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Abstract

We study the set of growth rates of a limit group with respect to all its finite generating sets. To this end,
we examine the asymptotic geometry of hyperbolic groups and, in particular, use the theory of asymptotic cones
to define from a sequence of morphisms between free groups, a faithful action of a limit group on a real tree. In
addition, we review the theory of limit groups with a topological approach, as developed in [CG05], and show
that they are equationally Noetherian without recurring to Rips theory. Finally, we use this fact to prove that
the set of growth rates of any limit group is well-ordered and therefore provide a self-contained proof of a result
obtained by K. Fujiwara and Z. Sela in [FS20] which does not rely on Rips machines.
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Introduction

All relevant definitions and results will be introduced rigorously in the subsequent sections.

Motivation and context

The study of growth of a finitely generated group goes back to the works of A.S. Schwarz in [Šva55] and indepen-
dently by J. Milnor in [M+68] even if some preliminary cases of growth were considered by H.U. Krause in [Kra53]
and geometric growth was already studied by V.A. Efremovich in [Efr53]. The growth type essentially measures
the “volume” of balls in certain metric spaces and we study its asymptotic behaviour when the radius of the balls
tends to infinity. In the case of finitely generated groups, the growth function of a group G with respect to a finite
generating set S is the function that associates to any real number t the number #BS (G, t) of elements in the
open ball of radius t in G about the identy element for the S–word length. Then, one can define an equivalence
relation on the set of growth functions of G to define a group invariant which is the growth type of G, see Subsec-
tion 4.1. The motivation of Schwarz and Milnor to analyse the growth of groups were of geometric nature. It was
observed by Schwarz and Efremovich that the growth of the volumes of Riemannian balls in the universal cover of a
closed Riemannian manifold is related to the growth of its fundamental group. At the same time, Milnor and Wolf
demonstrated that the growth type of the fundamental group of a compact Riemannian manifold gives important
information about the mean, or sectional, curvature of the manifold. Subsequently, it was shown that the study of
group growth can serve as a tool for various problems in differential geometry. For example, it has been used for
the classification of homogeneous Riemannian manifolds with zero Ricci curvature, see [AK75].

In his seminal work, Milnor formulated a question about the types of growth admissible by a finitely generated
group. More precisely, Milnor asked: “Is it true that the growth function of every finitely generated group is
necessarily equivalent to a polynomial or to the function 2n?”. This question was answered in the negative by
R. Grigorchuk in [Gri83], where the author constructed a group of intermediate growth. Despite the negative
character of the answer, the existence of groups of intermediate growth has enriched group theory and the areas
of its applications. As example, groups of intermediate growth are related to fractal geometry and the study of
dynamical systems, see [BGN03]. Furthermore, one example of dynamical property related to growth of groups was
examined by G.M. Adel’son-Vel’skii and Y.A. Shreider in [AVS57]. They showed that groups with subexponential
growth are amenable and therefore have strong dynamical properties. Far from being exhaustive, other remarkable
applications resulting from the study of growth of finitely generated groups lie in the fields of geometric group
theory, dynamical systems or random walks. We refer to [Gri14] for more examples and references.
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All these motivations lead to the study of growth of finitely generated groups. In a short period of time,
Milnor, Wolf, Hartley, Guivarc’h and Bass discovered that nilpotent groups have polynomial growth of integer
degree. The converse result, namely that any finitely generated group with polynomial growth contains a nilpotent
subgroup of finite index was proved by M. Gromov in his celebrated paper [Gro81]. This result has stimulated many
activities in different areas of mathematics. As an example, one application of this theorem is the quasi-isometric
rigidity of finitely generated abelian groups. That is, any group which is quasi-isometric to a finitely generated
abelian group contains a free abelian subgroup of finite index. For our case of interest, Gromov’s polynomial
growth Theorem, together with the fact that any group containing a free subsemigroup on at least two generators
has exponential growth, produces numerous examples of finitely generated group with exponential growth and
therefore objects of study. Some classes of groups with exponential growth are solvable non-virtually nilpotent
groups, non-elementary Gromov hyperbolic groups or non-virtually nilpotent linear groups which are all known to
contain a free subsemigroup on two generators. Moreover, note that all groups contained in these three classes are
of uniform exponential growth.

Finally, our work falls within a broader framework. On the one hand, we notice that the notion of growth can be
defined for many algebraic and combinatorial objects, especially for semigroups, associative and Lie algebras, graphs
and discrete metric spaces, see [dlHGCS99]. On the other hand, the theory of growth of groups is part of a larger
area of mathematics which studies the coarse asymptotic properties of various algebraic and geometric objects. As
R. Grigorchuk points out in [Gri14], the second period of studies of group growth begins in the eighties and splits
into three directions: the study of analytic properties of growth series, the study of groups of intermediate growth,
and the study around Gromov’s problem on the existence of groups of exponential but not uniformly exponential
growth, see [GLP81]. Even if L. Bartholdi and J. Wilson prove, respectively in [Bar03] and [Wil04], the existence of
finitely generated groups of exponential growth but not of uniform exponential growth, this master’s thesis focuses
on the third point and studies groups with uniform exponential growth. More specifically, we study the possible
growth rates of groups of uniform exponential growth.

Present work

The present paper aims to prove the well-ordering of the set of growth rates, which is an invariant of groups, of any
limit group. That is, groups that are limits of free groups in a compact space of marked groups, see Section 3. We
are therefore not interested in the growth rate with respect to a particular finite generating set but rather in the
countable set of exponential growth rates with respect to all possible finite generating sets of a given limit group.
For the rest of this introduction, we denote the growth rate of a group G with respect to a finite generating set S:

e (G,S) := lim
t→∞

#BS (G, t)
1
t .

Then, the group G is of exponential growth if e (G,S) > 1. Moreover, we denote the set of growth rates of G with
respect to any finite generating set by

ξ(G) := { e (G,S) | S is a finite generating set of G },

and we say that G is of uniform exponential growth if inf ξ(G) > 1. In one hand, if the group G is of polynomial
growth, then ξ(G) = { 1 } and thus is well-ordered. On the other hand, if G is of non-uniform exponential growth,
then ξ(G) is not well-ordered. This master’s thesis is based on the work done by K. Fujiwara and Z. Sela in [FS20],
which prove that ξ(G) is well-ordered for any hyperbolic group, and is intended to present a self-contained proof of
their result. Their motivation comes from the work of W.P. Thurston on the volumes of hyperbolic 3–manifolds,
see [Thu79]. Analysing the volumes of Dehn fillings of finite volume hyperbolic 3–manifolds, Thurston proves
that the set of volumes of hyperbolic 3–manifolds is well-ordered. Similarly, Fujiwara and Sela examine the set
of growth rates in a hyperbolic group which are groups with strong geometric properties. In particular, their
asymptotic geometries are well understood.

It is a well-known result in geometric group theory that any non-elementary hyperbolic group contains a non-
abelian free subgroup, and therefore has exponential growth. In fact, any non-elementary hyperbolic group has
uniform exponential growth, see [Kou98]. For example, a free group has uniform exponential growth and, more-
over, it is known that it reaches its minimum growth rate when considering its basis as finite generating set,
see [dlH00, page 194]. Other examples of groups that achieve their minimum growth rate are the Baumslag-Solitar
group BS(1, p) and the lamlighter group Lp for p ≥ 3, see [BT17]. Aside from these examples, and a few other
related cases, there is no known classes of groups for which the exponential growth rate achieves its infimum on a
known generating set. For the fundamental group of an orientable surface of genus greater than two, only a lower
bound for its set of growth rates is known, see [dlH00, page 195]. Also, A. Sambusetti shows in [Sam99] that the
infimum of ξ(G) is not reached for any finite generating set when G is a free product G = G1 ∗ G2 with G1 non-
Hopfian and G2 non-trivial. So, there exist groups of uniform exponential growth whose set of growth rates does
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not admit a minimum. However, there exist lower bounds for ξ(G) that are uniform in G, see [BT16]. In addition,
G.N. Arzhantseva and I.G. Lysenok give in [AL06] a linear lower bound on the exponential growth rate of any
hyperbolic group. We are not able to recover the announced linearity of this bound. However, a slight modification
on the actual lower bound of the main result of this article, which is sufficient for our use is the following

Theorem (Theorem 4.1.17). If Γ is a finitely generated δ–hyperbolic group, then there exist constants α, β
that depend only on δ so that, for any finite generating set S′Γ of Γ, the following inequality holds

e
(
Γ, S′Γ

)
≥
(
2α#S′Γ − 1

)β
.

Thus, there exists a number N depending only on the hyperbolic constant of the studied group so that the
uniform exponential growth of the group is achieved on a generating set of cardinality less than N . Fujiwara and
Sela use this last result to prove the well-ordering of the set of growth rates of any hyperbolic groups. In particular,
the set of growth rates of any hyperbolic groups admits a minimum strengthening Koubi’s Theorem on uniform
exponential growth of hyperbolic groups. Our study mainly uses the theory of asymptotic geometry, more precisely
the well-developed theory of groups acting on real trees introduced by R.C. Lyndon and I.M. Chiswell in [Lyn63]
and [Chi76] respectively and the theory of limit groups initiated by Z. Sela in [Sel01]. Limit groups were defined
by Sela, using the Gromov–Hausdorff convergence, as groups acting faithfully on certain specific trees. Originally,
these groups were introduced in order to understand the structure of varieties and first order formulas over certain
classes of groups, see [Sel01]. A notable result obtained with these objects is a solution to Tarski’s problem: do
finitely generated non-abelian free groups have the same elementary theory? However, they provide a natural and
powerful tool to study variational problems over groups. In our case, we review the theory of limit groups with a
topological approach, using marked groups, as developed in [CG05] and use them to obtain knowledge about the
asymptotic geometry of a limit group. This permits us to prove the culmination result of this document, that is,
the existence of a minimum for the set of growth rates of any limit group.

Theorem (Theorem 4.2.9). If L is a limit group, then the set ξ(L) is well-ordered.

It should be noted that marked groups had already been analysed to study the growth of groups. Especially
to construct examples of groups with non-uniform exponential growth, see [Nek10]. The key step to obtain the
conclusion of Theorem 4.2.9 is to show that the set of growth rates of a free group F2 on two elements is well-
ordered. To prove this last result in Section 4.2, we assume by contradiction that there exists a sequence of finite
generating sets (Si) of F2 such that (e (F2, Si)) is a subset of ξ(F2) strictly decreasing and verifying e (F2, Si) ≥ 1
for every i ∈ N. As previously announced, group growth is an asymptotic property. Thus, it is interesting to
consider only the reccuring features of the group. To do so, we build an action of F2 on one of its asymptotic
cones which is a topological space encoding the asymptotic geometry of F2. We show in Section 4.2 that the given
sequence of finite generating sets of F2 allows us to define an action of a free group on a real tree, one of its
asymptotic cones, using the following theorem.

Theorem (Theorem 2.2.11). Consider a finitely generated group G with finite generating set SG and (X,xi, ρi)
a sequence of G–spaces where X is hyperbolic. If (|ρi|xi) diverges towards infinity, then G acts by isometry on the
asymptotic cone Tu := Coneu

(
X, (xi) ,

(
|ρi|−1

xi

))
for any non-principal ultrafilter u. In addition, if

|ρi|y ≥ |ρi|xi for every y ∈ X and every i ∈ N,

then Tu has no point fixed by all of G and admits a minimal G–invariant subtree.

In addition, using the theory of limit groups discussed in Section 3, we do not only have an action of a free
group on a real tree, but, using the upcoming theorem, a faithful action of a limit group L on that real tree.

Theorem (Theorem 3.3.8). With the above notation, the action of L on T , the minimal G–invariant subtree
of Tu, verifies

1. The stabilizer of any non-degenerate tripod is finite,

2. The stabilizer of any non-degenerate arc is finite–by–abelian,

3. Every subgroup of L which leaves a line in T invariant and fixes its ends is finite–by–abelian.

These last two theorems are a generalization of the construction of Bestvina and Paulin’s tree introduced
in [Bes88] and [Pau88] by the use of asymptotic cones. This generalization follows the same idea as the introduction
of asymptotic cones by L. Van den Dries and A.J. Wilkie, see [VdDW84], as a generalization of Gromov’s methods
using convergence in the Gromov-Hausdorff sense. The faithful action of a limit group L on a specific real tree
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allows us to use the theory of groups acting on trees to analyse the geometry of subgroups of L. This is in order to
build specific elements verifying important small cancellation properties. We prove in Section 3 that free groups are
equationally Noetherian. This result supported by the conclusion quoted above by Arzhantseva and Lysenok offers
us an upper bound on the growth rate of e (F2, Si). Then, using the elements possessing small cancellation properties
as well as the equational Noetherianity of F2, we show in Subsection 4.2 that there is a strong dependence between
the cardinality of balls in F2 and in the limit group L. This dependency is the last step to obtain a contradiction
with the existence of a sequence of finite generating subsets of F2 such that e (F2, Si) is strictly decreasing. This
concludes our proof and allows us to affirm that ξ(F2) is well-ordered. A diagonal argument makes it possible to
generalize this result to all limit groups.

Theorem 4.2.1 is a simplification of a result obtained by Fujiwara and Sela in [FS20]. However, our approach
is slightly different in the sense that it does not use the rich theory of actions on Rn–trees and, in particular,
does not use the Rips theory or the JSJ–decomposition of certain groups. These theories are used in [FS20] when
Fujiwara and Sela use the fact that hyperbolic groups are equationally Noetherian. This fact, due to C. Reinfeldt
and R. Weidmann, is demonstrated in [RW10] but was already known for hyperbolic groups without torsion thanks
to Sela’s work in [Sel09], for some relatively hyperbolic groups without torsion due to Groves in [Gro05] and for free
groups proved by O. Kharlampovich and A. Myasnikov in [KM98]. This result is far from trivial and implies, in
particular, that hyperbolic groups are Hopfian. In our case, we show that F2 is equationally Noetherian exploiting
the linearity of F2, the Hilbert basis Theorem, the fact C is Noetherian and the use of some elementary results of
model theory. Another difference between our approach and that of Fujiwara and Sela is the use of asymptotic
cones of a finitely generated group instead of the Bestvina and Paulin’s tree. This generalization does not use
the Gromov–Hausdorff convergence, and thus opens the way to a generalization of our results to other groups
with hyperbolic features. Especially, these techniques make it possible to study relatively hyperbolic groups or
acylindrically hyperbolic groups.

Last but not least, we want to finish this introduction by mentioning the work of D. Groves and H. Hull
in [GH19]. The latter was unknown to the author at the time of writing the first two sections of this thesis.
However, the definition of limit group given in Section 3 correponds to that of this article. Thus, we hope that this
document provides an introduction to the work of Groves and Hull in which they prove, using Rips machines the
following two theorems.

Theorem (Groves and Hull, [GH19, Theorem D]). If Γ is hyperbolic relative to equationally Noetherian
groups, then Γ is equationally Noetherian.

Moreover, in their article, they had already generalized Bestvina and Paulin’s tree using asymptotic cones to
any acylindrically hyperbolic groups

Theorem (Groves and Hull, [GH19, Theorem 4.4]). Let G be a finitely generated group, Γan acylindrically
hyperbolic group and (ϕi) a divergent sequence from Hom(G,Γ). Then G admits a minimal action on a real tree T .
Furthermore, T has no point fixed by all of G and the action of G on T induces a minimal action of the corresponding
Γ–limit group L = G/keru(ϕi) on T .

Finally Fujiwara uses the theory developed by Groves and Hull in [GH19], the techniques developed with Sela
in [FS20] and a profound study of the geometry of groups with hyperbolic features to obtain

Theorem (Fujiwara, [Fuj21, Theorem 1.2]). Let Γ be a group that is hyperbolic relative to a collection of
subgroups {P1, . . . , Pn }. Suppose Γ is not virtually cyclic and not equal to Pk for any k ∈ { 1, . . . , n }. If each Pi
is finitely generated and equationnaly Noetherian, then ξ(Γ) is well-ordered.

Organisation

We define in a first section the construction of a limit to a family of metric spaces and introduce some model theory
that motivates this construction. In particular, we review the definitions of filters, ultrafilters, ultralimits and recall
the  Loś Theorem. The second section uses the limit of a family of metric spaces to define the asymptotic cones of a
metric space. This allows us to obtain a limit action to a sequence of actions of one group on metric spaces. Along
the way, we recall the definition of Gromov hyperbolic spaces and hyperbolic groups as well as some elements of
the theory of groups acting on trees. The third section is dedicated to the study of limit groups and their actions
on trees. We intend to construct and analyse a limit to a sequence of morphisms from free groups to a given group.
Especially, we see that the theory of asymptotic cones allows to define, from a sequence of morphisms from free
groups to a hyperbolic group, a well understood faithful action of a limit group on a real tree. Finally, the fourth
and last section proves the well-ordering of the set of growth rates of limit groups by means of hyperbolic metric
geometry and the study of groups acting on trees. This gives us the opportunity to introduce the growth function
of a finitely generated group and to obtain a lower bound on the rate of growth for hyperbolic groups.
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1 Limits of Metric Spaces and Logic

This section aims to introduce the construction of a limit to a family of metric spaces and to present the necessary
background in model theory for the purpose of this thesis. We start by recalling the definitions of filters, ultrafilters
and ultralimits that enable us to define, subsequently, the ultralimit of metric spaces. Finally, we introduce enough
logic theory to state  Loś Theorem. In this section, we introduce all the necessary tools to give a rigorous definition
of an asymptotic cone defined in Section 2 and take this opportunity to introduce objects and notations used in
the rest of this document.

1.1 Filters, Ultrafilters and Ultralimits

To define a limit to a family of metric spaces, we need a notion of “largeness”, to keep only the recurring features
of the family. A reasonable way to proceed is by introducing an ultrafilter, that is, a set deciding which size is “big
enough” to be taken into account. We follow the introduction to filters, ultrafilters and ultralimits as presented by
C. Druţu and M. Kapovich in [DK18, Chapter 10].

Definition 1.1.1. A filter F on a set I is a collection of subsets of I satisfying the following conditions:

1. ∅ /∈ F ,

2. If A,B ∈ F then A ∩B ∈ F ,

3. If A ∈ F and A ⊆ B ⊆ I, then B ∈ F .

An ultrafilter on a set I is a filter F on I satisfying the additional condition: for every A ⊂ I

either A ∈ F or Ac = I\A ∈ F .

For any set I, one can consider the set Filter(I) ⊂ 22I of all filters on I. This set has a natural partial order
given by the inclusion. In particular, any filter on I is an ultrafilter if and only if it is a maximal element in
the ordered set Filter(I). This second definition and Zorn’s Lemma tell us that any filter can be extended to an
ultrafilter. The following examples introduce some remarkable filters.

Example 1.1.2.

• Given a set I and an element x ∈ I, consider the collection of subsets of I containing x. This collection is an
ultrafilter on I. Any ultrafilter obtained by this method is called principal ultrafilter.

• Suppose I is an infinite set. The set of complements of the finite subsets of I is a filter. If I = N, this filter
is called the Fréchet filter.

If the ultrafilter is not principal, then it is called a non-principal ultrafilter. On an infinite set, any ultrafilter
is non-principal if and only if it contains the Fréchet filter. This is proved in [DK18, Proposition 10.16] by showing
the equivalence of the negations of the two statements and using the maximality of any ultrafilter in the partially
ordered set of filters. Working with ultrafilters, it is convenient to consider the following equivalent definition.

Definition 1.1.3. A map µ : 2I → [−∞,∞] on a set I is finitely additive if whenever A,B are disjoint sets in I,
it holds µ(A ∪B) = µ(A) + µ(B).

Let F be an ultrafilter on an index set I. The characteristic map of the filter, 1F = u, is a finitely additive map
with values in { 0, 1 } verifying u(I) = 1. Conversely, a finitely additive map u : 2I → { 0, 1 } such that u(I) = 1
defines an ultrafilter. In the sequel, we use the same name of ultrafilter for F and u. A subset A ∈ 2I occurs
u–almost surely if u(A) = 1. Moreover, if a set A ⊆ I has the property that u(A) = 1, then u(Ac) = 0. Thus,
for any argument done u–almost surely, only the natural numbers in A counts. In particular, if u is a non-principal
ultrafilter on an infinite set I, then u(A) = 0 for every finite subset A of I.

Definition 1.1.4. Let I be a set, u an ultrafilter on I and X a topological space. Given a function f : I → X,
the u–limit of f , or its ultralimit, is an element x ∈ X such that, for every neighborhood U of x, the pre-image
f−1(U) belongs to u. The ultralimit of the function f is denoted u– lim

i
f(i) or u– lim f(i) if the index set is clear.

For u a fixed non-principal ultrafilter on a set I, the u–limit of a function f with value in a topological space has
an equivalent definition in terms of finitely additive map with values in { 0, 1 } verifying u(I) = 1. The u–limit of f
is an element x, such that u

(
{ i ∈ I | f(i) ∈ U }

)
= 1 for every neighborhood U of x. A first reason to introduce

the notion of ultrafilter is to give a limit to any net on a compact topological space.
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Lemma 1.1.5. Let X be a topological space, I a set, u a non-principal ultrafilter on I and f : I → X a function.
Then the following two statements hold.

1. If X is compact, then f has an ultralimit,

2. If X is Hausdorff, then the ultralimit, if it exists, is unique.

Proof. We prove each statement independently.

