An Energy Gap Phenomenon for Willmore Spheres.

Yann Bernard*and Tristan Rivière[†]

Abstract: In this work we prove the existence of a threshold strictly larger than 4π below which any Willmore sphere in \mathbb{R}^m has to be the image by a translation and an homothetic of the standard sphere S^2 . This result was already proved in [KS1] using a different approach.

Math. Class. 30C70, 58E15, 58E30, 49Q10, 53A30, 35R01, 35J35, 35J48, 35J50.

I Introduction

Let $\vec{\Phi}$ be an immersion of the sphere S^2 into \mathbb{R}^m . Denote by $\pi_{\vec{n}_{\vec{\Phi}}}$ the orthonormal projections of vectors in \mathbb{R}^m onto the m-2-plane given by $\vec{n}_{\vec{\Phi}}$. With these notations the *second fundamental form*

$$\forall X, Y \in T_p \Sigma \qquad \quad \vec{\mathbb{I}}_p(X, Y) := \pi_{\vec{n}_{\vec{n}}} d^2 \vec{\Phi}(X, Y)$$

¹ The mean curvature vector of the immersion at p is given by

$$\vec{H} := \frac{1}{2} tr_g(\vec{\mathbb{I}}) = \frac{1}{2} \left[\vec{\mathbb{I}}(\varepsilon_1, \varepsilon_1) + \vec{\mathbb{I}}(\varepsilon_2, \varepsilon_2) \right] \quad ,$$

where $(\varepsilon_1, \varepsilon_2)$ is an orthonormal basis of $T_p \Sigma$ for the metric $g_{\vec{\Phi}}$.

In the present paper we are mainly interested with the Lagrangian given by the L^2 norm of the second fundamental form :

$$E(\vec{\Phi}) := \int_{\Sigma} |\vec{\mathbb{I}}|_g^2 \, dvol_g$$

An elementary computation gives

$$E(\vec{\Phi}) := \int_{\Sigma} |\vec{\mathbb{I}}|_g^2 \, dvol_g = \int_{\Sigma} |d\vec{n}_{\vec{\Phi}}|_g^2 \, dvol_g$$

This energy E can be hence seen as being the *Dirichlet Energy* of the Gauss map $\vec{n}_{\vec{\Phi}}$ with respect to the induced metric $g_{\vec{\Phi}}$. The Gauss Bonnet theorem implies that

$$E(\vec{\Phi}) := \int_{\Sigma} |\vec{\mathbb{I}}|_g^2 \, dvol_g = 4 \, \int_{\Sigma} |\vec{H}|^2 \, dvol_g - 4\pi \, \chi(\Sigma) \quad , \tag{I.1}$$

where $\chi(\Sigma)$ is the *Euler characteristic* of the surface Σ . The energy

$$W(\vec{\Phi}) := \int_{\Sigma} |\vec{H}|^2 \, dvol_g$$
 ,

^{*}Mathematisches Institut, Albert-Ludwigs-Universität, 79004 Freiburg, Germany.

[†]Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.

¹In order to define $d^2 \vec{\Phi}(X, Y)$ one has to extend locally the vector X or Y by a vector-field but it is not difficult to check that $\pi_{\vec{n}_x} d^2 \vec{\Phi}(X, Y)$ is independent of this extension.

is the so called Willmore energy.

It is well known that the standard unit 2-sphere $S^2 \subset \mathbb{R}^3 \subset \mathbb{R}^m$ is, modulo the action of homotheties and translations, the unique minimizer of W among all possible immersions of closed 2-dimensionnal manifolds. Our main result in this paper, theorem I.1 below, reinforces this uniqueness statement by showing roughly that the standard sphere is "isolated" in it's range of energy.

