Optimal estimate for the gradient of Green's function on degenerating surfaces and applications

Paul Laurain and Tristan Rivière

Abstract

In this paper we prove a uniform estimate for the gradient of the Green function on a closed Riemann surface, independent of its conformal class, and we derive compactness results for immersions with L^{2}-bounded second fundamental form and for Riemannian surfaces of uniformly bounded Gaussian curvature entropy.

Introduction

Let Σ be a closed smooth surface of genus g. We can endow Σ with a metric h, then thanks to the uniformization theorem, see [14] or [7], there exists in the conformal class of h, i.e. the set of metric on Σ which can be written $e^{2 u} h$ where u is a smooth function, a metric of constant curvature, equal to 1 if $g=0,0$ if $g=1$ and -1 otherwise. The sphere case is very particular, since the conformal group is not compact but this case is not of great interest here since there is only one conformal class. In the hyperbolic case the metric is unique and in the torus it is also true up to normalize the area. In the following, we assume this normalization and we still denote by h the metric of constant curvature (when $g \geq 1$) and we associate to h its Laplace-Beltrami operator Δ_{h}. Then there exists, up to normalization, a unique nonnegative Green function G_{h} associated to Δ_{h}.

The main goal of this paper is to give estimates on G_{h} independently of the conformal class defined by the metric h. This is a very classical subject in the theory of Riemann surfaces strongly related with the behaviour of the spectrum of the Laplace operator, see [3]. Let $\left(\Sigma, h_{k}\right)$ be a sequence of hyperbolic surfaces whose conformal class degenerate, that is to say that some geodesics are pinching. Let us assume that there is only one degenerating geodesic γ_{k} and let Σ_{∞} denote its nodal limit, see section 1 for the precise definition. Then Ji, see [13], proved that if γ_{k} does not separate Σ_{k}
then G_{k} is uniformly bounded on every compact subset of $\Sigma_{\infty} \times \Sigma_{\infty}$, else $\lim _{k \rightarrow+\infty}\left|G_{k}(x, y)\right|=+\infty$ for any $(x, y) \in \Sigma_{\infty} \times \Sigma_{\infty}$.

Here we see that we have a very different behaviour with respect to the manner the conformal class degenerates. Is a similar behaviour possible for derivatives? Indeed, formally we can write

$$
G_{k}(x, y)=\sum_{i \geq 1} \frac{\varphi_{i}^{k}(x) \varphi_{i}^{k}(y)}{\lambda_{i}^{k}}
$$

where λ_{i}^{k} and φ_{i}^{k} are respectively the i th (non vanishing) eigenvalue and the i th (non constant) eigenfunction of $\Delta_{h_{k}}$, repeating indices according to multiplicity. Of course if the nodal limit is disconnected then the first eigenvalue goes to zero while the first eigenfunction goes to a locally constant function. Looking at derivatives instead, one can expect a better behavior of the Green function, even in the collar region. However, the gradient of the Green function gets a simple pole on the diagonal, hence it is not in L^{2}. The main result of this paper establishes that it is however true in a slightly weaker norm.

Theorem 0.1. Let Σ be a closed surface then there exits C a positive constant and an integer N depending only on the genus of Σ such that for any metric h on Σ with constant curvature equal to 1, 0 or -1 and with normalized volum@ ${ }^{1}$, and any Green function associated to h, there exists a finite atlas of N conformal charts $\left(U_{i}, \psi_{i}\right)$, such that for any $y \in \Sigma$ we get

$$
\begin{equation*}
\sup _{t>0} t^{2}\left|\left\{x \in V_{i}| | d_{x} G_{h}^{i}(x, y) \mid \geq t\right\}\right| \leq C \tag{1}
\end{equation*}
$$

where $V_{i}=\psi_{i}\left(U_{i}\right)$ and $G_{h}^{i}(., y)=\left(\psi_{i}\right) *\left(G_{h}(., y)\right)$.
We can remark that on a fix Riemann surface (Σ, h), the Green function is always bounded for this weak L^{2}-norm. We can deduce it from the standard pointwise estimate, see [1],

$$
\left|d_{x}\left(G_{h}^{i}(x, y)\right)\right| \leq \frac{C_{h}}{d_{h}(x, y)}
$$

but of course this estimate depends on the metric we take on Σ.
At the knowledge of authors, this result is the first control of the gradient of a Green function independent of the conformal class. Moreover it

[^0]looks quite optimal since the result is clearly false in L^{2}. In fact the atlas is very explicit, since, for instance considering the hyperbolic case, the surface divides in thick and thin part. On the thick part we can consider any disc with radius smaller than the injectivity radius. And in the thin part, using collar lemma, chart are given by degenerating annuli.

This result is optimal in the sense that we also prove that the weak L^{2} norm of the Green function computed with respect to the intrinsic metric is not bounded when the singularity hold to a collapsing region, which is made clear in the torus case by the Proposition 1.1.

Regarding the proof of the theorem, once we have ruled out the trivial case of the sphere then we treat the case of a degenerating torus and of an hyperbolic surface quite differently. For the torus, our proof relies on an estimate of the coefficient of the Fourier decomposition on a long thin cylinder using the periodicity condition, and in the hyperbolic case, it relies on the coarea formula and the decomposition of the surface in thin and thick part.

In the last sections, we give some applications of Theorem 0.1 in differential geometry both from extrinsic and intrinsic point of view. First, we prove that the gradient of the conformal factor of an immersion with L^{2}-bounded second fundamental form is uniformly bounded in $L^{2, \infty}$, up to choose a convenient atlas given by Theorem 0.1. More precisely

Theorem 0.2. Let $\left(\Sigma, c_{k}\right)$ be a sequence of closed Riemann surfaces of fixed genus at lest one. Let h_{k} denote the metric with constant curvature (and volume equal to one in the torus case) in c_{k} and Φ_{k} a sequence of weak conformal immersions of Σ into \mathbb{R}^{m}, i.e.

$$
\Phi_{k}^{*} \xi=e^{2 u_{k}} h_{k}
$$

where $u_{k} \in L^{\infty}(\Sigma)$ and ξ is the standard metric in \mathbb{R}^{n}. Then there exists a finite conformal atlas $\left(U_{i}, \psi_{i}\right)$ independent of k and a positive constant C depending only on the genus of Σ, such that

$$
\left\|d v_{k}^{i}\right\|_{L^{2, \infty}\left(V_{i}\right)} \leq C W\left(\Phi_{k}\right)
$$

where v_{k}^{i} is the conformal factor of $\Phi^{k} \circ \psi_{i}^{-1}$ in $V_{i}=\psi_{i}\left(U_{i}\right)$, i.e.

$$
v_{k}^{i}=\frac{1}{2} \ln \left|\frac{\partial \Phi^{k} \circ \psi_{i}^{-1}}{\partial x}\right|=\frac{1}{2} \ln \left|\frac{\partial \Phi^{k} \circ \psi_{i}^{-1}}{\partial y}\right|,
$$

and W is the Willmore energy. ${ }^{2}$.
In [16], using this last estimate as starting point, we prove the quantification of the Willmore energy on degenerating surfaces up to control some residues in the collar as it has been done for harmonic maps by Zhu in [29].

Then our second application concerns the weak compactness of the conformal immersions with L^{2}-bounded second fundamental form. The following result was proved first in [22] when the conformal class of the surface does not degenerate and has been extended to the general case of degenerating Riemann surfaces in [15]. We shall present a different approach for proving this result as being a consequence of our main Theorem 0.1 .

Theorem 0.3. Let Σ be a closed surface of genus strictly greater than 1 and $\Phi_{k} \in \mathcal{E}_{\Sigma}$ a sequence of weak immersion into \mathbb{R}^{m} with L^{2}-bounded second fundamental form. Then, up to a subsequence, for any connected component σ of $\widetilde{\Sigma}$, the nodal surface of the converging sequence $\left(\Sigma, \Phi_{k}^{*} \xi\right)$, there exists a Möbius transformation Ξ_{k} of \mathbb{R}^{m} such that

$$
\Xi_{k} \circ \Phi_{k}(\Sigma) \subset B(0, R)
$$

where R depends only on m and there exist at most finitely many points $\left\{a_{1}, \ldots, a_{L}\right\}$ of σ are such that if we denote $\Psi_{k}=\Xi_{k} \circ \Phi_{k} \circ \phi_{k}$, then

$$
\Psi_{k} \rightharpoonup \Psi \text { weakly in } W_{l o c}^{2,2}\left(\sigma \backslash\left\{a_{1}, \ldots, a_{L}, q_{1}, \ldots, q_{K}\right\}, \tilde{h}\right),
$$

where Ψ is a weak conformal(possibly branched) immersion of (σ, \tilde{h}) into \mathbb{R}^{m} and the q_{i} are the punctures of (σ, \tilde{h}) and $\phi_{k}: \widetilde{\Sigma} \rightarrow \Sigma$ such $\phi_{k}^{*}\left(h_{k}\right) \rightarrow \tilde{h}$ in $C_{l o c}^{\infty}(\widetilde{\Sigma})$.

Moreover, for any compact $K \subset \sigma \backslash\left\{a_{1}, \ldots, a_{L}, q_{1}, \ldots, q_{K}\right\}$ there exists $C_{K}>0$ such that

$$
\sup _{k \in \mathbb{N}}\left\|\log \left|d \Psi_{k}\right|_{\phi_{k}^{*} h_{k}}\right\|_{L^{\infty}(K)} \leq C_{K}
$$

where C_{K} depends only on m, K and the L^{2}-bound on the second fundamental form of Φ_{k}.

