An Energy Gap Phenomenon for Willmore Spheres.

Yann Bernard*and Tristan Rivière ${ }^{\dagger}$

Abstract

In this work we prove the existence of a threshold strictly larger than 4π below which any Willmore sphere in \mathbb{R}^{m} has to be the image by a translation and an homothetie of the standard sphere S^{2}. This result was already proved in [KS1] using a different approach.

Math. Class. 30C70, 58E15, 58E30, 49Q10, 53A30, 35R01, 35J35, 35J48, 35J50.

I Introduction

Let $\vec{\Phi}$ be an immersion of the sphere S^{2} into \mathbb{R}^{m}. Denote by $\pi_{\overrightarrow{n_{\vec{\sigma}}}}$ the orthonormal projections of vectors in \mathbb{R}^{m} onto the $m-2$-plane given by $\vec{n}_{\vec{\Phi}}$. With these notations the second fundamental form

$$
\forall X, Y \in T_{p} \Sigma \quad \overrightarrow{\mathbb{I}}_{p}(X, Y):=\pi_{\vec{n}_{\vec{\Phi}}} d^{2} \vec{\Phi}(X, Y)
$$

${ }^{1}$ The mean curvature vector of the immersion at p is given by

$$
\vec{H}:=\frac{1}{2} \operatorname{tr}_{g}(\overrightarrow{\mathbb{I}})=\frac{1}{2}\left[\overrightarrow{\mathbb{I}}\left(\varepsilon_{1}, \varepsilon_{1}\right)+\overrightarrow{\mathbb{I}}\left(\varepsilon_{2}, \varepsilon_{2}\right)\right]
$$

where $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is an orthonormal basis of $T_{p} \Sigma$ for the metric $g_{\vec{\Phi}}$.
In the present paper we are mainly interested with the Lagrangian given by the L^{2} norm of the second fundamental form :

$$
E(\vec{\Phi}):=\int_{\Sigma} \mid \overrightarrow{\mathbb{I}}_{g}^{2} d v o l_{g}
$$

An elementary computation gives

$$
E(\vec{\Phi}):=\int_{\Sigma}|\overrightarrow{\mathbb{I}}|_{g}^{2} \text { dvol }_{g}=\int_{\Sigma}\left|d \vec{n}_{\vec{\Phi}}\right|_{g}^{2}{d \text { vol }_{g}}
$$

This energy E can be hence seen as being the Dirichlet Energy of the Gauss map $\vec{n}_{\vec{\Phi}}$ with respect to the induced metric $g_{\vec{\Phi}}$. The Gauss Bonnet theorem implies that

$$
\begin{equation*}
E(\vec{\Phi}):=\int_{\Sigma}|\overrightarrow{\mathbb{I}}|_{g}^{2} d \text { vol }_{g}=4 \int_{\Sigma}|\vec{H}|^{2}{d v o l_{g}-4 \pi}(\Sigma) \tag{I.1}
\end{equation*}
$$

where $\chi(\Sigma)$ is the Euler characteristic of the surface Σ. The energy

$$
W(\vec{\Phi}):=\int_{\Sigma}|\vec{H}|^{2} d v o l_{g}
$$

[^0]is the so called Willmore energy.
It is well known that the standard unit 2-sphere $S^{2} \subset \mathbb{R}^{3} \subset \mathbb{R}^{m}$ is, modulo the action of homotheties and translations, the unique minimizer of W among all possible immersions of closed 2-dimensionnal manifolds . Our main result in this paper, theorem I. 1 below, reinforces this uniqueness statement by showing roughly that the standard sphere is "isolated" in it's range of energy.

Theorem I. 1 Let $m \geq 3$. There exists $\delta_{m}>0$ such that if $\vec{\Phi}$ is a Willmore immersion from S^{2} into \mathbb{R}^{m} satisfying

$$
W(\vec{\Phi})<4 \pi+\delta_{m}
$$

then a translation of $\vec{\Phi}\left(S^{2}\right)$ is homothetic to the standard sphere S^{2} in \mathbb{R}^{m} and we have

$$
W(\vec{\Phi})=4 \pi
$$

Remark I. 1 It is conjectured that $\delta_{m}=4 \pi$ is the optimal constant for which theorem I. 1 holds. This conjecture was proved already by R. Bryant for $m=3$ in [Bry] and by Montiel for $m=4$ in [Mon].

