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Abstract : We give an asymptotic lower bound for the Willmore energy of weak immersions with
degenerating conformal class. This lower bound is used in several other works. It is for instance one of
the ingredients used in [Ri3] for providing an alternative proof of the one by L. Simon of the existence
of a smooth torus minimizing the Willmore energy. The main result of the present paper has been
independently obtained in [KuLi].
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I Introduction

In [Ri3] the author introduced a suitable framework for proceeding to the calculus of variations of Willmore
Lagrangian of a surface. To that aim he introduced the space of Lipschitz immersions with L2−bounded
second fundamental forms.

Let g0 be a reference smooth metric on Σ. One defines the Sobolev spaces W k,p(Σ, Rm) of measurable
maps from Σ into R

m in the following way

W k,p(Σ, Rm) =

{

f meas. Σ → R
m s.t.

k
∑

l=0

∫

Σ

|∇lf |pg0
dvolg0

< +∞

}

Since Σ is assumed to be compact it is not difficult to see that this space is independent of the choice we
have made of g0.

First we need to have a weak first fundamental form that is we need ~Φ∗gRm to define an L∞ metric
with a bounded inverse. The last requirement is satisfied if we assume that ~Φ is in W 1,∞(Σ) and if d~Φ

has maximal rank 2 at every point with some uniform quantitative control of ”how far” d~Φ is from being
degenerate : there exists c0 > 0 s.t.

|d~Φ ∧ d~Φ|g0
≥ c0 > 0 . (I.1)

where d~Φ ∧ d~Φ is a 2-form on Σ taking values into 2-vectors from R
m and given in local coordinates by

2 ∂x
~Φ ∧ ∂y

~Φ dx ∧ dy. The condition (I.1) is again independent of the choice of the metric g0 . For a
Lipschitz immersion satisfying (I.1) we can define the Gauss map as being the following measurable map
in L∞(Σ) taking values in the Grassmanian of oriented m − 2-planes in R

m.

~n~Φ := ⋆
∂x

~Φ ∧ ∂y
~Φ

|∂x
~Φ ∧ ∂y

~Φ|
.
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We then introduce the space EΣ of Lipschitz immersions1 of Σ with bounded second fundamental form
as follows :

EΣ :=















~Φ ∈ W 1,∞(Σ, Rm) s.t. ~Φ satisfies (I.1) for some c0

and

∫

Σ

|d~n|2g dvolg < +∞















.

Where g := ~Φ∗gRm is the pull back by ~Φ of the flat canonical metric gRm of R
m and dvolg is the volume

form associated to g.

It is proved in [Ri1] that any Lipschitz immersion ~Φ in EΣ defines a smooth conformal structure on Σ.
A conformal structure c being given on the two manifold Σ we define Ec

Σ to be the subspace of E made of
weak immersions which are conformal with respect to c. The conformal class to which c belongs to will
be denoted [c].

Let ~Φ be in EΣ. Denote by π~n~Φ
the orthonormal projections of vectors in R

m onto the m − 2-plane
given by ~n~Φ. With these notations the second fundamental form

∀X, Y ∈ TpΣ ~Ip(X, Y ) := π~n~Φ
d2~Φ(X, Y )

2 The mean curvature vector of the immersion at p is given by

~H :=
1

2
trg(~I) =

1

2

[

~I(ε1, ε1) +~I(ε2, ε2)
]

,

where (ε1, ε2) is an orthonormal basis of TpΣ for the metric g~Φ.

In the present paper we are mainly interested with the Lagrangian given by the L2 norm of the second
fundamental form :

E(~Φ) :=

∫

Σ

|~I|2g dvolg ,

An elementary computation gives

E(~Φ) :=

∫

Σ

|~I|2g dvolg =

∫

Σ

|d~n~Φ|
2
g dvolg .

This energy E can be hence seen as being the Dirichlet Energy of the Gauss map ~n~Φ with respect to the
induced metric g~Φ. The Gauss Bonnet theorem implies that

E(~Φ) :=

∫

Σ

|~I|2g dvolg = 4

∫

Σ

| ~H |2 dvolg − 4π χ(Σ) , (I.2)

where χ(Σ) is the Euler characteristic of the surface Σ. The energy

W (~Φ) :=

∫

Σ

| ~H|2 dvolg ,

is the so called Willmore energy

In [Ri3] we studied the existence minimizers of W in EΣ with or without constraints on the conformal

class c realized by ~Φ. We provided in particular a new flexible approach for proving L.Simon’s result of
the existence of a minimizer for Σ being the torus. Following [Si] we denote

βm
g := inf

{

W (~Φ) ; ~Φ is an immersion of the genus g closed surface
}

.

1We will also simply call these immersions : weak immersions.

2In order to define d2~Φ(X, Y ) one has to extend locally the vector X or Y by a vector-field but it is not difficult to check

that π~n~Φ
d2~Φ(X, Y ) is independent of this extension.
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and

ωm
g := min

{

4π +

p
∑

i=1

(βm
gi

− 4π) ; g = g1 + · · · gp , 1 ≤ gi < g

}

.

In [BK] it is proved that for g ≥ 2
βm

g < ωm
g . (I.3)

In [Ri3] we gave the existence of a smooth minimizer of the Willmore energy in EΣ for an arbitrary closed
2-manifold Σ provided the conformal class defined by some minimizing sequence is not degenerating.
This fact is then garantteed by the following result which has been proved first for m = 3, 4 in [KS1] has
also been independently proved in [KuLi] for general m.

Theorem I.1 Let (Σ, ck) be a sequence of closed riemann surface of genus g but with degenerating

conformal class [ck] diverging to the boundary of the Moduli Space of Σ. Let ~Φk be a sequence of conformal
immersions in EΣ then

lim inf
k→+∞

∫

Σ

| ~H~Φk
|2 dvol~Φ∗

kgRm
≥ min{8π, ωm

g } . (I.4)

�

This result plays a crucial role in [?] for proving the compactness of Willmore surfaces below min{8π, ωm
g }

modulo the action of conformal diffeomorphisms.

One of the main tool we are using for proving (I.4) is the following consequence of Simon’s monotonicity
formula with boundary which was probably known by the experts in the field but for which we still give
a proof below.

Lemma I.1 Let Σ be a compact surface with boundary. Let ~Φ be a weak immersion in EΣ then the
following inequality holds

4π ≤

∫

M

| ~H |2 dvolg + 2
H1(∂M)

d(∂M, M)
, (I.5)

where H1(∂M) is the 1-dimensional Haussdorf measure of the boundary of the immersion ∂M and d is
the usual distance3 between two sets. �

Observe that the inequality is optimal since it is an equality for M being the flat 2 dimensional disc.

II The normalization procedure.

The aim of this section is to prove the ”normalization” result proposition II.1 . This result asserts that
a sequence of conformal immersions ~Φk of EΣ realizing a degenerating sequence of conformal classes on
Σ being given, either (I.4) holds or, for any connected component σ of the limit Σ topologically obtained

from Σ by removing collapsing geodesics for the constant Gauss curvature associated to (Σ, ~Φ∗
kgRm), one

can find a sequence of Möbius transformations Ξk of R
m such that , away from possibly finitely many

blow up points on σ, the sequence of immersion Ξk ◦ ~Φk converges weakly on σ in W 2,2 ∩ (W 1,∞)∗ (with
respect to some reference constant Gauss curvature metric) to a non constant conformal immersion of
the component σ.

3Let A and B be two sets in R
m we define

d(A, B) := sup
p∈A

inf
q∈B

|p − q| + sup
p∈A

inf
q∈B

|q − p| .
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The proof of this normalization result will be a consequence of Deligne-Mumford’s description of the
loss of compactness of the conformal class for a sequence of riemann surfaces, the three point renor-
malization lemma A.1, the Simon’s monotonicity formula with boundary and Müller-Sverak-Hélein local
control of conformal factors.

First we recall Deligne-Mumford’s description of the loss of compactness of the conformal class for a
sequence of riemann surfaces with a fixed topology (see for instance [Zh] and proposition 5.1 of [Hum]).
We restrict below in the presentation of the proof to the more complex case where genus(Σ) > 1, the
case of tori is following the same lines and is easier to present.