Here we consider the hyperbolic case, since in the sphere case the existence of a non compact conformal group is the additional difficulty already

[^1]treated in [18] and [19] and in the torus when it degenerate, the injectivity radius uniformly blow down.

Finally, in the last section we prove that considering a sequence of Riemann surfaces with bounded total curvature and entropy(see below for precise definition) then we can find a finite conformal atlas in which the conformal factor is uniformly bounded.

Acknowledgements. The first author was visiting the Forschungsinstituts für Mathematik at E.T.H. (Zurich) when this work started, he would like to thank it for its hospitality and the excellent working conditions. Both authors would like to thank the two referees for their comments, which clearly improved the exposition of this paper. .

0.1. Lorentz spaces

Here we recall some classical facts about Lorentz spaces, [8] for details.
Definition 0.1. Let D be a domain of $\mathbb{R}^{k}, p \in(1,+\infty)$ and $q \in[1,+\infty]$. The Lorentz space $L^{p, q}(D)$ is the set of measurable functions $f: D \rightarrow \mathbb{R}$ such that

$$
|f|_{p, q}=\left(\int_{0}^{+\infty}\left(t^{\frac{1}{p}} f^{*}(t)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}<+\infty \text { if } q<+\infty
$$

or

$$
|f|_{p, \infty}=\sup \left(t^{\frac{1}{p}} f^{*}(t)\right) \text { if } q=+\infty
$$

where f^{*} is the decreasing rearrangement of f.
$\left|\left.\right|_{p, q}\right.$ happens to be a quasi norm equivalent to a norm for which $L^{p, q}$ is a Banach space. Each $L^{p, q}$ may be seen as a deformation of L^{p}. For instance, we have the strict inclusions

$$
L^{p, 1} \subset L^{p, q^{\prime}} \subset L^{p, q^{\prime \prime}} \subset L^{p, \infty}
$$

if $1<q^{\prime}<q^{\prime \prime}$. Moreover,

$$
L^{p, p}=L^{p}
$$

Furthermore, if $|D|$ is finite, we have that for all q and q^{\prime},

$$
p>p^{\prime} \Rightarrow L^{p, q} \subset L^{p^{\prime}, q^{\prime}}
$$

Using the fact that $f^{*}(t)=\inf \left\{s>0\right.$ s.t. $\left.d_{f}(s) \leq t\right\}$ where d_{f} is the distribution function of f, we see that the $L^{2, \infty}$ norm of f is finite if and only if $\sup _{t>0} t^{2}|\{x \in D| | f(x) \mid \geq t\}|$ is finite.

Finally, for $p \in(1,+\infty)$ and $q \in[1,+\infty], L^{\frac{p}{p-1}, \frac{q}{q-1}}$ is the dual of $L^{p, q}$.

0.2. Degenerating Riemann surfaces

Here we remind the Deligne-Mumford's description of the loss of compactness of the conformal class for a sequence of Riemann surfaces with fixed topology, see [12] for details.

Let $\left(\Sigma, c_{k}\right)$ a sequence of closed Riemann surface of fixed genus g. If $g=0$ then the conformal class is fixed since there is only one conformal class on the sphere. If $g=1$ then, we know that, $\left(\Sigma, c_{k}\right)$ is conformally equivalent to $\mathbb{R}^{2} /\left(\frac{1}{\sqrt{\Im\left(v_{k}\right)}} \mathbb{Z} \times \frac{v_{l}}{\sqrt{\Im\left(v_{k}\right)}} \mathbb{Z}\right)$ where v_{k} lies in the fundamental domain $\{z \in \mathbb{C}$ s.t. $|\Re(z)| \leq 1$ and $|z| \geq 1\}$ of $\mathbb{H} / \operatorname{PSL}_{2}(\mathbb{Z})$, and we say that c_{k} degenerates if $\left|v_{k}\right| \rightarrow+\infty$. If $g \geq 1$, let h_{k} the hyperbolic metric associated with c_{k}, then $\left(\Sigma, c_{k}\right)$ degenerates if there exits a closed geodesic whose length goes to zero. In that case, up to a subsequence, there exists

1) an integer $N \in\{1, \ldots, 3 g-3\}$,
2) a sequence $\mathcal{L}_{k}=\left\{\Gamma_{k}^{i} ; i=1, \ldots, N\right\}$ of finitely many pairwise disjoint simple closed geodesics of $\left(\Sigma, h_{k}\right)$ with length converging to zero,
3) a closed Riemann surfaces $(\bar{\Sigma}, \bar{c})$,
4) a complete hyperbolic surface $(\widetilde{\Sigma}, \widetilde{h})$ with $2 N$ cups $\left\{\left(q_{1}^{i}, q_{2}^{i}\right) ; i=1, \ldots\right.$, $N\}$ such that $\widetilde{\Sigma}$ has been obtain topologically after removing the geodesic of \mathcal{L}_{k} to Σ and after closing each component of the boundary of $\Sigma \backslash \mathcal{L}_{k}$ by adding a puncture q_{l}^{i} at each of these component. Moreover $\bar{\Sigma}$ is topologically equal to Σ and the complex structure defined by \widetilde{h} on $\widetilde{\Sigma} \backslash\left\{q_{l}^{i}\right\}$ extends uniquely to \bar{c}. We can also equip $\bar{\Sigma}$ with a metric \bar{h} with constant curvature, but not necessarily hyperbolic since the genus of $\bar{\Sigma}$ can be lower than the one of Σ.
$(\widetilde{\Sigma}, \widetilde{h})$ is called the nodal surface of the coverging sequence and $(\bar{\Sigma}, \bar{c})$ is its renormalization. These objects are related, in the sense that, there exists a diffeomorphism $\psi_{k}: \widetilde{\Sigma} \backslash\left\{q_{l}^{i}\right\} \rightarrow \Sigma \backslash \mathcal{L}_{k}$ such that $\widetilde{h}_{k}=\psi_{k}^{*} h_{k}$ converge in $C_{l o c}^{\infty}$ topology to \widetilde{h}.

1. Proof of Theorem 0.1

Before starting the proof, we present a "baby case" illustrating the difficulty for getting some $L^{2, \infty}$ gradient estimate for functions whose laplacian is in L^{1} on a long thin cylinder. On a fixed domain, such an estimate is a classical result, see Theorem 3.3.6 of [10]. Let us now consider the cylin$\operatorname{der} C_{l}=\frac{1}{\sqrt{2 \pi l}}\left(S^{1} \times\left[-\frac{l}{2}, \frac{l}{2}\right]\right)$ which is identified with $S^{1} \times\left[-\frac{l}{2}, \frac{l}{2}\right]$ endowed with the conformal metric $g=\frac{1}{2 \pi l}\left(d \theta^{2}+d t^{2}\right)$. We set $u_{l}(t, \theta)=\frac{t^{2}}{4 \pi l}$ which solves $\Delta_{g} u_{l}=1$. Then $\left|d u_{l}\right|_{g}=\frac{t}{\sqrt{2 \pi l}}$ and we easily check that $\left\|d u_{l}\right\|_{L_{g}^{2, \infty}} \sim l$. While, considering the conformal chart $\psi_{l}: A_{l} \rightarrow C_{l}$ with $A_{l}=\mathbb{D} \backslash B\left(0, e^{-l}\right)$ and

$$
\psi_{l}(\theta, r)=\left(\cos (\theta), \sin (\theta), \ln (r)+\frac{l}{2}\right)
$$

Then, $\bar{u}_{l}=u_{l} \circ \psi_{l}=\frac{\left(\ln (r)+\frac{l}{2}\right)^{2}}{4 \pi l}$ is uniformly bounded in $L^{2, \infty}$ with respect to the euclidean metric. Indeed,

$$
\left|\nabla \bar{u}_{l}\right|=\left|\frac{\ln (r)+\frac{l}{2}}{2 \pi l r}\right| \leq \frac{1}{r}
$$

This fact also illustrates that despite its closeness to the L^{2}-norm, the $L^{2, \infty}$-one is not conformally invariant $\|^{3}$. This is one of the reason why we need to construct a specific conformal atlas.

All along the proof, for any given chart, unless otherwise stated, all the norms are computed with respect to the euclidean metric.

Proof of Theorem 0.1.
The sphere case. Any sphere with constant curvature is conformal to the standard one, then the charts are given by south and north stereographic projection composed by the conformal diffeomorphism. The Green function (up to a constant) is the one of the standard sphere, its gradient is clearly bounded in $L^{2, \infty}$, hence there is nothing to prove for Theorem 0.1.

The torus case. Let $\left(\Sigma_{l}, g_{l}\right)$ be a sequence of flat tori of volume 1 . Thanks to uniformization theorem, see [14], we know that, $\left(\Sigma_{l}, g_{l}\right)$ is isometric to $\mathbb{R}^{2} /\left(\frac{1}{\sqrt{\Im\left(v_{l}\right)}} \mathbb{Z} \times \frac{v_{l}}{\sqrt{\Im\left(v_{l}\right)}} \mathbb{Z}\right)$ where v_{l} lies in a fundamental domain

[^2]of $\mathbb{H} / \mathrm{PSL}_{2}(\mathbb{Z})$. Of course in the following we assume that the sequence degenerate, i.e. $\left|v_{l}\right| \rightarrow+\infty$, else the metric strongly converge and also the Green function.