Remark I. 2 Another type of gap phenomenon, for branched Willmore spheres this time, but similar to this one is one of the main step in proving energy quantization results in $[B R]$.

II Proof of theorem I.1.

Let $\vec{\Phi}_{k}$ be a sequence of Willmore immersions from S^{2} into \mathbb{R}^{m} satisfying

$$
\lim _{k \rightarrow+\infty} W\left(\vec{\Phi}_{k}\right)=4 \pi
$$

By possibly composing $\vec{\Phi}_{k}$ with a diffeomorphism of S^{2} we can assume that $\vec{\Phi}_{k}$ is conformal. From the normalization Lemma A. 4 of [Ri3] together with lemma III. 1 in the same paper (see also [Ri1] section VI.8) we deduce the existence of a sequence of Möbius transformations Ξ_{k} and a lipschitz diffeomorphism f_{k} of S^{2} such that, modulo extraction of a subsequence $\vec{\xi}_{k}:=\Xi_{k} \circ \vec{\Phi}_{k} \circ f_{k}$ weakly converges to a possibly branched weak lipschitz conformal immersion ${ }^{2} \vec{\xi}_{\infty}$ of S^{2} in the following way.

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \mathcal{H}^{2}\left(\Xi_{k} \circ \vec{\Phi}_{k} \circ f_{k}\left(S^{2}\right)\right)<+\infty \quad, \quad \Xi_{k} \circ \vec{\Phi}_{k} \circ f_{k}\left(S^{2}\right) \subset B_{R}(0) \tag{II.2}
\end{equation*}
$$

for some $R>0$ independent of k, and there exists at most finitely many points $\left\{a_{1} \cdots a_{N}\right\}$ in S^{2} such that

$$
\begin{equation*}
\vec{\xi}_{k}:=\Xi_{k} \circ \vec{\Phi}_{k} \circ f_{k} \rightharpoonup \vec{\xi}_{\infty} \quad \text { weakly in } W_{l o c}^{2,2} \cap\left(W_{l o c}^{1, \infty}\right)^{*}\left(S^{2} \backslash\left\{a_{1}, \cdots a_{N}\right\}\right) \tag{II.3}
\end{equation*}
$$

where the convergences are taken w.r.t. $g_{S^{2}}$, the standard metric on S^{2}, moreover

$$
\begin{equation*}
\forall K \text { compact subset of } \Sigma \backslash\left\{a_{1} \cdots a_{N}\right\} \quad \limsup _{k \rightarrow+\infty}\left\|\log \left|d \vec{\xi}_{k}\right|_{g_{S^{2}}}\right\|_{L^{\infty}(K)}<+\infty \tag{II.4}
\end{equation*}
$$

Because of (II.3) and (II.4) we have for any $\delta>0$

$$
\int_{S^{2} \backslash \cup_{i} B_{\delta}\left(a_{i}\right)}\left|\nabla \vec{n}_{\vec{\xi}_{\infty}}\right|_{g_{S^{2}}}^{2} d v o l_{g_{S^{2}}} \leq \liminf _{k \rightarrow+\infty} \int_{S^{2} \backslash \cup_{i} B_{\delta}\left(a_{i}\right)}\left|\nabla \vec{n}_{\vec{\xi}_{k}}\right|_{g_{S^{2}}}^{2} \text { dvol } g_{g_{S^{2}}}
$$