Let (Σ, ck) be a sequence of closed riemann surface of fixed topology g(Σ) > 1. Denote by hk the

hyperbolic metric associated to ck. Let ~Φk a sequence of immersions in EΣ with uniformly bounded
energy. Then, modulo extraction of a subsequence, there exists

• i) an integer n ∈ N∗

• ii) a sequence Lk = lik ; i = 1 · · ·N of finitely many pairwise disjoint simple closed geodesics of
(Σ, hk) with length converging to zero.

• iii) a closed riemann surface (Σ, c).

• iv) a complete hyperbolic riemann surface (Σ̃, h̃) with 2n cusps {qi}i=1···n = {(qi
1, q

i
2)}i=1···n -

or punctures - and no boundary such that Σ̃ has been obtained topologically after removing the
geodesics Lk and after closing each component of the boundary of the open surface Σ \ Lk by
adding a puncture qi

l at each of these components. Moreover Σ is topologically equal to Σ̃ and

the complex structure defined by h̃ on Σ̃ \ {qi} extends uniquely to c (i.e. there exists a conformal
diffeomorphism from (Σ̃ \ Lk, h̃) into (Σ \ {qi}i=1···n, c)).

(Σ̃, h̃) is called the nodal surface of the converging sequence and (Σ, c) is it’s renormalization. These
objects are related with another by the mean of a sequence of continuous maps φk from (Σ̃ \∪iq

i, h̃) into
(Σ \ Lk, hk) such that

• [1] φk realizes a C∞
loc diffeomorphism from (Σ̃ \ ∪iq

i, h̃) into (Σ \ Lk, hk),

• [2] h̃k := φ∗
khk converges in C∞

loc topology on Σ̃ \ ∪iq
i to h̃.

Now, under the notations above, the aim of this section is to prove the following proposition.

Proposition II.1 Let (Σ, ck) be a sequence of closed riemann surface of fixed topology g(Σ) > 1 with

degenerating conformal class ck. And let ~Φk be a sequence of weak immersions of Σ with L2−bounded
second fundamental form (i.e. ~Φk ∈ EΣ). Then either

lim inf
k→+∞

∫

Σ

| ~H~Φk
|2 dvol~Φ∗

kgRm
≥ 8π . (II.6)

or, if this is not true, then for any connected component σ of Σ̃ and there exists a subsequence still denoted
~Φk and a subsequence of Moebius transformations Ξk of R

m such that

Ξk ◦ ~Φk(Σk) ⊂ BR(0) (II.7)

moreover
H2(Ξk ◦ ~Φk(Σk)) ≤ C R2 sup

k
W (~Φk) , (II.8)

where R and C only depend on m, and there exists at most finitely many points {a1, · · · , aN} of σ such

that, if we denote ~ξk := Ξk ◦ ~Φk ◦ φk, then

~ξk ⇀ ~ξ∞ weakly in W 2,2
loc

(

σ ∩ Σ̃ \ {a1, · · · , aN} ∪ {q1, · · · , qn}, h̃
)

(II.9)
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and moreover, for any compact K ⊂ σ ∩ Σ̃ \ {a1 · · ·aN} ∪ {q1, · · · , qn} there exists CK > 0 such that

sup
k∈N

‖ log |d~ξk|φ∗

khk
‖L∞(K) ≤ CK < +∞ . (II.10)

and the limit ~ξ∞ is an element of Ec
σ : it realizes a non constant weak conformal immersion of (σ ∩Σ, c)

into BR(0). �

Proof of proposition II.1.
We work of course under the assumption that

∫

Σ

| ~H~Φk
|2 dvol~Φ∗

k
gRm

< 8π (II.11)

Let P1, P2 and P3 be three distinct points in a given component σ̃ of Σ̃ \ {q1, · · · , qn}. We apply the

3-points renormalization lemma A.1 to ~Φk on Σ for the three points φk(P1), φk(P2) and φk(P3) and we
obtain the existence of a Möbius transformation Ξk such that

Ξk ◦ ~Φk(Σk) ⊂ BR(0) (II.12)

moreover
∀i 6= j |Ξk ◦ ~Φk ◦ φk(Pi) − Ξk ◦ ~Φk ◦ φk(Pj)| ≥ r > 0 , (II.13)

and
H2(Ξk ◦ ~Φk(Σk)) ≤ C R2 sup

k
W (~Φk) , (II.14)

where R, r and C are positive constants depending only on m since (II.11) holds.

We denote ~ξk the conformal immersion from (Σ̃, h̃k = φ∗
khk) given by ~ξk := Ξk ◦ ~Φk ◦φk. Let δ > 0 be

a small positive constant and denote by Σ̃δ := Σ̃ \∪n
j=1B

h
δ (qj) where Bh

δ (qj) is the geodesic ball in (Σ, h)

of radius δ and center qj . On Σ̃δ there exists an L∞ bounded smooth function l such that h̃ = el h.
To each p ∈ Σ̃δ we assign ρp > 0 such that

∫

Bh̃
ρp

(p)

|d~n~ξk
|2
h̃k

dvolh̃k
=

∫

Bh
ρp

(p)

|d~n~ξk
|2gk

dvolgk
= 8π/3 ,

where Bh̃
ρp

(p) is the geodesic ball in (Σ̃, h̃) of center p and radius ρp and gk := ~ξ∗kgRm .

We extract a Besicovitch covering : each point in Σ̃δ is covered by at most N of such balls where N
only depends on (Σ̃δ, h̃). Since

∫

Σ̃
|d~n|2gk

dvolgk
is uniformly bounded independent of k the number of

balls in the extracted Besicovitch covering has to be uniformly bounded independently of k.
Let (Bρi

k
(pi

k))i∈I be this finite covering (we shall omit now the superscript h̃). We can extract a

subsequence such that I is independent of k, such that each pi
k converges to a limit pi

∞ and each ρi
k

converges to a limit ρi
∞. Let

I0 := {i ∈ I s. t. ρi
∞ = 0} .

Let I1 := I \ I0. It is clear that the union of the closures of the balls ∪i∈I1Bρi
∞

(pi
∞) covers Σ̃δ. Because

of the strict convexity of the balls (the metric h̃ has constant curvature either 0 or −1) the points in Σ̃δ

which are not contained in the union of the open balls ∪i∈I1Bρi
∞

(pi
∞) cannot accumulate and therefore

are isolated and hence finite. Denote

{a1 · · · aN} := Σ̃δ \ ∪i∈I1Bρi
∞

(pi
∞) . (II.15)

We prove now that the following claim holds.
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Claim 1. On the connected component σ̃ of Σ̃ either there exists a subsequence k′ such that for any
compact K ⊂ σ̃ ∩ Σ̃δ \ {a1 · · · aN}

sup
k′∈N

‖ log |d~ξk′ |h̃k′
‖L∞(K) < +∞ . (II.16)

or for any compact K ⊂ σ̃ ∩ Σ̃δ \ {a1 · · · aN}

log |d~ξk|h̃k
→ −∞ uniformly on K (II.17)

Proof of claim 1.
Let i ∈ I1. For such an i we consider on the ball Bρi

k
(pi

k) conformal coordinates (xi
k, yi

k) ∈ D2 for the

metric h̃k which converge in C∞−norm to conformal coordinates (x∞, y∞) for h̃ (this is clearly possible
since the sequence of metrics h̃k converge to h̃ in C∞ norm). Denote by f i

k the inverse of (xi
k, yi

k) (i.e. f i
k

is then a conformal diffeomorphism from D2 into (Bρi
k
(pi

k), h̃k)). Due to conformal invariance one has

∫

D2

|∇~n~ξk◦fi
k
|2 dx dy =

∫

Bh

ρi
k

(pi
k
)

|d~n|2hk
dvolhk

=

∫

Bh

ρi
k

(pi
k
)

|d~n|2gk
dvolgk

= 8π/3

and therefore ~ξk ◦ f i
k satisfies all the assumptions of lemma A.2. We then apply lemma A.2 and since f i

k

converges in C∞−norm to some limiting conformal coordinates from D2 into Bh
ρi
∞

(pi
∞) we deduce the

following alternative :

either there exists a subsequence k′ such that for any compact K ⊂ Bh
ρi
∞

(pi
∞)

lim sup
k′∈N

‖ log |d~ξk′ |h̃k′
‖L∞(K) < +∞ . (II.18)

or for any compact K ⊂ Bh
ρi
∞

(pi
∞)

log |d~ξk|h̃k
→ −∞ uniformly on K (II.19)

This alternative holds on any ball Bh
ρi
∞

(pi
∞), it is then clear that, since none of this ball is ”separated”

from the others in a given connected component of Σ̃, the claim 1 is proved.

