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Abstract :We present the min-max construction of critical points of the area in arbitrary closed
sub-manifold of euclidian spaces by penalization arguments. Precisely, for any immersion of a closed
surface Σ, we add to the area functional a term equal to the Lq norm of the second fundamental form of
the immersion times a “viscosity” parameter. This relaxation of the area functional satisfies the Palais-
Smale condition for q > 2. This permits to construct critical points of the relaxed Lagrangian using
classical min-max arguments such as the mountain pass lemma. The goal of this work is to describe the
passage to the limit when the “viscosity” parameter tends to zero. Under some natural entropy condition,
we establish a varifold convergence of these critical points towards a possibly branched smooth closed
minimal surface realizing the min-max value. This method opens the door for exploring new min-max
values based on homotopy groups of the space of immersions of surfaces into sub-manifolds of arbitrary
dimension.

Math. Class. 49Q05, 53A10, 49Q15, 58E12, 58E20

I Introduction

The study of minimal surfaces, critical points of the area, has stimulated the development of entire fields
in analysis and in geometry. The calculus of variations is one of them. The origin of the field is very much
linked to the question of proving the existence of minimal 2-dimensional discs bounding a given curve in
the euclidian 3-dimensional space and minimizing the area. This question, known as Plateau Problem, has
been posed since the XVIIIth century by Joseph-Louis Lagrange, the founder of the Calculus of Variation
after Leonhard Euler. This question has been ultimately solved independently by Jesse Douglas and Tibor
Radó around 1930. In two words the main strategy of the proofs was to minimize the Dirichlet energy
instead of the area, which is lacking coercivity properties, the two lagrangians being identical on conformal
maps. After these proofs, successful attempts have been made to solve the Plateau Problem in much more
general frameworks. This has been in particular at the origin of the field of Geometric Measure Theory
during the 50’s, where the notions of rectifiable current which were proved to be the ad-hoc objects for
the minimization process of the area (or the mass in general) in the most general setting.

The search of absolute or even local minimizers is of course the first step in the study of the variations
of a given lagrangians but is far from being exhaustive while studying the whole set of critical points. In
many problems there is even no minimizer at all, this is for instance the case of closed surfaces in simply
connected manifolds with also trivial two dimensional homotopy groups. This problem is already present
in the 1-dimensional counter-part of minimal surfaces, the study of closed geodesics. For instance in a
sub-manifold of R3 diffeomorphic to S2 there is obviously no closed geodesic minimizing the length. In
order to construct closed geodesics in such manifold, Birkhoff around 1915 introduced a technic called
”min-max” which permits to generate critical points of the length with non trivial index. In two words this
technic consists in considering the space of paths of closed curves within a non-trivial homotopy classes
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of paths in the sub-manifold (called “sweep-out”) and to minimize, out of all such paths or ”sweep-outs”,
the maximal length of the curves realizing each ”sweep-out”. In order to do so, one is facing the difficulty
posed by a lack of coercivity of the length with respect to this minimization process within this ”huge
space” of sweep-outs. In order to ”project” the problem to a much smaller space of ”sweep-outs” in which
the length would become more coercive, George Birkhoff replaced each path by a more regular one made
of very particular closed curves joining finitely many points with portions of geodesics minimizing the
length between these points. This replacement method also called nowadays “curve shortening process”
has been generalized in many situations in order to perform min-max arguments.

Back to minimal surfaces, in a series of two works (see [6] and [7]), Tobias Colding and Bill Minicozzi,
construct by min-max methods minimal 2 dimensional spheres in riemannian manifolds. The main
strategy of the proof combines the original approach of Douglas and Radó, consisting in replacing the
area functional by the Dirichlet energy, with a ”Birkhoff type” argument of optimal replacements. Locally
to any map from a given ”sweep-out” one performs a surgery, replacing the map itself by an harmonic
extension minimizing the Dirichlet energy. The convergence of such a ”harmonic replacement” procedure,
corresponding in some sense to Birkhoff “curve shortening procedure” in one dimension, is ensured by
a fundamental result regarding the local convexity of the Dirichlet energy into a manifold under small
energy assumption and a unique continuation type property. What makes possible the use of the Dirichlet
energy instead of the area functional, as in [32], is the fact that the domain S2 posses only one conformal
structure and modulo a re-parametrization any W 1,2 map can be made almost conformal (due to a
fundamental result of Charles Morrey [24]). This is not anymore the case if one wants to extend Colding-
Minicozzi’s approach to general surfaces. This has been done however successfully by Zhou Xin in [39] and
[40] following the original Colding-Minicozzi approach. These papers are based on an involved argument
in which to any ”sweep-out” of W 1,2−maps a path of smooth conformal structures together with a path
of re-parametrization are assigned in order to be as close as possible to paths of conformal maps.

Because of the finite dimensional nature of the moduli space of conformal structures in 2-D, and
the “optimal properties” of the Dirichlet energy, Colding-Minicozzi’s min-max method is intrinsically
linked to two dimensions as Douglas-Radó’s resolution of the Plateau problem was too. The field of
Geometric Measure Theory, which was originally designed to remedy to this limitation and to solve the
Plateau Problem for arbitrary dimensions in various homology classes, has been initially developed with
a minimization perspective and the framework of rectifiable currents as well as the lower semicontinuity
of the mass for weakly converging sequences was matching perfectly this goal. In order to solve min-
max problems in the general framework of Geometric Measure Theory, the notion of varifold has been
successfully introduced by William Allard and by Fred Almgren. A complete GMT min-max procedure
has been finally set up by Jon Pitts in [26] who introduced the notion of almost minimizing varifolds
and developed their regularity theory in co-dimension 1. Constructive comparison arguments as well as
combinatorial type arguments are also needed in this rather involved and general procedure (The reader
is invited also to consult [5] and [19] for thorough presentations of the GMT approaches to min-max
procedures).

The aim of the present work is to present a direct min-max approach for constructing minimal surfaces
in a given closed submanifold Nn of Rm. The general scheme is simple : one works with a special subspace
of C1 immersions of a given surface Σ, one adds to the area of each of such an immersion ~Φ a relaxing
“curvature type” functional multiplied by a small viscous parameter σ2

Aσ(~Φ) := Area(~Φ) + σ2

∫
Σ

curvature terms dvolg~Φ (I.1)

where dvolg~Φ is the volume form on Σ induced by the immersion ~Φ. The “curvature terms” is chosen in
order to ensure that Aσ satisfies the Palais-Smale property on the ad-hoc corresponding Finsler manifold
of C1−immersions. This offers the suitable framework in which the mountain path lemma can be applied.
Once a min-max critical point of Aσ is produced one passes to the limit σ → 0 · · ·
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More precisely, we introduce the space EΣ,p of W 2,2p−immersions ~Φ of a given closed surface Σ for
p > 1 1 into Nn ⊂ Rm. It is proved below that this space has a nice structure of Banach bundle modeled
on the Banach space W 2,2p(Σ,Rn). For such immersions we consider the relaxed energy

Aσ(~Φ) := Area(~Φ) + σ2

∫
Σ

[
1 + |~I~Φ|

2
]p

dvolg~Φ

where g~Φ and ~I~Φ are respectively the first and second fundamental forms of ~Φ(Σ) in Nn. Unlike previous
existing viscous relaxations for min-max problems in the literature, the energy Aσ is intrinsic in the sense
that it is invariant under re-parametrization of ~Φ : Aσ(~Φ) = Aσ(~Φ ◦ Ψ) for any smooth diffeomorphism
Ψ of Σ. Modulo a choice of parametrization it is proved in [16] and [14] that for a fixed σ 6= 0 the
Lagrangian Aσ satisfies the Palais-Smale condition. Hence we can consider applying the mountain path
lemma to this Lagrangian. Our main result in the present work is the following convergence theorem.

Theorem I.1. Let Nn be a closed n−dimensional sub-manifold of Rm with 3 ≤ n ≤ m−1 being arbitrary.
Let Σ be an arbitrary closed riemanian 2-dimensional manifold. Let σk → 0 and let ~Φk be a sequence of
critical points of

Aσk(~Φ) := Area(~Φ) + σ2
k

∫
Σ

[
1 + |~I~Φ|

2
]p

dvolg~Φ

in the space of W 2,2p−immersions of Σ and satisfying the entropy condition

σ2
k

∫
Σ

[
1 + |~I~Φk |

2
]p

dvolg~Φk
= o

(
1

log σ−1
k

)
(I.2)

Then, modulo extraction of a subsequence, there exists a closed riemann surface S with genus(S) ≤genus(Σ)

and a conformal smooth harmonic map ~Φ∞ from S into Nn such that

lim
k→+∞

Aσk(~Φk) = Area(~Φ∞)

Moreover, the oriented varifold associated to ~Φk converges in the sense of Radon measures towards the
oriented stationary integer varifold associated to ~Φ∞, which is a smooth sub-manifold away from at most
finitely many isolated points . 2

The main difficulty in proving theorem I.1 in contrast with existing non intrinsic viscous approxima-
tions of min-max procedures in the literature is that there is a-priori no ε−regularity property independent
of the viscosity σ available. Indeed the following result is proved in [22].

Proposition I.1. There exists ~Φk ∈ C∞(T 2, S3) and σk → 0 such that ~Φk is a sequence of immersions,
critical points of Aσk , which is conformal into S3 from a converging sequence of flat torii R2/Z + (ak +
i bk)Z towards R2/Z + (a∞ + i b∞)Z, for which

lim sup
k→+∞

Aσk(~Φk) < +∞

such that also ~Φk weakly converges to a limiting map ~Φ∞ in W 1,2(R2/Z + (a∞ + i b∞)Z, S3) but ~Φk
nowhere strongly converges : precisely

∀ U open set in R2/Z + (a∞ + i b∞)Z
∫
U

|∇~Φ∞|2 dx2 < lim inf
k→+∞

∫
U

|∇~Φk|2 dx2 .

2

1The condition p > 1 ensures that ~Φ is C1. This last fact permits to use the classical definition of an immersion. The
case p = 1 was considered in previous works by the author where the notion of immersion had to be weakened.
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In order to overcome this major difficulty in the passage to the limit σk → 0 we prove a quantization
result, lemma III.2, which roughly says that there is a positive number Q0, depending only on the target
Nn ⊂ Rm, below which for k large enough, under the entropy condition assumption, there is no critical
point of Aσk . This result is used at several stages in the proof. The main strategy goes as follows. We
first establish the stationarity of the limiting varifold. The proof is based on an almost divergence form of
the Euler Lagrange equation associated to Aσ following the approach introduced in [28] for the Willmore
Lagrangian in Rm. The existence of such a an almost divergence form is due to the symmetry group
associated to the same Lagrangian in flat space and the application of Noether theorem (see [1]). As in
[22], the exact divergence form in Euclidian space is just an almost-divergence form in manifold. Next we

choose a conformal parametrization of ~Φk on a possibly degenerating sequence of riemann surfaces (Σ, hk)

(where hk denotes the constant curvature metric of volume 1 conformally equivalent to ~Φ∗kgNn). We use
Deligne Mumford compactification in order to make converge (Σ, hk) towards a nodal riemann surface with
punctures (see for instance [12]). We then use the monotonicity formula, deduced from the stationarity,
in order to prove that away from a so called oscillation set the limiting volume density measure on the
thick parts of the limiting nodal surface is absolutely with respect to the Lebesgue measure. We then use
the monotonicity formula again in order to prove the quantization result lemma III.2. This quantization
result is used in order to show that the limiting volume density measure restricted to the oscillation set
is equal to finitely many Dirac masses. The quantization result is again used in order to prove that for
the weakly converging sequence ~Φk there is no energy loss neither in the necks in each thick parts of the
limiting nodal surface, nor in the collars regions separating possible bubbles, which are possibly formed
(see lemma III.6). The previous results are proved to show the rectifiability of the limiting varifold (see
lemma III.7). We then prove that there is no measure concentrated on the set of points where the rank

of the weak limit ~Φ∞ on each thick part and on each bubble is not equal to 2. Finally we use all the
previous results to prove a strong W 1,2−bubble tree convergence of the sequence ~Φk on each thick part
(lemma III.11) which gives in particular that the limiting rectifiable stationary varifold is integer. The
last lemma, lemma III.14, establishes that the limiting map is a conformal target harmonic map on each
thick part of the nodal surface and on each bubble. A proof of a point removability result realizes the
main core of the proof of lemma III.14. Finally we use the regularity result of [30].

Theorem I.1 can be used to prove various existence results of optimal surfaces realizing a min-max
energy level. We first define the following notion.

Definition I.1. A family of subsets A ⊂ P(M) of a Banach manifold M is called admissible family
if for every homeomorphism Ξ of M isotopic to the identity we have

∀A ∈ A Ξ(A) ∈ A

2

Example. Consider M := W 2,2p
imm(Σ, S3) for some closed surface Σ and take for any q ∈ N and c ∈

πq(Imm(Σ), S3) then the following family is admissible

A :=
{
~Φ ∈ C0(Sq,W 2,q

imm(S2,R3)) ; s.t. [~Φ] = c
}

2

Our second main result is the following.

Theorem I.2. Let A be an admissible family either in EΣ,p(Nn) such that

inf
A∈A

max
~Φ∈A

Area(~Φ) = β0 > 0 (I.3)
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then there exists a closed riemann surface S with genus(S) ≤genus(Σ) and a smooth conformal harmonic

map ~Φ∞ from S into Nn such that
Area(~Φ∞) = β0 .

2

This general existence result has to be put in perspective with the previous min-max existence re-
sults discussed above either in GMT (see [26], [34], [5], [19], [20]· · · ) or in harmonic map theory (see
[6],[7],[39],[40]). First of all theorem I.2 implies all the known existence results proved in these papers
for 2 dimensional objects in arbitrary codimensions. It’s novelty resides maybe in the fact that it gives a
direct approach to the construction of min-max minimal surfaces and does not require any ”replacement
argument”. We do not use the fact that the index in some sense is bounded and any notion like “quasi-
minimality”. The entropy condition (I.2), which is obtained using Struwe’s argument, however is central
in the proof. The viscosity approach gives, without any additional work, an upper bound of the genus of
the optimal surface. Such lower semicontinuity of the genus has been established in the GMT approach
in [9] in co-dimension 1 and was not given by the min-max procedure itself. As in the geodesic case
studied recently in [22] and where a passage to the limit in the second derivative is proved, the viscosity
approach could possibly give also informations on the limiting index. We hope to study these questions
in future works.

The second, and possibly main advantage, of the viscosity method resides in the fact that one can
explore min-max within the space of immersions of fixed closed surfaces. The spaces Imm(Σ, Nn) offers
a richer topology than the space of integer rectifiable 2-cycles Z2(Nn) considered by Almgren whose
homotopy type is more coarse.

In order to simplify the presentation and in particular the computations of the Euler Lagrange equation
to Aσ we are presenting the proof of theorem I.1, in the special case Nn = S3. There is however no
argument below which is specific to that case and the proof in the general case follows each step word by
word of the S3 case.

II The viscous relaxation of the area for surfaces.

II.1 The Finsler Manifold of immersions into the spheres with Lq bounded
second fundamental form.

For k ∈ N and 1 ≤ q ≤ +∞We recall the definition of W k,q Sobolev function on a closed smooth surface
Σ (i.e. Σ is compact without boundary). To that aim we take some reference smooth metric g0 on Σ

W k,q(Σ,R) :=
{
f measurable s.t ∇kg0

f ∈ Lq(Σ, g0)
}

where ∇kg0
denotes the k−th iteration of the Levi-Civita connection associated to Σ. Since the surface is

closed the space defined in this way is independent of g0. Let Nn be a closed n−dimensional sub-manifold
of Rm with 3 ≤ n ≤ m− 1 being arbitrary. The Space of W k,q into Nn is defined as follows

W k,q(Σ, Nn) :=
{
~Φ ∈W k,q(Σ,Rm) ; ~Φ ∈ Nn almost everywhere

}
We have the following well known proposition

Proposition II.1. Assuming kq > 2, the space W k,q(Σ, Nn) defines a Banach Manifold modeled on the
Banach space W k,q(Σ,Rm). 2
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Proof of proposition II.1.
This comes mainly from the fact that, under our assumptions,

W k,q(Σ,Rm) ↪→ C0(Σ,Rm) . (II.1)

The Banach manifold structure is then defined as follows. Choose δ > 0 such that each geodesic ball
BN

n

δ (z) for any z ∈ Nn is strictly convex and the exponential map

expz : Vz ⊂ TzNn −→ BN
n

δ (z)

realizes a C∞ diffeomorphism for some open neighborhood of the origin in TzN
n into the geodesic ball

BN
n

δ (z). Because of the embedding (II.1) there exists ε0 > 0 such that

∀ ~u , ~v ∈W k,q(Σ, Nn) ‖~u− ~v‖Wk,q < ε0

=⇒ ‖distN (~u(x), ~v(x))‖L∞(Σ) < δ .

We equip now the space W k,q(Σ, Nn) with the distance issued from the W k,q norm and for any ~u ∈M =
W k,q(Σ, Nn) we denote by BMε0 (~u) the open ball in M of center ~u and radius ε0.

As a covering of M we take (BMε0 (~u))~u∈M. We denote by

E~u := ΓWk,q

(
~u−1TN

)
:=
{
~w ∈W k,q(Σ,Rm) ; ~w(x) ∈ T~u(x)N

n ∀ x ∈ Σ
}

this is the Banach space of W k,q−sections of the bundle ~u−1TN and for any ~u ∈M and ~v ∈ BMε0 (~u) we

define ~w ~u(~v) to be the following element of E~u

∀ x ∈ Σ ~w ~u(~v)(x) := exp−1
~u(x)(~v(x))

It is not difficult to see that

~w ~v ◦ (~w ~u)−1 : ~w u
(
BMε0 (~u) ∩BMε0 (~v)

)
−→ ~w v

(
BMε0 (~u) ∩BMε0 (~v)

)
defines a C∞ diffeomorphism. 2

For p > 1 we define

EΣ,p = W 2,2p
imm(Σ2, Nn) :=

{
~Φ ∈W 2,q(Σ2, Nn) ; rank (dΦx) = 2 ∀x ∈ Σ2

}
The set W 2,2p

imm(Σ2, Nn) as an open subset of the normal Banach Manifold W 2,2p(Σ2, Nn) inherits a
Banach Manifold structure.

We equip now the space W 2,2p
imm(Σ, Nn) with a Finsler manifold structure on it’s tangent bundle (see

the definition of Banach Space bundles and Tangent bundle to a Banach manifold in [15]). For the
convenience of the reader we recall the notion of Finsler structure.

Definition II.2. Let M be a normal Banach manifold and let V be a Banach Space Bundle over M. A
Finsler structure on V is a continuous function

‖ · ‖ : V −→ R

such that for any x ∈M
‖ · ‖x := ‖ · ‖|π−1({x}) is a norm on Vx .
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Moreover for any local trivialization τi over Ui and for any x0 ∈ Ui we define on Vx the following norm

∀ ~w ∈ π−1({x}) ‖~w‖x0 := ‖τ−1
i (x0, ρ(τi(~w))) ‖x0

and there exists Cx0
> 1 such that

∀ x ∈ Ui C−1
x0
‖ · ‖x ≤ ‖ · ‖x0

≤ Cx0
‖ · ‖x .

2

Definition II.3. Let M be a normal Cp Banach manifold. TM equipped with a Finsler structure is
called a Finsler Manifold. 2

Remark II.1. A Finsler structure on TM defines in a canonical way a dual Finsler structure on T ∗M.
2

The tangent space to EΣ,p at a point ~Φ is the space ΓW 2,2p(~Φ−1TNn) of W 2,2p−sections of the bundle
~Φ−1TNn, i.e.

T~ΦEΣ,p =
{
~w ∈W 2,2p(Σ2,Rm) ; ~w(x) ∈ T~Φ(x)N

n ∀x ∈ Σ2
}

.

We equip T~ΦEΣ,p with the following norm

‖~v‖~Φ :=

[∫
Σ

[
|∇2~v|2g~Φ + |∇~v|2g~Φ + |~v|2

]p
dvolg~Φ

]1/q

+ ‖ |∇~v|g~Φ ‖L∞(Σ)

where we keep denoting, for any j ∈ N, ∇ to be the connection on (T ∗Σ)⊗
j ⊗ ~Φ−1TN over Σ defined by

∇ := ∇g~Φ⊗ ~Φ∗∇h and ∇g~Φ is the Levi Civita connection on (Σ, g~Φ) and ∇h is the Levi-Civita connection
on Nn.