We are going to treat first the rectangular torus (the case of $v_{l} \in i \mathbb{R}$) and we will explain how to deduce from it the general case. Up to some normalizations, our torus is isometric to a long and thin cylinder: $C_{l}=$ $\frac{1}{\sqrt{2 \pi l}}\left(S^{1} \times\left[-\frac{l}{2}, \frac{l}{2}\right]\right)$ with the standard identification of its boundary components. Then this cylinder is conformal to the annulus $A_{l}=\mathbb{D} \backslash B\left(0, e^{-l}\right)$ through the following diffeomorphism

$$
\psi_{l}(\theta, r)=\left(\frac{\cos (\theta)}{\sqrt{2 \pi l}}, \frac{\sin (\theta)}{\sqrt{2 \pi l}}, \frac{\ln (r)+\frac{l}{2}}{\sqrt{2 \pi l}}\right) .
$$

Let G_{l} be the pull back of a Green function on A_{l}. It satisfies 4^{4}

$$
\Delta_{z} G_{l}(., w)=\delta_{w}-\frac{1}{2 \pi l r^{2}} \text { on } A_{l}
$$

and

$$
\begin{aligned}
& G_{l}\left(\left(\theta, e^{-l}\right), w\right)=G_{l}((\theta, 1), w) \quad \text { and } \\
& e^{-l} \partial_{r} G_{l}\left(\left(\theta, e^{-l}\right), w\right)=\partial_{r} G_{l}((\theta, 1), w) \quad \text { for all } \theta
\end{aligned}
$$

Then we split G_{l} in three parts: a singular part s_{l}, a diffusion part u_{l} and an harmonic part g_{l}, as follows $G_{l}=s_{l}+u_{l}+g_{l}$ where

$$
s_{l}((\theta, r), w)= \begin{cases}\frac{1}{2 \pi} \ln \left|r e^{i \theta}-w\right|+\frac{1}{2 \pi} \ln \left|r e^{i \theta}-e^{l} w\right| & \text { if }|w| \leq \frac{1}{2} \\ \frac{1}{2 \pi} \ln \left|r e^{i \theta}-w\right|+\frac{1}{2 \pi} \ln \left|r e^{i \theta}-e^{-l} w\right| & \text { if }|w|>\frac{1}{2}\end{cases}
$$

and

$$
u_{l}((\theta, r), w)=-\frac{1}{4 \pi l}(\ln (r))^{2}
$$

We easily check that, on the one hand $\Delta s_{l}=\delta_{w}$ on A_{l} and $\left\|\nabla s_{l}\right\|_{2, \infty}=$ $O(1)$, independently of l and w, and on the other hand $\Delta u_{l}=-\frac{1}{2 \pi l r^{2}}$ on A_{l} and $\left\|\nabla u_{l}\right\|_{2, \infty}=O(1)$, in fact we get even the more precise estimate $\left|\nabla u_{l}\right|=O\left(\frac{1}{r}\right)$. Finally we estimate g_{l}, to that aim we assume that $w \leq \frac{1}{2}$,

[^3]the other case can be done in a similar way. Then g_{l} satisfies

(2) $\begin{aligned} g_{l}((\theta, 1), w)-g_{l}\left(\left(\theta, e^{-l}\right), w\right) & =-\frac{3 l}{4 \pi}+\frac{1}{2 \pi} \ln \left|\frac{e^{-l} e^{i \theta}-e^{l} w}{e^{i \theta}-w}\right| \\ & =-\frac{3 l}{4 \pi}+F_{l}(\theta),\end{aligned}$
and

$$
\begin{align*}
& \partial_{r} g_{l}((\theta, 1), w)-e^{-l} \partial_{r} g_{l}\left(\left(\theta, e^{-l}\right), w\right) \tag{3}\\
= & \frac{1}{2 \pi}\left(-\frac{\left\langle e^{i \theta}, e^{i \theta}-w\right\rangle}{\left|e^{i \theta}-w\right|^{2}}+\frac{\left\langle e^{-l} e^{i \theta}, e^{-l} e^{i \theta}-e^{l} w\right\rangle}{\left|e^{-l} e^{i \theta}-e^{l} w\right|^{2}}+1\right) \\
= & H_{l}(\theta) .
\end{align*}
$$

Using Fourier analysis, we can decompose g_{l} as follows

$$
g_{l}((\theta, r), w)=c_{0}+a_{0} \ln (r)+\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}}\left(a_{n} r^{n}+b_{n} r^{-n}\right) e^{i n \theta}
$$

Thanks to (2) we easily check that,

$$
a_{0}=O(1)
$$

On the one hand, thanks to (2) and (3), we get

$$
\begin{equation*}
a_{n}\left(1-e^{-n l}\right)+b_{n}\left(1-e^{n l}\right)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} F_{l}(\theta) e^{-i n \theta} d \theta \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}\left(1-e^{-n l}\right)-b_{n}\left(1-e^{n l}\right)=\frac{1}{n \sqrt{2 \pi}} \int_{0}^{2 \pi} H_{l}(\theta) e^{-i n \theta} d \theta \tag{5}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\left\|\nabla\left(g_{l}-a_{0} \ln (r)\right)\right\|_{2}^{2} & =O\left(\sum_{n \in \mathbb{Z}} n^{2} a_{n}^{2} \int_{e^{-l}}^{1} r^{2 n-1} d r+n^{2} b_{n}^{2} \int_{e^{-l}}^{1} r^{-2 n-1} d t\right) \\
& =O\left(\sum_{n \in \mathbb{Z}} n a_{n}^{2}\left(1-e^{-2 n l}\right)+n b_{n}^{2}\left(1-e^{2 n l}\right)\right)
\end{aligned}
$$

But thanks to (4) and (5) and the fact that F_{l} and H_{l} converge in $C^{2}\left(S^{1}\right)$, as l goes to infinity, we have

$$
\left|a_{n}\right|=O\left(\frac{1}{n^{2}\left(1-e^{-n l}\right)}\right) \text { and }\left|b_{n}\right|=O\left(\frac{1}{n^{2}\left(1-e^{n l}\right)}\right)
$$

uniformly with respect to l. Hence

$$
\sum_{n \in \mathbb{Z}} n a_{n}^{2}\left(1-e^{-2 n l}\right)+n b_{n}^{2}\left(1-e^{2 n l}\right)=O(1)
$$

uniformly with respect to l. Which prove that

$$
\left\|\nabla\left(g_{l}-a_{0} \ln (r)\right)\right\|_{2}^{2}=O(1)
$$

Finally we conclude that

$$
\left\|\nabla G_{l}\right\|_{2, \infty}=O(1)
$$

This achieves the proof of Theorem 0.1 in the case $v_{l} \in i \mathbb{R}$. In the general case, the torus is isometric to $\left(A_{l_{k}}, h_{k}\right)$ where $l_{k}=2 \pi \Im\left(v_{k}\right)$ and $h_{k}=\frac{1}{2 \pi l_{k} r^{2}}\left(r^{2} d \theta^{2}+\frac{d r^{2}}{\cos \left(\alpha_{k}\right)}\right)$ with $\alpha_{k}=\frac{\pi}{2}-\arg \left(v_{k}\right) \rightarrow 0$. Hence $G_{l_{k}}$ split as follows $G_{l_{k}}=s_{k}+u_{k}+g_{k}$ where

$$
\begin{aligned}
& s_{k}((\theta, r), w) \\
= & \begin{cases}\frac{1}{2 \pi \cos \left(\alpha_{k}\right)} \ln \left|r e^{i \theta}-w\right|_{g_{k}}+\frac{1}{2 \pi \cos \left(\alpha_{k}\right)} \ln \left|r e^{i \theta}-e^{l} w\right|_{h_{k}} & \text { if }|w| \leq \frac{1}{2} \\
\frac{1}{2 \pi \cos \left(\alpha_{k}\right)} \ln \left|r e^{i \theta}-w\right|_{g_{k}}+\frac{1}{2 \pi \cos \left(\alpha_{k}\right)} \ln \left|r e^{i \theta}-e^{-l} w\right|_{g_{k}} & \text { if }|w|>\frac{1}{2}\end{cases}
\end{aligned}
$$

and

$$
u_{k}((\theta, r), w)=-\frac{1}{4 \pi l_{k} \cos \left(\alpha_{k}\right)}(\ln (r))^{2}
$$

and then the analysis of g_{k} is the same.
The fact that we cannot bound the weak- L^{2} norm with respect to the intrinsic metric of the torus is illustrated by the following proposition.

Proposition 1.1. There exists a sequence of metrics h_{k} on \mathbb{T}^{2} with constant curvature and volume equal to 1 which is unbounded in the moduli space and such that, for any $y \in \mathbb{T}^{2}$, we get

$$
\begin{equation*}
\sup _{t>0} t^{2}\left|\left\{x \in \mathbb{T}^{2}| | d G_{h_{k}}(x, y) \mid \geq t\right\}\right| \rightarrow+\infty \tag{6}
\end{equation*}
$$

Proof of Proposition 1.1. In order to prove this proposition, we go back to the case of degenerating rectangular tori viewed as a long thin cylinder: $C_{l}=\frac{1}{\sqrt{2 \pi l}}\left(S^{1} \times\left[-\frac{l}{2}, \frac{l}{2}\right]\right)$ with the two ends being identified in an obvious way. Let $g_{\phi}(\theta, t)=G((\theta, t),(\phi, 0))$, then if the gradient of this function is uniformly bounded in $L^{2, \infty}$ it would be the case for $g(\theta, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{\phi}(\theta, t) d \phi$, thanks to the invariance by rotation. Then we easily check that $g(\theta, t)=\frac{|t|}{4 \pi}$, hence $|d g|=\frac{\sqrt{2 \pi l}}{4 \pi}$, here the norm is computed with respect to the metric $h=\frac{1}{2 \pi l}\left(d \theta^{2}+d t^{2}\right)$. Finally we easily check that $\|d g\|_{L_{h}^{2, \infty}} \sim l$, which is a contradiction and prove Proposition 1.1.