We are now going to prove the following claim :

Claim 2. If the second alternative of claim 1, (II.17), holds on σ̃ then (II.6) holds :

lim inf
k→+∞

∫

Σ

| ~H~Φk
|2 dvol~Φ∗

kgRm
≥ 8π .

Proof of claim 2.
Assuming the second alternative (II.17) of claim 1 implies that, modulo extraction of a subsequence,

the complement of {a1, · · · , aN} in σ ∩ Σ̃δ is collapsing to a point Q ∈ BR(0).
Because of (II.13), among the three points P1, P2 and P3 we need at least two Pj to coincide with

two distinct blowing points ai, say P1 = a1 and P2 = a2, and such that

for i = 1, 2 lim inf
k→+∞

|~ξk(Pi) − Q| ≥ r/2 > 0 (II.20)
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Let s > 0 such that the different balls Bh̃k
s (ai) included in Σ̃δ are disjoint. Consider M i

k := ~ξk(Bh̃k
s (ai))

and take conformal coordinates (xi
k, yi

k) ∈ D2 for the metric h̃k which converge in C∞−norm to conformal

coordinates (x∞, y∞) for h̃ (this is clearly possible since the sequence of metrics h̃k converge to h̃ in C∞

norm). Denote by f i
k the inverse of (xi

k, yi
k) (i.e. f i

k is then a conformal diffeomorphism from D2 into

(Bh̃k
s (ai), h̃k)) We have in these coordinates that

H1(∂M i
k) =

∫

∂D2

eλi
k dθ .

where λi
k = log |∂theta~ξk ◦ f i

k| combining the fact that s is fixed, and the fact that h̃k converges in

any Cl norm to a limiting metric h̃ we have that ∂M i
k stays contained in a compact subset K of Σ̃δ \

{a1 · · · aN}. Since moreover f i
k and it’s inverse converge strongly in any Cl norm to a limiting conformal

parametrization of Bh̃
s (ai) and since we are assuming that the second alternative (II.17) of claim 1 holds

we deduce that
λi

k −→ −∞ uniformly on ∂D2 .

Thus we have that
lim

k→+∞
H1(∂M i

k) = 0 (II.21)

Consider now the monotonicity formula (A.13) for M1
k (resp. M2

k ) and ~x0 = ~ξk(P1) (resp. ~x0 = ~ξk(P2).
For a fixed k we make t → 0. Since

1

t2

∫

Mi
k
∩Bt(~x0)

< ~x − ~x0, ~H~ξk
> dvolgk

≤
(

t−2Area(M i
k ∩ Bt(~x

0)
)1/2

W (~ξk(Σ̃) ∩ Bt(~x
0))

and since t−2Area(M i
k ∩Bt(~x

0)) is uniformly bounded (from the classical monotonicity formula without

boundary) and since clearly W (~ξk(Σ̃) ∩ Bt(~x
0)) → 0 we deduce that for a fixed k

lim
t→+∞

1

t2

∫

Mi
k∩Bt(~x0)

< ~x − ~x0, ~H~ξk
> dvolgk

= 0 . (II.22)

Since ~x0 = ~ξk(P1) belongs to the interior of M i
k, using again the classical monotonicity formula without

boundary for ~Φk(Σ) we have that

lim inf
t→0

t−2 Area(M i
k ∩ Bt(~x

0)) ≥ π (II.23)

It is clear that

lim
t→0

−
1

2

∫

∂Mi
k∩BT (~x0)

1

ρ2
t

< ~x− ~x0, ~ν > dl∂Mi
k

= −
1

2

∫

∂Mi
k∩BT (~x0)

1

|~x − ~x0|2
< ~x− ~x0, ~ν > dl∂Mi

k
(II.24)

Hence by combining (II.22...(II.24) and making T → +∞ in (A.13) gives

1

4

∫

Mi
k

| ~H |2 dvolg ≥ π −
1

2

∫

∂Mi
k

1

|~x − ~x0|2
< ~x − ~x0, ~ν > dl∂Mi

k
. (II.25)

Since for i = 1, 2 one has (II.20) and since the boundary of M i
k is converging to Q, for k large enough

one has
for i = 1, 2 ∀~x ∈ ∂M i

k r/4 ≤ |~x − ~x0| ≤ 2R
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Inserting this information in (II.25) gives

for i = 1, 2
1

4

∫

Mi
k

| ~H|2 dvolg ≥ π −
8 R

r2
H1(∂M i

k) (II.26)

Since (II.21) holds and since M1
k and M2

k are disjoint we have proved (II.6) and claim 2 is proved.

Assuming now that (II.6) would not hold then there exists a subsequence k′ such that for the chosen
component σ of Σ̃ one has (II.10) : for any compact K in σ \ {a1 · · · aN} ∪ {q1, · · · , qn} one has

lim sup
k′∈N

‖ log |d~ξk′ |h̃k′
‖L∞(K) < +∞ .

Since h̃k strongly converges to h̃ and since h̃ and h are comparable norms away from the punctures
{q1, · · · , qn}, one has that for any compact K in σ \ {a1 · · ·aN} ∪ {q1, · · · , qn}

lim sup
k′∈N

‖ log |d~ξk′ |h‖L∞(K) < +∞ . (II.27)

Since the area of ~ξk′ (Σ̃) is uniformly bounded ( see (II.14)), the W 1,2 norm of ξ̃k is uniformly bounded

with respect to the norm gk = ~ξ∗kgRm as well as with respect to the norm h̃k since these two metrics are
conformally equivalent and one has

∫

Σ̃

|d~ξk′ |2
h̃k′

dvolh̃k′
≤ CR2 sup

k
W (~Φk) . (II.28)

Since h̃k converges strongly to h̃ away from the punctures one has that for any compact K ⊂ σ \
{q1, · · · , qn}

∣

∣

∣

∣

∫

K

|d~ξk|
2
h̃k

−

∫

K

|d~ξk|
2
h̃

∣

∣

∣

∣

−→ 0

And since tih and h are conformally equivalent one has
∣

∣

∣

∣

∫

K

|d~ξk|
2
h̃k

−

∫

K

|d~ξk|
2
h

∣

∣

∣

∣

−→ 0 (II.29)

Combining (II.28) and (II.29) gives then that, modulo extraction of a subsequence ~ξk converges weakly

in W 1,2
loc (σ \ {q1, · · · , qn}) to a limit ~ξ∞ moreover

∫

Σ̃

|d~ξ∞|2
h

dvolh ≤ CR2supkW (~Φk) . (II.30)

This last inequality implies that ~ξ∞ ∈ W 1,2(σ, h). Since (II.27) holds, using very classical arguments of
functional analysis - see for instance [Ri1] beginning of section VI.7.1 - one obtains the following fact

~ξk ⇀ ~ξ∞ weakly in W 2,2
loc

(

σ \ {a1, · · · , aN} ∪ {q1, · · · , qn}, h̃
)

(II.31)

Moreover ~ξ∞ is a weak immersion away from {a1, · · · , aN} ∪ {q1, · · · , qn} satisfying
∫

σ

|d~n~ξ∞
|2
h

dvolh ≤ lim inf
k′→+∞

∫

σ

|d~n~ξk′

|2
h̃k′

dvolh̃k′
< +∞ (II.32)

Using now Lemma A.5 of [Ri3] permits to extend ~ξ∞ as a conformal, possibly branched, immersion of σ.
If there is one branched point, then, arguing as in [Ri3] end of section 3 we would obtain that

8π ≤ W (~ξ∞(σ)) ≤ lim inf
k′→+∞

W (~ξk′ (σ)) ≤ lim inf
k′→+∞

W (~Ξk′ ◦ ~Φk′(Σ)) = lim inf
k′→+∞

W (~Φk′ (Σ))

which contradicts our assumption that (II.21) does not hold. Hence ~ξ∞ extends to a weak conformal
immersion with L2−bounded second fundamental form all over σ. �
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III Proof of theorem I.1.

