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Abstract : In this work we prove the existence of a threshold strictly larger than 4π below which any
Willmore sphere in R

m has to be the image by a translation and an homothetie of the standard sphere
S2. This result was already proved in [KS1] using a different approach.
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I Introduction

Let ~Φ be an immersion of the sphere S2 into R
m. Denote by π~n~Φ

the orthonormal projections of vectors
in R

m onto the m − 2-plane given by ~n~Φ. With these notations the second fundamental form

∀X, Y ∈ TpΣ ~Ip(X, Y ) := π~n~Φ
d2~Φ(X, Y )

1 The mean curvature vector of the immersion at p is given by

~H :=
1

2
trg(~I) =

1

2

[

~I(ε1, ε1) +~I(ε2, ε2)
]

,

where (ε1, ε2) is an orthonormal basis of TpΣ for the metric g~Φ.

In the present paper we are mainly interested with the Lagrangian given by the L2 norm of the second
fundamental form :

E(~Φ) :=

∫

Σ

|~I|2g dvolg ,

An elementary computation gives

E(~Φ) :=

∫

Σ

|~I|2g dvolg =

∫

Σ

|d~n~Φ|2g dvolg .

This energy E can be hence seen as being the Dirichlet Energy of the Gauss map ~n~Φ with respect to the
induced metric g~Φ. The Gauss Bonnet theorem implies that

E(~Φ) :=

∫

Σ

|~I|2g dvolg = 4

∫

Σ

| ~H |2 dvolg − 4π χ(Σ) , (I.1)

where χ(Σ) is the Euler characteristic of the surface Σ. The energy

W (~Φ) :=

∫

Σ

| ~H|2 dvolg ,
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1In order to define d2~Φ(X, Y ) one has to extend locally the vector X or Y by a vector-field but it is not difficult to check

that π~n~Φ
d2~Φ(X, Y ) is independent of this extension.
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is the so called Willmore energy.

It is well known that the standard unit 2-sphere S2 ⊂ R
3 ⊂ R

m is, modulo the action of homotheties
and translations, the unique minimizer of W among all possible immersions of closed 2-dimensionnal
manifolds . Our main result in this paper, theorem I.1 below, reinforces this uniqueness statement by
showing roughly that the standard sphere is ”isolated” in it’s range of energy.

Theorem I.1 Let m ≥ 3. There exists δm > 0 such that if ~Φ is a Willmore immersion from S2 into R
m

satisfying
W (~Φ) < 4π + δm ,

then a translation of ~Φ(S2) is homothetic to the standard sphere S2 in R
m and we have

W (~Φ) = 4π .

�

Remark I.1 It is conjectured that δm = 4π is the optimal constant for which theorem I.1 holds. This
conjecture was proved already by R. Bryant for m = 3 in [Bry] and by Montiel for m = 4 in [Mon]. �

Remark I.2 Another type of gap phenomenon, for branched Willmore spheres this time, but similar to
this one is one of the main step in proving energy quantization results in [BR]. �

II Proof of theorem I.1.

Let ~Φk be a sequence of Willmore immersions from S2 into R
m satisfying

lim
k→+∞

W (~Φk) = 4π .

By possibly composing ~Φk with a diffeomorphism of S2 we can assume that ~Φk is conformal. From the
normalization Lemma A.4 of [Ri3] together with lemma III.1 in the same paper (see also [Ri1] section
VI.8) we deduce the existence of a sequence of Möbius transformations Ξk and a lipschitz diffeomorphism

fk of S2 such that, modulo extraction of a subsequence ~ξk := Ξk ◦ ~Φk ◦ fk weakly converges to a possibly
branched weak lipschitz conformal immersion2 ~ξ∞ of S2 in the following way.

lim sup
k→+∞

H2(Ξk ◦ ~Φk ◦ fk(S2)) < +∞ , Ξk ◦ ~Φk ◦ fk(S2) ⊂ BR(0) (II.2)

for some R > 0 independent of k, and there exists at most finitely many points {a1 · · · aN} in S2 such
that

~ξk := Ξk ◦ ~Φk ◦ fk ⇀ ~ξ∞ weakly in W 2,2
loc ∩ (W 1,∞

loc )∗(S2 \ {a1, · · ·aN}) , (II.3)

where the convergences are taken w.r.t. gS2 , the standard metric on S2, moreover

∀K compact subset of Σ \ {a1 · · ·aN} lim sup
k→+∞

‖ log |d~ξk|g
S2
‖L∞(K) < +∞ (II.4)

Because of (II.3) and (II.4) we have for any δ > 0

∫

S2\∪iBδ(ai)

|∇~n~ξ∞
|2gS2

dvolg
S2

≤ lim inf
k→+∞

∫

S2\∪iBδ(ai)

|∇~n~ξk
|2gS2

dvolg
S2

.