The case of genus ≥ 2. Let $\left(\Sigma, c_{k}\right)$ be a sequence of Riemann surfaces of fixed genus $g \geq 2$. Thanks to the uniformization theorem, see [14], we know that, we can endow Σ with a conformal metric h_{k} such that $\left(\Sigma, h_{k}\right)$ is isometric to \mathbb{H} / Γ_{k} where Γ_{k} is a discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{R})$. Then, the Green functions associated to h_{k} satisfy

$$
\left(\Delta_{h_{k}}\right)_{x} G_{k}(., y)=\delta_{y}-\frac{1}{v}
$$

where v is the volume of $\left(\Sigma, h_{k}\right)$ which depends only on the genus thanks to Gauss-Bonnet theorem. In order to study the behavior of the Green's function and following the classic description of hyperbolic surfaces, see 12] or [11], we set $\delta<\operatorname{arcsinh}(1)$ and then we split $\left(\Sigma, h_{k}\right)$ in two parts: a thick part $E_{k}^{\delta}=\left\{s \in \Sigma \mid \operatorname{injrad}\left(\left(\Sigma, h_{k}\right), s\right) \geq \delta\right\}$ and a thin part $F_{k}^{\delta}=\{s \in$ $\left.\Sigma \mid \operatorname{injrad}\left(\left(\Sigma, h_{k}\right), s\right)<\delta\right\}$. Thanks to the decomposition theorem of DeligneMumford, we know that the sequence of metrics converges strongly on the thick part and develops collar in the thin part. We are going to split our proof depending on the case whether y lies in the thick or in the thin part. But before we prove a general estimate for Green functions on a closed surfaces.

Step 1: Coarea formula for Green's functions.

In this step, G_{k} is any Green function associated to h_{k}, there is no normalization. Volumes and lengths are taken with respect to h_{k} here.

Let $t>0$, integrating by part on a level set, we get

$$
\begin{aligned}
\int_{G_{k}(x, y)=t} \frac{\partial G_{k}(x, y)}{\partial \nu_{k}} d \sigma_{k}(x) & =\int_{G_{k}(x, y) \geq t}\left(\Delta_{h_{k}}\right)_{x} G_{k}(x, y) d v_{k}(x) \\
& =1-\frac{v o l\left(\left\{G_{k}(x, y) \geq t\right\}\right)}{v}
\end{aligned}
$$

where ν_{k} is the exterior normal of the open set $\left\{x \in \Sigma \mid G_{k}(x, y)>t\right\}$. Then, we get

$$
\int_{G_{k}(x, y)=t}\left|d G_{k}(x, y)\right|_{h_{k}} d \sigma_{k}(x) \leq 1
$$

Let $1<p<2$ and $a>0$, then thanks to coarea-formula, see [25] or [4], we get that

$$
\begin{aligned}
& \int_{G_{k}(x, y) \geq a}\left|d G_{k}^{1-p / 2}(x, y)\right|_{h_{k}}^{2} d v_{k}(x) \\
= & \int_{a}^{+\infty}\left(\int_{G_{k}(x, y)=t} \frac{\left|d G_{k}(x, y)\right|_{h_{k}}}{G_{k}^{p}(x, y)} d \sigma_{k}(x)\right) d t \\
\leq & \int_{a}^{+\infty} \frac{1}{t^{p}} d t \leq C_{p, a},
\end{aligned}
$$

where $C_{p, a}$ is a positive constant depending only on p and a. Moreover, we can also prove, considering negative level set, that

$$
\int_{G_{k}(x, y) \leq-a}\left|d G_{k}^{1-\frac{p}{2}}(x, y)\right|_{h_{k}}^{2} d v_{k}(x) \leq C_{p, a}
$$

where $C_{p, a}$ is a positive constant depending only on p and a. Finally we get,

$$
\begin{equation*}
\int_{\left|G_{k}(x, y)\right| \geq a}\left|d G_{k}^{1-\frac{p}{2}}(x, y)\right|_{h_{k}}^{2} d v_{k}(x) \leq C_{p, a} \tag{7}
\end{equation*}
$$

where $C_{p, a}$ is a positive constant depending only on p and a.

Step 2: Estimate in the thick part.

In order to obtain the estimate on the whole thick part, we will cover it by a finite number of balls with radius $\frac{\delta}{2}$, where have been chosen such that $0<\delta<\operatorname{acr} \sinh (1)$. Since we consider a general sequence of Green functions $G_{k}\left(., y_{k}\right)$, we have to pay attention to the location of these balls with respect to the singularity y_{k}. In fact if y_{k} is in the thick part then we will center one of the ball of the covering at y_{k} and then the others won't have to deal with this singularity.

Let $x_{k} \in E_{k}^{\delta}$ and we first assume that $y_{k} \notin B_{h_{k}}\left(x_{k}, \frac{\delta}{2}\right)$. Then $B_{h_{k}}\left(x_{k}, \frac{\delta}{2}\right)$ is isometric to $B\left(0, \tanh \left(\frac{\delta}{4}\right)\right)$ in the Poincaré disc. In the following, we make all computations in the conformal chart $B\left(0,3 r_{\delta}\right)$ with $r_{\delta}=\frac{\tanh \left(\frac{\delta}{4}\right)}{3}$ and the metric $h_{p}=\frac{4 d x^{2}}{\left(1-|x|^{2}\right)^{2}}$. Note that the hyperbolic metric is equivalent to the euclidean one on this ball.

On $B\left(0,3 r_{\delta}\right)$ we decompose G_{k} as follows

$$
G_{k}\left(., y_{k}\right)=u_{k}+g_{k}
$$

where $u_{k}(x)=\frac{1}{v_{k}} \ln \left(\frac{1}{1-|x|^{2}}\right)$ and g_{k} is a smooth harmonic function. Hence we can apply $\sqrt{7}$, with $p=\frac{3}{2}$ and $a=\frac{2}{v_{k}} \ln \left(\frac{1}{1-\left(3 r_{\delta}\right)^{2}}\right)$ to $\widetilde{G}_{k}=G_{k}-g_{k}(0)$, which gives that

$$
\int_{\left\{\left|\widetilde{G}_{k}\left(x, y_{k}\right)\right| \geq a\right\} \cap B\left(0,3 r_{\delta}\right)}\left|d \widetilde{G}_{k}^{\frac{1}{4}}\left(x, y_{k}\right)\right|_{h_{k}}^{2} d v_{h_{k}}(x) \leq C,
$$

where C is a positive constant depending only on the genus and δ. Then, by the mean value property, there exists $\rho \in\left[2 r_{\delta}, 3 r_{\delta}\right]$ such that

$$
\int_{\left\{\left|\widetilde{G}_{k}\left(x_{k}, y\right)\right| \geq a\right\} \cap \partial B(0, \rho)}\left|d \widetilde{G}_{k}^{\frac{1}{4}}\left(x, y_{k}\right)\right|_{h_{p}} d \sigma_{h_{p}}(x) \leq C,
$$

where C is positive constant depending only on the genus and δ. Then, using the fact harmonic functions satisfy the mean value property, we get that the mean value of $g_{k}-g_{k}(0)$ is 0 on $\partial B(0, \rho)$ and we easily deduce that

$$
\left|G_{k}\left(x, y_{k}\right)-g_{k}(0)\right| \leq C, \text { for all } x \in \partial B(0, \rho)
$$

where C is positive constant depending only on the genus and δ. Then using classical elliptic estimate, we have

$$
\begin{equation*}
\left\|d G_{k}\left(., y_{k}\right)\right\|_{L_{h_{p}}^{\infty}\left(B\left(0, r_{\delta}\right)\right)} \leq C \tag{8}
\end{equation*}
$$

where C is positive constant depending only on the genus and δ. Then, in the case $x_{k}=y_{k}$, equivalently the ball we consider is centered at the singularity of $G(x,$.$) , we obtain the same estimate decomposing G_{k}$ as follows

$$
G_{k}\left(., y_{k}\right)=s_{k}+u_{k}+g_{k}
$$

where $s_{k}(x)=\frac{1}{2 \pi} \ln (|x|)$. But, of course, in that case, due to the presence of s_{k}, the estimate is in $L^{2, \infty}$. Finally covering the thick part with a uniformly bounded number of balls we get the desired estimate on $G\left(., y_{k}\right)$ on the thick part. Indeed, either y_{k} is not in the thick part and the result will follows directly from (8), or we start by taking a ball centered at y_{k} and then we cover the rest of the thick part by balls which does not contain y_{k}.

Step 3: Estimate in the thin part.