Assume that the assumptions theorem I.1 are fulfiled and that (II.21) does not hold.

Let (σj)j=1···M be the connected components of Σ̃.

Consider the sequence ~ξk := Ξ1
k ◦ ~Φk ◦ φk given by proposition II.1 for the component σ1. Let

{a1, · · · aN} be the possible blow-up points for of ~ξk on σ1 and let (qj)j∈J1 be the punctures of (σ1, h̃)
and denote for any δ > 0

σ1
δ = σ1 \ ∪N

i=1B
h
δ (ai) ∪j∈J Bh

δ (qj) .

Because of the convergences (II.9) and (II.10) we have

lim
δ→0

lim inf
k→+∞

W (~ξk(σ1
δ )) ≥ W (~ξ∞(σ1)) .

Observe first that
∀j 6= j′ ∈ J ~ξ∞(qj) 6= ~ξ∞(qj′ ) . (III.1)

Indeed if it would not be the case, using Li Yau inequality we would obtain

8π ≤ W (~ξ∞(σ1)) ≤ lim inf
k′→+∞

W (~ξk′ (σ1)) ≤ lim inf
k′→+∞

W (~Ξk′ ◦ ~Φk′ (Σ)) = lim inf
k′→+∞

W (~Φk′ (Σ))

Claim 1. Assume there is a node qj1 for j1 ∈ J1 such that Σ̃∪∪j 6=j1q
j is not disconnected then we claim

that (II.21) holds which contradict our assumption.

Proof of claim 1. Because of (III.1) the image of the complement of σ1 by ~ξk is connecting at the limit

two distinct points of R
m images of two punctures of σ1 by ~ξ∞.

For any δ > 0 small enough, we cut the surface Σ in two separated surfaces with boundaries : in one
hand we consider

Σ+
δ := φk(σ \ ∪j∈J1Bh

δ (qj)) ⊂ Σ ,

and in the other hand we consider
Σ−

δ := Σ \ Σ+
δ .

We split the immersions Ξ1
k ◦ ~Φk according to this decomposition for some δ to be fixed later on. We

observe that, since ~ξk converges weakly in (W 1,∞
loc (σ1\[{a1 · · · aN}∪{qj}j∈J1 ]))∗ we have that ~ξk converges

strongly in Cloc(σ
1 \ [{a1 · · ·aN} ∪ {qj}j∈J1 ]). Hence for any δ > 0

∀j ∈ J1 lim
k→+∞

sup
2−1 δ<t<δ

d(~ξk(∂Bh
t (qj)), ~ξk(∂Bh

t (qj))) = 0 (III.2)

where d is the usual distance between two sets in R
m defined in the introduction.

Since h̃k is converging in C∞ norm to the metric h̃ in Bh
δ (qj) \ Bh

δ/2(q
j) which is itself conformally

equivalent to the smooth constant scalar curvature metric h in Bh
δ (qj)) We can construct conformal

coordinates (xj
k, yj

k) for the metric h̃k in Bh
δ (qj) \ Bh

δ/2(q
j) converging in C∞ norm to some limiting

(xj
∞, yj

∞) conformal coordinates for the metric h̃ (and hence also for the metric h). Denote f j
k the inverse

of (xj
k, yj

k) and f j
∞ it’s limit. We can moreover choose (xj

k, yj
k) in such a way that (xj

∞, yj
∞) goes from

Bh
δ (qj) \ Bh

δ/2(q
j) into some annulus in the plane D2

δ \ D2
cδ (c > 0 since h is smooth around qj and

conformally equivalent to (f j
∞)−1(dx2 + dy2)).

Denote λk := log |∂x(~ξk ◦ f j
k)| = log |∂y(~ξk ◦ f j

k)|. The uniform bound on the area (II.8) gives that
∫

D2

δ\D2

cδ

e2λk ≤ C R2 . (III.3)
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Since the convergence of ~ξk holds true also weakly in W 2,2
loc (σ1 \{a1 · · ·aN}∪∪j∈J{qj}, h) and since (II.10)

holds too, one has

lim
k→+∞

∫

D2

δ\D2

cδ

|λk − λ∞|2 = 0 . (III.4)

The combination of (III.3) and (III.4) give that

lim
k→+∞

∫

D2

δ\D2

cδ

|eλk − eλ∞ | = 0 . (III.5)

Hence there exists αk ∈ (c, 1) such that

lim
k→+∞

∫

∂D2

αkδ

|eλk − eλ∞ | = 0 . (III.6)

Since ~ξ∞ ∈ EΣ, ~ξ∞ ◦ f j
∞ ∈ W 1,∞(D2) and eλ∞ ∈ L∞(D2). Thus

∫

D2

αkδ

eλ∞ = O(δ) (III.7)

Combining (III.6) and (III.7) we obtain that there exists C > 0 such that for any j ∈ J and for any δ > 0
there exists kδ ∈ N verifying

∀k ≥ kδ ∃ αj
k ∈ (1/2, 1) s.t. H1(~ξk(∂Bh

αj
kδ

)) ≤ C δ (III.8)

Since there is a node qj1 for j1 ∈ J1 such that Σ̃ ∪ ∪j 6=j1q
j is not disconnected and since (III.1) holds,

there must exist a sequence of point pk ∈ Σ−
δ/2 such that

lim inf
k→+∞

inf
j∈J1

|pk − qj | > 0

Cutting now Σ into at least two disjoint connected components by removing the curves ∂Bh
αj

kδ
. Applying

twice the monotonicity formula with boundary lemma A.3 with T → +∞, t → 0 and with respect
respectively to an arbitrary fixed point p ∈ Σ+

δ/2 for the immersion ~ξk restricted to Σ+
δ/2 and with respect

to pk for the immersion ~ξk restricted to Σ−
δ/2 one obtains

lim inf
k→+∞

W (~Φk) = lim inf
k→+∞

W (Ξ1
k ◦ ~Φk) ≥ lim inf

k→+∞
W (~ξk(Σ+

δ )) + W (~ξk(Σ−
δ )) ≥ 4π + 4π − C δ = 8π − C δ .

Since this holds for any δ > 0 we have then (II.21) which contradicts our assumption and we have proved
claim 1. �

Denote by g(σi) the genus of each component σi of Σ̃, if each qj for j = 1 · · ·n is disconnecting Σ̃ the
Deligne-Mumford’s description of the loss of compactness in the Moduli space gives

g(Σ) =
M
∑

j=1

g(σj) . (III.9)

Starting now from this normalized sequence Ξ1
k◦Φk for the first component σ1, because of the convergences

(II.9) and (II.10) we have

lim
δ→0

lim inf
k→+∞

W (~ξk(σ1
δ )) ≥ W (~ξ∞(σ1)) ≥ βg(σ1) .
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For each of the other components σi, i 6= 1, working under the condition that (II.21) does not hold,
proposition II.1 gives for each i the existence of a subsequence - still denoted ξk - and the existence of
a sequence of Moebius transformations such that ~Ξi

k ◦ ~Ξ1
k ◦ ~Φk converges in the sense (II.9) and (II.10).