Theorem I.1 Let $m \geq 3$. There exists $\delta_m > 0$ such that if $\vec{\Phi}$ is a Willmore immersion from S^2 into \mathbb{R}^m satisfying

$$W(\vec{\Phi}) < 4\pi + \delta_m$$

then a translation of $\vec{\Phi}(S^2)$ is homothetic to the standard sphere S^2 in \mathbb{R}^m and we have

$$W(\Phi) = 4\pi$$

Remark I.1 It is conjectured that $\delta_m = 4\pi$ is the optimal constant for which theorem I.1 holds. This conjecture was proved already by R. Bryant for m = 3 in [Bry] and by Montiel for m = 4 in [Mon].

Remark I.2 Another type of gap phenomenon, for branched Willmore spheres this time, but similar to this one is one of the main step in proving energy quantization results in |BR|.

II Proof of theorem I.1.

Let $\vec{\Phi}_k$ be a sequence of Willmore immersions from S^2 into \mathbb{R}^m satisfying

$$\lim_{k \to +\infty} W(\vec{\Phi}_k) = 4\pi$$

By possibly composing $\vec{\Phi}_k$ with a diffeomorphism of S^2 we can assume that $\vec{\Phi}_k$ is conformal. From the normalization Lemma A.4 of [Ri3] together with lemma III.1 in the same paper (see also [Ri1] section VI.8) we deduce the existence of a sequence of Möbius transformations Ξ_k and a lipschitz diffeomorphism f_k of S^2 such that, modulo extraction of a subsequence $\vec{\xi}_k := \Xi_k \circ \vec{\Phi}_k \circ f_k$ weakly converges to a possibly branched weak lipschitz conformal immersion² $\vec{\xi}_{\infty}$ of S^2 in the following way.

$$\limsup_{k \to +\infty} \mathcal{H}^2(\Xi_k \circ \vec{\Phi}_k \circ f_k(S^2)) < +\infty \qquad , \qquad \Xi_k \circ \vec{\Phi}_k \circ f_k(S^2) \subset B_R(0) \tag{II.2}$$

for some R > 0 independent of k, and there exists at most finitely many points $\{a_1 \cdots a_N\}$ in S^2 such that

$$\vec{\xi}_k := \Xi_k \circ \vec{\Phi}_k \circ f_k \rightharpoonup \vec{\xi}_{\infty} \qquad \text{weakly in } W^{2,2}_{loc} \cap (W^{1,\infty}_{loc})^* (S^2 \setminus \{a_1, \cdots a_N\}) \quad , \tag{II.3}$$

where the convergences are taken w.r.t. g_{S^2} , the standard metric on S^2 , moreover

$$\forall K \text{ compact subset of } \Sigma \setminus \{a_1 \cdots a_N\} \quad \limsup_{k \to +\infty} \|\log |d\vec{\xi}_k|_{g_{S^2}}\|_{L^{\infty}(K)} < +\infty \tag{II.4}$$

Because of (II.3) and (II.4) we have for any $\delta > 0$

$$\int_{S^2 \setminus \bigcup_i B_\delta(a_i)} |\nabla \vec{n}_{\vec{\xi}_\infty}|_{g_{S^2}}^2 \, dvol_{g_{S^2}} \le \liminf_{k \to +\infty} \int_{S^2 \setminus \bigcup_i B_\delta(a_i)} |\nabla \vec{n}_{\vec{\xi}_k}|_{g_{S^2}}^2 \, dvol_{g_{S^2}}$$

²See the notion of weak lipschitz immersions with L^2 bounded second fundamental form in [Ri1], [Ri3], [BR]...