Let $x_{k} \in F_{k}^{\delta}$ and $y_{k} \in \Sigma$ two converging sequences in $\bar{\Sigma}$. First, thanks to the collar lemma, see [11, we know that each connected component of the thin part (i.e. at most $3 \mathrm{~g}-3$), contains a simple closed geodesic γ_{k} of length $\varepsilon_{k}=l\left(\gamma_{k}\right)<2 \operatorname{arcsinh}(1)$, and is isometric to

$$
\begin{aligned}
B_{k}=\{ & z=r e^{i \varphi} \in \mathbb{H}: 1 \leq r \leq e^{\varepsilon_{k}} \\
& \left.\arctan \left(\sinh \left(\frac{\varepsilon_{k}}{2}\right)\right)<\varphi<\pi-\arctan \left(\sinh \left(\frac{\varepsilon_{k}}{2}\right)\right)\right\}
\end{aligned}
$$

where the geodesic corresponds to $\left\{r e^{i \frac{\pi}{2}} \in \mathbb{H}: 1 \leq r \leq e^{\varepsilon_{k}}\right\}$ and the line $\{r=1\}$ and $\left\{r=e^{\varepsilon_{k}}\right\}$ are identified via $z \mapsto e^{\varepsilon_{k}} z$. It is often easier to consider the following cylindrical parametrization. Let $\varphi_{k}=\arctan \left(\sinh \left(\frac{\varepsilon_{k}}{2}\right)\right)$ and we set

$$
C_{k}=\left\{(\cos (\theta), \sin (\theta), t) \mid 0 \leq \theta<2 \pi, \frac{2 \pi}{\varepsilon_{k}} \varphi_{k}<t<\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right\}
$$

equipped with the metric

$$
h_{c}=\left(\frac{\varepsilon_{k}}{2 \pi \sin \left(\frac{\varepsilon_{k} t}{2 \pi}\right)}\right)^{2}\left(d \theta^{2}+d t^{2}\right)
$$

where the geodesic correspond to $\left\{t=\frac{\pi^{2}}{\varepsilon_{k}}\right\}$.
We are going to make the proof assuming that y_{k} lies in the thin part. When this is not the case the proof carries over after the simply operation consisting of withdrawing the singular part s_{k}. We can also assume that $y_{k} \notin\left(\left[\frac{2 \pi}{\varepsilon_{k}} \varphi_{k}, \frac{2 \pi}{\varepsilon_{k}} \varphi_{k}+\frac{\delta}{10}\right] \cup\left[\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)-\frac{\delta}{10}, \frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right]\right) \times S^{1}$, replacing δ by $\frac{\delta}{2}$ if necessary.

Then, as for the torus case, we choose an annulus as conformal chart. Precisely, let $A_{k}=\mathbb{D} \backslash B\left(0, e^{-l_{k}}\right)$ and $\psi_{k}: A_{k} \rightarrow C_{k}$ defined as follows

$$
\psi_{k}(\theta, r)=\left(\cos (\theta), \sin (\theta), \ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)
$$

where $l_{k}=\frac{2 \pi}{\varepsilon_{k}}\left(\pi-2 \varphi_{k}\right)$. Then, the pull back of a Green function on A_{k}, that we keep denoting G_{k}, satisfies

$$
\Delta_{z} G_{k}\left(., w_{k}\right)=\delta_{w_{k}}-\left(\frac{\varepsilon_{k}}{r 2 \pi \sin \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)}\right)^{2} \text { on } A_{k}
$$

where $\psi_{k}\left(w_{k}\right)=y_{k}$ with $w_{k} \in B\left(0, e^{-\frac{\delta}{10}}\right) \backslash B\left(0, e^{-l_{k}+\frac{\delta}{10}}\right)$.
First of all, thanks to our previous step, see (8), we remark that

$$
\begin{equation*}
\left|\nabla G_{k}\left(., w_{k}\right)\right| \leq \frac{C}{r} \text { on } B\left(0, e^{-l_{k}+\frac{\delta}{10}}\right) \backslash B\left(0, e^{-l_{k}}\right), \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla G_{k}\left(., w_{k}\right)\right| \leq C \text { on } B(0,1) \backslash B\left(0, e^{-\frac{\delta}{10}}\right) \tag{10}
\end{equation*}
$$

where C is a positive constant depending only on the genus and δ. Then we split G_{k} as follows

$$
G_{k}\left((\theta, r), w_{k}\right)=s_{k}(\theta, r)+u_{k}(\theta, r)+g_{k}(\theta, r)
$$

where

$$
u_{k}(\theta, r)=\frac{\ln \left(\sin \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\right)\right)\right)}{v_{k}}
$$

and

$$
s_{k}(\theta, r)=\frac{1}{2 \pi} \ln \left(\left|r e^{i \theta}-w_{k}\right|\right)
$$

We easily check that

$$
\Delta u_{k}=-\left(\frac{\varepsilon_{k}}{r 2 \pi \sin \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)}\right)^{2}
$$

$$
\begin{align*}
\left\|\nabla u_{k}\right\|_{2}^{2} & =\frac{1}{2 \pi v_{k}^{2}} \int_{e^{-l_{k}}}^{1}\left(\frac{\cos \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)}{\sin \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)}\right)^{2} \frac{\varepsilon_{k}^{2}}{r} d r \tag{11}\\
& =\frac{1}{2 \pi v_{k}^{2}} \int_{e^{-l_{k}}}^{1}\left(\frac{-\varepsilon_{k}^{2}}{r}+\frac{1}{\left(\sin \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)\right)^{2}} \frac{\varepsilon_{k}^{2}}{r}\right) d r \\
& =\frac{1}{v_{k}^{2}}\left[-\frac{\varepsilon_{k}^{2}}{2 \pi} \ln (r)-\varepsilon_{k} \frac{\cos \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)}{\sin \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)}\right]_{e^{-} l_{k}}^{1} \leq C
\end{align*}
$$

$$
\Delta s_{k}=\delta_{w_{k}}
$$

and

$$
\begin{equation*}
\left\|\nabla s_{k}\right\|_{2, \infty} \leq C \tag{12}
\end{equation*}
$$

where C is a positive function depending only on the genus and δ.
Then g_{k}, which has been obtained from G_{k} after subtracting s_{k} and u_{k}, is a smooth harmonic function. Let $\bar{g}_{k}(r)$ be the mean value of g_{k} on the circle of radius r centered at 0 . It is also harmonic and radial, hence $\bar{g}_{k}(r)=a_{k} \ln (r)+b_{k}$. Moreover, thanks to (9) and (10), we get that

$$
\begin{equation*}
\left|\nabla g_{k}\right| \leq \frac{C}{r} \text { on } B\left(0, e^{-l_{k}+\frac{\delta}{20}}\right) \backslash B\left(0, e^{-l_{k}}\right), \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla g_{k}\right| \leq C \text { on } B(0,1) \backslash B\left(0, e^{-\frac{\delta}{20}}\right) \tag{14}
\end{equation*}
$$

In particular, a_{k} is uniformly bounded and we get,

$$
\begin{equation*}
\left\|\nabla \bar{g}_{k}\right\|_{L^{2, \infty}\left(B(0,1) \backslash B\left(0, e^{-l_{k}}\right)\right)} \leq C, \tag{15}
\end{equation*}
$$

Then using the fact the mean value of $g_{k}-\bar{g}_{k}$ is zero and the previous estimate, we get that

$$
\begin{equation*}
\left\|g_{k}-\bar{g}_{k}\right\|_{L^{\infty}}\left(\left(B\left(0, e^{-l_{k}+\frac{\delta}{20}}\right) \backslash B\left(0, e^{-l_{k}}\right)\right) \cup\left(B(0,1) \backslash B\left(0, e^{-\frac{\delta}{20}}\right)\right)\right) \leq C, \tag{16}
\end{equation*}
$$

where C is positive constant depending only on the genus and δ. Then, since $g_{k}-\bar{g}_{k}$ is harmonic and with radial mean value equal to zero,

$$
\begin{equation*}
\left\|\nabla\left(g_{k}-\bar{g}_{k}\right)\right\|_{L^{2}\left(B\left(0, e^{-\frac{\delta}{10}}\right) \backslash B\left(0, e^{-l_{k}+\frac{\delta}{10}}\right)\right)} \leq C, \tag{17}
\end{equation*}
$$

where C is positive constant depending only on the genus and δ. The last inequality can be proved using the Fourier decomposition and remarking that $g_{k}-\bar{g}_{k}$ has no logarithmic part. Finally, thanks to (11), (12), (15) and (17), we get the desired estimate, which concludes the proof of the Theorem 0.1.

2. Weak compactness result for immersions with second fundamental form bounded in L^{2}

The first application of Theorem 0.1 regards the control of the conformal factor for immersions with L^{2}-bounded second fundamental form. Before to state the main result, we shall first remind the notion of weak immersions introduced by the second author in [22] .

Let Σ be a smooth compact surface equipped with a reference smooth metric g_{0}. One define the Sobolev spaces $W^{k, p}\left(\Sigma, \mathbb{R}^{m}\right)$ of measurable maps from Σ to \mathbb{R}^{m} into the following way

$$
W^{k, p}\left(\Sigma, \mathbb{R}^{m}\right)=\left\{f: \Sigma \rightarrow \mathbb{R}^{m} \text { measurable s.t. } \sum_{l=0}^{k} \int_{\Sigma}\left|\nabla^{l} f\right|_{g_{0}}^{p} d v_{g_{0}}<+\infty\right\}
$$

Since Σ is compact it is not difficult to see that this space is independent of the choice we have made of g_{0}.