Taking subsequences of subsequences we can assume that the subsequence we are working with is common
to all the σi. As for σ1 we have for any i

lim
δ→0

lim inf
k→+∞

W (Ξi
k ◦ ~ξk(σi

δ)) ≥ W (~ξ∞i ) ≥ βg(σi) .

where ~ξi
∞ is the weak local limit of Ξi

k ◦
~ξk on σi minus the blow up points and the punctures. Using now

lemma A.4 we deduce that for any i 6= 1

lim
δ→0

lim inf
k→+∞

W (~ξk(σi
δ)) ≥ W (~ξ∞i ) − 4π ≥ βg(σi) − 4π .

summing over i gives that

lim inf
k→+∞

W (~Φk) = lim inf
k→+∞

W (Ξ1
k ◦ ~Φk)

≥ lim
δ→0

lim inf
k→+∞

M
∑

i=1

W (~ξk(σi)) ≥ βg(σ1) +

M
∑

i=1

(βg(σi) − 4π) .

This concludes the proof of theorem I.1. �

A Appendix

Lemma A.1 [3-points normalization lemma] For any Λ > 0 there exists R, r > 0 such that for any
closed two dimensional manifold Σ, for any choice of 3 distinct points P1, P2 and P3 in Σ and for any
embedding ~Φ of Σ into R

m satisfying
∫

Σ

|d~n~Φ|
2
g dvolg < Λ , (A.1)

where g := ~Φ∗gRm , then there exists a Moebius transformation Ξ of R
m such that

Ξ ◦ ~Φ(Σ) ⊂ BR(0) and ∀i 6= j |Ξ ◦ ~Φ(Pi) − Ξ ◦ ~Φ(Pj)| ≥ r . (A.2)

Moreover the following control of the total area of Ξ ◦ ~Φ(Σ) holds

H2(Ξ ◦ ~Φ(Σ)) ≤ C R2 Λ , (A.3)

where C > 0 is a universal constant. �

Proof of lemma A.1. We apply a translation and a dilation in such a way that P1 = 0 and

|~Φ(P1) − ~Φ(P2)| = min
i6=j

|~Φ(Pi) − ~Φ(Pj)| = 1 .

We keep denoting ~Φ the resulting embedding - observe that due to it’s conformal invariance the Willmore
energy has not been modified. From lemma A.3 there exists a universal constant C > 0 such that for
any x0 ∈ R

m and 0 < σ < ρ < +∞

σ−2 H2(~Φ(Σ) ∩ Bσ(x0)) ≤ C

[

ρ−2 H2(~Φ(Σ) ∩ Bρ(x0)) +

∫

~Φ−1(Bρ(x0))

| ~H |2 dvolg

]

. (A.4)
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We claim that there exists ρ0 depending only on Λ > W (~Φ) and x1 ∈ B1(0) such that ~Φ(Σ)∩Bρ0
(x1) =

∅. For y ∈ ~Φ(Σ) one has

lim
σ→0

σ−2 H2(~Φ(Σ) ∩ Bσ(y)) = π . (A.5)

For 0 < ρ < 1/2 we consider a regular covering of B1(0) by balls Bρ(zl) in such a way that any
point in B1(0) is contained in at most C(m) balls of the form B2ρ(zl) . The number of l such that
∫

~Φ−1(B2ρ(zl))
| ~H |2 dvolg > C−1 π/2 is bounded by 2 Λ C C(m). For an l such that

∫

~Φ−1(B2ρ(zl))
| ~H|2 dvolg <

C−1 π/2 and such that there exists y ∈ Bρ(zl) ∩ Σ 6= ∅, combining (A.4) and (A.5) one obtains that

(2ρ)−2 H2(~Φ(Σ) ∩ B2ρ(zl)) > C−1 π/2 .

the number of such l is then bounded by ρ−2 times a number depending only on m and Λ - where we are
using again (A.4) but for x0 = 0, σ = 1 and ρ → +∞. The total number of ball Bρ(zl) is proportional
to ρ−m. Since m > 2, for ρ = ρ0 chosen small enough, depending only on m and Λ we deduce the claim.

Let x1 and ρ0 given by the claim we choose Ξ to be the inversion with respect to x1 : Ξ(x) :=
(x − x1)/|x − x1|2. We have then

Ξ(~Φ(Σ)) ⊂ B1/ρ0
(0) , (A.6)

moreover, since none of the Pi is in Bρ0
(x1), we have that ∀i = 1, 2, 3 Ξ(~Φ(Pi)) ∈ B1/ρ0

(0). We have also

that |~Φ(P2) − x1| + |~Φ(P1) − x1| < 3 hence Ξ(~Φ(P1)) and Ξ(~Φ(P2)) are contained in R
m \ B1/3(0) thus

|Ξ(~Φ(P1)) − Ξ(~Φ(P2))| ‖∇Ξ−1‖L∞(B1/ρ0
(0)\B1/3(0))| ≥ |~Φ(P1) − ~Φ(P2)| = 1 ,

which implies that
|Ξ(~Φ(P1)) − Ξ(~Φ(P2))| ≥ 9 . (A.7)

Either ~Φ(P3) ∈ B10(0) or ~Φ(P3) ∈ R
m\B10(0). In the first case one has that all the Ξ(~Φ(Pi)) are included

in B1/ρ0
(0) \ B1/11(0) hence we have

∀ i 6= j |Ξ(~Φ(Pi)) − Ξ(~Φ(Pj))| ‖∇Ξ−1‖L∞(B1/ρ0
(0)\B1/11(0))

≥ |~Φ(Pi) − ~Φ(Pj)| ≥ 1

which implies that
∀ i 6= j |Ξ(~Φ(Pi)) − Ξ(~Φ(Pj))| ≥ 112 . (A.8)

This implies (A.2) in this case. In the case when ~Φ(P3) ∈ R
m\B10(0) we deduce that Ξ(~Φ(P3)) ∈ B1/9(0)

and since Ξ(~Φ(P1)) and Ξ(~Φ(P2)) are contained in R
m \ B1/3(0), we obtain that

∀ i = 1, 2 |Ξ(~Φ(Pi)) − Ξ(~Φ(P3))| ≥ 2/9 . (A.9)

This lower bound combined with (A.7) gives (A.2) in this case too.

Regarding the proof of estimate (A.3), we first observe that inequality (A.4) (which holds also for ~Φ

replaced by Ξ ◦ ~Φ) implies that , for any ρ ≥ ρ−1
0

H2(Ξ ◦ ~Φ(Σ)) ≤ Cρ−2
0 ρ−2 H2(Ξ ◦ ~Φ(Σ)) + ρ−2

0 Λ .

Letting ρ converge to +∞ yields the desired estimate (A.3). Hence lemma A.1 is proved. �

The following lemma is more or less implicitly contained in [MS] and [Hel]. We prove it however for
the convenience of the reader.
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Lemma A.2 Let ~Φk be a sequence of conformal immersions of the disc D2 into R
m such that

sup
k∈N

∫

D2

|∇~n~Φk
|2 dx dy ≤ 8π/3 , (A.10)

and

lim sup
k→+∞

∫

D2

e2λk dx dy < +∞, (A.11)

where eλk = |∂x
~Φk| = |∂y

~Φk|.

Then the following alternative holds : either

∀ω ⊂⊂ D2 lim
k→+∞

λk = −∞ unif. on ω

or there exists a subsequence k′ such that

∀ω ⊂⊂ D2 lim sup
k′→+∞

‖λk′‖L∞(ω) < +∞

�

Proof of lemma A.2. Since (A.10) holds, lemma 5.1.4 of [Hel] gives the existence of a moving frame
(~e1, ~e2) ∈ (W 1,2(D2, Sm−1))2 such that

∫

D2

|∇~e1|
2 + |∇~e2|

2 ≤ C

∫

D2

|∇~n~Φk
|2 dx dy ≤ 8π/3 ,

where C > 0 only depends on m and
⋆~n~Φ = ~e1 ∧ ~e2 .

Moreover λk satisfies
∆λk = (∇⊥~e1,∇~e2) .

