbb{H}(x_1, x_2, x_3, x_4) = \left(2x_1x_2 + 2x_3x_4, 2x_1x_4 - 2x_2x_3, x_1^2 + x_3^2 - x_2^2 - x_4^2\right)$$

and $\mathbb{SH} : \mathbb{S}^4 \to \mathbb{S}^3$ be its suspension:

$$\mathbb{SH}(x_0, x_1, \cdots, x_4) = \left(x_0 , \sqrt{1 - x_0^2} \cdot \mathbb{H}\left(\frac{x_1}{\sqrt{x_1^2 + \cdots + x_4^2}}, \dots, \frac{x_4}{\sqrt{x_1^2 + \cdots + x_4^2}} \right) \right) .$$

The latter map generates the nonzero element of $\Pi_4(\mathbb{S}^3) \simeq \mathbb{Z}_2$. Also, its homogeneous degree 0 extension

$$\mathbb{SH}(x/|x|) \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$$
.

In particular, $\int_{\mathbb{B}^5} \left| \nabla^2 \left(\mathbb{SH}(x/|x|) \right) \right|^2 dx = c_{\mathbb{SH}}$ where

$$c_{\mathbb{SH}} = \int_{\mathbb{S}^4} \left| \nabla_{tan}^2(\mathbb{SH}) \right|^2 d\mathcal{H}^4 < \infty .$$
(II.3)

While the explicit formula for a suspension of the Hopf map is handy for simplifying proofs, the constant c_{SH} , which occurs in the conclusion of Theorem III.1 can, by Remark III.1, be replaced by a more natural constant.

III A Strongly Dense Family with Isolated Singularities

Let \mathcal{R} denote the class of $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$ maps that are smooth except for finitely many suspension Hopf singularities. That is,

$$u \in \mathcal{R} \iff u \in \mathcal{C}^{\infty}(\mathbb{B}^5 \setminus \{a_1, \dots, a_m\}, \mathbb{S}^3) \quad \text{and} \quad u(x) = \mathbb{SH}\left(\frac{x - a_i}{|x - a_i|}\right) \quad \text{on} \quad \mathbb{B}_{\delta_0}(a_i) \setminus \{a_i\}$$
(III.4)

for some finite subset $\{a_1, \ldots, a_m\}$ of \mathbb{B}^5 and some positive $\delta_0 < \min_i \{1 - |a_i|, \min_{j \neq i} |a_i - a_j|/2\}\}$.

III.1 Strong Approximation by Maps in \mathcal{R}

Lemma III.2 \mathcal{R} is $W^{2,2}$ strongly dense in $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$.

Proof. Theorem 5 of [BPV] gives the $W^{2,2}$ strongly density of the family $\mathcal{R}^{2,2}_0(\mathbb{B}^5, \mathbb{S}^3)$ of maps $v \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$ which are smooth except for a finite singular set $\{a_1, \ldots, a_m\}$ and which satisfy

$$\limsup_{x \to a_i} \left(|x - a_i| |\nabla v(x)| + |x - a_i|^2 |\nabla^2 v(x)| \right) < \infty$$

for $i = 1, \ldots, m$. Thus, it suffices to show:

For each $v \in \mathcal{R}^{2,2}_0(\mathbb{B}^5, \mathbb{S}^3)$ and $\varepsilon > 0$, there is a map $u \in \mathcal{R}$ so that $||u - v||^2_{W^{2,2}} < \varepsilon$.

Assuming Sing $v = \{a_1, \ldots, a_m\}$, we will obtain u by modifying v near each point a_i . First fix a positive $\eta < \frac{1}{2} \min \{\min_{i \neq j} |a_i - a_j|, \min_k(1 - |a_k|)\}$ so that

$$L = \max_{i} \sup_{0 < |x - a_i| < \eta} \left(|x - a_i| |\nabla v(x)| + |x - a_i|^2 |\nabla^2 v(x)| \right) < \infty$$
(III.5)

We will proceed in two stages: First we will find a positive $\delta < \eta$ depending only on L and then define a map $w \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$ so that

$$w \equiv v \text{ on } \mathbb{B}^5 \setminus \bigcup_{i=1}^m \mathbb{B}_\delta(a_i) , \qquad (\text{III.6})$$

and, on each ball $\mathbb{B}_{\delta/2}(a_i)$, w is degree-zero homogeneous about a_i , i.e.

$$w(x) = w\left(a_i + \frac{x - a_i}{|x - a_i|}\right) \text{ for } 0 < |x - a_i| < \frac{1}{2}\delta$$
.

Second, we find a positive $\delta_0 \ll \frac{1}{2}\delta$, depending on $w | \bigcup_{i=1}^m \partial \mathbb{B}_{\delta/2}(a_i)$, and a map $u \in \mathcal{R}$ with $u \equiv w$ on $\mathbb{B}^5 \setminus \bigcup_{i=1}^m \mathbb{B}_{\delta_0}(a_i)$ and, on each ball $\mathbb{B}_{\delta_0}(a_i)$, $u \equiv \mathbb{SH}\left(\frac{x-a_i}{|x-a_i|}\right)$.

For the first step, we first fix a smooth monotone increasing $\lambda: [0,\infty) \to [\frac{1}{2},\infty)$ so that

$$\lambda(t) = \begin{cases} 1/2 & \text{for } 0 \le t \le \frac{1}{2} \\ t & \text{for } t \ge 1 \end{cases}.$$

Consider the unscaled situation of a map $V \in \mathcal{C}^{\infty}(\overline{\mathbb{B}^5} \setminus \mathbb{B}_{\frac{1}{2}}(0), \mathbb{S}^3)$ with $|\nabla V| + |\nabla^2 V| \leq L$. Then we define the reparameterized map

$$W(x) = V\left(\lambda(|x|)x\right) \;,$$

and see that, with respect to the radial variable $\rho = |x|$,

$$\frac{\partial W}{\partial \rho} \ \equiv \ \frac{\partial V}{\partial \rho} \quad \text{on} \quad \partial \mathbb{B}^5 \ , \qquad \frac{\partial W}{\partial \rho} \ \equiv \ 0 \quad \text{on} \quad \overline{\mathbb{B}_{\frac{1}{2}(0)}} \setminus \{0\} \ ,$$

Moreover, using explicit pointwise bounds for $|\lambda'|$ and $|\lambda''|$, we readily find an explicit constant C so that

$$\begin{aligned} |\nabla W(x)| + |\nabla^2 W(x)| &\leq C L \quad \text{for} \quad \frac{1}{2} \leq |x| \leq 1 , \\ |x||\nabla W(x)| + |x|^2 |\nabla^2 W(x)| &\leq C L \quad \text{for} \quad 0 < |x| < \frac{1}{2} . \end{aligned}$$

Now we return to the original scale by defining w to satisfy (III.6) and to have, for each point $x \in \mathbb{B}_{\delta}(a_i)$,

$$w(x) = W\left(\frac{x-a_i}{\delta}\right)$$
 where $V(x) = v(a_i + \delta x)$

Then w belongs to $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$ and satisfies the estimate

$$\max_{i} \sup_{0 < |x-a_i| < \delta} \left(|x-a_i| |\nabla w(x)| + |x-a_i|^2 |\nabla^2 w(x)| \right) \leq CL ,$$

hence,

$$\begin{split} \|w - v\|_{W^{2,2}}^2 &= \sum_{i=1}^m \int_{\mathbb{B}_{\delta}(a_i)} \left(|w - v|^2 + |\nabla w - \nabla v|^2 + |\nabla^2 w - \nabla^2 v|^2 \right) dx \\ &\leq 2 \sum_{i=1}^m \int_{\mathbb{B}_{\delta}(a_i)} \left(|w|^2 + |v|^2 + |\nabla w|^2 + |\nabla v|^2 + |\nabla^2 w|^2 + |\nabla^2 v|^2 \right) dx \leq c(1+L)^2 \delta \; . \end{split}$$

So we easily choose δ so that $||w - v||_{W^{2,2}}^2 < \frac{1}{4}\varepsilon$.

For the second step we note that any continuous homotopy between smooth maps of smooth manifolds can be made smooth; hence :

A smooth map
$$\phi : \mathbb{S}^4 \to \mathbb{S}^3$$
 is smoothly homotopic

$$\begin{cases} either to a constant & in case \llbracket \phi \rrbracket = 0 \in \Pi_4(\mathbb{S}^4, \mathbb{S}^3) \\ or to \quad \llbracket \mathbb{S} \mathbb{H} \rrbracket & in case \llbracket \phi \rrbracket \neq 0 \in \Pi_4(\mathbb{S}^4, \mathbb{S}^3) \end{cases}$$

For each i = 1, ..., m, we apply this to the map $\phi_i(x) = w(a_i + \frac{1}{2}\delta x)$ to obtain a smooth homotopy $h_i: [0,1] \times \mathbb{S}^4 \to \mathbb{S}^3$ which connects ϕ_i to SH. Reparameterizing the time variable near 0 and 1, we may assume

$$h_i(t,y) = \begin{cases} \phi_i(y) & \text{for } t \text{ near } 0\\ (\mathbb{SH})(y) & \text{for } t \text{ near } 1 \end{cases}$$

By smoothness, $K = \sup_i \|h_i\|_{W^{2,2}} < \infty$, and we will, for some $\delta_0 << \frac{1}{2}\delta$, define the map u by

$$u \equiv w$$
 on $\mathbb{B}^5 \setminus \bigcup_{i=1}^m \mathbb{B}_{\delta_0}(a_i)$,

$$u(x) = h_i \left(2 - 2 \frac{|x - a_i|}{\delta_0}, \frac{x - a_i}{\delta_0} \right) \quad \text{for} \quad x \in \mathbb{B}_{\delta_0}(a_i) \setminus \mathbb{B}_{\frac{1}{2}\delta_0}(a_i) ,$$
$$u(x) = \mathbb{SH} \left(\frac{x - a_i}{|x - a_i|} \right) \quad \text{for} \quad x \in \mathbb{B}_{\frac{1}{2}\delta_0}(a_i) \setminus \{0\} ,$$

for i = 1, ..., m. One readily checks that $u \in \mathcal{R}$. Moreover, as in Step 1, we find that

$$\|u-w\|_{W^{2,2}}^2 = \sum_{i=1}^m \int_{\mathbb{B}_{\delta}(a_i)} \left(|u-w|^2 + |\nabla u - \nabla w|^2 + |\nabla^2 u - \nabla^2 w|^2\right) dx \leq c(1+K)^4 \delta_0 .$$

So we easily choose δ_0 small enough so that $||u - w||_{W^{2,2}}^2 < \frac{1}{4}\varepsilon$ and obtain the desired estimate

$$||u - v||^2_{W^{2,2}} \le 2||u - w||^2_{W^{2,2}} + 2||w - v||^2_{W^{2,2}} < \varepsilon$$

Insertion of an SH Bubble into a Map from \mathbb{B}^4 to \mathbb{S}^3 III.2

Arguing as in the proof of Lemma III.2, we first fix a monotone increasing smooth function μ on $[0,\infty)$ so that

$$\mu(t) = \begin{cases} 0 & \text{for } 0 \le t \le \frac{1}{2} \\ t & \text{for } t \ge 1 \end{cases},$$

 $|\mu'| \leq 3$, and $|\mu''| \leq 16$. We readily prove the following:

Lemma III.3 (Initial Reparameterization) There an absolute constant C so that, for any smooth $f: \mathbb{B}^4 \to \mathbb{S}^3$ and $0 < \sigma < 1$, the map

$$f_{\sigma}: \mathbb{B}^4 \to \mathbb{S}^3$$
, $f_{\sigma}(y) = f\left(\mu\left(\sigma^{-1}|y|\right)|y|^{-1}\sigma y\right)$ for $y \in \mathbb{B}^4$,

coincides with f on $\mathbb{B}^4 \setminus \mathbb{B}^4_{\sigma}$, is identically equal to f(0) on $\mathbb{B}^4_{\sigma/2}$, and satisfies

$$\sup_{\mathbb{B}^4_{\sigma}} |\nabla f_{\sigma}| \leq C \sup_{\mathbb{B}^4_{\sigma}} |\nabla f_{\sigma}| , \qquad \sup_{\mathbb{B}^4_{\sigma}} |\nabla^2 f_{\sigma}| \leq C \sigma^{-1} \sup_{\mathbb{B}^4_{\sigma}} |\nabla^2 f| .$$

In particular,

$$\int_{\mathbb{B}^4_{\sigma}} |\nabla^2 f_{\sigma}|^2 dx \leq C^2 \mathcal{H}^4(\mathbb{B}^4) \sup_{\mathbb{B}^4_{\sigma}} |\nabla^2 f|^2 \sigma^2 .$$
(III.7)

Construction of an SH Bubble

Recalling that $\mathbb{SH}(0,1,0,0,0) = (0,0,0,1)$, we will first slightly modify \mathbb{SH} to be constant near (0, 1, 0, 0, 1). Consider the spherical coordinate parameterization,

 $\Upsilon: [0,\pi] \times \mathbb{S}^3 \to \mathbb{S}^4 , \quad \Upsilon(\rho,\omega) = ((\sin\rho)\omega_1, \cos\rho, (\sin\rho)\omega_2, (\sin\rho)\omega_3, (\sin\rho)\omega_4) .$

Arguing again as in the proofs of Lemma III.2 and Lemma III.3, we let

$$M_{\rho_0}(\rho,\omega) = \left(\mu(\rho_0^{-1}\rho)\rho_0\rho,\omega\right) \quad \text{for} \quad 0 \le \rho \le \rho_0 << 1 \quad \text{and} \quad \omega \in \mathbb{S}^3 \ ,$$

and define $\Phi_{\rho_0} : \mathbb{S}^4 \to \mathbb{S}^4$ by

$$\Phi_{\rho_0}(y) = \begin{cases} \Upsilon \circ M_{\rho_0} \circ \Upsilon^{-1}\{y\} & \text{for } y \in \Upsilon \left([0, \rho_0] \times \mathbb{S}^4 \right) \\ y & \text{otherwise} \end{cases}$$

Then Φ_{ρ_0} is surjective, and maps the entire spherical cap

$$\Omega_{\rho_0/2} = \Upsilon \left([0, \rho_0/2) \times \mathbb{S}^4 \right) = \mathbb{S}^4 \cap \mathbb{B}^5_{2\sin(\rho_0/4)} \left((0, 1, 0, 0, 0) \right)$$

to its center point (0, 1, 0, 0, 0).

We now consider the composition $\mathbb{SH} \circ \Phi_{\rho_0}$ The homotopy class is unchanged

$$[\mathbb{SH} \circ \Phi_{\rho_0}] = [\mathbb{SH}] \neq 0 \in \Pi_4(\mathbb{S}^3) .$$
 (III.8)

Noting that $\rho_0 \frac{\partial^2 M_{\rho_0}}{\partial \rho^2}$ is bounded independent of ρ_0 and has support in $\Upsilon([0, \rho_0] \times \mathbb{S}^3)$, we readily verify, as in (III.7), that

$$\int_{\mathbb{S}^4} |\nabla_{tan}^2 (\mathbb{S}\mathbb{H} \circ \Phi_{\rho_0})|^2 d\mathcal{H}^4 = \int_{\mathbb{S}^4 \setminus \Omega_{\rho_0}} |\nabla_{tan}^2 (\mathbb{S}\mathbb{H})|^2 d\mathcal{H}^4 + \int_{\Omega_{\rho_0}} |\nabla_{tan}^2 (\mathbb{S}\mathbb{H} \circ \Phi_{\rho_0})|^2 d\mathcal{H}^4 \to c_{\mathbb{S}\mathbb{H}} + 0, \text{ (III.9)}$$

as $\rho_0 \to 0$.

Since the stereographic projection

$$\Pi: \mathbb{S}^4 \setminus \{(0,1,0,0,0)\} \to \mathbb{R}^4 , \quad \Pi(x_0,x_1,x_2,x_3,x_4) = \left(\frac{x_0}{1-x_1}, \frac{x_2}{1-x_1}, \frac{x_3}{1-x_1}, \frac{x_4}{1-x_1}\right)$$

is conformal, we get the conformal diffeomorphism

$$\Lambda_{\rho_0} : \overline{\mathbb{B}^4} \to \mathbb{S}^4 \setminus \Omega_{\rho_0/2} , \quad \Lambda_{\rho_0}(y) = \Pi^{-1} \left[\left(\frac{\sin(\rho_0/2)}{1 - \cos(\rho_0/2)} \right) y \right] .$$

We see that

$$\mathbb{SH} \circ \Phi_{\rho_0} \circ \Lambda_{\rho_0} : \overline{\mathbb{B}^4} \to \mathbb{S}^3$$

is a smooth surjection which sends $\partial \mathbb{B}^4$ identically to $\mathbb{SH}(0, 1, 0, 0, 0) = (0, 0, 0, 1)$.