We check for instance that ∇2~v defines a C0 section of (T ∗Σ)2 ⊗ ~Φ−1TN .
The fact that we are adding to the W 2,2p norm of ~v with respect to g~Φ the L∞ norm of |∇~v|g~Φ

could look redundant since W 2,2p embeds in W 1,∞. We are doing it in order to ease the proof of the
completeness of the Finsler Space equipped with the Palais distance below.

Observe that, using Sobolev embedding and in particular due to the fact W 2,q(Σ,Rm) ↪→ C1(Σ,Rm)
for q > 2, the norm ‖ · ‖~Φ as a function on the Banach tangent bundle TEΣ,p is obviously continuous.

Proposition II.2. The norms ‖ · ‖~Φ defines a C2−Finsler structure on the space EΣ,p. 2

Proof of proposition II.2. We introduce the following trivialization of the Banach bundle. For any
~Φ ∈ EΣ,p we denote P~Φ(x) the orthonormal projection in Rm onto the n−dimensional vector subspace

of Rm given by T~Φ(x)N
n and for any ~ξ in the ball B

EΣ,p
ε1 (~Φ) for some ε1 > 0 and any ~v ∈ T~ξEΣ,p =

ΓW 2,q (~ξ−1TN) we assign the map ~w(x) := P~Φ(x)~v(x). It is straightforward to check that for ε1 > 0

chosen small enough the map which to ~v assigns ~w is an isomorphism from T~ξEΣ,p into T~ΦEΣ,p and that

there exists k~Φ > 1 such that ∀~v ∈ TBEΣ,pε1 (~Φ)

k−1
~Φ
‖~v‖~ξ ≤ ‖~w‖~Φ ≤ k~Φ ‖~v‖~ξ

This concludes the proof of proposition II.2. 2
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II.2 Palais deformation theory applied to the space of W 2,2p−immersions.

Theorem II.1. [Palais 1970] Let (M, ‖ · ‖) be a Finsler Manifold. Define on M×M

d(p, q) := inf
ω∈Ωp,q

∫ 1

0

∥∥∥∥dωdt
∥∥∥∥
ω(t)

dt

where
Ωp,q :=

{
ω ∈ C1([0, 1],M) ; ω(0) = p ω(1) = q

}
.

Then d defines a distance onM and (M, d) defines the same topology as the one of the Banach Manifold.
d is called Palais distance of the Finsler manifold (M, ‖ · ‖). 2

Contrary to the first appearance the non degeneracy of d is not straightforward and requires a proof
(see [25]). This last result combined with the famous result of Stones on the paracompactness of metric
spaces gives the following corollary.

Corollary II.1. Let (M, ‖ · ‖) be a Finsler Manifold then M is paracompact. 2

The following result2 is going to play a central role in adapting Palais deformation theory to our
framework of W 2,2p−immersions.

Proposition II.3. Let p > 1 and EΣ,p be the space of W 2,2p−immersions of a closed oriented surface Σ
into a closed sub-manifold Nn of Rm

EΣ,p = W 2,2p
imm(Σ2, Nn) :=

{
~Φ ∈W 2,q(Σ2, Nn) ; rank (dΦx) = 2 ∀x ∈ Σ2

}
The Finsler Manifold given by the structure

‖~v‖~Φ :=

[∫
Σ

[
|∇2~v|2g~Φ + |∇~v|2g~Φ + |~v|2

]q/2
dvolg~Φ

]1/q

+ ‖ |∇~v|g~Φ ‖L∞(Σ)

is complete for the Palais distance. 2

Proof of proposition II.3. For any ~Φ ∈ M and ~v ∈ T~ΦM we introduce the tensor in (T ∗Σ)⊗
2

given
in coordinates by

∇~v ⊗̇ d~Φ + d~Φ ⊗̇∇~v =

2∑
i,j=1

[
∇∂xi~v · ∂xj ~Φ + ∂xi

~Φ · ∇∂xj~v
]
dxi ⊗ dxj

=

2∑
i,j=1

[
∇h
∂xi

~Φ
~v · ∂xj ~Φ + ∂xi

~Φ · ∇h
∂xj

~Φ
~v

]
dxi ⊗ dxj

where · denotes the scalar product in Rm. Observe that we have∣∣∣∇~v ⊗̇ d~Φ + d~Φ ⊗̇∇~v
∣∣∣
g~Φ

≤ 2 |∇~v|g~Φ

Hence, taking a C1 path ~Φs in M one has for ~v := ∂s~Φ

‖|d~v⊗̇d~Φ + d~Φ⊗̇d~v|2g~Φ‖L∞(Σ) =

∥∥∥∥∥∥
2∑

i,j,k,l=1

gij~Φ gkl~Φ ∂s(g~Φ)ik ∂s(g~Φ)jl

∥∥∥∥∥∥
L∞(Σ)

=
∥∥∥ |∂s(gijdxi ⊗ dxj)|2g~Φ∥∥∥L∞(Σ)

=
∥∥∥ |∂sg~Φ|2g~Φ∥∥∥L∞(Σ)

(II.2)

2As a matter of fact the proof of the completeness with respect to the Palais distance is skipped in various applications
of Palais deformation theory in the literature.
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Hence ∫ 1

0

∥∥∥ |∂sg~Φ|2g~Φ∥∥∥L∞(Σ)
ds ≤ 2

∫ 1

0

‖∂s~Φ‖~Φs ds (II.3)

We now use the following lemma

Lemma II.1. Let Ms be a C1 path into the space of positive n by n symmetric matrix then the following
inequality holds

Tr (M−2(∂sM)2) ≥ ‖∂s logM‖2 = Tr ((∂s logM)2)

Proof of lemma II.1. We write M = expA and we observe that

Tr (exp(−2A)(∂s expA)2) = Tr (∂sA)2

Then the lemma follows. 2

Combining the previous lemma with (II.2) and (II.3) we obtain in a given chart∫ 1

0

‖∂s log(gij)‖ ds ≤
∫ 1

0

√
Tr ((∂s log gij)2) ds ≤ 2

∫ 1

0

‖∂s~Φ‖~Φs ds (II.4)

This implies that in the given chart the log of the matrix (gij(s)) is uniformly bounded for s ∈ [0, 1] and

hence ~Φ1 is an immersion. It remains to show that it has a controlled W 2,q norm. We introduce p = q/2
and denote

Hessp(~Φ) :=

∫
Σ

[1 + |∇d~Φ|2g~Φ ]p dvolg~Φ

and we compute
d

ds
(Hessp(~Φ)) = p

∫
Σ

∂s|∇d~Φ|2g~Φ [1 + |∇d~Φ|2g~Φ ]p−1 dvolg~Φ

+

∫
Σ

[1 + |∇d~Φ|2g~Φ ]p ∂s(dvolg~Φ)

(II.5)

Classical computations give

∂s(dvolg~Φ) =
〈
∇∂s~Φ, d~Φ

〉
g~Φ

dvolg~Φ

So we have ∣∣∣∣∫
Σ

[1 + |∇d~Φ|2g~Φ ]p ∂s(dvolg~Φ)

∣∣∣∣ ≤ ‖ |∇∂s~Φ|g~Φ ‖L∞(Σ)

∫
Σ

[1 + |∇d~Φ|2g~Φ ]p dvolg~Φ

≤ ‖∂s~Φ‖~Φ
∫

Σ

[1 + |∇d~Φ|2g~Φ ]p dvolg~Φ

(II.6)

In local charts we have

|∇d~Φ|2g~Φ =

2∑
i,j,k,l=1

gij~Φ gkl~Φ

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

Thus in bounding
∫

Σ
∂s|∇d~Φ|2g~Φ [1 + |∇d~Φ|2g~Φ ]p−1 dvolg~Φ we first have to control terms of the form∣∣∣∣∣∣

∫
Σ

2∑
i,j,k,l=1

∂sg
ij
~Φ
gkl~Φ

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

[1 + |∇d~Φ|2g~Φ ]p−1 dvolg~Φ

∣∣∣∣∣∣ (II.7)
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We write
2∑

i,j,k,l=1

∂sg
ij
~Φ
gkl~Φ

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

=

2∑
i,j,k,l,t,r=1

∂sg
ij
~Φ
gjt g

trgkl~Φ

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

= −
2∑

i,j,k,l,=1

(
2∑

t,r=1

∂sgjt g
tr

)
gij~Φ gkl~Φ

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

Hence ∣∣∣∣∣∣
∫

Σ

2∑
i,j,k,l=1

∂sg
ij
~Φ
gkl~Φ

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

[1 + |∇d~Φ|2g~Φ ]p−1 dvolg~Φ

∣∣∣∣∣∣
≤ ‖ |∂sg~Φ|g~Φ‖L∞(Σ)

∫
Σ

[1 + |∇d~Φ|2g~Φ ]p dvolg~Φ

≤ ‖∂s~Φ‖~Φs

∫
Σ

[1 + |∇d~Φ|2g~Φ ]p dvolg~Φ

(II.8)

We have also

∂s

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

=

〈
∇h
∂s~Φ

(
∇h
∂xi

~Φ
∂xk

~Φ
)
,∇h

∂xj
~Φ
∂xl

~Φ

〉
h

+

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂s~Φ

(
∇h
∂xj

~Φ
∂xl

~Φ

)〉
h

By definition we have

∇h
∂s~Φ

(
∇h
∂xi

~Φ
∂xk

~Φ
)

= ∇h
∂xi

~Φ

(
∇h
∂s~Φ

∂xk
~Φ
)

+Rh(∂xi
~Φ, ∂s~Φ)∂xk

~Φ

where we have used the fact that [∂s~Φ, ∂xi
~Φ] = ~Φ∗[∂s, ∂xi ] = 0. Using also that [∂s~Φ, ∂xk

~Φ] = 0, since
∇h is torsion free, we have finally

∇h
∂s~Φ

(
∇h
∂xi

~Φ
∂xk

~Φ
)

= ∇h
∂xi

~Φ

(
∇h
∂xk

~Φ
∂s~Φ

)
+Rh(∂xi

~Φ, ∂s~Φ)∂xk
~Φ (II.9)

where Rh is the Riemann tensor associated to the Levi-Civita connection ∇h. We have

∇h
∂xi

~Φ

(
∇h
∂xk

~Φ
∂s~Φ

)
= (∇h)2

∂xi
~Φ∂xk

~Φ
∂s~Φ +∇h∇h

∂xi
~Φ
∂xk

~Φ
∂s~Φ (II.10)

Hence 〈
∇h
∂s~Φ

(
∇h
∂xi

~Φ
∂xk

~Φ
)
,∇h

∂xj
~Φ
∂xl

~Φ

〉
h

=

〈
(∇h)2

∂xi
~Φ∂xk

~Φ
∂s~Φ,∇h∂xj ~Φ

∂xl
~Φ

〉
h

+

〈
∇h∇h

∂xi
~Φ
∂xk

~Φ
∂s~Φ,∇h∂xj ~Φ

∂xl
~Φ

〉
h

+

〈
Rh(∂xi

~Φ, ∂s~Φ)∂xk
~Φ,∇h

∂xj
~Φ
∂xl

~Φ

〉
h

(II.11)

10



Combining all the previous gives then∣∣∣∣∣∣
∫

Σ

2∑
i,j,k,l=1

gij~Φ gkl~Φ ∂s

〈
∇h
∂xi

~Φ
∂xk

~Φ,∇h
∂xj

~Φ
∂xl

~Φ

〉
h

dvolg~Φ

∣∣∣∣∣∣
≤ C

∫
Σ

∣∣∣∣〈∇2∂s~Φ,∇d~Φ
〉
g~Φ

∣∣∣∣ [1 + |∇d~Φ|2g~Φ ]p−1 dvolg~Φ

+C

∫
Σ

|∇∂s~Φ|g~Φ |∇d~Φ|
2
g~Φ

[1 + |∇d~Φ|2g~Φ ]p−1 dvolg~Φ

+C ‖Rh‖L∞(Nn)

∫
Σ

|∂s~Φ|h |∇d~Φ|g~Φ [1 + |∇d~Φ|2g~Φ ]p−1 dvolg~Φ

(II.12)

Combining all the above we finally obtain that∣∣∣∂sHessp(~Φ)
∣∣∣ ≤ C ‖∂s~Φ‖~Φ [

Hessp(~Φ) + Hessp(~Φ)1−1/2p
]

(II.13)

Combining (II.4) and (II.13) we deduce using Gromwall lemma that if we take a C1 path from [0, 1) into

M with finite length for the Palais distance d, the limiting map ~Φ1 is still a W 2,2p−immersion of Σ into
Nn, which proves the completeness of (EΣ,p, d). 2

The following definition is central in Palais deformation theory.

Definition II.4. Let E be a C1 function on a Finsler manifold (M, ‖ · ‖) and β ∈ E(M). On says that
E fulfills the Palais-Smale condition at the level β if for any sequence un staisfying

E(un) −→ β and ‖DEun‖un −→ 0 ,

then there exists a subsequence un′ and u∞ ∈M such that

d(un′ , u∞) −→ 0 .

and hence E(u∞) = β and DEu∞ = 0. 2

The following result is the Palais Smale condition for the functional

Aσp (~Φ) := Area(~Φ) + σ2

∫
Σ

[
1 + |~I~Φ|

2
]p

dvolg~Φ .

Theorem II.2. Let p > 1 and ~Φk such that

lim sup
k→+∞

Aσp (~Φk) < +∞

and satisfying
lim

k→+∞
sup

‖~w‖~Φk≤1

∂Aσp (~Φk) · ~w = 0 . (II.14)

Then, modulo extraction of a subsequence, there exists a sequence of W 2,2p−diffeomorphisms Ψk such
that ~Φk converges strongly in EΣ,p for the Palais distance to a critical point of Aσp . Moreover, if one

assume that ~Φk stays inside a fixed ball of the Palais distance one can take Ψk(x) = x. 2

Remark II.2. The first part of this theorem has been proved in [14] in the flat framework which does
not differ much from our case of W 2,2p−immersions into Nn. The second part is a direct consequence of
the proof of proposition II.3 above and is being used below since in the main Palais theorem II.3 the flow
issued by the pseudo-gradient maintains the image at a finite Palais distance. 2
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Definition II.5. A family of subsets A ⊂ P(M) of a Banach manifold M is called admissible family
if for every homeomorphism Ξ of M isotopic to the identity we have

∀A ∈ A Ξ(A) ∈ A

2

Example. Consider M := W 2,q
imm(S2,R3) and take c ∈ π1(Imm(S2,R3)) = Z2 × Z then the following

family is admissible

A :=
{
~Φ ∈ C0([0, 1],W 2,q

imm(S2,R3)) ; ~Φ(0, ·) = ~Φ(1, ·) and [~Φ] = c
}

2

We recall the main theorem of Palais deformation theory.

Theorem II.3. [Palais 1970] Let (M, ‖·‖) be a Banach manifold together with a C1,1−Finsler structure.
Assume M is complete for the induced Palais distance d and let E ∈ C1(M) satisfying the Palais-Smale
condition (PS)β for the level set β. Let A be an admissible family in P(M) such that

inf
A∈A

sup
u∈A

E(u) = β

then there exists u ∈M satisfying 
DEu = 0

E(u) = β

(II.15)

2

II.3 Struwe’s monotonicity trick.

Because of theorem II.2, theorem II.3 can be applied to each of the lagrangian Aσp for any admissible
family A of EΣ,p satisfying

inf
A∈A

max
~Φ∈A

Area(~Φ) = β0 > 0 (II.16)

However, beside the difficulty of establishing a convergence of any nature to the corresponding sequence
of critical points ~Φσ given by theorem II.3, although it is clear that

lim
σ→0

inf
A∈A

max
~Φ∈A

Aσp (~Φσ) = β0

nothing excludes a-priori that
lim
σ→0

inf
A∈A

max
~Φ∈A

Area(~Φσ) < β0

and it could be that the smoothing part of the lagrangian σ2
∫

Σ

[
1 + |~I~Φσ |

2
]p

dvolg~Φσ does not go to zero.

In order to prevent this unpleasant situation where the smoothed min-max procedure is not approximating
properly the limiting min-max procedure, M.Struwe invented a technic consisting in localizing the action
of the pseudo-gradient close to the level set Area(~Φ) = β0 exclusively. Precisely we have the following
result
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Theorem II.4. Let (M, ‖ · ‖) be a complete Finsler manifold. Let Eσ be a family of C1 functions for
σ ∈ [0, 1] on M such that for every ~γ ∈M

σ −→ Eσ(~γ) and σ −→ ∂σE
σ(~γ) (II.17)

are increasing and continuous functions with respect to σ. Assume moreover that

‖DEσ~γ −DEτ~γ‖~γ ≤ C(σ) δ(|σ − τ |) f(Eσ(~γ)) (II.18)

where C(σ) ∈ L∞loc((0, 1)), δ ∈ L∞loc(R+) and goes to zero at 0 and f ∈ L∞loc(R). Assume that for every σ
the functional Eσ satisfies the Palais Smale condition. Let A be an admissible family of M and denote

β(σ) := inf
A∈A

sup
~γ∈A

Eσ(~γ)

Then there exists a sequence σk → 0 and ~γj ∈M such that

Eσk(~γk) = β(σk) , DEσk(~γk) = 0

Moreover ~γk satisfies the so called “entropy condition”

∂σkE
σk(~γk) = o

 1

σk log
(

1
σk

)
 .

2

A proof of this theorem is given for instance in [31]

Theorem II.5. Let p > 1 and A be an admissible family either in EΣ,p(Nn) such that

inf
A∈A

max
~Φ∈A

Area(~Φ) = β0 > 0 (II.19)

Then there exists σk → 0 and a family ~Φk of critical points of Aσkp satisfying

lim
k→+∞

Area(~Φk) = β0 and σ2
k

∫
Σ

[
1 + |~I~Φk |

2
]p

dvolg~Φk
= o

(
1

log σ−1
k

)
.

2

II.4 The first variation of the viscous energies Aσp .

Let ~Φ be a smooth immersion from a closed 2-dimensional manifold Σ into the unit sphere S3 ⊂ R4, let
~w be an infinitesimal immersion satisfying ~w · ~Φ ≡ 0 and denote ~Φt : a sequence of immersions into S3

such that d~Φ/dt(0) = ~w. The Gauss map of the immersion is given in local coordinates by

~nt = ?R4

(
~Φt ∧

∂x1
~Φt ∧ ∂x2

~Φt

|∂x1
~Φt ∧ ∂x2

~Φt|

)
(II.20)

Assuming ~Φ is expressed locally in conformal coordinates and denote eλ = |∂x1
~Φ| = |∂x2

~Φ|. We have

~nt = ~n+ t (a1 ~e1 + a2 ~e2 + b ~Φ) + o(t) , (II.21)
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where ~ei = e−λ ∂xi
~Φ. Since ~nt · ∂xi~Φt ≡ 0 and ~nt · ~Φt ≡ 0 we have

d~n

dt
(0) = −~n · ~w ~Φ−

2∑
i=1

~n · ∂xi ~w e−λ ~ei

= −~n · ~w ~Φ−
〈
~n · d~w , d~Φ

〉
g~Φ

.

(II.22)

Since gij := ∂xi
~Φ · ∂xj ~Φ, we have

dgij
dt

(0) = ∂xi ~w · ∂xj ~Φ + ∂xj ~w · ∂xi~Φ . (II.23)

Since
∑
i gki g

ij = δkj and gki = e2λ δki, we have

dgij

dt
(0) = −e−4λ

[
∂xi

~Φ · ∂xj ~w + ∂xj
~Φ · ∂xi ~w

]
. (II.24)

We have also using (II.22) and (II.24)

d|d~n|2g~Φ
dt

=
d

dt

 2∑
i,j=1

gij∂xi~n · ∂xj~n


= −2

〈
d~Φ ⊗̇ d~w , d~n ⊗̇ d~n

〉
g~Φ

+ 2

〈
d
d~n

dt
; d~n

〉
g~Φ

= −2
〈
d~Φ ⊗̇ d~w , d~n ⊗̇ d~n

〉
g~Φ

+ 4 ~H · ~w − 2

〈
d
〈
~n · d~w , d~Φ

〉
g~Φ

; d~n

〉
g~Φ

(II.25)

Finally, we have dvolg~Φ =
√
g11g22 − g2

12 dx1 ∧ dx2, hence

d

dt
(dvolg~Φ)(0) =

[
2∑
i=1

∂xi
~Φ · ∂xi ~w

]
dx1 ∧ dx2 =

〈
d~Φ ; d~w

〉
g~Φ

dvolg~Φ . (II.26)

using (II.25) and (II.26) we obtain

d

dt
Area(~Φt)

∣∣∣∣
t=0

=

∫
Σ

〈
d~Φ ; d~w

〉
g~Φ

dvolg~Φ (II.27)

For any p > 1 we denote

Fp(~Φ) :=

∫
Σ

[
1 + |~I~Φ|

2
]p
g~Φ

dvolg~Φ .