Simon's monotonicity formula (see [Sim]) implies that

$$4\pi \le \int_{S^2} |\vec{H}_{\vec{\xi}_{\infty}}|^2 \, dvol_{g_{\infty}} \le \lim_{\delta \to 0} \frac{1}{4} \int_{S^2 \setminus \cup_i B_{\delta}(a_i)} |\nabla \vec{n}_{\vec{\xi}_{\infty}}|^2_{g_{S^2}} \, dvol_{g_{S^2}} - \frac{1}{2} \int_{S^2} K_{\vec{\xi}_{\infty}} \, dvol_{g_{\infty}} \tag{II.5}$$

hence

$$8\pi \le \lim_{\delta \to 0} \int_{S^2 \setminus \bigcup_i B_\delta(a_i)} |\nabla \vec{n}_{\vec{\xi}_\infty}|^2_{g_{S^2}} \, dvol_{g_{S^2}} \tag{II.6}$$

By assumption we have

$$\lim_{k \to +\infty} \int_{S^2} |\nabla \vec{n}_{\vec{\xi}_k}|^2_{g_{S^2}} \, dvol_{g_{S^2}} = 8\pi \tag{II.7}$$

Thus combining (II.5) and (II.7) gives that

$$\lim_{k \to +\infty} \int_{S^2} |\nabla \vec{n}_{\vec{\xi}_k}|^2_{g_{S^2}} \, dvol_{g_{S^2}} = \int_{S^2} |\nabla \vec{n}_{\vec{\xi}_\infty}|^2_{g_{S^2}} \, dvol_{g_{S^2}} = 8\pi \tag{II.8}$$

Since $\vec{n}_{\vec{\xi}_k}$ is weakly converging towards $\vec{n}_{\vec{\xi}_{\infty}}$, (II.8) implies that the convergence is in fact strong and therefore no bubbling can occur : there is no pint a_i . Observe that since the limiting immersion $\vec{\xi}_{\infty}$ satisfies $W(\vec{\xi}_{\infty}) = 4\pi$, by a classical result (see for instance [Ri1]) we have that $\vec{\xi}(S^2) \subset B_R(0)$ is homothetic to the standard $S^2 \subset \mathbb{R}^3 \subset \mathbb{R}^m$.

Now, since $\vec{\xi}_k$ is Willmore and since the L^2 norm of $d\vec{n}_{\vec{\xi}_k}$ nowhere concentrates we can apply the epsilon regularity for Willmore immersions (theorem I.5 in [Ri2]) in order to deduce that the convergence of $\vec{\xi}_k$ towards $\vec{\xi}_{\infty}$ holds in $C^l(S^2)$ norm for any $l \in \mathbb{N}$. Hence after maybe application of a translation and a dilation $\vec{\xi}_k(S^2)$ can be parametrized as a graph over S^2 : there exists a sequence of maps g_k from S^2 into \mathbb{R}^{m-3} and a sequence of function ε_k such that if $\vec{\phi}_k$ (which is not necessarily conformal) denotes the map from S^2 into \mathbb{R}^m given by $\vec{\phi}_k(x) := x(1 + \varepsilon_k) + g_k(x)$

i)

$$\vec{\phi}_k(S^2) = \vec{\xi}_k(S^2)$$

ii)

$$\forall l \in \mathbb{N}$$
 $\lim_{k \to 0} \|\varepsilon_k\|_{C^l(S^2)} + \|g_k\|_{C^l(S^2)} = 0$

Modulo again a small translation + dilation we can moreover assume that $\vec{\phi}_k(S^2)$ and S^2 intersect each other at the north pole, *North*, in a tangent way which reads

$$\varepsilon_k(North) = 0$$
 , $g_k(North) = 0$, $d\varepsilon_k(North) = 0$ and $dg_k(North) = 0$