[^1]Simon's monotonicity formula (see [Sim]) implies that

$$
\begin{equation*}
4 \pi \leq \int_{S^{2}}\left|\vec{H}_{\vec{\xi}_{\infty}}\right|^{2} d v o l_{g_{\infty}} \leq \lim _{\delta \rightarrow 0} \frac{1}{4} \int_{S^{2} \backslash \cup_{i} B_{\delta}\left(a_{i}\right)}\left|\nabla \vec{n}_{\vec{\xi}_{\infty}}\right|_{g_{S^{2}}}^{2} \text { dvol } g_{S_{S^{2}}}-\frac{1}{2} \int_{S^{2}} K_{\vec{\xi}_{\infty}} d \text { vol }_{g_{\infty}} \tag{II.5}
\end{equation*}
$$

hence

$$
\begin{equation*}
8 \pi \leq \lim _{\delta \rightarrow 0} \int_{S^{2} \backslash \cup_{i} B_{\delta}\left(a_{i}\right)}\left|\nabla \vec{n}_{\vec{\xi}_{\infty}}\right|_{g_{S^{2}}}^{2} \operatorname{dvol}_{g_{S^{2}}} \tag{II.6}
\end{equation*}
$$

By assumption we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{S^{2}}\left|\nabla \vec{n}_{\vec{\xi}_{k}}\right|_{g_{S^{2}}}^{2} d v o l_{g_{S^{2}}}=8 \pi \tag{II.7}
\end{equation*}
$$

Thus combining (II.5) and (II.7) gives that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{S^{2}}\left|\nabla \vec{n}_{\vec{\xi}_{k}}\right|_{g_{S^{2}}}^{2} d \text { vol }_{g_{S^{2}}}=\int_{S^{2}}\left|\nabla \vec{n}_{\vec{\xi}_{\infty}}\right|_{g_{S^{2}}}^{2} \text { dvol }_{g_{S^{2}}}=8 \pi \tag{II.8}
\end{equation*}
$$

Since $\vec{n}_{\vec{\xi}_{k}}$ is weakly converging towards $\vec{n}_{\vec{\xi}_{\infty}}$, (II.8) implies that the convergence is in fact strong and therefore no bubbling can occur : there is no pint a_{i}. Observe that since the limiting immersion $\vec{\xi}_{\infty}$ satisfies $W\left(\vec{\xi}_{\infty}\right)=4 \pi$, by a classical result (see for instance [Ri1]) we have that $\vec{\xi}\left(S^{2}\right) \subset B_{R}(0)$ is homothetic to the standard $S^{2} \subset \mathbb{R}^{3} \subset \mathbb{R}^{m}$.

Now, since $\vec{\xi}_{k}$ is Willmore and since the L^{2} norm of $d \vec{n}_{\vec{k}_{k}}$ nowhere concentrates we can apply the epsilon regularity for Willmore immersions (theorem I. 5 in $[\operatorname{Ri2}]$) in order to deduce that the convergence of $\vec{\xi}_{k}$ towards $\vec{\xi}_{\infty}$ holds in $C^{l}\left(S^{2}\right)$ norm for any $l \in \mathbb{N}$. Hence after maybe application of a translation and a dilation $\vec{\xi}_{k}\left(S^{2}\right)$ can be parametrized as a graph over S^{2} : there exists a sequence of maps g_{k} from S^{2} into \mathbb{R}^{m-3} and a sequence of function ε_{k} such that if $\vec{\phi}_{k}$ (which is not necessarily conformal) denotes the map from S^{2} into R^{m} given by $\vec{\phi}_{k}(x):=x\left(1+\varepsilon_{k}\right)+g_{k}(x)$
i)

$$
\vec{\phi}_{k}\left(S^{2}\right)=\vec{\xi}_{k}\left(S^{2}\right)
$$

ii)

$$
\forall l \in \mathbb{N} \quad \lim _{k \rightarrow 0}\left\|\varepsilon_{k}\right\|_{C^{l}\left(S^{2}\right)}+\left\|g_{k}\right\|_{C^{l}\left(S^{2}\right)}=0
$$

Modulo again a small translation + dilation we can moreover assume that $\vec{\phi}_{k}\left(S^{2}\right)$ and S^{2} intersect each other at the north pole, North, in a tangent way which reads

$$
\varepsilon_{k}(\text { North })=0 \quad, \quad g_{k}(\text { North })=0 \quad, \quad d \varepsilon_{k}(\text { North })=0 \quad \text { and } \quad d g_{k}(N o r t h)=0 .
$$