2See the notion of weak lipschitz immersions with L2 bounded second fundamental form in [Ri1], [Ri3], [BR]...
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Simon’s monotonicity formula (see [Sim]) implies that

4π ≤
∫

S2

| ~H~ξ∞
|2 dvolg∞

≤ lim
δ→0

1

4

∫

S2\∪iBδ(ai)

|∇~n~ξ∞
|2gS2

dvolg
S2

− 1

2

∫

S2

K~ξ∞
dvolg∞

(II.5)

hence

8π ≤ lim
δ→0

∫

S2\∪iBδ(ai)

|∇~n~ξ∞
|2gS2

dvolgS2
(II.6)

By assumption we have

lim
k→+∞

∫

S2

|∇~n~ξk
|2gS2

dvolgS2
= 8π (II.7)

Thus combining (II.5) and (II.7) gives that

lim
k→+∞

∫

S2

|∇~n~ξk
|2gS2

dvolg
S2

=

∫

S2

|∇~n~ξ∞
|2gS2

dvolg
S2

= 8π (II.8)

Since ~n~ξk
is weakly converging towards ~n~ξ∞

, (II.8) implies that the convergence is in fact strong and

therefore no bubbling can occur : there is no pint ai. Observe that since the limiting immersion ~ξ∞
satisfies W (~ξ∞) = 4π, by a classical result (see for instance [Ri1]) we have that ~ξ(S2) ⊂ BR(0) is
homothetic to the standard S2 ⊂ R

3 ⊂ R
m.

Now, since ~ξk is Willmore and since the L2 norm of d~n~ξk
nowhere concentrates we can apply the

epsilon regularity for Willmore immersions (theorem I.5 in [Ri2]) in order to deduce that the convergence

of ~ξk towards ~ξ∞ holds in Cl(S2) norm for any l ∈ N. Hence after maybe application of a translation

and a dilation ~ξk(S2) can be parametrized as a graph over S2 : there exists a sequence of maps gk from

S2 into R
m−3 and a sequence of function εk such that if ~φk ( which is not necessarily conformal) denotes

the map from S2 into Rm given by ~φk(x) := x(1 + εk) + gk(x)

i)

~φk(S2) = ~ξk(S2) .

ii)

∀ l ∈ N lim
k→0

‖εk‖Cl(S2) + ‖gk‖Cl(S2) = 0 .

Modulo again a small translation + dilation we can moreover assume that ~φk(S2) and S2 intersect each
other at the north pole, North, in a tangent way which reads

εk(North) = 0 , gk(North) = 0 , dεk(North) = 0 and dgk(North) = 0 .

We apply now the inversion with respect to the north pole IN (x) := (x−North)/|x−North|2 and IN (S2)

is equal to the 2-plane P given by xj = 0 for j = 3 · · ·m and the image of ~φk(S2) has become now a graph
over the plane P of the form (y1, y2, fk(y1, y2)). Assume we have made a translation in order for the

north pole to coincide with the origin (0, 0, 0) prior to apply the inversion and the sphere to which ~φk(S2)

converges is the one given by xi = 0 for i ≥ 4 and x2
1 + x2

2 + (x3 + 1)2 = 1. Since ~φk(S2) is tangent to the

2-plane xi = 0 for i ≥ 3 and since the curvature of ~φk(S2) is uniformly bounded, the intersection of ~φk(S2)
with some fixed neighborhood of 0 in R

m is locally given by a graph of the form (x1, x2, ak(x1, x2)) and
‖ak − 1+

√
1 − r2‖Cl → 0 as k → +∞ for any l ∈ N - where we denote r2 = x2

1 +x2
2. Since ∇ak(0, 0) = 0

and since all derivatives of ak are bounded in a given, small enough neighborhood of 0 the C∞ function
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given by hk := ak/r is converging in Cl norm towards h∞(x1, x2) := (1 −
√

1 − r2)/r = O(r). We shall
now give the explicit norm of fk at ∞ in terms of ak. We have

I(x1, x2, ak(x1, x2)) =

(

x1

r2 + a2
k

,
x2

r2 + a2
k

,
ak

r2 + a2
k

(x1, x2)

)

.