1. Suppose by contradiction that f has no ultralimit. Then, for every x ∈ X, there exists a neighborhood Ux ⊂ X
such that f−1(Ux) 6∈ u. By compactness, we can cover X with finitely many of these neighborhoods Uxi for
some n ∈ N and i ∈ {1, . . . , n}. Therefore, I =

⋃n
i=1 f

−1(Uxi) such that, using the second property in the
definition of filters and the maximality of ultrafilters

∅ =

n⋂
i=1

(
I\f−1 (Uxi)

)
∈ u.

This is a contradiction with the first property in the definition of a filter so that f has a limit.

2. This can be proved in a same fashion as the uniqueness of the ordinary limit in Hausdorff spaces.

Another reason to introduce the notion of ultralimit is that, it keeps many desirable property of the usual limit.
At least, the ultralimit of real-valued functions is linear.

Lemma 1.1.6. For any ultrafilter u on a set I, the u–limit is linear with respect to bounded real-valued functions
on I.

Proof. Let f, g : I → R be two bounded functions. Their images are contained in a compact subset of R so that,
by Lemma 1.1.5, we define x, y their respective u–limit. Let λ, µ ∈ R and we show

(λf + µg)−1(U) = {i ∈ I | λf(i) + µg(i) ∈ U} ∈ u,

where U is any neighborhood of λx+ µy. Since the union of elements in u is in the filter, it is sufficient to do it for
basis neighborhood of λx+ µy in R. Moreover, using the third property of filters, it is also sufficient to show that
some subset of (λf + µg)−1(U) is in u. For ε > 0 and U = (λx+ µy − ε, λx+ µy + ε) a neighborhood of λx+ µy,
we have

A := (λf)−1
(
λx− ε

2
, λx+

ε

2

)
=
{
i ∈ I

∣∣∣ f(i) ∈
(
x− ε

2λ
, x+

ε

2λ

) }
∈ u,

because this last set is a neighborhood of y. We can proceed similarly for B := (µg)−1(µx − ε/2, µx + ε/2) and
conclude using A ∩B ∈ (λf + µg)−1(U) ∈ u by definition of a filter.

The u–limit on the natural numbers with an ultrafilter extending the Fréchet filter is an enrichment of the usual
limit. We obtain the existence of a limit in any compact space and it avoids using diagonal arguments. Also, an
ultrafilter is a device which selects accumulation points of functions with image in compact Hausdorff spaces in a
coherent manner, and that generalizes the diagonal argument to uncountable sets. An ultrafilter is a specific way
to define a limit of spaces and functions in a more general setting. We use this tool in the following subsection to
define the ultralimit of a family of metric spaces.

1.2 Ultralimits of Metric Spaces

We now use these tools to construct a limit to a family of metric spaces; an asymptotic cone of a metric space,
presented in Subsection 2.1, is a special case of this construction. We still follow the presentation of asymptotic
cones as established in [DK18, Chapter 10]. To obtain the existence of an ultralimit, we first compactify R+ as
presented in Remark 1.2.2.

Definition 1.2.1. If X is a totally ordered set, the total order topology on X is generated by the subbase of
open rays. That is, {x ∈ X | x > a } for some a ∈ X or {x ∈ X | x < b } for some b ∈ X.

Remark 1.2.2. The set R+ := [0,∞] can be turned into a totally ordered set by considering the usual order on R+

and defining 0 ≤ a <∞ for every a ∈ R+. Then, R+ with the total order topology is homeomorphic to [0, 1] with
the standard topology. In particular, R+ with the total order topology is compact. Similarly, R := [−∞,∞] with
the total order topology is a compact metric space homeomorphic to [0, 1].
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Let X be a Hausdorff space and u a principal ultrafilter on an index set I. Then, there exists i0 ∈ I so that
any subset A ∈ 2I verifies u(A) = 1 if and only if i0 ∈ A. Therefore, the u–limit of a function f : I → X is simply
the element f(i0). In the sequel, all ultrafilters are assumed non-principal.

Notation 1. Given a metric space X, we denote distX (a, b) the distance between the two elements a, b in X. Also,
we drop the index X in the notation when it is clear from the context.

Let (Xi)i∈I be a family of metric spaces parametrized by an infinite set I and u a non-principal ultrafilter on I.
Define a pseudo-distance on the product of these metric spaces by

distu :

∏
i∈I

Xi ×
∏
i∈I

Xi −→ [0,∞];

((xi)i∈I , (yi)i∈I) 7−→ u– lim(i 7→ distXi(xi, yi)),

and consider the pair

(Xu,distu) :=

(∏
i∈I

Xi,distu

)/
∼,

where we identify elements with zero distu–distance.

Definition 1.2.3. The ultralimit of the family of metric spaces (Xi)i∈I is the pair (Xu,distu) defined above
that we denote

Xu := u– limXi.

Notation 2. Given an indexed family of elements (xi)i∈I , where xi ∈ Xi for every i ∈ I, we denote its equivalence
class in Xu by xu or u– limxi or [xi]. Also, we drop the indices i ∈ I in the notation when the index set is clear.

If the spaces Xi do not have uniformly bounded diameter, the ultralimit Xu decomposes into many components
of points at mutually finite distance, where two elements in different components are at infinite distance one from
the other. In order to pick one of these components, we consider pointed metric space (X,x) where x ∈ X is
called base point. For a family of pointed metric spaces (Xi, xi)i∈I , the sequence of base points (xi)i∈I define a
base point xu ∈ Xu, and we set Xu,xu

:= { au ∈ Xu | distu (au, xu) <∞}. With these notations, we introduce

Definition 1.2.4. The based ultralimit of the family (Xi, xi)i∈I is u– lim(Xi, xi) = (Xu,xu
, xu).

The purpose of the based ultralimit is to select one element in Xu and its component of elements at finite
distance of it. We drop the xu in the notation Xu,xu

when the choice of the base point is clear. To get used to
these definitions, we give an example of an ultralimit of metric spaces that is used in the sequel.

Notation 3. Given a point x of a metric space X and a scalar R ≥ 0, we denote BdistX (x,R) the open ball in X
of radius R about x for the metric distX . We drop the distX in the notation when the choice of the metric is clear.

Example 1.2.5. If (Xu,distu) is an ultralimit of a constant sequence of compact metric spaces Xi = Y , then Xu

is isometric to Y for any ultrafilter u.

Proof: By looking at the equivalence class of the constant sequence inXu, one conclude that the function f : Xu → Y
sending [xi] to u– limxi is surjective. For ε > 0, if [xi], [yi] ∈ Xu verify u– limxi = u– lim yi, then the following sets
are in u by definition of a basis of neighborhood in a metric space:

A :=
{
i ∈ I

∣∣∣ distY

(
xi, u– lim

j
xj

)
<
ε

2

}
∈ u, and B :=

{
i ∈ I

∣∣∣ distY

(
yi, u– lim

j
yj

)
<
ε

2

}
∈ u.

Then, for g : i 7→ distY (xi, yi), the set A ∩B ∈ g−1
(
BdistY (0, ε)

)
∈ u. Hence, the ultralimit of g is zero, such that

the equivalence classes [xi] and [yi] are equal in Xu and f is injective. Finally, we show that f preserves the
distance. If g is as above and ε > 0, then, using a similar argument as above and the triangular inequality, the set

g−1
{
B (distY (f [xj ], f [yj ]) , ε)

}
=
{
i ∈ I

∣∣ distY (f [xj ], f [yj ])− ε ≤ distY (xi, yi) ≤ distY (f [xj ], f [yj ]) + ε
}
,

is in the filter u. Therefore, f is an isometry between Xu and Y .

Given a sequence of metric spaces, we have defined its ultralimit. Actually, given a sequence of functions between
metric spaces, we can define its ultralimit whose domain and image are the ultralimits of the metric spaces.
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Lemma 1.2.6. Let I be an index set and (Xi, xi)i∈I , (X
′
i, x
′
i)i∈I two families of pointed metric spaces with based

ultralimits (Xu, xu) and (X ′u, x
′
u) respectively. Consider isometric embeddings fi : (Xi, xi)→ (X ′i, x

′
i) verifying

u– lim
i

distXi (fi(xi), x
′
i) <∞. (1)

Then the following holds.

1. The maps fi yield an isometric embedding between the based ultralimits fu : (Xu, xu)→ (X ′u, x
′
u),

2. If each fi is an isometry, then so is fu,

3. The limit map φu : (fi)i∈I 7→ fu preserves the composition. That is, for every sequence of functions between
pointed spaces fi : (Xi, xi)→ (Yi, yi) and gi : (Yi, yi)→ (Zi, zi) verifying the condition (1), we have

φu((gi ◦ fi)i∈I) = φu((gi)i∈I) ◦ φu((fi)i∈I).

Proof. Using condition (1), we define fu as fu(au) = u– lim fi(ai) for any au = u– lim ai ∈ Xu.

1. For any pair of points au, bu ∈ Xu, the construction of the distances in Xu, X ′u leads to

distu (fu(au), fu(bu)) = u– lim
i

distX′i (fi(ai), fi(bi)) = u– lim
i

distXi (ai, bi) = distu (au, bu) ,

where we use the isometric embedding property of all the fi’s in the second equality.

2. If each fi is surjective, then fu is surjective as well.

3. For au = u– lim ai ∈ Xu, the following equalities hold

gu(fu(au)) = gu([fi(ai)]) = [gi(fi(ai))] = [(g ◦ f)i(ai)] = (g ◦ f)u(au).

Thus, the composition property is preserved.

We aim to describe the coarse geometry of a space. To do so, we relax the notion of isometry by allowing some
bounded error. Let us recall some definitions of coarse geometry.

Definition 1.2.7. Let X be a metric space, A,B ⊆ X two non-empty sets and ε > 0. The ε–neighborhood of A
is defined by

Nε(A) := {x ∈ X | distX (x,A) < ε }.

The Hausdorff distance between A and B is defined by

distHaus(A,B) := inf{ε > 0 | A ⊂ Nε(B) ∧B ⊂ Nε(A)}.

Definition 1.2.8. Let f : X → Y be a function between metric spaces X,Y and K ≥ 1, C ≥ 0.

• f is (K,C)–coarse Lipschitz if distY (f(x), f(x′)) ≤ K · distX (x, x′) + C for every x, x′ ∈ X,

• f is a K–bi-Lipschitz embedding if, for every x, x′ ∈ X

K−1 · distX (x, x′) ≤ distY (f(x), f(x′)) ≤ K · distX (x, x′) ,

• f is K–bi-Lipschitz if f is a K–bi-Lipschitz embedding that is surjective,

• f is a (K,C)–quasi-isometric embedding if, for every x, x′ ∈ X

K−1 · distX (x, x′)− C ≤ distY (f(x), f(x′)) ≤ K · distX (x, x′) + C,

• f is a (K,C)–quasi-isometry if it is a quasi-isometric embedding that is also coarsely surjective. That is

distHaus (Im(f), X ′) <∞.

Geometrically, it is usefull to understand the metric of a space by looking at its paths. To do so, we generalize
the notion of “straight line”.

Definition 1.2.9. Let X be a metric space, I ⊆ R connected and γ : I → X an isometric embedding.
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• The function γ is a geodesic segment in X if I is bounded,

• It is a geodesic ray if I is semi-infinite,

• This function is a bi-infinite geodesic if I = R.

Moreover, we called quasi-geodesic segment, ray or bi-infinite quasi-geodesic if γ above is a quasi-isometric
embedding.

Consider I an index set, u an ultrafilter on I, (Xi)i∈I ⊆ R ⊂ R a family of pointed intervals, (Yi)i∈I a
family of pointed metric spaces and (fi)i∈I a family of maps between the previously defined spaces that verify the
condition (1) of Lemma 1.2.6. If each fi is a geodesic in Yi, then the ultralimit is a geodesic into Yu. In fact, the
ultralimit fu is an isometric embedding from Ru into Yu, and we have seen in Example 1.2.5 that Ru is isometric
to R. This gives us a class of geodesics in the limit space that is totally defined by the underlying metric spaces. A
geodesic f in the limit space is called limit geodesic in Xu if there exists a sequence of geodesics in the Xi that
has f for ultralimit. Some properties are preserved while passing to the limit; one of them is the geodesicity.

Lemma 1.2.10. If (Xi, xi)i∈I is a sequence of pointed geodesic metric spaces for an index set I, then the
ultralimit (Xu, xu) is also a geodesic metric space.

Proof. Consider two elements in the ultralimit au = [ai], bu = [bi] ∈ Xu. Since every Xi is assumed to be geodesic,
there exists a sequence γi : [0, Li]→ Xi of geodesics connecting ai to bi for some Li := distXi (ai, bi) and any i ∈ I.
Then

u– limLi =: L = distu (au, bu) <∞,

so that γu : [0, L]→ Xu is a geodesic connecting the two points. Thus, Xu is a geodesic metric space.

We attempt to describe the large scale geometry of one space in particular. Instead of taking the limit of
different spaces, we consider the limit of rescaled copies of one particular space. We describe this special case in
Section 2. Before that, we outline the required background in logic theory for this document. In particular, we
give context to the introduction of the theory of limit groups and state  Loś Theorem which is used in Section 3.

1.3 Elementary Theory and  Loś Theorem

One motivation to study the asymptotic cones of a metric space comes from the following Theorem 1.3.5 which
gives us the opportunity to introduce some context in which limit groups have been introduced. It is a compactness
theorem from logic which is used in Lemma 3.2.7. We begin by briefly introducing vocabulary of model theory and
refer to [Tou03] for more details.

Definition 1.3.1. A first-order language of predicate calculus is composed of

• A countable set of variables V = { v0, v1, . . . },

• Logical connectors {¬,∧,∨,→,↔},

• Quantifiers { ∀,∃ },

• Parentheses,

• A set of constants symbols { c0, c1, . . . },

• A set of functions symbols
{
f

(n0)
0 , f

(n1)
1 , . . .

}
where ni represent the arity of the i–th function,

• A finite set of relations symbols
{
R

(m0)
0 , R

(m1)
1 , . . .

}
.

For presentation purposes, we continue the exposition with the language of group theory. That is, we consider
the first-order language Lgrp :=

{
f (2), s(1), c,=(2)

}
. The symbols correspond respectively to the composition, the

inversion, the neutral element and the equality relation. The set of terms (or words) of Lgrp, denoted T (Lgrp), is
the smallest set verifying

• Every variable and constant of Lgrp are in T (Lgrp),

• For every n–ary function f (n) of Lgrp and every n terms t1, . . . , tn, the symbol f(t1, . . . , tn) is a term.

Then, we can define an atomic formula, that is, a finite sequence of Lgrp composed of a relation, parentheses and
terms. The set of formulas of Lgrp is the smallest subset F(Lgrp) of sequences of Lgrp containing
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• Every atomic formulas,

• If ϕ, φ ∈ F (Lgrp), then ¬ϕ the negation of ϕ, ϕ ∧ φ, ϕ ∨ φ, ϕ→ φ and ϕ↔ φ are in F (Lgrp),

• If x is a variable and ϕ ∈ F (Lgrp), then ∀xϕ and ∃xϕ are in F (Lgrp).

In a formula ϕ, the occurence of a variable x is tied if we might find an occurence of Qx in ϕ where Q ∈ {∀,∃ }.
The occurence is called free if it is not tied and a formula without free variable is closed. Also, a formula is
universal if it can be written

∀x1 · · · ∀xn ϕ(x1, . . . , xn),

for some quantifier free formula ϕ(x1, . . . , xn). Similarly, a formula is existential if the above quatifiers are replaced
by existential ones. We say that a term t is substitutable to the variable x in the formula ϕ if, for every variable y
that appears in t, there is no subformula of ϕ of the form Qyφ in which x has a free occurence and where Q ∈ {∀,∃ }.
A formula with no free variable is called a sentence.

Remark 1.3.2. The statement ∀x1∃k ∈ N
(
xk1 = 1

)
is not a first-order formula. Indeed, it quantifies over an

integer, and not a group element. In fact, the quantifiers do not mention to which group the variables belong. It
is the interpretation which specifies the group.

The elementary theory of a group G is the set of sentences which are satisfied by G. Two groups are
elementarily equivalent if they have the same elementary theory. Likewise, the universal (existential) theory
of a group G is the set of universal (existential) sentences which are satisfied by G. Sela introduced in [Sel01] the
concept of limit groups as part of his research on the Tarski problem which asked whether the free groups on two or
more generators have the same elementary theory. A partial result to this problem is presented in Corollary 3.2.3.
While studying elementary theory of a group, it is convenient to introduce its ultrapowers.

Definition 1.3.3. The ultraproduct with respect to the ultrafilter u of a sequence of groups (Gi) is the group(∏
i∈N

Gi

)/
∼u,

where two elements (gi), (hi) are identified if and only if (gi = hi) u–almost surely. The ultraproduct of a constant
sequence of groups Gi = G is called an ultrapower of G and is denoted ∗G.

In our context, the main interest of ultraproducts and ultrapowers comes from  Loś Theorem which states that
ultrapowers of a group G have the same elementary theory as G.

Definition 1.3.4. A Lgrp–structure is a sequence M :=
〈
M,
(
f (2)

)M
,
(
s(1)
)M

, (c)
M
〉

where:

• M = |M| is a non-empty set called basis domain,

• (c)M is an element of M ,

•
(
f (2)

)M
and

(
s(1)
)M

are functions
(
f (2)

)M
: M ×M →M and

(
s(1)
)M

: M →M respectively.

Let M be a Lgrp–structure, ϕ a first-order formula with free variables in x1, . . . , xn and t1, . . . , tn ∈ |M|. We
denote M |=(t1/x1,...,tn/xn) ϕ if, ϕ is satisfied in M when the variables x1, . . . , xn are substituted by t1, . . . , tn.
Also, given a set of closed formulas S, a Lgrp–structure M is a model of S, denoted M |= S, if any formula of S
is satisfied in M. We can finally state  Loś Theorem in the special case of group theory, see [BS06].

Theorem 1.3.5 ( Loś). If G is a group and ∗G an ultrapower of G, then G and ∗G have the same elementary
theory. In particular, for every first-order formula ϕ(x1, . . . , xn), the following two assertions are equivalent.

• ∗G |=(x1=(g1,k)k∈N,...,xn=(gn,k)k∈N) ϕ(x1, . . . , xn),

• G |=(x1=g1,k,...,xn=gn,k) ϕ(x1, . . . , xn) for almost every k ∈ N.

In particular, any finite system of equations stated in a proper way is satisfied in a group if and only if it is
satisfied in an ultrapower of this group. We use this theory in Section 3 while studying limit groups, but first we
use the theory developed so far to study actions of groups on real trees.
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2 Hyperbolic Groups and Groups Acting on Trees

We gather here the objects introduced in the previous section to define, under certain conditions, a limit action to
a sequence of actions of one group on hyperbolic spaces. At first, we construct the asymptotic cones of a hyperbolic
space and study their geometry. Then, in a second time, we define a nice action of a group on one of its asymptotic
cones generalizing work carried out independently by Bestvina in [Bes88] and Paulin in [Pau88]. The purpose of
this section is to collect enough theory about hyperbolic groups and groups actions on trees to define a metric space
equivalent to Bestvina and Paulin’s tree studied in Section 3.

2.1 Hyperbolic Groups and their Asymptotic Cones

In this subsection, we recall in a first paragraph, some definitions of hyperbolic geometry. In a second one,
we construct the asymptotic cones of one metric space and, finally, we bring together both concepts to study
the asymptotic cones of hyperbolic metric spaces in a third paragraph. We follow the introduction to Gromov-
hyperbolic geometry as exposed in [DK18, Chapter 11]. This first paragraph gives us the opportunity to recall
definitions from hyperbolic geometry and, in particular, the definition of real tree. For more details, we refer to
[BH13, Part III. H and Γ] and [DK18, Chapter 11].

For a metric space X and a triple of points x, y, w ∈ X, the Gromov product between x and y with respect
to w is

(x, y)w :=
1

2
(distX (x,w) + distX (y, w)− distX (x, y)) .

This quantity represents the failure of the triangular inequality to be an equality. In a geodesic hyperbolic metric
space, it is up to an additive constant, the distance between w and a geodesic from x to y.

Definition 2.1.1. A metric space X is called δ–Gromov-hyperbolic for some δ ≥ 0, if for some point w ∈ X,
and for every x, y, z ∈ X we have

(x, y)w ≥ min {(x, z)w, (y, z)w} − δ.

A metric space is Gromov-hyperbolic if it is δ–Gromov-hyperbolic for some hyperbolicity constant δ ≥ 0.

Up to considering a different δ in the definition of a hyperbolic metric space (in the worst case, 2δ), we can show
that this definition does not depend on the choice of the base point w. In a geodesic metric space, the previous
notion of hyperbolicity is equivalent (up to a rescaling of the hyperbolicity constant) to the property that every
triangle in X is thin. That is, there exists δ ≥ 0 such that every geodesic triangle with sides x-y, y-z and x-z
in X satisfies x-y ⊆ Nδ(x-z ∪ y-z), where x-y denotes a geodesic segment between x and y and Nδ(x-z ∪ y-z) is a
δ–neighborhood around the two geodesics. A geodesic space with δ–thin triangles is called δ–hyperbolic and it is
called hyperbolic if it is δ–hyperbolic for some δ ≥ 0. One can show as in [BH13, Chapter III.H, Theorem 1.9]
that hyperbolicity is a quasi-isometry invariant. This permit us to define hyperbolic groups without referring to a
particular finite generating set.

Definition 2.1.2. A finitely generated group is hyperbolic if it has one hyperbolic Cayley graph.

