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Optimal estimate for the gradient of

Green’s function on degenerating

surfaces and applications

Paul Laurain and Tristan Rivière

In this paper we prove a uniform estimate for the gradient of the
Green function on a closed Riemann surface, independent of its
conformal class, and we derive compactness results for immersions
with L2-bounded second fundamental form and for Riemannian
surfaces of uniformly bounded Gaussian curvature entropy.

Introduction

Let Σ be a closed smooth surface of genus g. We can endow Σ with a
metric h, then thanks to the uniformization theorem, see [14] or [7], there
exists in the conformal class of h, i.e. the set of metric on Σ which can be
written e2uh where u is a smooth function, a metric of constant curvature,
equal to 1 if g = 0, 0 if g = 1 and −1 otherwise. The sphere case is very
particular, since the conformal group is not compact but this case is not of
great interest here since there is only one conformal class. In the hyperbolic
case the metric is unique and in the torus it is also true up to normalize
the area. In the following, we assume this normalization and we still denote
by h the metric of constant curvature (when g ≥ 1) and we associate to h
its Laplace-Beltrami operator ∆h. Then there exists, up to normalization, a
unique nonnegative Green function Gh associated to ∆h.

The main goal of this paper is to give estimates on Gh independently of
the conformal class defined by the metric h. This is a very classical subject
in the theory of Riemann surfaces strongly related with the behaviour of
the spectrum of the Laplace operator, see [3]. Let (Σ, hk) be a sequence of
hyperbolic surfaces whose conformal class degenerate, that is to say that
some geodesics are pinching. Let us assume that there is only one degener-
ating geodesic γk and let Σ∞ denote its nodal limit, see section 1 for the
precise definition. Then Ji, see [13], proved that if γk does not separate Σk
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then Gk is uniformly bounded on every compact subset of Σ∞ × Σ∞, else
lim

k→+∞
|Gk(x, y)| = +∞ for any (x, y) ∈ Σ∞ × Σ∞.

Here we see that we have a very different behaviour with respect to the
manner the conformal class degenerates. Is a similar behaviour possible for
derivatives? Indeed, formally we can write

Gk(x, y) =
∑
i≥1

ϕki (x)ϕki (y)

λki
,

where λki and ϕki are respectively the ith (non vanishing) eigenvalue and
the ith (non constant) eigenfunction of ∆hk , repeating indices according
to multiplicity. Of course if the nodal limit is disconnected then the first
eigenvalue goes to zero while the first eigenfunction goes to a locally constant
function. Looking at derivatives instead, one can expect a better behavior
of the Green function, even in the collar region. However, the gradient of
the Green function gets a simple pole on the diagonal, hence it is not in L2.
The main result of this paper establishes that it is however true in a slightly
weaker norm.

Theorem 0.1. Let Σ be a closed surface then there exits C a positive con-
stant and an integer N depending only on the genus of Σ such that for any
metric h on Σ with constant curvature equal to 1, 0 or −1 and with normal-
ized volume1, and any Green function associated to h, there exists a finite
atlas of N conformal charts (Ui, ψi), such that for any y ∈ Σ we get

(1) sup
t>0

t2
∣∣{x ∈ Vi | |dxGih(x, y)| ≥ t

}∣∣ ≤ C,
where Vi = ψi(Ui) and Gih( . , y) = (ψi)∗(Gh( . , y)).

We can remark that on a fix Riemann surface (Σ, h), the Green func-
tion is always bounded for this weak L2-norm. We can deduce it from the
standard pointwise estimate, see [1],

|dx(Gih(x, y))| ≤ Ch
dh(x, y)

,

but of course this estimate depends on the metric we take on Σ.
At the knowledge of authors, this result is the first control of the gra-

dient of a Green function independent of the conformal class. Moreover it

14π in the sphere case and 1 in the torus case
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looks quite optimal since the result is clearly false in L2. In fact the atlas is
very explicit, since, for instance considering the hyperbolic case, the surface
divides in thick and thin part. On the thick part we can consider any disc
with radius smaller than the injectivity radius. And in the thin part, using
collar lemma, chart are given by degenerating annuli.

This result is optimal in the sense that we also prove that the weak L2-
norm of the Green function computed with respect to the intrinsic metric is
not bounded when the singularity hold to a collapsing region, which is made
clear in the torus case by the Proposition 1.1.

Regarding the proof of the theorem, once we have ruled out the trivial
case of the sphere then we treat the case of a degenerating torus and of
an hyperbolic surface quite differently. For the torus, our proof relies on
an estimate of the coefficient of the Fourier decomposition on a long thin
cylinder using the periodicity condition, and in the hyperbolic case, it relies
on the coarea formula and the decomposition of the surface in thin and thick
part.

In the last sections, we give some applications of Theorem 0.1 in dif-
ferential geometry both from extrinsic and intrinsic point of view. First,
we prove that the gradient of the conformal factor of an immersion with
L2-bounded second fundamental form is uniformly bounded in L2,∞, up to
choose a convenient atlas given by Theorem 0.1. More precisely

Theorem 0.2. Let (Σ, ck) be a sequence of closed Riemann surfaces of
fixed genus at lest one. Let hk denote the metric with constant curvature
(and volume equal to one in the torus case) in ck and Φk a sequence of weak
conformal immersions of Σ into Rm, i.e.

Φ∗kξ = e2ukhk,

where uk ∈ L∞(Σ) and ξ is the standard metric in Rn. Then there exists a
finite conformal atlas (Ui, ψi) independent of k and a positive constant C
depending only on the genus of Σ, such that

‖dvik‖L2,∞(Vi) ≤ CW (Φk),

where vik is the conformal factor of Φk ◦ ψ−1
i in Vi = ψi(Ui), i.e.

vik =
1

2
ln

∣∣∣∣∂Φk ◦ ψ−1
i

∂x

∣∣∣∣ =
1

2
ln

∣∣∣∣∂Φk ◦ ψ−1
i

∂y

∣∣∣∣ ,
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and W is the Willmore energy2.