Let $f \in W^{1, \infty}\left(\Sigma, \mathbb{R}^{m}\right)$, we define g_{f} to be the following symmetric bilinear form

$$
g_{f}(X, Y)=\langle d f(X), d f(Y)\rangle
$$

and we shall assume that there exists $C_{f}>1$ such that

$$
\begin{equation*}
C_{f}^{-1} g_{0}(X, X) \leq g(X, X) \leq C_{f} g_{0}(X, X) \tag{18}
\end{equation*}
$$

For such a map, we can define the Gauss map as being the following measurable map in $L^{\infty}(\Sigma)$ taking values int the Grassmannian of oriented $m-2$ planes of \mathbb{R}^{m},

$$
\vec{n}_{f}=\star \frac{\frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial x}}{\left|\frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial x}\right|}
$$

where \star is the Hodge star. We then introduce the space \mathcal{E}_{Σ} of weak immersions of Σ with bounded second fundamental form as follow:

$$
\mathcal{E}_{\Sigma}=\left\{\begin{array}{c}
\Phi \in W^{1, \infty}(\Sigma) \text { which satisfies (18) for some } C_{\Phi}>0 \\
\text { and } \int_{\Sigma}\left|d \vec{n}_{\Phi}\right|_{g}^{2} d v_{g}<+\infty
\end{array}\right\}
$$

where $g=\Phi^{*} \xi$.
It is proved in [23] that any weak immersion defines a smooth conformal structure on Σ. Let $\Phi \in \mathcal{E}_{\Sigma}$, we denote by $\pi_{\vec{n}_{\Phi}}$ the orthonormal projection of vector in \mathbb{R}^{m} onto the $m-2$-plane given by \vec{n}_{Φ}. With these notations the second fundamental form of the immersion at p is given by

$$
\forall X, Y \in T_{p} \Sigma \overrightarrow{\mathbb{I}}_{p}(X, Y)=\pi_{\vec{n}_{\Phi}} d^{2} \Phi(X, Y)
$$

and the mean curvature vector of the immersion at p is given by

$$
\vec{H}=\frac{1}{2} \operatorname{tr}_{g}(\overrightarrow{\mathbb{I}})
$$

A natural quantity while considering such immersions is the Lagrangian given by the L^{2}-norm of the second fundamental form:

$$
E(\phi)=\int_{\Sigma}|\overrightarrow{\mathbb{I}}|_{g}^{2} d v_{g}
$$

An elementary computation, using Gauss-Bonnet formula, gives

$$
E(\phi)=\int_{\Sigma}|\vec{\Pi}|_{g}^{2} d v_{g}=\int_{\Sigma}\left|d \vec{n}_{\Phi}\right|_{g}^{2} d v_{g}=4 W(\phi)-4 \pi \chi(\Sigma)
$$

where $\chi(\Sigma)$ is the Euler characteristic and

$$
W(\Phi)=\int_{\Sigma}|\vec{H}|_{g}^{2} d v_{g}
$$

is the so called Willmore energy.

Proof of Theorem 0.2. Let $K_{g}=0$ or -1 if the genus g of Σ is 1 or greater than 1 and $K_{\Phi_{k}^{*} \xi}$ be the Gauss curvature associated to $\Phi_{k}^{*} \xi$. It is classical
that u_{k} satisfies the following Liouville equation

$$
\begin{equation*}
-\Delta_{h_{k}} u_{k}=K_{\Phi_{k}^{*} \xi} \xi^{2 u_{k}}-K_{g} . \tag{19}
\end{equation*}
$$

Let G_{k} be the nonnegative Green function of $\left(\Sigma, h_{k}\right)$, then using the representation formula, we get that

$$
\begin{equation*}
u_{k}=G_{k} \star\left(K_{\Phi_{k}^{*} \xi} e^{2 u_{k}}-K_{g}\right) \tag{20}
\end{equation*}
$$

We have the following straightforward estimate,

$$
\begin{align*}
\int_{\Sigma}\left|K_{\Phi_{k}^{*} \xi} e^{2 u_{k}}\right| d v_{h_{k}} & =\int_{\Sigma}\left|K_{\Phi_{k}^{*} \xi}\right| d v_{\Phi_{k}^{*} \xi} \tag{21}\\
& \leq \frac{1}{2} \int_{\Sigma}\left|\overrightarrow{\mathbb{I}}_{\Phi_{k}^{*}}\right|^{2} d v_{\Phi_{k}^{*}(\xi)} \leq W\left(\Phi_{k}\right)+C_{g}
\end{align*}
$$

where C_{q} depends only on the genus g of Σ. This proves that the right hand side of (19) is uniformly bounded in L^{1}-norm by $W\left(\Phi_{k}\right)$ with respect to the metric h_{k}. Then let $\left(U_{i}, \psi_{i}\right)$ the conformal atlas given by Theorem 0.1 and let $\phi_{k}^{i}=\Phi_{k} \circ \psi_{i}^{-1}: V_{i} \rightarrow \mathbb{R}^{m}$ and $v_{k}^{i}: V_{i} \rightarrow \mathbb{R}$ such that $\left(\phi_{k}^{i}\right)^{*}(\xi)=$ $e^{2 v_{k}^{i}} d z^{2}$. First we observe that $v_{k}^{i}=u_{k} \circ \psi_{i}^{-1}+w_{k}^{i}$ where $w_{k}^{i}: V_{i} \rightarrow \mathbb{R}$ such that $\left(\psi_{i}\right)^{*}\left(h_{k}\right)=e^{2 w_{k}^{i}} d z^{2}$. Moreover, we can easily check that ∇w_{k}^{i} is uniformly bounded in $L^{2, \infty}$ since in the torus case a chart is given by an annulus and $w_{k}^{i}=-\ln (r)+c_{k}$ and in the hyperbolic case the chart is either a disc with radius strictly less than 1 and $w_{k}^{i}=-\ln \left(1-r^{2}\right)+c_{k}^{i}$ or an annulus $A_{k}=\mathbb{D} \backslash B\left(0, e^{-l_{k}}\right)$ where $l_{k}=\frac{2 \pi}{\varepsilon_{k}}\left(\pi-2 \varphi_{k}\right)$ with

$$
w_{k}^{i}=-\ln \left(r \sin \left(\frac{\varepsilon_{k}}{2 \pi}\left(\ln (r)+\frac{2 \pi}{\varepsilon_{k}}\left(\pi-\varphi_{k}\right)\right)\right)\right)+c_{k}^{i}
$$

Then it suffices to check that $\nabla\left(u_{k} \circ \psi_{i}^{-1}\right)$ is uniformly bounded in $L^{2, \infty}\left(V_{i}\right)$ in order to prove the theorem. Thanks to 20, we have

$$
\begin{equation*}
u_{k}(y)=\int_{\Sigma} G_{k}(x, y) F_{k}(x) d v_{h_{k}} \tag{22}
\end{equation*}
$$

where $F_{k}=K_{\Phi_{k}^{*} \xi} e^{2 u_{k}}-K_{g}$. Hence,

$$
\begin{equation*}
\nabla_{y} u_{k} \circ \psi_{i}^{-1}(y)=\int_{\Sigma} \nabla_{y} G_{k}\left(x, \psi_{i}^{-1}(y)\right) F_{k}(x) d v_{h_{k}} \tag{23}
\end{equation*}
$$

then using the fact $\sup _{x \in \Sigma}\left\|\nabla_{y} G_{k}\left(x, \psi_{i}^{-1}(y)\right)\right\|_{L^{2, \infty}}$ is uniformly bounded, thanks to Theorem 0.1, thanks to (21) and standard inequality on convolution we get that $\left\|\nabla\left(u_{k} \circ \psi_{i}^{-1}\right)\right\|_{L^{2, \infty}\left(V_{i}\right)}$ is uniformly bounded which concludes the proof of Theorem 0.2 .

Proof of Theorem 0.3. By assumption there exists Λ, a positive constant, such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} W\left(\Phi_{k}\right) \leq \Lambda \tag{24}
\end{equation*}
$$

We denote by u_{k} the conformal factor of this weak immersion with respect to the hyperbolic metric h_{k} in the conformal class of $\Phi_{k}^{*} \xi$. That is to say

$$
\Phi_{k}^{*} \xi=e^{2 u_{k}} h_{k}
$$

where $K_{h_{k}} \equiv-1$.
Now let $(\widetilde{\Sigma}, \tilde{h})$ be the nodal surface of the converging sequence $\left(\Sigma, h_{k}\right)$, $\left\{q_{i}\right\}$ the set of punctures, $(\bar{\Sigma}, \bar{h})$ its renormalisation and $\phi_{k}: \widetilde{\Sigma} \rightarrow \Sigma$ the continuous map given by to Deligne-Mumford compactification recalled in section 1 . Let σ be any connected component of $\widetilde{\Sigma}$.

Then $\widetilde{\Phi}_{k}=\Phi_{k} \circ \phi_{k}$ is a conformal weak immersion of $\left(\sigma, \tilde{h}_{k}\right)$ where $\tilde{h}_{k}=$ $\phi_{k}^{*} h_{k}$. Hence, we get

$$
\left(\Phi_{k} \circ \phi_{k}\right)^{*} \xi=e^{2 u_{k}} \tilde{h}_{k}
$$

Let $\delta>0$ and $K_{\delta}=\left\{x \in \sigma\right.$ s.t. $d_{\bar{h}}\left(x, q_{i}\right) \geq \delta$ for all $\left.i\right\}$, thanks to the local convergence of ϕ_{k}, then

$$
\begin{equation*}
\sup _{k}\left\|\nabla u_{k}\right\|_{L_{\overparen{h}}^{2, \infty}\left(K_{\delta}\right)}<\infty \tag{25}
\end{equation*}
$$

Here we use the fact that on the thick part the euclidean metric and the hyperbolic one are equivalent then Theorem 0.2 can be considered intrinsically on the thick part.