Hyperbolicity has many equivalent definitions. A list of many of them and the proof of their equivalence can
be found in [ABC+91] or [BH13, Chapter III.H] where many results are proved. The geometry of triangles in
a geodesic metric space characterizes the hyperbolicity. It turns out that triangles in hyperbolic geodesic metric
spaces are thin. Consequently, shrinking all distances, we should not be able to distinguish edges of the considered
triangle; it should look like a tripod. This is the idea we express using asymptotic cones and real trees.

Definition 2.1.3. A real tree T is a geodesic metric space such that

1. If two segments of T intersect in a single point, which is an endpoint of both, then their union is a segment,

2. The intersection of two segments with a common endpoints is also a segment.

Equivalently, real trees are exactly the geodesic 0–hyperbolic spaces. In the next subsection, we use the following
property of segments in a real tree.

Remark 2.1.4. If x-y, y-z are two geodesic segments of a real tree, then the geodesic segment from x to z is the
concatenation of x-o and o-z where o is the crux of x, y, z.

The asymptotic cones of a metric space are a particular case of the construction studied in Subsection 1.2. The
family of spaces is rescaled copies of one particular space. These transformations are made to get rid of the bounded
features; to keep only the large scale geometry and give a picture of a metric space as seen “from infinitely far
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away”. Consider a metric space X, a non-principal ultrafilter u on an index set I, (xi)i∈I a family of base points
in X and (λi)i∈I ⊆ R+ a collection of positive scalars verifying u– limλi = 0. We define

C :=
{

(yi)i∈I ⊆ X
∣∣∣ u– lim

i
λi · distX (yi, xi) is finite

}
,

and the equivalence relation on this set

(yi)i∈I ∼ (zi)i∈I ⇔ u– lim
i
λi · distX (yi, zi) = 0.

Definition 2.1.5. The asymptotic cone of a metric space X with respect to the sequence of scalars (λi)i∈I ,
the sequence of observation centers (xi)i∈I and the non-principal ultrafilter u, is the quotient space

Coneu(X, (xi), (λi)) := C/ ∼ = u– lim
i

(λi ·X,xi).

As in Section 1.2, Coneu(X, (xi), (λi)) is a metric space with distu ([yi], [zi]) := u– limλi · distX (yi, zi) for every
[yi], [zi] in Coneu(X, (xi), (λi)). This metric space is often denoted Xu ((xi) , (λi)) and notice that the image of a set
at unbounded u–distance from [xi] is empty. In particular, for any family of points (yi)i∈I ⊆ X, the corresponding
image in the asymptotic cone is either a one-point set, or the empty set if u– limλi·distX (yi, xi) =∞. An asymptotic
cone of a finitely generated group is the asymptotic cone of this group seen as a metric space, where we use the word
metric defined by a given finite generating set. For a group, the bi-Lipschitz homeomorphism class of asymptotic
cones is independent of the generating set and the choice of base point, but does depend on the ultrafilter and the
scaling family. We state the bi-Lipschitz equivalence of the asymptotic cones of quasi-isometric spaces and refer to
[TV00] for the dependence described above.

Lemma 2.1.6. Let X,X ′ be pointed metric spaces, I an index set and (xi), (x
′
i) sequences of elements in X

and X ′ respectively. Let (λi) be a sequence of scalars going to zero, u a non-principal ultrafilter on I and consider
a family of (K,C)–coarse Lipschitz maps fi : X → X ′ satisfying u– limλi · distX′ (fi(xi), x

′
i) <∞. For

fu :
Xu ((xi) , (λi)) −→ X ′u ((x′i) , (λi)) ;

[xi] 7−→ [fi(xi)],

the ultralimit of this family, the following holds.

1. fu is K–Lipschitz,

2. If the fi are (K,C)–quasi-isometric embedding, then fu is a K–bi-Lipschitz embedding,

3. The limit map φu : (fi) 7→ fu preserves the composition,

4. If X = X ′ and the fi verify distX (fi(x), x) ≤ C for every x ∈ X and u–almost every i, then fu = IdXu
,

5. If each fi is a (K,C)–quasi-isometry, then fu is a K–bi-Lipschitz homeomorphism.

Proof. The map fu is the image of the family (fi) by the limit map defined in the third item of Lemma 1.2.6.

1. Let [yi], [zi] ∈ Xu ((xi) , (λi)) and consider the following inequalities

distX′u
(fu([yi]), fu([zi])) = u– lim

i
λi · distX′ (fi(yi), fi(zi))

≤ u– lim
i

(λiK · distX (yi, zi) + λiC)

= u– lim
i
λiK · distX (yi, zi) ,

where we used that the fi are (K,C)–coarse Lipschitz in the first inequality and the linearity of the u–limit
in the third equality. So, distX′u

(fu([yi]), fu([zi])) = K · distu ([yi], [zi]) and fu is K–Lipschitz.

2. This is the same calculation as before with the reverse inequality.

3. This is done as in Lemma 1.2.6.

4. For [yi] ∈ Xu, since the family (λi) goes to zero, we get

distu (fu([yi]), [yi]) = u– lim
i
λi · distX (fi(yi), yi) ≤ u– lim

i
λi · C = 0.

Thus, fu = IdXu
.
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5. By 2. above, fu is a K–bi-Lipschitz embedding. Then, using the third and fourth properties above, together
with the existence of the quasi-inverse of a quasi-isometry, we get the bijective property of a bi-Lipschitz
homeomorphism.

In particular, an asymptotic cone of a finitely generated group does not depend on the generating set up
to bi-Lipschitz homeomorphism. Therefore, one can use topological results on the asymptotic cones to study
quasi-isometric properties of the underlying group. This motivates the characterization of hyperbolic geodesic
metric spaces in terms of the geometry of their asymptotic cones. The next theorem is a first step in this direction
and is a direct consequence of Lemma 1.2.10.

Lemma 2.1.7. The asymptotic cones of a geodesic metric space are geodesic metric spaces.

The geometry of a metric space is well understood by the study of sequences within it. Thus, we consider
ultrafilters on the set of natural numbers; in the sequel, if it is not precised, all utrafilters are on the index set of
the natural numbers. Moreover, sequences (xi)i∈N of points in a metric space are denoted (xi). We are now able to
show, as done in [DK18, Chapter 11], that all asymptotic cones of hyperbolic geodesic metric spaces are real trees.

Theorem 2.1.8. If a geodesic metric space X is hyperbolic, then every asymptotic cone of it is a real tree.

Proof. Let δ be a constant such that X is δ–hyperbolic. Consider [ai], [bi], [ci], [yi] ∈ Xu ((xi) , (λi)) four elements
in the asymptotic cone of X with respect to a sequence of observation centers (xi), a sequence of scalars (λi) and
a non-principal ultrafilter u. Since X is δ–hyperbolic, the following holds

([ai], [ci])[yi]
= u– lim

i

1

2
(λi · distX (ai, yi) + λi · distX (ci, yi)− λi · distX (ai, ci))

= u– lim
i
λi(ai, ci)yi

≥ u– lim
i
λi min {(ai, bi)yi , (ci, bi)yi} − λiδ

= min
{

([ai], [bi])[yi]
, ([ci], [bi])[yi]

}
,

so that by definition Xu ((xi) , (λi)) is 0–Gromov-hyperbolic. Moreover, by Lemma 2.1.7, the asymptotic cone is
geodesic. So, by the equivalence between Gromov-hyperbolicity and hyperbolicity in geodesic metric spaces, the
asymptotic cone is a real tree.

For a geodesic metric space X, the converse also holds. That is, if there exists u such that for every (xi) and (λi)
the asymptotic cone Coneu (X, (xi) , (λi)) is a real tree, then X is hyperbolic, see [Gro91, Section 2.A.]. Note that
this equivalent characterization give a short proof of the quasi-isometry invariance of hyperbolicity for geodesic
metric space. We can intuitively understand asymptotic cones as presented in [TV00]. Imagine an observer moving
into a space X from a base point to another base point. Then, (λi ·X,xi) is the environment they can look at if
they pause at xi; the points of X that would have appeared at distance λ−1

i from him, now appear at distance one.
As the observer continues to move in the space, any finite configuration become indistinguishable from a single
point. However, they may observe finite configurations which may look like earlier configurations. The asymptotic
cones of X are the spaces which encode all these recurring finite configurations. In the following subsection, we
use the theory of asymptotic cones to define, under certain conditions, a limit action to a sequence of actions on a
hyperbolic metric space. This limit action is of first interest to prove the main theorem in Subsection 4.2.

2.2 Groups Acting on Trees and applications to Hyperbolic Groups

We first use the theory of asymptotic cones developed previously to construct a limit to a sequence of actions on
hyperbolic spaces. Thereafter, we show that this limiting process generalizes a construction of limit space introduced
by Bestvina and Paulin in [Bes88] and [Pau88] respectively. This limit action is studied further in Subsection 3.3
and is of primary interest for the proof of the main theorem in Subsection 4.2. To construct this particular limit
action and because asymptotic cones of hyperbolic metric spaces are real trees, we start by introducing vocabulary
of groups acting on trees as exposed by J.-S. Serre in [Ser77] and M. Culler and J.W. Morgan in [CM87].

Notation 4. Given an isometry γ of a metric space X, we denote lg(γ) := infx∈X distX (x, γx).

Definition 2.2.1. Let γ be an isometry of a metric space X.

• If γ fixes an element of X, then γ is called elliptic,

• If lg(γ) > 0 and is attained (there exists x ∈ X so that lg(γ) = distX (x, γx) then γ is called hyperbolic,
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• The isometry γ is called parabolic otherwise.

The following results investigate the geometric properties of isometries acting on real trees. In particular, the
next lemma states that, in fact, only two types of isometries of a real tree exist.

Lemma 2.2.2. If γ is an isometry of a real tree T without fixed point, then there exists a unique embedded line,
the characteristic axis of γ denoted Axis(γ) ⊆ T , on which γ acts by translation. In particular, γ is hyperbolic.

x

γx

m o
γm

γo

γ2x

γ3x

γ2m

Figure 1: The axis for a non-elliptic isometry γ and notations for Lemma 2.2.2.

Proof. To find Axis(γ), we look for an element m ∈ T that verifies distT
(
m, γ2m

)
= 2 distT (m, γm). Indeed, using

Remark 2.1.4 and the second item of Definition 2.1.3, this equality holds if and only if m-γm and γm-γ2m intersect
at a single point γm. Therefore, the γ–translates of the geodesic segment m-γm form a γ–invariant line on which γ
acts by translation. Consider a tripod with vertices x, γx, γ2x in T , o its crux and m the mid-point of the segment
x-γx. If distT (x,m) ≥ distT (x, o), then m is on the path γx-γ2x. So, using distT (m,x) = distT (m, γx), we obtain

distT (m, γm) = distT (γx, γm)− distT (m, γx) = distT (x,m)− distT (m, γx) = 0,

so that m is a fixed point of γ. This is a contradiction with γ has no fixed point, therefore, distT (x,m) < distT (x, o).
Thus, we are in the situation presented in Figure 1 and, to conclude, we show that distT

(
m, γ2m

)
= 2 distT (m, γm).

Since o ∈ m-γm and γo ∈ γm-γ2m, it is sufficient to prove distT (o, γo) = 2 distT (o, γm). Indeed, if this equality
holds, then

distT
(
m, γ2m

)
= distT (m, o) + distT (o, γo) + distT

(
γo, γ2m

)
= distT (m, γm) + distT (γm, γo)︸ ︷︷ ︸

2−1distT (o,γo)

+
1

2
distT (o, γo)

= distT (o, γo)︸ ︷︷ ︸
distT (o,γm)+distT (o,m)

+ distT (m, γm) ,

that is equal to 2 distT (m, γm) since o ∈ m-γm. Finally, distT (o, γo) = 2 distT (o, γm) by the following equalities

distT (o, γo) = distT
(
γx, γ2x

)
− 2 distT (o, γx)

= distT (x, γx)− 2

(
1

2
distT (x, γx)− distT (o, γm)

)
= 2 distT (o, γm) .

Hence γ is a hyperbolic isometry with axis
⋃
i∈Z
(
γim-γi+1m

)
.

We aim to find, under certain conditions, hyperbolic elements in the group of isometries of a real tree. In the
next lemma, we construct hyperbolic isometries by studying the composition of two isometries of the same type.

Proposition 2.2.3. Let η, γ be two isometries of a real tree. Then the following holds.

1. If η, γ are elliptic and their fixed-point sets are disjoint, then their composition ηγ is hyperbolic.

2. If η, γ are hyperbolic and their axes are disjoint, then their composition ηγ is hyperbolic with Axis(ηγ) inter-
sects Axis(γ) and Axis(η).
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Fix(η)

ηFix(γ)

ηγFix(η)

ηγηFix(γ)

ηx

ηγy

ηγηx

y

x
Fix(γ)

γx

x

γy

γηy γηx

γηγx γηγy

(γη)2y (γη)2x

Axis(γ)

γAxis(η)

γηAxis(γ)

γηγAxis(η)

(γη)2Axis(γ)

Figure 2: The axes of the compositions of: two elliptic isometries with disjoint fixed-point sets (left), two hyperbolic
elements with disjoint axes (right).

Proof. We construct an axis for ηγ, see Figure 2, on which the isometry acts by translation.

1. Suppose that γ, η are elliptic with disjoint fixed-point sets. Since γ, η are isometries, the sets Fix(γ) and Fix(η)
are closed subtrees of T . Let x ∈ Fix(γ) be the unique point closest to Fix(η), and y ∈ Fix(γ) the unique
point closest to Fix(η). Because no point on the segment x-y is fixed by η, the unique geodesic from x to ηγx
is x-y ∪ η(y-x) so that distT (x, ηγx) = distT (x, ηx) = 2 distT (x, y) . Likewise, the geodesic from x to (ηγ)2x
is the concatenation

x-y ∪ η(y-x) ∪ ηγ(x-y) ∪ ηγη(y-x),

so that distT
(
x, (ηγ)2x

)
= 4 distT (x, y) = 2 distT (x, ηγx). Thus, ηγ is hyperbolic as wanted.

2. Suppose that γ, η are hyperbolic with disjoint axes. Let x be the unique point of Axis(γ) closest to Axis(η),
and y the unique point of Axis(η) closest to Axis(γ). As in the first item, the unique geodesic from x to γηx
is the concatenation

x-γx ∪ γ(x-y) ∪ γ(y-ηy) ∪ γη(y-x),

so that distT (x, γηx) = lg(γ) + lg(η) + 2 distT (x, y) . Likewise, the geodesic from x to (γη)2x is

x-γx ∪ γ(x-y) ∪ γ(y-ηy) ∪ γη(y-x) ∪ γη(x-γx) ∪ γηγ(x-y) ∪ γηγ(y-ηy) ∪ γηγη(y-x).

Hence, distT
(
x, (γη)2x

)
= 2 lg(γ)+2 lg(η)+4 distT (x, y) = 2 distT (x, γηx) so that γη is hyperbolic with axis

intersecting Axis(γ) and Axis(η) at x and y respectively.

This proposition and the following lemma are the main steps to prove Lemma 2.2.7. Since this is not a detour,
we prove the next lemma for convex spaces.

Definition 2.2.4. A subset C of a geodesic metric space is convex if, given any two elements in C, there is a
unique geodesic segment contained within C that joins those two elements.

Lemma 2.2.5. Suppose C1, . . . , Cn are convex subsets of a geodesic metric space X verifying Ci ∩ Cj 6= ∅
for every i, j ∈ { 1, . . . , n }. Then, the intersection ∩ni=1Ci is non-empty.

Proof. The proof is by induction on the number of convex subsets n. The initial case n = 2 is verified by assumption.
By induction, if n > 2 there exist elements

xk ∈
⋂
i 6=k

Ci for every 1 ≤ k ≤ n.

So, x1 ∈ C2, x2 ∈ C1 and x1-x2 ⊆ Ck for each k > 2. Therefore, x1-x2 must pass through the intersection C1 ∩C2

which is a convex subset X. Hence, there exists an element of the geodesic metric space on the segment x1-x2 that
lies in every convex subsets.

Since the fixed-point set of an elliptic isometry of a real tree is a convex set, we obtain:

Corollary 2.2.6. Suppose γ1, . . . , γn are elliptic isometries of a real tree T verifying Fix(γi)∩Fix(γj) 6= ∅ for every
i, j ∈ { 1, . . . , n }. Then

n⋂
i=1

Fix(γi) 6= ∅.
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We now turn to the study of finitely generated groups acting on metric spaces by isometry. An action of a
group G on a metric space X is a homomorphism from G to the isometry group of X. Then, a G–space is a tuple
(X,x0, ρ) consisting of a metric space X, a base point x0 ∈ X and an action ρ of G on X. If a group G acts on a
real tree T , then T is called a G–tree. In this case, the G–action on T is hooked if there exists a point of T fixed
by all of G.

Lemma 2.2.7. If G is a finitely generated group acting unhooked on a G–tree T , then G contains a hyperbolic
element. That is, the image of this element in the isometry group of T is a hyperbolic isometry.

Proof. Let g1, . . . , g` be a finite generating set for G and suppose that every gi is elliptic, as otherwise, we conclude
using Lemma 2.2.2. Suppose by contradiction that every two generators have fixed-point sets intersecting non-
trivially. Then, by Corollary 2.2.6, T has an element fixed by all generators of G, which contradicts the assumption
that T is unhooked. Thus, there exist two generators gi, gj that have disjoint fixed-point sets. Hence, by the first
item of Proposition 2.2.3, the element gigj is hyperbolic.

In Subsection 4.2, we study combinatorial properties of a group from its action on a real tree. In this sense, it
seems natural to analyse the “simplest” subtree which is invariant under the group action.

Definition 2.2.8. Let G be a group and T a G–tree. If T does not contain any proper, unhooked, G–invariant
subtree, then T is called minimal.

Theorem 2.2.9. If G is a finitely generated group and T is an unhooked G–tree, then T contains a unique
minimal G–invariant subtree which is the countable union of the axes of hyperbolic elements in G.

Proof. Consider the subspace T ′ ⊆ T defined as the union of all axes of every hyperbolic element of G. By
Proposition 2.2.7, this subspace is non-empty and, by the second item of Lemma 2.2.3, T ′ is actually a tree.
For every hyperbolic element g ∈ G, any g–invariant subtree contains Axis(g). Thus, any G–invariant subtree
contains T ′ and, to conclude, we prove that T ′ is itself G–invariant. However, hAxis(g) = Axis

(
hgh−1

)
for any

g, h ∈ G where g is a hyperbolic element. Hence, the union of all axes is G–invariant as wanted.

The asymptotic cones of a hyperbolic group G are real trees. Moreover, given a fixed asymptotic cone of G,
there exists an action of G on this tree that makes it a G–tree. The purpose of the following is to clarify this
process, extend this idea to G–spaces and apply the above theory of groups acting on trees to this limit action.

Definition 2.2.10. Let G be a finitely generated group with finite generating set SG and (X,x0, ρ) a based
G–space. The displacement of the action ρ with respect to the base point x0, denoted |ρ|x0

, is

|ρ|x0
:= max

s∈SG
distX (x0, ρ(s)x0) .

We may simply write |ρ| if the base point x0 is clear from the context.

Theorem 2.2.11. Consider a finitely generated group G with finite generating set SG and (X,xi, ρi) a sequence
of G–spaces where X is hyperbolic. If (|ρi|xi) diverges towards infinity, then G acts by isometry on the asymptotic
cone Tu := Coneu

(
X, (xi) ,

(
|ρi|−1

xi

))
for any non-principal ultrafilter u. Moreover, if for every i ∈ N it holds

|ρi|y ≥ |ρi|xi for every y ∈ X, (2)

then Tu is unhooked and admits a minimal G–invariant subtree.

Proof. Fix u a non-principal ultrafilter. By Theorem 2.1.8, the asymptotic cone Tu is a real tree and, using the
third item of Lemma 1.2.6, we define the limit homomorphism ρ : G→ End(Tu) via

ρ(g)[zi] := [ρi(g)zi], for every [zi] ∈ Tu, g ∈ G.

By the second item of Lemma 1.2.6, ρ is an action of G on Tu; this conclude the first part of the theorem. To prove
the second part, we show that Tu has no element fixed by all of G. Let [zi] be an element of Tu. Since SG is finite
and u is finitely additive as an ultrafilter, there exists s ∈ SG verifying

max
s′∈SG

distX (zi, ρi (s′) zi) = distX (zi, ρi(s)zi) for u–almost every i ∈ N.

Thus, by condition (2) above, distX (zi, ρi(s)zi) ≥ |ρi|xi for u–almost every i ∈ N so that

distu ([zi], ρ(s)[zi]) = u– lim |ρi|−1
xi distX (zi, ρi(s)zi) ≥ u– lim 1 = 1.

Hence, Tu has no element fixed by all of G and, by Theorem 2.2.9, it contains a minimal G–invariant subtree.

17



Based on [RW10, Theorem 1.12], from which we take the idea of projection, we build a model for this subtree.

Notation 5. Given a G–space (X,x0, ρ), we denote gx the action of g ∈ G on x ∈ X if the choice of ρ is clear.

Proposition 2.2.12. Let G be a finitely generated group with finite generating set SG and ρ an unhooked action
of G on a real tree T . If x is an element of T realizing the minimum of the displacement function, then the subtree
spanned by G · x

Tx :=
⋃
g∈G

x-gx ⊆ T,

is the unique G–invariant minimal subtree of T containing x.