Using (II.22) and (II.25) we have

d

dt
Fp(~Φt)

∣∣∣∣
t=0

=

∫
Σ

fp
〈
d~Φ ; d~w

〉
g~Φ

dvolg~Φ − 2 p

∫
Σ

fp−1
〈
d~Φ ⊗̇ d~w , d~n ⊗̇ d~n

〉
g~Φ

dvolg~Φ

− 2 p

∫
Σ

fp−1

〈
d
〈
~n · d~w , d~Φ

〉
g~Φ

; d~n

〉
g~Φ

dvolg~Φ + 4 p

∫
Σ

fp−1 ~H · ~w dvolg~Φ

(II.28)

where f :=
[
1 + |~I~Φ|

2
]
.
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II.5 The almost conservation laws satisfied by the critical points of Aσp(~Φ).

The fact that Aσp is C1 in EΣ,p is quite standard for p > 1 and is proved in [27]. Let ~Φ be a critical point
in EΣ,p of Aσp . We then have

~Φ ∧ d∗g~Φ
[[

1 + σ2 fp
]
d~Φ
]
− 2 p σ2 ~Φ ∧ d∗g~Φ

[
d
∗g~Φ
[
fp−1 d~n

]
· d~Φ ~n

]
− 2 p σ2 ~Φ ∧ d∗g~Φ

[
fp−1 (d~n ⊗̇ d~n) g~Φ

d~Φ
]

+ 4 p σ2 fp−1 ~Φ ∧ ~H = 0 in D′(Σ)

(II.29)

where f :=
[
1 + |~I~Φ|

2
]

as above and (d~n ⊗̇ d~n) g~Φ
d~Φ is the contraction given in local conformal coordi-

nates by

(d~n ⊗̇ d~n) g~Φ
d~Φ := e−2λ

2∑
i,j=1

∂xi~n · ∂xj~n ∂xj ~Φ dxi

In conformal coordinates the equation becomes

~Φ ∧ div
[[

1 + σ2fp
]
∇~Φ− 2 p σ2 e−2λ fp−1

〈
(∇~n⊗̇∇~n;∇~Φ

〉
+2 p σ2 e−2λ div

[
fp−1∇~n

]
· ∇~Φ ~n

]
− 4 p σ2 fp−1 ~Φ ∧ ~H = 0

(II.30)

We rewrite the first term in the second line.

2 p σ2 e−2λ div
[
fp−1∇~n

]
· ∇~Φ ~n

= 2 p σ2 e−2λ div
[
fp−1

[
∇~n+ H∇~Φ

]]
· ∇~Φ ~n− 2 p σ2 ∇

[
fp−1 H

]
~n

(II.31)

For any k = 1, 2 we compute

2∑
i=1

∂xi

[
fp−1

[
∂xi~n+H ∂xi

~Φ
]]
· ∂xk~Φ ~n = −∂xk

[
fp−1 I0k,k

]
~n− ∂xk+1

[
fp−1 I0k+1,k

]
~n

Denoting ∇· := (∂x1
·,−∂x2

·) and (∇)⊥· := (∂x2
·, ∂x1

·), we have then

2 p σ2 e−2λ div
[
fp−1

[
∇~n+ H∇~Φ

]]
· ∇~Φ = −2 p σ2 e−2λ

[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

] ]
(II.32)

Combining (II.31) and (II.32) gives

2 p σ2 e−2λ div
[
fp−1∇~n

]
· ∇~Φ ~n = −2 p σ2 ∇

[
fp−1 ~H

]
+ 2 p σ2 fp−1 H ∇~n

− 2 p σ2 e−2λ
[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

]]
~n

(II.33)

So the equation (II.30) becomes

~Φ ∧ div
[[

1 + σ2fp
]
∇~Φ− 2 p σ2 ∇

[
fp−1 ~H

]
− 2 p σ2 e−2λ fp−1

〈
∇~n⊗̇∇~n;∇~Φ

〉
+ 2 p σ2 fp−1 H ∇~n − 2 p σ2 e−2λ

[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

]]
~n
]

= 4 p σ2 fp−1 ~Φ ∧ ~H
(II.34)
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The equation (II.29) is also equivalent to the almost conservation law which holds in D′(Σ) and which
is due to the translation invariance of the integrand of Fp in R3 (see [1])

−div
[[

1 + σ2fp
]
∇~Φ− 2 p σ2 ∇

[
fp−1 ~H

]
− 2 p σ2 e−2λ fp−1

〈
∇~n⊗̇∇~n;∇~Φ

〉
+ 2 p σ2 fp−1 H ∇~n − 2 p σ2 e−2λ

[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

]]
~n
]

+ 4 p σ2 fp−1 ~H

=
[
1 + σ2 (1− p) fp + p σ2fp−1

]
|∇~Φ|2 ~Φ

(II.35)

Finally we end up this section by quoting the following theorem

Theorem II.6. Let p ≥ 1 and ~Φ be an element in the space EΣ,p of W 2,2p−immersions of a closed

surface Σ. Assume ~Φ is a critical point of Aσp (~Φ) then ~Φ is C∞ in any conformal parametrization. 2

Remark II.3. A proof of theorem II.6 has been given in [14] without balancing constraints and for C1

immersions into the euclidian space. The method of proof in [14] relies on the work of J.Langer with the
decomposition of the immersion into the union of graphs. 2

III The passage to the limit σ → 0 with controled conformal
class.

The goal of the present section is to prove the following theorem

Theorem III.1. Let p > 1 and let ~Φk be a sequence of critical points of Aσkp in the class EΣ,p where
σk → 0 and satisfying

0 < lim sup
k→+∞

Area(~Φk) < +∞ (III.1)

and

σ2
k Fp(~Φk) = σ2

k

∫
Σ

[
1 + |I~Φk |

2
g~Φk

]p
dvolg~Φk

= o

(
1

log(1/σk)

)
. (III.2)

Assume moreover that the conformal class associated to (Σ, g~Φk) is precompact in the moduli space, then,
modulo extraction of a subsequence, there exists a closed riemann surface S with genus(S) ≤genus(Σ)

and a conformal target harmonic map ~Φ∞ from S into Nn such that

lim
k→+∞

Aσk(~Φk) = Area(~Φ∞)

and the oriented varifold |Tk| equal to the push-forward by ~Φk of Σ converges in the sense of Radon

measures towards the oriented stationary integer varifold associated to ~Φ∞. The surface S is moreover
either equal to the union of Σ with finitely many copies of S2 or is equal to finitely many copies of S2. 2

In order to prove theorem III.1 we shall need several lemma.

Lemma III.1. Under the assumptions of theorem III.1 the sequence of varifolds |Tk| equal to the push

forward of Σ by ~Φk converges, modulo extraction of a subsequence, towards a stationary varifold. In
particular, introducing the Radon measure in S3 given by

< µk, ϕ >:=

∫
Σ

ϕ(~Φk) dvolg~Φk
(III.3)
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µk converges modulo extraction of a subsequence to a limiting Radon measure µ∞ satisfying the following
monotonicity formula

∀ ~q ∈ supp(µ∞) ∀ r > 0
d

dr

[
eC rµ∞(Br(~q))

r2

]
≥ 0 . (III.4)

for some C > 0 independent of ~q and r. 2

Proof of lemma III.1. The monotonicity formula for the limiting measure µ∞ is a direct consequence
of the fact that |Tk| converges towards a stationary varifold (see [2] and [33]). So it would suffices to
prove this last fact in order to get (III.4). However the proof of both statements (that can be proven
independently of each other) are very similar. In the first case it suffices to prove that for any vectorfield
~X we have

lim
k→+∞

∫
Mk

divMk
~X dH2 = lim

k→+∞

∫
Σ

[
4∑
i=1

〈
∂yi

~X(~Φk) ∇Φik,∇~Φk
〉
− ~X(~Φk) · ~Φk |∇~Φk|2

]
dx2 = 0

(III.5)

where Mk := ~Φk(Σ) and ~Φk = (Φ1
k, · · · ,Φ4

k). The computations for proving (III.5) are more or less the
same as the one for proving (III.4) and we shall only present the later since we shall revisit them in the
forthcoming lemma III.2.

We omit to write explicitly the σk and k indices when there is no possible confusion. For any ~q ∈ S3

and any radius r small enough, Simon’s monotonicity formula ( see [33] chapter 4) applied to ~Φ(Σ) (which
is a smooth immersion for any k) that we see as a varifold from R4 gives

d

dr

[
1

r2

∫
~Φ−1(B4

r(~q))

dvolg~Φ

]
=

d

dr

[∫
~Φ−1(B4

r(~q))

|(~n ∧ ~Φ) (~Φ− ~q)|2

|~Φ− ~q|4
dvolg~Φ

]

− 1

2 r3

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · d∗gd~Φ dvolg~Φ

≥ − 1

2 r3

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · d∗gd~Φ dvolg~Φ

(III.6)

Using the form (II.35) of the equation (II.35) we obtain

−
∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · d∗gd~Φ dvolg~Φ =

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) ·∆~Φ dx2

= −
∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · div
[
σ2 fp−1 [f ∇~Φ− 2 p

(
H ∇~n− e−2λ < ∇~n⊗̇∇~n;∇~Φ >

)
]
]

+ 2 p σ2

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · div
[
e−2λ

[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

] ]
~n
]
dx2

+ 2 p σ2

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) ·∆
[
fp−1 ~H

]
dx2

−
∫
~Φ−1(B4

r(~q))

[
1 + (1− p) σ2 fp + p σ2 fp−1

]
(~Φ− ~q) · ~Φ |∇~Φ|2 dx2

(III.7)

Regarding the second to last line observe in one hand that (~Φ− ~q) · ~Φ = 1− cos (~Φ, ~q) = O(r2) hence∣∣∣∣∣ 1

r3

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · ~Φ |∇~Φ|2 dx2

∣∣∣∣∣ ≤ C

r

∫
~Φ−1(B4

r(~q))

dvolg~Φ (III.8)
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and in the other hand, again for fixed r and ~q, as k → +∞∣∣∣∣∣
∫
~Φ−1(B4

r(~q))

[
(1− p) σ2 fp + p σ2 fp−1

]
(~Φ− ~q) · ~Φ |∇~Φ|2 dx2

∣∣∣∣∣
≤ C σ2 Fp(~Φ) + C σ2 M(T )1/p [Fp(~Φ)]1−1/p → 0

(III.9)

Integrating by parts each of the two first lines in the r.h.s. of (III.7) gives

−
∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · div
[
σ2 fp−1 [f ∇~Φ− 2 p

(
H ∇~n− e−2λ < ∇~n⊗̇∇~n;∇~Φ >

)
]
]

+ 2 p σ2

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · div
[
e−2λ

[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

] ]
~n
]
dx2

= σ2

∫
~Φ−1(B4

r(~q))

fp−1
[
f |∇~Φ|2 − 2 p H ∇~n · ∇~Φ + 2 p (f − 1) e2λ]

]
dx2

− σ2

∫
~Φ−1(∂B4

r(~q))

fp ∂ν~Φ · (~Φ− ~q)− 2 p fp−1 H ∂ν~n · (~Φ− ~q)dl

+ 2 p σ2

∫
~Φ−1(∂B4

r(~q))

fp−1
〈
∂ν~n · ∇~n,∇~Φ · (~Φ− ~q)

〉
dl

+ 2 p σ2

∫
~Φ−1(∂B4

r(~q))

e−2λ (~Φ− ~q) · ~n
[
ν1 ∂x1

[
fp−1 I011

]
− ν2 ∂x2

[
fp−1 I011

]]
dl

+ 2 p σ2

∫
~Φ−1(∂B4

r(~q))

e−2λ (~Φ− ~q) · ~n
[
ν1 ∂x2

[
fp−1 I012

]
+ ν2 ∂x1

[
fp−1 I012

]]
dl

(III.10)

Where ν is the outward unit (in the coordinates ) normal to ~Φ−1(B4
r (~q)) and is given explicitly by

ν = (∂x1 |~Φ− ~q| , ∂x2 |~Φ− ~q|)/|∇|~Φ− ~q||

This is nothing but the normalized gradient of the function distance to ~q. We clearly have

lim
k→+∞

σ2

∫
~Φ−1(B4

r(~q))

fp−1
[
f |∇~Φ|2 − 2 p H ∇~n · ∇~Φ + 2 p e2λ (f − 1)]

]
dx2 = 0 (III.11)

Multiplying (III.10) by an arbitrary compactly supported function χ(r)/r3 in R∗+ and integrating over
R∗+ gives successively

σ2

∫
R+

χ(r)
dr

r3

∫
~Φ−1(∂B4

r(~q))

[
fp ∂ν~Φ · (~Φ− ~q)− 2 p fp−1 H ∂ν~n · (~Φ− ~q)

]
dl

+ 2 p σ2

∫
R+

χ(r)
dr

r3

∫
~Φ−1(∂B4

r(~q))

fp−1
〈
∂ν~n · ∇~n,∇~Φ · (~Φ− ~q)

〉
dl

= σ2

∫
Σ

χ(|~Φ− ~q|)

[
fp
|∇|~Φ− ~q||2

|~Φ− ~q|2
− 2 p fp−1 H

∇|~Φ− ~q|
|~Φ− ~q|3

·
〈
∇~n · (~Φ− ~q)

〉]
dx2

+ 2 p σ2

∫
Σ

χ(|~Φ− ~q|) fp−1

〈
∇|~Φ− ~q|
|~Φ− ~q|3

· ∇~n,∇~n,∇~Φ · (~Φ− ~q)

〉
dx2

−→ 0 as k → +∞

(III.12)
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where we have bound the r.h.s. of (III.12) by a constant depending on χ times σ2Fp(~Φ) . We also obtain

− 2 p σ2

∫
R+

χ(r)
dr

r3

∫
~Φ−1(∂B4

r(~q))

e−2λ (~Φ− ~q) · ~n
[
ν1 ∂x1

[
fp−1 I011

]]
dl

+ 2 p σ2

∫
R+

χ(r)
dr

r3

∫
~Φ−1(∂B4

r(~q))

e−2λ (~Φ− ~q) · ~n
[
ν2 ∂x2

[
fp−1 I011

]]
dl

= − p σ2

∫
Σ

χ(|~Φ− ~q|) (~Φ− ~q)
|~Φ− ~q|4

· ~n
[
e−2λ ∂x1

|~Φ− ~q|2 ∂x1

[
fp−1 I011

]]
dx2

+ p σ2

∫
Σ

χ(|~Φ− ~q|) (~Φ− ~q)
|~Φ− ~q|4

· ~n
[
e−2λ ∂x2

|~Φ− ~q|2 ∂x2

[
fp−1 I011

]]
dx2

(III.13)

Integrating by parts the r.h.s of (III.13), we have using again (III.15)

− p σ2

∫
Σ

χ(|~Φ− ~q|) (~Φ− ~q)
|~Φ− ~q|4

· ~n
[
e−2λ ∂x1

|~Φ− ~q|2 ∂x1

[
fp−1 I011

]]
+ p σ2

∫
Σ

χ(|~Φ− ~q|) (~Φ− ~q)
|~Φ− ~q|4

· ~n
[
e−2λ ∂x2 |~Φ− ~q|2 ∂x2

[
fp−1 I011

]]
= p σ2

∫
Σ

fp−1 I011 ∇

[
χ(|~Φ− ~q|) (~Φ− ~q) · ~n

|~Φ− ~q|4

]
e−2λ ∇|~Φ− ~q|2 dx2

+ p σ2

∫
Σ

fp−1 I011 · χ(|~Φ− ~q|) (~Φ− ~q) · ~n
|~Φ− ~q|4

∇
[
e−2λ ∇|~Φ− ~q|2

]
dx2

(III.14)

We recall that we have respectively

∇ ·
(
e−2λ ∇~Φ

)
= 2 e−2λ ~I011 and (∇)⊥ ·

(
e−2λ ∇~Φ

)
= 2 e−2λ ~I012 . (III.15)

combining these identities with the fact that ~Φ is conformal we deduce that

∇
[
e−2λ ∇|~Φ− ~q|2

]
= 2∇

[
e−2λ ∇(~Φ− ~q)

]
· (~Φ− ~q) + 2 e−2λ ∇(~Φ− ~q) · ∇(~Φ− ~q)

= 4 e−2λ ~I011 · (~Φ− ~q)
(III.16)

Combining (III.14) and (III.16) we deduce∣∣∣∣∣− p σ2

∫
Σ

χ(|~Φ− ~q|) (~Φ− ~q)
|~Φ− ~q|4

·
[
e−2λ ∂x1

|~Φ− ~q|2 ∂x1

[
fp−1~I011

]]
+ p σ2

∫
Σ

χ(|~Φ− ~q|) (~Φ− ~q)
|~Φ− ~q|4

·
[
e−2λ ∂x2

|~Φ− ~q|2 ∂x2

[
fp−1~I011

]]∣∣∣∣∣
≤ C σ2 Fp(~Φ) + C σ2 M(T )1/p [Fp(~Φ)]1−1/p → 0

(III.17)
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So finally deduce that for any χ compactly supported in R∗+ we have

−
∫
R+

χ(r)
dr

r3

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · div
[
σ2 fp−1 [f ∇~Φ− 2 p

(
H ∇~n− e−2λ < ∇~n⊗̇∇~n;∇~Φ >

)
]
]
dx2

+ 2 p σ2

∫
R+

χ(r)
dr

r3

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) · div
[
e−2λ

[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

] ]
~n
]
dx2

→ 0
(III.18)

It remains to bound

−
∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) ·∆
[
fp−1 ~H

]
dx2

=

∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(B4

r(~q))

∇(~Φ− ~q) · ∇
[
fp−1 ~H

]
dx2

−
∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(∂B4

r(~q))

(~Φ− ~q) · ∂ν
[
fp−1 ~H

]
dl

(III.19)

The last integral in the r.h.s. of (III.19) is equal to

−
∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(∂B4

r(~q))

(~Φ− ~q) · ∂ν
[
fp−1 ~H

]
dl

= −σ2

∫
Σ

χ(|~Φ− ~q|) ∇|~Φ− ~q| ·

〈
∇
[
fp−1 ~H

]
,
~Φ− ~q
|~Φ− ~q|3

〉
dx2

(III.20)

We integrate by parts and we observe that in the domain where χ(|~Φ− ~q|) 6= 0 we have

∆|~Φ− ~q| = (~Φ− ~q) ·∆~Φ
|~Φ− ~q|

+
|∇~Φ|2

|~Φ− ~q|
− |∇|

~Φ− ~q||2

|~Φ− ~q|

and using the fact that ∆~Φ = −~Φ |∇~Φ|2 + ~H |∇~Φ|2 we finally obtain

∆|~Φ− ~q| = −1− ~q · ~Φ
|~Φ− ~q|

+
(~Φ− ~q) · ~H |∇~Φ|2

|~Φ− ~q|
+
|∇~Φ|2

|~Φ− ~q|
− |∇|

~Φ− ~q||2

|~Φ− ~q|
(III.21)

Hence combining (III.20) and (III.21) we obtain∣∣∣∣∣
∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(∂B4

r(~q))

(~Φ− ~q) · ∂ν
[
fp−1 ~H

]
dl

∣∣∣∣∣
≤ Cχ σ2 Fp(~Φ) + Cχ σ

2 M(T )1/p [Fp(~Φ)]1−1/p → 0

(III.22)

Taking now the first integral in the r.h.s. of (III.19) we have∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(B4

r(~q))

∇(~Φ− ~q) · ∇
[
fp−1 ~H

]
dx2

= −
∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(B4

r(~q))