This then gives

fk(y1, y2) =
ak

r2 + a2
k

(x1, x2) where yi :=
xi

r2 + a2
k

.

The change of variable matrix is given by

∇xy := (∂xi
yj)i=1,2 =

1

r2 + a2
k

(

Id − 2
x ⊗ x

r2
− x ⊗∇h2

k

1 + h2
k

)

. (II.9)

We have det(Id − 2x ⊗ x/r2) = −1 and since the coefficients of this matrix are bounded it is uniformly
invertible. Since hk is converging in Cl norm towards h∞(x1, x2) := (1−

√
1 − r2)/r = O(r) there exists

a ρ > 0 independent of k such that for any 0 < r < ρ

Pk := Id − 2
x ⊗ x

r2
− x ⊗∇h2

k

1 + h2
k

is uniformly invertible that is
lim sup
k→+∞

‖P−1
k ‖L∞(B2

ρ(0)) < +∞ . (II.10)

We deduce from it
|(∇xy)−1|(y) ≤ C |y|−2 . (II.11)

Using the fact that |∇xPk| ≤ C r−1 we deduce, using ∇xP−1
k = P−1

k ∇xPk P−1
k that there exists C > 0

independent of k such that for 0 < r < ρ

|∇xP−1
k | ≤ C r−1 . (II.12)

We have

∇yfk = (∇xy)−1 ∇x

(

ak

r2 + a2
k

)

= (r2 + a2
k) P−1

k ∇x

(

ak

r2 + a2
k

)

= P−1
k

[

∇xak − 2
ak ∇xak

r2 + a2
k

− 2
ak r ∇xr

r2 + a2
k

]

.

Since r−2 |ak| + r−1 |∇xak| ≤ C on Bρ(0) independently of k one deduces from the previous identity
together with (II.10) that there exists a radius R > 0 such that

∀y ∈ R
2 \ BR(0) , ∀k ∈ N |∇yfk|(y) ≤ C |y|−1 . (II.13)

Differentiating once more with respect to y gives

∇2
yfk = (∇xy)−1

[

∇xP−1
k

[

∇xak − 2
ak ∇xak

r2 + a2
k

− 2
ak r ∇xr

r2 + a2
k

]]

+(∇xy)−1

[

P−1
k ∇x

[

∇xak − 2
ak ∇xak

r2 + a2
k

− 2
ak r ∇xr

r2 + a2
k

]]

Using again r−2 |ak| + r−1 |∇xak| + |∇2ak| ≤ C, (II.11), (II.10) and (II.12) we obtain

∀y ∈ R
2 \ BR(0) , ∀k ∈ N |∇2

yfk|(y) ≤ C |y|−2 . (II.14)
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Since ~φk(S2) converges as a graph over S2 in Cl norm to S2 and since away from the origin, in the

ball B2(0) (which contains ~φk(S2) for k large enough) the inversion with respect to the origin is a
diffeomorphim with uniformly bounded differential, we have for any radius R > 0

∀ l ∈ N lim
k→0

‖fk‖Cl(BR(0)) = 0 . (II.15)

From (II.14) and (II.15) we deduce in particular that

∀r > 1 lim
k→0

∫

R2

|∇2
yfk|r dy1 dy2 = 0 . (II.16)

The mean curvature vector for this graph at the point (y1, y2, fk(y1, y2)), that we denote ~Hk(y1, y2) is

given by the sum of (2.13) and (2.14) divided by 2 in [BK]. Hence there exists a smooth function ~G from
(R2 ⊗ R

m−2) × (R4 ⊗ R
m−2) such that

(det(gk))1/4 ~Hk(y1, y2) = ~G(∇fk,∇2fk)

where det(gk) is the determinant of the matrix gk,ij = δij + ∂xi
fk · ∂xj

fk. Moreover ~G(p, q) satisfies

∀q ∈ R
4 ⊗ R

m−2 ~G(0, q) =
q11 + q22

2
and ∂qij

~G(0, q) =
δij

2
.