Proof. By construction, every element of Tx is connected to x. So, this subspace is a tree. Let y be an element
of Tx, g ∈ G such that y ∈ x-gx and h ∈ G. Since G acts on T by isometry, hy ∈ h(x-gx) = hx-hgx and,
using that T is a tree, hy ∈ Tx. Therefore, Tx is a G–invariant unhooked tree and it remains to show that Tx is
minimal. Suppose T ′ ⊂ Tx is a proper, unhooked, G–invariant subtree. By definition of Tx and properness of T ′,
the element x is not in T ′. Indeed, if x is in T ′, then G · x is in T ′ by G–invariance. However, T ′ is a tree so that
any segment between x and gx is in T ′ for every g ∈ G. This is a contradiction with T ′ is a proper subspace of Tx.
Hence, x ∈ Tx is not contained in T ′ and we consider its projection px on T ′. Since SG is finite and x has minimal
displacement for the ρ action, there exists s, s′ ∈ SG with

distT (x, ρ(s)x) =: |ρ|x ≤ |ρ|px := distT (px, ρ (s′) px) .

Moreover, for every g ∈ G, either px is fixed by g or x-gx = x-px ∪ px-gpx ∪ gpx-gx. Thus,

distT (px, ρ (s′) px) ≤ distT (x, ρ(s′)x) ≤ distT (x, ρ(s)x) ≤ distT (px, ρ (s′) px) .

Therefore, px is fixed by s′ so that x is fixed by s. That is a contradiction with T is unhooked. Hence, the action
of G on Tx is minimal and this conclude the proof.

Since ultrafilters are finitely additive, the following corollary is a direct consequence of Proposition 2.2.12.

Corollary 2.2.13. With the notations and hypothesis of Theorem 2.2.11, the subtree spanned by G · xu

T :=
⋃
g∈G

xu-gxu ⊆ Tu,

is the unique G–invariant minimal subtree of Tu containing xu, where xu is the ultralimit of the sequence (xi) ⊂ X.

Bestvina in [Bes88] and Paulin in [Pau88] obtained similar results while studying the space of actions of one
group on hyperbolic spaces Hn. The remainder of this subsection aims to construct a G–equivariant isometry
between the minimal tree obtained in Theorem 2.2.11 and the tree provided by Bestvina and Paulin’s method.
In the following, we present Bestvina’s tree which is slightly different from Paulin’s tree but equivalent up to
G–equivariant isometry.

Consider a natural number n and a sequence of faithful representations from a finitely generated non-virtually
abelian group G to the group of orientation preserving isometry of the hyperbolic n–space ρi : G → Isom+(Hn).
For SG a finite symmetric generating set of G, Bestvina proved the following proposition.

Proposition 2.2.14 (Bestvina, [Bes88, Proposition 2.1]). If G is not virtually abelian, then for every discrete and
faithful representation ρ : G→ Isom+(Hn), there exists x0 ∈ Hn such that |ρ|x0

≤ |ρ|y for every y ∈ Hn.

Thus, there exist base points xi which move minimally for the G–actions via the ρi representations. More-
over, if (|ρi|xi) diverges towards infinity, there exists a subsequence of (ρi) converging to a discrete and faithful
representation ρ : G → Isom(T ) where T is a real tree. This result relies heavily on Gromov-convergence that is
introduced by M. Gromov in [Gro91]. A sequence (Xi) of closed subsets of a compact metric space Q converges in
the Hausdorff sense to a closed subset X of Q if, for every ε > 0 there exists m(ε) such that, for every m > m(ε)
the set X is contained in the ε–neighborhood of Xm and Xm is contained in the ε–neighborhood of X.

Definition 2.2.15. A sequence (Xi) of compact metric spaces converges in the Gromov sense to a compact
metric space X if, there exists a compact metric space Q and isometric embeddings X ↪→ Q and Xi ↪→ Q, so that
the sequence (Xi) converges to X in the Hausdorff sense as subsets of Q.

18



LetX,Y be proper metric spaces. We make a remark on Gromov-convergence taken from [KL95]. If the sequence
of rescaled metric spaces with distinguished points

(
X,xi, λ

−1
i · distX

)
converges to (Y, y0,distY ) in the Gromov

sense, then for all ultrafilters u, there exists an isometry between Coneu
(
X, (xi) ,

(
λ−1
i

))
and (Y, y0) such that the

image of [xi] is y0. However, the converse is not true in general and relies on the asymptotic cone’s property of
being a proper metric space. Thus, instead of considering the entire rescaled space

(
X,xi, |ρi|−1 · distX

)
, Bestvina

considers, in [Bes88], a sequence of specific subspaces. We proceed similarly and define the following subspaces

W k := { g ∈ G | g can be represented as a word of length smaller than k in the alphabet SG },
F ki := convex hull in Hn of

{
ρi(g)xi

∣∣ g ∈W k
}
,

Xk
i := F ki setwise, with the rescaled metric distXki (a, b) := |ρi|−1

xi distHn (a, b) for every a, b ∈ Xk
i .

Proposition 2.2.16 (Bestvina, [Bes88, Theorem 3.4]). There exists a subsequence of (ρi) so that
(
Xk
i

)
i∈N converges

in the Gromov sense to finite trees T k for every k ∈ N. These trees verify the inclusions

T 1 ⊂ T 2 ⊂ · · · ⊂ T k ⊂ · · · .

Moreover, if g ∈W k, then the sequence (ρi(g)xi)i∈N converges to a point p(g) ∈ T k in the metric space containing

both Xk
i and T k provided by the Hausdorff convergence.

We endow the real tree TBP := ∪k∈NT k with the limit metric. That is, for every a, b ∈ TBP

distTBP (a, b) := lim
i→∞

distXki (ai, bi) = lim
i→∞

|ρi|−1
distHn (ai, bi) ,

where k is sufficiently large so that a, b ∈ T k and ai, bi are points of Xk
i for every i that verify a = limi ai, b = limi bi.

Finally, this tree is equipped with a G–space structure via gp(h) := p(gh) for every g, h ∈ G. This construction
leads to the following result.

Theorem 2.2.17 (Bestvina, [Bes88, Theorem 4.3]). With the above notations, the following holds.

1. The group G contains an element that acts without fixed points on TBP ,

2. The action of G on TBP is minimal.

We give a model to Bestvina and Paulin’s tree. Consider the subspace of TBP spanned by G · p(e)

T :=
⋃
g∈G

p(e)-gp(e) ⊆ TBP .

Because every element of T is connected to p(e), this subspace is in fact a tree. Then, as in Corollary 2.2.13, the
G–action is by isometry so that T is G–invariant. Moreover, by the first item of Theorem 2.2.17, this subtree is
unhooked. Finally, notice that the limit metric on TBP is, for every a = lim ai, b = lim bi ∈ TBP , the limit

distTBP (a, b) = u– lim |ρi|−1distHn (ai, bi) ,

where u is the Fréchet filter. So, using the assumption |ρi|xi ≤ |ρi|y for every y ∈ Hn, we obtain by a similar
method as in Corollary 2.2.13, using Proposition 2.2.12, the conclusion that T is a unhooked, minimal G–invariant
subtree of TBP . By uniqueness of the minimal G–invariant subtree of TBP and the second item of Theorem 2.2.17,
we obtain T = TBP .

We are now able to construct, in the special case of a group G acting on the hyperbolic n–space, a G–equivariant
isometry between both trees constructed in this subsection.

Theorem 2.2.18. Let G be a finitely generated non-virtually abelian group, u a non-principal ultrafilter and (ρi)
a sequence of faithful representations ρi : G → Isom+(Hn). Fix SG a finite symmetric generating set for G
and xi ∈ Hn elements verifying |ρi|xi ≤ |ρi|y for every y ∈ Hn. If (|ρi|xi) diverges towards infinity, then there exists
a G–equivariant isometry between T , the minimal G–invariant subtree of Tu := Coneu

(
Hn, (xi) ,

(
|ρi|−1

xi

))
, and the

tree obtained by Bestvina and Paulin’s method TBP .

Proof. By definition of the metrics on both trees, it holds for every g, h ∈ G

distu (gxu, hxu) = u– lim |ρi|−1distHn (ρi(g)xi, ρi(h)xi) = lim |ρi|−1distHn (ρi(g)xi, ρi(h)xi) = distTBP (p(g), p(h)) .

So, the map sending xu 7→ p(e) can be extended by G–equivariance to an isometry φ from G · xu to G · p(e).
By the above equalities, for g ∈ G, the segments xu-gxu and p(e)-p(g) are isometric embedding of the interval
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[0,distu (xu, gxu)] ⊂ R in T and T respectively. Consequently, there exist isometries φg : xu-gxu → p(e)-p(g)
sending xu to p(e) and gxu to p(g) for every g ∈ G. Since any two elements of T , respectively T , are joined by a
unique geodesic

ϕ :=
⋃
g∈G

φg : T → T ,

is a well-defined isometry that extend φ by construction. Since φ is G–equivariant and the action of G on both
spaces is by isometry, the extension of φ to ϕ is also G–equivariant. This conclude the proof of the theorem.

The theory of asymptotic cones as been studied first by L. Van den Dries and J.A. Wilkie in [VdDW84] to
generalize results obtained studying limits in the Gromov sense. Using their results, Paulin had already carried out
a similar construction to the one above in [Pau97] and Groves had already delivered a model for this tree in [Gro09].
The limit action of a group on a real tree as obtained above is studied in Section 3 and used to prove the main
Theorem 4.2.1. To deepen our understanding of this action, we introduce the concept of limit group which is the
cornerstone of this text.

3 Preliminaries in the Theory of Limit Groups

This section is intended to construct, under certain conditions, a limit to a sequence of morphisms from a free
group to a given group. We start by studying the limit of a sequence of morphisms from free groups to arbitrary
groups. Subsequently, we analyse more precisely this limit in the specific case of morphisms from free groups to
free groups. Finally, we use the theory introduced in this and the previous sections to study the action of limit
groups on limit spaces. In this section, we introduce all the necessary results to present Fujiwara and Sela’s proof
of Theorem 4.2.1 as done in [FS20] and take this occasion to give an introduction to the theory of limit groups.

3.1 Space of Marked Groups and Limit Groups over an arbitrary Group

At first, we define the concept of G–limit groups where G is an arbitrary finitely generated group. Then, we study
some properties of these groups and give several equivalent definitions. This framework gives us the opportunity
to define the category of marked groups as well as the Grigorchuk space introduced in [Gri84]. We synthesize
approches to limit groups written by C. Champetier and V. Guiradel [CG05] and P. Paulin [Pau03], by giving four
equivalent definitions of marked groups. Each definition gives new insight on the Grigorchuk space which is the
basis to our topological definition of limit groups.

We define the category of marked groups as follows. A marking of a group G is a finite ordered generating
family of G. In this definition, repetitions of elements are allowed in the generating family. The objects in the
category are marked groups.

Definition 3.1.1. A marked group is a pair (G,S) where G is a group and S is a marking of G.

A morphism of marked groups is a homomorphism of groups commuting with the markings. In formula,
ϕ : (G, (s1, . . . , s`)) → (G′, (s′1, . . . , s

′
`)) is a morphism of marked groups if and only if ϕ is a morphism of groups

between G and G′ that sends si on s′i for every i ∈ { 1, . . . , ` }. Notice that in the category of marked groups,
there exists at most one morphism between two objects and that any morphism is an epimorphism.

Notation 6. For ` ∈ N, we denote G` the set of groups marked by ` elements up to isomorphism of marked groups.

Before equipping this set with a topology, we give three other equivalent definitions of G`, as in [CG05], that
illustrate different aspects of this space. If not precised, a morphism between marked (labeled) objects is always a
morphism respecting the marking (labeling).

Marked groups as Cayley graphs: Each marked group (G,S) has a natural labeled Cayley graph, denoted
Cay(G,S), whose edges are labeled by integers in { 1, . . . , ` } referring to the generating elements s1, . . . , s` of S.
With these definitions, two marked groups are isomorphic if and only if their labelled Cayley graphs are isomorphic
in a label preserving way. As a result, G` may be viewed as the set of labeled Cayley graphs on ` generators up to
isomorphism.

Marked groups as epimorphisms from free groups: Let ` be a natural number and F` := 〈 s1, . . . , s` 〉 denote the
free group generated by s1, . . . , s` that we mark by the free basis (s1, . . . , s`). For a group G generated by at most `
elements, the epimorphisms from F` onto G are in one-to-one correspondence with the markings of this group.
Then, two epimorphisms h1 : F` → G1 and h2 : F` → G2 correspond to isomorphic marked groups if and only if
h1 and h2 are equivalent. In formula, h1 and h2 are equivalent if there exists a group isomorphism f : G1 → G2

such that the following diagram commutes
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(F`, S) (G2, h2(S))

(G1, h1(S)).

h1

h2

f

Therefore, G` is the set of epimorphisms with source the free group on ` elements up to equivalence.
Marked groups as subgroups of free groups: Two epimorphisms h1 : F` → G1 and h2 : F` → G2 describe the

same element in G` if and only if their kernels are equal. Thus, G` can be represented by the set of normal subgroups
of F`. Equivalently, it can be viewed as the set of quotients of F` where each element is marked by the image of
(s1, . . . , s`) under the quotient map. As a convention, we use a presentation 〈 s1, . . . , s` | r1, r2, . . . 〉 to represent
the marked group (〈 s1, . . . , s` | r1, r2, . . . 〉 , (s1, . . . , s`)) in G`.

Notation 7. Given a group G with finite generating set SG, we denote | · |SG : G → R+, the length function
on G with respect to SG. That is, the function defined by |g|SG is the length of the shortest word expressing an
element g ∈ G in the alphabet SG.

We endow G` with a topology by studying it as a subspace of a metric space (topology of Gromov-Hausdorff
and Chabauty). Let 2F` be the set of all subsets of the free group on ` elements and S a finite symmetric generating
family for F`. For any subsets A,A′ ∈ 2F` , consider the maximal radius of the balls on which A and A′ coincide:

v(A,A′) := max{R ∈ N ∪ {∞} | A ∩BS (F`, R) = A′ ∩BS (F`, R) },

where BS (F`, R) denote the open ball of radius R in F` about the identity for the S–word length. This induces an
ultrametric on 2F` defined by

dist2F` (A,A′) := e−v(A,A
′).

Then, a base for the metric topology is given by
{
Bdist

2F`
(X,R)

∣∣ R ≥ 0, X ∈ 2F`
}

. Each ball Bdist
2F`

(X,R) is
a product of sets Vg where

Vg =


{ 1 } if g ∈ X ∧ |g|S ≤ −log(r)

{ 0 } if g 6∈ X ∧ |g|S ≤ −log(r)

{ 0, 1 } otherwise.

Thus, every ball in this base is made of the whole 2F` except finitely many elements. Similarly, a base for the
product topology is composed of sets which have the form 2F` minus finitely many points. Hence, the metric
topology on 2F` coincides with the product topology so that 2F` is compact by Tychonoff’s Theorem.

Proposition 3.1.2. The set G` of normal subgroups of F` can be endowed with a structure of compact metric space.

Proof. We show that G` is a closed subspace of the compact metric space 2F` . Consider a sequence (Hi) of normal
subgroups of F` that converges towards a subset H ⊆ F`. Let g, h be elements in H, R := max{ |g|S , |h|S } and N
sufficiently large so that Hi ∈ Bdist

2F`

(
H, e−2R

)
for every i ≥ N . By choice of R and N , the elements g, h are in HN

and since the latter is a group, the element gh−1 is also in HN . Then, by symmetry of S, it holds
∣∣gh−1

∣∣
S
≤ 2R so

that gh−1 is contained in H. Hence, H is a subgroup of F`. By a similar method, H is a normal subgroup of F`
so that H is a closed subspace of the compact metric space 2F` . Hence, G` can be equipped with the structure of
a compact metric space.

The space of marked groups was first introduced by R.I. Grigorchuk in [Gri84, Section 6] and is sometimes
called Grigorchuk space. In his article, he proves among other results, the compactness of the space of marked
groups without using Tychonoff’s Theorem. We now translate the metric topology defined for normal subgroups
of F` to the other definitions of G`. If we view G` as the set of epimorphisms from the free group on the alphabet
s1, . . . , s`, then the metric topology can be described as follows. Two epimorphisms h1 : F` → G1, h2 : F` → G2

are at distance at most e−R if, for every word w(s1, . . . , s`) in F` of length at most R, then

w (h1(s1), . . . , h1(s`)) = 1 in G1 if and only if w (h2(s1), . . . , h2(s`)) = 1 in G2.

In this setting, another base system for the product topology on G` is {Vn | n ∈ N } where Vn is the set of
couples of epimorphisms h1 : F` → G1, h2 : F` → G2 such that there exists an isometry between Bh1(S) (G,n) and
Bh2(S′) (G′, n) making the following diagram commutative:

BS(F`, n) Bh2(S) (G′, n)

Bh1(S) (G,n) .

h1

h2

∃f
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To translate the metric topology, in the case G` is defined by groups and their markings, we analyse the relations in
each group for the alphabet given by the marking. A relation in a marked group (G,S) is an S–word representing
the identity in G. Then, two marked groups (G,S), (G′, S′) are at distance at most e−R if they have exactly the
same relations of length at most R. In this description, marked groups are always considered up to isomorphism.
Thus, we identify an S–word in G with the corresponding S′–word in G′ under the canonical bijection from S to S′

as ordered family of cardinality `. Finally, in a marked group (G,S), the set of relations of length at most 2R + 1
contains the same information as the ball of radius R of its Cayley graph. Thus, the metric on G` viewed as space
of Cayley graphs can be expressed as follows. Two marked groups (G,S), (G′, S′) are at distance at most e−R if
their labeled Cayley graphs have isomorphic labeled balls of radius R. Hence, we have a description of the metric
topology on G` for each equivalent definition of the space of marked groups. The limit of a sequence in G` depends
on the sequence of ambient groups as well as on their markings.

Example 3.1.3. The free abelian group Z` is a limit of markings of Z: Consider (Gi, Si) :=
(
Z,
(
1, i, . . . , i`−1

))
a

sequence of markings of Z in G`. For any R > 0, if i ≥ 100R and j, k are distinct elements of { 0, . . . , `− 1 }, then
the only relations between ij and ik in the ball of radius R in (Gi, Si) are relations of commutation, see Figure 3.
Thus, the ball of radius R of (Gi, Si) is the same as the ball of radius R in

(
Z`, (e1, . . . , e`)

)
, where en denotes the

n–th vector of the canonical base of Z`. Consequently, the sequence of marked groups
(
Z,
(
1, i, . . . , i`−1

))
converges

to the marked group
(
Z`, (e1, . . . , e`)

)
. So, being generated by k elements for k < ` is not a closed condition in G`.

(Z, (1, i))
(
Z2, (e1, e2)

)

Figure 3: Convergence of the sequence (Z, (1, i)) towards the marked group
(
Z2, (e1, e2)

)
.

The free group Z is a limit of finite cyclic groups: Consider the sequence (Z/iZ, (1)) ⊂ G`. For any natural
number i, the ball of radius i/3 about the identity in the marked group (Z/iZ, (1)) is the same as the ball of
radius i/3 about the identity in (Z, (1)), see Figure 4. Thus, the sequence of marked groups (Z/iZ, (1)) converges
to the marked group (Z, (1)) when i diverges towards infinity. Hence having torsion is not a closed condition in G`.

(Z/iZ, 1) (Z, 1)

B(1)(Z/iZ, 4)

B(1)(Z, 4)

∃f

Figure 4: Convergence of the sequence (Z/iZ, (1)) towards the marked group (Z, (1)).

The subsequent results examine the algebraic properties of a group that can be deduced by studying its neigh-
borhood in G`. All these results come from [CG05] and are of major importance in the study of limit groups.

Proposition 3.1.4. For k ≤ `, being generated by at most k elements and having torsion are open but not closed
properties in G`.

Proof. Being generated by at most k elements: Let g1, . . . , gk be k generators of a marked group (G,S) where
S := (s1, . . . , s`) and define SG := (g1, . . . , gk). Each element si ∈ S is represented by a word wi(g1, . . . , gk)
for every i ∈ { 1, . . . , ` }. Then, since S is finite, we can define R1 the maximal S–length of an element gi;
R2 the maximal SG–length of a word wi. Consider a marked group (G′, S′) at distance less than e−R1R2 from
(G,S) so that BS (G,R1R2) and BS′ (G

′, R1R2) are isometric. By choice of R1, R2, the elements g1, . . . , gk are
in correpondance with k elements of G′, denoted g′1, . . . , g

′
k, and one can read the relations s′i = wi (g′1, . . . , g

′
k)

in (G′, S′) for every i ∈ { 1, . . . , ` }. Hence, g′1, . . . , g
′
k generate G′. This is true for any marked group at distance

less than e−R1R2 from (G,S) so that being generated by less than k elements is an open property. However, as
seen in the first example above, this property is not closed in G`.

Having torsion: Let g ∈ G be a torsion element such that gi = 1 for some natural number i. If R is i times the
S–length of g, then any marked group (G′, S′) at distance less than e−R from (G,S) contains an element g′ ∈ G′
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corresponding to g. This element is non-trivial and verifies the relation (g′)
i

= 1. Hence, any marked group in a
neighborhood of (G,S) has torsion. However, this property is not closed since the sequence (Z/iZ, (1)) converges
towards the torsion-free marked group (Z, (1)).