∆~Φ · fp−1 ~H dx2

+σ2

∫
Σ

χ(|~Φ− ~q|) ∇|~Φ− ~q| ·
〈
∇(~Φ− ~q), fp−1 ~H

〉
dx2

(III.23)
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So we have also ∣∣∣∣∣
∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(B4

r(~q))

∇(~Φ− ~q) · ∇
[
fp−1 ~H

]
dx2

∣∣∣∣∣
≤ Cχ σ2 Fp(~Φ) + Cχ σ

2 M(T )1/p [Fp(~Φ)]1−1/p → 0

(III.24)

Combining (III.19) and (III.22) and (III.24) we have∣∣∣∣∣
∫
R+

χ(r)
dr

r3
σ2

∫
~Φ−1(B4

r(~q))

(~Φ− ~q) ·∆
[
fp−1 ~H

]
dx2

∣∣∣∣∣→ 0 (III.25)

Combining now (III.7), (III.8), (III.9), (III.18) and (III.25) we have that for any fixed non negative χ(r)
compactly supported in R∗+ and any ~q ∈ R4

−
∫ ∞

0

χ′(r) dr
1

r2

∫
~Φ−1
k (B4

r(~q))

dvolg~Φk
≥

−C
∫ ∞

0

χ(r) dr
1

r

∫
~Φ−1
k (B4

r(~q))

dvolg~Φk
+ ok(1)

(III.26)

Taking µk the Radon measure on R4 given by (III.3) this can be rewritten as

−
∫ ∞

0

χ′(r) dr
1

r2
µk(B4

r (~q)) ≥ −C
∫ ∞

0

χ(r) dr
1

r
µk(B4

r (~q)) + ok(1)

We extract a subsequence such that µk converges weakly in Radon measure and we finally obtain that
for any fixed non negative χ(r) compactly supported in R∗+ and any ~q ∈ R4

−
∫ ∞

0

χ′(r) dr
1

r2
µ∞(B4

r (~q)) ≥ −C
∫ ∞

0

χ(r) dr
1

r
µ∞(B4

r (~q))

which classically implies (III.4) and lemma III.1 is proved. 2

The next result establishes a uniform lower bound of the limiting area for any sequence of immersions
satisfying the assumptions of theorem III.1. This result is the “work-horse” in our proof of the main
theorem and shall be used crucially at several steps. Precisely we have the following result

Lemma III.2. [Global Energy Quantization] There exists Q0 > 0 such that the following holds. Let

Σ be a closed surface. Let p > 1 and let ~Φk be a sequence of critical points of Aσkp in the class E0
Σ,p where

σk → 0 and satisfying
lim sup
k→+∞

Area(~Φk) < +∞ (III.27)

and

σ2
k Fp(~Φk) = σ2

k

∫
Σ

[1 + |I~Φk |
2
g~Φk

]p dvolg~Φk
= o

(
1

log(1/σk)

)
Area(~Φk) . (III.28)

then,
lim inf
k→+∞

Area(~Φk) ≥ Q0 > 0 (III.29)

Proof of lemma III.2. We denote as usual

f(σk) =
σ2
k Fp(

~Φk)

Area(~Φk)
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Let η > 0 to be fixed later. We omit to write the subscript k. For any ~q ∈ ~Φ(Σ) we consider the

4-dimensional ball in R4, B4
σ(~q) centered at ~q with radius σ. We consider the subset Eη of ~Φ(Σ) given by

Eη :=

{
~q ∈ ~Φ(Σ) ⊂ S3 ; σ−2

∫
B4
σ(~q)∩~Φk(Σ)

dvolg~Φ < η

}

From the covering (B4
σ(~q))~q∈Eη we extract a Besicovitch sub-covering (B4

σ(~qi))i∈I such that each point in
R4 is covered by at most N balls where N is a universal number. Using Simon’s monotonicity formula
we have for each i ∈ I (see [27])

σ−2

∫
B4
σ(~q)∩~Φk(Σ)

dvolg~Φ ≥
2π

3
− 1

2

∫
B4
σ(~qi)

| ~HR4

~Φ
|2 dvolg~Φ . (III.30)

Considering η = π/3 this imposes ∫
B4
σ(~qi)

| ~HR4

~Φ
|2 dvolg~Φ >

2π

3
. (III.31)

Hence ∫
∪i∈IB4

σ(~qi)

| ~HR4

~Φ
|2 dvolg~Φ ≥

1

N

∑
i∈I

∫
B4
σ(~qi)

| ~HR4

~Φ
|2 dvolg~Φ ≥

2π

3N
cardI (III.32)

Combining (III.28) and (III.32) we obtain

σ2 2π

3N
cardI ≤ f(σ) Area(~Φ) (III.33)

So we have ∫
Eπ/3

dvolg~Φ ≤
∫
∪i∈IB4

σ(~qi)

dvolg~Φ ≤
π

3
σ2 cardI ≤ f(σ) Area(~Φ) (III.34)

Let 1 > δ > 0 to be fixed later . Consider now for j ∈ {1, 2 · · · log2 σ
−1}. We use the notation

A(j, ~q) :=

∫
B4

2jσ
(~q)∩~Φ(Σ)

dvolg~Φ and F (j, ~q) := σ2

∫
B4

2j σ
(~q)∩~Φ(Σ)

|I~Φ|
2p
g~Φ
dvolg~Φ

Gjδ :=

 ~q ∈ ~Φ(Σ) \ Eπ/3 ;
(2−2 j A(j + 1, ~q))1/p F (j + 1, ~q)1−1/p + F (j, ~q)

A(j, ~q)
≥ f(σ)

δ

and A(j + 1, ~q) ≤ 3π 22j+2 σ2


For each j ∈ {1, 2, · · · , log2 σ

−1 − 1} we consider (B4
2jσ(~q))~q∈F jδ

and we extract from each of these

coverings a Vitali sub-covering (B4
2jσ(~qi))i∈Ij of Gjδ such that each point in R4 is covered by at most N

balls B4
2j+1σ(~qi) of double radius where N is a universal number. From the union of these Vitali coverings

(B4
2jσ(~qi))i∈Ij which contains

Gδ := ∪j∈{1,2··· log2 σ
−1−1}G

j
δ

we extract a Besicovitch sub covering that we denote (B4
2jiσ

(~qi))i∈I . For such a covering each point of
R4 is covered by at most N balls B4

2jiσ
(~qi), moreover we have for any α > 0 that∥∥∥∥∥∑

i∈I
1B4

2ji+1σ
(~qi) 2αji

∥∥∥∥∥
L∞(R4)

≤ C N

log2 σ
−1∑

j=0

2α j ≤ C N σ−α , (III.35)
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where 1B4

2ji+1σ
(~qi) is the characteristic function of the ball B4

2ji+1σ
(~qi). For any j ∈ {1, 2 · · · log2 σ

−1}

and ~q ∈ Gjδ, the whole support of ~Φ(Σ) cannot be included in B4
2j (~q) otherwise we would contradict

the limiting monotonicity formula (III.4) for σ small enough. Hence, since ~q ∈ ~Φ(~Σ) for any radius

r ∈ (2jσ, 2j+1σ) we have ~Φ(Σ) ∩ ∂Br(~q) 6= ∅ and we can apply lemma A.1. Hence we deduce

0 < ε0(4) <

∫
B4

2j+1σ
(~q)

|~IR
4

~Φ
|2 dvolg~Φ (III.36)

Since A(j + 1, ~q) ≤ 3π 22j+2 σ2 inequality (III.36) implies

A(j + 1, ~q)

22 j+2
≤ 3π σ2

ε0(4)

∫
B4

2j+1σ
(~q)

|~IR
4

~Φ
|2 dvolg~Φ

≤ 3π σ2

ε0(4)
A(j + 1, ~q)1−1/p

(∫
B4

2j+1σ
(~q)

[1 + |I~Φ|
2]p dvolg~Φ

)1/p (III.37)

and we deduce that

A(j + 1, ~q)

22 j
≤ C (2j+1 σ)2p−2[F (j + 1, ~q) + σ2A(j + 1, ~q)] (III.38)

So for ~q ∈ Gjδ we have

f(σ)

δ
A(j, ~q) ≤ F (j, ~q) + C (2j+1 σ)2−2/p F (j + 1, ~q) (III.39)

summing this identity with respect to i ∈ I we obtain

f(σ)

δ

∫
Gδ

dvolg~Φ ≤
f(σ)

δ

∑
i∈I

∫
B4

2jiσ
(~qi)

dvolg~Φ

≤
∑
i∈I

σ2

∫
B4

2jiσ
(~qi)

|I~Φ|
2p
g~Φ
dvolg~Φ + σ2

∫
Σ

∑
i∈I

1B4

2ji+1σ
(~qi) 2αji σα|I~Φ|

2p
g~Φ
dvolg~Φ

(III.40)

where α := 2− 2p. Using (III.35), we then deduce

f(σ)

δ

∫
Gδ

dvolg~Φ ≤ C σ
2

∫
Σ

|I~Φ|
2p
g~Φ
dvolg~Φ = C f(σ)

∫
Σ

dvolg~Φ . (III.41)

We deduce from (III.34) and (III.41)∫
Eπ/3∪Fδ

dvolg~Φ ≤ (C δ + f(σ))

∫
Σ

dvolg~Φ (III.42)

Since f(σ)→ 0 as σ → 0, by taking any 0 < δ < 1/N we have that for σ small enough ~Φ(Σ)\(Eπ/3∪Fδ) 6=
∅. Let now ~q ∈ ~Φ(Σ) \ (Eπ/3 ∪ Fδ) we then have the existence of j0 = j(~q)

∫
B4

2j0σ
(~q)

dvolg~Φ ≥ 22 j0σ2 π/3 and

∀j ≥ j0
f(σ)

η

∫
B4

2jσ
(~q)∩~Φ(Σ)

dvolg~Φ ≥ σ
2

∫
B4

2j σ
(~q)∩~Φ(Σ)

|I~Φ|
2p
g~Φ
dvolg~Φ

+

[
σ2

∫
B4

2j+1 σ
(~q)∩~Φ(Σ)

|I~Φ|
2p
g~Φ
dvolg~Φ

]1−1/p [
2−2 j

∫
B4

2j+1σ
(~q)∩~Φ(Σ)

dvolg~Φ

]1/p

(III.43)
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Let j ∈ {j0, · · · , log2 σ
−1 − 1} and let χ be an arbitrary smooth function, bounded by 1, supported in

[2j−2σ, 2j+1σ] and such that |χ′| ≤ C 2−jσ−1. We can estimate each error terms between (III.6) and
(III.26) in the computations of the monotonicity formula at fixed k between (III.6) and (III.26) by the
mean of the area we obtain

−
∫ +∞

0

χ′(r)
dr

r2

∫
~Φ−1
k (B4

r(~q))

dvolg~Φk
≥ − C

∫ +∞

0

χ(r) dr

[
1

r
+
o(1)

r2

] ∫
~Φ−1
k (B4

r(~q))

dvolg~Φk

− C

∫ +∞

0

χ(r)
dr

r3

∫
~Φ−1
k (B4

r(~q))

σ2 |I~Φ|
2p
g~Φ
dvolg~Φk

− C 2−3j σ−3

[
σ2

∫
B4

2j+1 σ
(~q)∩~Φ(Σ)

|I~Φ|
2p
g~Φ
dvolg~Φ

]1−1/p [
2−2 j

∫
B4

2j+1σ
(~q)∩~Φ(Σ)

dvolg~Φ

]1/p

(III.44)

Using (III.43) we deduce that for any r ∈ [2j0 σ, 1/2]

d

dr

[
1

r2

∫
~Φ−1
k (B4

r(~q))

dvolg~Φk

]
≥ −

[
C

r
+
o(1)

r2

] ∫
~Φ−1
k (B4

r(~q))

dvolg~Φk

−C f(σ)

η

1

r3

∫
~Φ−1
k (B4

r(~q))

dvolg~Φk

(III.45)

Let Y (r) := 1
r2

∫
~Φ−1
k (B4

r(~q))
dvolg~Φk

, this ordinary differential inequality gives the existence of C > 0

independent of k such that for r ∈ [2j0σ, 1/2]

d

dr

[
eC rr

C f(σ)
η Y

]
≥ 0 (III.46)

Integrating between 2j0 σ and 1/2 gives

eC/2 Y (1/2) 2−
C f(σ)
η ≥ eC 2j0 σ(2j0 σ)

C f(σ)
η Y (2j0 σ) .

Using the fact that ~q ∈ ~Φ(Σ) \ Eπ/3 we have then

Y (1/2) ≥ e−C/2 2
C f(σ)
η eC 2j0 σ(2j0 σ)

C f(σ)
η

π

3
(III.47)

Since f(σ) = o(log2 σ
−1) we have (2j0 σ)

C f(σ)
η = 2C f(σ) η−1 log2(2j0 σ) ≥ 2C f(σ) η−1 log2 σ → 1 as σ goes

to zero. So Q0 := 4−1 e−C/2 π/3 satisfies (III.29) and the lemma III.2 is proved. 2

We shall now prove the following lemma.

Lemma III.3. [Quasi Equi-integrability] Under the assumptions of theorem III.1, the sequence of

vector-valued functions ~Fk := ~Φk |d~Φk|2hk over the surface of volume 1 and constant scalar curvature

(Σ, hk) which is conformally equivalent to (Σ, ~Φ∗kgS3) is equi-integrable with respect to the Lebesgue mea-
sure induced by any reference metric g0 on Σ in the following sense

∀ p ∈ Σ ∀ ρ > 0 lim sup
k→+∞

∣∣∣∣∣
∫
Bρ(p)

~Φk dvolg~Φk

∣∣∣∣∣ ≤ C
∫
B2ρ(p)

|d~Φ∞|2g0
dvolg0

(III.48)

where Bρ(p) and B2 ρ(p) are geodesic balls with respect to the reference metric g0 of center p and radii
respectively ρ and 2ρ. 2
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Proof of lemma III.3. Let x0 ∈ Σ and let x be a conformal chart for (Σ, hk) in a fixed open disc
U around x0. We can take the coordinates to be converging strongly in any norm Cl(Σ, g0) for any fixed
reference metric g0 on Σ since (Σ, hk) is assumed to be pre compact in the moduli space. We can now
work on the flat disc D2 which is mapped conformally and diffeomorphically into (U, hk). We can assume

that ~Φk converges weakly in W 1,2(D2, S3) to a limiting map ~Φ∞ (a-priori non necessarily conformal) .
On Σ× S3 we consider the sequence of measures given by

∀ F ∈ C0(Σ× S3) < Nk, F >:=

∫
Σ

F (x, ~Φk) dvolg~Φk

We extract a subsequence that we keep denoting ~Φk such that Nk weakly converges in Radon measures
towards a measure N∞ on Σ× S3 and we have in particular on D2

νk := |d~Φk|2hk dvolhk = |∇~Φk|2 dx2 ⇀ ν∞ in Radon measures

We are going to prove the existence of C independent of this subsequence such that

∀B2ρ(x1) ⊂ D2
∣∣< N∞,1Bρ(x1) ⊗ idS3 >

∣∣ ≤ C ∫
B2ρ(x1)

|∇~Φ∞|2 dx2 (III.49)

where 1Bρ(x1) ⊗ idS3 is the function on Σ× S3 given by

1Bρ(x1) ⊗ idS3(x, ~q) =

 ~q for x ∈ Bρ(x1)

~0 for x ∈ Σ \Bρ(x1) .

Since for any B2ρ(x1) ⊂ D2

∫ 2ρ

ρ

dr lim inf
k→+∞

∫
∂Br(x1)

|∇~Φk|2 dl ≤ lim inf
k→+∞

∫ 2ρ

ρ

dr

∫
∂Br(x1)

|∇~Φk|2 dl ≤ ν∞(B2ρ)

Using the mean value theorem and Fubini theorem, there exists r > 0 and a subsequence that we keep
denoting ~Φk such that simultaneously we have

lim sup
k→+∞

∫
∂Br(x1)

|∇~Φk|2 dl < +∞,

and

∫
∂Br(x1)

|∇~Φ∞|2 dl ≤ 2

∫
B2ρ(x1)

|∇~Φ∞|2 dx2

ρ

(III.50)

Since for any r ∈ (ρ, 2ρ) we have that ~Φk ⇀ ~Φ∞ weakly in H1/2(∂Br(x1), S3), classical interpolation
inequality says

~Φk −→ ~Φ∞ strongly in Hs(∂Br(x1), S3) ∀ s < 1

Hence using (III.50) and Cauchy-Schwartz we obtain

lim
k→+∞

‖~Φk(x)− ~Φk(y)‖2(L∞(∂Br(x1)))2 = ‖~Φ∞(x)− ~Φ∞(y)‖2(L∞(∂Br(x1)))2

≤

[∫
∂Br(x1)

|∇~Φ∞| dl ≤

]2

≤ 8π

∫
B2ρ(x1)

|∇~Φ∞|2 dx2

(III.51)
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To simplify the presentation we assume

s :=

√
8π

∫
B2ρ(x1)

|∇~Φ∞|2 dx2 > 0

the case s = 0 could be treated in a similar way in the forthcoming arguments except that we would
have to introduce a small parameter that can be taken arbitrarily small. Let ~q := ~Φ∞(x2) for some fixed
arbitrary x2 ∈ ∂Br(x1). For k large enough we have that

~Φk(∂Br(x1)) ⊂ B4
2s(~q) . (III.52)

For any τ ∈ [2s, 4s] we denote by ωk(τ) the connected component of ~Φ−1
k (B4

τ (~q)) in Σ containing ∂Br(x1)
and denote

Ωk(τ) := ωk(τ) ∪Br(x1)

Observe that ∂Ωk(τ) ⊂ ~Φ−1
k (∂B4

τ (~q)) is included in the level sets of |~Φk − ~q| Let χ(t) be a smooth cut-off
function on R+ such that χ(t) ≡ 1 for t ≤ 2 and χ(t) ≡ 0 for t ≥ 4. We denote χs(x) the function given
by 

χs(x) := χ
(
|~Φk(x)−~q|

s

)
on Ωk(4s) \ Ωk(2s)

χs(x) :≡ 0 on Σ \ Ωk(4s)

χs(x) :≡ 0 on Ωk(2s)

Taking (II.34) and integrating by parts exactly as in the proof of lemma III.1 together with (III.15) we
get

lim
k→+∞

∫
Σ

χs(x) div
[
~Φk ∧∇~Φk

]
[~Φk − ~q] dx2 = 0 (III.53)

where the contraction operator is defined as (~a ∧~b) ~c =< ~a,~c > ~b− <~b,~c > ~a. We then have

lim
k→+∞

−
∫

Σ

∇χs(x) · ∇~Φk ~Φk · ~Φk − ~q dx2 +

∫
Σ

~Φk |∇~Φk|2 dx2 = 0 (III.54)

We have |∇χs(x)| ≤ ‖χ̇‖L∞(R+)s
−1 |∇~Φk|(x) 1Ωk(4s)\Ωk(2s) where 1Ωk(4s)\Ωk(2s) is the characteristic

function of the set Ωk(4s)\Ωk(2s). Since on this set ~Φk(x) ∈ B4
4s(~q), we then have using the monotonicity

formula of lemma III.1

lim sup
k→+∞

∣∣∣∣∫
Σ

χs(x) ~Φk |∇~Φk|2 dx2

∣∣∣∣ ≤ C µ∞(B4
4s(~q)) ≤ C s2

≤ C

∫
B2ρ(x1)

|∇~Φ∞|2 dx2

(III.55)

Since also ~Φk(Ωk(4s) \Bρ(x1)) ⊂ B4
4s(~q) we have using again (III.4)

lim sup
k→+∞

∣∣∣∣∣
∫

Σ\Bρ(x1)

χs(x) ~Φk |∇~Φk|2 dx2

∣∣∣∣∣ ≤ µ∞(B4
4s(~q))

≤ C s2 ≤ C
∫
B2ρ(x1)

|∇~Φ∞|2 dx2

(III.56)

Combining (III.55) and (III.56) we obtain (III.48) and lemma III.3 is proved. 2

We now introduce two definitions. First we define the Oscillation set.
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Definition III.6. Let ~Φk be a sequence of conformal smooth immersions, critical points of

Aσkp (~Φ) := Area(~Φ) + σ2
k Fp(

~Φ) =

∫
Σ

[
1 + σ2

k [1 + |~I~Φ|
2
g~Φ

]p
]
dvolg~Φ

in the space of weak immersions into S3 and for σk → 0. Assume

~Φk ⇀ ~Φ∞ weakly in W 1,2(Σ, S3)

where Σ is equipped with a reference metric g0. Assume the sequence of riemann surfaces (Σ, g~Φk) is
pre-compact in the moduli space of conformal structures on Σ and assume

νk := |d~Φk|2hk dvolhk = |∇~Φk|2 dx2 ⇀ ν∞ in Radon measures

The oscillation set O ⊂ Σ is the set of points x ∈ Σ such that

O :=


x ∈ Σ ; ν∞(Bρ(x)) 6= 0 ∀ ρ > 0

and lim inf
ρ→0

∫
B2ρ(x)

|d~Φ∞|2g0
dvolg0

ν∞(Bρ(x))
= 0

 (III.57)

2

Now we define the vanishing set V.