We wish to have a similar map that has boundary values being a possibly different constant $\xi \in \mathbb{S}^3$. To get a suitable formula, it will be handy to recall that \mathbb{S}^3 , being identified with the unit quaternions,

{
$$x_1 + x_2 \mathbf{i} + x_3 \mathbf{j} + x_4 \mathbf{k} : x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$$
 }

has a product \star and, in particular, that

$$(0,0,0,-1) \star (0,0,0,1) = (-\mathbf{k}) \star \mathbf{k} = \mathbf{1} = (1,0,0,0).$$

So now we define, for every $\rho_0 > 0$ and $\xi \in \mathbb{S}^3$, the bubble

$$\mathcal{B}_{\rho_0,\xi} : \mathbb{B}^4 \to \mathbb{S}^3, \quad \mathcal{B}_{\rho_0,\xi} \equiv \xi \star (-\mathbf{k}) \star \mathbb{SH} \circ \Phi_{\rho_0} \circ \Lambda_{\rho_0} , \qquad (\text{III.10})$$

which is identically equal to ξ on $\partial \mathbb{B}^4$. By the conformal invariance of the Hessian energy and (III.9),

$$\int_{\mathbb{B}^4} |\nabla^2 \mathcal{B}_{\rho_0,\xi}|^2 \, dy = \int_{\mathbb{S}^4} |\nabla^2_{tan}(\mathbb{SH} \circ \Phi_{\rho_0})|^2 \, d\mathcal{H}^4 \to \int_{\mathbb{S}^4} |\nabla^2_{tan}(\mathbb{SH})|^2 \, d\mathcal{H}^4 = c_{\mathbb{SH}} \quad \text{as } \rho_0 \to 0 \;. \text{ (III.11)}$$

Now, for a smooth map $f : \mathbb{B}^4 \to \mathbb{S}^3$, $0 < \sigma < 1$, and $0 < \rho_0 << 1$, we define the "bubbled" map $f_{\sigma,\rho_0} : \mathbb{B}^4 \to \mathbb{S}^3$,

$$f_{\sigma,\rho_0}(y) = \begin{cases} f_{\sigma}(y) & \text{for } \sigma/2 < |y| < 1 ,\\ \mathcal{B}_{\rho_0,f(0)}(2y/\sigma) & \text{for } |y| \le \sigma/2 . \end{cases}$$
(III.12)

Note that f_{σ,ρ_0} is continuous because both expressions equal f(0) on $\partial \mathbb{B}^4_{\sigma/2}$. Moreover, all the positive order derivatives of both expressions vanish here because the smooth map f_{σ} is constant on $\mathbb{B}^4_{\sigma/2}$ while the smooth reparameterization Φ_{ρ_0} is constant on $\Omega_{\rho_0/2}$. So the map f_{σ,ρ_0} is, in fact, smooth. Moreover, since the Hessian energy is invariant under change of scale,

$$\begin{split} \int_{\mathbb{B}^4} \left| \nabla^2 f_{\sigma,\rho_0} \right|^2 dy &= \int_{\mathbb{B}^4 \setminus \mathbb{B}^4_{\sigma/2}} \left| \nabla^2 f_{\sigma} \right|^2 dy + \int_{\mathbb{B}^4_{\sigma/2}} \left| \nabla^2 \left[\mathcal{B}_{\rho_0,f(0)} \left(\frac{2}{\sigma} (\cdot) \right) \right] \right|^2 dy \\ &= \int_{\mathbb{B}^4 \setminus \mathbb{B}^4_{\sigma}} \left| \nabla^2 f \right|^2 dy + \int_{\mathbb{B}^4_{\sigma} \setminus \mathbb{B}^4_{\sigma/2}} \left| \nabla^2 f_{\sigma} \right|^2 dy + \int_{\mathbb{B}^4} \left| \nabla^2 \mathcal{B}_{\rho_0,f(0)} \right|^2 dy \quad \text{(III.13)} \\ &\to \int_{\mathbb{B}^4} \left| \nabla^2 f \right|^2 dy + 0 + \int_{\mathbb{B}^4} \left| \nabla^2 \mathcal{B}_{\rho_0,f(0)} \right|^2 dy \quad \text{as} \quad \sigma \to 0 \;. \end{split}$$

Note that the middle equation also gives, with (III.7) the bound

$$\int_{\mathbb{B}^4} \left| \nabla^2 f_{\sigma,\rho_0} \right|^2 dy \le (1+C^2) \sup_{\mathbb{B}^4} |\nabla^2 f|^2 + \int_{\mathbb{B}^4} \left| \nabla^2 \mathcal{B}_{\rho_0,f(0)} \right|^2 dy,$$
(III.14)

independent of σ .

III.3 Singularity Cancellation of a Map in \mathcal{R}

Theorem III.1 If $u \in \mathcal{R}$, Γ is a minimal \mathbb{Z}_2 connection for Singv, and $\varepsilon > 0$, then there exists a smooth $u_{\varepsilon} \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3) \cap \mathcal{C}^{\infty}$ so that $u_{\varepsilon}(x) = u(x)$ whenever $dist(x, \Gamma) > \varepsilon$ and

$$\int_{\mathbb{B}^5} |\nabla^2 u_{\varepsilon}|^2 dx \leq \varepsilon + \int_{\mathbb{B}^5} |\nabla^2 u|^2 dx + c_{\mathbb{SH}} \mathcal{H}^1(\Gamma) .$$

Proof. Note that, by slightly rescaling near $\partial \mathbb{B}^5$, we may assume that u extends smoothly to a neighborhood of $\overline{\mathbb{B}^5}$.

First, using (III.11), we fix a positive ρ_0 to be small enough so that,

$$\left| c_{\mathbb{SH}} - \int_{\mathbb{B}^4} |\nabla^2 \mathcal{B}_{\rho_0,\xi}|^2 \, dy \, \right| \, < \, \frac{\varepsilon}{4(1 + \mathcal{H}^1(\Gamma))} \tag{III.15}$$

for all $\xi \in \mathbb{S}^3$. Also we recall that a minimal \mathbb{Z}_2 connection for u is the union of a finite family \mathcal{I} of disjoint closed intervals $I = [a_I, b_I]$ where

$$a_I \in \operatorname{Sing} u \text{ and } b_I \in \begin{cases} either & \operatorname{Sing} u \\ or & \partial \mathbb{B}^5 \text{ with } I \perp \partial \mathbb{B}^5 \end{cases}$$
 (III.16)

Second, we fix a positive δ_0 so that:

- (1) $\delta_0 < \frac{1}{2} \min_{a \in \operatorname{Sing} u} \{ 1 |a|, \min_{a \neq \tilde{a} \in \operatorname{Sing} u} |a \tilde{a}| \}$
- (2) $\delta_0 < \frac{1}{2} \min\{|x \tilde{x}| : x \in I, \ \tilde{x} \in \tilde{I}, \ I \neq \tilde{I} \in \mathcal{I} \}.$
- (3) $u \in \mathcal{C}^{\infty}(\mathbb{B}^5_{1+\delta_0} \setminus \operatorname{Sing} u, \mathbb{S}^3).$
- (4) $\delta_0 < (1 + c_{SH})^{-1} (1 + \operatorname{card}(\operatorname{Sing} u))^{-1} \varepsilon/5$

Our main step in constructing u_{ε} will be to use, for each $I \in \mathcal{I}$, the bubble insertion of §III.2 in each cross-section of a pinched cylindrical region V_I of radius $\delta_0/9$. Near the singular endpoints of I, V_I is pinched to be a round cone with opening angle $2 \arctan(\frac{1}{9})$.

To describe the explicit construction, we need some notation. With $I = [a_I, b_I] \in \mathcal{I}$ as above in (III.16), let

 $|I| = |b_I - a_I|, \quad \mathbf{e}_I = (b_I - a_I)/|I| \in \mathbb{S}^4, \qquad \Pi_I : \mathbb{R}^5 \to \mathbb{R}, \quad \Pi_I(x) = x \cdot \mathbf{e}_I - a_I \cdot \mathbf{e}_I ,$

and $B_I(t,r)$ be the open ball in the 4 dimensional affine plane $\Pi_I^{-1}{t}$ with center $a_I + t\mathbf{e}_I$ and radius r. We now define V_I to be the pinched cylindrical region

$$V_I = \bigcup_{0 < t < |I|} B_I(t, r_I(t)) ,$$

by using a fixed smooth function $\nu: [0,\infty) \to [0,1]$ with

$$\nu(t) = \begin{cases} t & \text{for } 0 \le t \le \frac{1}{2} \\ 1 & \text{for } 1 \le t \end{cases}$$

to define the smooth radius function

$$r_{I}(t) = \begin{cases} (\delta_{0}/9)t & \text{for } 0 \le t \le \frac{1}{2}\delta_{0} \\ (\delta_{0}/9)\nu(t/\delta_{0}) & \text{for } \frac{1}{2}\delta_{0} \le t \le \delta_{0} \\ \delta_{0}/9 & \text{for } \delta_{0} \le t \le |I| - \delta_{0} \\ (\delta_{0}/9)\nu((|I| - t)/\delta_{0}) & \text{in case } b_{I} \in \text{Sing } u \text{ and } |I| - \delta_{0} \le t \le |I| - \frac{1}{2}\delta_{0} \\ (\delta_{0}/9)(|I| - t) & \text{in case } b_{I} \in \text{Sing } u \text{ and } |I| - \frac{1}{2}\delta_{0} \le t \le |I| \\ \delta_{0}/9 & \text{in case } b_{I} \in \partial\mathbb{B}^{5} \text{ and } |I| - \delta_{0} \le t \le |I| . \end{cases}$$

Thus ∂V_I is a smooth hypersurface except for the conepoint(s) a_I (and b_I in case $b_I \in \text{Sing } u$).

For convenience, we fix an orthonormal basis $\mathbf{e}_1^I, \ldots, \mathbf{e}_4^I$ for the orthogonal complement of $\mathbb{R}\mathbf{e}_I$. For each $t \in \mathbb{R}$, we will use the affine similarity

$$A_{I,t}: \mathbb{R}^4 \to \mathbb{R}^5$$
, $A_{I,t}(y_1, \dots, y_4) = a_I + t\mathbf{e}_I + r_I(t) \left[y_1 \mathbf{e}_1^I + \dots + y_4 \mathbf{e}_4^I \right]$

so that $A_{I,t}(\mathbb{B}^4) = B_I(t, r_I(t)).$

For $0 < \sigma < 1$, we recall (III.12) and define the smooth reparameterized map

$$v_{\sigma}(x) = \begin{cases} u(x) & \text{for } x \in \mathbb{B}^5 \setminus \bigcup_{I \in \mathcal{I}} V_I \cup \{a_I\} \cup \{b_I\} \\ (u \circ A_{I,t})_{\sigma,\rho_0} \left(A_{I,t}^{-1}(x)\right) & \text{for } x \in B_I\left(t,r_I(t)\right) . \end{cases}$$

Observe that v_{σ} actually coincides with u(x) outside the " σ thin" set $\bigcup_{I \in \mathcal{I}} V_I^{\sigma} \cup \{a_I\} \cup \{b_I\}$ where

$$V_I^{\sigma} = \bigcup_{0 < t < |I|} B_I(t, \sigma r_I(t)) .$$

The explicit formulas given above and in the earlier parts of §III.3 show the qualitative smoothness of v_{σ} on $\mathbb{B}^5 \setminus \text{Sing } u$. Our next goal is to verify that

$$\limsup_{\sigma \to 0} \sum_{I \in \mathcal{I}} \int_{V_I^{\sigma}} \left| \nabla^2 v_{\sigma} \right|^2 dx \quad < \quad c_{\mathbb{SH}} \mathcal{H}(\Gamma) \; + \; \frac{\varepsilon}{2} \; . \tag{III.17}$$

We define

$$J_I = \left\{ t : \frac{1}{2} \delta_0 \le t \le \left\{ \begin{array}{ll} |I| - \frac{1}{2} \delta_0 & \text{in case } b_I \in \operatorname{Sing} u \\ |I| & \text{in case } b_I \in \partial \mathbb{B}^5 \end{array} \right\}$$

and note that on J_I , the scaling factor $r_I(t)$ satisfies $\frac{1}{18}\delta \leq r_I(t) \leq \frac{1}{9}\delta_0$ while $|r'_I(t)|$ and $|r''_I(t)|$ are bounded. We will use the corresponding truncated sets

$$W_{I} \equiv V_{I} \cap \Pi_{I}^{-1}(J_{I}) = \bigcup_{t \in J_{I}} B_{I}(t, r_{I}(t)) , \quad W_{I}^{\sigma} \equiv V_{I}^{\sigma} \cap \Pi_{I}^{-1}(J_{I}) = \bigcup_{t \in J_{I}} B_{I}(t, \sigma r_{I}(t)) .$$

We have the pointwise bound

$$L = \sup_{W_I} (|\nabla u|^2 + |\nabla^2 u|^2) < \infty;$$
 (III.18)

hence, by (III.14),

$$\sup_{t\in J_I}\sup_{0<\sigma<1}\int_{\mathbb{B}^4}\left|\nabla^2(u\circ A_{I,t})_{\sigma,\rho_0}\right|^2\,dy < \infty.$$

Note that the orthogonality of the five vectors $\mathbf{e}_I, \mathbf{e}_1^I, \cdots, \mathbf{e}_4^I$ lead to the decomposition of the squared Hessian norm into pure second partial derivatives

$$|\nabla^2(\cdot)|^2 = |\nabla_{\mathbf{e}_I,\mathbf{e}_I}(\cdot)|^2 + \left| (\nabla_{\mathbf{e}_I^I,\mathbf{e}_I^I}(\cdot) \right|^2 + \cdots + \left| (\nabla_{\mathbf{e}_4^I,\mathbf{e}_4^I}(\cdot) \right|^2,$$

which we will abbreviate as $\left|\nabla_{\mathbf{e}_{I}}^{2}(\cdot)\right|^{2} + \left|\nabla_{\mathbf{e}_{I}}^{2}(\cdot)\right|^{2}$.