Proposition 3.1.5. Being abelian is an open and closed property in G`.

Proof. A marked group (G,S) is abelian if and only if the commutators in the generators define the identity element
in G. Thus, two marked groups at distance less than e−4 in G` are either both abelian or both non-abelian. Hence,
being abelian is an open and closed property.

The following proposition and its corollary are a great source of open or closed properties in G`. Two formulas
ϕ, φ of Lgrp are elementarily equivalent if, any group G that is a model of ϕ, denoted G |= ϕ, is a model of φ
and vice versa.

Proposition 3.1.6 (Champetier and Guirardel). If ϕ is an existential sentence, then G |= ϕ is an open property
in G`.

Proof. Consider an existential sentence ϕ and a marked group (G,S) ∈ G` verifying G |= ϕ. There exists a
quantifier free sentence φ(x1, . . . , xn) so that ϕ is elementarily equivalent to the formula ∃x1 · · · ∃xn φ(x1, . . . , xn).
Using distributivity of ∧ with respect to ∨, the formula φ(x1, . . . , xn) is elementarily equivalent to a formula

Σ1(x1, . . . , xn) ∨ · · · ∨ Σp(x1, . . . , xn),

where each Σi is a system of equations or inequations. That is, a set of equations or inequations of the form
(w(x1, . . . , xn) = 1) or (w(x1, . . . , xn) 6= 1) separated by the symbol ∧ where w(x1, . . . , xn) is a word in the
variables x1, . . . , xn and their inverses. Since G is a model of ϕ, there exists a1, . . . , an ∈ G and i ∈ { 1, . . . , p }
such that Σi(a1, . . . , an) holds. Consider R large enough so that the ball of radius R in (G,S) contains { a1, . . . , an }
and so that for each word w occuring in Σi, the corresponding word on { a1, . . . , an } can be read in this ball (one
can take R to be the maximal length of the words in Σi times the maximal S–length of the ai’s). If a marked group
(G′, S′) is at distance less than e−R from (G,S), then its ball BS′ (G

′, R) is isometric to BS (G,R). Consequently
the elements a1, . . . , an correspond to elements a′1, . . . , a

′
n which satisfy Σi. Hence, G′ is a model of ϕ.

In addition, the negation of an existential formula is a universal formula. Thus, Proposition 3.1.6 proves

Corollary 3.1.7. If ϕ is a universal sentence, then G |= ϕ is a closed property in G`.

Z. Sela introduced in [Sel01] the concept of limit group as Gromov’s limit of a sequence of homomorphisms.
Then, Bestvina and Feighn generalized, in [BF09], Sela’s methods to the notion of G–limit groups for G a finitely
generated group. We analyse two equivalent definitions of G–limit groups before giving that of Bestvina and Feighn.

Definition 3.1.8 (Groves and Hull, [GH19]). Let G be a family of groups. A marked group (H,S) is a G–limit
group if there exists ` ∈ N such that (H,S) is the limit of marked groups (Hi, Si) in G` where each Hi is a finitely
generated subgroup of an element of G. If G reduces to a single element G, then we talk about G–limit groups.

This class of groups first appeared in [GH19] where it is studied in depth. For presentation purposes, we examine
a family of groups reduced to a single element, although most of the results generalize to the broader concept.

Proposition 3.1.9 (Champetier and Guirardel). If (Gi, Si) ⊂ G` is a sequence of marked groups which converges
to (G,S) ∈ G`, then (G,S) embeds in any ultraproduct

∏
i∈NGi/ ∼u where u is a non-principal ultrafilter.

Proof. Write Si = (s1,i, . . . , s`,i) and consider a non-principal ultrafilter u on N. Define the subgroup G of the
ultrapoduct

∏
i∈NGi/ ∼u generated by S := ([s1,i] , . . . , [s`,i]). We prove that

(
G,S

)
is isomorphic to (G,S) as a

marked group. Let w be a word on ` variables and their inverses. If w is trivial in (G,S), then it is trivial in (Gi, Si)
for all but finitely many i. Thus, w is trivial for u–almost every i ∈ N so that w is trivial in

(
G,S

)
. Since w has

finite length, the same result occurs when w is non-trivial and proves that (G,S) is isomorphic to
(
G,S

)
.

Proposition 3.1.10 (Champetier and Guirardel). Let u be a non-principal ultrafilter on the natural numbers, G
a finitely generated subgroup of an ultraproduct

∏
i∈NGi/ ∼u and S a marking of G. Then there exists a sequence

of finitely generated subgroups Hik < Gik and markings Sik of Hik so that (Hik , Sik) converges towards (G,S).

Proof. Let S = (s1, . . . , s`) and write each generator sn as a sequence (sn,i)i∈N for any n ∈ { 1, . . . , ` }. Define
Si := (s1,i, . . . , s`,i) and Hi the subgroup of Gi generated by Si. We prove that, up to passing to a subsequence,
(Hi, Si) converges towards (G,S). Consider a ball of radius R in (G,S) and a word w in it. By definition of the
ultraproduct, the word w is trivial in (G,S) if and only if it is trivial in (Hi, Si) for u–almost every i. Thus, as an
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intersection of finitely many full u–measure subsets, the set of indices i such that the ball of radius R of (Hi, Si)
coincides with the ball of radius R of (G,S) has full u–measure. Since u is non-principal, this set of indices
is infinite. Hence (Hi, Si) accumulates on (G,S) so that, passing to a subsequence, we obtain (Hik , Sik) that
converges to (G,S).

The last two propositions prove the following corollaries in which G is an arbitrary group. These corollaries
motivate the algebraic definition of limit groups.

Corollary 3.1.11. A group is a G–limit group if and only if it is a finitely generated subgroup of an ultrapower
of G. Moreover, any ultrapower of G contains every G–limit group.

Corollary 3.1.12. A finitely generated subgroup of a G–limit group is a G–limit group.

Definition 3.1.13 (Groves and Hull, [GH19]). Let G be an arbitrary group, H a finitely generated group and u
a non-principal ultrafilter. The u–kernel of a sequence of homomorphisms (ϕi) ⊂ Hom(H,G) is defined as

keru(ϕi) := {h ∈ H | ϕi(h) = 1 for u–almost every i }.

Then, the quotient H/keru (ϕi) is called G–limit group associated to (ϕi) and we denote η the quotient map.

Consequently, the next proposition, taken from [GH19], is a consequence of Corollary 3.1.11.

Proposition 3.1.14. Let G be an arbitrary group and u a non-principal ultrafilter. The G–limit groups as limit
of marked groups are in one-to-one correspondence with G–limit groups as quotients of finitely generated groups by
u–kernels.

The remainder of this subsection intends to prove that being a G–limit group does not depend on the marking,
nor on the space G` in which the marking is chosen. To this end, we introduce an equivalence relation on G` that
gives us new insight on the structure of subgroups of a G–limit group. Fix ` a natural number, the space G` is
endowed with the isomorphism equivalence relation: two marked groups are equivalent if their underlying group
(forgetting about the marking) are isomorphic as groups. We denote by [G]G` the equivalence class of G in G`.
From the definition of G` as epimorphisms from a free group, the elements in a class [G]G` are in bijection with
Epi(F` � G)/Aut(G) for the action of Aut(G) on Epi(F` � G) by post composition.

Definition 3.1.15. A subset A ⊆ G` is saturated if it is a union of equivalence classes for the isomorphism
relation. The saturation of a subset A ⊆ G` is the union of equivalence classes meeting A. That is, the smallest
saturated set containing A.

Lemma 3.1.16. The saturation of an open set in G` is open.

Proof. Consider an open subset U ⊆ G`, V its saturation and two elements (G,S) ∈ U , (G,S′) ∈ V . Since U is
open, there exists R > 0 such that any marked group having the same ball of radius R as (G,S) lies in U . We prove
that there exists R′ > 0 such that any marked group (H,T ′) in a ball of radius e−R

′
about (G,S′) in G` is in the

saturation of U . That is, we show that H has a marking T so that (H,T ) has the same ball of radius R as (G,S).
To do so, express the elements of S = (s1, . . . , s`) as S′–words si = wi (s′1, . . . , s

′
`) and define L the maximum

length of the words wi as well as R′ := RL. Let ti be the elements of H corresponding to the word wi (t′1, . . . , t
′
`)

where T ′ = (t′1, . . . , t
′
`). Given a word r(x1, . . . , x`) of length at most 2R in the variables {x1, . . . , x` }, the following

properties are equivalent:

• the word r(t1, . . . , t`) defines a relation in (H,T ),

• the word r(w1(t′1, . . . , t
′
`), . . . , w`(t

′
1, . . . , t

′
`)) of length at most 2R′ defines a relation in (H,T ′),

• the word r(w1(s′1, . . . , s
′
`), . . . , w`(s

′
1, . . . , s

′
`)) of length at most 2R′ defines a relation in (G,S′),

• the word r(s1, . . . , s`) defines a relation in (G,S).

The second and third points are equivalent by choice of (H,T ′) with the same balls of radius R′ as (G,S′). Thus
(H,T ) has the same balls of radius R as (G,S) so that (H,T ′) is in V .

Corollary 3.1.17. The closure in G` of a saturated set is saturated.

Proof. Consider a saturated set A ⊆ G`. Then, the interior U of its complement is the largest open set which does
not intersect A. Since A is saturated, the saturation V of U does not meet A. By Lemma 3.1.16, V is an open set
so that V = U and A = G`\V is saturated.
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Corollary 3.1.18. Being a G–limit group does not depend on the choice of marking.

Proof. By Lemma 3.1.16, the set of G–limit groups is saturated. That is, if a marking of a group H ∈ G` is a limit
of markings of G, then any other marking of H is also a limit of markings of G in G`.

Lemma 3.1.19. Let h : F`+1 → F` be an epimorphism and h∗ : G` → G`+1 the induced map defined in terms of
epimorphisms by h∗ : f 7→ f ◦ h. Then, h∗ is an open homeomorphism onto its image.

Proof. The injectivity of h∗ comes from the surjectivity of h. First, we show that h∗ is a homeomorphim onto its
image. Consider a sequence of epimorphisms fi : F` → Gi converging towards an epimorphism f : F` → G in G`. If
g ∈ ker(f ◦ h), then, by convergence of the sequence (fi) towards f , there exists N ∈ N so that for every i > N it
holds h(g) ∈ ker(fi). Therefore, for every i > N , we obtain g ∈ ker(fi ◦ h) so that h∗ ◦ fi converges towards h∗ ◦ f .
Hence, h∗ is an injective continuous map from a compact space to a metric space so that h∗ is a homeomorphism
onto its image. Second, we show that the image of h∗ in G`+1 is open. Consider f := f1 ◦h : F`+1 → G1 an element
in the image of h∗. Since F` is finitely presented, ker(h) is the normal closure of a finite set. So, R the maximum
length of any word of ker(h) in the canonical alphabet of F`+1 is well-defined. Let k : F`+1 → G2 be an element in
a ball of radius smaller than e−R about f , we define a homomorphism k1 : F` → G2 verifying k = k1 ◦ h. Define k1

on basis elements of F` by k1(a) := k(a′) for any a′ ∈ h−1(a), where a is a basis element of F`, and extend k1 to a
homomorphism. Since bc−1 ∈ ker(h) for any b, c ∈ h−1(a), we obtain

k
(
bc−1

)
= f

(
bc−1

)
= f1 ◦ h

(
bc−1

)
= IdF`+1

.

Thus, the homomorphism k1 is well-defined and verifies k = k1 ◦ h so that h′ is an open map.

Therefore, by Lemma 3.1.19, there exist embeddings from Gn to Gm for all n ≤ m. Indeed, consider the
epimorphism h : Fm = 〈 e1, . . . , em 〉 → Fn = 〈 f1, . . . , fn 〉 which sends ei to fi for any i ∈ { 1, . . . , n } and to 1 for
any i ∈ {n + 1, . . . ,m }. Then, by Lemma 3.1.19, the map h∗ embeds Gn into Gm. In formula, a marked group
(G, (g1, . . . , gn)) of Gn correspond to the marked group

h∗(G, (g1, . . . , gn)) = (G, (g1, . . . , gn, 1, . . . , 1)) ∈ Gm.

Corollary 3.1.20. Being a G–limit group does not depend on the set G` in which the marking is chosen.

In comparison to Bestvina and Paulin’s work which give a compactification of the space of actions of one
group on hyperbolic spaces, Sela’s work on equations in free groups leads to a compactification of the space of
epimorphisms from an arbitrary group onto free groups. This compactification consists of epimorphisms from an
arbitrary group onto potentially non free groups, called limit groups. In the upcoming subsection, we focus our
attention on the framework studied by Sela in [Sel01], that is, limits of markings of free groups.

3.2 Limit Groups over Free Groups and Equationally Noetherian Groups

We first study F2–limit groups, also called limit groups, with an approach similar to that used by Champetier and
Guirardel in [CG05]. More specifically, we characterize their subgroups generated by two elements and show that
limit groups are equationally Noetherian. Along the way, we present two equivalent definitions of limit groups that
are interesting for historical reasons. Subsequently, to give a framework in which Theorem 4.2.1 applies, we present
examples of limit groups as well as hyperbolic groups that are not limit groups. In the following, ` is a natural
number large enough for the groups considered to be elements of G`.

Lemma 3.2.1. For k ∈ { 1, . . . , ` }, the closure of all the markings of the free abelian group Zk in G` is the set
of all markings of the groups Zk,Zk+1, . . . ,Z`. That is

[Zk]G` =
[
Zk
]
G`
∪
[
Zk+1

]
G`
∪ · · · ∪

[
Z`
]
G`
.

Proof. Let p be an element of { k, . . . , ` }. As in Example 3.1.3, there exists a sequence of markings of Zk converging
to a particular marking of Zp. Since the closure of all markings of Zk is saturated by Lemma 3.1.16, every marking
of Zp is a limit of marking of Zk. Conversely, if a marked group (G,S) is a limit of markings of Zk, then it is
abelian, torsion-free and its rank is at least k by Proposition 3.1.4 and Proposition 3.1.5. Hence, (G,S) is contained
in [Zk]G` ∪ [Zk+1]G` ∪ · · · ∪ [Z`]G` .

Theorem 3.2.2. Two elements of a limit group generate a free abelian group
(
{1},Z or Z2

)
or a non-abelian

free group of rank 2.
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Proof. Using Corollary 3.1.12, it is sufficient to prove that any 2–generated limit group is isomorphic to F2, Z2,Z
or {1}. So, consider a marked group (G, { a, b }) in G2 which is a limit of marked free groups (Gi, { ai, bi }) and
assume that a and b satisfy a non-trivial relation. Then, for i large enough, ai and bi satisfy the same relation.
Since Gi is a free group, ai and bi generate a (maybe trivial) cyclic group. By Lemma 3.2.1

[Z, { 1 }]G2
= [{ 1 }]G2

∪ [Z]G2
∪
[
Z2
]
G2
,

so that a, b generate a free abelian group.

The next corollary comes from [Pau03] where Univ(G) denotes the universal theory of a group G. Historically,
limit groups were a tool for studying Tarski’s problem on the elementary theory of free groups. The following
corollary, first proved by V.N. Remeslennikov in [Rem89], allows without further development, to show that all free
groups have the same universal theory.

Corollary 3.2.3 (Remeslennikov). A finitely generated group has the same universal theory as a non-abelian free
group (infinite cyclic group) if and only if it is a non-abelian limit group (abelian limit group).

Proof. By Theorem 3.2.2, a non-abelian limit group G contains F2 so that Univ(G) ⊆ Univ(F2). Moreover, by
Corollary 3.1.7, being a model of a universal formula is a closed property in the space of marked groups. Hence,
Univ(F2) ⊆ Univ(G) so that the equality holds. We now prove that if G has the same existential theory as F2, then
it is a limit group. Let S = (s1, . . . , s`) be a marking of G, N a natural number and w1, . . . , wn the reduced words
of length at most N in the variables x1, . . . , x` and their inverses. Consider the finite system ΣN of equations and
inequations ∧ni=1ϕi in the variables x1, . . . , x` where each ϕi is the formula

wi(x1, . . . , x`) = 1 if wi(s1, . . . , s`) = 1 in G or wi(x1, . . . , x`) 6= 1 if wi(s1, . . . , s`) 6= 1 in G.

Then, the existential formula ∃x1 · · · ∃x` ΣN is verified in G. So, by assumption, there exists SN = (s1,N , . . . , s`,N )
a solution in F2 to the system ΣN . If GN is the subgroup of F2 generated by 〈SN 〉, then the sequence (GN , SN )
converges towards (G,S) by construction. SinceG is not abelian, the subgroupsGN are not abelian forN sufficiently
large and therefore G is a limit group.

Unlike Fujiwara and Sela which prove Theorem 4.2.1 for arbitrary hyperbolic groups in [FS20], we restrict our-
selves to the study of hyperbolic limit groups. This allows to describe certain properties on elements’ neighborhood
in G` without refering to Rips theory. This description is the purpose of the following development that begins by
showing the equivalent characterization of limit groups as fully residually free groups. Also, this class of groups is
extensively studied by B. Baumslag in [Bau67] where examples and results may be found.

Definition 3.2.4. A group G is fully residually free if for any finite set of distinct elements g1, . . . , gk ∈ G,
there exists a group homomorphism h from G to a free group such that h(g1), . . . , h(gk) are distinct.

Lemma 3.2.5. Any fully residually free group is a limit group.

Proof. Let G be a fully residually free group and S a marking of G. For every i ∈ N, there exists a free quotient Gi
of G in which the ball of radius i of (G,S) embeds. Let Si be the image of S in Gi by the quotient map and
consider the sequence of marked groups (Gi, Si). For any i ∈ N, by construction, (Gi, Si) has the same balls of
radius i as (G,S). Hence, (G,S) is the limit of the sequence of marked free groups (Gi, Si).

We now prove that the converse also holds. That is, any limit group is fully residually free. We proceed as
Champetier and Guirardel in [CG05] using the Noetherianity of Z, C and the linearity of F2.

Definition 3.2.6. A commutative ring is Noetherian if it satisfies the ascending chain condition. That is, every
ascending chain of ideals I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · is constant from a certain point.

Lemma 3.2.7. Any finitely generated subring R of an ultrapower ∗Z is, as a ring, fully residually Z. That is,
for any a1, . . . , ak ∈ R\{0}, there exists a ring morphism γ : R→ Z such that γ(ai) 6= 0 for every i ∈ { 1, . . . , k }.

Proof. By assumption, there exists t1, . . . , t` ∈∗Z such that R = Z[t1, . . . , t`]. Consider the related exact sequence

J ↪→ Z[T1, . . . , T`] � R,

where Z[T1, . . . , T`] is the ring of polynomials with ` commuting indeterminates. Since Z[T1, . . . , T`] is Noetherian by
Hilbert Basis Theorem, see [Rot10, Theorem 6.42], the ideal J is generated by finitely many polynomials f1, . . . , fq.
Consider a1, . . . , ak ∈ R\{0} and we define a ring morphism γ from R to Z so that all γ(ai) are distinct. Let
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g1, . . . , gk be preimages of a1, . . . , ak in Z[T1, . . . , T`]\J and note that (t1, . . . , t`) is a solution to the system of
equations and inequations {

fi(x1, . . . , x`) = 0 for every i ∈ { 1, . . . , q },
gj(x1, . . . , x`) 6= 0 for every j ∈ { 1, . . . , k }.

This system is finite so that  Lós Theorem applies and gives a solution (s1, . . . , s`) in Z to this system. Consequently,
the morphism Z[T1, . . . , T`]→ Z sending Ti to si induces the desired morphism γ : R→ Z.

In view of the next lemma, let p be an odd prime and ∗ϕ :∗Z→∗Z/pZ the morphism induced by the quotient
map ϕ : Z→ Z/pZ. As seen in Lemma 3.2.7, for any finitely generated subring R <∗Z, there exists t1, . . . , tn ∈∗Z so
that R = Z[t1, . . . , tn]. Then, the image ∗ϕ (R) is also a finitely generated subring of ∗Z/pZ which is isomorphic, by
naturality of ∗ϕ, to Z/pZ [∗ϕ(t1), . . . ,∗ϕ(tn)]. If φ : R→ Z is a ring morphism such that the images φ(ti) = si ∈ Z
are distinct, then, since all morphisms are natural, the following diagram is commutative

∗Z
∗ϕ

��
	

Roo
φ: ti 7→si //

∗ϕ

��
�

Z

ϕ

��
∗(Z/pZ) ∗ϕ(R)oo

∗ϕ(ti) 7→ϕ(si)
// Z/pZ.

These observations are the main ideas to prove the following lemma.

Theorem 3.2.8 (Remeslennikov). A finitely generated subgroup of an ultrapower ∗F2 is fully residually free.