We apply now the inversion with respect to the north pole $I_N(x) := (x - North)/|x - North|^2$ and $I_N(S^2)$ is equal to the 2-plane P given by $x_j = 0$ for $j = 3 \cdots m$ and the image of $\vec{\phi}_k(S^2)$ has become now a graph over the plane P of the form $(y_1, y_2, f_k(y_1, y_2))$. Assume we have made a translation in order for the north pole to coincide with the origin (0, 0, 0) prior to apply the inversion and the sphere to which $\vec{\phi}_k(S^2)$ converges is the one given by $x_i = 0$ for $i \ge 4$ and $x_1^2 + x_2^2 + (x_3 + 1)^2 = 1$. Since $\vec{\phi}_k(S^2)$ is tangent to the 2-plane $x_i = 0$ for $i \ge 3$ and since the curvature of $\vec{\phi}_k(S^2)$ is uniformly bounded, the intersection of $\vec{\phi}_k(S^2)$ with some fixed neighborhood of 0 in \mathbb{R}^m is locally given by a graph of the form $(x_1, x_2, a_k(x_1, x_2))$ and $\|a_k - 1 + \sqrt{1 - r^2}\|_{C^1} \to 0$ as $k \to +\infty$ for any $l \in \mathbb{N}$ - where we denote $r^2 = x_1^2 + x_2^2$. Since $\nabla a_k(0, 0) = 0$ and since all derivatives of a_k are bounded in a given, small enough neighborhood of 0 the C^∞ function given by $h_k := a_k/r$ is converging in C^l norm towards $h_{\infty}(x_1, x_2) := (1 - \sqrt{1 - r^2})/r = O(r)$. We shall now give the explicit norm of f_k at ∞ in terms of a_k . We have

$$I(x_1, x_2, a_k(x_1, x_2)) = \left(\frac{x_1}{r^2 + a_k^2}, \frac{x_2}{r^2 + a_k^2}, \frac{a_k}{r^2 + a_k^2}(x_1, x_2)\right)$$

This then gives

$$f_k(y_1, y_2) = \frac{a_k}{r^2 + a_k^2}(x_1, x_2)$$
 where $y_i := \frac{x_i}{r^2 + a_k^2}$

The change of variable matrix is given by

$$\nabla_x y := (\partial_{x_i} y_j)_{i=1,2} = \frac{1}{r^2 + a_k^2} \left(Id - 2\frac{x \otimes x}{r^2} - \frac{x \otimes \nabla h_k^2}{1 + h_k^2} \right) \quad . \tag{II.9}$$

We have $det(Id - 2x \otimes x/r^2) = -1$ and since the coefficients of this matrix are bounded it is uniformly invertible. Since h_k is converging in C^l norm towards $h_{\infty}(x_1, x_2) := (1 - \sqrt{1 - r^2})/r = O(r)$ there exists a $\rho > 0$ independent of k such that for any $0 < r < \rho$

$$P_k := Id - 2\frac{x \otimes x}{r^2} - \frac{x \otimes \nabla h_k^2}{1 + h_k^2}$$

is uniformly invertible that is

$$\limsup_{k \to +\infty} \|P_k^{-1}\|_{L^{\infty}(B^2_{\rho}(0))} < +\infty \quad . \tag{II.10}$$

We deduce from it

$$|(\nabla_x y)^{-1}|(y) \le C |y|^{-2}$$
 . (II.11)

Using the fact that $|\nabla_x P_k| \leq C r^{-1}$ we deduce, using $\nabla_x P_k^{-1} = P_k^{-1} \nabla_x P_k P_k^{-1}$ that there exists C > 0 independent of k such that for $0 < r < \rho$

$$|\nabla_x P_k^{-1}| \le C r^{-1}$$
 . (II.12)

We have

$$\nabla_y f_k = (\nabla_x y)^{-1} \nabla_x \left(\frac{a_k}{r^2 + a_k^2} \right) = (r^2 + a_k^2) P_k^{-1} \nabla_x \left(\frac{a_k}{r^2 + a_k^2} \right)$$
$$= P_k^{-1} \left[\nabla_x a_k - 2 \frac{a_k \nabla_x a_k}{r^2 + a_k^2} - 2 \frac{a_k r \nabla_x r}{r^2 + a_k^2} \right] \quad .$$