It follows from Fubini's Theorem, the conformal invariance of the 4 dimensional Hessian energy, (III.13), dominated convergence, and (III.15) that

$$\int_{W_{I}^{\sigma}} \left| \nabla_{\mathbf{e}_{I}^{\perp}}^{2} v_{\sigma} \right|^{2} dx = \int_{t \in J_{I}} \int_{B_{I}(t,r_{I}(t))} \left| \nabla_{\mathbf{e}_{I}^{\perp}}^{2} v_{\sigma} \right|^{2} d\mathcal{H}^{4} dt \\
= \int_{t \in J_{I}} \int_{\mathbb{B}^{4}} \left| \nabla^{2} \left(u \circ A_{I,t} \right)_{\sigma,\rho_{0}} \right|^{2} dy dt \qquad (\text{III.19}) \\
\rightarrow \int_{t \in J_{I}} \left[0 + \int_{\mathbb{B}^{4}} \left| \nabla^{2} \mathcal{B}_{\rho_{0},u(a_{I}+t\mathbf{e}_{I})} \right|^{2} dy \right] dt \leq c_{\mathbb{SH}} |I| + \frac{\varepsilon |I|}{4(1+\mathcal{H}^{1}(\Gamma))} ,$$

as $\sigma \to 0$. Thus

$$\limsup_{\sigma \to 0} \sum_{I \in \mathcal{I}} \int_{W_{I}^{\sigma}} \left| \nabla_{\mathbf{e}_{I}^{\perp}}^{2} v_{\sigma} \right|^{2} dx \leq \sum_{I \in \mathcal{I}} \left[c_{\mathbb{SH}} |I| + \frac{\varepsilon |I|}{4(1 + \mathcal{H}^{1}(\Gamma))} \right] \leq c_{\mathbb{SH}} \mathcal{H}^{1}(\Gamma) + \varepsilon/4 . \quad (\text{III.20})$$

To get the full squared Hessian integral $\int_{W_I^{\sigma}} |\nabla^2 v_{\sigma}|^2 dx$, we also need to consider $\int_{W_I^{\sigma}} |\nabla_{\mathbf{e}_I}^2 v_{\sigma}|^2 dx$, which involves computing $\frac{\partial^2}{\partial t^2}$ of various terms. To estimate the last integral, it again suffices by Fubini's theorem, Lemma III.3, (III.12), and changing variables to consider

$$\int_{t \in J_{I}} \left[\int_{\mathbb{B}^{4}_{\sigma} \setminus \mathbb{B}^{4}_{\sigma/2}} \left| \frac{\partial^{2}}{\partial t^{2}} (u \circ A_{I,t}) \right|^{2} dy dt + \int_{\mathbb{B}^{4}_{\sigma/2}} \left| \frac{\partial^{2}}{\partial t^{2}} \left[\mathcal{B}_{\rho_{0},u(a_{I}+t\mathbf{e}_{I})} \left(\frac{2}{\sigma} (\cdot) \right) \right] \right|^{2} dy \right] dt .$$
 (III.21)

The chain rule and the bounds of |r'| and |r''| on J_I give the pointwise bound

$$\left|\frac{\partial^2}{\partial t^2}(u \circ A_{I,t})\right| = \left|\frac{\partial^2}{\partial t^2}\left[u\left(a_I + t\mathbf{e}_I + r_I(t)y\right)\right]\right| \leq cL$$

and definition (III.10) gives the bound

$$\left|\frac{\partial^2}{\partial t^2} \mathcal{B}_{\rho_0, u(a_I + t\mathbf{e}_I)}\right| = \left|\frac{\partial^2}{\partial t^2} \left[u\left(a_I + t\mathbf{e}_I\right) \star \left(-\mathbf{k}\right) \star \mathbb{SH} \circ \Phi_{\rho_0} \circ \Lambda_{\rho_0}\right]\right| \leq L$$

Integrating implies that (III.21) is bounded by $(c+1)L|I|\mathcal{H}^4(\mathbb{B}^4_{\sigma})$, and we deduce that

$$\lim_{\sigma \to 0} \int_{W_I^{\sigma}} \left| \nabla_{\mathbf{e}_I}^2 v_{\sigma} \right|^2 \, dx = 0 \, . \tag{III.22}$$

Next we consider the conical end(s) $V_I^{\sigma} \setminus W_I^{\sigma}$. By our choice of δ_0 , u is degree-0 homogeneous about a_I on the region $\mathbb{B}^5_{\delta_0}(a_I)$. It follows that all of the normalized bubbled functions $(u \circ A_{I,t})_{\sigma,\rho_0}$ coincide for $0 < t \le \sigma/2$. Thus, in the one conical end $V_I^{\sigma} \cap \Pi_I^{-1}(0, \delta_0/2]$, v_{σ} is also degree-0 homogeneous about a_I . So we can easily estimate the Hessian integral there by using spherical coordinates about a_I . Note that radial projection of the 4 dimensional Euclidean ball $V_I^{\sigma} \cap \Pi^{-1}\{\delta_0/2\}$ onto the small spherical cap $V_I^{\sigma} \cap \partial \mathbb{B}^5_{\delta_0/2}$ is a smooth diffeomorphism with easily computed \mathcal{C}^2 bounds on it and its inverse. In particular, we see that, for σ sufficiently small,

$$E_{\sigma} \equiv \int_{V_{I}^{\sigma} \cap \partial \mathbb{B}^{5}_{\delta_{0}/2}(a_{I})} \left| \nabla_{tan}^{2} v_{\sigma} \right|^{2} \, d\mathcal{H}^{4} \leq \left. 2 \int_{\mathbb{B}^{4}_{\sigma}} \left| \nabla^{2} \left(u \circ A_{I,\delta_{0}/2} \right)_{\sigma,\rho_{0}} \right|^{2} \, dy \quad < \quad 2 + 2c_{\mathbb{SH}} \, .$$

By our initial choice (4) of δ_0 we find that, for such σ ,

$$\int_{V_I^{\sigma} \cap \Pi_I^{-1}(0,\delta_0/2)} \left| \nabla^2 v_{\sigma} \right|^2 dx \leq (\delta_0/2) E_{\sigma} \leq (1 + \operatorname{card}(\operatorname{Sing} u))^{-1} \varepsilon/5 .$$

In case $b_I \in \text{Sing } u$, we make a similar estimate near b_I . In any case, we now have

$$\limsup_{\sigma \to 0} \sum_{I \in \mathcal{I}} \int_{V_I^{\sigma} \setminus W_I^{\sigma}} \left| \nabla^2 v_{\sigma} \right|^2 \, dx \leq \varepsilon/5 \; ,$$

which together with (III.19) and (III.22), gives the desired Hessian integral estimate (III.17) for v_{σ} .

Now using (III.17), we are ready to fix a positive $\sigma_0 < 1$ so that

$$\sum_{I \in \mathcal{I}} \int_{V_I^{\sigma_0}} \left| \nabla^2 v_{\sigma_0} \right|^2 dx \leq c_{\mathbb{SH}} \mathcal{H}^1(\Gamma) + \varepsilon/2 .$$
(III.23)

The final step will be to modify v_{σ_0} to get u_{ε} . The map v_{σ_0} is smooth on $\overline{\mathbb{B}^5} \setminus \operatorname{Sing} u$ and is degree-0 homogeneous about each point $a \in \operatorname{Sing} u$, in the ball $\mathbb{B}^5_{\delta_0/2}(a)$.

For each such a, consider the normalized map given by rescaling $v_{\sigma_0} \mid \partial \mathbb{B}^5_{\delta_0/2}(a)$, namely,

$$g_a : \mathbb{S}^4 \to \mathbb{S}^3$$
, $g_a(x) = v_{\sigma_0}[a + (\delta_0/2)x]$

We claim that, in $\Pi_4(\mathbb{S}^3) \simeq \mathbb{Z}_2$, the homotopy class $\llbracket g_a \rrbracket$ is zero. To see this, suppose that $a = a_I$ and first note that the restriction of the original map $u \mid \partial \mathbb{B}^5_{\delta_0/2}(a)$ gives the nonzero class $\llbracket \mathbb{S}\mathbb{H} \rrbracket \in \Pi_4(\mathbb{S}^3)$ by the definition of \mathcal{R} . Second, we slightly reparameterized $u \mid \partial \mathbb{B}^5_{\delta_0/2}(a)$ near the point $a + (\delta_0/2)\mathbf{e}_I$ to have constant value $\xi_{a_I} = (\mathbb{S}\mathbb{H})(\mathbf{e}_I)$ in a small spherical cap of radius $\sigma_0\delta_0/2$. The resulting reparameterized map \tilde{u}_a still induces the nonzero homotopy class in $\Pi_4(\mathbb{S}^3)$. Third, in forming the map $v_\sigma \mid \partial \mathbb{B}^5_{\delta_0/2}(a)$, we inserted a bubble in the small cap of constancy of \tilde{u}_a . This insertion gives the resulting sum in $\Pi_4(\mathbb{S}^3)$:

$$\llbracket g_a \rrbracket = \llbracket \tilde{u}_a \rrbracket + \llbracket \xi_{a_I} \star \mathbb{SH} \circ \Phi_{\rho_0} \rrbracket = \llbracket \mathbb{SH} \rrbracket + \llbracket \mathbb{SH} \circ \Phi_{\rho_0} \rrbracket = 2\llbracket \mathbb{SH} \rrbracket = 0$$

by (III.8). The same is true in case a is a second endpoint b_I .

Now, as in the proof of Lemma III.2, g_a is homotopic to a constant, and we may we may fix a smooth homotopy $h_a: [0,1] \times \mathbb{S}^4 \to \mathbb{S}^3$ so that

$$h_a(t,y) = \begin{cases} g_a(y) & \text{for } t \text{ near } 0\\ (1,0,0,0) & \text{for } t \text{ near } 1\\ \vdots \end{cases}$$

Thus the map

$$H_a: \overline{\mathbb{B}^5} \to \mathbb{S}^3$$
, $H_a(x) = h_a(1 - |x|, x/|x|)$ for $0 < |x| \le 1$, $H_a(0) = (1, 0, 0, 0)$.

is smooth. Moreover, for $0 < \tau \leq \delta_0/2$,

$$w_{\tau} : \bigcup_{a \in \operatorname{Sing} u} \mathbb{B}^{5}_{\tau}(a) \to \mathbb{S}^{3}, \quad w_{\tau}(x) = H_{a}\left(\frac{x-a}{\tau}\right) \text{ for } x \in \mathbb{B}^{5}_{\tau}(a),$$

satisfies

$$\int_{\mathbb{B}^5_\tau(a)} |\nabla^2 w_\tau|^2 \, dx = \tau \int_{\mathbb{B}^5} |\nabla H_a|^2 \, dx \; ,$$

and we can fix a positive $\tau_0 \leq \delta_0/2$ so that

$$\sum_{a \in \operatorname{Sing} u} \int_{\mathbb{B}^{5}_{\tau_{0}}(a)} |\nabla^{2} w_{\tau_{0}}|^{2} dx < \varepsilon/2 .$$
 (III.24)

Finally we define the desired map $u_{\varepsilon}: \mathbb{B}^5 \to \mathbb{S}^3$ by :

$$u_{\varepsilon}(x) = \begin{cases} v_{\sigma_0}(x) & \text{for } x \in \bigcup_{I \in \mathcal{I}} V_I^{\sigma_0} \setminus \bigcup_{a \in \operatorname{Sing} u} \mathbb{B}^5_{\tau_0}(a) \\ w_{\tau_0}(x) & \text{for } x \in \bigcup_{a \in \operatorname{Sing} u} \mathbb{B}^5_{\tau_0}(a) \\ u(x) & \text{otherwise }. \end{cases}$$

We easily verify that u_{ε} is smooth and coincides with u outside an ε neighborhood of Γ because $\sigma_0 \delta_0/9 < \varepsilon$ and $\tau_0 \leq \delta_0/2 < \varepsilon$. Moreover, by (III.23) and (III.24),

$$\begin{split} \int_{\mathbb{B}^5} |\nabla^2 u_{\varepsilon}|^2 \, dx &\leq \sum_{I \in \mathcal{I}} \int_{V_I^{\sigma_0}} |\nabla^2 v_{\sigma_0}|^2 \, dx \, + \sum_{a \in \operatorname{Sing} u} \int_{\mathbb{B}^5_{\tau_0}(a)} |\nabla^2 w_{\tau_0}|^2 \, dx \, + \, \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \\ &\leq c_{\mathbb{S}\mathbb{H}} \mathcal{H}^1(\Gamma) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \, . \end{split}$$

Corollary III.1 If u and u_{ε} are as in Theorem III.1, then u_{ε} approaches u_{ε} , $W^{2,2}$ weakly as $\varepsilon \to 0$.

Proof. One has the strong L^2 convergence $\lim_{\varepsilon \to 0} ||u_{\varepsilon} - u||_{L^2} = 0$, because the u_{ε} are uniformly bounded (by 1) and approach u pointwise on $\mathbb{B}^5 \setminus \text{Sing } u$. Moreover, for any sequence $1 \ge \varepsilon_i \downarrow 0$, we have by Theorem III.1 and Lemma II.1, the bound

$$\sup_{i} \|u_{\varepsilon_{i}}\|_{W^{2,2}}^{2} < c_{m} \left(4 + \int_{\mathbb{B}^{5}} |\nabla^{2}u|^{2} dx + c_{\mathbb{SH}} \mathcal{H}^{1}(\Gamma)\right) < \infty.$$

By the weak^{*}(=weak) compactness of the closed ball in $W^{2,2}(\mathbb{B}^5, \mathbb{R}^\ell)$, the sequence u_{ε_i} contains a subequence $u_{\varepsilon_{i'}}$ that is $W^{2,2}$ weakly convergent to some $w \in W^{2,2}(\mathbb{B}^5, \mathbb{R}^\ell)$. But, w, being by Rellich's theorem, the strong L^2 limit of the $u_{\varepsilon_{i'}}$, must necessarily be the original map u. Since any subsequence of u_{ε} subconverges to the same limit u and since the weak^{*} (=weak) $W^{2,2}$ topology on bounded sets is metrizable, the original family u_{ε} converges $W^{2,2}$ weakly to u.

Remark III.1 In Theorem III.1, one may replace c_{SH} by the optimal constant

$$\tilde{c}_{\mathbb{SH}} = \inf \left\{ \int_{\mathbb{S}^4} \left| \nabla_{tan}^2 \omega \right|^2 d\mathcal{H}^4 : \omega \in \mathcal{C}^{\infty}(\mathbb{S}^4, \mathbb{S}^3) \text{ and } \llbracket \omega \rrbracket = \llbracket \mathbb{SH} \rrbracket \right\} \ .$$

Here, for any ω as above, we can first $W^{2,2}$ strongly approximate u by a map which equals $\omega(x-a)/|x-a|$ in $\mathbb{B}_{\delta_1}(a)$ for all $a \in \operatorname{Sing} u$ and some $0 < \delta_1 << \delta_0$. Then we repeat the proofs with SH replaced by ω .

IV Connecting Singularities with Controlled Length

Suppose $u \in \mathcal{R}$ with $\operatorname{Sing} u = \{a_1, a_2, \ldots, a_m\}$ as above. Our goal in this section is to connect the singular points a_i , together in pairs or to $\partial \mathbb{B}^5$, by some union of curves whose total length is bounded by an absolute constant multiple of the *Hessian energy*, that is,

$$c\int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx$$

This is therefore a bound on the length of a minimal connection for Sing u, which will allow us, in Theorem V.3 below, to combine Lemma III.2 and Theorem III.1 to obtain the desired sequential weak density of $\mathcal{C}^{\infty}(\mathbb{B}^5, \mathbb{S}^3)$ in $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$.

Using the surjectivity of the suspension of the Hopf map, we readily verify that each *regular* value $p \in \mathbb{S}^3 \setminus \{(-1, 0, 0, 0), (1, 0, 0, 0)\}$ of u gives a level surface

$$\Sigma = u^{-1}\{p\}$$

which necessarily contains all the singular points a_i of u. Note that $\Sigma = u^{-1}\{p\}$ is smoothly embedded away from the a_i with standard orientation $\omega_{\Sigma} \equiv *u^{\#}\omega_{\mathbb{S}^3}/|u^{\#}\omega_{\mathbb{S}^3}|$, induced from u. Concerning the behavior near a_i , the punctured neighborhood

$$\Sigma \cap \mathbb{B}_{\delta_0}(a_i) \setminus \{a_i\}$$

is simply a truncated cone whose boundary

$$\Gamma_i = \Sigma \cap \partial \mathbb{B}_{\delta_0}(a_i)$$

is a planar circle in the 3-sphere $\partial \mathbb{B}_{\delta_0}(a_i) \cap (\{\delta p_0\} \times \mathbb{R}^4)$ where $p = (p_0, p_1, p_2, p_3)$.

We will eventually choose the desired "connecting" curves all to lie on one such level surface Σ .

IV.1 Estimates for Choosing the Level Surface $\Sigma = u^{-1}\{p\}$

We first recall the 3 Jacobian $J_3u = \| \wedge_3 Du \|$ and apply the coarea formula [Fe], §3.2.12 with

$$g = \frac{|\nabla u|^4 + |\nabla^2 u|^2}{J_3 u}$$

to obtain the relation

$$\int_{\mathbb{S}^3} \int_{u^{-1}\{p\}} \frac{|\nabla u|^4 + |\nabla^2 u|^2}{J_3 u} \, d\mathcal{H}^2 \, d\mathcal{H}^3 p = \int_{\mathbb{B}^5} \left(|\nabla u|^4 + |\nabla^2 u|^2 \right) \, dx \,. \tag{IV.25}$$

Moreover, since $||u||_{L^{\infty}} = 1$, we also have (see [MR]) the integral inequality

$$\int_{\mathbb{B}^5} |\nabla u|^4 \le c \int_{\mathbb{B}^5} |\nabla^2 u|^2 dx .$$
 (IV.26)

In case u is constant on $\partial \mathbb{B}^5$, we may verify this by computing

$$\begin{split} \int_{\mathbb{B}^5} |\nabla u|^4 &= \int_{\mathbb{B}^5} (\nabla u \cdot \nabla u) |\nabla u|^2 \, dx \\ &= \int_{\mathbb{B}^5} \left[\operatorname{div} \left(u \nabla u |\nabla u|^2 \right) \, - \, u \cdot \Delta u |\nabla u|^2 \, - \, u \nabla u \cdot \nabla \left(|\nabla u|^2 \right) \right] \, dx \\ &\leq 0 \, + \, 5 \int_{\mathbb{B}^5} |\nabla^2 u| |\nabla u|^2 \, dx \, + \, 2 \int_{\mathbb{B}^5} |\nabla^2 u| |\nabla u|^2 \, dx \\ &\leq \frac{1}{2} \int_{\mathbb{B}^5} |\nabla u|^4 \, dx \, + \, \frac{49}{2} \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx. \end{split}$$

In the general case, we write $u = \sum_{i=1}^{\infty} \lambda_i u$ where $\{\lambda_i\}$ is a partition of unity adapted to a family of Whitney cubes for \mathbb{B}^5 . See [MR]. (The above inequality is true even with the constraint $||u||_{BMO} \leq 1$ in place of $||u||_{L^{\infty}} \leq 1$ [MR].)