We apply now the inversion with respect to the north pole $I_{N}(x):=(x-N o r t h) /|x-N o r t h|^{2}$ and $I_{N}\left(S^{2}\right)$ is equal to the 2-plane P given by $x_{j}=0$ for $j=3 \cdots m$ and the image of $\vec{\phi}_{k}\left(S^{2}\right)$ has become now a graph over the plane P of the form $\left(y_{1}, y_{2}, f_{k}\left(y_{1}, y_{2}\right)\right)$. Assume we have made a translation in order for the north pole to coincide with the origin $(0,0,0)$ prior to apply the inversion and the sphere to which $\vec{\phi}_{k}\left(S^{2}\right)$ converges is the one given by $x_{i}=0$ for $i \geq 4$ and $x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}=1$. Since $\vec{\phi}_{k}\left(S^{2}\right)$ is tangent to the 2-plane $x_{i}=0$ for $i \geq 3$ and since the curvature of $\vec{\phi}_{k}\left(S^{2}\right)$ is uniformly bounded, the intersection of $\vec{\phi}_{k}\left(S^{2}\right)$ with some fixed neighborhood of 0 in \mathbb{R}^{m} is locally given by a graph of the form $\left(x_{1}, x_{2}, a_{k}\left(x_{1}, x_{2}\right)\right)$ and $\left\|a_{k}-1+\sqrt{1-r^{2}}\right\|_{C^{l}} \rightarrow 0$ as $k \rightarrow+\infty$ for any $l \in \mathbb{N}$ - where we denote $r^{2}=x_{1}^{2}+x_{2}^{2}$. Since $\nabla a_{k}(0,0)=0$ and since all derivatives of a_{k} are bounded in a given, small enough neighborhood of 0 the C^{∞} function
given by $h_{k}:=a_{k} / r$ is converging in C^{l} norm towards $h_{\infty}\left(x_{1}, x_{2}\right):=\left(1-\sqrt{1-r^{2}}\right) / r=O(r)$. We shall now give the explicit norm of f_{k} at ∞ in terms of a_{k}. We have

$$
I\left(x_{1}, x_{2}, a_{k}\left(x_{1}, x_{2}\right)\right)=\left(\frac{x_{1}}{r^{2}+a_{k}^{2}}, \frac{x_{2}}{r^{2}+a_{k}^{2}}, \frac{a_{k}}{r^{2}+a_{k}^{2}}\left(x_{1}, x_{2}\right)\right) .
$$

This then gives

$$
f_{k}\left(y_{1}, y_{2}\right)=\frac{a_{k}}{r^{2}+a_{k}^{2}}\left(x_{1}, x_{2}\right) \quad \text { where } \quad y_{i}:=\frac{x_{i}}{r^{2}+a_{k}^{2}}
$$

The change of variable matrix is given by

$$
\begin{equation*}
\nabla_{x} y:=\left(\partial_{x_{i}} y_{j}\right)_{i=1,2}=\frac{1}{r^{2}+a_{k}^{2}}\left(I d-2 \frac{x \otimes x}{r^{2}}-\frac{x \otimes \nabla h_{k}^{2}}{1+h_{k}^{2}}\right) \tag{II.9}
\end{equation*}
$$

We have $\operatorname{det}\left(I d-2 x \otimes x / r^{2}\right)=-1$ and since the coefficients of this matrix are bounded it is uniformly invertible. Since h_{k} is converging in C^{l} norm towards $h_{\infty}\left(x_{1}, x_{2}\right):=\left(1-\sqrt{1-r^{2}}\right) / r=O(r)$ there exists a $\rho>0$ independent of k such that for any $0<r<\rho$

$$
P_{k}:=I d-2 \frac{x \otimes x}{r^{2}}-\frac{x \otimes \nabla h_{k}^{2}}{1+h_{k}^{2}}
$$

is uniformly invertible that is

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty}\left\|P_{k}^{-1}\right\|_{L^{\infty}\left(B_{\rho}^{2}(0)\right)}<+\infty . \tag{II.10}
\end{equation*}
$$