In [16], using this last estimate as starting point, we prove the quantifi-
cation of the Willmore energy on degenerating surfaces up to control some
residues in the collar as it has been done for harmonic maps by Zhu in [29].

Then our second application concerns the weak compactness of the con-
formal immersions with L2-bounded second fundamental form. The follow-
ing result was proved first in [22] when the conformal class of the surface
does not degenerate and has been extended to the general case of degen-
erating Riemann surfaces in [15]. We shall present a different approach for
proving this result as being a consequence of our main Theorem 0.1.

Theorem 0.3. Let Σ be a closed surface of genus strictly greater than 1
and Φk ∈ EΣ a sequence of weak immersion into Rm with L2-bounded second
fundamental form. Then, up to a subsequence, for any connected component
σ of Σ̃, the nodal surface of the converging sequence (Σ,Φ∗kξ), there exists a
Möbius transformation Ξk of Rm such that

Ξk ◦ Φk(Σ) ⊂ B(0, R)

where R depends only on m and there exist at most finitely many points
{a1, . . . , aL} of σ are such that if we denote Ψk = Ξk ◦ Φk ◦ φk, then

Ψk ⇀ Ψ weakly in W 2,2
loc

(
σ \ {a1, . . . , aL, q1, . . . , qK}, h̃

)
,

where Ψ is a weak conformal(possibly branched) immersion of (σ, h̃) into Rm
and the qi are the punctures of (σ, h̃) and φk : Σ̃→ Σ such φ∗k(hk)→ h̃ in

C∞loc(Σ̃) .
Moreover, for any compact K ⊂ σ \ {a1, . . . , aL, q1, . . . , qK} there exists

CK > 0 such that

sup
k∈N
‖Log|dΨk|φ∗khk‖L∞(K) ≤ CK ,

where CK depends only on m, K and the L2-bound on the second fun-
damental form of Φk.

Here we consider the hyperbolic case, since in the sphere case the exis-
tence of a non compact conformal group is the additional difficulty already

2see section 3 for precise definition.
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treated in [18] and [19] and in the torus when it degenerate, the injectivity
radius uniformly blow down.

Finally, in the last section we prove that considering a sequence of Rie-
mann surfaces with bounded total curvature and entropy(see below for pre-
cise definition) then we can find a finite conformal atlas in which the con-
formal factor is uniformly bounded.

Acknowledgements. The first author was visiting the Forschungsinsti-
tuts für Mathematik at E.T.H. (Zurich) when this work started, he would like
to thank it for its hospitality and the excellent working conditions. Both au-
thors would like to thank the two referees for their comments, which clearly
improved the exposition of this paper. .

0.1. Lorentz spaces

Here we recall some classical facts about Lorentz spaces, [8] for details.

Definition 0.1. Let D be a domain of Rk, p ∈ (1,+∞) and q ∈ [1,+∞].
The Lorentz space Lp,q(D) is the set of measurable functions f : D → R
such that

|f |p,q =

(∫ +∞

0

(
t

1

p f∗(t)
)q dt

t

) 1

q

< +∞ if q < +∞

or

|f |p,∞ = sup
(
t

1

p f∗(t)
)

if q = +∞

where f∗ is the decreasing rearrangement of f .

| |p,q happens to be a quasi norm equivalent to a norm for which Lp,q is
a Banach space. Each Lp,q may be seen as a deformation of Lp. For instance,
we have the strict inclusions

Lp,1 ⊂ Lp,q′ ⊂ Lp,q′′ ⊂ Lp,∞,

if 1 < q′ < q′′. Moreover,

Lp,p = Lp.

Furthermore, if |D| is finite, we have that for all q and q′,

p > p′ ⇒ Lp,q ⊂ Lp′,q′ .
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Using the fact that f∗(t) = inf{s > 0 s.t. df (s) ≤ t} where df is the dis-
tribution function of f , we see that the L2,∞ norm of f is finite if and only
if sup

t>0
t2 |{x ∈ D | |f(x)| ≥ t}| is finite.

Finally, for p ∈ (1,+∞) and q ∈ [1,+∞], L
p

p−1
, q

q−1 is the dual of Lp,q.

0.2. Degenerating Riemann surfaces

Here we remind the Deligne-Mumford’s description of the loss of compact-
ness of the conformal class for a sequence of Riemann surfaces with fixed
topology, see [12] for details.

Let (Σ, ck) a sequence of closed Riemann surface of fixed genus g. If
g = 0 then the conformal class is fixed since there is only one conformal
class on the sphere. If g = 1 then, we know that, (Σ, ck) is conformally

equivalent to R2/

(
1√
=(vk)

Z× vl√
=(vk)

Z
)

where vk lies in the fundamental

domain {z ∈ C s.t. |<(z)| ≤ 1 and |z| ≥ 1} of H/PSL2(Z), and we say that
ck degenerates if |vk| → +∞. If g ≥ 1, let hk the hyperbolic metric associated
with ck, then (Σ, ck) degenerates if there exits a closed geodesic whose length
goes to zero. In that case, up to a subsequence, there exists

1) an integer N ∈ {1, . . . , 3g − 3},

2) a sequence Lk = {Γik ; i = 1, . . . , N} of finitely many pairwise disjoint
simple closed geodesics of (Σ, hk) with length converging to zero,

3) a closed Riemann surfaces (Σ, c),

4) a complete hyperbolic surface (Σ̃, h̃) with 2N cups {(qi1, qi2) ; i = 1, . . . ,
N} such that Σ̃ has been obtain topologically after removing the
geodesic of Lk to Σ and after closing each component of the boundary
of Σ \ Lk by adding a puncture qil at each of these component. More-

over Σ is topologically equal to Σ̃ and the complex structure defined
by h̃ on Σ̃ \ {qil} extends uniquely to c. We can also equip Σ with a
metric h with constant curvature, but not necessarily hyperbolic since
the genus of Σ can be lower than the one of Σ.