By (IV.25) and (IV.26) we may now choose a regular value $p \in \mathbb{S}^3$ of u so that

$$\int_{u^{-1}\{p\}} \frac{|\nabla u|^4 + |\nabla^2 u|^2}{J_3 u} \, d\mathcal{H}^2 \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \,. \tag{IV.27}$$

By increasing c we will also insist that $|p_0|$ is small, say, $|p_0| < 1/100$. This smallness will be useful in guaranteeing that each tangent plane Tan (Σ, x) , for $x \in \Sigma \cap \bigcup_{i=1}^m \mathbb{B}_{\delta_0}(a_i) \setminus \{a_i\}$, is close to $\{0\} \times \mathbb{R}^4$.

IV.2 A Pull-back Normal Framing for $\Sigma = u^{-1}\{p\}$

Suppose again that $p = (p_0, p_1, p_2, p_3) \in \mathbb{S}^3 \setminus \{(-1, 0, 0, 0), (1, 0, 0, 0)\}$ is a regular value of *u*. Then

$$\eta_1 = \left(-\sqrt{1-p_0^2}, \frac{p_0 p_1}{\sqrt{1-p_0^2}}, \frac{p_0 p_2}{\sqrt{1-p_0^2}}, \frac{p_0 p_3}{\sqrt{1-p_0^2}}\right)$$

is the unit vector tangent at p to the geodesic that runs from (1, 0, 0, 0) through p to (-1, 0, 0, 0). We may choose two other vectors

$$\eta_2, \ \eta_3 \in \operatorname{Tan}\left(\{p_0\} \times \sqrt{1 - p_0^2} \ \mathbb{S}^2, p\right) \subset \operatorname{Tan}(\mathbb{S}^3, p)$$

so that η_1, η_2, η_3 becomes an orthonormal basis for $\operatorname{Tan}(\mathbb{S}^3, p)$. Since p is a regular value for u, these three vectors lift to three unique smooth linearly independent normal vectorfields τ_1, τ_2, τ_3 along $\Sigma = u^{-1}\{p\}$. That is, at each point $x \in \Sigma$,

$$\tau_j(x) \perp \Sigma$$
 at x and $Du(x)[\tau_j(x)] = \eta_j$

for j = 1, 2, 3.

Near each singularity a_i the lifted vector fields τ_1, τ_2, τ_3 are also orthonormal. In fact, for any point $x \in \Sigma \cap \mathbb{B}_{\delta_0}(a_i), \frac{x_0 - a_{i0}}{|x - a_i|} = p_0$, and

$$\tau_1(x) = \left(-\sqrt{1-p_0^2}, \frac{p_0}{\sqrt{1-p_0^2}} \frac{x_1 - a_{i1}}{|x - a_i|}, \frac{p_0}{\sqrt{1-p_0^2}} \frac{x_2 - a_{i2}}{|x - a_i|}, \frac{p_0}{\sqrt{1-p_0^2}} \frac{x_3 - a_{i3}}{|x - a_i|}\right) .$$
(IV.28)

Also $\tau_1(x), \tau_2(x), \tau_3(x)$ are orthonormal for such x because the Hopf map is horizontally orthogonal and the lifts $\tau_2(x), \tau_3(x)$ are tangent to the 3 sphere $\{p_0\} \times \sqrt{1-p_0^2} \mathbb{S}^3$.

On the remainder of the surface $\Sigma \setminus \bigcup_{i=1}^{m} \mathbb{B}_{\delta_0}(a_i)$, the linearly independent vector fields τ_1, τ_2, τ_3 are not necessarily orthonormal, and we use their Gram-Schmidt orthonormalizations

$$\begin{split} \tilde{\tau}_1 &= \frac{\tau_1}{|\tau_1|} , \\ \tilde{\tau}_2 &= \frac{\tau_2 - (\tilde{\tau}_1 \cdot \tau_2)\tilde{\tau}_1}{|\tau_2 - (\tilde{\tau}_1 \cdot \tau_2)\tilde{\tau}_1|} = \frac{\tau_2 - (\tilde{\tau}_1 \cdot \tau_2)\tilde{\tau}_1}{|\tilde{\tau}_1 \wedge \tau_2|} , \\ \tilde{\tau}_3 &= \frac{\tau_3 - (\tilde{\tau}_1 \cdot \tau_3)\tilde{\tau}_1 - (\tilde{\tau}_2 \cdot \tau_3)\tilde{\tau}_2}{|\tau_3 - (\tilde{\tau}_1 \cdot \tau_3)\tilde{\tau}_1 - (\tilde{\tau}_2 \cdot \tau_3)\tilde{\tau}_2|} = \frac{\tau_3 - (\tilde{\tau}_1 \cdot \tau_3)\tilde{\tau}_1 - (\tilde{\tau}_2 \cdot \tau_3)\tilde{\tau}_2}{|\tilde{\tau}_1 \wedge \tilde{\tau}_2 \wedge \tau_3|} , \end{split}$$

which provide an *orthonormal framing* for the unit normal bundle of Σ .

We need to estimate the total variation of these orthonormalizations. Noting that $|\nabla\left(\frac{\tau}{|\tau|}\right)| \leq 2\frac{|\nabla\tau|}{|\tau|}$ for any differentiable τ , we see that

$$\begin{split} |\nabla \tilde{\tau}_{1}| &\leq 2\frac{|\nabla \tau_{1}|}{|\tau_{1}|} \leq 2\frac{|\nabla \tau_{1}||\tau_{1}||\tau_{2}||\tau_{3}|}{|\tau_{1}||\tau_{1} \wedge \tau_{2} \wedge \tau_{3}|} = 2\frac{|\tau_{2}||\tau_{3}||\nabla \tau_{1}|}{|\tau_{1} \wedge \tau_{2} \wedge \tau_{3}|}, \\ |\nabla \tilde{\tau}_{2}| &= 2\left[\frac{\tau_{2} - (\tilde{\tau}_{1} \cdot \tau_{2})\tilde{\tau}_{1}}{|\tilde{\tau}_{1} \wedge \tau_{2}|}\right] \leq 2\left[\frac{2|\nabla \tau_{2}| + 2|\tau_{2}||\nabla \tilde{\tau}_{1}|}{|\tau_{1} \wedge \tau_{2}||\tau_{1}|^{-1}}\right] \\ &\leq 8\left[\frac{|\tau_{1}||\nabla \tau_{2}| + |\tau_{2}||\nabla \tau_{1}|}{|\tau_{1} \wedge \tau_{2}|} \cdot \frac{|\tau_{1} \wedge \tau_{2}||\tau_{3}|}{|\tau_{1} \wedge \tau_{2} \wedge \tau_{3}|}\right] = 8\left[\frac{|\tau_{2}||\tau_{3}||\nabla \tau_{1}| + |\tau_{1}||\tau_{3}||\nabla \tau_{2}|}{|\tau_{1} \wedge \tau_{2} \wedge \tau_{3}|}\right], \\ |\nabla \tilde{\tau}_{3}| &\leq 2\left[\frac{3|\nabla \tau_{3}| + 2|\tau_{3}||\nabla \tilde{\tau}_{1}| + 2|\tau_{3}||\nabla \tilde{\tau}_{2}|}{|\tilde{\tau}_{1} \wedge \tilde{\tau}_{2} \wedge \tau_{3}|}\right] \\ &\leq 32\left[\frac{|\nabla \tau_{3}| + |\tau_{3}||\tau_{1}|^{-1}|\nabla \tau_{1}| + |\tau_{3}|\left(\frac{|\tau_{1}||\nabla \tau_{2}| + |\tau_{2}||\nabla \tau_{1}|}{|\tau_{1} \wedge \tau_{2}|}\right)}{|\frac{\tau_{1}}{|\tau_{1}} \wedge \left(\frac{|\tau_{2}||\tau_{3}||\nabla \tau_{1}| + |\tau_{1}||\tau_{3}||\nabla \tau_{2}|}{|\tau_{1} \wedge \tau_{2}|}\right)}\right] \\ &\leq 32\left[\frac{|\tau_{1}||\tau_{2}||\nabla \tau_{3}| + |\tau_{2}||\tau_{3}||\nabla \tau_{1}| + |\tau_{1}||\tau_{3}||\nabla \tau_{2}|}{|\tau_{1} \wedge \tau_{2} \wedge \tau_{3}|}\right]. \end{split}$$

Inasmuch as

 $|\tau_j| \leq |\nabla u| , \quad |\nabla \tau_j| \leq |\nabla^2 u| , \quad |\tau_1 \wedge \tau_2 \wedge \tau_3| = J_3 u ,$

we deduce the general pointwise estimate

$$|\nabla \tilde{\tau}_j| \leq c \frac{|\nabla u|^2 |\nabla^2 u|}{|J_3 u|} \leq c \frac{|\nabla u|^4 + |\nabla^2 u|^2}{|J_3 u|}$$

which we may integrate using (IV.27) to obtain the variation estimate along $\Sigma = u^{-1} \{p\}$,

$$\int_{\Sigma} |\nabla \tilde{\tau}_j| \, d\mathcal{H}^2 \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \, . \tag{IV.29}$$

IV.3 Twisting of the Normal Frame $\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3$ About Each Singularity a_i

First we recall from[MS], §5-6 that the Grassmannian

 $\tilde{G}_2(\mathbb{R}^5)$

of *oriented* 2 planes through the origin in \mathbb{R}^5 is a compact smooth manifold of dimension 6. It may be identified with the set of simple unit 2 vectors in \mathbb{R}^5 ,

$$\{v \wedge w \in \wedge_2 \mathbb{R}^5 : v \in \mathbb{S}^4, w \in \mathbb{S}^4, v \cdot w = 0\}.$$

We will use the distance |P - Q| on $\tilde{G}_2(\mathbb{R}^5)$ given by this embedding into $\wedge_2 \mathbb{R}^5 \approx \mathbb{R}^{10}$.

For a fixed plane $P \in \tilde{G}_2(\mathbb{R}^5)$, the set of *nontransverse* 2 planes

$$\mathcal{Q}_P = \left\{ Q \in \tilde{G}_2(\mathbb{R}^5) : P \cap Q \neq \{0\} \right\}$$

is a (Schubert) subvariety of dimension 1 + 3 = 4 because every $Q \in \mathcal{Q}_P \setminus \{P\}$ equals $v \wedge w$ for some $w \in \mathbb{S}^4 \cap P$ and some $v \in \mathbb{S}^4 \cap w^{\perp}$. These subvarieties are all orthogonally isomorphic and, in particular, have the same finite 4 dimensional Hausdorff measure. Also

$$Y_P = \{ Q \in \mathcal{Q}_P : P^\perp \cap Q \neq \{0\} \}$$

is a closed subvariety of dimension 3, and $Q_P \setminus Y_P$ is a smooth submanifold.

Then, near each singularity a_i , the set of 2 planes nontransverse to the cone $\Sigma \cap \mathbb{B}_{\delta_0}(a_i) \setminus \{a_i\}$,

$$W = \bigcup_{x \in \Sigma \cap \mathbb{B}_{\delta_0}(a_i) \setminus \{a_i\}} \mathcal{Q}_{\operatorname{Tan}(\Sigma, x)} = \bigcup_{x \in \Gamma_i} \mathcal{Q}_{\operatorname{Tan}(\Sigma, x)}$$

has dimension only $1 + 4 = 5 < 6 = \dim \tilde{G}_2(\mathbb{R}^5)$. Note also its location, that W is, by the smallness of $|p_0|$, contained in the tubular neighborhood

$$V \equiv \{Q \in \tilde{G}_2(\mathbb{R}^5) : \text{dist}(Q, \tilde{G}_2(\{0\} \times \mathbb{R}^4) < 1/50\},\$$

of the 4 dimensional subgrassmannian $\tilde{G}_2(\{0\} \times \mathbb{R}^4)$.

We now describe explicitly how the framing $\tilde{\tau}_1(x)$, $\tilde{\tau}_2(x)$, $\tilde{\tau}_3(x)$ twists once as x goes around each circle Γ_i . The problem is that the vectors $\tilde{\tau}_j(x)$ lie in the normal space Nor (Σ, x) which also varies with x. To measure the rotation of the frame $\tilde{\tau}_1(x)$, $\tilde{\tau}_2(x)$, $\tilde{\tau}_3(x)$, as x traverses the circle Γ_i , it is necessary to use some reference frame for Nor (Σ, x) .

We can induce such a frame from some fixed unit vectors in \mathbb{R}^5 as follows: Consider a fixed $Q \in \tilde{G}_2(\mathbb{R}^5) \setminus W$, and suppose $Q = v \wedge w$ with v, w being an orthonormal basis for Q. For each $x \in \Gamma_i$, the orthogonal projections of v, w onto $\operatorname{Nor}(\Sigma, x)$ are linearly independent; let $\sigma_1(x), \sigma_2(x)$ be their Gram-Schmidt orthonormalizations. We then get $\sigma_3(x)$ by using the map u to pull-back the orientation of \mathbb{S}^3 to $\operatorname{Nor}(\Sigma, x)$ so that the resulting orienting 3 vector is $\sigma_1(x) \wedge \sigma_2(x) \wedge \sigma_3(x)$ for a unique unit vector $\sigma_3(x) \in \operatorname{Nor}(\Sigma, x)$ orthogonal to $\sigma_1(x), \sigma_2(x)$. We view

$$\sigma_1(x), \ \sigma_2(x), \ \sigma_3(x)$$

as the *reference frame* determined by the fixed vectors v, w. For each $x \in \Gamma_i$, there is then a unique rotation $\gamma(x) \in \mathbb{SO}(3)$ so that

$$\gamma(x) \left[\sigma_j(x)\right] = \tilde{\tau}_j(x) \text{ for } j = 1, 2, 3$$

In the next paragraph we will check that $\gamma : \Gamma_i \to \mathbb{SO}(3)$ is a single geodesic circle in $\mathbb{SO}(3)$. The twisting of the frame $\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3$ around the circle Γ_i is reflected in the fact that such a circle induces the nonzero element in $\Pi_1(\mathbb{SO}(3)) \simeq \mathbb{Z}_2$.

In the special case v = (1, 0, 0, 0), the normalized orthogonal projection of v onto Nor (Σ, x) is, by (IV.4), simply

$$\sigma_1(x) = \tilde{\tau}_1(x) \; .$$

So in this case, each orthogonal matrix $\gamma(x)$ is a rotation about the first axis, and one checks that, as x traverses the circle Γ_i once, these rotations complete a single geodesic circle in $\mathbb{SO}(3)$. For another choice of v, the geodesic circle $\gamma: \Gamma_i \to \mathbb{SO}(3)$ involves a circle of rotations about a different axis combined with a single orthogonal change of coordinates.

IV.4 A Reference Normal Framing for $\Sigma = u^{-1}\{p\}$

The above calculations near the a_i suggest comparing on the whole surface $u^{-1}\{p\}$ the pull-back normal framing $\tilde{\tau}_1(x), \tilde{\tau}_2(x), \tilde{\tau}_3(x)$ with some reference normal framing $\sigma_1(x), \sigma_2(x), \sigma_3(x)$ induced by two fixed vectors v, w. Unfortunately, there may not exist fixed vectors v, w so that the corresponding reference framing $\sigma_1, \sigma_2, \sigma_3$ is defined everywhere on Σ . In this section we show that any orthonormal basis v, w of almost every oriented 2 plane $Q \in \tilde{G}_2(\mathbb{R}^5)$ gives a reference framing on Σ which is well-defined and smooth except at finitely many discontinuities

$$b_1, b_2, \ldots, b_n$$
.

We will then need to connect the original singularities a_i to the b_j (or to $\partial \mathbb{B}^5$) and, in §IV.6, choose other curves to connect the b_j to each other (or to $\partial \mathbb{B}^5$), with all curves having total length bounded by a multiple of $\int_{\mathbb{R}^5} |\nabla^2 u|^2 dx$.