Definition III.7. Let ~Φk be a sequence of conformal smooth immersions from (Σ, gk), critical points of

Aσkp (~Φ) := Area(~Φ) + σ2
k Fp(~Φ) =

∫
Σ

[
1 + σ2

k [1 + |~I~Φ|
2
g~Φ

]p
]
dvolg~Φ

in the space of weak immersions into S3 and for σk → 0. We assume (Σ, gk) to be pre-compact in the
moduli space of conformal structures on Σ. Denote

f(σk) :=

σ2
k

∫
Σ

|I~Φk |
2p
g~Φk

dvolg~Φk∫
Σ

dvolg~Φk

(III.58)

We call the ”vanishing set” the subset Σ0 of Σ given by

Σ0 :=

x ∈ Σ ; lim inf
r→0

lim sup
k→+∞

f(σk)

∫
Br(x)

dvolg~Φk

σ2
k

∫
Br(x)

|I~Φk |
2p
g~Φk

dvolg~Φk

= 0

 (III.59)

2

We will need later on the following lemma which justifies the denomination vanishing set.

Lemma III.4. [No Limiting Measure on the Vanishing Set] Let ~Φk be a sequence of conformal
smooth immersions from (Σ, gk) into S3, critical points of

Aσkp (~Φ) := Area(~Φ) + σ2
k Fp(~Φ) =

∫
Σ

[
1 + σ2

k [1 + |~I~Φ|
2
g~Φ

]p
]
dvolg~Φ
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in the space of weak immersions into S3 for σk → 0. We assume (Σ, gk) is strongly pre-compact in the
Moduli space of Σ. Assume

~Φk ⇀ ~Φ∞ weakly in W 1,2(Σ, S3)

and assume the following sequence of Radon measure weakly converges

νk := |d~Φk|2gk dvolgk ⇀ ν∞ ,

then we have
ν∞(Σ0) = 0 . (III.60)

2

Proof of lemma III.4. We have

∀ x ∈ Σ0 ∀ δ > 0 ∀ r > 0 ∃ kx,δ ∈ N ∃ r > rx > 0

s. t. ∀ k ≥ kx,δ
f(σk)

∫
Brx (x)

dvolg~Φk

σ2
k

∫
Brx (x)

|I~Φk |
2p
g~Φk

dvolg~Φk

< δ

(III.61)

For any δ > 0 and j ∈ N we denote

Σj0(δ) := {x ∈ Σ0 ; kx,δ ≤ j}

We have clearly Σ0 = ∪j∈NΣj0(δ). From the covering (Brx,δ(x))x∈Oj0(δ) we extract a Besicovitch sub-

covering of Σj0(δ) that we denote (Brxi,δ(xi))i∈I in such a way that any point of Σ is covered by at most
N balls from this sub-covering. We have for all k ≥ j∫

Brxi (xi)

dvolg~Φk
≤ δ

f(σk)
σ2
k

∫
Brxi

(xi)

|I~Φk |
2p
g~Φk

dvolg~Φk

summing over i ∈ I gives

νk

(⋃
i∈I

Brxi (xi)

)
≤
∑
i∈I

∫
Brxi (xi)

dvolg~Φk
≤ δ

f(σk)
σ2
k

∑
i∈I

∫
Brxi

(xi)

|I~Φk |
2p
g~Φk

dvolg~Φk

≤ N δ

f(σk)
σ2
k

∫
∪i∈IBrxi (xi)

|I~Φk |
2p
g~Φk

dvolg~Φk
≤ N δ

∫
Σ

dvolg~Φk

(III.62)

This implies that

ν∞(Σj0(δ)) ≤ lim sup
k→+∞

νk

(⋃
i∈I

Brxi (xi)

)
≤ N δ ν∞(Σ) (III.63)

This inequality is independent of j and since Σj0(δ) ⊂ Σj+1
0 (δ) we deduce that

ν∞(Σ0) ≤ N δ ν∞(Σ) (III.64)

Since this holds for any δ > 0 we have proven

ν∞(Σ0) = 0 . (III.65)

This completes the proof of lemma III.4. 2

The next goal is to prove the following orthogonal decomposition of the limiting measure ν∞.
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Lemma III.5. [Structure of the Limiting Measure] Under the assumptions of theorem III.1, we
have the existence of finitely many points a1 · · · an in Σ such that the measure ν∞ decomposes orthogonally
as follows

ν∞ = m(x) L2 +

n∑
i=1

αi δai (III.66)

where L2 is the Lebesgue measure on Σ equipped with the reference metric g0, m is an L1 function with
respect to the Lebesgue measure and αi are positive numbers bounded from below by the universal positive
number Q0 given by lemma III.2. 2

Proof of lemma III.5. Step 1 We prove that∫
O
|d~Φ∞|2g0

dvolg0
= 0 , (III.67)

Indeed, for any ε > 0 to any x ∈ O we assign rx such that∫
Brx (x)

|d~Φ∞|2g0
dvolg0

≤
∫
B2 rx (x)

|d~Φ∞|2g0
dvolg0

≤ ε ν∞(Brx(x)) (III.68)

Extracting a Besicovitch covering (Bri(xi))i∈I) such that each point of Σ is covered by at most N balls
from the covering. We obtain that∫

∪i∈IBri (xi)
|d~Φ∞|2g0

dvolg0
≤ ε

∑
i∈I

ν∞(Bri(xi)) ≤ ε N ν∞(Σ) . (III.69)

and since this holds for any ε > 0 we obtain (III.67).

Step 2 : Proof of the absolute continuity of ν∞ with respect to the Lebesgue measure away from the
oscillation set O. Precisely we prove in this step

ν∞ (Σ \ O) = m dL2 (III.70)

where m ∈ L1(Σ).

Let ε > 0. Following(III.69), we first include O in an open subset Oε such that∫
Oε
|d~Φ∞|2g0

dvolg0
≤ ε (III.71)

Let x ∈ Σε := Σ \ Oε then there exists δx > 0 such that

inf
ρ>0

∫
B2ρ(x)

|d~Φ∞|2g0
dvolg0

ν∞(Bρ(x))
≥ δx

We denote Fj := {x ∈ Σ \ O ; δx > 2−j}. We then have

Σ \ O =
⋃
j∈N

Fj .

Let G be a closed subset of Σε := Σ \ Oε such that H2(G) = 0. We claim that

ν∞(G) = 0 . (III.72)
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Since Σε := Σ \ Oε is closed G is compact. Let α > 0 to be fixed later on. Since H2(G) = 0 and since G
is compact

∃ β > 0 s.t. H2(Gβ) ≤ α where Gβ := {x ∈ Σ ; dist(x,G) < β}

Indeed the closeness of G implies G := ∩n∈NG1/n, G1/n is decreasing for the inclusion and fundamental
properties of Hausdorff measures give then H2(G) = limn→+∞H2(∩n∈NG1/n). Let j ∈ N. From the

covering (Bβ/2(x))x∈G∩Fj we extract a Vitalli covering (Bβ/2(xi))i∈I in such a way that the balls Bβ/6(xi)
are disjoint. Since all the balls have the same radius β/2 with centers at distances at least β/3 each point
of Σ is covered by at most N balls Bβ(xi) where N is a universal number. since each xi ∈ Fj

ν∞(Bβ/2(x)) ≤ 2j+1

∫
Bβ(x)

|d~Φ∞|2g0
dvolg0

(III.73)

Since all the balls Bβ(xi) are included in Gβ we have

H2

(⋃
i∈I

Bβ(xi)

)
≤ N α (III.74)

We have moreover

ν∞(G ∩ Fj) ≤
∑
i∈I

ν∞

(⋃
Bβ/2(xi)

)
≤ 2j+1

∑
i∈I

∫
Bβ(xi)

|d~Φ∞|2g0
dvolg0

≤ 2j+1 N

∫
∪i∈IBβ(xi)

|d~Φ∞|2g0
dvolg0

≤ 2j+1 N

∫
Gβ

|d~Φ∞|2g0
dvolg0

(III.75)

Since |d~Φ∞|2g0
dvolg0

is absolutely continuous with respect to the Lebesgue measure, for any η > 0 there
exists α > 0 such that

∀ E measurable H2(E) ≤ α =⇒
∫
E

|d~Φ∞|2g0
dvolg0

≤ η . (III.76)

Hence we finally get combining (III.74), (III.75) and (III.76)

ν∞(G ∩ Fj) ≤ 2j+1 N η (III.77)

For any j ∈ N the inequality (III.77) holds for any η > 0 thus ν∞(G ∩ Fj) = 0 and we deduce (III.72).
Since (III.72) holds true for any closed measurable subset of Σε := Σ \ Oε, then using the fundamental
property of Radon measures saying that

∀ G measurable ν∞(G) = sup{ν∞(K) ; K ⊂ G ;K compact} ,

we obtain that ν∞ for any measurable subset G of Σ \ Oε satisfying on Σ \ Oε is absolutely continuous
with respect to the Lebesgue measure. By making ε go to zero this implies (III.70).

Step 3 : Detecting the ”bubbles”. In this step we are just splitting the oscillation set O into it’s
vanishing part O0 := Σ0 ∩ O and the bubble part B where we recall that the Σ0 is the so called
vanishing set defined in definition III.7 :

B := O \
(
O
⋂

Σ0

)
.

Recall that we have proved in lemma III.4 ν∞(Σ0) = 0 hence

ν∞(O0) = 0 . (III.78)
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Step 4: Finiteness of the bubble set B. Precisely in this step we are proving that for the constant
Q0 > 0 given by lemma III.2 then

∀x ∈ B ∀ r > 0 ν∞(Br(x)) ≥ Q0 (III.79)

Once (III.79) will be established we can then deduce that B is made of finitely many points. Let then
x ∈ B, then there exists δx > 0 and rx > 0 that can be taken as small as one wants such that

∀ r < rx lim sup
k→+∞

f(σk)

∫
Br(x)

dvolg~Φk

σ2
k

∫
Br(x)

|I~Φk |
2p
g~Φk

dvolg~Φk

≥ δx > 0 (III.80)

Let 0 < rc < rx to be fixed later, let ~Φk′ a sequence for which

∀ k′ ∈ N
f(σk′)

∫
Br(x)

dvolg~Φ
k′

σ2
k′

∫
Br(x)

|I~Φk′ |
2p
g~Φ
k′
dvolg~Φ

k′

≥ δx
2

(III.81)

By assumption (III.2) from theorem III.1 we have that f(σ) = o(1/ log σ−1) we are ”almost” fulfilling the
assumptions of lemma III.2 except that we have a surface with boundary Br(x) and not a closed surface.
So we have to choose a ”nice” cut rc in such a way to be able to apply the arguments of lemma III.2.

Since x ∈ O, by definition, for any η > 0 there exists ρ < rx such that

η ν∞(Bρ(x)) ≥
∫
B2ρ

|∇~Φ∞|2 dx2 (III.82)

Using Fubini and the mean-value theorem, as in (III.51), we can find r ∈ [ρ, 2ρ] such that

lim
k→+∞

‖~Φk(x)− ~Φk(y)‖2(L∞(∂Br(x1)))2 = ‖~Φ∞(x)− ~Φ∞(y)‖2(L∞(∂Br(x1)))2

≤

[∫
∂Br(x1)

|∇~Φ∞| dl ≤

]2

≤ 8π

∫
B2ρ(x1)

|∇~Φ∞|2 dx2

(III.83)

We take this r = rc to be our ”nice cut”. We can assume

s :=

√
8π

∫
B2ρ(x1)

|∇~Φ∞|2 dx2 > 0

the case s = 0 could be treated in a similar way but we would have to introduce a new small parameter...
Let ~q0 := ~Φ∞(x2) for some fixed arbitrary x2 ∈ ∂Br(x1). For k large enough we have that

~Φk(∂Brc(x1)) ⊂ B4
2s(~q0) . (III.84)

Let R > 4 to be fixed later. The monotonicity formula (III.4) and (III.82) imply that

µ∞(B4
Rs(~q0)) ≤ C R2 s2 ≤ C R2 η ν∞(Bρ(x)) . (III.85)

Hence for η chosen in such a way that C R2 η < 1/2 we have that for k′ large enough (recall that k′ is
the sequence satisfying (III.81) for our ”nice cut” rc which is fixed now)∫

Brc (x)\(~Φk′ )−1(B4
Rs(~q0))

dvolg~Φ
k′
≥ 4−1

∫
Brc (x)

dvolg~Φ
k′
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Taking the same notations of the proof of lemma III.2 where Σ is replaced by Brc(x) we can then find

~q1 ∈ ~Φk′(Brc(x)) \ (Eπ/3 ∪Fδ ∪B4
Rs(~q0)). As in the proof of lemma III.2 we shall apply the monotonicity

formula centered at this point ~q1 but we will remove from ~Φk′(Brc(x)) the balls B4
t s(~q0) for t ∈ [2, 4].

The monotonicity formula with boundary (see for instance [Ri4]) gives for all r > 0

d

dr

[
1

r2

∫
Brc (x)∩~Φ−1(B4

r(~q1)\B4
t s(~q0))

dvolg~Φ

]

=
d

dr

[∫
Brc (x)∩~Φ−1(B4

r(~q1)\B4
t s(~q0))

|(~n ∧ ~Φ) (~Φ− ~q1)|2

|~Φ− ~q1|4
dvolg~Φ

]

− 1

2 r3

∫
Brc (x)∩~Φ−1(B4

r(~q1)\B4
t s(~q0)

(~Φ− ~q1) · d∗gd~Φ dvolg~Φ

− 1

r3

∫
R4

< ~q − ~q1, ~ν > dH1
[
~Φ(Brc(x)) ∩B4

r (~q1) ∩ ∂B4
t s(~q0)

]
≥ − 1

2 r3

∫
Brc (x)∩~Φ−1(B4

r(~q1)\B4
t s(~q0))

(~Φ− ~q1) · d∗gd~Φ dvolg~Φ

− 1

r3

∫
R4

< ~q − ~q1, ~ν > dH1
[
~Φ(Brc(x)) ∩B4

r (~q1) ∩ ∂B4
t s(~q0)

]

(III.86)

where ~ν is the outward unit tangent to the surface ~Φk(Brc(x)) \B4
t s(~q0) along the boundary

∂(~Φk(Brc(x)) \B4
t s(~q0)) = ~Φk(Brc(x)) ∩ ∂B4

t s(~q0)

and perpendicular to this boundary3. We consider χ(t) a smooth non negative function supported in

[1, 2] satisfying
∫ 4

2
χ(t) dt = 1, χ ≤ 1 and |χ′| ≤ 1. We multiply the inequality (III.86) by χ(t) and we

integrate between 2 and 4 this gives

d

dr

[
1

r2

∫ 4

2

χ(t) dt

∫
Brc (x)∩~Φ−1(B4

r(~q1)\B4
t s(~q0))

dvolg~Φ

]

≥ − 1

2 r3

∫ 4

2

χ(t) dt

∫
Brc (x)∩~Φ−1(B4

r(~q1)\B4
t s(~q0))

(~Φ− ~q1) · d∗gd~Φ dvolg~Φ

− 1

r3

∫ 4

2

χ(t) dt

∫
R4

< ~q − ~q1, ~ν > dH1
[
~Φ(Brc(x)) ∩B4

r (~q1) ∩ ∂B4
t s(~q0)

]
(III.87)

By substituting d∗gd~Φ with it’s expression deduced from (II.35), exactly as in the proof of the mono-
tonicity formula (III.4) and as in the proof of lemma III.2 the new terms involving σ coming from the
boundaries ∂B4

t s(~q0) in the first integral of the r-h-s of (III.87) tend to zero as k tends to infinity since
the distance between the center ~q1 and this boundary is bounded from below by Rs > 0 independently

3Observe that ~Φk(∂Brc (x)) ⊂ B4
t s(~q0) so there is no contribution from ~Φk(∂Brc (x)) outside B4

t s(~q0).
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of σ. So it remains then to estimate the last term in (III.87). This is done as follows∣∣∣∣ 1

r3

∫ 4

2

χ(t) dt

∫
R4

< ~q − ~q1, ~ν > dH1
[
Brc(x) ∩ ~Φ−1(B4

r (~q1)) ∩ ~Φ−1(∂B4
t s(~q0))

]∣∣∣∣
≤ 2 |~q1 − ~q0|

r3

∫ 4

2

dt H1(∂B4
t s(~q0))

≤ 2 |~q1 − ~q0|
r3

∫
~Φ−1(B4

4 s\B4
2 s)

|d|~Φ− ~q0||g~Φ
s

dvolg~Φ ≤ C
|~q1 − ~q0|

r3
s

(III.88)

where we used successively the coarea formula for the function |~Φ− ~q0|/s and the monotonicity formula
(III.4) in the last inequality. Observe that this term appears only for r > dist(B4

4 s(~q0), ~q1) > |~q0 − ~q1|/2.
Hence the integral with respect to r between σ and 1/2 gives∣∣∣∣∣

∫ 1/2

σ

dr

r3

∫ 4

2

χ(t) dt

∫
R4

< ~q − ~q1, ~ν > dH1
[
~Φ(Brc(x)) ∩B4

r (~q1) ∩ ∂B4
t s(~q0)

]∣∣∣∣∣
≤ C

|~q1 − ~q0|2
|~q1 − ~q0| s ≤

C

R

(III.89)

The rest of the argument of the proof of lemma III.2 carries through and we get that

ν∞(Brc(x)) ≥ Q0 − C/R .

Since we can take R as large as we want, we obtain (III.79). Hence ν∞ restricted to O is equal to a finite
sum of Dirac masses and this last step concludes the proof of lemma III.5. 2

We shall now prove the following lemma

Lemma III.6. [Absence of Energy in the Necks] Let ~Φk satisfying the assumptions of theorem III.1.
Let 1 > ηk > 0, 1 > δk > 0 and xk ∈ Σ satisfying

lim
k→+∞

log
ηk
δk

= +∞ (III.90)

and such that
lim
k→0

sup
j∈{1··· log2(ηk/δk)}

νk(B2j+1δk(xk) \B2jδk(xk)) = 0 (III.91)

Then
lim
k→0

νk(Bηk(xk) \Bδk(xk)) = 0 (III.92)

2

Proof of lemma III.6. We argue by contradiction. If (III.92) does not hold we can then find a

subsequence that we denote still ~Φk such that

lim
k→0

νk(Bηk(xk) \Bδk(xk)) = A > 0 (III.93)

Let Q0 be the universal constant in the lemma III.2. We can assume without loss of generality that

A < Q0 . (III.94)
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Indeed, if this would not be the case we would replace δk by a larger number that we keep denoting δk
and since (III.91) holds we necessarily have (III.90) for this new δk. We have for k large enough

σ2
k

∫
Σ

|I~Φk |
2p
g~Φk

dvolg~Φk∫
Bηk (xk)\Bδk (xk)

dvolg~Φk

≤ 2 ν∞(Σ)

A
f(σk) (III.95)

Following the approach of step 5 of the proof of lemma III.5, we first select 2 ”good cuts” at the two
ends of the annulus. So we choose respectively δk,c ∈ [δk, 2δk] and ηk,c ∈ [ηk/2, ηk] such that we have
respectively

s2
k :=

[∫
∂Bδk,c (xk)

|∇~Φk| dl

]2

≤ 8π νk(B2 δk(xk) \Bδk(xk)) −→ 0

and

t2k :=

[∫
∂Bηk,c (xk)

|∇~Φk| dl

]2

≤ 8π νk(B2 ηk(xk) \Bηk(xk)) −→ 0 .