Proof. Fix an ultrafilter u, the corresponding ultrapower ∗F2 of F2 and G a finitely generated subgroup of ∗F2.
For any odd prime p, the kernel of ϕ : SL2(Z)→ SL2(Z/pZ) is a non-abelian free group. So, F2 embeds in ker(ϕ)
so that ∗F2 embeds in the kernel of the natural morphism ∗ϕ : SL2(∗Z) → SL2(∗(Z/pZ)) where ∗Z is the ring
obtained by taking the u–ultrapower of the ring Z. Since G is a finitely generated subgroup of ∗F2, it embeds in
a finitely generated subgroup SL2(R) of SL2(∗Z) where R is a finitely generated subring of ∗Z. To show that G is
fully residually free, consider finitely many elements g1, . . . , gk ∈ G\{1} ⊆ SL2(R). Then, we construct a morphism
φ : SL2(R) → SL2(Z) such that φ(gi) 6= IdSL2(Z) for every i ∈ { 1, . . . , k } and verifying φ(G) is contained in a
free group. Let a1, . . . , aq be the set of non-zero coefficients of the matrices gj − IdSL2(R) for j ∈ { 1, . . . , k }. By
Lemma 3.2.7, there exists a ring morphism γ : R→ Z so that γ(ai) 6= 0 for every i ∈ { 1, . . . , q }. Then, the induced
group morphism φ : SL2(R) → SL2(Z) maps the elements gi to non-trivial elements. By naturality of the defined
morphisms, the following diagram is commutative

G SL2(R) SL2(R′)

SL2(Z) SL2(Z/pZ).

φ

ϕ

φ′

∗ϕ

Thus, with G ⊆ ker(∗ϕ) and the commutativity of the above diagram, we obtain φ(G) ⊆ ker(ϕ) which is free.
Consequently, φ(G) is free and G is fully residually free.

Corollary 3.2.9 (Kharlampovich, Myasnikov and Sela). A finitely generated group is fully residually free if and
only if it is a limit group.

Before proving the next crucial theorem, we introduce some notions of algebra and more precisely that of affine
algebraic variety. This treatment is due to J.J. Rotman and comes from [Rot10]. In the sequel, k denotes a field.

Definition 3.2.10. If F is a subset of k[x1, . . . , x`], then the variety defined by F is

Var(F ) :=
{
a ∈ k`

∣∣ f(a) = 0 for every f(x1, . . . , x`) ∈ F
}
.

Thus, Var (F ) consists of every a ∈ k` which are zeros for every f(x1, . . . , x`) ∈ F .

Definition 3.2.11. A representation of a group G on a k–vector space V is a group morphism from G to GL(V ).

Let G be a finitely generated group and S = (s1, . . . , s`) a finite generating set of G. The subset Hom (G,SL2(C))
of the set of representations of G on C2 defines a variety. Indeed, if W denotes the set of relations of G in the
alphabet S, then for every ϕ ∈ Hom(G,SL2(C)) and every w ∈W , it holds

ϕ(w(s1, . . . , s`)) = w(ϕ(s1), . . . , ϕ(s`)) = IdSL2(C).
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Also, any map ϕ : S → SL2(C) that satisfies w(ϕ(s1), . . . , ϕ(s`)) = IdSL2(C) for every w ∈W extends to a morphism
from G to SL2(C). Since words in W are equations in ` variables, this defines a variety of representations

V :=
{

(ϕ(s1), . . . , ϕ(s`)) ∈ SL2(C)`
∣∣ ϕ ∈ Hom(G,SL2(C)), w(ϕ(s1), . . . , ϕ(s`)) = IdSL2(C) for every w ∈W

}
.

Definition 3.2.12. If A ⊆ C`, we denote

I(A) := { f(x1, . . . , x`) ∈ C[x1, . . . , x`] | f(a) = 0 for every a ∈ A }.

From these definitions, we obtain the following useful proposition.

Proposition 3.2.13.

1. If A ⊂ B are subset of C`, then I(B) ⊆ I(A),

2. If F ⊂ G are subset of C[x1, . . . , x`], then Var(G) ⊆ Var(F ).

It is a classical result, see [Rot10, Theorem 6.42, Hilbert Basis Theorem], that C and any finite extension of it
are Noetherian. As a result, the forthcoming proposition is a direct consequence of the Nullstellensatz Theorem,
see [Rot10, Theorem 6.102, Nullstellensatz].

Proposition 3.2.14. If V1 and V2 are varieties and I(V1) = I(V2), then V1 = V2.

We now have enough results from the theory of varieties to state the first finitness lemma on limit groups.

Theorem 3.2.15. Consider a sequence of quotients of finitely generated groups

G1 � G2 � · · ·� Gk � · · · .

If every group Gi is residually free, then all but finitely many epimorphisms are isomorphisms.

Proof. Let S1 := (s1, . . . , s`) be a finite generating set of G1 and define Si := (s1,i, . . . , s`,i) its image in Gi under
the quotient map. For every i ∈ N, consider also Vi ⊆ SL2(C)` the variety of representations of (Gi, Si) in SL2(C):

Vi :=
{

(M1, . . . ,M`) ∈ SL2(C)`
∣∣ for every relation w of (Gi, Si), w (M1, . . . ,M`) = IdSL2(C)

}
.

These sets Vi are varieties in C4` which verify the inclusions V1 ⊇ V2 ⊇ · · · ⊇ Vk · · · . Using Proposition 3.2.13,
we obtain an ascending chain of ideals I(V1) ⊆ I(V2) ⊆ · · · . Then, by Noetherianity of C[x1, . . . , x4`], for every
but finitely many indices i it holds I(Vi) = I(Vi+1). Hence, by Propositon 3.2.14, Vi = Vi+1 for all but finitely
many indices. There remains to check that if Gi+1 is a strict quotient of Gi, then Vi+1 is strictly contained in Vi.
Consider a word w on ` variables which is trivial in Gi+1 but not in Gi when evaluate with the respective alphabet
Si+1 and Si. Since Gi is residually free, there exists a morphism ϕ : Gi → F2 such that ϕ (w (s1,i, . . . , s`,i)) 6= 1 in
F2. Since F2 embeds in SL2(C), there exists a representation γ : Gi → SL2(C) such that γ (w (s1,i, . . . , s`,i)) 6= 1.
This representation provides an element in Vi\Vi+1.

Definition 3.2.16. A group G is Hopfian if every epimorphism G� G is an isomorphism.

Corollary 3.2.17. Limit groups are Hopfian groups.

The following remark comes from [Pau03] and describes the neighborhood of marked finitely presented groups.

Remark 3.2.18. For a marked group (G,S), by a theorem of Neumann [Bau12, Theorem 12, page 65], asking
that G has finite presentation is equivalent to ask that G has finite presentation on the generating family S.
Subsequently, every marked group (G,S) sufficiently closed to a marked group (G′, S′) of finite presentation is a
quotient of the latter. Indeed, if {wi(s1, . . . , s`) }i∈I is a finite family that generates normaly the kernel of the
marking F` → G, and if (G,S) is sufficiently close to (G′, S′), then the relations wi(s1, . . . , s`) = 1 are verified
by S. Hence, the unique ordered application sending S′ to S induces a morphism (G′, S′)→ (G,S).

We now use topological properties of G` to obtain information on groups in a neighborhood of a marked group.
There exists a natural partial order on the set G`: a marked group (G1, S1) is smaller than (G2, S2), denoted
(G1, S1) ≤ (G2, S2), if and only if the marked epimorphism F` � G1 factorizes through the marked epimorphism
F` � G2. That is, G1 is a marked quotient of G2 and the following diagram is commutative

(F`, S) (G1, S1)

(G2, S2) .

Therefore, any group G has a largest residually free quotient RF(G) for the order on G`: the quotient of G by the
intersection of all kernels of morphisms from G to free groups. The next lemma proves that any residually free
group has a presentation with finitely many relations plus the relations necessary to make it residually free.
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Theorem 3.2.19 (Chatzidakis). Let G be a residually free group with finite generating set S. Then, there
exist finitely many S–words w1, . . . , wn such that G = RF(H) where H is the group presented by 〈S | w1, . . . , wn 〉.

Proof. Enumerate the relations wi of G in the alphabet S and define

Gk := RF (〈S | w1, . . . , wk 〉) .

Then, the sequence (Gk, S) converges towards (G,S) and Theorem 3.2.15 applied to the sequence G1 � G2 � · · ·
implies that for k large enough (G,S) = (Gk, S).

Corollary 3.2.20. Given a residually free marked group (G,S), there exists a neighborhood V(G,S) of (G,S) in G`
so that every residually free group in V(G,S) is a quotient of (G,S).

Proof. Let w1, . . . , wn be the relations of G in the alphabet S given by Theorem 3.2.19. This set of relations is
finite and G = RF (〈S | w1, . . . , wn 〉). Therefore, there exists a neighborhood V(G,S) of (G,S) small enough so that
any marked group (G′, S′) ∈ V(G,S) verifies the relations w1, . . . , wn. Hence, by Remark 3.2.18, (G′, S′) is a marked
quotient of (G,S).

This development is part of a larger framework studied by Groves and Hull in [GH19]. We state some of
their results on equationally Noetherian groups that generalize the above results to larger class of groups. In the
remainder of this subsection, an element w ∈ F` is a word in the variables x1, . . . , x`. Then, given a group G and
(s1, . . . , s`) ∈ G`, the element w(s1, . . . , s`) in G is obtained by evaluation of w in the elements si and their inverses.
For W ⊆ F`, we denote

VG(W ) :=
{

(s1, . . . , s`) ∈ G`
∣∣ w(s1, . . . , s`) = 1 for every w ∈W

}
.

Definition 3.2.21. A group G is equationally Noetherian if for any natural number ` and any set of words
W ⊆ F`, there exists a finite set W0 ⊆W such that VG(W0) = VG(W ).

The proof of Theorem 4.2.1 relies heavily on Corollary 3.2.20 which implies that residually free groups are
equationally Noetherian. In fact, more can be stated as done in [GH19, Theorem 3.5].

Theorem 3.2.22 (Groves and Hull, [GH19, Theorem 3.5]). For u a non-principal ultrafilter and G a
finitely generated group, the following are equivalent

1. G is equationally Noetherian.

2. For any sequence of homomorphisms ϕi : F` → G, the homomorphisms ϕi u–almost surely factors through
the quotient map η : F` → F`/keru(ϕi).

3. For any sequence of homomorphisms ϕi : F` → G, some ϕi factors through the map η : F` → F`/keru(ϕi).

Proof. We prove the implications in order and keep the notations defined above. Note that these equivalences
remain valid if we replace F` by an arbitrary finitely generated group.

1. Suppose that G is equationally Noetherian; we prove that G verifies the statement of the second item. Let
W := keru(ϕi) and consider a finite subset W0 ⊆W such that VF`(W0) = VF`(W ) which exists by assumption.
By definition of the u–kernel, for u–almost every i ∈ N and any w ∈W it holds ϕi(w) = 1. Since W0 is finite
and u is finitely additive, it holds for u–almost every i

W0 ⊆ ker(ϕi) and VF` (ker (ϕi)) ⊆ VF`(W0) = VF`(W ).

Hence, for u–almost every i, if (x1, . . . , x`) is an element of VF`(ker(ϕi)) ⊆ VF`(W ) and w ∈ W , then
ϕi(w(x1, . . . , x`)) = w(ϕi(x1), . . . , ϕi(x`)) = 1 in G. Thus, ker (η) = keru(ϕi) ⊆ ker(ϕi) for u–almost every i
and for these indexes, the morphisms ϕi factor through η.

2. If the statement holds u–almost surely, then it holds for some elements of the sequence.

3. Suppose by contradiction that G is not equationally Noetherian but verifies the property stated in the third
item. Then, there exists W := {w1, w2, . . . } ⊆ F` so that for any finite subset Wi := {w1, . . . , wi } ⊂ W ,
it holds VG(Wi) 6= VG(W ). So, there exists ϕi : F` → G such that Wi ⊆ ker(ϕi) but W 6⊆ ker(ϕi). By
construction, wj ∈ ker(ϕk) for every k ≥ j and W ⊆ keru(ϕi). By assumption, there exists an index i
such that ϕi factors through η the quotient map η : F` → F`/keru(ϕi). Hence, W ⊆ ker(η) ⊆ ker(ϕi) and we
obtain a contradiction. Therefore, G is equationally Noetherian.
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Studying actions of groups on Rn–trees and using the theory of Rips machinery, Groves and Hull proved
in [GH19] that many relatively hyperbolic groups are equationally Noetherian. Before giving examples of limit
groups, we state two consequences of Theorem 3.2.22 which motivate the study of Noetherian groups.

Proposition 3.2.23 (Groves and Hull, [GH19, Theorem 3.13.]). Suppose G is an equationally Noetherian group
and (hi : Li → Li+1) is a sequence of epimorphisms between G–limit group. Then hi is an isomorphism for all but
finitely many i.

Corollary 3.2.24. If G is an equationally Noetherian group, then every G–limit group is Hopfian.

In [FS20], Fujiwara and Sela prove the well-ordering of the set of growth rates of an arbitrary hyperbolic group.
In contrast, we prove in Subsection 4.2, the well-ordering of the same set but only for hyperbolic limit groups.
Therefore, the remainder of this subsection is intended to provide examples of hyperbolic limit groups as well as
hyperbolic groups that are not limit groups.

Many surface groups are hyperbolic limit groups. A surface is a real connected compact 2–dimensional manifold
with boundaries (potentially empty) and a closed surface is a surface without boundaries. A surface group is
a group isomorphic to the fundamental group of a surface. Then, the next proposition is copied from [Pau03].

Proposition 3.2.25 (Paulin, [Pau03, Proposition 3.3.]). Every surface group, except that of the projective plane,
the Klein bottle and the connected sum of three projective planes, are limit groups.

Proof. If a surface has non-empty boundaries, then its fundamental group is free, hence, a limit group. Thus, we
treat the case of closed surfaces. To show that a given sequence of marked groups converges to a marked group,
we refer to Example 3.1.3, since the methods are in every detail identical.

• If Σ+
2 is the connected sum of two torus, then 〈 a, b, c, d | [a, b] = [c, d] 〉 is a presentation of its fundamental

group. Define ci := [a, b]ia[a, b]−i and di := [a, b]ib[a, b]−i two elements of the free group F2 on a, b and
Si := (a, b, ci, di). Then, the sequence of marked groups (F2, Si) converges towards

(
π1

(
Σ+

2

)
, (a, b, c, d)

)
,

• If Σ−4 is the connected sum of four projective planes, then
〈
a, b, c, d | a2b2 = c2d2

〉
is a presentation of its

fundamental group. Define ci :=
(
a2b2

)i
a
(
a2b2

)−i
and di :=

(
a2b2

)i
b
(
a2b2

)−i
two elements of F2 = 〈 a, b 〉

and Si := (a, b, ci, di). So, the sequence of marked groups (F2, Si) converges towards
(
π1

(
Σ−4
)
, (a, b, c, d)

)
,

• It is a topological result that any closed surface of Euler characteristic at most −2 is a covering of Σ+
2 or Σ−4 .

Thus, their fundamental groups are limit groups as subgroups of limit groups,

• Any closed surface of Euler characteristic at least −1 is a sphere, a torus or a connected sum of at most three
projective planes. Since the fundamental groups of the sphere and the torus are limit groups, we conclude.

The above proposition gives examples of hyperbolic groups that are also limit groups. Also, the three exceptions
not considered in this proposition are not limit groups. Indeed, the fundamental group of the projective plane has
torsion, thus it is not a limit group by Proposition 3.1.4. For the other two cases, we introduce another property
of limit groups.

Definition 3.2.26. A group G is commutative transitive if commutativity is a transitive relation on G\{1}:

for every a, b, c ∈ G\{1}, if [a, b] = [b, c] = 1 then [a, c] = 1.

This formula is a universal sentence so that, by Corollary 3.1.7, being commutative transitive is a closed property
of G`. Since free groups are commutative transitive, limit groups are too. We prove that the fundamental group of
the Klein bottle Σ−2 and the connected sum of three projective planes Σ−3 are not limit groups.

• The fundamental group of the Klein bottle is not commutative transitive. Indeed, a presentation of π1

(
Σ−2
)

is given by
〈
a, b | a2b−2 = 1

〉
. So, a and b commute with a2 = b2. However, π1

(
Σ−2
)

is not abelian, hence,
it is not a limit group,

• The fundamental group of Σ−3 is not commutative transitive. Indeed, a presentation of π1

(
Σ−3
)

is given

by
〈
a, b, c | a2b2c2 = 1

〉
. It is shown in [Lyn59] that the equation a2b2c2 = 1 in a free group implies the

commutativity of a, b and c. Thus, the fundamental group of the connected sum of three projective planes is
not a limit group since it is not abelian.
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The connected sum of three projective planes has negative Euler characteristic. So, by a uniformisation theorem
of Poincaré, Klein and Koebe, its fundamental group is hyperbolic although it is not a limit group. Since Z2 is
a limit group, there are also examples of limit groups that are not hyperbolic. Finally, we present some other
interesting examples of hyperbolic groups that are not limit groups. Let U (H) denote the set of unitary operators
of a complex Hilbert space H. We call unitary representation of a group G, a morphism π : G → U (H) such
that ξ 7→ π(g)ξ is continuous for every g ∈ G.

Definition 3.2.27. Let G be a locally compact topological group and π : G → U (H) a unitary representation
of G on a complex Hilbert space H with a norm denoted by ‖·‖. If ε > 0 and K is a finite subset of G, then a unit
vector ξ in H is called (ε,K)–invariant if

for every g ∈ K ‖π(g)ξ − ξ‖ < ε.

Definition 3.2.28. A locally compact topological group G has Kazhdan’s property (T), also refered to as
property (T), if every unitary representation of G that has an (ε,K)–invariant unit vector for any ε > 0 and any
finite subset K, has a non-zero invariant vector.

It is a classical result that any group with Kazhdan’s property (T) is finitely generated and that all its quotients
also have property (T). Moreover, Y. Shalom proved in [Sha00] that every finitely generated group with Kazhdan’s
property (T) is a quotient of a finitely presented group with property (T). Using these results, the following
proposition based on [CG05, Proposition 2.15] shows that limit groups do not have Kazhdan’s property (T).

Proposition 3.2.29. Having Kazhdan’s property (T) is an open property in G`.

Proof. Let G be a group with Kazhdan’s property (T), SG = (s1, . . . , s`) a marking of G and H a finitely presented
group with property (T) such that G is a quotient of H. Let 〈SH | v1(h1, . . . , hn), . . . , vm(h1, . . . , hn) 〉 be a finite
presentation of H and S′G the image of SH by the quotient map from H to G. By writing each element s′k ∈ S′G
as a word uk(s1, . . . , s`) for every k ∈ { 1, . . . , n }, we obtain for every i ∈ { 1, . . . ,m }

wi(s1, . . . , s`) := vi(u1(s1, . . . , s`), . . . , un(s1, . . . , s`)),

which are relations in G. By construction, any marked group at distance at most e−R from (G,SG), where R is the
maximum length of a word wi in the alphabet SG, is a quotient of H. Hence, there exists an open set around (G,S)
so that any marked group (G′, S′) in it verifies G′ has Kazhdan’s property (T).

Since the free group on two elements does not have Kazhdan’s property (T), limit groups does not have neither.
Hence, any hyperbolic group that has Kazhdan’s property (T) is not a limit group. As stated in [Pau03], this is
the case of the uniform lattices in Sp(n, 1): the group of linear transformations of the right H–vector space Hn+1

preserving the sesquilinear form

(u, v) :=

n∑
i=1

uivi − un+1vn+1 for every u = (ui), v = (vi) ∈ Hn+1.

More complicated examples of hyperbolic groups that are not limit groups are non-coherent hyperbolic groups.
In the succeding subsection, we gather the theory of G–limit groups and the theory of groups acting on trees seen in
Subsection 2.2. This permits us to define from a sequence of morphisms from free groups to an hyperbolic group G,
under certain conditions, a faithful action of a G–limit group on a real tree. The construction of this faithful action
is central to the proof of the main theorem presented in Subsection 4.2.

3.3 Limit Groups of Hyperbolic Groups

Given a sequence of homomorphisms between a group G and a hyperbolic group Γ, we defined in Section 2, under
certain conditions, a limit action of G on an asymptotic cone of Γ. In this subsection, we show that this process
defines a limit action of a Γ–limit group on the asymptotic cone and analyse the kernel of this action. To do this, we
follow Reinfeldt and Weidmann’s presentation as done in [RW10] and recall first some results of hyperbolic groups
theory. The following treatment comes from [RW10, Subsection 1.3] that we detail when necessary.

Proposition 3.3.1 ([RW10, Proposition 1.17]). If Γ is a finitely generated hyperbolic group, then:

1. There exists a constant N depending only on the hyperbolic constant of Γ such that every torsion subgroup
of Γ has at most N elements,
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2. There exists a constant M depending only on the hyperbolic constant of Γ such that for every subgroup H
of Γ, one of the following holds.

(a) H is a finite group,

(b) For every finite generating set S of H there exists a hyperbolic element γ ∈ H such that |γ|S ≤ M ,
where | · |S denotes the word length on H relative to S.

In the upcoming, we describe the geometry of a hyperbolic space as seen from “infinitly far away”. To proceed,
it is convenient to introduce the boundary of a metric space as done in [GdlH90]. If X is a metric space, then a
sequence (xi) ⊂ X converges towards infinity if limi,j→∞(xi ·xj)w =∞ for every w in X. It is a classical result
that this definition does not depend on the choice of base point w. Define an equivalence relation on the set of
sequences in X converging towards infinity by

(xi) ∼ (yj)⇔ lim
i,j→∞

(xi · yj)w =∞.

Definition 3.3.2. The ideal boundary of a metric space X is the quotient set

∂∞X := { (xi) | (xi) converges towards infinity }/ ∼,

where the equivalence relation is the one defined in the last paragraph.