Let µk be the solution of






∆µk = (∇⊥~e1,∇~e2) in D2

µk = 0 on ∂D2

Wente theorem (see theorems 3.1.2 and 3.1.9 in [Hel]) asserts that

‖µk‖L∞(D2) ≤ (2π)−1 ‖∇~e1‖L2 ‖∇~e2‖L2 ≤ π−1 C

∫

D2

|∇~n~Φk
|2 dx dy (A.12)

Hence µk is uniformly bounded in L∞ norm on D2.
The function νk := λk − µk. νk is harmonic on D2 and satisfies

lim sup
k→+∞

∫

D2

e2νk dx dy < +∞

Let ω be an open set strictly included in D2 (i.e. ω ⊂ D2) and let U be an open set strictly included
in D2 and such that ω is itself strictly included in U : ω ⊂⊂ U ⊂⊂ D2. Since e2νk is subharmonic
(∆e2νk ≥ 0 ) and positive, from Harnack inequality there exists a constant C depending on U such that

ν+
k = sup

U
νk ≤ log

[

C

∫

D2

e2νk

]

.
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So ν+
k is uniformly bounded from above. If

ν+
k −→ −∞

then the first alternative in the lemma holds for this special ω. Assuming in the contrary that

lim sup ν+
k > −∞ ,

then there exists a subsequence k′ such that

ν+
k′ −→ ν+

∞ ∈ R .

Consider now the sequence of positive harmonic functions ν+
k′ − νk′ on U , Harnack inequality again gives

the existence of a constant C > 0 independent of k′ such that

sup
ω

ν+
k′ − νk′ ≤ C inf

ω
ν+

k′ − νk′ .

It is clear also that the supremum of νk′ is bounded from above on ω therefore

lim sup
k′→+∞

inf
ω

ν+
k′ − νk′ < +∞ .

Combining the two last inequalities gives that

lim inf inf
ω

νk′ > +∞ .

Thus the second alternative of the lemma holds for this special ω.
So we have proved that for any strict sub-domain of D2 one of the two alternative always hold. Now

it is clear that if for some sub-domain of D2 the first alternative hold then the second cannot hold for
another sub-domain and vice versa. Thus the lemma A.2 is proved. �

The following lemma is the extension of Simon’s monotonicity formula4 in the presence of a boundary.
This lemma might have been already published somewhere but the author could not find it anywhere
and is making the computation related to it available to the reader.

Lemma A.3 [Monotonicity formula with boundary] Let Σ be a smooth compact surface with bound-

ary and let ~Φ be an element of EΣ, a Lipshitz immersion of the surface Σ into R
m with L2 bounded second

fundamental form. Denote by M := ~Φ(Σ) the immersed surface. Then for any point ~x0 ∈ R
m and any

choice of two radii 0 < t < T < +∞ the following identity holds

T−2 Area(M ∩ BT (~x0)) − t−2 Area(M ∩ Bt(~x
0))

=

∫

M∩BT (~x0)\Bt(~x0)

∣

∣

∣

∣

∣

(~x − ~x0)⊥

|~x − ~x0|2
+

~H

2

∣

∣

∣

∣

∣

2

dvolg −
1

4

∫

M∩BT (~x0)\Bt(~x0)

| ~H |2 dvolg

−
1

T 2

∫

M∩BT (~x0)

< ~x − ~x0, ~H > dvolg +
1

t2

∫

M∩Bt(~x0)

< ~x − ~x0, ~H > dvolg

+
1

2

∫

∂M∩BT (~x0)

(

1

T 2
−

1

ρ2
t

)

< ~x − ~x0, ~ν > dl∂M

(A.13)

where (~x − ~x0)⊥ is the orthogonal projection of the vector ~x − ~x0 onto (T~xM)⊥ the normal plane to the
surface at ~x and ρt := max{|~x − ~x0|, t}. �

4(A.13) is exactly the formula as it is written in [KS], formula (A.3) page 353, except that the boundary therm was not
considered in this work.
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Proof of lemma A.2. To simplify the presentation we give the argument for Σ = D2. We follow step
by step the computations in [Sim] pages 82-84.

Let ~X be a smooth vector-field in R
m. We define the divergence of ~X along M := ~Φ(D2) to be the

following quantity

divM
~X :=

2
∑

k=1

〈

d ~X · ~ek, ~ek

〉

. (A.14)

where (~e1, ~e2) is an arbitrary local orthonormal frame on M . Decomposing ~X along M in the sum of it’s

tangential ~XT :=
∑2

k=1 < ~X,~ek > ~ek and it’s vertical part ~X⊥ = ~X − ~XT gives5

divM
~X = divM

~XT + divM
~X⊥ =

2
∑

k=1

〈

d ~XT · ~ek, ~ek

〉

− < ~X⊥,

2
∑

k=1

d~ek · ~ek >

=

2
∑

k=1

〈

d ~XT · ~ek, ~ek

〉

− 2 < ~X, ~H > .

(A.15)

We can assume that ~Φ is conformal since such a conformal reparametrization always exists (see [Ri1]).

Denote eλ := |∂x1

~Φ| = |∂x2

~Φ| and take ~ek := e−λ ∂xk
~Φ. Write ~XT :=

∑2
i=1 Xi ∂xi

~Φ. We have

divM
~XT =

2
∑

k=1

〈

d ~X · ~ek, ~ek

〉

=

2
∑

i=1

∂Xi

∂xi
+

2
∑

i=1

Xi e−2λ∂xie
2λ . (A.16)

Hence

∫

M

divM
~XT dvolg =

∫

D2

2
∑

i=1

∂

∂xi

(

e2λ Xi

)

dx1 dx2 =

∫ 2π

0

e2λ
2

∑

i=1

Xi xi dθ

=

∫

∂M

< ~XT , ~ν > dl∂M =

∫

∂M

< ~X,~ν > dl∂M

(A.17)

where ~ν is the unit limiting tangent vector to M on ∂M orthogonal to it and oriented in the outward
direction : ~ν := e−λ∂r

~Φ. Combining (A.15) and (A.17) gives then
∫

M

divM
~X dvolg =

∫

∂M

< ~X,~ν > dl∂M − 2

∫

M

< ~X, ~H > dvolg . (A.18)

As in [Sim] we choose ~X := γ(ρ)(~x− ~x0) where ~x0 is an arbitrary point in R
m and ρ = |~x− ~x0|. We have

for this choice of ~X

divM
~X = 2 γ + γ̇

2
∑

k=1

dr · ~ek < ~x − ~x0, ~ek >= 2 γ + ρ γ̇

[

1 −
|(~x − ~x0)⊥|2

|~x − ~x0|2

]

.

We choose now γ(ρ) to be a function depending on a parameter s > 0 : γs(ρ) = ϕ(ρ/s) where later on
ϕ will be chosen to be closer and closer to the characteristic function of the unit interval [0, 1]. (A.18)
becomes then

2

∫

M

ϕ
(ρ

s

)

dvolg +

∫

M

ϕ̇
(ρ

s

) ρ

s

[

1 −
|(~x − ~x0)⊥|2

|~x − ~x0|2

]

dvolg

=

∫

∂M

ϕ
(ρ

s

)

< ~x − ~x0, ~ν > dl∂M − 2

∫

M

ϕ
(ρ

s

)

< ~x − ~x0, ~H > dvolg .

(A.19)

5In comparison with formula in [Sim] observe that our definition of the mean curvature vector differs by a factor 2.
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Observe that
d

ds

[

ϕ
(ρ

s

) 1

s2

]

= −
1

s3

[

2ϕ
(ρ

s

)

+ ϕ̇
(ρ

s

) ρ

s

]

Hence we deduce that

−
d

ds

[

1

s2

∫

M

ϕ
(ρ

s

)

dvolg

]

= −
1

s2

d

ds

[
∫

M

ϕ
(ρ

s

) |(~x − ~x0)⊥|2

|~x − ~x0|2
dvolg

]

+
1

s3

∫

∂M

ϕ
(ρ

s

)

< ~x − ~x0, ~ν > dl∂M −
2

s3

∫

M

ϕ
(ρ

s

)

< ~x − ~x0, ~H > dvolg

(A.20)

Taking ϕ closer and closer to the characteristic function of the unit interval [0, 1], (A.20) implies at the
limit the following formula6

d

ds

[

1

s2

∫

M∩Bs(~x0)

dvolg

]

=
d

ds

[

∫

M∩Bs(~x0)

|(~x − ~x0)⊥|2

|~x − ~x0|4
dvolg

]

−
1

s3

∫

∂M∩Bs(~x0)