(Σ̃, h̃) is called the nodal surface of the coverging sequence and (Σ, c) is its
renormalization. These objects are related, in the sense that, there exists
a diffeomorphism ψk : Σ̃ \ {qil} → Σ \ Lk such that h̃k = ψ∗khk converge in

C∞loc topology to h̃.
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1. Proof of Theorem 0.1

Before starting the proof, we present a “baby case” illustrating the diffi-
culty for getting some L2,∞ gradient estimate for functions whose laplacian
is in L1 on a long thin cylinder. On a fixed domain, such an estimate is a
classical result, see Theorem 3.3.6 of [10]. Let us now consider the cylin-
der Cl = 1√

2πl

(
S1 ×

[
− l

2 ,
l
2

])
which is identified with S1 ×

[
− l

2 ,
l
2

]
endowed

with the conformal metric g = 1
2πl (dθ

2 + dt2). We set ul(t, θ) = t2

4πl which
solves ∆gul = 1 . Then |dul|g = t√

2πl
and we easily check that ‖dul‖L2,∞

g
∼ l.

While, considering the conformal chart ψl : Al → Cl with Al = D \B
(
0, e−l

)
and

ψl(θ, r) =

(
cos(θ), sin(θ), ln(r) +

l

2

)
.

Then, ul = ul ◦ ψl =
(ln(r)+ l

2)
2

4πl is uniformly bounded in L2,∞ with respect to
the euclidean metric. Indeed,

|∇ul| =

∣∣∣∣∣ ln(r) + l
2

2πlr

∣∣∣∣∣ ≤ 1

r
.

This fact also illustrates that despite its closeness to the L2-norm, the
L2,∞-one is not conformally invariant3. This is one of the reason why we
need to construct a specific conformal atlas.

All along the proof, for any given chart, unless otherwise stated, all the
norms are computed with respect to the euclidean metric.

Proof of Theorem 0.1.

The sphere case. Any sphere with constant curvature is conformal to the
standard one, then the charts are given by south and north stereographic
projection composed by the conformal diffeomorphism. The Green function
(up to a constant) is the one of the standard sphere, its gradient is clearly
bounded in L2,∞, hence there is nothing to prove for Theorem 0.1.

The torus case. Let (Σl, gl) be a sequence of flat tori of volume 1.
Thanks to uniformization theorem, see [14], we know that, (Σl, gl) is iso-

metric to R2/

(
1√
=(vl)

Z× vl√
=(vl)

Z
)

where vl lies in a fundamental domain

3Although, it is invariant by dilation.
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of H/PSL2(Z). Of course in the following we assume that the sequence degen-
erate, i.e. |vl| → +∞, else the metric strongly converge and also the Green
function.

We are going to treat first the rectangular torus (the case of vl ∈ iR)
and we will explain how to deduce from it the general case. Up to some
normalizations, our torus is isometric to a long and thin cylinder: Cl =

1√
2πl

(
S1 ×

[
− l

2 ,
l
2

])
with the standard identification of its boundary com-

ponents. Then this cylinder is conformal to the annulus Al = D \B
(
0, e−l

)
through the following diffeomorphism

ψl(θ, r) =

(
cos(θ)√

2πl
,
sin(θ)√

2πl
,
ln(r) + l

2√
2πl

)
.

Let Gl be the pull back of a Green function on Al. It satisfies4

∆zGl( . , w) = δw −
1

2πlr2
on Al,

and

Gl

(
(θ, e−l), w

)
= Gl ((θ, 1), w) and

e−l∂rGl

(
(θ, e−l), w

)
= ∂rGl ((θ, 1), w) for all θ.

Then we split Gl in three parts: a singular part sl, a diffusion part ul
and an harmonic part gl, as follows Gl = sl + ul + gl where

sl ((θ, r), w) =

{
1

2π ln
∣∣reiθ − w∣∣+ 1

2π ln
∣∣reiθ − elw∣∣ if |w| ≤ 1

2
1

2π ln
∣∣reiθ − w∣∣+ 1

2π ln
∣∣reiθ − e−lw∣∣ if |w| > 1

2

and

ul ((θ, r), w) = − 1

4πl
(ln(r))2 .

We easily check that, on the one hand ∆sl = δw on Al and ‖∇sl‖2,∞ =
O(1), independently of l and w, and on the other hand ∆ul = − 1

2πlr2 on
Al and ‖∇ul‖2,∞ = O(1), in fact we get even the more precise estimate
|∇ul| = O

(
1
r

)
. Finally we estimate gl, to that aim we assume that w ≤ 1

2 ,

4 This equation must be understood in a weak sense and be tested against smooth
function of Al whose composition with ψ−1

l extends to a smooth function on Σl.



i
i

“7-Laurain” — 2018/8/29 — 12:32 — page 895 — #9 i
i

i
i

i
i

Optimal estimate for the gradient of Green’s function 895

the other case can be done in a similar way. Then gl satisfies

∆gl = 0,

gl ((θ, 1), w)− gl
(

(θ, e−l), w
)

= − 3l

4π
+

1

2π
ln

∣∣∣∣e−leiθ − elweiθ − w

∣∣∣∣(2)

= − 3l

4π
+ Fl(θ),

and

∂rgl ((θ, 1), w)− e−l∂rgl
(

(θ, e−l), w
)

(3)

=
1

2π

(
−〈e

iθ, eiθ − w〉
|eiθ − w|2

+
〈e−leiθ, e−leiθ − elw〉
|e−leiθ − elw|2

+ 1

)
= Hl(θ).

Using Fourier analysis, we can decompose gl as follows

gl((θ, r), w) = c0 + a0 ln(r) +
1√
2π

∑
n∈Z

(anr
n + bnr

−n)einθ.

Thanks to (2) we easily check that,

a0 = O(1).

On the one hand, thanks to (2) and (3), we get

(4) an(1− e−nl) + bn(1− enl) =
1√
2π

∫ 2π

0
Fl(θ)e

−inθ dθ

and

(5) an(1− e−nl)− bn(1− enl) =
1

n
√

2π

∫ 2π

0
Hl(θ)e

−inθ dθ.