To find a suitable $Q = v \wedge w$, we will first rule out the exceptional planes that contain some nonzero vector normal to Σ at some point $x \in \Sigma$. The really exceptional 2 planes that lie completely in some normal space

$$X = \bigcup_{x \in \Sigma} X_x$$
 where $X_x = \{Q \in \tilde{G}_2(\mathbb{R}^5) : Q \subset \operatorname{Nor}(\Sigma, x)\}$.

Then X has dimension at most $2 + 2 = 4 < 6 = \dim \tilde{G}_2(\mathbb{R}^5)$ because $\dim \Sigma = 2$ and $\dim \tilde{G}_2(\mathbb{R}^3) = 2$. The remaining set of exceptional planes

$$Y = \bigcup_{x \in \Sigma} Y_x \quad \text{where} \quad Y_x = \{Q \in \tilde{G}_2(\mathbb{R}^5) : \dim (Q \cap \operatorname{Nor}(\Sigma, x)) = 1\}$$

has dimension at most $2+2+1=5<6=\dim \tilde{G}_2(\mathbb{R}^5)$ because

$$Y_x = \{e \land w : e \in \mathbb{S}^4 \cap \operatorname{Nor}(\Sigma, x) \text{ and } w \in \mathbb{S}^4 \cap \operatorname{Tan}(\Sigma, x)\}$$

In terms of our previous notation, $Y_{\operatorname{Tan}(\Sigma,x)} = X_x \cup Y_x$.

Any unit vector $e \notin Nor(\Sigma, x)$ has a nonzero orthogonal projection

 $e_T(x)$

onto $\operatorname{Tan}(\Sigma, x)$.

Normalizing

$$\tilde{e}_T(x) = \frac{e_T(x)}{|e_T(x)|} ,$$

we find a unique unit vector $e_{\Sigma}(x) \in \operatorname{Tan}(\Sigma, x)$ orthogonal to $e_T(x)$ so that $\tilde{e}_T(x) \wedge e_{\Sigma}(x)$ is the standard orientation of $\operatorname{Tan}(\Sigma, x)$. Then

$$e \cdot e_{\Sigma}(x) = (e - e_T(x)) \cdot e_{\Sigma}(x) + e_T(x) \cdot e_{\Sigma}(x) = 0 + 0$$

because $e - e_T(x) \in Nor(\Sigma, x)$. Thus,

$$\tilde{e}_T(x), e_{\Sigma}(x), \tilde{\tau}_1(x), \tilde{\tau}_2(x), \tilde{\tau}_3(x),$$

is an orthonormal basis for \mathbb{R}^5 .

Away from the 4 dimensional unit normal bundle

$$\mathcal{N}_{\Sigma} = \{(x, e) : x \in \Sigma, e \in \mathbb{S}^4 \cap \operatorname{Nor}(\Sigma, x)\},\$$

we now define the basic map

$$\Phi : (\Sigma \times \mathbb{S}^4) \setminus \mathcal{N}_{\Sigma} \to G_2(\mathbb{R}^5) , \quad \Phi(x, e) = e \wedge e_{\Sigma}(x) ,$$

to parameterize the planes nontransverse to Σ in $\tilde{G}_2(\mathbb{R}^5) \setminus Y$. Incidentally, these do include the 2 dimensional family of tangent planes

$$Z = \{ Q \in \tilde{G}_2(\mathbb{R}^5) : Q = \operatorname{Tan}(\Sigma, x) \text{ for some } x \in \Sigma \} .$$

In terms of the notation at the beginning of this section, for any 2 plane $Q \notin Y$,

$$Q \in \mathcal{Q}_{\operatorname{Tan}(\Sigma,x)} \iff Q = \Phi(x,e) \text{ for some } e \in \mathbb{S}^4 \setminus \operatorname{Nor}(\Sigma,x) .$$

Note that $\Phi(x, -e) = \Phi(x, e)$, and, in fact,

$$\Phi(x, e') = \Phi(x, e) \in \tilde{G}_2(\mathbb{R}^5) \setminus Y \quad \Longleftrightarrow \quad e' = \pm e \; .$$

It is also easy to describe the behavior of Φ at the singular set \mathcal{N}_{Σ} . A 2 plane Q belongs to Y, that is, $Q = v \wedge w$ for some $v \in \operatorname{Nor}(\Sigma, x) \cap \mathbb{S}^4$ and $w \in \operatorname{Tan}(\Sigma, x) \cap \mathbb{S}^4$, if and only if $Q = \lim_{n \to \infty} \Phi(x_n, v_n)$ for some sequence $(x_n, v_n) \in (\Sigma \times \mathbb{S}^4) \setminus \mathcal{N}_{\Sigma}$ approaching (x, v). The map Φ essentially "blows-up" the 4 dimensional \mathcal{N}_{Σ} to the 5 dimensional Y, and, in particular, any smooth curve in $\tilde{G}_2(\mathbb{R}^5)$ transverse to Ylifts by Φ to a pair of antipodal curves in $\Sigma \times \mathbb{S}^4$ extending continuously transversally across \mathcal{N}_{Σ} .

We now choose and fix $Q \in G^2(\mathbb{R}^5)$ so that neither Q nor -Q belong to the 5 dimensional exceptional set $X \cup Y \cup Z$ and both are regular values of Φ . We may also insist that Q is close to the 3 dimensional Schubert cycle

$$H = \{ (1, 0, \dots, 0) \land (0, v_1, v_2, v_3, v_4) : v_1^2 + \dots + v_4^2 = 1 \},\$$

say dist(Q, H) < 1/100. This will guarantee that Q is well separated from the open region V that contains W.

Since

$$\dim(\Sigma \times \mathbb{S}^4) = 6 = \dim G_2(\mathbb{R}^5)$$

 $\Phi^{-1}\{Q, -Q\}$ is a finite set, say

$$\Phi^{-1}\{Q, -Q\} = \{(b_1, e_1), (b_1, -e_1), (b_2, e_2), (b_2, -e_2), \dots, (b_n, e_n), (b_n, -e_n)\}$$

We now see that the reference framing $\sigma_1(x), \sigma_2(x), \sigma_3(x)$ of Nor (Σ, x) corresponding to any fixed orthonormal basis v, w of Q fails to exist precisely at the points b_1, b_2, \ldots, b_n . As before, we now have the smooth mapping

$$\gamma : \Sigma \setminus \{a_1, \dots, a_m, b_1, \dots, b_n\} \to \mathbb{SO}(3)$$

which is defined by the condition $\gamma(x) [\sigma_j(x)] = \tilde{\tau}_j(x)$ for j = 1, 2, 3 or, in column-vector notation,

$$\gamma = \left[\sigma_1 \sigma_2 \sigma_3\right]^{-1} \left[\tilde{\tau}_1 \tilde{\tau}_2 \tilde{\tau}_3\right] \; .$$

Asymptotic Behavior of γ Near the Singularities a_i and b_j IV.5

As discussed in §3.1, the map u, the surface $\Sigma = u^{-1}\{p\}$, the frames $\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3$ and $\sigma_1, \sigma_2, \sigma_3$, and the rotation field γ are all precisely known near a singularity a_i in the cone neighborhood $\Sigma \cap \mathbb{B}_{\delta_0}(a_i) \setminus \{a_i\}$. In particular, γ is homogeneous of degree 0 on $\Sigma \cap \mathbb{B}_{\delta_0}(a_i) \setminus \{a_i\}$; on its boundary $\gamma | \Gamma_i$ is a constant-speed geodesic circle.

At each b_i , the frame $\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3$ is smooth, but the frame $\sigma_1, \sigma_2, \sigma_3$, and hence the rotation γ , has an essential discontinuity. Nevertheless, we may deduce some of the asymptotic behavior at b_j because $\pm Q$ were chosen to be regular values of Φ . In fact, we'll verify: T

The tangent map
$$\gamma_j$$
 of γ at b_j ,

$$\gamma_j: \operatorname{Tan}(\Sigma, b_j) \cap \mathbb{B}_1(0) \to \mathbb{SO}(3) , \quad \gamma_j(x) = \lim_{r \to 0} \gamma \left| \exp_{b_j}^{\Sigma}(rx) \right| ,$$

exists and is the homogeneous degree 0 extension of some reparameterization of a geodesic circle in $\mathbb{SO}(3)$. In particular, for small positive δ , $\gamma \mid (\Sigma \cap \partial \mathbb{B}_{\delta}(b_i))$ is an embedded circle inducing the nonzero element of $\Pi_1(\mathbb{SO}(3)) \simeq \mathbb{Z}_2$.

To check this, we use, as above, the more convenient orthonormal basis $\{e_j, e_{j\Sigma}\}$ for Q; that is,

$$e_{j\Sigma} = e_{j\Sigma}(b_j) \in \operatorname{Tan}(\Sigma, b_j)$$
 and $Q = e_j \wedge e_{j\Sigma} = \Phi(b_j, \pm e_j)$.

Then, for $x \in \Sigma$, let

$$e_j^N(x)$$
, $e_{j\Sigma}^N(x)$

denote the orthogonal projections of the fixed vectors e_i , $e_{i\Sigma}$ onto Nor (Σ, x) , and

$$\hat{e}_{i}^{N}(x)$$

denote the cross-product of $e_{j\Sigma}^{N}(x)$ and $e_{j}^{N}(x)$ in Nor (Σ, x) . These three vectorfields are smooth near b_{j} with

$$e_j^N(b_j) \neq 0$$
, $e_j^N(b_j) = 0$, $\hat{e}_j^N(b_j) = 0$

Here our insistence that $\pm Q \notin Z$ guarantees that Q is not tangent to Σ at b_j . Let g_j denote the orthogonal projection of \mathbb{R}^5 onto the 2 plane

$$P_j = \operatorname{Nor}(\Sigma, b_j) \cap \left[e_j^N(b_j)\right]^{\perp}$$

Then $G_j(x) = g_j \circ e_j^N(x)$ defines a smooth map from a Σ neighborhood of b_j to P_j , which has, by the regularity of Φ at (b_j, \tilde{e}_j) , a simple, nondegenerate zero at b_j (of degree ± 1). It follows that as x circulates $\Sigma \cap \partial \mathbb{B}_{\delta}(b_j)$ once, for δ small, $G_j(x)$ and similarly $g_j \circ \hat{e}_j^N(x)$, circulate 0 once in P_j . Returning to the original basis v, w of Q, we now check that, as x circulates $\Sigma \cap \partial \mathbb{B}_{\delta}(b_j)$ once, the frame $\sigma_1(x), \sigma_2(x), \sigma_3(x)$ approximately, and asymptotically as $\delta \to 0$, rotates once about the vector $e_j^N(b_j)$. Since the frame $\tilde{\tau}_1(x), \tilde{\tau}_2(x), \tilde{\tau}_3(x)$ is smooth at b_j , we see that the map γ has, at b_j , a tangent map γ_j as described above.

IV.6 Connecting the Singularities a_i to the b_j or to $\partial \mathbb{B}^5$

Here we will find curves reaching all the a_i and b_j . Concerning the a_i , we recall from [Br],§III,10] that $\mathbb{SO}(3)$ is isometric to $\mathbb{RP}^3 \simeq \mathbb{S}^3/\{x \sim -x\}$. Any geodesic circle Γ in $\mathbb{SO}(3)$ generates $\Pi_1(\mathbb{SO}(3)) \simeq \mathbb{Z}_2$ and lifts to a great circle $\tilde{\Gamma}$ in \mathbb{S}^3 . The rotations at maximal distance from Γ form another geodesic circle Γ^{\perp} and the nearest point retraction

$$\rho_{\Gamma}: \mathbb{SO}(3) \setminus \Gamma \to \Gamma^{\perp}$$

is induced by the standard nearest point retraction

$$\rho_{\tilde{\Gamma}}: \mathbb{S}^3 \setminus \tilde{\Gamma} \to \tilde{\Gamma}^\perp$$

In particular,

$$|\nabla \rho_{\Gamma}(\zeta)| \leq \frac{c}{\operatorname{dist}(\zeta, \Gamma)} \text{ for } \zeta \in \mathbb{SO}(3) .$$
 (IV.30)

Any geodesic circle Γ' in SO(3) that does *not* intersect Γ is mapped diffeomorphically by ρ_{Γ} onto the circle Γ^{\perp} . We deduce that if Γ is chosen to miss the asymptotic circles

$$\gamma(\Gamma_i)$$
 and $\gamma_j (\operatorname{Tan}(\Sigma, b_j) \cap \mathbb{S}^4)$

associated with the singularities a_i and b_j , then, on Σ , the composition $\rho_{\Gamma} \circ \gamma$ maps every sufficiently small circle

$$\Sigma \cap \partial \mathbb{B}_{\delta}(a_i)$$
 and $\Sigma \cap \partial \mathbb{B}_{\delta}(b_j)$

diffeomorphically onto the circle Γ^{\perp} .

Under the identification of SO(3) with \mathbb{RP}^3 , SO(4) acts transitively by isometry on

 $\mathcal{G} = \{ \text{geodesic circles } \Gamma \subset \mathbb{SO}(3) \} .$

Then \mathcal{G} is compact and admits a positive invariant measure $\mu_{\mathcal{G}}$. For $\mu_{\mathcal{G}}$ almost every circle Γ ,

$$\Gamma \cap \gamma(\Gamma_i) = \emptyset$$
 for $i = 1, ..., m$, $\Gamma \cap \gamma_j (\operatorname{Tan}(\Sigma, b_j) \cap \mathbb{S}^4) = \emptyset$ for $j = 1, ..., n$,

and Γ is transverse to the map γ . In particular, $\gamma^{-1}(\Gamma)$ is a finite subset

 $\{c_1, c_2, \ldots, c_\ell\}$

of Σ . For such a circle Γ and any regular value $z \in \Gamma^{\perp}$ of

$$\rho_{\Gamma} \circ \gamma : \Sigma \setminus \{a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_\ell\} \rightarrow \Gamma^{\perp},$$

the fiber

$$A = (\rho_{\Gamma} \circ \gamma)^{-1} \{z\}$$

is a smooth embedded 1 dimensional submanifold with

$$(\operatorname{Clos} A) \setminus A \subset \{a_1, \ldots, a_m, b_1, \ldots, b_n, c_1, \ldots, c_\ell\} \cup \partial \mathbb{B}^5$$
.

We also can deduce the local behavior of A near each of the points a_i, b_j, c_k . From the above description of the asymptotic behavior of γ near a_i and b_j , we see that

$$\mathbb{B}_{\delta_0}(a_i) \cap \operatorname{Clos} A$$

is simply a single line segment with one <u>endpoint</u> a_i while

$$\mathbb{B}_{\delta}(b_i) \cap \operatorname{Clos} A$$

is, for δ sufficiently small, a single smooth segment with one <u>endpoint</u> b_j . On the other hand,

$$\mathbb{B}_{\delta}(c_k) \cap \operatorname{Clos} A$$

is, for δ sufficiently small, a single smooth segment with an <u>interior</u> point c_k . To see this, observe that, for the lifted map $\rho_{\tilde{\Gamma}} : \mathbb{S}^3 \setminus \tilde{\Gamma} \to \tilde{\Gamma}^{\perp}$ and any point $\tilde{z} \in \tilde{\Gamma}^{\perp}$, the fiber $\rho_{\tilde{S}}^{-1}\{z\}$ is an open great hemisphere, centered at z, with boundary $\tilde{\Gamma}$. It follows for the downstairs map ρ_{Γ} that $E_z = \operatorname{Clos}(\rho_{\Gamma}^{-1}\{z\})$ is a full geodesic 2 sphere containing z and the circle Γ . Since the surface $\gamma(\Sigma)$ intersects the circle Γ transversely at a finite set, this sphere E_z is also transverse to $\gamma(\Sigma)$ near this set. Thus, for δ sufficiently small, $\mathbb{B}_{\delta}(c_k) \cap \operatorname{Clos} A$, being mapped diffeomorphically by γ onto the intersection $E_z \cap \gamma(\Sigma \cap \mathbb{B}_{\delta}(c_k))$, is an open smooth segment containing c_k in its interior.

Combining this boundary behavior with the interior smoothness of the 1 manifold A, we now conclude that

 $\mathbb{B}^5 \cap Clos A$ globally consists of disjoint smooth segments joining pairs of points from

 $\{a_1,\ldots,a_m,b_1,\ldots,b_n\}\cup\partial\mathbb{B}^5$.

Moreover, each point a_i or b_j is the endpoint of precisely one segment.