We deduce from it

$$
\begin{equation*}
\left|\left(\nabla_{x} y\right)^{-1}\right|(y) \leq C|y|^{-2} \tag{II.11}
\end{equation*}
$$

Using the fact that $\left|\nabla_{x} P_{k}\right| \leq C r^{-1}$ we deduce, using $\nabla_{x} P_{k}^{-1}=P_{k}^{-1} \nabla_{x} P_{k} P_{k}^{-1}$ that there exists $C>0$ independent of k such that for $0<r<\rho$

$$
\begin{equation*}
\left|\nabla_{x} P_{k}^{-1}\right| \leq C r^{-1} \tag{II.12}
\end{equation*}
$$

We have

$$
\begin{aligned}
\nabla_{y} f_{k} & =\left(\nabla_{x} y\right)^{-1} \nabla_{x}\left(\frac{a_{k}}{r^{2}+a_{k}^{2}}\right)=\left(r^{2}+a_{k}^{2}\right) P_{k}^{-1} \nabla_{x}\left(\frac{a_{k}}{r^{2}+a_{k}^{2}}\right) \\
& =P_{k}^{-1}\left[\nabla_{x} a_{k}-2 \frac{a_{k} \nabla_{x} a_{k}}{r^{2}+a_{k}^{2}}-2 \frac{a_{k} r \nabla_{x} r}{r^{2}+a_{k}^{2}}\right]
\end{aligned}
$$

Since $r^{-2}\left|a_{k}\right|+r^{-1}\left|\nabla_{x} a_{k}\right| \leq C$ on $B_{\rho}(0)$ independently of k one deduces from the previous identity together with (II.10) that there exists a radius $R>0$ such that

$$
\begin{equation*}
\forall y \in \mathbb{R}^{2} \backslash B_{R}(0) \quad, \quad \forall k \in \mathbb{N} \quad\left|\nabla_{y} f_{k}\right|(y) \leq C|y|^{-1} \tag{II.13}
\end{equation*}
$$

Differentiating once more with respect to y gives

$$
\begin{aligned}
\nabla_{y}^{2} f_{k}= & \left(\nabla_{x} y\right)^{-1}\left[\nabla_{x} P_{k}^{-1}\left[\nabla_{x} a_{k}-2 \frac{a_{k} \nabla_{x} a_{k}}{r^{2}+a_{k}^{2}}-2 \frac{a_{k} r \nabla_{x} r}{r^{2}+a_{k}^{2}}\right]\right] \\
& +\left(\nabla_{x} y\right)^{-1}\left[P_{k}^{-1} \nabla_{x}\left[\nabla_{x} a_{k}-2 \frac{a_{k} \nabla_{x} a_{k}}{r^{2}+a_{k}^{2}}-2 \frac{a_{k} r \nabla_{x} r}{r^{2}+a_{k}^{2}}\right]\right]
\end{aligned}
$$

Using again $r^{-2}\left|a_{k}\right|+r^{-1}\left|\nabla_{x} a_{k}\right|+\left|\nabla^{2} a_{k}\right| \leq C$, (II.11), (II.10) and (II.12) we obtain

$$
\begin{equation*}
\forall y \in \mathbb{R}^{2} \backslash B_{R}(0) \quad, \quad \forall k \in \mathbb{N} \quad\left|\nabla_{y}^{2} f_{k}\right|(y) \leq C|y|^{-2} \tag{II.14}
\end{equation*}
$$

Since $\vec{\phi}_{k}\left(S^{2}\right)$ converges as a graph over S^{2} in C^{l} norm to S^{2} and since away from the origin, in the ball $B^{2}(0)$ (which contains $\vec{\phi}_{k}\left(S^{2}\right)$ for k large enough) the inversion with respect to the origin is a diffeomorphim with uniformly bounded differential, we have for any radius $R>0$

$$
\begin{equation*}
\forall l \in \mathbb{N} \quad \lim _{k \rightarrow 0}\left\|f_{k}\right\|_{C^{l}\left(B_{R}(0)\right)}=0 \tag{II.15}
\end{equation*}
$$