On the other hand,

‖∇ (gl − a0 ln(r))‖22 = O

(∑
n∈Z

n2a2
n

∫ 1

e−l
r2n−1 dr + n2b2n

∫ 1

e−l
r−2n−1 dt

)

= O

(∑
n∈Z

na2
n

(
1− e−2nl

)
+ nb2n

(
1− e2nl

))
.
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But thanks to (4) and (5) and the fact that Fl and Hl converge in C2(S1),
as l goes to infinity, we have

|an| = O

(
1

n2(1− e−nl)

)
and |bn| = O

(
1

n2(1− enl)

)
uniformly with respect to l. Hence∑

n∈Z
na2

n

(
1− e−2nl

)
+ nb2n

(
1− e2nl

)
= O(1)

uniformly with respect to l. Which prove that

‖∇ (gl − a0 ln(r))‖22 = O(1)

Finally we conclude that

‖∇Gl‖2,∞ = O(1),

This achieves the proof of Theorem 0.1 in the case vl ∈ iR. In the
general case, the torus is isometric to (Alk , hk) where lk = 2π=(vk) and

hk = 1
2πlkr2

(
r2dθ2 + dr2

cos(αk)

)
with αk = π

2 − arg(vk)→ 0. Hence Glk split as

follows Glk = sk + uk + gk where

sk ((θ, r), w)

=

{
1

2π cos(αk) ln
∣∣reiθ − w∣∣

gk
+ 1

2π cos(αk) ln
∣∣reiθ − elw∣∣

hk
if |w| ≤ 1

2
1

2π cos(αk) ln
∣∣reiθ − w∣∣

gk
+ 1

2π cos(αk) ln
∣∣reiθ − e−lw∣∣

gk
if |w| > 1

2

and

uk ((θ, r), w) = − 1

4πlk cos(αk)
(ln(r))2 ,

and then the analysis of gk is the same.
The fact that we cannot bound the weak-L2 norm with respect to the

intrinsic metric of the torus is illustrated by the following proposition.

Proposition 1.1. There exists a sequence of metrics hk on T2 with con-
stant curvature and volume equal to 1 which is unbounded in the moduli
space and such that, for any y ∈ T2, we get

(6) sup
t>0

t2
∣∣{x ∈ T2 | |dGhk(x, y)| ≥ t

}∣∣→ +∞.
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Proof of Proposition 1.1. In order to prove this proposition ,we go back to
the case of degenerating rectangular tori viewed as a long thin cylinder:
Cl = 1√

2πl

(
S1 ×

[
− l

2 ,
l
2

])
with the two ends being identified in an obvious

way. Let gφ(θ, t) = G((θ, t), (φ, 0)), then if the gradient of this function is uni-

formly bounded in L2,∞ it would be the case for g(θ, t) = 1
2π

∫ 2π
0 gφ(θ, t) dφ,

thanks to the invariance by rotation. Then we easily check that g(θ, t) = |t|
4π ,

hence |dg| =
√

2πl
4π , here the norm is computed with respect to the metric

h = 1
2πl (dθ

2 + dt2). Finally we easily check that ‖dg‖L2,∞
h
∼ l, which is a

contradiction and prove Proposition 1.1. �

The case of genus ≥ 2. Let (Σ, ck) be a sequence of Riemann surfaces
of fixed genus g ≥ 2. Thanks to the uniformization theorem, see [14], we
know that, we can endow Σ with a conformal metric hk such that (Σ, hk) is
isometric to H/Γk where Γk is a discrete subgroup of PSL2(R). Then, the
Green functions associated to hk satisfy

(∆hk)xGk( . , y) = δy −
1

v
,

where v is the volume of (Σ, hk) which depends only on the genus thanks
to Gauss-Bonnet theorem. In order to study the behavior of the Green’s
function and following the classic description of hyperbolic surfaces, see [12]
or [11], we set δ < arcsinh(1) and then we split (Σ, hk) in two parts: a
thick part Eδk = {s ∈ Σ | injrad((Σ, hk), s) ≥ δ} and a thin part F δk = {s ∈
Σ | injrad((Σ, hk), s) < δ}. Thanks to the decomposition theorem of Deligne-
Mumford, we know that the sequence of metrics converges strongly on the
thick part and develops collar in the thin part. We are going to split our proof
depending on the case whether y lies in the thick or in the thin part. But
before we prove a general estimate for Green functions on a closed surfaces.

Step 1: Coarea formula for Green’s functions.

In this step, Gk is any Green function associated to hk, there is no
normalization. Volumes and lengths are taken with respect to hk here.

Let t > 0, integrating by part on a level set, we get∫
Gk(x,y)=t

∂Gk(x, y)

∂νk
dσk(x) =

∫
Gk(x,y)≥t

(∆hk)xGk(x, y) dvk(x)

= 1− vol({Gk(x, y) ≥ t})
v

,
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where νk is the exterior normal of the open set {x ∈ Σ | Gk(x, y) > t}. Then,
we get ∫

Gk(x,y)=t
|dGk(x, y)|hk dσk(x) ≤ 1.

Let 1 < p < 2 and a > 0, then thanks to coarea-formula, see [25] or [4], we
get that ∫

Gk(x,y)≥a
|dG1−p/2

k (x, y)|2hk dvk(x)

=

∫ +∞

a

(∫
Gk(x,y)=t

|dGk(x, y)|hk
Gpk(x, y)

dσk(x)

)
dt

≤
∫ +∞

a

1

tp
dt ≤ Cp,a,

where Cp,a is a positive constant depending only on p and a. Moreover, we
can also prove, considering negative level set, that∫

Gk(x,y)≤−a
|dG1− p

2

k (x, y)|2hk dvk(x) ≤ Cp,a,

where Cp,a is a positive constant depending only on p and a. Finally we get,

(7)

∫
|Gk(x,y)|≥a

|dG1− p
2

k (x, y)|2hk dvk(x) ≤ Cp,a,

where Cp,a is a positive constant depending only on p and a.