Since $r^{-2}|a_k| + r^{-1}|\nabla_x a_k| \leq C$ on $B_{\rho}(0)$ independently of k one deduces from the previous identity together with (II.10) that there exists a radius R > 0 such that

$$\forall y \in \mathbb{R}^2 \setminus B_R(0) \quad , \quad \forall k \in \mathbb{N} \qquad |\nabla_y f_k|(y) \le C \ |y|^{-1} \quad . \tag{II.13}$$

Differentiating once more with respect to y gives

$$\nabla_y^2 f_k = (\nabla_x y)^{-1} \left[\nabla_x P_k^{-1} \left[\nabla_x a_k - 2 \frac{a_k \nabla_x a_k}{r^2 + a_k^2} - 2 \frac{a_k r \nabla_x r}{r^2 + a_k^2} \right] \right]$$
$$+ (\nabla_x y)^{-1} \left[P_k^{-1} \nabla_x \left[\nabla_x a_k - 2 \frac{a_k \nabla_x a_k}{r^2 + a_k^2} - 2 \frac{a_k r \nabla_x r}{r^2 + a_k^2} \right] \right]$$

Using again $r^{-2} |a_k| + r^{-1} |\nabla_x a_k| + |\nabla^2 a_k| \le C$, (II.11), (II.10) and (II.12) we obtain

$$\forall y \in \mathbb{R}^2 \setminus B_R(0) \quad , \quad \forall k \in \mathbb{N} \qquad |\nabla_y^2 f_k|(y) \le C \ |y|^{-2} \quad . \tag{II.14}$$

Since $\vec{\phi}_k(S^2)$ converges as a graph over S^2 in C^l norm to S^2 and since away from the origin, in the ball $B^2(0)$ (which contains $\vec{\phi}_k(S^2)$ for k large enough) the inversion with respect to the origin is a diffeomorphim with uniformly bounded differential, we have for any radius R > 0

$$\forall l \in \mathbb{N}$$
 $\lim_{k \to 0} ||f_k||_{C^l(B_R(0))} = 0$. (II.15)

From (II.14) and (II.15) we deduce in particular that

$$\forall r > 1$$
 $\lim_{k \to 0} \int_{\mathbb{R}^2} |\nabla_y^2 f_k|^r \, dy_1 \, dy_2 = 0$. (II.16)

The mean curvature vector for this graph at the point $(y_1, y_2, f_k(y_1, y_2))$, that we denote $\vec{H}_k(y_1, y_2)$ is given by the sum of (2.13) and (2.14) divided by 2 in [BK]. Hence there exists a smooth function \vec{G} from $(\mathbb{R}^2 \otimes \mathbb{R}^{m-2}) \times (\mathbb{R}^4 \otimes \mathbb{R}^{m-2})$ such that

$$(det(g_k))^{1/4} \vec{H}_k(y_1, y_2) = \vec{G}(\nabla f_k, \nabla^2 f_k)$$

where $det(g_k)$ is the determinant of the matrix $g_{k,ij} = \delta_{ij} + \partial_{x_i} f_k \cdot \partial_{x_j} f_k$. Moreover $\vec{G}(p,q)$ satisfies

$$\forall q \in \mathbb{R}^4 \otimes \mathbb{R}^{m-2} \qquad \vec{G}(0,q) = \frac{q_{11} + q_{22}}{2} \quad \text{and} \quad \partial_{q_{ij}} \vec{G}(0,q) = \frac{\delta_{ij}}{2}$$

We deduce in particular that, for any $q \in \mathbb{R}^4 \otimes \mathbb{R}^{m-2}$ and for any $(i, j) \in \{1, 2\}^2$, the linear 1-form on \mathbb{R}^{m-2} given by $(\vec{G} \cdot \partial_{q_{ij}} \vec{G})(0, q)$ identifies to the following vector of \mathbb{R}^{m-2}

$$(\vec{G} \cdot \partial_{q_{ij}}\vec{G})(0,q) = \delta_{ij} \; \frac{q_{11} + q_{22}}{2} \quad . \tag{II.17}$$