IV.7 Estimating the Length of the Connecting Set A

The definition of the A depends on many choices:

- (1) the point $p \in \mathbb{S}^3$ near $\{0\} \times \mathbb{R}^4$, which determines the surface $\Sigma = u^{-1}\{p\}$,
- (2) the vectors $\eta_2, \eta_2, \eta_3 \in \operatorname{Tan}(\mathbb{S}^3, p)$, which determine the pull-back normal framing $\tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3$,
- (3) the vectors $v, w \in \mathbb{S}^4$, which determine the reference normal framing $\sigma_1, \sigma_2, \sigma_3$ and the rotation field $\gamma = [\sigma_1 \sigma_2 \sigma_3]^{-1} [\tilde{\tau}_1 \tilde{\tau}_2 \tilde{\tau}_3] : \Sigma \setminus \{b_1, \ldots, b_m\} \to \mathbb{SO}(3),$
- (4) the circle $\Gamma \subset \mathbb{SO}(3)$, which determines the retraction $\rho_{\Gamma} : \mathbb{SO}(3) \setminus \Gamma \to \Gamma^{\perp}$, and
- (5) the point $z \in \Gamma^{\perp}$, which finally gives $A = (\rho_{\Gamma} \circ \gamma)^{-1} \{z\}$.

We need to make suitable choices of these to get the desired length estimate for A. In §IV.1 we already used one coarea formula to choose $p \in \mathbb{S}^3$ to give the basic estimate (IV.25)

$$\int_{\Sigma} \frac{|\nabla u|^4 + |\nabla^2 u|^2}{J_3 u} \, d\mathcal{H}^2 \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \; ,$$

and the pull-back frame estimate (IV.29)

$$\int_{\Sigma} |\nabla \tilde{\tau}_j| \, d\mathcal{H}^2 \, \leq \, c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \, \, ,$$

independent of the choice of η_1, η_2, η_3 , then followed. For the choice of $z \in S^{\perp}$, we want to use another coarea formula, ([Fe], §3.2.22)

$$\int_{\Gamma^{\perp}} \mathcal{H}^1(\rho_{\Gamma} \circ \gamma)^{-1} \{z\} dz = \int_{\Sigma} |\nabla(\rho_{\Gamma} \circ \gamma)| d\mathcal{H}^2 .$$
 (IV.31)

To bound the righthand integral, we first use the chain rule and (IV.30) for the pointwise estimate

$$|\nabla(\rho_{\Gamma} \circ \gamma)(x)| = |\nabla(\rho_{\Gamma})(\gamma(x))| |\nabla\gamma(x)| \le \frac{c}{\operatorname{dist}(\gamma(x),\Gamma)} |\nabla\gamma(x)| .$$
 (IV.32)

Next we observe the finiteness of the integral

$$C \;=\; \int_{\mathcal{G}} \frac{1}{\operatorname{dist}(\zeta,\Gamma)} \, d\mu_{\mathcal{G}} \Gamma \;<\; \infty \;,$$

independent of the point $\zeta \in \mathbb{SO}(3)$. To verify this, we note that $\mu_{\mathcal{G}}(\mathcal{G}) < \infty$ and choose a smooth coordinate chart for $\mathbb{SO}(3)$ near ζ that maps ζ to $0 \in \mathbb{R}^3$ and that transforms circles into affine lines in \mathbb{R}^3 . Distances are comparable, and an affine line in $\mathbb{R}^3 \setminus \{0\}$ is described by its nearest point a to the origin and a direction in the plane a^{\perp} . Since

$$\mu_{\mathcal{G}}\{\Gamma \in \mathcal{G} : \zeta \in \Gamma\} = 0 ,$$

the finiteness of C now follows from the finiteness of the 3 dimensional integral

$$\int_{\mathbb{R}^3 \cap \mathbb{B}_1} |y|^{-1} \, dy \; .$$

We deduce from Fubini's Theorem, (IV.31), and (IV.32) that

$$\begin{split} \int_{\mathcal{G}} \int_{\Gamma^{\perp}} \mathcal{H}^{1}(\rho_{\Gamma} \circ \gamma)^{-1} \{z\} \, dz \, d\mu_{\mathcal{G}} \Gamma &\leq c \int_{\Sigma} |\nabla \gamma(x)| \int_{\mathcal{G}} \frac{1}{\operatorname{dist}\left(\gamma(x),\Gamma\right)} \, d\mu_{\mathcal{G}} \Gamma \, d\mathcal{H}^{2} x \\ &\leq c \, C \int_{\Sigma} |\nabla \gamma(x)| \, d\mathcal{H}^{2} x \; . \end{split}$$

Thus there exists a $\Gamma \in \mathcal{G}$ and $z \in \Gamma^{\perp}$ so that

$$\mathcal{H}^{1}(\rho_{\Gamma} \circ \gamma)^{-1}\{z\} \leq c \int_{\Sigma} |\nabla \gamma(x)| \, d\mathcal{H}^{2}x \,. \tag{IV.33}$$

To estimate the righthand side, recall the matrix formula

$$\gamma = \left[\sigma_1 \sigma_2 \sigma_3\right]^{-1} \left[\tilde{\tau}_1 \tilde{\tau}_2 \tilde{\tau}_3\right]$$

and use Cramer's rule and the product and quotient rules to deduce the pointwise bound

$$|\nabla \gamma(x)| \leq c \sum_{j=1}^{3} \left(|\nabla \sigma_j(x)| + |\nabla \tilde{\tau}_j(x)| \right) .$$
 (IV.34)

In light of (IV.29), it remains to bound each term $\int_{\Sigma} |\nabla \sigma_j(x)| d\mathcal{H}^2 x$ for j = 1, 2, 3.

For the first one, note that

$$|\nabla \sigma_1| = |\nabla \left(\frac{v^N}{|v^N|}\right)| \le 2\frac{|\nabla v^N|}{|v^N|}$$
(IV.35)

where $v^N(x)$ is the orthogonal projection of v onto the normal space $Nor(\Sigma, x)$ for each $x \in \Sigma$. The formula

$$v^N = \sum_{j=1}^3 (v \cdot \tilde{\tau}_j) \tilde{\tau}_j$$

and the product rule give the pointwise estimate for the numerator,

$$|\nabla v^N| \leq c \sum_{j=1}^3 |\nabla \tilde{\tau}_j| , \qquad (IV.36)$$

independent of the choice of $v \in \mathbb{S}^4$.

To estimate the denominator, we let v^L denote the orthogonal projection of v to any fixed 3 dimensional subspace L of \mathbb{R}^5 , and observe the finiteness

$$C_1 = \int_{\mathbb{S}^4} \frac{1}{|v^L|} d\mathcal{H}^4 v < \infty ,$$

independent of L. To verify this, we note that the projection of \mathbb{S}^4 to L vanishes along a great circle, and, near any point of this circle, the projection is bilipschitz equivalent to an orthogonal projection of \mathbb{R}^4 to \mathbb{R}^3 . So the finiteness of C_1 again follows from the finiteness of the 3 dimensional integral $\int_{\mathbb{R}^3 \cap \mathbb{B}_1} |y|^{-1} dy$.

By Fubini's Theorem, (IV.35), (IV.36), and (IV.29),

$$\begin{split} \int_{\mathbb{S}^4} \int_{\Sigma} |\nabla \sigma_1(x)| \, d\mathcal{H}^2 x \, d\mathcal{H}^4 v &\leq 2 \int_{\Sigma} |\nabla v^N(x)| \int_{\mathbb{S}^4} \frac{1}{|v^N(x)|} \, d\mathcal{H}^4 v \, d\mathcal{H}^2 x \\ &\leq 2C_1 \int_{\Sigma} |\nabla v^N(x)| \, d\mathcal{H}^2 x \\ &\leq c \sum_{j=1}^3 \int_{\Sigma} |\nabla \tilde{\tau}_j(x)| \, d\mathcal{H}^2 x \\ &\leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \; . \end{split}$$

So there exists a $v \in \mathbb{S}^4$ giving the σ_1 estimate

$$\int_{\Sigma} |\nabla \sigma_1(x)| \, d\mathcal{H}^2 x \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \,. \tag{IV.37}$$

Next we observe that $\sigma_2 = \frac{w_2}{|w_2|}$ where $w_2(x)$ is the orthogonal projection onto the 2 dimensional subspace Nor $(\Sigma, x) \cap \sigma_1^{\perp}$. We again find

$$|\nabla \sigma_2| = |\nabla \left(\frac{w_2}{|w_2|}\right)| \le 2\frac{|\nabla w_2|}{|w_2|}.$$
 (IV.38)

Now the formula

$$w_2 = \left[\sum_{j=1}^3 (w \cdot \tilde{\tau}_j) \tilde{\tau}_j\right] - (w \cdot \sigma_1) \sigma_1 ,$$

and the product rule give the pointwise estimate for the numerator,

$$|\nabla w_2| \leq c \left(|\nabla \sigma_1| + \sum_{j=1}^3 |\nabla \tilde{\tau}_j| \right) , \qquad (\text{IV.39})$$

independent of the choice $w \in \mathbb{S}^4$.

To estimate the denominator, we let w^M denote the orthogonal projection of w to any fixed 2 dimensional subspace M of the hyperplane $v^{\perp} = \sigma_1^{\perp}$, and observe the finiteness of the integral

$$C_2 = \int_{\mathbb{S}^4 \cap v^\perp} \frac{1}{|w^M|} d\mathcal{H}^3 w < \infty ,$$

independent of the choices of v or M. To verify this, we note that the projection of the 3 sphere $\mathbb{S}^4 \cap v^{\perp}$ to M vanishes along a great circle, where it is now bilipschitz equivalent to an orthogonal projection of \mathbb{R}^3 to \mathbb{R}^2 . So the finiteness of C_2 this time follows from the finiteness of the 2 dimensional integral

$$\begin{split} \int_{\mathbb{S}^4 \cap v^{\perp}} \int_{\Sigma} |\nabla \sigma_2(x)| \, d\mathcal{H}^2 x \, d\mathcal{H}^3 w &\leq 2 \int_{\Sigma} |\nabla w_2(x)| \int_{\mathbb{S}^4 \cap v^{\perp}} \frac{1}{|w_2(x)|} \, d\mathcal{H}^3 w \, d\mathcal{H}^2 x \\ &\leq 2C_2 \int_{\Sigma} |\nabla w_2(x)| \, d\mathcal{H}^2 x \\ &\leq c \int_{\Sigma} \left(|\nabla \sigma_1(x)| \ + \ \sum_{j=1}^3 |\nabla \tilde{\tau}_j(x)| \right) \, d\mathcal{H}^2 x \\ &\leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \; . \end{split}$$

So there exists a $w \in \mathbb{S}^4 \cap v^{\perp}$ giving the σ_2 estimate

$$\int_{\Sigma} |\nabla \sigma_2(x)| \, d\mathcal{H}^2 x \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \, . \tag{IV.40}$$

Finally we may use the product rule and the formula

$$\begin{aligned} \sigma_3 &= [(\sigma_1 \cdot \tilde{\tau}_2)(\sigma_2 \cdot \tilde{\tau}_3) - (\sigma_1 \cdot \tilde{\tau}_3)(\sigma_2 \cdot \tilde{\tau}_2)] \,\tilde{\tau}_1 \\ &+ [(\sigma_1 \cdot \tilde{\tau}_3)(\sigma_2 \cdot \tilde{\tau}_1) - (\sigma_1 \cdot \tilde{\tau}_1)(\sigma_2 \cdot \tilde{\tau}_3)] \,\tilde{\tau}_2 \\ &+ [(\sigma_1 \cdot \tilde{\tau}_1)(\sigma_2 \cdot \tilde{\tau}_2) - (\sigma_1 \cdot \tilde{\tau}_2)(\sigma_2 \cdot \tilde{\tau}_1)] \,\tilde{\tau}_3 \end{aligned}$$

along with (IV.29), (IV.37), and (IV.40) to obtain the σ_3 estimate

$$\int_{\Sigma} |\nabla \sigma_3(x)| \, d\mathcal{H}^2 x \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \,. \tag{IV.41}$$

Now we may combine (IV.33), (IV.34), (IV.29), (IV.37), (IV.40), and (IV.41) to obtain the desired length estimate r

$$\mathcal{H}^{1}(A) = \mathcal{H}^{1}(\rho_{\Gamma} \circ \gamma)^{-1} \{z\} \leq c \int_{\mathbb{B}^{5}} |\nabla^{2}u|^{2} dx . \qquad (\text{IV.42})$$

IV.8 Connecting the Singularities b_i to $b_{i'}$

Although we now have a good description and length estimate for A, we are not done. The problem is that the set Clos A does not necessarily connect each of the original singularities a_i to another $a_{i'}$ or to $\partial \mathbb{B}^5$. The path in Clos A starting at a_i may end at some b_j . To complete the connections between pairs of a_i , it will be sufficient to find a *different* union B of curves which connect each frame singularity b_i to $\partial \mathbb{B}^5$ or to another unique frame singularity $b_{j'}$. Then adding to $\operatorname{Clos} A$ some components of B will give the desired curves connecting every a_i to a distinct $a_{i'}$ or to $\partial \mathbb{B}^5$. In this section we will use the map Φ from §IV.4 to construct this additional connecting set B, and we will, in §IV.9, obtain the required estimate on the length of B.

First we recall the description in [MS] of $\tilde{G}_2(\mathbb{R}^5)$ as a 2 sheeted cover of the Grassmannian of unoriented 2 planes in \mathbb{R}^5 . With $Q \in \tilde{G}_2(\mathbb{R}^5)$ chosen as before in §IV.3, consider the 5 dimensional Schubert cycle

$$\mathcal{S}_Q = \{ P \in \tilde{G}_2(\mathbb{R}^5) : \dim \left(P \cap Q^\perp \right) \ge 1 \}$$

and the 4 dimensional subcycle

$$\mathcal{T}_Q = \{ P \in \tilde{G}_2(\mathbb{R}^5) : \dim \left(P \cap Q^\perp \right) \ge 2 \} = \{ P \in \tilde{G}_2(\mathbb{R}^5) : P \subset Q^\perp \} .$$

As in [MS], we see that $S_Q \setminus T_Q$ is a smooth embedded open 5 dimensional submanifold of $\tilde{G}_2(\mathbb{R}^5)$ and that $\tilde{G}_2(\mathbb{R}^5) \setminus S_Q$ consists of two open 6 dimensional antipodal cells, D_+ centered at Q and D_- centered at -Q.

Next we will carefully define a (nearest-point) retraction map

$$\Pi_{\mathbb{Q}} : \tilde{G}_2(\mathbb{R}^5) \setminus \{Q, -Q\} \to \mathcal{S}_Q .$$

For $P \in D_+ \setminus \{Q\}$, there is a unique vector $v \in P \cap \mathbb{S}^4$ which is at maximal distance in $P \cap \mathbb{S}^4$ from $Q \cap \mathbb{S}^4$ and a unique vector w in $Q \cap \mathbb{S}^4$ that is closest to v; in particular, $0 < w \cdot v < 1$. Choose $A_P \in \mathfrak{so}(5)$ so that the corresponding rotation $\exp A_P \in SO(5)$ maps w to v and maps \tilde{w} to \tilde{v} where $P = v \wedge \tilde{v}$ and $Q = w \wedge \tilde{w}$. Thus exp A_P maps Q to P, preserving orientation. Here $(\exp tA_P)(w)$ defines a geodesic circle in \mathbb{S}^4 , and

$$t_P \equiv \inf\{t > 0 : w \cdot (\exp tA_P)(w) = 0\} > 1$$
.

Then $(\exp 2t_p A_P)(w) = -w$ and $\exp 4t_p A_P = \text{id.}$ It follows that, in $\tilde{G}_2(\mathbb{R}^5)$, as t increases,

$$(\exp tA_P)(Q) \in D_+$$
 for $0 \le t_P$ and $(\exp tA_P)(Q) \in D_-$ for $t_P < t \le 2t_P$,

$$(\exp 0A_P)(Q) = Q, \quad (\exp A_P)(Q) = P, \quad (\exp t_p A_P)(Q) \in \mathcal{S}_Q, \quad (\exp 2t_p A_P)(Q) = -Q,$$

and we let $\Pi_Q(P) = (\exp t_p A_P)(Q)$. As P approaches $\partial D_+ = S_Q$, $t_P \downarrow 1$ and $|\Pi_Q(P) - P| \to 0$. Thus, let

$$\Pi_Q(P) = P \text{ for } P \in \mathcal{S}_Q$$

Also, let

$$\Pi_Q(P) = -\Pi_Q(-P) \text{ for } P \in D_- \setminus \{-Q\}.$$

Next recall that the small tubular neighborhood V of the 4 dimensional subgrassmannian $\tilde{G}_2(\{0\}\times\mathbb{R}^4)$ was well-separated from Q. It follows that $\Pi_Q(V)$ is in a small neighborhood of the 4 dimensional cycle $\Pi_Q\left(\tilde{G}_2(\{0\}\times\mathbb{R}^4)\right)$. In particular, the 5 dimensional measure of $\Pi_Q(V)$ is small, and one easily finds $P \in \mathcal{S}_Q \setminus \Pi_Q(V)$ so that $p \notin \Pi_Q(W)$.