< ~x − ~x0, ~ν > dl∂M +
2

s3

∫

M∩Bs(~x0)

< ~x − ~x0, ~H > dvolg

(A.21)

Integrating this formula between 0 < t < T < +∞ gives

T−2 Area(M ∩ BT (~x0)) − t−2 Area(M ∩ Bt(~x
0))

=

∫

M∩BT (~x0)\Bt(~x0)

|(~x − ~x0)⊥|2

|~x − ~x0|4
dvolg

+
1

2

∫

∂M∩BT (~x0)

(

1

T 2
−

1

ρ2
t

)

< ~x − ~x0, ~ν > dl∂M

+

∫

M∩BT (~x0)

(

1

ρ2
t

−
1

T 2

)

< ~x − ~x0, ~H > dvolg

(A.22)

where ρt(~x) := max
{

ρ(~x) = |~x − ~x0|, t
}

. We write

∫

M∩BT (~x0)\Bt(~x0)

|(~x − ~x0)⊥|2

|~x − ~x0|4
dvolg =

∫

M∩BT (~x0)\Bt(~x0)

∣

∣

∣

∣

∣

(~x − ~x0)

ρ2
+

~H

2

∣

∣

∣

∣

∣

2

dvolg

−
1

4

∫

M∩BT (~x0)\Bt(~x0)

| ~H |2 −

∫

M∩BT (~x0)\Bt(~x0)

< ~x − ~x0, ~H >

ρ2
dvolg

(A.23)

Combining (A.22) and (A.23) gives (A.13) and lemma A.3 is proved. �

The following lemma is more or less contained in previous works on the subject but, for the convenience
of the reader.

Lemma A.4 Let (Σ, c) be a connected closed riemann surface. Let a1 · · · aN be a finite family of points in

the surface. Let h be some smooth conformal metric on Σ and denote Σδ := Σ\∪N
i=1B

h
δ (ai) where Bh

δ (ai)
is the geodesic ball of center ai and radius δ for the metric h. Assume there exists a weak conformal
lipshitz immersion ~ξ∞ of Σ into R

m with L2−bounded second fundamental form (i.e. ~ξ∞ is an element

6(A.21) generalizes in dimension 2 the formula 17.3 page 84 of [Sim].
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of Ec
Σ) and assume there exists a sequence of weak conformal lipshitz immersion ~ξk of Σδ into R

m (for
any δ > 0 provided k is large enough) such that

∀δ > 0 ~ξk −→ ~ξ∞ weakly in W 2,2 ∩ (W 1,∞)∗(Σδ) ,

and
∀δ > 0 lim sup

k→+∞
‖ log |d~ξk|h‖L∞(Σδ)

where the different norms W 2,2, W 1,∞ and L∞ are taken with respect to the h metric. We assume
~ξ∞(ai) 6= ~ξ∞(aj) for i 6= j. Let xk be a sequence of points such that xk /∈ ~ξk(Σδ) for any δ > 0 for

k large enough and converging to ~ξ∞(a1). Denote by Ixk
the inversion with respect to the point xk :

Ixk
(x) := xk + (x − xk)/|x − xk|2. Then the following inequality holds

lim
δ→0

lim inf
k→+∞

W (Ixk
◦ ~ξk(Σδ)) ≥ W (~ξ∞) − 4π . (A.24)

Assume now that the sequence of points either diverges to ∞ or converges to a point x∞ /∈ ~ξ∞(Σ) then

lim
δ→0

lim inf
k→+∞

W (Ixk
◦ ~ξk(Σδ)) ≥ W (~ξ∞) . (A.25)

�

Proof of lemma A.4. Denote gk := ~ξ∗kgRm the metric on Σδ induced by the immersion ~ξk. Since Ixk
is a

conformal diffeomorphism from R
m∪{∞} into itself, the induced metric g̃k := (Ixk

◦~ξk)∗gRm = ~ξ∗k(I∗xk
gRm)

is conformally equivalent to gk. One has I∗xk
gRm = 1

|x−xk|4
gRm thus we obtain

g̃k =
1

|~ξk − xk|4
gk .

We denote Kgk
and Kg̃k

the Gauss curvatures with respect to gk resp. g̃k. A classical computation in
the differential geometry of surfaces gives

Kgk
−

1

|~ξk − xk|4
Kg̃k

= −∆gk
log |~ξk − xk|

2 .

The integration of this identity over Σδ with respect to the gk volume form gives

∫

Σδ

Kgk
dvolgk

−

∫

Σδ

Kg̃k
dvolg̃k

= −

∫

Σδ

∆gk
log |~ξk − xk|

2 dvolgk

=

∫

∂Σδ

d log |~ξk − xk|
2 · νk dlgk

,

(A.26)

where νk is the unit outward normal in Σ to ∂Σδ with respect to the gk metric and dlgk
is the length

form with respect to gk along ∂Σδ. Let A0
gk

, resp. A0
g̃k

, denote the trace free second fundamental form of
~ξk, resp. Ixk

◦ ~ξk. We have |A0
gk
|2 = 4(| ~H~ξk

|2 −Kgk
) and |A0

g̃k
|2 = 4(| ~HIxk

◦~ξk
|2 −Kg̃k

). A classical result

in conformal geometry (see [Ri1] theorem VI.1) gives

|A0
gk
|2 dvolgk

= |A0
g̃k
|2 dvolg̃k

.

Hence we have
| ~H~ξk

|2 dvolgk
− K~ξk

dvolgk
= | ~HIxk

◦~ξk
|2 dvolg̃k

− KIxk
◦~ξk

dvolg̃k
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Integrating this identity over Σδ and combining this with (A.26) gives

∫

Σδ

| ~H~ξk
|2 dvolgk

−

∫

Σδ

| ~HIxk
◦~ξk

|2 dvolg̃k
=

∫

∂Σδ

d log |~ξk − xk|
2 · νk dlgk

(A.27)

Lemma A.5 of [Ri3] gives an assymptotic expansion of ~ξ∞ in a neighborhood of a1 from which we deduce
that

dist(~ξ∞(∂Bδ(a1)), ~ξ∞(a1)) ≥ Cδ > 0

for some positive constant Cδ. Since xk converges to ~ξ∞ and since ~ξk converges in C0 norm to ~ξ∞ on Σδ,
we have that for any δ > 0 there exists cδ > 0 such that, for k large enough

dist(~ξk(∂Bδ(a1)), xk) ≥ cδ > 0 . (A.28)

Since ~ξk weakly converges in W 2,2 norm towards ~ξ∞ on Σδ, d~ξk strongly converges towards d~ξ∞ in Lp(Σδ)
for any p < +∞. In Σδ \ Σ2δ we denote ν be the vector-field equal to the outward unit normal to ∂Σs

for s ∈ (δ, 2δ) for the metric h. Since gk is conformally equivalent to h we have that νk dlgk
= ν dlh and

we have for s ∈ (δ, 2δ)

∫

∂Σs

d log |~ξk − xk|
2 · νk dlgk

=

∫

∂Σs

d log |~ξk − xk|
2 · ν dlh .

Using now the strong convergence of d~ξk towards d~ξ∞ in Lp(Σδ) for p = 2 together with (A.28), with the

C0 convergence of ~ξk towards ~ξ∞ and with the help of Fubini theorem, we deduce that for almost every
s ∈ (δ, 2δ) there exists a subsequence still denoted ~ξk such that

lim
k→+∞

∫

∂Σs

d log |~ξk − xk|
2 · ν dlh −

∫

∂Σs

d log |~ξ∞ − ~ξ∞(a1)|
2 · ν dlh = 0 . (A.29)

As before, since g∞ := ~ξ∗∞gRm is conformally equivalent to h we have

∫

∂Σs

d log |~ξ∞ − ~ξ∞(a1)|
2 · ν dlh =

∫

∂Σsk

d log |~ξ∞ − ~ξ∞(a1)|
2 · ν∞ dlg∞

. (A.30)

For all i 6= 1 |~ξ∞ − ~ξ∞(a1)| ≥ c > 0 on ∂Bs(ai) and, since ~ξ∞ is lipshitz we easily get that

∀i 6= 1 lim
s→0

∫

∂Bs(ai)

d log |~ξ∞ − ~ξ∞(a1)|
2 · ν∞ dlg∞

= 0 (A.31)

At this stage, if ~ξ∞ would be a smooth immersion we could easily pass to the limit s → 0 for i = 1 as well
and prove that this boundary integral generates a residue equal to 4π. In the case of weak immersion
~ξ∞ ∈ EΣ this passage to the limit does not necessarily holds and we have to pick some well chosen
sequence si.