From (II.14) and (II.15) we deduce in particular that

$$
\begin{equation*}
\forall r>1 \quad \lim _{k \rightarrow 0} \int_{\mathbb{R}^{2}}\left|\nabla_{y}^{2} f_{k}\right|^{r} d y_{1} d y_{2}=0 \tag{II.16}
\end{equation*}
$$

The mean curvature vector for this graph at the point $\left(y_{1}, y_{2}, f_{k}\left(y_{1}, y_{2}\right)\right)$, that we denote $\vec{H}_{k}\left(y_{1}, y_{2}\right)$ is given by the sum of (2.13) and (2.14) divided by 2 in $[\mathrm{BK}]$. Hence there exists a smooth function \vec{G} from $\left(\mathbb{R}^{2} \otimes \mathbb{R}^{m-2}\right) \times\left(\mathbb{R}^{4} \otimes \mathbb{R}^{m-2}\right)$ such that

$$
\left(\operatorname{det}\left(g_{k}\right)\right)^{1 / 4} \vec{H}_{k}\left(y_{1}, y_{2}\right)=\vec{G}\left(\nabla f_{k}, \nabla^{2} f_{k}\right)
$$

where $\operatorname{det}\left(g_{k}\right)$ is the determinant of the matrix $g_{k, i j}=\delta_{i j}+\partial_{x_{i}} f_{k} \cdot \partial_{x_{j}} f_{k}$. Moreover $\vec{G}(p, q)$ satisfies

$$
\forall q \in \mathbb{R}^{4} \otimes \mathbb{R}^{m-2} \quad \vec{G}(0, q)=\frac{q_{11}+q_{22}}{2} \quad \text { and } \quad \partial_{q_{i j}} \vec{G}(0, q)=\frac{\delta_{i j}}{2}
$$

We deduce in particular that, for any $q \in \mathbb{R}^{4} \otimes \mathbb{R}^{m-2}$ and for any $(i, j) \in\{1,2\}^{2}$, the linear 1-form on \mathbb{R}^{m-2} given by $\left(\vec{G} \cdot \partial_{q_{i j}} \vec{G}\right)(0, q)$ identifies to the following vector of \mathbb{R}^{m-2}

$$
\begin{equation*}
\left(\vec{G} \cdot \partial_{q_{i j}} \vec{G}\right)(0, q)=\delta_{i j} \frac{q_{11}+q_{22}}{2} \tag{II.17}
\end{equation*}
$$

For any fixed $p \in \mathbb{R}^{2} \otimes \mathbb{R}^{m-2}$ we have moreover that $\vec{G}(p, q)$ is a linear form in q which implies

$$
\begin{equation*}
\forall p \in \mathbb{R}^{2} \otimes \mathbb{R}^{m-2} \quad \vec{G}(p, 0)=0 \tag{II.18}
\end{equation*}
$$

The Willmore energy of the graph is moreover equal to

$$
\int_{\mathbb{R}^{2}}\left|\vec{G}\left(\nabla f_{k}, \nabla^{2} f_{k}\right)\right|^{2} d x_{1} d x_{2}
$$

Hence any graph realizing a critical point to this Willmore energy satisfies the following Euler Lagrange system

$$
\begin{equation*}
\sum_{i, j=1}^{2} \partial_{y_{i} y_{j}}^{2}\left(\left(\vec{G} \cdot \partial_{q_{i j}} \vec{G}\right)\left(\nabla f_{k}, \nabla^{2} f_{k}\right)\right)-\sum_{l=1}^{2} \partial_{y_{l}}\left(\left(\vec{G} \cdot \partial_{p_{l}} \vec{G}\right)\left(\nabla f_{k}, \nabla^{2} f_{k}\right)\right)=0 \tag{II.19}
\end{equation*}
$$