For $P \in S_Q \setminus T_Q$, the intersection $P \cap Q^{\perp} \cap \mathbb{S}^4$ consists of 2 antipodal points in $P \cap \mathbb{S}^4$ that are uniquely of maximal distance from $Q \cap \mathbb{S}^4$, and one sees that

 $\operatorname{Clos} \Pi_O^{-1} \{P\}$

contains a single semi-circular geodesic arc joining Q and -Q. For almost all $P \in S_Q \setminus \mathcal{T}_Q$, this semi-circle meets transversely both Y, and, near $\pm Q$, each small surface

$$\Phi\left(\left[\Sigma \cap \mathbb{B}_{\delta}(b_j)\right] \times \{e_j\}\right)$$

We will choose $P \in S_Q \setminus T_Q$ also to be a regular value of $\Pi_Q \circ \Phi$. Since, near P, S_Q is a smooth transverse (in fact, orthogonal) to $\Pi_Q^{-1}\{P\}$, we find, using IV.4, that the set

$$(\Pi_Q \circ \Phi)^{-1} \{P\} = \Phi^{-1}(\Pi_Q^{-1}\{P\})$$

is an embedded 1 dimensional submanifold, containing $\{(b_1, \pm e_1), \ldots, (b_m, \pm e_m)\}$. In small neighborhoods of any two points (b_j, e_j) , $(b_j, -e_j)$ the set $\operatorname{Clos}(\prod_Q \circ \Phi)^{-1}\{P\}$ consists of two smooth segments (antipodal in the \mathbb{S}^4 factor) which both project, under the projection

$$p_{\Sigma} : \Sigma \times \mathbb{S}^4 \to \Sigma$$

onto a single segment in Σ which contains b_j . Continuing these two antipodal segments one direction in $(\Pi_Q \circ \Phi)^{-1}\{P\}$ gives antipodal paths whose final endpoints are $(b_{j'}, e_{j'})$, $(b_{j'}, -e_{j'})$ for some j' distinct from j. Here

$$e_{j'} \wedge e_{j'\Sigma} = \Phi(b_{j'}, \pm e_{j'}) = -\Phi(b_j, \pm e_j) = -e_j \wedge e_{j\Sigma}$$

Composing either antipodal path with the projection p_{Σ} gives the same path connecting b_j and $b_{j'}$. Similarly, by continuing in the other direction and projecting gives Thus the whole set

$$B = p_{\Sigma} \left[(\Pi_Q \circ \Phi)^{-1} \{ P \} \right]$$

provides the desired connection in Σ .

Also note that these two paths upstairs have similar orientations induced as fibers of the map $\Pi_Q \circ \Phi$. That is, in the notation of slicing currents [Fe], §4.3,

$$p_{\Sigma \#} \left\langle \left[\!\left[\Sigma \times \mathbb{S}^4 \right]\!\right], \Pi_Q \circ \Phi, Q \right\rangle = 2(\mathcal{H}^2 \sqcup B) \wedge \vec{B} , \qquad (IV.43)$$

where \vec{B} is a unit tangent vectorfield along B (in the direction running from b_j to $b_{j'}$).

IV.9 Estimating the Length of the Connecting Set B

The definition of B depends on the choices of:

(1) the point $p \in \mathbb{S}^3$ near $\{0\} \times \mathbb{R}^4$ which gives the surface $\Sigma = u^{-1}\{p\}$ and the map

 $\Phi : (\Sigma \times \mathbb{S}^4) \setminus \mathcal{N}_{\Sigma} \to \tilde{G}_2(\mathbb{R}^5) , \quad \Phi(x, e) = e \wedge e_{\Sigma}(x) ,$

(2) the 2 plane $Q \in \tilde{G}_2(\mathbb{R}^5)$ near H which determines the retraction $\Pi_{\mathbb{Q}}$ of $\tilde{G}_2(\mathbb{R}^5) \setminus \{Q, -Q\}$ onto the 5 dimensional Schubert cycle S_Q , and

(3) the 2 plane $P \in \mathcal{S}_Q \setminus \Pi_Q(V)$ which gives $B = p_{\Sigma} [(\Pi_Q \circ \Phi)^{-1} \{P\}]$. Having chosen $p \in \mathbb{S}^3$ as before to obtain estimate (IV.29), we need to chose Q and P to get the desired length estimate for B.

Concerning Q, we first readily verify that the retraction Π_Q is locally Lipschitz in $\tilde{G}_2(\mathbb{R}^5) \setminus \{Q, -Q\}$ and deduce the estimate

$$|\nabla \Pi_Q(S)| \leq \frac{c}{|S-Q||S+Q|} \quad \text{for} \quad S \in \tilde{G}_2(\mathbb{R}^5) \setminus \{Q, -Q\} .$$
 (IV.44)

Using (IV.43) and [Fe], 4.3.1, we may integrate the slices to find that

$$\int_{\mathcal{S}_Q \setminus \Pi_Q(V)} p_{\Sigma \#} \langle \llbracket \Sigma \times \mathbb{S}^4 \rrbracket, \Pi_Q \circ \Phi, P \rangle d\mathcal{H}^5 P \leq p_{\Sigma \#} \int_{\mathcal{S}_Q} \langle \llbracket \Sigma \times \mathbb{S}^4 \rrbracket, \Pi_Q \circ \Phi, P \rangle d\mathcal{H}^5 P \\ = p_{\Sigma \#} \left(\llbracket \Sigma \times \mathbb{S}^4 \rrbracket \mathsf{L} (\Pi_Q \circ \Phi)^{\#} \omega_{\mathcal{S}_Q} \right) ,$$

where ω_{S_Q} is the volume element of S_Q . By (IV.43) and Fatou's Lemma,

$$\int_{\mathcal{S}_{Q}} 2\mathcal{H}^{1} \left(p_{\Sigma} [(\Pi_{Q} \circ \Phi)^{-1} \{P\}] \right) d\mathcal{H}^{5} P = \int_{\mathcal{S}_{Q}} \mathbb{M}[p_{\Sigma\#} \langle [\![\Sigma \times \mathbb{S}^{4}]\!], \Pi_{Q} \circ \Phi, P \rangle] d\mathcal{H}^{5} P \\
\leq \mathbb{M} \left[p_{\Sigma\#} \left([\![\Sigma \times \mathbb{S}^{4}]\!] \mathbf{L} (\Pi_{Q} \circ \Phi)^{\#} \omega_{\mathcal{S}_{Q}} \right) \right] \qquad (IV.45)$$

$$= \sup_{\alpha \in \mathcal{D}^{1}(\Sigma), |\alpha| \leq 1} \int_{\Sigma} \int_{\mathbb{S}^{4}} (\Pi_{Q} \circ \Phi)^{\#} \omega_{\mathcal{S}_{Q}} \wedge p_{\Sigma}^{\#} \alpha .$$

To estimate this last double integral, we recall from §IV.3 that, for each fixed $x \in \Sigma \setminus \{a_1, \ldots, a_m\}$,

$$\Phi(x,\cdot) : \mathbb{S}^4 \setminus \operatorname{Nor}(\Sigma, x) \to \mathcal{Q}_x \equiv \mathcal{Q}_{\operatorname{Tan}(\Sigma, x)} \setminus Y_x$$

is a the smooth, orientation-preserving, 2-sheeted cover map. Each map $\Phi(x, \cdot)$ depends only on $\operatorname{Tan}(\Sigma, x)$, and any two such maps are orthogonally conjugate. We will derive the formula

$$\left[(\Pi_Q \circ \Phi)^{\#} \omega_{\mathcal{S}_Q} \wedge p_{\Sigma}^{\#} \alpha \right] (x, \cdot) = \beta(x, \cdot) p_{\Sigma}^{\#} \omega_{\Sigma}(x) \wedge \Phi(x, \cdot)^{\#} \omega_{\mathcal{Q}_x}$$
(IV.46)

where ω_{Σ} and ω_{Q_x} denote the volume elements of Σ and Q_x and $\beta(x, \cdot)$ is a smooth function on $\mathbb{S}^4 \setminus \operatorname{Nor}(\Sigma, x)$ satisfying

$$|\beta(x,e)| \leq \frac{c}{|\Phi(x,e) - Q|^5 |\Phi(x,e) + Q|^5} \sum_{j=1}^3 |\nabla \tilde{\tau}_j(x)| \text{ for } e \in \mathbb{S}^4.$$
 (IV.47)

Before proving (IV.46), note that the decomposition on the righthand side is not necessarily smooth in x since the different Q_x may overlap for x near a critical point of $\Phi(\cdot, e)$ for some $e \in \mathbb{S}^4$. Nevertheless, the formula does imply the measurability of $\beta(x, e)$ in x, and so may be integrated over Σ .

To derive (IV.46), we first note that, with the factorization $\Sigma \times \mathbb{S}^4$, there are only two terms in the (p,q) decomposition of the 5 form,

$$(\Pi_Q \circ \Phi)^{\#} \omega_{\mathcal{S}_Q} = \Omega_{2,3} + \Omega_{1,4} .$$

Thus,

$$(\Pi_Q \circ \Phi)^{\#} \omega_{\mathcal{S}_Q} \wedge p_{\Sigma}^{\#} \alpha = 0 + \Omega_{1,4} \wedge p_{\Sigma}^{\#} \alpha \qquad (\text{IV.48})$$

because the term $\Omega_{2,3} \wedge p_{\Sigma}^{\#} \alpha$, being of type (2+1,3), must vanish. For each $S = \Phi(x, \pm e) \in \mathcal{Q}_x \setminus Y_x$, we also have the factorization

$$\operatorname{Tan}(\tilde{G}_2(\mathbb{R}^5), S) = \operatorname{Nor}(\mathcal{Q}_x, S) \times \operatorname{Tan}(\mathcal{Q}_x, S)$$

Let $\mu_1, \mu_2, \mu_3, \mu_4, \nu_1, \nu_2$ be an orthonormal basis of $\wedge^1 \operatorname{Tan}(\tilde{G}_2(\mathbb{R}^5), S)$ so that

$$\mu_1, \mu_2, \mu_3, \mu_4 \in \wedge^1 \operatorname{Tan}(\mathcal{Q}_x, S) , \ \nu_1, \nu_2 \in \wedge^1 \operatorname{Nor}(\mathcal{Q}_x, S) , \ \mu_1 \wedge \mu_2 \wedge \mu_3 \wedge \mu_4 = \omega_{\mathcal{Q}_x}(S) ;$$

thus, $0 = \nu_1(v) = \nu_2(v) = \mu_1(w) = \mu_2(w) = \mu_3(w) = \mu_4(w)$ whenever $v \in \operatorname{Tan}(\mathcal{Q}_x, S)$ and $w \in \operatorname{Nor}(\mathcal{Q}_x, S)$. We may expand the 5 covector

$$\Pi_Q^{\#}(\omega_{\mathcal{S}_Q})(S) = \lambda_1 \nu_2 \wedge \mu_1 \wedge \mu_2 \wedge \mu_3 \wedge \mu_4 + \lambda_2 \nu_1 \wedge \mu_1 \wedge \mu_2 \wedge \mu_3 \wedge \mu_4 + \lambda_3 \nu_1 \wedge \nu_2 \wedge \mu_2 \wedge \mu_3 \wedge \mu_4 + \lambda_4 \nu_1 \wedge \nu_2 \wedge \mu_1 \wedge \mu_3 \wedge \mu_4 + \lambda_5 \nu_1 \wedge \nu_2 \wedge \mu_1 \wedge \mu_2 \wedge \mu_4 + \lambda_6 \nu_1 \wedge \nu_2 \wedge \mu_1 \wedge \mu_2 \wedge \mu_3$$

where

$$|\lambda_i| \le \frac{c}{|S-Q|^5|S+Q|^5}$$
, (IV.49)

by (IV.44). Applying $\Phi^{\#}$ (that is, $\wedge^1 D\Phi(x, e)$) to all covectors and taking the (1, 4) component, we find that only the first two terms survive so that

$$\Omega_{1,4}(x,e) = \left[\lambda_1 \Phi^{\#} \nu_2 + \lambda_2 \Phi^{\#} \nu_1\right]_{(1,0)} \wedge \Phi^{\#} \mu_1 \wedge \Phi^{\#} \mu_2 \wedge \Phi^{\#} \mu_3 \wedge \Phi^{\#} \mu_4
= \left[\lambda_1 \Phi^{\#} \nu_2 + \lambda_2 \Phi^{\#} \nu_1\right]_{(1,0)} \wedge \Phi(x,\cdot)^{\#} \omega_{\mathcal{Q}_x}(S) .$$
(IV.50)

Being of type (2,0), the 2 covector

$$\left(\left[\lambda_1 \Phi^{\#} \nu_2 + \lambda_2 \Phi^{\#} \nu_1\right]_{1,0} \wedge p_{\Sigma}^{\#} \alpha\right)(x,e) = \beta(x,e) p_{\Sigma}^{\#} \omega_{\Sigma}(x)$$
(IV.51)

for some scalar $\beta(x, e)$, and (IV.48), (IV.50), and (IV.51) now give the desired formula (IV.46). This formula readily implies the smoothness of $\beta(x, \cdot)$ on $\mathbb{S}^4 \setminus \operatorname{Nor}(\Sigma, x)$.

To verify the bound (IV.47), observe that

$$\left| \left[\Phi^{\#} \nu_i \right]_{1,0} \right| = \sup_{v \in \mathbb{S}^4 \cap \operatorname{Tan}(\Sigma, x)} \nu_i [\nabla_v \Phi(x, e)] , \qquad (\text{IV.52})$$

where $\nabla_v \Phi(x,e) = D\Phi_{(x,e)}(v,0) \in \operatorname{Tan}(\tilde{G}_2(\mathbb{R}^5),S)$. For any unit vector $v \in \operatorname{Tan}(\Sigma,x)$ and any $w \in \mathbb{R}^5$,

 $v \wedge w \in \operatorname{Tan}(\mathcal{Q}_x, S)$

because we may assume $w \notin \operatorname{Tan}(\Sigma, x)$ and then choose a curve y(t) in $\mathbb{S}^4 \cap v^{\perp} \setminus \operatorname{Nor}(\Sigma, x)$ with $y'(0) = w - (w \cdot v)v$, hence,

$$v \wedge w = v \wedge y'(0) = \frac{d}{dt}_{t=0} (v \wedge y(t)) = -\frac{d}{dt}_{t=0} \Phi(x, y(t))$$

Thus, for any 2 vector $\xi \in \text{Nor}(\mathcal{Q}_x, S)$, $|\xi| = |\xi \wedge v|$; in particular, $|\xi| = |\xi \wedge \tilde{e}_T(x)|$, $|\xi| = |\xi \wedge e_{\Sigma}(x)|$, and hence,

$$|\xi| = |\xi \wedge (\tilde{e}_T(x) \wedge e_{\Sigma}(x))| +$$

Since $\nu_i \in \wedge^1 \operatorname{Nor}(\mathcal{Q}_x, S)$ and $|\nu_i| = 1$, we now find that

$$\nu_i [\nabla_v \Phi(x, e)] = \nu_i \left[(\nabla_v \Phi(x, e))_{\operatorname{Nor}(\Sigma, x)} \right] \leq |\nabla_v \Phi(x, e) \wedge (\tilde{e}_T(x) \wedge e_\Sigma(x))| .$$
 (IV.53)

Moreover,

$$\begin{aligned} |\nabla_{v} \Phi \wedge (\tilde{e}_{T} \wedge e_{\Sigma})| &\leq | (\nabla_{v} (e \wedge e_{\Sigma})) \wedge (\tilde{e}_{T} \wedge e_{\Sigma})| &\leq | (\nabla_{v} e_{\Sigma}) \wedge (\tilde{e}_{T} \wedge e_{\Sigma})| \\ &= | e_{\Sigma} \wedge \nabla_{v} (\tilde{e}_{T} \wedge e_{\Sigma})| &\leq |\nabla_{v} (\tilde{e}_{T} \wedge e_{\Sigma})| \\ &= | \nabla_{v} (* (\tilde{\tau}_{1} \wedge \tilde{\tau}_{2} \wedge \tilde{\tau}_{3})) | \leq c \sum_{j=1}^{3} |\nabla \tilde{\tau}_{j}| , \end{aligned}$$
(IV.54)

where * is the Hodge $*: \wedge_3 \mathbb{R}^5 \to \wedge_2 \mathbb{R}^5 \approx \mathbb{R}^5$ [F,1.7.8]) The desired pointwise bound (IV.47) now follows by combining (IV.49), (IV.51), (IV.52), (IV.53) and (IV.54).