For any fixed $p \in \mathbb{R}^2 \otimes \mathbb{R}^{m-2}$ we have moreover that $\vec{G}(p,q)$ is a linear form in q which implies

$$\forall p \in \mathbb{R}^2 \otimes \mathbb{R}^{m-2} \qquad \vec{G}(p,0) = 0 \quad . \tag{II.18}$$

The Willmore energy of the graph is moreover equal to

$$\int_{\mathbb{R}^2} |\vec{G}(\nabla f_k, \nabla^2 f_k)|^2 \, dx_1 \, dx_2$$

Hence any graph realizing a critical point to this Willmore energy satisfies the following Euler Lagrange system

$$\sum_{i,j=1}^{2} \partial_{y_i y_j}^2 \left((\vec{G} \cdot \partial_{q_{ij}} \vec{G}) (\nabla f_k, \nabla^2 f_k) \right) - \sum_{l=1}^{2} \partial_{y_l} \left((\vec{G} \cdot \partial_{p_l} \vec{G}) (\nabla f_k, \nabla^2 f_k) \right) = 0 \quad . \tag{II.19}$$

Taking

$$\forall i, j = 1, 2 \quad \forall p \in \mathbb{R}^2 \otimes \mathbb{R}^{m-2} \quad \text{and} \quad \forall q \in \mathbb{R}^4 \otimes \mathbb{R}^{m-2}$$

and

$$\forall l = 1, 2 \quad \forall p \in \mathbb{R}^2 \otimes \mathbb{R}^{m-2} \quad \text{and} \quad \forall q \in \mathbb{R}^4 \otimes \mathbb{R}^{m-2}$$

 $F_{ii}(p,q) := (\vec{G} \cdot \partial_{a_{ii}} \vec{G})(p,q) - (\vec{G} \cdot \partial_{a_{ii}} \vec{G})(0,q)$

$$L_l(p,q) := (\vec{G} \cdot \partial_{p_l} \vec{G})(p,q)$$

Observe that with our notations, for any p and q, $(\vec{G} \cdot \partial_{p_l} \vec{G})(p,q)$ is a linear form on \mathbb{R}^{m-2} which identifies canonically to a vector in \mathbb{R}^{m-2} .

The Euler Lagrange system (II.19) becomes then

$$\Delta^2 f_k = -\sum_{i,j=1}^2 \partial_{x_i \, x_j}^2 \left(F_{ij}(\nabla f_k, \nabla^2 f_k) \right) + \sum_{l=1}^2 \partial_{x_l} \left(L_l(\nabla f_k, \nabla^2 f_k) \right) \quad , \tag{II.20}$$

where the F_{ij} and L_l are smooth functions such that, for any choice of p and q included in the unit balls of respectively $\mathbb{R}^2 \otimes \mathbb{R}^{m-2}$ and $\mathbb{R}^4 \otimes \mathbb{R}^{m-2}$, one has, for any choice of indices,

$$|F_{ij}(p,q)| \le A_{ij} |p| |q|$$
 and $|L_l(p,q)| \le B_l |q|^2$, (II.21)

where (A_{ij}) and (B_l) are families of positive constants independent of p and q in these unit balls.

Let $2 < r < +\infty$. Using the pointwise controls on the F_{ij} and the L_l given by (II.21), classical L^r estimates in elliptic theory (see for instance [GT] chapter 9) gives the existence of a constant C_r independent of k such that

$$\int_{\mathbb{R}^2} |\Delta f_k|^r \, dy_1 \, dy_2 \le C_r \, \int_{\mathbb{R}^2} |\nabla f_k|^r \, |\nabla^2 f_k|^r \, dy_1 \, dy_2 + C_r \, \left(\int_{\mathbb{R}^2} |\nabla^2 f_k|^{2q} \, dy_1 \, dy_2 \right)^{r/q} \quad , \qquad (\text{II}.22)$$