Then, in order to find the correct Möbius transformation, we follow the procedure introduced by the second author in [22]. For each $x \in K_{\delta}$ there exists $\rho_{x}^{k}>0$ such that

$$
\int_{B_{\tilde{h}_{k}}\left(x, \rho_{x}^{k}\right)}\left|d \vec{n}_{\widetilde{\Phi}_{k}}\right| \tilde{\tilde{h}}_{k} d v_{\tilde{h}_{k}}=\min \left(\frac{8 \pi}{3}, \int_{K_{\delta}}\left|d \vec{n}_{\widetilde{\Phi}_{k}}\right| \tilde{\tilde{h}}_{k} d v_{\tilde{h}_{k}}\right)
$$

where $B_{\tilde{h}}\left(x, \rho_{x}^{k}\right)$ is the geodesic ball in (σ, \tilde{h}) of center x and radius ρ_{x}^{k}. Then, using the Besicovitch covering lemma, we can extract a finite covering of
$K_{\delta} \subset \cup_{i \in I_{k}} B_{\tilde{h}}\left(x_{i}^{k}, \frac{\rho_{x_{i}^{k}}}{2}\right)$, such that each point is covered at most N times, where N is independent of k. Then, thanks to (24), we can extract a finite covering, $I \subset \cup_{k} I_{k}$, which is independent of k where x_{i}^{k} converges to x_{i}^{∞} and $\rho_{x_{i}^{k}}$ converges to $\rho_{x_{i}^{\infty}}$. Then we set $I_{0}=\left\{i \in I\right.$ s.t. $\left.\rho_{x_{i}^{\infty}}=0\right\}$ and $I_{1}=I \backslash I_{0}$.
Claim. For each $i \in I \backslash I_{0}$ there exist $\bar{v}_{k}^{i} \in \mathbb{R}$ such that

$$
\left\|v_{k}-\bar{v}_{k}^{i}\right\|_{L^{\infty}\left(B_{\tilde{h}}\left(x_{i}^{k}, \frac{\rho_{x_{i}^{k}}}{2}\right)\right)} \leq C,
$$

where C is a constant which depends only on Λ.
Proof of the Claim. Let fix $i \in I \backslash I_{0}$ and identify, up to uniformly bounded conformal diffeomorphism, $B_{\tilde{h}_{k}}\left(x, \rho_{x}^{k}\right)$ with \mathbb{D}. Then, thanks to lemma 5.1.4 of [10] there exists a moving frame $\left(\vec{e}_{1}^{k}, \vec{e}_{2}^{k}\right) \in W^{1,2}\left(\mathbb{D}, S^{m-1}\right)$ such that

$$
\int_{\mathbb{D}}\left(\left|\nabla \vec{e}_{1}^{k}\right|^{2}+\left|\nabla \vec{e}_{2}^{k}\right|^{2}\right) d z \leq \int_{\mathbb{D}}\left|d \vec{n}_{\widetilde{\Phi}_{k}}\right|^{2} d z \leq \frac{8 \pi}{3}
$$

and moreover

$$
\star \vec{n}_{\widetilde{\Phi}_{k}}=\vec{e}_{1}^{k} \wedge \vec{e}_{2}^{k} \text { and } \Delta u_{k}=\left(\nabla^{\perp} \vec{e}_{1}^{k}, \vec{e}_{2}^{k}\right)
$$

Let v_{k} be the solution of

$$
\left\{\begin{array}{l}
\Delta v_{k}=\left(\nabla^{\perp} \vec{e}_{1}^{k}, \vec{e}_{2}^{k}\right) \text { on } \mathbb{D} \\
v_{k}=0 \text { on } \partial \mathbb{D}
\end{array}\right.
$$

Then, thanks to Wente inequality, see section 3 of [10], we get

$$
\begin{equation*}
\left\|v_{k}\right\|_{\infty}+\left\|\nabla v_{k}\right\|_{2} \leq \frac{1}{2 \pi}\left\|\nabla \vec{e}_{1}^{k}\right\|\left\|\nabla \vec{e}_{2}^{k}\right\| \tag{26}
\end{equation*}
$$

Finally using the fact $u_{k}-v_{k}$ is harmonic with $\left\|\nabla\left(u_{k}-v_{k}\right)\right\|_{2, \infty}$ uniformly bounded, we proved that there exist $c_{k} \in \mathbb{R}$ and C a positive constant independent of k such that

$$
\begin{equation*}
\left\|u_{k}-v_{k}-c_{k}\right\|_{L^{\infty}\left(B\left(0, \frac{1}{2}\right)\right)} \leq C \tag{27}
\end{equation*}
$$

Finally, putting 26 and 27 together concludes the proof of the claim.

Then using the fact that each point is covered by a universal number of balls, we easily get that there exists $\bar{v}_{k} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left\|v_{k}-\bar{v}_{k}\right\|_{L^{\infty}\left(K_{\delta} \backslash \cup_{i \in I_{0}} B_{\tilde{h}}\left(x_{i}^{\infty}, \frac{\delta}{2}\right)\right)} \leq C . \tag{28}
\end{equation*}
$$

We also remark that he constant \bar{v}_{k} is independent of δ. Let $x_{0} \in \sigma$ then we set

$$
\widehat{\Phi}_{k}=e^{-\bar{v}_{k}}\left(\tilde{\Phi}_{k}-\tilde{\Phi}_{k}\left(x_{0}\right)\right)
$$

Then, using Simon monotonicity formula, see [25], as in 22] we proved that there exists $y_{0} \in B(0,1) \subset \mathbb{R}^{m}$ and $t>0$ such that

$$
\begin{equation*}
\widehat{\Phi}_{k}\left(K_{\delta} \backslash \cup_{i \in I_{0}} B_{\bar{h}}\left(x_{i}^{\infty}, \frac{\delta}{2}\right)\right) \cap B\left(y_{0}, t\right)=\emptyset \tag{29}
\end{equation*}
$$

Finally, we set

$$
\Xi_{k}=I_{y_{0}, t}\left(e^{-\bar{v}_{k}}\left(.-\tilde{\Phi}_{k}\left(x_{0}\right)\right)\right)
$$

where $I_{y_{0}, t}$ is the inversion of \mathbb{R}^{m} centered at y_{0} and with ratio t. Hence Ξ_{k} is a Möbius transformation such that, if we set $\Psi_{k}=\Xi_{k} \circ \Phi_{k}$, we get thanks to (28) that

$$
\sup _{k \in \mathbb{N}}\left\|\log \left|d \Psi_{k}\right|_{\tilde{h}_{k}}\right\|_{L^{\infty}(K)} \leq C_{K}
$$

and thanks to $\sqrt{29}$, that there exist $R>0$ such that,

$$
\Psi_{k}\left(K_{\delta} \backslash \cup_{i \in I_{0}} B_{\bar{h}}\left(x_{i}, \frac{\delta}{2}\right)\right) \subset B(0, R)
$$

Finally, using a classical argument of functional analysis, see for instance [23] beginning of section VI.7.1, we easily deduce that Ψ_{k} converge to Ψ in $W_{l o c}^{2,2}\left(\sigma \backslash\left\{x_{1}^{\infty}, \ldots, x_{L}^{\infty}, q_{1}, \ldots, q_{K}\right\}, \tilde{h}\right)$, moreover Ψ is a weak immersion away from $\left\{x_{1}^{\infty}, \ldots, x_{L}^{\infty}, q_{1}, \ldots, q_{K}\right\}$ satisfying

$$
W(\Psi)<+\infty
$$

Finally Lemma A. 5 of [21] permits us to extend Ψ as a conformal, possibly branched, immersion of σ.

3. Weak compactness of Riemannian surfaces with bounded Gaussian curvature entropy

The last application of our main result is a compactness result in the spirit of Cheeger and Gromov [5], Trojanov [28] and most recently Shioya [24] for Riemannian surfaces. Indeed, we prove a general compactness result for sequence of metrics on a given closed surface assuming only that the area and the total curvature are uniformly bounded and that the entropy of the Gaussian curvature is also bounded. The first assumptions are the weaker we can assume in order to the problem makes sense. And the second is made necessarily if one consider a long thin cylinder closed by a two spherical cap, see [28] and reference therein for more examples of degenerating metrics with bounded curvature and area.

The entropy of the Gaussian curvature of a given metric is defined as follows, let Σ be a closed surface and g a Riemannian metric with Gaussian curvature equal to K_{g}, then we set

$$
E(g)=\int_{\Sigma} K_{g}^{+} \ln \left(K_{g}^{+}\right) d v_{g}
$$

where $K_{g}^{+}=\max \left(0, K_{g}\right)$ and we set $K_{g}^{+} \ln \left(K_{g}^{+}\right)=0$ when $K_{g}^{+}=0$. This was introduce by Hamilton in the context of Ricci flow on surfaces. He notably proved that it is monotonically increasing along the Ricci flow on spheres with positive curvature, see [9] and [6]. In order to apply directly our preceding result, we introduce a slightly stronger notion of entropy. Let Σ be a closed surface with a reference metric g_{0}, then we set

$$
\tilde{E}_{0}(g)=\int_{\Sigma} \ln \left(e+\left|K_{g} d v_{g}\right| g_{0}\right)\left|K_{g}\right| d v_{g}
$$

Then considering this notion of entropy, we get the following compactness result.