For each $x \in \Sigma$, the pull-back $\Phi(x, \cdot)^{\#} \omega_{\mathcal{Q}_x}$ is point-wise a positive multiple of the volume form of \mathbb{S}^4 . So we may first integrate over \mathbb{S}^4 and use (IV.47) to see that

$$\int_{\mathbb{S}^{4}} \beta(x,\cdot) \Phi(x,\cdot)^{\#} \omega_{\mathcal{Q}_{x}} \leq \int_{\mathbb{S}^{4}} |\beta(x,\cdot)| \Phi(x,\cdot)^{\#} \omega_{\mathcal{Q}_{x}} \\
\leq c \left(\sum_{j=1}^{3} |\nabla \tilde{\tau}_{j}(x)| \right) \int_{\mathbb{S}^{4}} \frac{\Phi(x,\cdot)^{\#} \omega_{\mathcal{Q}_{x}}}{|\Phi(x,\cdot) - Q|^{5} |\Phi(x,\cdot) + Q|^{5}} \\
= c \left(\sum_{j=1}^{3} |\nabla \tilde{\tau}_{j}(x)| \right) \int_{\mathcal{Q}_{x}} \frac{\omega_{\mathcal{Q}_{x}}(S)}{|S - Q|^{5} |S + Q|^{5}} \\
\leq c \left(\sum_{j=1}^{3} |\nabla \tilde{\tau}_{j}(x)| \right) \int_{\mathcal{Q}_{x}} \frac{d\mathcal{H}^{4}S}{|S - Q|^{5} |S + Q|^{5}} .$$
(IV.55)

To handle the denominator, we note that the Grassmannian $\tilde{G}_2(\mathbb{R}^5)$ is a 6 dimensional homogeneous space, and we readily use local coordinates to verify that

$$C_3 = \int_{\tilde{G}_2(\mathbb{R}^5)} \frac{1}{|S-Q|^5 |S+Q|^5} d\mathcal{H}^6 Q < \infty , \qquad (\text{IV.56})$$

independent of S.

Now we recall (IV.45) and fix a sequence of 1 forms $\alpha_i \in \mathcal{D}^1(\Sigma)$ with $|\alpha_i| \leq 1$ so that

$$\mathbb{M}\left[p_{\Sigma\#}\left(\left[\!\left[\Sigma\times\mathbb{S}^{4}\right]\!\right]\mathsf{L}(\Pi_{Q}\circ\Phi)^{\#}\omega_{\mathcal{S}_{Q}}\right)\right] = \lim_{i\to\infty}\int_{\Sigma}\int_{\mathbb{S}^{4}}(\Pi_{Q}\circ\Phi)^{\#}\omega_{\mathcal{S}_{Q}}\wedge p_{\Sigma}^{\#}\alpha_{i} ,$$

let β_i be the corresponding function from the formula (IV.46), and use (IV.45), Fatou's Lemma, (IV.46), (IV.55), Fubini's Theorem, (IV.56), and (IV.29) to obtain our final integral estimate

$$\begin{split} &\int_{\tilde{G}_{2}(\mathbb{R}^{5})} \int_{\mathcal{S}_{Q}} 2\mathcal{H}^{1} \left(p_{\Sigma}[(\Pi_{Q} \circ \Phi)^{-1} \{P\}] \right) d\mathcal{H}^{5} P \, d\mathcal{H}^{6} Q \\ &\leq \int_{\tilde{G}_{2}(\mathbb{R}^{5})} \lim_{i \to \infty} \int_{\Sigma} \int_{\mathbb{S}^{4}} (\Pi_{Q} \circ \Phi)^{\#} \omega_{\mathcal{S}_{Q} \setminus \Pi_{Q}(V)} \wedge p_{\Sigma}^{\#} \alpha_{i} \\ &\leq \liminf_{i \to \infty} \int_{\tilde{G}_{2}(\mathbb{R}^{5})} \int_{\Sigma} \int_{\mathbb{S}^{4}} \beta_{i}(x, \cdot) \omega_{\Sigma}(x) \wedge \Phi(x, \cdot)^{\#} \omega_{Q_{x}} \\ &\leq c \int_{\Sigma} \left(\sum_{j=1}^{3} |\nabla \tilde{\tau}_{j}(x)| \right) \int_{\mathcal{Q}_{x}} \int_{\tilde{G}_{2}(\mathbb{R}^{5})} \frac{1}{|S - Q|^{5} |S + Q|^{5}} \, d\mathcal{H}^{6} Q \, d\mathcal{H}^{4} S \, d\mathcal{H}^{2} x \\ &\leq c C_{3} \sum_{j=1}^{3} \int_{\Sigma} |\nabla \tilde{\tau}_{j}(x)| \, d\mathcal{H}^{2} x \quad \leq c \int_{\mathbb{B}^{5}} |\nabla^{2} u|^{2} \, dx \; . \end{split}$$

The Schubert cycles S_Q are all orthogonally equivalent and have the same positive 5 dimensional Hausdorff measure. So we can use the final integral inequality to choose first a 2 plane $Q \in \tilde{G}_2(\mathbb{R}^5)$ and then a 2 plane $P \in S_Q$ so that the corresponding connecting set

$$B = p_{\Sigma}[(\Pi_Q \circ \Phi)^{-1} \{P\}]$$

satisfies the desired length estimate

$$\mathcal{H}^1(B) \leq c \int_{\mathbb{B}^5} |\nabla^2 u|^2 \, dx \; .$$

Theorem IV.2 (Length Bound) For any $u \in \mathcal{R}$, Singu has a \mathbb{Z}_2 connection Γ satisfying

$$\mathcal{H}^1(\Gamma) \ \le \ c \int_{\mathbb{B}^5} |
abla^2 u|^2 \, dx \ ,$$

for some absolute constant c.

Proof. To form the connection Γ , one takes the union of the curves from A and B. The behavior of the individual curves near the points a_i and b_j has been discussed in subsection IV.5. The set $A \cup B$ will pass through each point b_j , likely having a corner at b_j . One easily replaces the corner with an embedded smooth curve near b_j . Also the curves contributing to A and B may cross. In \mathbb{B}^5 , it is easy to perturb the curves to eliminate such crossings. The result is the desired \mathbb{Z}_2 connection Γ . (Alternately one can observe that $A \cup B$ already defines a one dimensional integer multiplicity chain modulo 2 (see [Fe][4.2.26] which has boundary $\sum_{i=1}^{m} [a_i]$ relative to $\partial \mathbb{B}^5$. As mentioned before, the minimal (mass-minimizing) connection will automatcally consist of non-overlapping intervals. Those that reach $\partial \mathbb{B}^5$ meet it orthogonally.

V Sequential Weak Density of $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$

We are now ready to prove:

Theorem V.3 Any map v in $W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$ may be approximated in the $W^{2,2}$ weak topology by a sequence of smooth maps.

Proof. First we may, by Lemma III.2, chose, for each positive integer *i*, a map $u_i \in \mathcal{R}$ so that $||u_i - v||_{W^{2,2}} < \frac{1}{i}$; in particular,

$$||u_i - v||_{L^2} < \frac{1}{i}$$
 and $I = \sup_i \int_{\mathbb{B}^5} |\nabla^2 u_i|^2 dx < \infty$

Applying Lemma III.1 to each u_i , we note that, as $\varepsilon \to 0$, the smooth approximates $u_{i,\varepsilon}$ approach u_i pointwise on $\mathbb{B}^5 \setminus \text{Sing } u_i$. Inasmuch as the $u_{i,\varepsilon}$ are pointwise bounded (by 1), Lebesgue's theorem implies

$$||u_{i,\varepsilon} - u_i||_{L^2} \to 0 \text{ as } \varepsilon \to 0.$$

Thus we can choose a positive ε_i , so that the smooth map $w_i = u_{i,\varepsilon_i}$ has $||w_i - u_i||_{L^2} < \frac{1}{i}$; in particular, $||w_i - v||_{L^2} < \frac{2}{i}$, and the smooth maps w_i converge to v strongly in L^2 .

On the other hand, by Lemma II.1, Lemma III.1, Theorem IV.2, and (V),

$$\sup_{i} \|w_{i}\|_{W^{2,2}}^{2} < 2c_{m}(1 + I) < \infty.$$

By the weak*(=weak) compactness of the closed ball in $W^{2,2}(\mathbb{B}^5, \mathbb{R}^\ell)$, the sequence w_i contains a subequence $w_{i'}$ that is $W^{2,2}$ weakly convergent to some $w \in W^{2,2}(\mathbb{B}^5, \mathbb{R}^\ell)$. But, w, being by Rellich's theorem, the strong L^2 limit of the $w_{i'}$, must necessarily be the original map v.

V.1 Least Connection Length L(v)

By Lemma III.2, one may now define, for any Sobolev map $v \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$, the nonnegative number

 $L(v) = \lim_{\varepsilon \to 0} \inf \{ \mathcal{H}^1(\Gamma) : \Gamma \text{ is a } \mathbb{Z}_2 \text{ connection for Sing } u \text{ for some } u \in \mathcal{R} \text{ with } \|u - v\|_{W^{2,2}} < \varepsilon \}.$

Any $u \in \mathcal{R}$ has a minimal \mathbb{Z}_2 connection, and L(u) is its length. In general:

Theorem V.4 For any $v \in W^{2,2}(\mathbb{B}^5, \mathbb{S}^3)$, $L(v) = 0 \iff v$ is the $W^{2,2}$ strong limit of smooth maps.

Proof. The sufficiency is immediate from the definition of L(v). To prove the necessity, we assume L(v) = 0. Then we may choose, for each *i*, a map $u_i \in \mathcal{R}$ along with a \mathbb{Z}_2 connection Γ_i of Sing u_i so that $||u_i - v||_{W^{2,2}} < 1/i$ and $\mathcal{H}^1(\Gamma_i) < 1/i$. As in the previous proof, there is an $\varepsilon_i < 1/i$ so that the smooth maps $w_i = u_{i,\varepsilon_i}$ converge strongly in L^2 and weakly in $W^{2,2}$ to v. The lower-semicontinuity

$$\int_{\mathbb{B}^5} |\nabla^2 v|^2 \, dx \leq \liminf_{i \to \infty} \int_{\mathbb{B}^5} |\nabla^2 w_i|^2 \, dx$$

follows. On the other hand, we have from Theorem III.1 the inequality

$$\int_{\mathbb{B}^5} |\nabla^2 w_i|^2 \, dx \ - \ \int_{\mathbb{B}^5} |\nabla^2 u_i|^2 \, dx \ \le \ \frac{1}{i} + \frac{c_{\mathbb{S}\mathbb{H}}}{i}$$

as well as, from Lemma III.2, the $W^{2,2}$ strong convergence

$$\lim_{i\to\infty}\int_{\mathbb{B}^5}|\nabla^2 u_i|^2\,dx = \int_{\mathbb{B}^5}|\nabla^2 v|^2\,dx \;,$$

which together imply the upper semi-continuity

$$\int_{\mathbb{B}^5} |\nabla^2 v|^2 \, dx \geq \limsup_{i \to \infty} \int_{\mathbb{B}^5} |\nabla^2 w_i|^2 \, dx.$$

The convergence of the total Hessian energies of the w_i to that of v, along with the $W^{2,2}$ weak convergence, now implies the $W^{2,2}$ strong convergence of the smooth maps w_i to v.

References

- [A] Adams. "Sobolev Functions". Academic Press, New York, 1974.
- [ABL] F. Almgren, W. Browder, E.H. Lieb. "Co-area, liquid crystals, and minimal surfaces". Partial Differential Equations (Tianjin 1986), Lecture Notes in Mathematics, 1306, Springer, Berlin, 1988.
- [ABO] G. Alberti, S. Baldo, and G. Orlandi. "Functions with prescribed singularities". J. Eur. Math. Soc. (JEMS), 5 (2003), 275–311.
- [Be1] F. Bethuel. "A characterization of maps in H1(B3,S2) which can be approximated by smooth maps". Ann. Inst. H. Poincar Anal. Non Linéaire 7 (1990), no. 4, 269–286.
- [Be2] F. Bethuel. "The approximation problem for Sobolev maps between two manifolds". Acta Math. 167(1991), no.3–4, 153–206.
- [BBC] F. Bethuel, H. Brezis, and J.-M. Coron, Relaxed energies for harmonic maps. Variational methods, 37–52, Progr. Nonlin. Diff. Eqns. Appl.,4, Birkhuser Boston 1990.

- [BCDH] F. Bethuel, J.-M. Coron, F. Demengel, F. Hlein A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. Nematics (Orsay, 1990), 15–23, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, 1991.
- [BCL] H. Brezis, J.-M.Coron, and E. Lieb, "Harmonic maps with defects". Comm. Math. Phys., 107 (1986), 649–705.
- [BZ] F. Bethuel and X.M. Zheng. Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80 (1988), no. 1, 60–75.
- [BPV] P. Bousquet, A. Ponce, and J. Van Schaftigen. "Strong Density for Higher Order Sobolev Spaces into Compact Manifolds", ArXiv:1203.3721.
- [Br] G. Bredon. "Topology and Geometry", Graduate Texts in Mathematics, Springer 1993.
- [Fe] H. Federer. "Geometric Measure Theory", Springer 1969.
- [GMS1] M. Giaquinta, G. Modica, and J. Souček. "The Dirichlet energy of mappings with values into the sphere". Manuscripta Math., 65 (1989), 489–507.
- [GMS2] M. Giaquinta, G. Modica, and J. Souček. "Cartesian Currents in the Calculus of Variations I, II". Ergebnisse der Mathematik und ihrer Grenzgebiete. A Series of Modern Surveys in Mathematics, 37, 38. Springer, Berlin–Heidelberg, 1998.
- [Ha] F. Hang. "On the weak limits of smooth maps for the Dirichlet energy between manifolds". Comm. Anal. Geom., 13 (2005), no. 5, 929–938.
- [HaL1] F. Hang and F.H. Lin. "Topology of Sobolev mappings". Math. Res. Lett. 8 (2001), no. 3, 321–330.
- [HaL2] F. Hang and F.H. Lin. "Topology of Sobolev mappings". II. Acta Math. 191 (2003), no. 1, 55107.
- [HL] R. Hardt and F.H. Lin. "A remark on H1 mappings". Manuscripta Math. 56 (1986), no. 1, 1–10.
- [HR] R. Hardt and T. Rivière. "Connecting topological Hopf singularities", Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)2 (2003), no. 2, 287–344.
- [Hj] P. Hajlasz. "Approximation of Sobolev mappings". Nonlinear Anal. 22 (1994), no. 12, 1579–1591.
- [MS] J. Milnor and J. Stasheff. "Characteristic Classes" Princeton University Press, 1974.
- [MR] T. Rivière and Y. Meyer. "Partial Regularity for a class of stationary Yang-Mills Fields", Rev. Math. Iberoamericana, 19(2003), 195–219.
- [Pa] M.R. Pakzad "Weak density of smooth maps in $W^{1,1}(M, N)$ for non-abelian $\pi_1(N)$ ". Ann. Global Anal. Geom. 23 (2003), no. 1, 112.
- [PR] M. R. Pakzad and T. Rivière. "Weak density of smooth maps for the Dirichlet energy between manifolds". Geom. Funct. Anal. 13 (2003), no. 1, 223–257.
- [Ri] T. Rivière, "Sobolev critical exponents of rational homotopy groups." Pure Appl. Math. Q. 3 (2007), no. 2, Special Issue: In honor of Leon Simon. Part 1, 615630.
- [SU] R. Schoen and K. Uhlenbeck. "Approximation theorems for Sobolev mappings", Preprint (1984).
- [W] B. White. "Homotopy classes in Sobolev spaces and the existence of energy minimizing maps". Acta. Math., 160 (1988), 1–17.