Step 2: Estimate in the thick part.

In order to obtain the estimate on the whole thick part, we will cover it
by a finite number of balls with radius δ

2 , where have been chosen such that
0 < δ < acrsinh(1). Since we consider a general sequence of Green functions
Gk( . , yk), we have to pay attention to the location of these balls with respect
to the singularity yk. In fact if yk is in the thick part then we will center one
of the ball of the covering at yk and then the others won’t have to deal with
this singularity.

Let xk ∈ Eδk and we first assume that yk 6∈ Bhk
(
xk,

δ
2

)
. Then Bhk

(
xk,

δ
2

)
is isometric to B

(
0, tanh

(
δ
4

))
in the Poincaré disc. In the following, we make

all computations in the conformal chart B(0, 3rδ) with rδ =
tanh( δ4)

3 and the

metric hp = 4dx2

(1−|x|2)2 . Note that the hyperbolic metric is equivalent to the
euclidean one on this ball.
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On B(0, 3rδ) we decompose Gk as follows

Gk( . , yk) = uk + gk,

where uk(x) = 1
vk

ln
(

1
1−|x|2

)
and gk is a smooth harmonic function. Hence

we can apply (7), with p = 3
2 and a = 2

vk
ln
(

1
1−(3rδ)2

)
to G̃k = Gk − gk(0),

which gives that∫
{|G̃k(x,yk)|≥a}∩B(0,3rδ)

|dG̃
1

4

k (x, yk)|2hk dvhk(x) ≤ C,

where C is a positive constant depending only on the genus and δ. Then, by
the mean value property, there exists ρ ∈ [2rδ, 3rδ] such that∫

{|G̃k(xk,y)|≥a}∩∂B(0,ρ)
|dG̃

1

4

k (x, yk)|hp dσhp(x) ≤ C,

where C is positive constant depending only on the genus and δ. Then, using
the fact harmonic functions satisfy the mean value property, we get that the
mean value of gk − gk(0) is 0 on ∂B(0, ρ) and we easily deduce that

|Gk(x, yk)− gk(0)| ≤ C, for all x ∈ ∂B(0, ρ),

where C is positive constant depending only on the genus and δ. Then using
classical elliptic estimate, we have

(8) ‖dGk( . , yk)‖L∞hp (B(0,rδ)) ≤ C,

where C is positive constant depending only on the genus and δ. Then, in the
case xk = yk, equivalently the ball we consider is centered at the singularity
of G(x, . ), we obtain the same estimate decomposing Gk as follows

Gk( . , yk) = sk + uk + gk,

where sk(x) = 1
2π ln(|x|). But, of course, in that case, due to the presence of

sk, the estimate is in L2,∞. Finally covering the thick part with a uniformly
bounded number of balls we get the desired estimate on G( . , yk) on the thick
part. Indeed, either yk is not in the thick part and the result will follows
directly from (8), or we start by taking a ball centered at yk and then we
cover the rest of the thick part by balls which does not contain yk.
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Step 3: Estimate in the thin part.

Let xk ∈ F δk and yk ∈ Σ two converging sequences in Σ. First, thanks to
the collar lemma, see [11], we know that each connected component of the
thin part (i.e. at most 3g-3), contains a simple closed geodesic γk of length
εk = l(γk) < 2arcsinh(1), and is isometric to

Bk =

{
z = reiϕ ∈ H : 1 ≤ r ≤ eεk ,

arctan
(
sinh

(εk
2

))
< ϕ < π − arctan

(
sinh

(εk
2

))}
,

where the geodesic corresponds to
{
rei

π

2 ∈ H : 1 ≤ r ≤ eεk
}

and the line
{r = 1} and {r = eεk} are identified via z 7→ eεkz. It is often easier to con-
sider the following cylindrical parametrization. Let ϕk = arctan

(
sinh

(
εk
2

))
and we set

Ck =

{
(cos(θ), sin(θ), t) | 0 ≤ θ < 2π,

2π

εk
ϕk < t <

2π

εk
(π − ϕk)

}
equipped with the metric

hc =

(
εk

2π sin
(
εkt
2π

))2

(dθ2 + dt2),

where the geodesic correspond to
{
t = π2

εk

}
.

We are going to make the proof assuming that yk lies in the thin part.
When this is not the case the proof carries over after the simply operation
consisting of withdrawing the singular part sk. We can also assume that

yk 6∈
([

2π
εk
ϕk,

2π
εk
ϕk + δ

10

]
∪
[

2π
εk

(π − ϕk)− δ
10 ,

2π
εk

(π − ϕk)
])
× S1, replacing

δ by δ
2 if necessary.

Then, as for the torus case, we choose an annulus as conformal chart.
Precisely, let Ak = D \B(0, e−lk) and ψk : Ak → Ck defined as follows

ψk(θ, r) =

(
cos(θ), sin(θ), ln(r) +

2π

εk
(π − ϕk)

)
,

where lk = 2π
εk

(π − 2ϕk). Then, the pull back of a Green function on Ak,
that we keep denoting Gk, satisfies
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∆zGk( . , wk) = δwk −

 εk

r2π sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))
2

on Ak,

where ψk(wk) = yk with wk ∈ B(0, e−
δ

10 ) \B(0, e−lk+ δ

10 ) .
First of all, thanks to our previous step, see (8), we remark that

(9) |∇Gk( . , wk)| ≤
C

r
on B(0, e−lk+ δ

10 ) \B(0, e−lk),

and

(10) |∇Gk( . , wk)| ≤ C on B(0, 1) \B(0, e−
δ

10 ),

where C is a positive constant depending only on the genus and δ. Then
we split Gk as follows

Gk((θ, r), wk) = sk(θ, r) + uk(θ, r) + gk(θ, r),

where

uk(θ, r) =
ln
(

sin
(
εk
2π

(
ln(r) + 2π

εk

)))
vk

,

and

sk(θ, r) =
1

2π
ln
(∣∣∣reiθ − wk∣∣∣) .