Theorem 3.1. For any closed Riemannian surface $\left(\Sigma, g_{0}\right)$ and any sequence of smooth metric g_{k} such that

$$
\tilde{E}_{0}\left(g_{k}\right)=O(1)
$$

then for each component σ of the thick part of $\left(\Sigma, h_{k}\right)$, then, up to a dilatation of the metric by a factor $e^{-C_{k}}$, h_{k} converges weakly in $\left(L_{l o c}^{\infty}(\sigma)\right)^{*}$.

More precisely, up to a subsequence, one of the following occurs
i) $\operatorname{genus}(\Sigma)=0$, then there exists C_{k} such that if $e^{-C_{k}} g_{k}=e^{2 u_{k}} g_{0}$, where g_{0} is the metric of the standard sphere, and u_{k} is uniformly bounded,
ii) $\operatorname{genus}(\Sigma)=1$, then up to a first dilation, $\left(\Sigma, g_{k}\right)$ is isometric to $\mathbb{C} /(\mathbb{Z} \times$ $\left.v_{k} \mathbb{Z}\right)$ where v_{k} lies in a fundamental domain of $\mathbb{H} / \mathrm{PSL}_{2}(\mathbb{Z})$, then there exists C_{k} such that if $e^{-C_{k}} g_{k}=e^{2 u_{k}} d z^{2}$ then u_{k} is bounded in $L_{\text {loc }}^{\infty}(\mathbb{C} /$ $\left.\left(\mathbb{Z} \times v_{k} \mathbb{Z}\right)\right)$.
iii) $\operatorname{genus}(\Sigma) \geq 1$, then let σ be a connected component σ of the nodal surface of $\left(\Sigma, h_{k}\right)$, then there exists C_{k} such that if $e^{-C_{k}} g_{k}=e^{2 u_{k}} h_{k}$ and u_{k} is bounded in $L_{l o c}^{\infty}(\sigma)$.

Here, for sake of simplicity we consider the standard sphere and a long cylinder of fixed radius as thick part, since the infectivity radius is bounded below.

Proof of Theorem 3.1. We choose the atlas given by Theorem 0.1, and let $g_{k}=e^{2 u_{k}} h_{k}$ where u_{k} is the conformal factor with respect to a normalized metric of constant curvature. Let K be a compact set of σ a connected component of the thick part and U an open set of σ such that \bar{U} is compact and $K \subset U$. Then on U the conformal factor satisfies

$$
\Delta_{h_{k}} u_{k}=K_{g_{k}} e^{2 u_{k}}-K_{h_{k}}
$$

and h_{k} converges strongly to a smooth metric. On the one hand, since the total curvature is bounded, as in Theorem 0.2, we get that ∇u_{k} is uniformly bounded in $L^{2, \infty}$. Then let $v_{k} \in H_{0}^{1}(U)$ such that

$$
\Delta_{h_{k}} v_{k}=K_{g_{k}} e^{2 u_{k}}-K_{h_{k}} \text { on } U .
$$

Thanks to the theory of singular integral, see [26] exercise II 6.2.(b), we get that ∇v_{k} is uniformly bounded in L^{2} and that v_{k} is uniformly bounded in L^{∞}. Then, since $u_{k}-v_{k}$ is harmonic on U whose gradient is bounded in $L^{2, \infty}$, then thanks to Harnack inequality there exists a constant C_{k} such that $u_{k}-v_{k}-C_{k}$ is uniformly bounded on K. Then, after checking that the constant is independent of K, we get that on each connected component of the thick part there exists a sequence of constant C_{k} such that $e^{-C_{k}} g_{k}=$ $e^{\tilde{u}_{k}} h_{k}$ with \tilde{u}_{k} uniformly bounded in $L_{l o c}^{\infty}(\sigma)$, which prove the theorem.
Remark. An interesting problem is to try to replace \tilde{E}_{0} by E in the preceding theorem. In order to do this, on need to analyze the way $K_{g} d v_{g}$ concentrates as already done, in the particular case where the Gauss curvature converges uniformly, by [2] see also [17].

References

[1] Thierry Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
[2] Haïm Brezis and Frank Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Communications in Partial Differential Equations 16 (1991), no. 8-9, 1223-1253.
[3] Peter Buser, Geometry and Spectra of Compact Riemann Surfaces, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2010. Reprint of the 1992 edition.
[4] Isaac Chavel, Riemannian Geometry: A Modern Introduction. 2nd ed. Cambridge Studies in Advanced Mathematics 98, Cambridge University Press, Cambridge, 2006, xvi, 471pp.
[5] Jeff Cheeger and Mikhael Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. I, J. Differential Geom. 23 (1986), no. 3, 309-346.
[6] Bennett Chow, The Ricci flow on the 2-sphere, J. Differential Geom. 33 (1991), no. 2, 325-334.
[7] Henri Paul de Saint-Gervais, Henri Poincaré, and Christian Felix Klein, Uniformisation des Surfaces de Riemann: Retour sur un Théorème Centenaire, ENS, 2010.
[8] Loukas Grafakos, Classical Fourier Analysis, Volume 249 of Graduate Texts in Mathematics, Springer, New York, second edition, 2008.
[9] Richard Hamilton, The Ricci flow on surfaces, in: Mathematics and General Relativity (Santa Cruz, CA, 1986), Volume 71 of Contemp. Math., pages 237-262. Amer. Math. Soc. Providence, RI, 1988.
[10] Frédéric Hélein, Harmonic Maps, Conservation Laws and Moving Frames, Volume 150 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, second edition, 2002. Translated from the 1996 French original, with a foreword by James Eells.
[11] John Hamal Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Vol. 1, Matrix Editions, Ithaca, NY, 2006. Teichmüller Theory, with contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska, and Sudeb Mitra, with forewords by William Thurston and Clifford Earle.
[12] Christoph Hummel, Gromov's Compactness Theorem for PseudoHolomorphic Curves, Volume 151 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1997.
[13] Lizhen Ji, The asymptotic behavior of Green's functions for degenerating hyperbolic surfaces, Math. Z. 212 (1993), no. 3, 375-394.
[14] Jürgen Jost, Compact Riemann Surfaces, Universitext, Springer-Verlag, Berlin, third edition, 2006. An introduction to contemporary mathematics.
[15] Ernst Kuwert and Yuxiang Li, $W^{2,2}$-conformal immersions of a closed Riemann surface into \mathbb{R}^{n}, Comm. Anal. Geom. 20 (2012), no. 2, 313340.
[16] Paul Laurain and Tristan Rivière, Energy quantization of Willmore surfaces at the boundary of the moduli space, Duke Math. J. 167 (2018), no. 11, 2073-2124.
[17] Yan Yan Li and Itai Shafrir, Blow-up analysis for solutions of $-\Delta u=$ $V e^{u}$ in dimension two, Indiana University Mathematics Journal 43 (1994), 1255-1270.
[18] Andrea Mondino and Tristan Rivière, Willmore spheres in compact Riemannian manifolds, Adv. Math. 232 (2013), 608-6076.
[19] Andrea Mondino and Tristan Rivière, Immersed spheres of finite total curvature into manifolds, Adv. Calc. Var. 7 (2014), 493-538.
[20] Thomas Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996), no. 3, 595-633.
[21] Tristan Rivière, Lipschitz conformal immersions from degenerating surfaces with l^{2}-bounded second fundamental form, Advances in Calculus of Variations, 2013.
[22] Tristan Rivière, Variational principles for immersed surfaces with l^{2} bounded second fundamental form, J. Reine Angew. Math. 695 (2014), 41-98.
[23] Tristan Rivière, Weak immersions of surfaces with L2-bounded second fundamental form, Geometric analysis, 303-384, IAS/Park City Math. Ser., 22, Amer. Math. Soc., Providence, RI, 2016.
[24] Takashi Shioya, The limit spaces of two-dimensional manifolds with uniformly bounded integral curvature, Trans. Amer. Math. Soc. 351 (1999), no. 5, 1765-1801.
[25] Leon Simon, Lectures on Geometric Measure Theory, Volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University, Australian National University Centre for Mathematical Analysis, Canberra, 1983.
[26] Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no. 30. Princeton University Press, Princeton, N.J., 1970.
[27] L. Tartar, Compacité par compensation: résultats et perspectives, in: Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982), Volume 84 of Res. Notes in Math., pages 350-369. Pitman, Boston, MA, 1983.
[28] M. Troyanov, Un principe de concentration-compacité pour les suites de surfaces riemanniennes, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 5, 419-441.
[29] Miaomiao Zhu, Harmonic maps from degenerating Riemann surfaces, Math. Z. 264 (2010), 63-85.

IMJ - Paris 7, Bâtiment Sophie Germain
8 Place Aurélie Nemours, 75205 PARIS Cedex 13, France
E-mail address: paul.laurain@imj-prg.fr

Department of Mathematics, EthZ
8092 Zurich, Switzerland
E-mail address: tristan.riviere@fim.math.ethz.ch
Received August 8, 2014

[^0]: ${ }^{1} 4 \pi$ in the sphere case and 1 in the torus case

[^1]: ${ }^{2}$ see section 3 for precise definition.

[^2]: ${ }^{3}$ Although, it is invariant by dilation.

[^3]: ${ }^{4}$ This equation must be understood in a weak sense and be tested against smooth function of A_{l} whose composition with ψ_{l}^{-1} extends to a smooth function on Σ_{l}.