Let x1,k ∈ ∂Bδk,c(xk) and x2,k ∈ ∂Bδk,c(xk) arbitrary. We have respectively

~Φk(∂Bδk,c(xk)) ⊂ B4
sk

(~Φk(x1,k)) and ~Φk(∂Bηk,c(xk)) ⊂ B4
tk

(~Φk(x2,k)) . (III.96)

Because of the monotonicity formula (III.4) there exists s > 0 fixed such that

max
~q∈R4

µ∞(B4
s (~q)) < A/4 .

We then have for k large enough

µk

(
~Φk(Bηk,c(xk) \Bδk,c(xk)) \

(
B4
s (~Φk(x1,k)) ∪B4

s (~Φk(x2,k))
))
≥ A/2

As in the step 5 of the proof of lemma III.5, we adopt the notations from the proof of lemma III.2 and
replacing Σ by the annulus Bηk,c(xk) \Bδk,c(xk), we can find ~qk such that

~qk ∈ ~Φk(Bηk,c(xk) \Bδk,c(xk)) \
(
Eπ/3 ∪ Fδ ∪B4

s (~Φk(x1,k)) ∪B4
s (~Φk(x2,k)

)
.

We can carry over one by one the computation of the monotonicity formula centered at ~q, controlling the
boundary terms induced by the two cuts ~Φk(∂Bηk,c(xk)) and ~Φk(∂Bηk,c(xk)) which stay at a distance
bounded from bellow with respect to ~qk, following the approach of the end of the step 5 of the proof of
lemma III.5. It is here even simpler since the lengths of the cuts sk and tk shrink to zero in the present
case. Hence we obtain

A = lim
k→0

νk(Bηk(xk) \Bδk(xk)) ≥ Q0

which contradicts (III.94). This concludes the proof of lemma III.6. 2

Lemma III.7. [Rectifiability of the Limit] Let ~Φk satisfying the assumptions of theorem III.1. Then
the limiting measure µ∞ is supported by a rectifiable 2-dimensional subset K of S3 and we have

lim
r→0

µ∞(B4
r (~q))

r2
> 0 for µ∞ a.e. ~q . (III.97)

2
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Proof of lemma III.7. Recall that we denote by B = {a1 · · · an} the blow up set.

Step 1 : Proof of the rectifiability of the varifold limit of |(~Φk)∗[Σ \ ∪nl=1Bε(al)]| for any ε > 0.
Precisely we are going to prove the rectifiability of the limit µε∞ of the following sequence µεk given by

∀ ϕ ∈ C0(S3) < µεk, ϕ >:=

∫
Σ̂ε

ϕ(~Φk) dvolg~Φk
(III.98)

where we use the notation Σ̂ε = Σ \ ∪nl=1Bε(al). Precisely we are going to prove the existence of a two
dimensional subset Kε ⊂ S3 and a function θε in L1(Kε, dH2 Kε) such that

µε∞ = θε dH2 Kε . (III.99)

Since ~Φk weakly converges towards ~Φ∞ in W 1,2(Σ, S3), it strongly converges in L2 and hence almost
everywhere. Thus Egorov theorem gives, for any α > 0, the existence of a measurable subset Aα ⊂ Σ
such that

~Φk −→ ~Φ∞ uniformly in Σ \Aα and H2(Aα) ≤ α . (III.100)

Since L2(Σ\Aα) = sup{L2(K) ; K ⊂ Σ\Aα compact } we can assume that Aα is open. Using moreover
the quantitative Lusin type property for Sobolev maps of F.C. Liu (see [18]) we deduce that for any α > 0

there exists a C1 map ~Ξα from Σ into4 S3 and an open measurable subset Bα of Σ such that

H2(Bα) ≤ α ,

~Φ∞ = ~Ξα on Σ \Bα and d~Φ∞ = d~Ξα on Σ \Bα ,

‖~Φ∞ − ~Ξα‖2W 1,2(Σ) ≤ α .

(III.101)

Let (Bri(xi))i∈I be a covering of Aα ∪Bα by closed balls such that

π
∑
i∈I

r2
i ≤ C α (III.102)

where C only depend on the reference metric g0. We extract from (Bri(xi))i∈I a Besicovitch sub-covering
such that each point of Σ is covered by at most N balls of this new covering. Since ν∞ is absolutely
continuous with respect to the Lebesgue measure on Σε we have for any ε > 0

lim
α→0

ν∞(Σ̂ε ∩ (Aα ∪Bα)) = 0 and lim
α→0

ν∞

(⋃
i∈I

Bri(xi)

)
= 0 (III.103)

in other words we have ∫
Σ̂ε∩(Aα∪Bα)

dvolg~Φk
≤
∑
i∈I

∫
Σ̂ε∩Bri (xi)

dvolg~Φk
(III.104)

Since ν∞(∂(Σ̂ε ∩Bri(xi))) = 0 for any i ∈ I we have that

∀ i ∈ I lim
k→+∞

νk(Σ̂ε ∩Bri(xi)) = ν∞(Σ̂ε ∩Bri(xi)) =

∫
Σ̂ε∩Bri (xi)

m(x) dL2

4The fact that we can apply Liu’s result for maps into W 1,2(Σ, S3) comes from the fact that smooth maps in C1(Σ, S3)
are dense in W 1,2(Σ, S3) for the W 1,2−topology.
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Hence

lim sup
k→+∞

∫
Σ̂ε∩(Aα∪Bα)

dvolg~Φk
≤
∫

Σ̂ε∩(Aα∪Bα)

∑
i∈I

1Bri (xi) m(x) dL2

≤ N ν∞

(
Σ̂ε
⋂(⋃

i∈I
Bri(xi)

)) (III.105)

Combining this fact with (III.103) we obtain

lim
α→0

lim sup
k→+∞

∫
Σ̂ε∩(Aα∪Bα)

dvolg~Φk
= 0 (III.106)

Denote
Kε :=

⋃
n∈N

~Ξ1/n2

(Σ̂ε \ (A1/n2

∪B1/n2

))

Since ~Ξα is C1 on Σ, Kε is contained in a countable union of the images by C1 maps of smooth manifolds.
It is the a 2-dimensional rectifiable subset of S3. Denote

Kε
n :=

⋃
l≤n

~Ξ1/l2(Σ̂ε \ (A1/l2 ∪B1/l2)) = ~Φ∞

⋃
l≤n

Σ̂ε \ (A1/n2

∪B1/n2

)

 .

Observe first that since

L2(∪l≥n+1(A1/l2 ∪B1/l2) ≤ C
∑
l≥n+1

l−2 = O(n−1)

using the area formula we have

H2 (Kε \Kε
n) ≤

∫
∪l≥n+1(A1/l2∪B1/l2 )

|∇~Φ∞|2 dx2 → 0 (III.107)

Observe also that for all n ∈ N

lim
k→+∞

‖dist(~Φk(x),Kε
n)‖L∞(Σ̂ε\(A1/n2∪B1/n2 )) = 0 (III.108)

Introduce the limiting measure

µεn,∞(ϕ) := lim
k→+∞

∫
Σ̂ε\(A1/n∪B1/n)

ϕ(~Φk) dvolg~Φk

Since Kε
n is a finite union of images by C1−maps of compact sets Σ̂ε \ (A1/l2 ∪ B1/l2) for l ≤ n, it is

compact, and denoting
F δn :=

{
x ∈ R4 ; dist (x ; Kε

n) ≤ δ
}

we have that
Kε
n =

⋂
δ>0

F δn

moreover, because of (III.108) we have that

µεn,∞(R4 \ F δn) = 0
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fundamental results in measure theory imply

µεn,∞(R4 \Kε
n) = lim

δ→0
µεn,∞(R4 \ F δn) = 0

Let

µε∞(ϕ) := lim
k→+∞

∫
Σ̂ε

ϕ(~Φk) dvolg~Φk

Because of (III.106) we deduce that µε∞ = limn→+∞ µεn,∞. Since now µεn ≤ µε∞ ≤ µ∞ and since µ∞
satisfies the monotonicty formula (III.4), using (III.107) we deduce

lim
n→+∞

sup
j∈N

µεj,∞(Kε \Kε
n) = lim

n→+∞
µε∞(Kε \Kε

n) = 0 (III.109)

For any n0 ≤ n we write

µεn,∞(R4 \Kε
n0

) = µεn,∞(R4 \Kε
n) + µεn,∞(Kε

n \Kε
n0

) = µεn,∞(Kε
n \Kε

n0
) . (III.110)

Combining (III.109) and (III.110) we obtain

∀ δ > 0 ∃n0 ∈ N s.t. ∀ n ≥ n0 µεn,∞(R4 \Kε
n0

) ≤ δ (III.111)

Since Kε
n0

is closed, using fundamental properties of the weak convergence of Radon measures, we have

µε∞(R4 \Kε
n0

) ≤ lim sup
n→+∞

µεn,∞(R4 \Kε
n0

) ≤ δ . (III.112)

Combining (III.109) and (III.112) we deduce

µε∞(R4 \Kε) = 0 . (III.113)

Since µε∞ and µ∞ is zero on H2 measure zero sets, Riesz representation theorem gives the existence of θε

in L1(Kε, dH2 Kε) such that (III.99) holds.

Step 2 Since there is no contribution from the neck regions, the whole limiting measure is obtain by
summing the contribution from the domains Σ̂ε and from the bubbles which are treated exactly as the
domains Σ̂ε after the ad-hoc dilation. Hence from Step 1 we deduce the rectifiability of the full measure
µ∞ and lemma III.7 is proved. 2

Lemma III.8. [Vanishing of the Limiting Measure on the Degenerating Set] Let L∇~Φ∞ be the

subset of Σ \ B of Lebesgue points for ∇~Φ∞. We denote by L0
∇~Φ∞

the measurable subset of L∇~Φ∞ of

points where the Lebesgue representative of ∇~Φ∞ has rank strictly less than 2. Then we have

ν∞(L0
∇~Φ∞

) = 0 . (III.114)

2

Proof of lemma III.8. Let B := {a1 · · · an} be the blow-up set. For any ε > 0 we introduce Σ̂ε :=

Σ \ ∪nl=1Bε(al). Since ~Φk weakly converges towards ~Φ∞ in W 1,2(Σ, S3), it strongly converges in L2 and
hence almost everywhere. Thus Egorov theorem gives, for any α > 0, the existence of a measurable
subset Aα ⊂ Σ such that

~Φk −→ ~Φ∞ uniformly in Σ \Aα and H2(Aα) ≤ α . (III.115)
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Using moreover the quantitative Lusin type property for Sobolev maps of F.C. Liu (see [18]) we deduce

that for any α > 0 there exists a C1 map ~Ξα from Σ into5 S3 and an open measurable subset Bα of Σ
such that 

H2(Bα) ≤ α ,

~Φ∞ = ~Ξα on Σ \Bα and d~Φ∞ = d~Ξα on Σ \Bα ,

‖~Φ∞ − ~Ξα‖2W 1,2(Σ) ≤ α .

(III.116)

By definition of the Hausdorff measure there exists (Bri(xi))i∈I , an at most countable covering by open
balls of Aα \Bα, such that

π
∑
i∈I

r2
i ≤ C α (III.117)

And extracting possibly a Besicovitch sub-covering from the covering (Bri(xi))i∈I we ensure that each
point of Σ is covered by at most N balls of the covering where N is universal. Denote Σ̂αε the following
compact set

Σ̂αε := Σ \
(

(∪nl=1Bε(al))
⋃

(∪i∈IBri(xi))
)

We deduce using the area formula

H2
(
~Ξα
(
L0
∇~Φ∞

∩ Σ̂αε

))
=

∫
L0
∇~Φ∞

∩Σ̂αε

|det(d~Ξα)|dx2 ≤ C ν∞(Σ) α (III.118)

Let Uα be an open neighborhood of L0
∇~Φ∞

such that

H2
(
~Ξα(Uα ∩ Σ̂αε )

)
≤ 2 C ν∞(Σ) α (III.119)

Such a neighborhood exists since ~Ξα is C1 on the whole Σ. We cover the compact set ~Ξα(Uα ∩ Σ̂αε ) by
open balls (B4

ρj (~qj))j∈J such that ∑
j∈J

ρ2
j ≤ 4 C ν∞(Σ) α (III.120)

On the compact set Uα ∩ Σ̂αε the sequence ~Φk converges uniformly to ~Φ∞ = ~Ξα on that set. Hence for k
large enough we have

~Φk(Uα ∩ Σ̂αε ) ⊂ ∪j∈JB4
ρj (~qj) . (III.121)

Hence

νk(Uα ∩ Σ̂αε ) =

∫
Uα∩Σ̂αε

dvolg~Φk
≤ µk

(
∪j∈JB4

ρj (~qj)
)

≤
∑
j∈J

µk

(
B4
ρj (~qj)

) (III.122)

We have also

νk
(
Uα \ ∪nl=1Bε(al)

)
≤ νk(Uα ∩ Σ̂αε ) + νk

(
(Σ \ ∪nl=1Bε(al))

⋂
(∪i∈IBri(xi))

)
≤ νk(Uα ∩ Σ̂αε ) +

∑
i∈I

νk

(
(Σ \ ∪nl=1Bε(al))

⋂
Bri(xi)

) (III.123)

5The fact that we can apply Liu’s result for maps into W 1,2(Σ, S3) comes from the fact that smooth maps in C1(Σ, S3)
are dense in W 1,2(Σ, S3) for the W 1,2−topology.
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Combining (III.122) and (III.123) we obtain

νk
(
Uα \ ∪nl=1Bε(al)

)
≤
∑
j∈J

µk

(
B4
ρj (~qj)

)
+
∑
i∈I

νk

(
(Σ \ ∪nl=1Bε(al))

⋂
Bri(xi)

)
(III.124)

Using fundamental properties of the convergence of Radon measures we have in one hand

ν∞

(
Uα \ ∪nl=1Bε(al)

)
≤ lim inf

k→+∞
νk
(
Uα \ ∪nl=1Bε(al)

)
(III.125)

and in the other hand since ν∞ (∂ [(Σ \ ∪nl=1Bε(al))
⋂
Bri(xi)]) = 0, due to the fact that ν∞ in Σ \

{a1 · · · an} is absolutely continuous with respect to the Lebesgue measure, we have

lim
k→+∞

νk

(
(Σ \ ∪nl=1Bε(al))

⋂
Bri(xi)

)
= ν∞

(
(Σ \ ∪nl=1Bε(al))

⋂
Bri(xi)

)
(III.126)

and finally

lim sup
k→+∞

µk

(
B4
ρj (~qj)

)
≤ µ∞(B4

ρj (~qj)) (III.127)

Combining (III.124)...(III.127) we obtain

ν∞

(
Uα \ ∪nl=1Bε(al)

)
≤
∑
j∈J

µ∞(B4
ρj (~qj)) +

∑
i∈I

ν∞

(
(Σ \ ∪nl=1Bε(al))

⋂
Bri(xi)

)
(III.128)

Using the monotonicity formula (III.4) together with (III.120) we have∑
j∈J

µ∞(B4
ρj (~qj)) ≤ C

∑
j∈J

ρ2
j ≤ C ν∞(Σ) α (III.129)

and using (III.117)∑
i∈I

ν∞

(
(Σ \ ∪nl=1Bε(al))

⋂
Bri(xi)

)
=

∫
Σ\∪nl=1Bε(al)

m(x)
∑
i∈I

1Bri (xi) dL
2

≤ N π
∑
i∈I

r2
i ≤ C α

(III.130)

Hence we have proved that
ν∞(L0

∇~Φ∞
\ ∪nl=1Bε(al)) ≤ C α . (III.131)

This holds for any ε > 0 and α > 0. We then deduce (III.114) and this concludes the proof of lemma III.8.
2

Lemma III.9. [Almost Everywhere Approximate Pointwize Convergence and Almost Ev-
erywhere Approximate Continuity] Assume the hypothesis of theorem III.1 are fulfilled and that we

have extracted subsequences such that ~Φk converges weakly towards ~Φ∞ in W 1,2(Σ) and νk converges
towards ν∞ satisfying (III.66) where B := {a1 · · · al} the blow-up set. For ν∞ almost every x ∈ Σ \ B the
following holds :

lim
r→0

lim sup
k→+∞

∫
Br(x)

|~Φk − ~Φ∞| dvolgΦk∫
Br(x)

dvolgΦk

= 0 (III.132)

39



Moreover

lim
r→0

lim sup
k→+∞

∫
Br(x)

|~Φ∞ − ~Φ∞(x)| dvolgΦk∫
Br(x)

dvolgΦk

= 0 (III.133)

2

Proof of lemma III.9. We use the same notations as in the proof of lemma III.8. For any ε we denote
Σ̂ε := Σ \ ∪nl=1Bε(al). We also denote for any α > 0 a set Aα such that (III.115) holds and Bα such that
(III.116) holds. Let (Bri(xi))i∈I be a covering of Aα such that

π
∑
i∈I

r2
i ≤ C α (III.134)

where C only depend on the reference metric g0. We extract from (Bri(xi))i∈I a Besicovitch sub-covering
such that each point of Σ is covered by at most N balls of this new covering. We identify Aα with this
covering. The Lebesgue-Besicovitch Differentiation theorem, for ν∞ almost every point form x ∈ Σ̂ε \Aα
gives

lim
r→0

ν∞((Σ̂ε \Aα) ∩Br(x))

ν∞(Br(x))
= 1 . (III.135)

Since ~Φk converges uniformly to ~Φ∞ on Σ̂ε \Aα we have

lim sup
k→+∞

∫
Br(x)

|~Φk − ~Φ∞| dvolgΦk∫
Br(x)

dvolgΦk

≤ 2 lim sup
k→+∞

∫
Aα∩Br(x)

dvolgΦk∫
Br(x)

dvolgΦk

(III.136)

Assume x is a point satisfying (III.135) we have

lim sup
k→+∞

νk(Aα ∩Br(x))

νk(Br(x))
≤
∑
i∈I

lim sup
k→+∞

νk(Bri(xi) ∩Br(x))

νk(Br(x))

Since ν∞(∂(Bri(xi) ∩Br(x))) = 0 and ν∞(∂Br(x)) = 0 we have

lim
k→+∞

νk(Bri(xi) ∩Br(x))

νk(Br(x))
=
ν∞(Bri(xi) ∩Br(x))

ν∞(Br(x))

Thus

lim sup
k→+∞

νk(Aα ∩Br(x))

νk(Br(x))
≤

∫
Br(x)

m(x)
∑
i∈I

1Bri (xi) dL
2

ν∞(Br(x))
≤ N ν∞(Aα ∩Br(x))

ν∞(Br(x))
(III.137)

Combining (III.135), (III.136) and (III.137) we obtain (III.132).
Let (Bri(xi))i∈I be a covering of Bα such that

π
∑
i∈I

r2
i ≤ C α (III.138)

where C only depend on the reference metric g0. We extract from (Bri(xi))i∈I a Besicovitch sub-covering
such that each point of Σ is covered by at most N balls of this new covering. We identify Bα with this
covering. The Lebesgue-Besicovitch Differentiation theorem, for ν∞ almost every point form x ∈ Σ̂ε \Bα

lim
r→0

ν∞((Σ̂ε \Bα) ∩Br(x))

ν∞(Br(x))
= 1 . (III.139)
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We have

lim sup
k→+∞

∫
Br(x)

|~Φ∞ − ~Φ∞(x)| dvolgΦk∫
Br(x)

dvolgΦk

≤ lim sup
k→+∞

∫
Bα∩Br(x)

dvolgΦk∫
Br(x)

dvolgΦk

+ lim sup
k→+∞

∫
Br(x)

|~Ξα − ~Ξα(x)| dvolgΦk∫
Br(x)

dvolgΦk

(III.140)

Assume x is a point satisfying (III.135) we have

lim sup
k→+∞

νk(Bα ∩Br(x))

νk(Br(x))
≤
∑
i∈I

lim sup
k→+∞

νk(Bri(xi) ∩Br(x))

νk(Br(x))

and as in (III.137) we have

lim sup
k→+∞

νk(Bα ∩Br(x))

νk(Br(x))
≤

∫
Br(x)

m(x)
∑
i∈I

1Bri (xi) dL
2

ν∞(Br(x))
≤ N ν∞(Bα ∩Br(x))

ν∞(Br(x))
(III.141)