Taking

$$
\begin{gathered}
\forall i, j=1,2 \quad \forall p \in \mathbb{R}^{2} \otimes \mathbb{R}^{m-2} \quad \text { and } \quad \forall q \in \mathbb{R}^{4} \otimes \mathbb{R}^{m-2} \\
F_{i j}(p, q):=\left(\vec{G} \cdot \partial_{q_{i j}} \vec{G}\right)(p, q)-\left(\vec{G} \cdot \partial_{q_{i j}} \vec{G}\right)(0, q)
\end{gathered}
$$

and

$$
\begin{aligned}
& \forall l=1,2 \quad \forall p \in \mathbb{R}^{2} \otimes \mathbb{R}^{m-2} \quad \text { and } \quad \forall q \in \mathbb{R}^{4} \otimes \mathbb{R}^{m-2} \\
& \quad L_{l}(p, q):=\left(\vec{G} \cdot \partial_{p_{l}} \vec{G}\right)(p, q)
\end{aligned}
$$

Observe that with our notations, for any p and $q,\left(\vec{G} \cdot \partial_{p_{l}} \vec{G}\right)(p, q)$ is a linear form on \mathbb{R}^{m-2} which identifies canonically to a vector in \mathbb{R}^{m-2}.

The Euler Lagrange system (II.19) becomes then

$$
\begin{equation*}
\Delta^{2} f_{k}=-\sum_{i, j=1}^{2} \partial_{x_{i} x_{j}}^{2}\left(F_{i j}\left(\nabla f_{k}, \nabla^{2} f_{k}\right)\right)+\sum_{l=1}^{2} \partial_{x_{l}}\left(L_{l}\left(\nabla f_{k}, \nabla^{2} f_{k}\right)\right) \tag{II.20}
\end{equation*}
$$

where the $F_{i j}$ and L_{l} are smooth functions such that, for any choice of p and q included in the unit balls of respectively $\mathbb{R}^{2} \otimes \mathbb{R}^{m-2}$ and $\mathbb{R}^{4} \otimes \mathbb{R}^{m-2}$, one has, for any choice of indices,

$$
\begin{equation*}
\left|F_{i j}(p, q)\right| \leq A_{i j}|p||q| \quad \text { and } \quad\left|L_{l}(p, q)\right| \leq B_{l}|q|^{2} \tag{II.21}
\end{equation*}
$$

where $\left(A_{i j}\right)$ and $\left(B_{l}\right)$ are families of positive constants independent of p and q in these unit balls.
Let $2<r<+\infty$. Using the pointwise controls on the $F_{i j}$ and the L_{l} given by (II.21), classical L^{r} estimates in elliptic theory (see for instance [GT] chapter 9) gives the existence of a constant C_{r} independent of k such that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|\Delta f_{k}\right|^{r} d y_{1} d y_{2} \leq C_{r} \int_{\mathbb{R}^{2}}\left|\nabla f_{k}\right|^{r}\left|\nabla^{2} f_{k}\right|^{r} d y_{1} d y_{2}+C_{r}\left(\int_{\mathbb{R}^{2}}\left|\nabla^{2} f_{k}\right|^{2 q} d y_{1} d y_{2}\right)^{r / q} \tag{II.22}
\end{equation*}
$$

where $q^{-1}-2^{-1}=r^{-1}$. Classical interpolation inequality (see for instance [GT] chapter 7) gives

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{2}}\left|\nabla^{2} f_{k}\right|^{2 q} d y_{1} d y_{2}\right)^{1 / 2 q} \leq\left(\int_{\mathbb{R}^{2}}\left|\nabla^{2} f_{k}\right|^{2} d y_{1} d y_{2}\right)^{1 / 4}\left(\int_{\mathbb{R}^{2}}\left|\nabla^{2} f_{k}\right|^{r} d y_{1} d y_{2}\right)^{1 / 2 r} \tag{II.23}
\end{equation*}
$$