where $q^{-1} - 2^{-1} = r^{-1}$. Classical interpolation inequality (see for instance [GT] chapter 7) gives

$$\left(\int_{\mathbb{R}^2} |\nabla^2 f_k|^{2q} \, dy_1 \, dy_2\right)^{1/2q} \le \left(\int_{\mathbb{R}^2} |\nabla^2 f_k|^2 \, dy_1 \, dy_2\right)^{1/4} \left(\int_{\mathbb{R}^2} |\nabla^2 f_k|^r \, dy_1 \, dy_2\right)^{1/2r} \quad . \tag{II.23}$$

Finally classical results on Calderon Zygmund operators (see for instance [GT] chapter 9) give

$$\int_{\mathbb{R}^2} |\nabla^2 f_k|^r \, dy_1 \, dy_2 \le C_r \, \int_{\mathbb{R}^2} |\Delta f_k|^r \, dy_1 \, dy_2 \quad . \tag{II.24}$$

Combining (II.22), (II.23) and (II.24) gives

$$\int_{\mathbb{R}^2} |\nabla^2 f_k|^r \, dy_1 \, dy_2 \le C_r \, \left[\|\nabla f_k\|_{\infty}^r + \|\nabla^2 f_k\|_2^r \right] \, \int_{\mathbb{R}^2} |\nabla^2 f_k|^r \, dy_1 \, dy_2 \quad . \tag{II.25}$$

From (II.13), (II.15) and (II.16) we have

$$\lim_{k \to +\infty} \|\nabla f_k\|_{\infty}^r + \|\nabla^2 f_k\|_2^r = 0$$
(II.26)

Thus for k large enough, (II.25) implies that

$$\nabla^2 f_k \equiv 0 \qquad \text{on } \mathbb{R}^2$$

Sine $\nabla f_k(y)$ tends to zero as |y| tends to infinity (see II.13) we obtain that

$$\nabla f_k \equiv 0 \qquad \text{on } \mathbb{R}^2$$

Thus for k large enough f_k is a constant which means that $\vec{\phi}_k(S^2)$ is a sphere homothetic to S^2 and we have in particular $W(\vec{Phi}_k) = W(\vec{\xi}_k) = 4\pi$. Theorem I.1 is proved.

References

- [BK] Bauer, Matthias; Kuwert, Ernst "Existence of minimizing Willmore surfaces of prescribed genus." Int. Math. Res. Not. (2003), no. 10, 553-576.
- [Bry] Bryant, Robert L. "A duality theorem for Willmore surfaces." J. Diff. Geom. 20 (1984), no. 1, 23–53.
- [BR] Bernard, Yann; Rivière, Tristan "Energy quantization for Willmore surfaces and applications" arxiv:1106.3780 (2011).
- [GT] Gilbarg, David; Trudinger, Neil S. "Elliptic partial differential equations of second order". Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
- [KS1] Kuwert, Ernst; Schätzle, Reiner The Willmore flow with small initial energy. J. Differential Geom. 57 (2001), no. 3, 409441.
- [Mon] Montiel, Sebastiàn "Willmore two-spheres in the four-sphere." Trans. Amer. Math. Soc. 352 (2000), no. 10, 4469–4486.
- [Ri1] Rivière, Tristan "Conformally Invariant 2-dimensional Variational Problems" Cours joint de l'Institut Henri Poincaré Paris XII Creteil, Novembre 2010.
- [Ri2] Rivière, Tristan "Analysis aspects of Willmore surfaces", Inventiones Math., 174 (2008), no.1, 1-45.
- [Ri3] Rivière, Tristan "Variational Principles for immersed Surfaces with L^2 -bounded Second Fundamental Form." arXiv:1007.2997 july 2010.
- [Sim] Leon Simon, Lectures on Geometric Measure Theory, Australian National University Centre for Mathematical Analysis, Canberra, 1983