Throughout this subsection, let G be a finitely generated group and Γ an infinite hyperbolic group without
torsion. We endow these two groups with word metrics relative to fixed generating sets SG and SΓ respectively
and denoted | · |SG , | · |SΓ . Consider X := Cay(Γ, SΓ) the Cayley graph of Γ with respect to SΓ. One can show
that any hyperbolic element γ ∈ Γ fixes points p+

γ , p
−
γ in ∂∞X, see [Ghy90, Subsection 8.2, Theorem 16.]. Then,

as done in [RW10], define the axis of γ, denoted Aγ , as the union of all geodesics connecting p+
γ to p−γ .

Definition 3.3.3. Let P,Q be two properties of groups. A group G is P–by–Q if there exists a normal subgroup N
of G such that N has property P and G/N has property Q.

The next proposition was independently proven by Bestvina and Paulin in [Bes88] and [Pau88] respectively.

Proposition 3.3.4 (Bestvina and Paulin, [Bes88] and [Pau88]). If Γ is a hyperbolic group with finite generating
set SΓ and X := Cay(Γ, SΓ), then there exist a constant K and strictly positive real numbers C, ε such that

1. For any hyperbolic element γ ∈ Γ and x ∈ X it holds distX (x, γx) ≥ 2 distX (x,Aγ)−K,

2. If Y ⊂ Γ verifies: there exists x1, x2 ∈ X with distX (x1, x2) > C and distX (xi, hxi) < εdistX (x1, x2) for all
h ∈ Y and i ∈ { 1, 2 }, then the group generated by Y is either finite or finite–by–Z.

We generalize these results on hyperbolic groups to Γ–limit groups where Γ is a finitely generated hyperbolic
group. The following lemma is essential to prove the main theorem of this subsection.

Lemma 3.3.5 (Reinfeldt and Weidmann). If Γ is a finitely generated hyperbolic group, L is a Γ–limit group
and N is the constant such that every torsion subgroup of Γ has at most N elements, then the following holds.

1. Every torsion subgroup of L has at most N elements.

2. A subgroup A ≤ L is finite–by–abelian if and only if all finitely generated subgroups of A are finite–by–abelian.

Proof. Let u be a non-principal ultrafilter, (ϕi) ⊂ Hom(G,Γ) a sequence of homomorphisms with induced Γ–limit
group L := G/keru(ϕi) where G is a finitely generated group and denote η : G → L the quotient map. We first
prove the first item by contradiction and then prove 2 .

1. Suppose there exists a torsion subgroup H ≤ L that contains N + 1 pairwise distinct elements g0, . . . , gN .
For each n ∈ { 0, . . . , N } choose g′n ∈ G such that η (g′n) = gn. Then ϕi (g′n) 6= ϕi (g′m) for u–almost every i
and every 0 ≤ n 6= m ≤ N so that, by the first item of Proposition 3.3.1, the subgroup

〈ϕi (g′0) , . . . , ϕi (g′N ) 〉 ≤ Γ is infinite for u–almost every i.

Then, by the second item of Proposition 3.3.1, there exists a word wi in the alphabet g′0, . . . , g
′
N of length

at most M for u–almost every i such that ϕi(wi) is of infinite order. Since there are only finitely many such
words, there exists a word w verifying w = wi for u–almost every i. As H is a torsion subgroup, there exists k
so that η(w)k = 1. That is, wk ∈ keru(ϕi) and wk ∈ ker(ϕi) for u–almost every i. That is a contradiction
with ϕi(w) is of infinite order and so the first item is proven.
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2. In one hand, if A is finite–by–abelian, so are all its finitely generated subgroups. In the other hand, we use
the following characterization of finite–by–abelian groups: a group B is finite–by–abelian if and only if its
commutator subgroup, denoted [B,B], is finite. Suppose the commutator subgroup of A is infinite. Then, by
the first item of Proposition 3.3.1, it contains N + 1 distinct elements g0, . . . , gN and we show that the same
holds for some finitely generated subgroup of A. However, any element of [A,A] is the product of finitely
many commutators and, therefore, lies in the commutator subgroup of a finitely generated subgroup.

In Subsection 4.2, we study a finitely generated hyperbolic group Γ and a sequence of morphisms from a group G
to Γ. In this setting, the following definitions describe the necessary conditions to apply Theorem 2.2.11 with the
induced action of G on a Cayley graph of Γ. This allows us to get a nice action of a Γ–limit group on a real tree.

Notation 8. Given a group G with finite generating set SG, we denote distSG (a, b) the distance between the two
elements a, b in G with respect to SG. That is, the SG–word length of a−1b. In addition, BSG (G,R) denotes the
open ball in G of radius R about the identity element for the metric induced by distSG .

Definition 3.3.6. Let G and Γ be groups with finite generating sets SG and SΓ respectively. A homomorphism
ϕ ∈ Hom(G,Γ) is conjugacy short if

max
s∈SG

distSΓ (e, ϕ(s)) =: |ϕ|e ≤ |ϕ|g =
∣∣gϕg−1

∣∣
e

for every g ∈ Γ,

where gϕg−1 is the homomorphism that sends any h ∈ G to gϕ(h)g−1 in Γ.

Definition 3.3.7. Let u be a non-principal ultrafilter. A sequence (ϕi) ⊂ Hom(G,Γ) is called u–strict if:

1. The morphism ϕi is conjugacy short for u–almost every i,

2. The sequence (ϕi) does not have a u–constant subsequence. That is, there is no homomorphism ϕ′ such
that ϕi = ϕ′ for u–almost every i.

Consider u a non-principal ultrafilter, G and Γ two groups with finite generating sets SG and SΓ respectively
and an arbitrary sequence (ϕi) ⊂ Hom(G,Γ) with associated Γ–limit map η : G → L. Up to conjugation, we
may assume that every ϕi is conjugacy short since this does not change its kernel. Then, the second item of
Definition 3.3.7 implies that u–almost all ϕi are pairwise distinct. Also, for any real number R, there are only
finitely many homomorphisms of norm at most R. So, in particular, u– lim |ϕi|e = ∞. Thus, by Theorem 2.2.11,
there exists an isometric action ρ of G on the asymptotic cone

Tu := Coneu
(
Cay(Γ, SΓ), (e) ,

(
|ϕi|−1

))
.

Moreover, this action ρ factors through the quotient map η to define an action of L on the tree T , still denoted ρ.

Theorem 3.3.8 (Reinfeldt and Weidmann). With the above notation, the action of L on T , the minimal
G–invariant subtree of Tu, verifies

1. The stabilizer of any non-degenerate tripod is finite,

2. The stabilizer of any non-degenerate arc is finite–by–abelian,

3. Every subgroup of L which leaves a line in T invariant and fixes its ends is finite–by–abelian.

Proof. In the following, X is the Cayley graph of Γ with respect to the finite generating set SΓ.

1. Let D be a non-degenerate tripod in T spanned by [xi] = xu, [yi] = yu, [zi] = zu ∈ T . By the first item
of Lemma 3.3.5, it suffices to show that H := stabL(D) is a torsion subgroup. Consider h an element
in H and choose h′ ∈ G such that η(h′) = h. We show that ϕi(h

′) is of finite order for u–almost every i
so that h′N ! ∈ keru(ϕi) which implies that h is a torsion element, where N is the constant introduced
in Lemma 3.3.5 so that any torsion subgroup of L has at most N elements. Suppose by contradiction
that ϕi(h

′) is of infinite order for u–almost every i. Since any element of infinite order in a hyperbolic
group is hyperbolic, see [Ghy90, Subsection 8.3.], the element ϕi(h

′) is hyperbolic for u–almost every i. By
Lemma 3.3.4, there exists a constant K such that

distX
(
xi, Aϕi(h′)

)
≤ 1

2
(distX (xi, ϕi (h′)xi) +K) ,
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for u–almost every i. Therefore, the following inequality holds

u– lim
1

|ϕi|
distX

(
xi, Aϕi(h′)

)
≤ u– lim

1

2|ϕi|
(distX (xi, ϕi (h′)xi) +K)

=
1

2
distT (xu, ϕ(h′)xu) = 0.

Consequently, distT (xu, Ah) = u– lim |ϕi|−1distX
(
xi, Aϕi(h′)

)
= 0 so that xu lies on Ah. A similar argument

shows that yu and zu lie on Ah. Since Ah is a line, that is a contradiction with the assumption that xu, yu
and zu span a non-degenerate tripod.

2. Let H be a subgroup of G that stabilises a non-degenerate arc xu-yu ⊂ T where xu = [xi], yu = [yi] ∈ T .
Since xu-yu is non-degenerate, xu and yu are distinct so that u– lim distX (xi, yi) =∞ and for any h ∈ H

u– lim
distX (xi, ϕi(h)xi)

distX (xi, yi)
= 0 = u– lim

distX (yi, ϕi(h)yi)

distX (xi, yi)
. (3)

Let A be a subgroup of H with finite generating set SA. By equation (3), the hypothesis for the second item
of Proposition 3.3.4 are satisfied by Si := ϕi(SA) for u–almost every i. Therefore, 〈ϕi(A) 〉 = 〈Si 〉 is finite–
by–abelian. That is, ϕi ([A,A]) = [ϕi(A), ϕi(A)] is finite of order at most N for u–almost every i so that the
commutator [η(A), η(A)] is a torsion group. Therefore, this subgroup is finite and η(A) is finite–by–abelian
so that H is finite–by–abelian by the second item of Lemma 3.3.5.

3. We proceed as in the second item. Let H be a subgroup of G that leaves a line Y ⊂ T invariant and fixes its
ends au and bu. Consider sequences (xu,k)k∈N and (yu,k)k∈N of elements in T converging toward the ends au
and bu respectively. By definition of ends, it holds u– lim distT (xu,k, yu,k) =∞ so that for all h ∈ H

u– lim
distT (xu,k, η(h)xu,k)

distT (xu,k, yu,k)
= 0 = u– lim

distT (yu,k, η(h)yu,k)

distT (xu,k, yu,k)
.

Indeed, distT (xu,k, η(h)xu,k) = distT (yu,k, η(h)yu,k) is the translation length of η(h) and so is independent
of k. For each k, consider (xi,k)i∈N and (yi,k)i∈N defining sequences in X of xu,k and yu,k respectively. By
the choice of sequence of scalars

∣∣ϕ−1
i

∣∣, for fixed h ∈ H and k ∈ N, it holds

u– lim
i

distX (xi,k, ϕi(h)xi,k)

distX (xi,k, yi,k)
=

distT (xu,k, η(h)xu,k)

distT (xu,k, yu,k)
,

u– lim
i

distX (yi,k, ϕi(h)yi,k)

distX (xi,k, yi,k)
=

distT (yu,k, η(h)yu,k)

distT (xu,k, yu,k)
.

Since the right-hand sides of these equations tend to 0 as k diverges towards infinity, there exists (ϕmi) a
subsequence of (ϕi) so that

u– lim
i

distX (xmi,i, ϕmi(h)xmi,i)

distX (xmi,i, ymi,i)
= 0 = u– lim

i

distX (ymi,i, ϕmi(h)ymi,i)

distX (xmi,i, ymi,i)
.

Since H is finitely generated, it is countable and a diagonal argument shows that these equalities hold for
all h in H after passing to a subsequence. Thus, a similar argument as in the second item conclude.

Corollary 3.3.9. With the above notations, the subtree T is not a line if and only if the torsion-free finitely
generated hyperbolic group Γ is non-elementary.

We studied several aspects of the theory of limit groups. This allows us to understand the subgroups generated by
two elements of a limit group but especially to describe the asymptotic behavior of specific sequences of morphisms.
In particular, certain sequences of morphisms generate well understood actions of limit groups on real trees. In the
next section, we use the whole theory seen so far to study the geometry of limit groups through their actions on
real trees. More specifically, we analyse their growth rates.

4 Rate of Growth for Limit Groups

This section is the culmination of this thesis and uses all techniques developed previously to analyse the geometry
of limit groups. We begin by introducing the growth function of a group with respect to a finite generating set and
some devices which, from this function, permit us to examine this group. Then, we rewrite the argument developed
by G.N. Arzhantseva and I.G. Lysenok in [AL06] to give a lower bound on the rate of growth for non-elementary
hyperbolic groups. Finally, we study a theorem presented by Fujiwara and Sela in [FS20] to prove the well-ordering
of the set of growth rates of any limit group and comment on its generalization to other classes of groups.
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4.1 A lower bound on the Rate of Growth for Hyperbolic Groups

In this subsection, we give a lower bound on the rate of growth of a non-elementary hyperbolic group. This gives
us the opportunity to introduce the growth function of a finitely generated group and some notations used in the
rest of this document. The first part of this subsection follows the treatment on growth functions as outlined by
P. De la Harpe in [dlH00, Chapter VI, VII].

Notation 9. Given a set A, we denote #A the cardinality of A.

Definition 4.1.1. A growth function is a non-decreasing function from R+ to R+. The growth function of a
group G with respect to a finite generating set SG is the growth function defined by t 7→ #BSG (G, t).

This positive function may vary depending on the choice of finite generating set. To define an invariant of
groups, we introduce an equivalence relation on the set of growth functions. A growth function α1 dominates a
growth function α2, denoted α2 � α1, if there exist constants λ ≥ 1 and C ≥ 0 such that

α2(t) ≤ λα1(λt+ C) + C.

Then, two growth functions α1, α2 are equivalent, denoted α1 ∼ α2, if each dominates the other. It is shown in
[dlH00, Subsection VI.B] that two growth functions of one group with respect to two generating sets are equivalent.
So, this defines an invariant of groups: the growth type of a finitely generated group is the equivalence class of
its growth functions. In addition, one can show that two quasi-isometric groups have the same growth type. So,
the growth type of a group is an invariant by quasi-isometry.

Example 4.1.2 (De la Harpe, [dlH00, Examples 28, page 166]). For a, b ∈ R>0, the function t 7→ tb dominates
t 7→ ta if and only if a ≤ b. Also, for any a, b ∈ R>0, the maps t 7→ eat and t 7→ ebt are equivalent.

We analyse the different growth types that a group may have. Given a group G with finite symmetric generating
set SG, the length function | · |SG is symmetric and subadditive:∣∣g−1

∣∣
SG

= |g|SG and |gh|SG ≤ |g|SG + |h|SG ,

for every g, h ∈ G. Thus, the growth function of a group is submultiplicative. That is

#BSG (G, t+ s) ≤ #BSG (G, t) #BSG (G, s) ,

for every s, t ∈ N and, consequently, limt→∞ (#BSG (G, t))
1/t

is finite.

Definition 4.1.3. The exponential growth rate of G with respect to SG is

e (G,SG) := lim
t→∞

(#BSG (G, t))
1
t .

Then, a group G with finite generating set SG is necessarily of one of the following three growth types:

• If e (G,SG) > 1, then G has exponential growth,

• If one growth function of G is dominated by a polynomial function, then G has polynomial growth,

• If e (G,SG) = 1 and G is not of polynomial growth, then G has intermediate growth.

The next proposition gives an efficient way to prove that a group has exponential growth.

Proposition 4.1.4 (De la Harpe, [dlH00, page 187]). A finitely generated group which contains a free subsemigroup
on two generators is of exponential growth.

In particular, it is a classical result that non-elementary hyperbolic groups contain a free subgroup on two
generators. Thus, they have exponential growth. In fact, M. Koubi strengthened this result by proving that non-
elementary hyperbolic groups are of uniform exponential growth. A group G has uniform exponential growth
if there exists c > 1, such that e (G,SG) > c > 1 for every finite generating set SG of G.

Theorem 4.1.5 (Koubi, [Kou98, Theorem 1.1]). A non-elementary hyperbolic group has uniform expo-
nential growth.

In Subsection 4.2, we are interested in the countable set of exponential growth rates with respect to all possible
finite generating sets of a given group. Note that, as stated by A. Sambusetti in [Sam99], the uniform exponential
growth of non-elementary hyperbolic groups does not imply that their set of growth rates admits a minimum.
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Notation 10. Given a finitely generated group G, we denote ξ(G) the set of growth rates of G. That is

ξ(G) := { e (G,SG) | SG is a finite generating set of G }.

In the remainder of this subsection, we retrieve the idea of Proposition 4.1.4 to construct, for a given non-
elementary hyperbolic group Γ, a free subgroup with certain properties. We realize this construction in order to
obtain a lower bound on the growth rate of Γ. This method comes from [AL06] which gives proofs of all the lemmas
that follow. Nevertheless, we modify slightly the main result of this article in Theorem 4.1.17 of which we detail
the computations.

Definition 4.1.6. Let X be a metric space with length function | · |X and r a positive real number. Two subsets
A,B ⊆ X are r–close if A and B lie in the Hausdorff r–neighborhood of each other. That is, for every x ∈ A
there exists y ∈ B so that |x − y|X ≤ r and vice versa. Also, let p : I → X and q : J → X be two paths in a
metric space X where I and J are connected subsets of R. The paths p and q are strictly r–close if Im(p) and
Im(q) are r–close and the closeness is monotone. That is, there exists a binary relation R ∈ I × J such that

1. If xRy, then |p(x)− q(y)|X ≤ r,

2. For every x ∈ I, there exists at least one y ∈ J with xRy and vice versa,

3. If xRx′, yRy′ and x ≤ x′, then y ≤ y′.

The next two lemmas are consequences of the geometry of hyperbolic metric spaces.

Lemma 4.1.7 (Arzhantseva and Lysenok, [AL06, Lemma 1]). Consider a natural number k ≥ 3 and
points x1, . . . , xk in a δ–hyperbolic geodesic metric space X. If (xi−1, xi+1)xi + (xi, xi+2)xi < |xi − xi+1|X − 3δ for
every i ∈ { 2, . . . , k − 2 }, then the following hold

1. |x1 − xk|X ≥
∑k−1
i=1 |xi − xi+1|X − 2

∑k−1
i=2 (xi−1, xi+1)xi − 2(k − 3)δ,

2. The segment x1-xk and the broken path
⋃k−1
i=1 xi-xi+1 are strictly r–close for r := maxi (xi−1, xi+1)xi + 14δ.

Lemma 4.1.8 (Arzhantseva and Lysenok, [AL06, Lemma 2]). Let x, x′, y, y′ be four elements in a
δ–hyperbolic geodesic metric space X and r > 0. If

|x− y|X + |x′ − y′|X ≥ |x− x
′|X + |y − y′|X + 2r,

then the geodesic segments x-y and x′-y′ have strictly 8δ–close subsegments u-v and u′-v′ with |u−v|X , |u′−v′|X ≥ r.

Notation 11. Given a group G with finite generating set SG, we denote 〈 g, h 〉 the Gromov product between g
and h in G with respect to the identity element. We also denote ‖g‖SG the length of a shortest element in the
conjugacy class of g ∈ G.

With these notations, an element g ∈ G is cyclically minimal if ‖g‖SG = |g|SG . Then the following two results
are non trivial consequences of Lemma 4.1.7. In the remainder of this subsection, Γ is a δ– hyperbolic group with
finite generating set SΓ.

Lemma 4.1.9 (Arzhantseva and Lysenok, [AL06, Corollary 1]). If g is an element in Γ that verifies
|g|SΓ − 2

〈
g, g−1

〉
> 3δ, then for every n ≥ 2

|gn|SΓ
≥ n|g|SΓ

− 2(n− 1)
〈
g, g−1

〉
− 2(n− 2)δ.

Moreover, the segment e-gn and the broken geodesic
⋃n−1
i=0 g

i-gi+1 are strictly r–close for r :=
〈
g, g−1

〉
+ 14δ.

Lemma 4.1.10 (Arzhantseva and Lysenok, [AL06, Lemma 3]). If g is an element in Γ, then the
following hold.

1. If |g|SΓ
− 2

〈
g, g−1

〉
> 3δ, then ‖g‖SΓ

≥ |g|SΓ
− 2

〈
g, g−1

〉
− 2δ,

2. If ‖g‖SΓ
> 4δ, then ‖g‖SΓ

≤ |g|SΓ
−2
〈
g, g−1

〉
+4δ. In particular, if |g|SΓ

−2
〈
g, g−1

〉
> 3δ and g is cyclically

minimal, then
〈
g, g−1

〉
≤ 2δ,

3. If ‖g‖SΓ
> 7δ, then h−1gh is cyclically minimal for some h ∈ Γ with |h|SΓ

≤ 1/2
(
|g|SΓ

− ‖g‖SΓ

)
+ 5δ.

The following group E(g), for g an element of infinite order in Γ, has a natural definition in terms of stabilizer
of boundary elements in ∂∞Γ. However, we give a convenient definition of E(g) in terms of relations in Γ.
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Definition 4.1.11. Let g ∈ Γ be an element of infinite order. We denote

E(g) :=
{
h ∈ Γ

∣∣ h−1gth = gεt for some integer t 6= 0 and ε = ±1
}
,

E+(g) :=
{
h ∈ Γ

∣∣ h−1gth = gt for some integer t 6= 0
}
,

E−(g) := E(g)\E+(g),

E∗(g) :=
{
h ∈ E+(g)

∣∣ h has finite order
}
.

The following three lemmas give geometric and algebraic properties of the subgroup E(g) of Γ.

Lemma 4.1.12 (Arzhantseva and Lysenok, [AL06, Lemma 4]). For any g ∈ Γ of infinite order, the
following hold.

1. E(g) is the maximal elementary subgroup of Γ containing g,

2. E∗(g) is a finite normal subgroup of E(g),

3. For every h ∈ E−(g), the element h2 is in E∗(g).

Lemma 4.1.13 (Arzhantseva and Lysenok, [AL06, Lemma 5]). Let g be a cyclically minimal element
of Γ. If |g|SΓ

> 7δ, then |h|SΓ
≤ 140δ for any h ∈ E∗(g).