We take conformal coordinates x = (x1, x2) around a1 such that x(a1) = y(a1) = 0. We assume to

simplify notations that ~ξ∞(a1) = 0. Let f be the inverse of these coordinates. We assume to simplify
the presentation that our metric h coincides with the flat metric in these coordinates. Let λ∞ be the
conformal factor associated to f∗g∞ : e2λ∞ [dx2

1 + dx2
2] = f∗g∞. By an abuse of notation we keep

denoting ~ξ∞ the composition of ~ξ∞ with f . Let

~e1 := e−λ∞ ∂x1

~ξ∞ and ~e2 := e−λ∞ ∂x2

~ξ∞

18



. For any radius ρ > 0 we denote ~ξ∞
ρ

:= |∂Bρ(0)|−1
∫

∂Bρ(0)
~ξ∞. We have

~ξ∞
ρ

=
1

2πρ

∫

∂Bρ(0)

∫ ρ

0

∂~ξ∞
∂r

dr =
1

2π

∫ 2π

0

∫ ρ

0

eλ∞

|x|
[cos θ ~e1 + sin θ ~e2] r dr dθ (A.32)

For such a ~ξ∞ ∈ EΣ λ is continuous (see [Hel], [Ri1] for instance). Hence we have

∫

Bρ(0)

|eλ∞ − eλ∞(0)|

|x|
= o(1) ρ . (A.33)

For i = 1, 2 we denote ~eρ
i := |∂Bρ(0)|−1

∫

∂Bρ(0) ~ei. Since ~ei is W 1,2 we have using Hölder and Sobolev-

Poincaré inequalities

∫

Bρ(0)

|~ei − ~eρ
i |

|x|
≤ C ρ

[

1

|Bρ(0)|

∫

Bρ(0)

|~ei − ~eρ
i |

3

]1/3

≤ C ρ

[

∫

Bρ(0)

|∇~ei|
2

]1/2

= ρ o(1) . (A.34)

Since
∫ 2π

0

cos θ ~eρ
1 + sin θ ~eρ

2 = 0 ,

combining (A.32), (A.33) and (A.34) gives

|~ξ∞
ρ

| ≤ ρ o(1) . (A.35)

Let ~Xρ
i := |Bρ(0)|−1

∫

Bρ(0)
∂xi

~ξ∞ = |Bρ(0)|−1
∫

Bρ(0)
eλ∞ ~ei. Using Poincaré inequality we have

1

|Bρ(0)|

∫

Bρ(0)

|∂xi
~ξ∞ − ~Xρ

i |
2 ≤ C

∫

Bρ(0)

|∇2~ξ∞|2 = o(1) . (A.36)

Thus there exists x ∈ Bρ(0) such that

|∂xi
~ξ∞ − ~Xρ

i |
2 = o(1)

Since ∂xi
~ξ∞ = eλ∞ ~ei = eλ∞(0) ~ei + o(1) one has

| ~Xρ
i | = eλ∞ + o(1) . (A.37)

We have moreover

| ~Xρ
1 · ~Xρ

2 | =

∣

∣

∣

∣

∣

1

|Bρ(0)|2

∫

Bρ(0)

∫

Bρ(0)

∂x1

~ξ∞(x) · ∂x2

~ξ∞(y) − ∂x1

~ξ∞(y) · ∂x2

~ξ∞(y) dx1 dx2 dy1 dy2

∣

∣

∣

∣

∣

≤
‖∇~ξ∞‖∞
|Bρ(0)|

∫

Bρ(0)

|∇~ξ∞ − |Bρ(0)|−1

∫

Bρ(0)

∇~ξ∞| ≤ C

∫

Bρ(0)

|∇2~ξ∞| = o(1) .

(A.38)

On Bρ(0) we define ~uρ := ~ξ∞ − x1
~Xρ

1 − x2
~Xρ

1 . Using again Poincaré inequality we have

∫

Bρ(0)

|∇uρ|
2 =

∫

Bρ(0)

|∇~ξ∞ − |Bρ(0)|−1

∫

Bρ(0)

∇~ξ∞|2 ≤ C ρ2

∫

Bρ(0)

|∇2~ξ∞|2 = o(1) ρ2 . (A.39)
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Using Hölder inequality, Fubini theorem and the mean value formula we deduce from (A.39) that there
exists s ∈ (ρ/2, ρ) such that



















‖uρ − uρ
s‖L∞(∂Bs(0)) ≤

∫

∂Bs(0)

|∇uρ| ≤ o(1) s .

∫

∂Bs(0)

|∂xi
~ξ∞ − ~Xρ

i |
2 = o(1) s for i = 1, 2

(A.40)

(A.35) gives that
|uρ

s| = o(1) s

Hence from (A.37), (A.38) and (A.40), proceeding to a classical Schmidt orthonormalization of e−λ∞(0) ( ~Xρ
1 , ~Xρ

1 ),

we deduce that there exists a radius s ∈ (ρ/2, ρ) and a pair of unit vectors (~fρ
1 , ~fρ

2 ) orthogonal with another
such that

e−λ∞(0) ( ~Xρ
1 , ~Xρ

1 ) = (~fρ
1 , ~fρ

2 ) + o(1) (A.41)

and
‖~ξ∞ − eλ∞(0) [x1

~fρ
1 − x2

~fρ
2 ]‖L∞(∂Bs(0)) = o(1) s (A.42)

This implies in particular that

‖|~ξ∞| − eλ∞(0)|x|‖L∞(∂Bs(0)) = o(1) s (A.43)

Combining (A.43), (A.41) and the second line of (A.40) gives

∫

∂Bs(a1)

d log |~ξ∞ − ~ξ∞(a1)|
2 · ν∞ dlg∞

= 2s

∫ θ

0

∂~ξ∞
∂r

·
~ξ∞

|~ξ∞|2
dθ

= 4π + o(1) .

(A.44)

Thus combining (A.27), (A.31) and (A.44), for this special choice of s ∈ (δ/2, δ) we have found a

subsequence still denoted ~ξk such that

lim inf
k→+∞

∫

Σs

| ~HIxk
◦~ξk

|2 dvolg̃k
≥ lim inf

k→+∞

∫

Σs

| ~H~ξk
|2 dvolgk

− 4π + oδ(1) (A.45)

Since

lim inf
k→+∞

∫

Σs

| ~H~ξk
|2 dvolgk

≥

∫

Σs

| ~H~ξ∞
|2 dvolg∞

(A.46)

we have proved that for all ε > 0 there exists s > 0 and a subsequence still denoted ~ξk such that

lim inf
k→+∞

W (Ixk
◦ ~ξk(Σs)) ≥ W (~ξ∞(Σs)) − 4π − ε (A.47)

Using a diagonal argument we can choose a unique subsequence ~ξk such that (A.44) holds for δ = 2−j for

each j ∈ N and with a well chosen sj ∈ (2−j−1, 2−j). Since lim infk→+∞ W (Ixk
◦ ~ξk(Σs)) is a decreasing

function of δ we have proved that

lim
δ→0

lim inf
k→+∞

W (Ixk
◦ ~ξk(Σδ)) ≥ W (~ξ∞(Σ)) − 4π − ε (A.48)

Hence we have proved that from any sequence satisfying the assumption of the lemma one can extract
a subsequence such that (A.48) holds we have then proved (A.24). The last case when no subsequence

of xk converge to a point of ~ξ∞(Σ) is covered by the previous analysis since the problem of the limiting

point ~ξ∞(a1) as being an accumulation point of xk does not show up and one has (A.25) in that case.
Lemma A.4 is then proved. �
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