Combining (III.140) and (III.141) we have

lim sup
k→+∞

∣∣∣∣∣∣∣∣
∫
Br(x)

|~Φ∞ − ~Φ∞(x)| dvolgΦk∫
Br(x)

dvolgΦk

∣∣∣∣∣∣∣∣ ≤ N
ν∞(Bα ∩Br(x))

ν∞(Br(x))
+ r ‖∇~Ξα‖∞ (III.142)

Taking now the limit as r goes to zero, since x is a point of Σ̂ε\Bα satisfying (III.139), we obtain (III.133)
and the lemma III.9 is proved. 2

Lemma III.10. [Strong L1 Convergence] Assume the hypothesis of theorem III.1 are fulfilled and that

we have extracted subsequences such that ~Φk converges weakly towards ~Φ∞ in W 1,2(Σ) and νk converges
towards ν∞ satisfying (III.66) where B := {a1 · · · al} the blow-up set. For any ε > 0 one has∫

Σ\∪nl=1Bε(al)

|~Φk − ~Φ∞| dvolgΦk
= 0 . (III.143)

2

Proof of lemma III.10. Let Σ̃ε be the subset of Σ̂ε = Σ \ ∪nl=1Bε(al) with full ν∞ measure such that

(III.132) holds. Let δ > 0. For any x ∈ Σ̃ε there exists rx,δ > 0 and kx,δ such that

∀ k ≥ kx,δ
∫
Brx (x)

|~Φk − ~Φ∞| dvolgΦk
≤ δ

∫
Brx (x)

dvolgΦk

From (Brx(x))x∈Σ̃ε we extract an at most countable Besicovitch covering (Bri(xi))i∈I of Σ̃ε. For any
j ∈ N we denote Ij the subset of I such that

∀ i ∈ Ij ∀ k ≥ j
∫
Bri (xi)

|~Φk − ~Φ∞| dvolgΦk
≤ δ

∫
Bri (xi)

dvolgΦk
.
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We have I = ∪j∈NIj and Ij ⊂ Ij+1. Denoting U j := ∪i∈IjBri(xi) and Vj := ∪i∈I\IjBri(xi). We have

Vj+1 ⊂ Vj and ∩j∈NVj = ∅. Thus, since Σ̃ε is of ν∞ full measure in Σ̂ε = Σ \ ∪nl=1Bε(al) we have

ν∞

(⋃
i∈Ij

Bri(xi) ∩ Σ̂ε

)
= ν∞(Σ̃ε) = lim

j→+∞
ν∞

(
Σ̃ε \ (Vj ∩ Σ̃ε)

)
(III.144)

We have for any j ∈ N and k ≥ j∫
Σ̃ε
|~Φk − ~Φ∞| dvolgΦk

≤
∫
Uj
|~Φk − ~Φ∞| dvolgΦk

+

∫
Vj+1

|~Φk − ~Φ∞| dvolgΦk

≤ δ
∑
i∈Ij

∫
Bri (xi)

dvolgΦk
+
∑
i∈I\Ij

∫
Bri (xi)

dvolgΦk

≤ N δ νk(Σ) +
∑
i∈I\Ij

νk(Bri(xi))

(III.145)

Since ν∞(∂Bri(xi)) = 0 for all i ∈ I, we deduce that

lim sup
k→+∞

∫
Σ̃ε
|~Φk − ~Φ∞| dvolgΦk

≤ N δ ν∞(Σ) +
∑
i∈I\Ij

ν∞(Bri(xi))

≤ N δ ν∞(Σ) +
∑
i∈I\Ij

∫
Σ̂ε

∑
i∈I\Ij

1Bri (xi) m(x) dL2 ≤ N δ ν∞(Σ) +N ν∞(Vj)
(III.146)

Since this holds for any j ∈ N and any δ > 0 and since H2(Σ̂ε \ Σ̃ε) = 0 we deduce (III.143) and
lemma III.10 is proved. 2

Lemma III.11. [Strong Bubble Tree W 1,2 Convergence] Under the assumptions of theorem III.1,
we have that for any xk ∈ Σ and rk converging either to zero or one we can extract a subsequence such
that ~Φk(rk ·+xk) converges strongly in W 1,2 away from finitely many points. 2

Proof of lemma III.11. Since we have proved that the necks contain no energy at the limit, it suffices
to prove the strong convergence of ~Φk towards ~Φ∞ in W 1,2

loc (Σ \ B, S3). The proof will also holds on any
bubble so we will have completed the proof of the strong bubble tree W 1,2−convergence. In order to
prove this strong W 1,2

loc (Σ \ B, S3) convergence it suffices to prove that for any ε > 0

lim
k→+∞

∫
Σ̂ε

|d~Φk|2g~Φk dvolg~Φk =

∫
Σ̂ε

|d~Φ∞|2g~Φ∞ dvolg~Φ∞ (III.147)

Since the conformal class of g~Φk is assumed to be compact in the moduli space, to simplify the presentation

we will assume that about every point there exists a fixed chart in which all the ~Φk are conformal
(otherwise we would have to take a sequence of conformal charts converging strongly in any Cl topology
and this would just make the notation a bit heavier.)

Let α > 0 and consider Aα and Bα as in the proof of lemma III.9. We assume that their union
coincide with a union of balls from which we have extracted a Besicovitch covering (Bri(xi))i∈I . we then
take an arbitrary point of Σ̂ε \ (Aα ∪Bα) such that (III.132) and (III.133) hold. We also assume that x

is a Lebesgue point for ∇~Φ∞, and that ~Φ∞(x) = ~Ξα(x) is a regular value for ~Ξα hence ∇~Φ∞ = ∇~Ξα has

rank 2 at any point in (~Ξα)−1(~Ξα(x)).
We also assume that

lim
r→0

ν∞(Br(x))

|Br(x)|
= m(x) (III.148)
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Because of the previous results above, all these properties are satisfied for almost every point x for which
the Lebesgue representative of ∇~Φ∞ has rank 2.

Using the area formula we have

H2(~Φ∞(Bα)) ≤
∫
Bα
|∇~Φ∞|2 dx2

We can cover the set ~Φ∞(Bα) by balls (B4
ρi(~qi))i∈I such that∑

i∈I
ρ2
i ≤ C

∫
Bα
|∇~Φ∞|2 dx2

We assume these balls realize a Besicovitch covering. We denote Uα =
⋃
i∈I B

4
ρi(~qi). Because of the

monotonicity formula we have

µ∞(Uα) ≤ C
∫
Bα
|∇~Φ∞|2 dx2 (III.149)

Finally we also choose ~Φ∞(x) ∈ ~Φ∞(Σ) \ Uα such that

lim
ρ→0

µ∞

(
B4
ρ(~Φ∞(x))

⋂
Uα
)

µ∞

(
B4
ρ(~Φ∞(x))

) = 0 . (III.150)

By Lebesgue Besicovitch differentiation theorem this is true for µ∞ almost every point in R4 \ Uα.

We assume that (~Ξα)−1(~Ξα(x)) ∩ Uα = ∅. This excludes an H2 measure of points in Kε less that
O(α), indeed we have

H2(~Ξα)(Uα) ≤
∫
Uα
|∇~Ξα|2 dx2 ≤ 2

∫
Uα
|∇~Φ∞|2 dx2 + 2

∫
Σ

|∇~Φα −∇~Ξα|2 dx2 ≤ C α .

We finally also assume that there is an approximate tangent plane to the rectifiable set Kε at the point
~Φ∞(x).

Without loss of generality, modulo the action of rotations we assume that ~Ξα(x) = ~Φ∞(x) =

(0, 0, 1, 0), that ∂x1
~Ξα(x) = ∂x1

~Φ∞(x) = (a, 0, 0, 0) and ∂x2
~Ξα(x) = ∂x2

~Φ∞(x) = (b, c, 0, 0). We have

a c 6= 0 since ∇~Φ∞ has rank 2. Moreover the approximate tangent plane at ~Φ∞(x) coincides with
Span{(1, 0, 0, 0), (0, 1, 0, 0)}. Observe that the existence of this approximate tangent plane and the fact

that ~Ξα(x) is a regular point for ~Ξα forces Span{∂x1
~Ξα, ∂x2

~Ξ} = {(1, 0, 0, 0), (0, 1, 0, 0)} at any point in

(~Ξα)−1(~Ξα(x)).

We recall that we adopt the notation ~Φ = (Φ1,Φ2,Φ3,Φ4). We first have for the third coordinate∫
Br(x)

|∇Φ3
k|2 dx2 =

∫
Br(x)

|Φ3
k∇Φ3

k|2 dx2 +

∫
Br(x)

(1− |Φ3
k|2) |∇Φ3

k|2 dx2

=

∫
Br(x)

|Φ3
k∇Φ3

k|2 dx2 +

∫
Br(x)

(|Φ3
∞(x)|2 − |Φ3

k|2) |∇Φ3
k|2 dx2

(III.151)

We have Φ3
k∇Φ3

k = −Φ1
k∇Φ1

k − Φ2
k∇Φ2

k − Φ4
k∇Φ4

k. Since Φi∞(x) = 0 for i 6= 3 we have then∫
Br(x)

|∇Φ3
k|2 dx2 ≤ 10

∫
Br(x)

|~Φk − ~Φ∞(x)| dvolg~Φk

≤ 10

∫
Br(x)

|~Φ∞ − ~Φ∞(x)| dvolg~Φk + 10

∫
Br(x)

|~Φ∞ − ~Φk| dvolg~Φk

(III.152)
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Combining this inequality with (III.132) and (III.133) we obtain

lim
r→0

lim sup
k→+∞

∫
Br(x)

|∇Φ3
k|2 dx2∫

Br(x)

dvolg~Φk

= 0 . (III.153)

Let χαr,x be a smooth non negative function on R4 supported in the ball B4
2 ‖∇~Ξα‖∞ r

(~Φ∞(x)), identically

equal to one on B4
‖∇~Ξα‖∞ r

(~Φ∞(x)) and such that ‖dχαr,x‖L∞(R4) ≤ r−1 ‖∇~Ξα‖−1
∞ . Multiplying the 4th

coordinate of equation (??) by χαr,x(~Φk) Φ4
k and integrating over Σ gives , arguing exactly as in the proof

of lemma III.1, ∫
Σ̂ε

χαr,x(~Φk)|∇Φ4
k|2 dx2 =

∫
Σ̂ε

χαr,x(~Φk)|Φ4
k|2 |∇Φ4

k|2 dx2

−
∫

Σ̂ε

Φ4
k ∇(χαr,x(~Φk)) · ∇Φ4

k + ok(1)

(III.154)

The fact that we are integrating on Σ̂ε is possible since we can choose ε such that, as in (III.51),∫
∂Bε(al)

|∇~Φ∞|dl ≤

[∫
B2ε(al)

|∇~Φ∞|2 dx2

]2

→ 0 and ~Φk → ~Φ∞ in L∞(∂Bε(al))

Hence we can have chosen ~Φ(x) such that all the balls B4
2 ‖∇~Ξα‖∞ r

(~Φ∞(x)) do not intersect the cutting

circles ~Φ∞(∂Bε(al)) for r small enough. Using (III.146) we have∫
Σ̂ε

χαr,x(~Φ∞)|∇Φ4
k|2 dx2 =

∫
Σ̂ε

χαr,x(~Φ∞)|Φ4
∞|2 |∇Φ4

k|2 dx2

−
∫

Σ̂ε

Φ4
∞

4∑
j=1

∂zjχ
α
r,x(~Φ∞) ∇Φjk · ∇Φ4

k + ok(1)

(III.155)

Observe that χαr,x(~Φ∞)|Φ4
∞|2 ≤ 4 χαr,x(~Φ∞) ‖∇~Ξα‖2∞ r2 hence fror r small enough we have

χαr,x(~Φ∞)|Φ4
∞|2 ≤ 2−1 χαr,x(~Φ∞) (III.156)

Thus ∫
Σ̂ε

χαr,x(~Φ∞)|∇Φ4
k|2 dx2 ≤ −2

∫
Σ̂ε

Φ4
∞

4∑
j=1

∂zjχ
α
r,x(~Φ∞) ∇Φjk · ∇Φ4

k + ok(1)

≤ − 2

∫
Σ̂ε\(Σ̂ε

⋂
Bα)

Ξα,4
4∑
j=1

∂zjχ
α
r,x(~Ξα) ∇Φjk · ∇Φ4

k

− 2

∫
Σ̂ε

⋂
Bα

Φ4
∞

4∑
j=1

∂zjχ
α
r,x(~Φ∞) ∇Φjk · ∇Φ4

k + ok(1)

(III.157)

Since ~Ξα is C1 and since there is an approximate tangent plane to the rectifiable set Kε and since it
coincide with Span{(1, 0, 0, 0), (0, 1, 00)} we have that for every point in the pre-image of ~Ξα(x) = ~Φ∞(x)
the gradient ∇Ξα,4 = 0 hence

|Ξα,4
4∑
j=1

∂zjχ
α
r,x(~Ξα)| ≤ o(1) (III.158)
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and

lim sup
k→0

∣∣∣∣∣∣
∫

Σ̂ε\(Σ̂ε
⋂
Bα)

Ξα,4
4∑
j=1

∂zjχ
α
r,x(~Ξα) ∇Φjk · ∇Φ4

k

∣∣∣∣∣∣
= o(1) µ∞(B4

2 ‖∇~Ξα‖∞ r
(~Φ∞(x))) = o(r2)

(III.159)

We have moreover
|Φ4
∞ ∂zjχ

α
r,x(~Φ∞)| ≤ r ‖∇~Ξα‖∞‖dχαr,x‖∞ ≤ 1 , (III.160)

hence, using fundamental properties of the convergence of Radon measure

lim sup
k→+∞

∣∣∣∣∣∣− 2

∫
Σ̂ε

⋂
Bα

Φ4
∞

4∑
j=1

∂zjχ
α
r,x(~Φ∞) ∇Φjk · ∇Φ4

k

∣∣∣∣∣∣
≤ 8 lim sup

k→+∞
µk

(
B4

2 ‖∇~Ξα‖∞ r
(~Φ∞(x)) ∩ ~Φ∞(Bα)

)
≤ 8 lim sup

k→+∞

∑
i∈I

µk

(
B4

2 ‖∇~Ξα‖∞ r
(~Φ∞(x)) ∩B4

ρi(~qi)
)

≤ 8
∑
i∈I

µ∞

(
B4

2 ‖∇~Ξα‖∞ r
(~Φ∞(x)) ∩B4

ρi(~qi)
)

≤ 8 N µ∞

(
B4

2 ‖∇~Ξα‖∞ r
(~Φ∞(x)) ∩ Uα

)
= o

(
µ∞

(
B4

2 ‖∇~Ξα‖∞ r
(~Φ∞(x))

))
= o(r2)

(III.161)

We write ∫
Σ̂ε

χαr,x(~Φ∞)|∇Φ4
k|2 dx2 =

∫
Σ̂ε\(Σ̂ε

⋂
Bα)

· · ·+
∫

Σ̂ε
⋂
Bα
· · · (III.162)

We have ∫
Σ̂ε\(Σ̂ε

⋂
Bα)

χαr,x(~Φ∞)|∇Φ4
k|2 dx2 =

∫
Σ̂ε\(Σ̂ε

⋂
Bα)

χαr,x(~Ξα)|∇Φ4
k|2 dx2 (III.163)

Since χαr,x is identically equal to one on B4
‖∇~Ξα‖∞ r

(~Φ∞(x)), χαr,x(~Ξα) is identically equal to one on Br(x)

and we have ∫
Σ̂ε\(Σ̂ε

⋂
Bα)

χαr,x(~Φ∞)|∇Φ4
k|2 dx2 ≥

∫
Br(x)\(Br(x)∩Bα)

|∇Φ4
k|2 dx2 (III.164)

Combining (III.159), (III.161), (III.164) we obtain

lim sup
k→+∞

∫
Br(x)\(Br(x)∩Bα)

|∇Φ4
k|2 dx2 = o(r2) (III.165)

We have also, since again ν∞(∂(Br(x) ∩Bri(xi))) = 0

lim sup
k→+∞

∫
Br(x)∩Bα

|∇Φ4
k|2 dx2 ≤ lim sup

k→+∞

∑
i∈I

∫
Br(x)∩Bri (xi)

|∇Φ4
k|2 dx2

≤
∑
i∈I

ν∞(Br(x) ∩Bri(xi)) ≤ N ν∞(Br(x) ∩Bα) = o(ν∞(Br(x))
(III.166)

since x has been chosen such that. Observe that ν∞(Br(x)) ≥ 2−1
∫
Br(x)

|∇~Φ|2 dx2 = π
2 (a2 +b2 +c2)r2 +

o(r2). Since we are assuming a 6= 0 and (b, c) 6= (0, 0) we have

lim sup
k→+∞

∫
Br(x)

|∇Φ4
k|2 dx2 = o(ν∞(Br(x))) (III.167)
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We have proved also that

lim sup
k→+∞

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

|∇Φ4
k|2 dx2 = o(µ∞(B4

ρ(~Φ∞(x)))) (III.168)

Combining (III.153) and (III.167) we have then

lim
r→0

lim
k→+∞

∫
Br(x)

[|∇~Φ1
k|2 + |∇~Φ2

k|2] dx2∫
Br(x)

|∇~Φk|2 dx2
= 1 (III.169)

as well as

lim
ρ→0

lim sup
k→+∞

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

[|∇~Φ1
k|2 + |∇~Φ2

k|2] dx2

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

|∇~Φk|2 dx2
= 1 (III.170)

Since ~Φk is conformal we have then

lim
r→0

lim
k→+∞

∫
Br(x)

2 |∂x1
~ζk ∧ ∂x2

~ζk| dx2∫
Br(x)

|∇~Φk|2 dx2
= 1 (III.171)

where ~ζk := (Φ1
k,Φ

2
k) and, combining (III.169) with (III.171)

lim
r→0

lim
k→+∞

∫
Br(x)

2 |∂x1
~ζk ∧ ∂x2

~ζk| dx2∫
Br(x)

|∇~ζk|2 dx2
= 1 (III.172)

The difficulty at this stage is that we can not remove yet the absolute values inside the upper integral of
(III.172). The rest of the argument consists in proving that indeed one can remove the absolute value and

the tangent plane ~Ξα∗TxΣ is asymptotically covered exactly one time by the limiting varifold associated to

the current (~Φk)∗[Br(x)]. This will imply the strong convergence of∇~Φk towards∇~Φ∞ = ∇~Ξα in L2(Σαε ),
where we recall the notation Σαε := Σ̂\((∪nl=1Bε(al))

⋃
(Aα ∪Bα)). We formulate that differently. Denote

by G̃2(S3) to be the Grassmanian of oriented 2 dimensional planes of the tangent bundle to S3, TS3.