We easily check that

∆uk = −

 εk

r2π sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))
2
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‖∇uk‖22 =
1

2πv2
k

∫ 1

e−lk

cos
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))
sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))
2

ε2
k

r
dr

(11)

=
1

2πv2
k

∫ 1

e−lk

−ε2
k

r
+

1(
sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

)))2

ε2
k

r

 dr

=
1

v2
k

− ε2
k

2π
ln(r)− εk

cos
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))
sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))
1

e−lk

≤ C,

∆sk = δwk ,

and

(12) ‖∇sk‖2,∞ ≤ C,

where C is a positive function depending only on the genus and δ.
Then gk, which has been obtained from Gk after subtracting sk and

uk, is a smooth harmonic function. Let gk(r) be the mean value of gk on
the circle of radius r centered at 0. It is also harmonic and radial, hence
gk(r) = ak ln(r) + bk. Moreover, thanks to (9) and (10), we get that

(13) |∇gk| ≤
C

r
on B(0, e−lk+ δ

20 ) \B(0, e−lk),

and

(14) |∇gk| ≤ C on B(0, 1) \B(0, e−
δ

20 ).

In particular, ak is uniformly bounded and we get,

(15) ‖∇gk‖L2,∞(B(0,1)\B(0,e−lk )) ≤ C,

Then using the fact the mean value of gk − gk is zero and the previous
estimate, we get that

(16) ‖gk − gk‖L∞
((
B(0,e−lk+ δ

20 )\B(0,e−lk )
)
∪
(
B(0,1)\B(0,e−

δ
20 )
)) ≤ C,
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where C is positive constant depending only on the genus and δ. Then, since
gk − gk is harmonic and with radial mean value equal to zero,

(17) ‖∇(gk − gk)‖L2

(
B(0,e−

δ
10 )\B(0,e−lk+ δ

10 )
) ≤ C,

where C is positive constant depending only on the genus and δ. The last
inequality can be proved using the Fourier decomposition and remarking
that gk − gk has no logarithmic part. Finally, thanks to (11), (12), (15)
and (17), we get the desired estimate, which concludes the proof of the
Theorem 0.1. �

2. Weak compactness result for immersions with second
fundamental form bounded in L2

The first application of Theorem 0.1 regards the control of the conformal
factor for immersions with L2-bounded second fundamental form. Before to
state the main result, we shall first remind the notion of weak immersions
introduced by the second author in [22] .

Let Σ be a smooth compact surface equipped with a reference smooth
metric g0. One define the Sobolev spaces W k,p(Σ,Rm) of measurable maps
from Σ to Rm into the following way

W k,p(Σ,Rm) =

{
f : Σ→ Rmmeasurable s.t.

k∑
l=0

∫
Σ
|∇lf |pg0

dvg0
< +∞

}
.

Since Σ is compact it is not difficult to see that this space is independent of
the choice we have made of g0.

Let f ∈W 1,∞(Σ,Rm), we define gf to be the following symmetric bilin-
ear form

gf (X,Y ) = 〈df(X), df(Y )〉,

and we shall assume that there exists Cf > 1 such that

(18) C−1
f g0(X,X) ≤ g(X,X) ≤ Cfg0(X,X).

For such a map, we can define the Gauss map as being the following measur-
able map in L∞(Σ) taking values int the Grassmannian of oriented m− 2-
planes of Rm,

~nf = ?
∂f
∂x ∧

∂f
∂x∣∣∣∂f∂x ∧ ∂f
∂x

∣∣∣ ,
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where ? is the Hodge star. We then introduce the space EΣ of weak immer-
sions of Σ with bounded second fundamental form as follow:

EΣ =


Φ ∈W 1,∞(Σ) which satisfies (18) for some CΦ > 0

and
∫

Σ |d~nΦ|2g dvg < +∞

 ,

where g = Φ∗ξ.
It is proved in [23] that any weak immersion defines a smooth conformal

structure on Σ. Let Φ ∈ EΣ, we denote by π~nΦ
the orthonormal projection

of vector in Rm onto the m− 2-plane given by ~nΦ. With these notations the
second fundamental form of the immersion at p is given by

∀X,Y ∈ TpΣ ~Ip(X,Y ) = π~nΦ
d2Φ(X,Y ),

and the mean curvature vector of the immersion at p is given by

~H =
1

2
trg(~I).

A natural quantity while considering such immersions is the Lagrangian
given by the L2-norm of the second fundamental form:

E(φ) =

∫
Σ
|~I|2g dvg.

An elementary computation, using Gauss-Bonnet formula, gives

E(φ) =

∫
Σ
|~I|2g dvg =

∫
Σ
|d~nΦ|2g dvg = 4W (φ)− 4πχ(Σ),

where χ(Σ) is the Euler characteristic and

W (Φ) =

∫
Σ
| ~H|2g dvg,

is the so called Willmore energy.

Proof of Theorem 0.2. Let Kg = 0 or− 1 if the genus g of Σ is 1 or greater
than 1 and KΦ∗kξ be the Gauss curvature associated to Φ∗kξ. It is classical
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that uk satisfies the following Liouville equation

(19) −∆hkuk = KΦ∗kξe
2uk −Kg.

Let Gk be the nonnegative Green function of (Σ, hk), then using the repre-
sentation formula, we get that

(20) uk = Gk ?
(
KΦ∗kξe

2uk −Kg

)
.