Finally classical results on Calderon Zygmund operators (see for instance [GT] chapter 9) give

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|\nabla^{2} f_{k}\right|^{r} d y_{1} d y_{2} \leq C_{r} \int_{\mathbb{R}^{2}}\left|\Delta f_{k}\right|^{r} d y_{1} d y_{2} \tag{II.24}
\end{equation*}
$$

Combining (II.22), (II.23) and (II.24) gives

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|\nabla^{2} f_{k}\right|^{r} d y_{1} d y_{2} \leq C_{r}\left[\left\|\nabla f_{k}\right\|_{\infty}^{r}+\left\|\nabla^{2} f_{k}\right\|_{2}^{r}\right] \int_{\mathbb{R}^{2}}\left|\nabla^{2} f_{k}\right|^{r} d y_{1} d y_{2} \tag{II.25}
\end{equation*}
$$

From (II.13), (II.15) and (II.16) we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|\nabla f_{k}\right\|_{\infty}^{r}+\left\|\nabla^{2} f_{k}\right\|_{2}^{r}=0 \tag{II.26}
\end{equation*}
$$

Thus for k large enough, (II.25) implies that

$$
\nabla^{2} f_{k} \equiv 0 \quad \text { on } \mathbb{R}^{2}
$$

Sine $\nabla f_{k}(y)$ tends to zero as $|y|$ tends to infinity (see II.13) we obtain that

$$
\nabla f_{k} \equiv 0 \quad \text { on } \mathbb{R}^{2}
$$

Thus for k large enough f_{k} is a constant which means that $\vec{\phi}_{k}\left(S^{2}\right)$ is a sphere homothetic to S^{2} and we have in particular $W\left(P \vec{h} i_{k}\right)=W\left(\vec{\xi}_{k}\right)=4 \pi$. Theorem I. 1 is proved.

References

[BK] Bauer, Matthias; Kuwert, Ernst "Existence of minimizing Willmore surfaces of prescribed genus." Int. Math. Res. Not. (2003), no. 10, 553-576.
[Bry] Bryant, Robert L. "A duality theorem for Willmore surfaces." J. Diff. Geom. 20 (1984), no. 1, 23-53.
[BR] Bernard, Yann; Rivière, Tristan "Energy quantization for Willmore surfaces and applications" arxiv:1106.3780 (2011).
[GT] Gilbarg, David; Trudinger, Neil S. "Elliptic partial differential equations of second order". Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[KS1] Kuwert, Ernst; Schätzle, Reiner The Willmore flow with small initial energy. J. Differential Geom. 57 (2001), no. 3, 409441.
[Mon] Montiel, Sebastiàn "Willmore two-spheres in the four-sphere." Trans. Amer. Math. Soc. 352 (2000), no. 10, 4469-4486.
[Ri1] Rivière, Tristan "Conformally Invariant 2-dimensional Variational Problems" Cours joint de l'Institut Henri Poincaré - Paris XII Creteil, Novembre 2010.
[Ri2] Rivière, Tristan "Analysis aspects of Willmore surfaces", Inventiones Math., 174 (2008), no.1, 1-45.
[Ri3] Rivière, Tristan "Variational Principles for immersed Surfaces with L^{2}-bounded Second Fundamental Form." arXiv:1007.2997 july 2010.
[Sim] Leon Simon, Lectures on Geometric Measure Theory, Australian National University Centre for Mathematical Analysis, Canberra, 1983

[^0]: *Mathematisches Institut, Albert-Ludwigs-Universität, 79004 Freiburg, Germany.
 ${ }^{\dagger}$ Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.
 ${ }^{1}$ In order to define $d^{2} \vec{\Phi}(X, Y)$ one has to extend locally the vector X or Y by a vector-field but it is not difficult to check that $\pi_{\vec{n}_{\vec{\Phi}}} d^{2} \vec{\Phi}(X, Y)$ is independent of this extension.

[^1]: ${ }^{2}$ See the notion of weak lipschitz immersions with L^{2} bounded second fundamental form in [Ri1], [Ri3], [BR]...