The image by ~Φk of Σαε , induces an oriented integer rectifiable varifold (see [13]) vαε,k where the choice of

orientation of the tangent plane is taken to be the one induced by the push forward by the immersion ~Φk
of the one fixed on Σ. The sequence of oriented varifolds vk converges to a limiting oriented varifold v∞
which is a limiting measure on the oriented 2-Grassmanian G̃2(S3). Denote by T+Σ the tangent bundle
to Σ with the positive orientation and T−Σ the same tangent bundle but with the opposite orientation.
We see ~Ξα∗ (T+Σ̂αε ∪T−Σ̂αε ) as a measurable subset of G̃2(S3). With these notations, the identity (III.169)
is in fact equivalent to

v∞(G̃2(S3) \ ~Ξα∗ (T+Σ̂αε ∪ T−Σ̂αε ) = 0 (III.173)

The goal is now to prove
v∞(G̃2(S3) \ ~Ξα∗ (T+Σ̂αε ) = 0 (III.174)

in order to be able to remove the absolute values in the upper integral of (III.172) that will ultimately

imply the strong convergence of ∇~Φk towards ∇~Φ∞.
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Proof of (III.174). To simplify the presentation, in order not to have to localize in the domain that
would make the notations heavier, we shall assume that

(~Ξα)−1
(
~Ξα(x)

)
= {x} . (III.175)

For i = 1 · · · 4 we denote by ∇Σkyi the vector-field tangent to Φk(Σ) given by the projection of the i−th

canonical vector of R4 onto (~Φk)∗TΣ. We also denote ∗k∇Σkyi the rotation by π/2 of this vector in the

tangent plane to Φk(Σ), taking into account the orientation given by the push-forward by ~Φk of the one
we fixed on Σ. Denote by (~εi)i=1···4 the canonical basis of R4. The identity (III.170) implies that

lim sup
k→+∞

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

dist

(
∂x1

~Φk ∧ ∂x2
~Φk

|∂x1
~Φk ∧ ∂x2

~Φk|
,± ~ε1 ∧ ~ε2

)
|∇~Φk|2 dx2 = o(ρ2) (III.176)

recall µ∞(B4
ρ(~Φ∞(x))) ' ρ2. This also implies

∀ i = 1, 2 lim sup
k→+∞

∫
B4
ρ(~Φ∞(x))

|∇Σkyi − ~εi| dH2 ~Φk(Σ) = o(ρ2) . (III.177)

For (∂x1
~Φk∧∂x2

~Φk) · (~ε1∧~ε2) 6= 0 we denote Jk = sign
(

(∂x1
~Φk ∧ ∂x2

~Φk) · (~ε1 ∧ ~ε2)
)

otherwize we simply

take Jk = 0. Identity (III.176) and (III.177) imply

lim sup
k→+∞

∫
B4
ρ(~Φ∞(x))

[| ∗k ∇Σky1 − Jk ε2|+ | ∗k ∇Σky2 + Jk ε1|] dH2 ~Φk(Σ) = o(ρ2) (III.178)

Let ~T ρk and ~T r,xk be the following vector-valued one dimensional currents

∀ α ∈ Ω1(R4)
〈
~T ρk , α

〉
:=

∫
B4
ρ(~Φ∞(x))∩~Φk(Σ)

α ∧ ∗kd~y =

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

~Φ∗kα ∧ ∗ d~Φk

Let ϕ be a smooth function in C∞0 (B4
1(0)) such that

∫
R4 ϕ(y) dy4 = 1. Denote ϕσk := σ

−4/p
k ϕ(·/σ1/p

k ).

We recall the definition of the σk−smoothing ϕσk ?
~T ρk of the current ~T ρk (see [10] 4.1.2)

∀ α ∈ Ω1(R4)
〈
ϕσk ?

~T ρk , α
〉

:=

∫
B4
ρ(~Φ∞(x))∩~Φk(Σ)

(ϕσk ? α) ∧ ∗kd~y

where ασk := ϕσk ? α denotes the following convolution operation

ασk = ϕσk ? α :=

∫
R4

ϕσk(−z) τ∗zα dz4

where τz(y) = y + z. We shall use the following lemma

Lemma III.12. [Convergence of the σk−Approximation of ~T ρk .] Under the previous notations we
have

lim sup
k→+∞

sup
supp(φ)⊂B4

ρ(~Φ∞(x)) ; ‖dφ‖∞≤1

〈
~T ρk − ϕσk ? ~T

ρ
k , dφ

〉
= 0 (III.179)

2
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Proof of lemma III.12. Let φ be a lipschitz function supported in B4
ρ(~Φ∞(x)) with ‖dφ‖∞ ≤ 1. We

have 〈
~T ρk − ϕσk ? ~T

ρ
k , dφ

〉
=

∫
R4

dz ϕσk(−z)
∫
B4
ρ(~Φ∞(x))∩~Φk(Σ)

(dφ− τ∗z dφ) ∧ ∗kd~y

= −
∫
R4

dz ϕσk(−z)
∫
B4
ρ(~Φ∞(x))∩~Φk(Σ)

(φ(y)− φ(y + z)) ∧ d ∗k d~y

Using the fact that ‖dφ‖∞ ≤ 1 and that ϕσk is supported in B4

σ
1/p
k

(0), we have

∣∣∣〈~T ρk − ϕσk ? ~T ρk , dφ〉∣∣∣ ≤ σ1/p
k

∫
Σ

[| ~Hk|+ 1] dvolg~Φk

≤
[
σ2
k

∫
Σ

[| ~Hk|2p + 1] dvolg~Φk

]1/2p

Area(~Φk(Σ))1−1/2p = o(1)

This concludes the proof of lemma III.12. 2

Lemma III.13. [Asymptotic Vanishing of the Boundary of ~T ρk in B4
ρ(~Φ∞(x))] Under the previous

notations we have
lim sup
k→+∞

sup
supp(φ)⊂B4

ρ(~Φ∞(x)) ; ‖dφ‖∞≤1

〈
~T ρk , dφ

〉
= o(ρ2) (III.180)

and for the two first directions i = 1, 2 we have

lim sup
k→+∞

sup
supp(φ)⊂B4

ρ(~Φ∞(x)) ; ‖dφ‖∞≤1

~εi ·
〈
~T ρk , dφ

〉
= O(ρ4) (III.181)

2

Proof of lemma III.13. Because of (III.170) it suffices to prove (III.181) for the components along

~ε1 and ~ε2 only. Because of the previous lemma it suffices to prove (III.180) where ~εi · ~T ρk for i = 1, 2 is

replaced by ~εi · ϕσk ? ~T
ρ
k . We assume φ(~Φ∞(x)) = 0 in such a way that ‖φ‖∞ ≤ ρ. We have〈

ϕσk ?
~T ρk , dφ

〉
=

∫
B4
ρ(~Φ∞(x))∩~Φk(Σ)

d (ϕσk ? φ) ∧ ∗kd~y (III.182)

Integrating by parts and using (II.35) we have, omitting to write explicitly the subscript k,〈
ϕσ ? ~T

ρ, dφ
〉

=

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

∇
(
ϕσ ? φ(~Φ)

)
· σ2 fp ∇~Φ dx2

− 2 p σ2

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

e−2λ ∇
(
ϕσ ? φ(~Φ)

)
·
[
∇
[
fp−1 I011

]
+ (∇)⊥

[
fp−1 I012

] ]
~n dx2

− 2 p σ2

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

∇
(
ϕσ ? φ(~Φ)

)
· ∇
[
fp−1 ~H

]
dx2

+ 2 p σ2

∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

∇
(
ϕσ ? φ(~Φ)

)
·
[
fp−1H ∇~n− e−2λ fp−1

〈
∇~n⊗̇∇~n;∇~Φ

〉]
dx2

−
∫
~Φ−1
k (B4

ρ(~Φ∞(x)))

ϕσ ? φ(~Φ)
([

1 + σ2 (1− p) fp + p σ2 fp−1
]
~Φ |∇~Φ|2 − 4 p σ2 fp−1 ~H

)
dx2

(III.183)
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Observe that ‖∂2
yiyj (ϕσ ? φ)‖∞ ≤ σ−1/p hence integrating by parts ∇ and (∇)⊥ in the second and

third line of (III.183) as well as integrating by parts ∇ in the fourth line of (III.183) and using (III.15)
as in the proof of the monotonicity formula, we obtain that all the terms in the first, second, third
and fourth lines of the r.h.s. of (III.183) vanish as k goes to +∞. In the fifth line only the term∫
~Φ−1
k (B4

ρ(~Φ∞(x)))
ϕσ ? φ(~Φ) ~Φ |∇~Φ|2dx2 is not necessarily converging towards 0. Since we are considering

the first and second canonical directions and since Φ1 and Φ2 are O(ρ) in ~Φ−1
k (B4

ρ(~Φ∞(x))) and since
‖φ‖∞ ≤ ρ we obtain (III.181) and lemma III.13 is proved. 2

Proof of lemma III.11 continued. Denote ~Φ′k := (Φ3
k,Φ

4
k). By taking φ(y) := h(y1, y2) χρ(y3, y4)

where χρ is identically equal to ρ on B2
ρ(1, 0), is non negative, supported in B2

2ρ(1, 0), we have for i = 1, 2

lim sup
k→+∞

sup
supp(h)⊂B2

ρ(~Φ∞(x)) ; ‖dh‖∞≤ρ−1

~εi ·
∫
B4

4ρ(~Φ∞(x))

∗kd~y ∧ (χρ dh+ h dχρ) = O(ρ4) (III.184)

Because of the existence of an approximate tangent plane at ~Φ∞(x), which is equal to Span{~ε1, ~ε2},
the asymptotic mass of the current in B4

4ρ(
~Φ∞(x)) contained in the support of dχρ which is included in

B2
4ρ(0, 0)× (B2

2 ρ(1, 0) \B2
ρ(1, 0)) is a o(ρ2). Hence we deduce for i = 1, 2

lim sup
k→+∞

sup
supp(h)⊂B2

ρ(0,0) ; ‖dh‖∞≤ρ−1

∫
B2
ρ(0,0)×B2

ρ(1,0)

∂yih dH2 ~Φk(Σ) = o(ρ2) (III.185)

This implies, using (III.169),

lim sup
k→+∞

sup
supp(h)⊂B2

ρ(0,0) ; ‖dh‖∞≤ρ−1

∫
B2
ρ(0,0)

Nk(y) ∂yih dL2 = o(ρ2) (III.186)

where Nk(y) is the number of pre-images of y = (y1, y2) by ~ζk. Since M(B2
ρ(0, 0) ∩ ~ζk(Σ)) ' ρ2 we then

have

lim sup
k→+∞

sup
supp(h)⊂B2

ρ(0,0) ; ‖dh‖∞≤ρ−1

∫
B2
ρ(0,0)

Nk(y) ∂yih dy
2

∫
B2
ρ(0,0)

Nk(y) dy2
= oρ(1) (III.187)

This implies that the number of pre-images is asymptotically constant. We can move the absolute
values in the upper integral of (III.172) from inside the integration operation to outside and this proves
(III.174). We have then established (III.147) away from a set of Lebesgue measure as small as we wish
in Σ̂ε. Since ν∞ is absolutely continuous with respect to the Lebesgue measure on Σ̂ε we have then
(III.147). 2

We introduce now the following definition

Definition III.8. Let Σ be a closed riemann surface and Nn be a closed sub-manifold Nn ⊂ Rm. A
map ~Φ ∈ W 1,2(Σ, Nn) is called “target harmonic” if for almost every6 domain Ω ⊂ Σ and any smooth

function F supported in the complement of an open neighborhood of ~Φ(∂Ω) we have∫
Ω

〈
d(F (~Φ)), d~Φ

〉
g0

− F (~Φ) A(~Φ)(d~Φ, d~Φ)g0 dvolg0

where g0 is an arbitrary metric whose conformal structure is the one given by the riemann surface Σ,
< ·, · >g0

denotes the scalar product in T ∗Σ issued from g0, A(~y) denotes the second fundamental form
of Nn ⊂ Rm at the point ~y 2

6The notion of almost every domain means for every smooth domain Ω and any smooth function f such that f−1(0) = ∂Ω
and ∇f 6= 0 on ∂Ω then for almost every t close enough to zero and regular value for f one considers the domains contained
in Ω or containing Ω and bounded by f−1({t}).
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Lemma III.14. [Convergence to a Bubble Tree of conformal “target harmonic” maps] Under
the assumptions of theorem III.1, we have that for any xk ∈ Σ and rk converging either to zero or one,
one can extract a subsequence such that ~Φk(rk ·+xk) converges strongly in W 1,2 away from finitely many
points towards a conformal target harmonic map into S3. 2

Proof of lemma III.14. Because of the strong W 1,2 convergence away from B we have the following
varifold or Radon measure convergence in the Grassman space G̃2(S3) of oriented two planes from TS3

lim
k→+∞

vε,k = vε,∞

where we recall the notations : vε,k and vε,∞ are the oriented integer rectifiable varifolds given respectively

by the image of Σ \
⋃n
l=1Bε(al) by ~Φk and the image of Σ \

⋃n
l=1Bε(al) by ~Φ∞.

We are now proving that the induced unoriented varifold from the oriented one v∞, given by the
image by ~Φ∞ of the whole Σ, is a stationary integer rectifiable varifold. More precisely we are going to
prove that ~Φ∞ realizes a conformal target harmonic map into S3. If B = ∅ this has been proved already
in lemma III.1. We are now considering the case where B = {a1 · · · an} 6= ∅. The remaining task is
to ”dissociate” v∞ from the rest of the limiting varifold, the whole varifold being stationary. Precisely
we are going to prove that this dissociation happens at isolated points in S3 and proceed to a ”point
removability argument”.

As in the proof of (III.51), for any ρ > 0 we can chose r ∈ [ρ, 2ρ] such that, modulo extraction of a
subsequence, for all l = 1 · · ·n

lim
k→+∞

‖~Φk(x)− ~Φk(y)‖2(L∞(∂Br(al)))2 = ‖~Φ∞(x)− ~Φ∞(y)‖2(L∞(∂Br(al)))2

≤

[∫
∂Br(al)

|∇~Φ∞| dl ≤

]2

≤ 8π

∫
B2ρ(al)

|∇~Φ∞|2 dx2

(III.188)

To simplify the presentation we assume

sρ := sup
l=1···n

√
8π

∫
B2ρ(al)

|∇~Φ∞|2 dx2 > 0

Let ~ql,ρ = ~Φ∞(xlρ) for some arbitrary choice of xlρ ∈ ∂Br(al). We have then for k large enough

supp ∂

(
(~Φk)∗

[
Σ \

n⋃
l=1

Br(al)

])
⊂

n⋃
l=1

B4
sρ(~ql,ρ) (III.189)

Let ~X be a smooth vectorfield in TS3 such that supp ~X ⊂ S3 \
⋃n
l=1B

4
sρ(~ql,ρ). We can now follow each

step of the proof of the stationarity of the limiting varifold in lemma III.1 and obtain that

lim
k→+∞

∫
Σ\

⋃n
l=1 Br(al)

[
4∑
i=1

〈
∂yi

~X(~Φk) ∇Φik;∇~Φk
〉
− ~X(~Φk) · ~Φk |∇~Φk|2

]
dx2 = 0 (III.190)

which implies, using the strong W 1,2−convergence away from B = {a1 · · · an},∫
Σ\

⋃n
l=1 Br(al)

[
4∑
i=1

〈
∂yi

~X(~Φ∞) ∇Φi∞;∇~Φ∞
〉
− ~X(~Φ∞) · ~Φ∞ |∇~Φ∞|2

]
dx2 = 0 (III.191)
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Since ~Φ∞ is conformal due to the strong W 1,2 convergence, (III.191) implies that∣∣∣∣∣(~Φ∞)∗[Σ]

(
R4 \

n⋃
l=1

B4
sρ(~ql,ρ)

)∣∣∣∣∣
realizes an integer rectifiable stationary varifold in S3 \

⋃n
l=1B

4
sρ(~ql,ρ). We chose a sequence of radii

ρk → 0 such that
∀ l = 1 · · ·n ~ql,ρk → ~ql,0 ∈ S3 .

Since sρk → 0, (~Φ∞)∗[Σ] is stationary in S3 \{~q1,0 · · · ~qn,0}. Let χδ(t) = χ(t/δ) where χ ∈ C∞0 ([0, 2],R+),

χ is identically equal to one on [0, 1]. For any arbitrary smooth vector field ~X from Γ(TS3) we proceed
to the following decomposition :

~X(~q) =

n∑
l=1

χδ(|~q − ~ql,0|) ~X + ~Xδ(~q) where ~Xδ(~q) :=

[
1−

n∑
l=1

χδ(|~q − ~ql,0|)

]
~X

Since Supp( ~Xδ) ⊂ R4 \
⋃n
l=1B

4
δ (~ql,0) we have∫

Σ

[
4∑
i=1

〈
∂yi

~Xδ(~Φ∞) ∇Φi∞;∇~Φ∞
〉
− ~Xδ(~Φ∞) · ~Φ∞ |∇~Φ∞|2

]
dx2 = 0 (III.192)

and we have∣∣∣∣∣
∫

Σ

[
4∑
i=1

〈
∂yi(

~X − ~Xδ)(~Φ∞) ∇Φi∞;∇~Φ∞
〉
− ( ~X − ~Xδ)(~Φ∞) · ~Φ∞ |∇~Φ∞|2

]
dx2

∣∣∣∣∣
≤ ‖ ~X‖∞

1

δ

n∑
l=1

µ∞(B4
2 δ(~ql,0)) + ‖∇ ~X‖∞

n∑
l=1

µ∞(B4
2 δ(~ql,0)) = O(δ)

(III.193)

where we are using the monotonicity formula. Combining (III.192) and (III.193) with δ → 0 we obtain
that ∫

Σ

[
4∑
i=1

〈
∂yi

~X(~Φ∞) ∇Φi∞;∇~Φ∞
〉
− ~X(~Φ∞) · ~Φ∞ |∇~Φ∞|2

]
dx2 = 0 . (III.194)

What we have done for the whole Σ can be done for any subdomain Ω assuming that the support of ~X is
contained in a complement of an open neighborhood of ~Φ∞(∂Ω). We deduce that ~Φ∞ is target harmonic
from Σ into S3. The conformality is a consequence of the strong bubble tree W 1,2 convergence proved in
lemma III.11 and lemma III.14 is proved. 2

IV The proof of theorem I.1.

We consider the general case where (Σ, g~Φk) possibly degenerate in the moduli space. Modulo extraction
of a subsequence, following Deligne-Mumford compactification described in section II of [Ri4] we have a
“splitting” of the original surface into collars, called also “thin parts” and and a Nodal riemann surface
Σ̃ called also “thick part”. The parts of the collars that contain no bubbles can be treated exactly as the
necks in lemma III.6. The ”thick parts” as well as the “bubbles” formed either in the thick parts or in
the collars can be treated exactly as the surface Σ in the compact case presented in the previous section.
The regularity of the limit is a consequence of the main result in [30]. So we deduce theorem I.1.

51



A Appendix

Lemma A.1. There exists a universal number ε0(m) > 0 such that, for any ~Φ smooth immersion of a
smooth surface with boundary Σ into Bm2 (0) \Bm1 (0) and satisfying

Area(~Φ(Σ)) < 3π (A.1)

and
∀ r ∈ (1, 2) ~Φ(Σ) ∩ ∂Bmr (0) 6= ∅ and ~Φ(∂Σ) ⊂ ∂ (Bm2 (0) \Bm1 (0)) , (A.2)

then ∫
Σ

|d~n|2g~Φ dvol~Φ ≥ ε0(m) . (A.3)

2

Proof of lemma A.1. We argue by contradiction. We consider a sequence Σk and ~Φk such that

Area(~Φk(Σk)) < 3π (A.4)

such that

∀ r ∈ (1, 2) ~Φk(Σk) ∩ ∂Bmr (0) 6= ∅ and ~Φk(∂Σk) ⊂ ∂ (Bm2 (0) \Bm1 (0)) , (A.5)

and

lim
k→+∞

∫
Σk

|d~n|2g~Φk dvol~Φk = 0 . (A.6)

Let Vk be the oriented varifold associated to the immersion of ~Φk with L2−bounded second fundamental
form (see [13]). Using theorem 3.1 and 5.3.2 of [13], modulo extraction of a subsequence Vk varifold
converges to an integer oriented varifold V∞ with generalized second fundamental form equal to zero and
without boundary in B2(0) \B1(0). V∞ is then stationary and included in an at most countable union of
2-planes. Using the constancy theorem [33] we deduce that V∞ is an oriented varifold given by at most
countably many intersections of 2-planes with the annulus B2(0) \ B1(0) with locally constant integer
multiplicities. We claim that the intersection between the closed set given by the support of V∞ and
∂Br(0) × G2(Rm) is non empty for any r ∈ (1, 2). Indeed, from the assumption (A.5), using Simon’s
monotonicity formula, for any r ∈ (1, 2) and 0 < ρ < min{2 − r, r − 1}, there exists xrk ∈ ∂Br(0) such
that

2π

3
ρ2 ≤M

(
~Φk(Σk) ∩Bmρ (xrk)

)
+
ρ2

2

∫
Σk

| ~H~Φk
|2 dvolg~Φk

Using (A.6) we deduce that for any ρ < min{2− r, r − 1}

µV∞(Br+ρ(0) \Br−ρ(0)) ≥ 2π

3
ρ2 .

Hence the support of V∞ intersects all the ∂Br(0)×G2(Rm) for any r ∈ (1, 2). We consider a sequence
of radii ri > 1 and converging to 1. The 2-planes belonging to the support of V∞ and intersecting
∂Bri(0) × G2(Rm) has to be constant for i large enough. This implies that the support of V∞ contains
the intersection between the annulus B2(0) \B1(0) and a plane touching B1(0). This imposes

µV∞(B2(0) \B1(0)) ≥ 3π .

The later contradicts (A.4) and lemma A.1 is proved. 2
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