We have the following straightforward estimate,∫
Σ
|KΦ∗kξe

2uk | dvhk =

∫
Σ
|KΦ∗kξ| dvΦ∗kξ(21)

≤ 1

2

∫
Σ
|~IΦ∗kξ|

2 dvΦ∗k(ξ) ≤W (Φk) + Cg,

where Cg depends only on the genus g of Σ. This proves that the right hand
side of (19) is uniformly bounded in L1-norm by W (Φk) with respect to
the metric hk. Then let (Ui, ψi) the conformal atlas given by Theorem 0.1
and let φik = Φk ◦ ψ−1

i : Vi → Rm and vik : Vi → R such that (φik)
∗(ξ) =

e2vikdz2. First we observe that vik = uk ◦ ψ−1
i + wik where wik : Vi → R such

that (ψi)
∗(hk) = e2wikdz2. Moreover, we can easily check that ∇wik is uni-

formly bounded in L2,∞ since in the torus case a chart is given by an annulus
and wik = − ln(r) + ck and in the hyperbolic case the chart is either a disc
with radius strictly less than 1 and wik = − ln(1− r2) + cik or an annulus
Ak = D \B(0, e−lk) where lk = 2π

εk
(π − 2ϕk) with

wik = − ln

(
r sin

(
εk
2π

(
ln(r) +

2π

εk
(π − ϕk)

)))
+ cik.

Then it suffices to check that ∇(uk ◦ ψ−1
i ) is uniformly bounded in

L2,∞(Vi) in order to prove the theorem. Thanks to (20), we have

(22) uk(y) =

∫
Σ
Gk(x, y)Fk(x) dvhk ,

where Fk = KΦ∗kξe
2uk −Kg. Hence,

(23) ∇yuk ◦ ψ−1
i (y) =

∫
Σ
∇yGk(x, ψ−1

i (y))Fk(x) dvhk ,
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then using the fact supx∈Σ ‖∇yGk(x, ψ−1
i (y))‖L2,∞ is uniformly bounded,

thanks to Theorem 0.1, thanks to (21) and standard inequality on convolu-
tion we get that ‖∇(uk ◦ ψ−1

i )‖L2,∞(Vi) is uniformly bounded which concludes
the proof of Theorem 0.2. �

Proof of Theorem 0.3. By assumption there exists Λ, a positive constant,
such that

(24) sup
k∈N

W (Φk) ≤ Λ.

We denote by uk the conformal factor of this weak immersion with re-
spect to the hyperbolic metric hk in the conformal class of Φ∗kξ. That is to
say

Φ∗kξ = e2ukhk,

where Khk ≡ −1.
Now let (Σ̃, h̃) be the nodal surface of the converging sequence (Σ, hk),

{qi} the set of punctures, (Σ, h) its renormalisation and φk : Σ̃→ Σ the
continuous map given by to Deligne-Mumford compactification recalled in
section 1. Let σ be any connected component of Σ̃.

Then Φ̃k = Φk ◦ φk is a conformal weak immersion of (σ, h̃k) where h̃k =
φ∗khk. Hence, we get

(Φk ◦ φk)∗ξ = e2uk h̃k.

Let δ > 0 and Kδ = {x ∈ σ s.t. dh(x, qi) ≥ δ for all i}, thanks to the lo-
cal convergence of φk, then

(25) sup
k
‖∇uk‖L2,∞

h̃
(Kδ)

<∞

Here we use the fact that on the thick part the euclidean metric and the hy-
perbolic one are equivalent then Theorem 0.2 can be considered intrinsically
on the thick part.

Then, in order to find the correct Möbius transformation, we follow the
procedure introduced by the second author in [22]. For each x ∈ Kδ there
exists ρkx > 0 such that∫

Bh̃k (x,ρkx)
|d~nΦ̃k

|2
h̃k
dvh̃k = min

(
8π

3
,

∫
Kδ

|d~nΦ̃k
|2
h̃k
dvh̃k

)

where Bh̃(x, ρkx) is the geodesic ball in (σ, h̃) of center x and radius ρkx. Then,
using the Besicovitch covering lemma, we can extract a finite covering of
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Kδ ⊂ ∪i∈IkBh̃
(
xki ,

ρxk
i

2

)
, such that each point is covered at most N times,

where N is independent of k. Then, thanks to (24), we can extract a finite
covering, I ⊂ ∪kIk, which is independent of k where xki converges to x∞i and
ρxki converges to ρx∞i . Then we set I0 = {i ∈ I s.t. ρx∞i = 0} and I1 = I \ I0.

Claim. For each i ∈ I \ I0 there exist vik ∈ R such that

‖vk − vik‖
L∞

(
Bh̃

(
xki ,

ρ
xk
i

2

)) ≤ C,

where C is a constant which depends only on Λ.

Proof of the Claim. Let fix i ∈ I \ I0 and identify, up to uniformly bounded
conformal diffeomorphism, Bh̃k(x, ρ

k
x) with D. Then, thanks to lemma 5.1.4

of [10] there exists a moving frame (~e k1 , ~e
k
2 ) ∈W 1,2(D, Sm−1) such that∫

D
(|∇~e k1 |2 + |∇~e k2 |2) dz ≤

∫
D
|d~nΦ̃k

|2dz ≤ 8π

3
,

and moreover

?~nΦ̃k
= ~e k1 ∧ ~e k2 and ∆uk =

(
∇⊥~e k1 , ~e k2

)
.

Let vk be the solution of{
∆vk =

(
∇⊥~e k1 , ~e k2

)
on D

vk = 0 on ∂D.

Then, thanks to Wente inequality, see section 3 of [10], we get

(26) ‖vk‖∞ + ‖∇vk‖2 ≤
1

2π
‖∇~ek1‖‖∇~ek2‖.

Finally using the fact uk − vk is harmonic with ‖∇(uk − vk)‖2,∞ uni-
formly bounded, we proved that there exist ck ∈ R and C a positive constant
independent of k such that

(27) ‖uk − vk − ck‖L∞(B(0, 1
2)) ≤ C,

Finally, putting (26) and (27) together concludes the proof of the claim. �
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Then using the fact that each point is covered by a universal number of
balls, we easily get that there exists vk ∈ R such that

(28) ‖vk − vk‖L∞(Kδ\∪i∈I0Bh̃(x∞i ,
δ

2)) ≤ C.