We deduce in particular that, for any q ∈ R
4 ⊗ R

m−2 and for any (i, j) ∈ {1, 2}2, the linear 1-form on

R
m−2 given by (~G · ∂qij

~G)(0, q) identifies to the following vector of R
m−2

(~G · ∂qij
~G)(0, q) = δij

q11 + q22

2
. (II.17)

For any fixed p ∈ R
2 ⊗ R

m−2 we have moreover that ~G(p, q) is a linear form in q which implies

∀p ∈ R
2 ⊗ R

m−2 ~G(p, 0) = 0 . (II.18)

The Willmore energy of the graph is moreover equal to
∫

R2

|~G(∇fk,∇2fk)|2 dx1 dx2 .

Hence any graph realizing a critical point to this Willmore energy satisfies the following Euler Lagrange
system

2
∑

i,j=1

∂2
yi yj

(

(~G · ∂qij
~G)(∇fk,∇2fk)

)

−
2

∑

l=1

∂yl

(

(~G · ∂pl
~G)(∇fk,∇2fk)

)

= 0 . (II.19)

Taking
∀ i, j = 1, 2 ∀p ∈ R

2 ⊗ R
m−2 and ∀q ∈ R

4 ⊗ R
m−2

Fij(p, q) := (~G · ∂qij
~G)(p, q) − (~G · ∂qij

~G)(0, q)

and
∀ l = 1, 2 ∀p ∈ R

2 ⊗ R
m−2 and ∀q ∈ R

4 ⊗ R
m−2

Ll(p, q) := (~G · ∂pl
~G)(p, q)

Observe that with our notations, for any p and q, (~G ·∂pl
~G)(p, q) is a linear form on R

m−2 which identifies
canonically to a vector in R

m−2.
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The Euler Lagrange system (II.19) becomes then

∆2fk = −
2

∑

i,j=1

∂2
xi xj

(

Fij(∇fk,∇2fk)
)

+

2
∑

l=1

∂xl

(

Ll(∇fk,∇2fk)
)

, (II.20)

where the Fij and Ll are smooth functions such that, for any choice of p and q included in the unit balls
of respectively R

2 ⊗ R
m−2 and R

4 ⊗ R
m−2, one has, for any choice of indices,

|Fij(p, q)| ≤ Aij |p| |q| and |Ll(p, q)| ≤ Bl |q|2 , (II.21)

where (Aij) and (Bl) are families of positive constants independent of p and q in these unit balls.

Let 2 < r < +∞. Using the pointwise controls on the Fij and the Ll given by (II.21), classical
Lr estimates in elliptic theory (see for instance [GT] chapter 9) gives the existence of a constant Cr

independent of k such that

∫

R2

|∆fk|r dy1 dy2 ≤ Cr

∫

R2

|∇fk|r |∇2fk|r dy1 dy2 + Cr

(
∫

R2

|∇2fk|2q dy1 dy2

)r/q

, (II.22)

where q−1 − 2−1 = r−1. Classical interpolation inequality (see for instance [GT] chapter 7) gives

(
∫

R2

|∇2fk|2q dy1 dy2

)1/2q

≤
(

∫

R2

|∇2fk|2 dy1 dy2

)1/4 (
∫

R2

|∇2fk|r dy1 dy2

)1/2r

. (II.23)

Finally classical results on Calderon Zygmund operators (see for instance [GT] chapter 9) give

∫

R2

|∇2fk|r dy1 dy2 ≤ Cr

∫

R2

|∆fk|r dy1 dy2 . (II.24)

Combining (II.22), (II.23) and (II.24) gives

∫

R2

|∇2fk|r dy1 dy2 ≤ Cr

[

‖∇fk‖r
∞ + ‖∇2fk‖r

2

]

∫

R2

|∇2fk|r dy1 dy2 . (II.25)

From (II.13), (II.15) and (II.16) we have

lim
k→+∞

‖∇fk‖r
∞ + ‖∇2fk‖r

2 = 0 (II.26)

Thus for k large enough, (II.25) implies that

∇2fk ≡ 0 on R
2.

Sine ∇fk(y) tends to zero as |y| tends to infinity (see II.13) we obtain that

∇fk ≡ 0 on R
2.

Thus for k large enough fk is a constant which means that ~φk(S2) is a sphere homothetic to S2 and we

have in particular W ( ~Phik) = W (~ξk) = 4π. Theorem I.1 is proved. �
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