We also remark that he constant vk is independent of δ. Let x0 ∈ σ then
we set

Φ̂k = e−vk
(

Φ̃k − Φ̃k(x0)
)
.

Then, using Simon monotonicity formula, see [25], as in [22] we proved
that there exists y0 ∈ B(0, 1) ⊂ Rm and t > 0 such that

(29) Φ̂k

(
Kδ \ ∪i∈I0Bh

(
x∞i ,

δ

2

))
∩B(y0, t) = ∅.

Finally, we set

Ξk = Iy0,t

(
e−vk

(
. − Φ̃k(x0)

))
where Iy0,t is the inversion of Rm centered at y0 and with ratio t. Hence Ξk
is a Möbius transformation such that, if we set Ψk = Ξk ◦ Φk, we get thanks
to (28) that

sup
k∈N
‖Log|dΨk|h̃k‖L∞(K) ≤ CK ,

and thanks to (29), that there exist R > 0 such that,

Ψk

(
Kδ \ ∪i∈I0Bh

(
xi,

δ

2

))
⊂ B(0, R).

Finally, using a classical argument of functional analysis, see for instance
[23] beginning of section VI.7.1, we easily deduce that Ψk converge to Ψ

in W 2,2
loc

(
σ \ {x∞1 , . . . , x∞L , q1, . . . , qK}, h̃

)
, moreover Ψ is a weak immersion

away from {x∞1 , . . . , x∞L , q1, . . . , qK} satisfying

W (Ψ) < +∞

Finally Lemma A.5 of [21] permits us to extend Ψ as a conformal, possibly
branched, immersion of σ. �
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3. Weak compactness of Riemannian surfaces with bounded
Gaussian curvature entropy

The last application of our main result is a compactness result in the spirit
of Cheeger and Gromov [5], Trojanov [28] and most recently Shioya [24]
for Riemannian surfaces. Indeed, we prove a general compactness result for
sequence of metrics on a given closed surface assuming only that the area
and the total curvature are uniformly bounded and that the entropy of the
Gaussian curvature is also bounded. The first assumptions are the weaker
we can assume in order to the problem makes sense. And the second is made
necessarily if one consider a long thin cylinder closed by a two spherical cap,
see [28] and reference therein for more examples of degenerating metrics
with bounded curvature and area.

The entropy of the Gaussian curvature of a given metric is defined as
follows, let Σ be a closed surface and g a Riemannian metric with Gaussian
curvature equal to Kg, then we set

E(g) =

∫
Σ
K+
g ln(K+

g ) dvg,

where K+
g = max(0,Kg) and we set K+

g ln(K+
g ) = 0 when K+

g = 0. This
was introduce by Hamilton in the context of Ricci flow on surfaces. He
notably proved that it is monotonically increasing along the Ricci flow on
spheres with positive curvature, see [9] and [6]. In order to apply directly
our preceding result, we introduce a slightly stronger notion of entropy. Let
Σ be a closed surface with a reference metric g0, then we set

Ẽ0(g) =

∫
Σ

ln(e+ |Kgdvg|g0
)|Kg| dvg.

Then considering this notion of entropy, we get the following compact-
ness result.

Theorem 3.1. For any closed Riemannian surface (Σ, g0) and any se-
quence of smooth metric gk such that

Ẽ0(gk) = O(1),

then for each component σ of the thick part of (Σ, hk), then, up to a dilatation
of the metric by a factor e−Ck , hk converges weakly in (L∞loc(σ))∗.

More precisely, up to a subsequence, one of the following occurs
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i) genus(Σ) = 0, then there exists Ck such that if e−Ckgk = e2ukg0, where
g0 is the metric of the standard sphere, and uk is uniformly bounded,

ii) genus(Σ) = 1, then up to a first dilation, (Σ, gk) is isometric to C/(Z×
vkZ) where vk lies in a fundamental domain of H/PSL2(Z), then there
exists Ck such that if e−Ckgk = e2ukdz2 then uk is bounded in L∞loc(C/
(Z× vkZ)).

iii) genus(Σ) ≥ 1, then let σ be a connected component σ of the nodal surface
of (Σ, hk), then there exists Ck such that if e−Ckgk = e2ukhk and uk is
bounded in L∞loc(σ).

Here, for sake of simplicity we consider the standard sphere and a long
cylinder of fixed radius as thick part, since the infectivity radius is bounded
below.

Proof of Theorem 3.1. We choose the atlas given by Theorem 0.1, and let
gk = e2ukhk where uk is the conformal factor with respect to a normalized
metric of constant curvature. Let K be a compact set of σ a connected
component of the thick part and U an open set of σ such that U is compact
and K ⊂ U . Then on U the conformal factor satisfies

∆hkuk = Kgke
2uk −Khk ,

and hk converges strongly to a smooth metric. On the one hand, since the
total curvature is bounded, as in Theorem 0.2, we get that ∇uk is uniformly
bounded in L2,∞. Then let vk ∈ H1

0 (U) such that

∆hkvk = Kgke
2uk −Khk on U.

Thanks to the theory of singular integral, see [26] exercise II 6.2.(b), we get
that ∇vk is uniformly bounded in L2 and that vk is uniformly bounded in
L∞. Then, since uk − vk is harmonic on U whose gradient is bounded in
L2,∞, then thanks to Harnack inequality there exists a constant Ck such
that uk − vk − Ck is uniformly bounded on K. Then, after checking that
the constant is independent of K, we get that on each connected component
of the thick part there exists a sequence of constant Ck such that e−Ckgk =
eũkhk with ũk uniformly bounded in L∞loc(σ), which prove the theorem. �

Remark. An interesting problem is to try to replace Ẽ0 by E in the pre-
ceding theorem. In order to do this, on need to analyze the way Kgdvg con-
centrates as already done, in the particular case where the Gauss curvature
converges uniformly, by [2] see also [17].
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[27] L. Tartar, Compacité par compensation: résultats et perspectives, in:
Nonlinear partial differential equations and their applications. Collège
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