Lemma 4.1.14 (Arzhantseva and Lysenok, [AL06, Lemma 6]). Let g be a cyclically minimal element
in Γ verifying |g|SΓ

> 7δ and N := #BSΓ
(Γ, 200δ)+10. Consider x, y ∈ Γ such that the geodesics x-xgn and y-ygεm

have strictly 8δ–close subsegments S and T for some constants m,n > 0 and ε = ±1. If |S|SΓ
≥ N |g|SΓ

, then
x−1y ∈ E+(g) if ε = 1 and x−1y ∈ E−(g) if ε = −1.

The upcoming two lemmas rely on the geometry of hyperbolic groups and are, together with Lemma 4.1.14,
the main preliminary results to find a lower bound for the growth rates of a non-elementary hyperbolic group.

Lemma 4.1.15 (Arzhantseva and Lysenok, [AL06, Lemma 7]). Let S′Γ be a finite generating set of Γ
and suppose that

min
g∈Γ

max
x∈S′Γ

∣∣g−1xg
∣∣
SΓ
≥ 40δ.

Then, after an appropriate conjugation of S′Γ by some element of Γ, there exists a cyclically minimal element b ∈ Γ
verifying |b|S′Γ ≤ 2 and L− 24δ ≤ |b|SΓ

≤ 2L. Moreover, maxx∈S′Γ |x|SΓ
≤ L+ 26δ after the conjugation.

Lemma 4.1.16 (Arzhantseva and Lysenok, [AL06, Lemma 8]). Let S′Γ be a finite generating set of Γ
and suppose that

L := min
g∈G

max
x∈S′Γ

∣∣g−1xg
∣∣
SΓ
≥ 40δ. (4)

If M > 0 and N := #BSΓ (Γ, 200δ) + 10, then, after conjugation of S′Γ by an appropriate element of Γ, there exists
a cyclically minimal element d ∈ Γ such that

|d|S′Γ ≤ 5M + 200N + 300,

ML ≤ |d|SΓ ,〈
d, d−1

〉
≤ N |b|SΓ + 2|v|SΓ ,

where b is the element of Γ defined in Lemma 4.1.15 and v is an element in S′Γ that is not in E(b). Moreover, any
h ∈ E+(d) may be represented as h = dtu for some t ∈ Z and u ∈ E∗(d) verifying |u|SΓ

< (4N + 12)L. In addition,
maxx∈S′Γ |x|SΓ

< (4N + 10)L after the conjugation.

We finally give a lower bound on the exponential growth rate of a non-elementary hyperbolic group that depends
only on the hyperbolic constant of the group and the cardinality of the studied finite generating set. The upcoming
theorem and its proof come from [AL06] which we reproduce, with the exception of the calculation of the lower
bound once the free generating subset Y is constructed. Our short argument does not allow to obtain the linear
lower bound obtained by Arzhantseva and Lysenok but is sufficient for our use in Subsection 4.2.

Theorem 4.1.17 (Arzhantseva and Lysenok). Let Γ be a δ–hyperbolic group with a finite generating set SΓ.
Then, there exist constants α, β that depend only on #SΓ and δ so that, for any finite generating set S′Γ of Γ

e (Γ, S′Γ) ≥ (2α#S′Γ − 1)
β
.
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Proof. The central idea of this proof is to construct a finite set Y ⊂ Γ that verifies the following properties

• Every y ∈ Y is a product of at most D generators in (S′Γ)
±1

where D depends only on δ,

• There exists K > 0 depending only on δ such that #Y ≥ K−1#S′Γ,

• The set Y freely generates a free subgroup of Γ.

Since the growth function of 〈Y 〉 with respect to the basis Y is given by t 7→ #BY (〈Y 〉 , t) = 2#Y (2#Y − 1)t−1,
we deduce a lower bound on the growth rate of Γ with respect to S′Γ

#BS′Γ (Γ, t) ≥ #BS′Γ (Γ, Dt)
1
D ≥ #BY (〈Y 〉 , t)

1
D ≥

(
2

1

K
#S′Γ

) 1
D
(

2
1

K
#S′Γ − 1

) t−1
D

.

Then, we obtain a lower bound on the exponential growth rate of Γ with respect to S′Γ where K and D depend
only on #SΓ and δ.

e (Γ, S′Γ) ≥ lim
t→∞

(
2

1

K
#S′Γ

) 1
Dt
(

2
1

K
#S′Γ − 1

) t−1
Dt

=

(
2

1

K
#S′Γ − 1

) 1
D

. (5)

The remainder of this proof is intended to construct a subset Y ⊂ Γ with the above properties. Keep the
notations defined above and, quite to consider α ≤ #BSΓ

(Γ, 40δ)
−1

, assume that

#S′Γ ≥ #BSΓ
(Γ, 40δ) .

This assumption guarantees that the constant L := ming∈G maxx∈S′Γ

∣∣g−1xg
∣∣
SΓ

is greater than 40δ. Thus, the

inequality (4) in Lemma 4.1.16 is verified and with the notations of this lemma, define the constants

R := 2(4N + 10), N := #BSΓ
(Γ, 200δ) + 10 and M := 2R+ 4N + 12.

After an appropriate conjugation of S′Γ, there exists d ∈ Γ cyclically minimal such that

|d|S′Γ ≤ 5M + 200N + 300, ML ≤ |d|SΓ
and

〈
d, d−1

〉
≤ N |b|SΓ

+ 2|v|SΓ
.

where b and v are the elements of Γ and SΓ respectively defined in Lemma 4.1.15.
Claim: The intersection BSΓ

(Γ, RL) ∩ E(d) is contained in a finite subgroup F of Γ.
Proof: As stated in Lemma 4.1.16, for any h ∈ E+(d), there exists t ∈ Z and u ∈ E∗(d) verifying |u|SΓ

< (4N+12)L
such that h = dtu. Moreover,

〈
d, d−1

〉
≤ N |b|SΓ

+ 2|v|SΓ
so that∣∣d 2

∣∣
SΓ
− |d|SΓ

≥ML− 4|v|SΓ
− 2N |b|SΓ

.

Thus, enlarging M if necessary by a constant that depends only on L, we may assume
∣∣d 2
∣∣
SΓ
− |d|SΓ ≥ 2δ. So, by

Lemma 4.1.9, |dt| > |d| for any t ≥ 2 and, consequently, for any h ∈ E+(d)\E∗(d), it holds

|h| > |d| − (4N + 12)L ≥ML− (4N + 12)L > RL.

Hence, BSΓ
(Γ, RL) ∩ E+(d) ⊆ E∗(d). If BSΓ

(Γ, RL) ∩ E−(d) is the empty set, then consider F = E∗(d) and
conclude. Otherwise, consider v ∈ BSΓ (Γ, RL)∩E−(d). By Lemma 4.1.12, E∗(d) is a finite group, v2 is an element
of E∗(d) and v−1E∗(d)v ⊆ E∗(d) so that the subgroup F = 〈E∗(d), v 〉 of Γ is finite. As E+(d) is a subgroup
of index two of E(d), every g ∈ E−(d) is represented as g = dtuv for some t ∈ Z and u ∈ E∗(d) that verifies
|u|SΓ

< (4N + 10)L. If |g|SΓ
≤ RL, it holds∣∣dt∣∣

SΓ
≤ |g|SΓ

+ |u|SΓ
+ |v|SΓ

< 2RL+ (4N + 10)L = ML ≤ |d|SΓ
.

That is, t = 0 so that g is an element in F as wanted. �
According to the first item of Proposition 3.3.1, there exists a constant K depending only on δ so that F has

at most K elements. Choose a largest subset W := {w1, . . . , wn } ⊆ S′Γ representing distinct right cosets of Γ
modulo F . For m := 3N , construct the set

Y :=
{
wid

mw−1
i

}n
i=1

.

Claim: The set Y verifies the three properties stated at the beginning of this proof.
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• Every y ∈ Y is a product of at most D generators in (S′Γ)
±1

where D depends only on δ,

• There exists K > 0 depending only on δ such that #Y ≥ K−1#S′Γ,

• The set Y freely generates a free subgroup of Γ.

Proof: Every y ∈ Y is a product of at most
∣∣widmw−1

i

∣∣
S′Γ
≤ 2|wi|S′Γ + |dm|S′Γ < 2 + m|d|S′Γ =: D elements in S′Γ

which only depends on the hyperbolicity constant of Γ. By construction #Y = #W ≥ K−1#S′Γ. So, it remains
to show that Y freely generates a free subgroup of Γ. To this purpose, we show that any non-cancellable product
p1p2 · · · pk is not trivial for pi := vid

mtiv−1
i , vi ∈W and ti = ±1 for any i ∈ { 1, . . . , k }. Consider two neighboring

factors vdmtv−1wdmsw−1 where s, t = ±1. Suppose by contradiction that∣∣dmtv−1wdms
∣∣
SΓ
≤
∣∣dmt∣∣

SΓ
+ |dms|SΓ

−
∣∣vw−1

∣∣
SΓ
− 2N |d|SΓ

.

Then, with r := N |d|SΓ
> 0 and the elements x := v−1, x′ := w−1, y := d−mtv−1, y′ := d−msw−1, it holds

|x− y|SΓ
+ |x′ − y′|SΓ

≥ |x− x′|SΓ
+ |y − y′|SΓ

+ 2r.

So, by Lemma 4.1.8, the segments v−1-d−mtv−1 and w−1-d−msw−1 have strictly 8δ–close subsegment which have
SΓ–length greater than 2N |d|SΓ

. The element d is cyclically minimal so that, by Lemma 4.1.14, the element vw−1

is in E+(d) and, by Lemma 4.1.15∣∣vw−1
∣∣
SΓ
≤ 2L+ 52δ ≤ 4L ≤ 2(4N + 10)L and 40δ ≤ L.

Therefore vw−1 ∈ BSΓ
(Γ, RL)∩E(d) ⊆ F so that v ∈ Fw. That is a contradiction with the hypothesis that pipi+1

are non-cancelling factors and v, w are distinct representatives of F . Therefore∣∣dmtv−1wdms
∣∣
SΓ
>
∣∣dmt∣∣

SΓ
+ |dms|SΓ

−
∣∣vw−1

∣∣
SΓ
− 2N |d|SΓ

, (6)

which implies that∣∣vdmtv−1wdmsw−1
∣∣
SΓ

≥
∣∣vdmtv−1wdmsw−1

∣∣
SΓ

+
∣∣v−1w

∣∣
SΓ
− |v|SΓ

− |w|SΓ

≥
∣∣dmtv−1wdms

∣∣
SΓ

+
∣∣v−1w

∣∣
SΓ
− 2 |v|SΓ

+ 2 |w|SΓ

> 2 |v|SΓ
+ 2 |w|SΓ

+
∣∣dmt∣∣

SΓ
+ |dms|SΓ

− 4
(
|v|SΓ

+ |w|SΓ

)
− 2N |d|SΓ

≥
∣∣vdmtv−1

∣∣
SΓ

+
∣∣wdmsw−1

∣∣
SΓ
− 4

(
|v|SΓ

+ |w|SΓ

)
− 2N |d|SΓ

,

where we used the inequality (6) in the third inequality. Using Lemma 4.1.9, we obtain∣∣vdmtv−1
∣∣
SΓ
≥
∣∣dmt∣∣

SΓ
− 2 |v|SΓ

≥ m |t| |d|SΓ
− 2 (m |t| − 1)

〈
d, d−1

〉
− 2 (m |t| − 2) δ − 2 |v|SΓ

.

Since d is cyclically minimal and verifies |d|SΓ > 4δ, it holds by the second item of Lemma 4.1.10

|d|SΓ ≤ |d|SΓ − 2
〈
d, d−1

〉
+ 4δ.

Hence, 2δ ≥
〈
d, d−1

〉
so that

∣∣vdmtv−1
∣∣
SΓ
≥ m|t||d|SΓ

− 6m|t|δ + 2δ ≥ m|t| (|d|SΓ
− 6δ) . Consequently, using the

bound given by Lemma 4.1.16 for the length of any element in S′Γ, it holds

|pi|SΓ
≥ m(|d|SΓ

− 6δ)− 2(4N + 10)L

N |d|SΓ
+ 4(4N + 10)L ≥

〈
p−1
i , pi+1

〉
.

Thus, with m = 3N we get
〈
p−1
i−1, pi

〉
+
〈
p−1
i , pi+1

〉
< |pi|SΓ−3δ if and only if 40NL+100L < N |d|SΓ−18Nδ−3δ.

This last inequality is verified since N |d|SΓ ≥ NML and N ≥ 10. Then, by the first item of Lemma 4.1.7 with
x1 := p−1

k · · · p
−1
1 , . . . , xk := p−1

1 , we see that |p1 · · · pk|S′Γ > 0 so that the product is not trivial. �
Finally, define the constants α := K−1, β := D−1 that depend only on δ and #SΓ. Then, the inequality (5)

gives as wanted

e (Γ, S′Γ) ≥ (2α#S′Γ − 1)
β
.

To prove this theorem, we brought to light the existence of a free subgroup of the studied non-elementary
hyperbolic group. So, in particular, these groups have exponential growth. Moreover, this result gives a first
approach to strengthen Koubi’s Theorem on growth of hyperbolic groups and find a finite generating set, if it
exists, that achieves the minimum growth rate. In the upcoming subsection, we prove that the set of growth rates
of any limit group admits a minimum and further prove that this set is well-ordered.
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4.2 Well-Ordering of the set of Growth Rates

We bring together the theory developed so far to study the set of growth rates of limit groups. First, we prove that
this set is well-ordered for hyperbolic limit groups, and then extend this result for all limit groups. This analysis
and these results come from [FS20] in which Fujiwara and Sela also prove the well-ordering of the set of growth
rates for arbitrary hyperbolic groups.

Theorem 4.2.1 (Fujiwara and Sela). If Γ is a hyperbolic limit group, then the set ξ(Γ) is well-ordered.

If Γ is elementary, then ξ(Γ) = { 1 } so that the set of growth rates of Γ is well-ordered. Thus, suppose Γ is
a non-elementary hyperbolic limit group. Let u be a non-principal ultrafilter, SΓ a finite generating set of Γ and
suppose by contradiction that ξ(Γ) is not well-ordered. Then, there exists a sequence of finite generating sets (Si)
of Γ such that (e (Γ, Si)) ⊂ ξ(Γ) is strictly decreasing with u– lim e (Γ, Si) ≥ 1. In one hand, we prove that the
sequence (e (Γ, Si)) is bounded from above by the exponential growth rate of a limit group with respect to a specific
generating set. In the other hand, we prove that (e (Γ, Si)) converges towards this upper bound. This leads to a
contradiction since the sequence (e (Γ, Si)) is strictly decreasing so that it can not converge to an upper bound.
Claim: Quit to consider a subsequence of (Si), we may assume that all generating sets have the same cardinality.
Proof: By Theorem 4.1.17, if (#Si) has a subsequence that diverges towards infinity, then (e (Γ, Si)) has also a
subsequence that grows to infinity. Therefore, since (e (Γ, Si)) is decreasing, the sequence (#Si) is bounded and
we may consider a subsequence verifying #Si = ` for every i ∈ N. �

Explicit the elements of Si := {x1,i, . . . , x`,i } and consider the free group F` on ` elements S := { s1, . . . , s` }.
Define the epimorphisms described on basis elements

ϕi :
F` −→ Γ;
sn 7−→ xn,i,

that form a sequence of elements in the compact space G` and define the limit group L := F`/keru(ϕi) with associated
quotient map η : F` → L. The set of limit groups is closed in G` so that L is a limit group and, in particular,
is residually free by Theorem 3.2.8. Consequently, by the second item of Theorem 3.2.22, the homomorphisms ϕi
u–almost surely factor through the quotient map η : F` → F`/keru(ϕi). Thus, there exists a subsequence of (ϕi),
still denoted (ϕi), so that for every natural number i, it holds ϕi = φi ◦ η for some epimorphisms φi : L→ Γ. That
is, the following diagram is commutative

(F`, S) (Γ, ϕi (S))

(L, η (S)) .

η

ϕi

φi

Hence, e (Γ, ϕi(S)) ≤ e (L, η(S)) so that (e (Γ, Si)) is bounded from above by the exponential growth rate of a limit
group with respect to a specific generating set.

Lemma 4.2.2 (Fujiwara and Sela). With the notations defined above, it holds u– lim e (Γ, ϕi(S)) = e (L, η(S)) .

Proof. We present a proof of this result in three steps. First, using Theorem 2.2.11 and Theorem 3.3.8, we construct
a faithful action of the limit group L on a real tree in order to construct elements of L verifying a small cancellation
property. Second, we use these elements to build feasible elements that have interesting geometric properties.
Finally, we use these feasible elements to show a strong link between e (Γ, ϕi(S)) and e (L, η(S)).

The following construction is similar to that produced in Subsection 3.3. Fix a Cayley graph X of Γ with
respect to SΓ and denote | · |SΓ

the word length in Γ with repespect to SΓ. In the remainder of this document,
we use the same notation for elements in Γ and their representatives in the Cayley graph X. The group Γ acts
isometrically by translations on X so that each epimorphism ϕi induces a transitive action of F` on the hyperbolic
metric space X. Consider a sequence (hi) of elements in Γ such that∣∣hiϕih−1

i

∣∣
e

:= max
1≤n≤`

∣∣hiϕi(sn)h−1
i

∣∣
SΓ

= min
h∈Γ

max
1≤n≤`

∣∣hϕi(sn)h−1
∣∣
SΓ
.

Replace the epimorphisms ϕi by hiϕih
−1
i and keep the notation ϕi for the conjugated epimorphisms. Notice that

the point in X representing the identity element e ∈ Γ has minimal displacement among all elements in X for the
defined actions of F` on this Cayley graph. So, each ϕi is conjugacy short and since the growth rate is invariant
by conjugation, (e (Γ, ϕi(S))) is still strictly decreasing.
Claim: The sequence of scalars (|ϕi|e) is not bounded.
Proof: Suppose by contradiction that the sequence (|ϕi|e) is bounded. Then, the image ϕi(S) is contained in a
fixed bounded set of Γ. Since any morphism is completely determined by its values on a generating set, there
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is only finitely many distinct ϕi. This is a contradiction with (e (Γ, ϕi(S))) is strictly decreasing. Hence, the
sequence (|ϕi|e) is not bounded. �

Consider a subsequence of (ϕi), still denoted (ϕi), so that (|ϕi|e) diverges towards infinity. Using Theorem 2.2.11,
the free group F` acts on the asymptotic cone Tu := Coneu

(
X, (e) ,

(
|ϕi|−1

e

))
which is an unhooked F`–tree that

admits a minimal F`–invariant subtree T . In addition, the u–kernel of the sequence (ϕi) acts trivially on T . So,
this defines an unhooked action of the limit group L on the real tree T that is F`–minimal.
Claim: The action ρ of L on T defined above is faithful.
Proof: Suppose by contradiction that L acts on T non-faithfully. By Corollary 3.3.9, the subtree T is not a line.
So, the kernel of ρ stabilises a tripod in T and by Theorem 3.3.8, this kernel is finite. Therefore, kerρ is a finite
subgroup of the limit group L that is torsion-free. That is a contradiction so that ρ is faithful. �

By definition of Γ–limit group, for any natural number m, there exists N ∈ N such that for every i ≥ N , the
epimorphisms φi induce isometries

ψi := φi|Bη(S)(L,m) : Bη(S) (L,m)→ Bϕi(S) (Γ,m) .

Then, using that each φi is a morphism, we dispose of maps

Bη(S) (L,m)
q −→ Bϕi(S) (Γ, qm) ;

(ω1, . . . , ωq) 7−→ φi(ω1 · · ·ωq),

that are not injective in general. In the following, we define elements uj ∈ L of bounded η(S)–length, called
separators, to introduce another map νi : (ω1, . . . , ωq) 7→ φi(ω1u1 · · ·ωquq) which we show is injective for all
natural number q on specific elements of L using the Γ–action on X.

Definition 4.2.3. Let x be a point in a real tree T . The space of directions at x, denoted Σx, is the quotient of

Rx := { p : [0, a)→ T | a > 0, p is an isometry, p(0) = x },

via the equivalence relation

p1 ∼ p2 ⇔ there exists ε > 0 such that p1|[0,ε) ≡ p2|[0,ε).

Let x, y be two elements in T and γ : [0, a]→ T a geodesic between x and y where a := distT (x, y). The geodesic γ
starts with a direction p1 : [0, b) → T at x if there exists ε > 0 such that p1|[0,ε) ≡ γ|[0,ε). Also, γ ends with a
direction p2 : [0, c)→ T at y if there exists ε > 0 such that p2|[0,ε) ≡ γ|(1−ε,1], where p2(t) := p2(b− t) for t ∈ [0, c).

Let [xi] and [yi] be elements in T . A direction p1 : [0, a) → T at [xi] induces a direction p2 : [0, a) → T at [yi]
defined by p2(t) :=

[
yix
−1
i p1(t)i

]
for any t ∈ [0, a) where p1(t) = [p1(t)i] in T . With the constructions described so

far, we now construct elements of L verifying a small cancellation property.

Lemma 4.2.4 (Fujiwara and Sela). Let p1, p2 be two distinct directions at [e] ∈ T . There exist elements
ui,j ∈ L for i, j ∈ { 1, 2 }, called separators, with the following properties.

1. For every i, j ∈ { 1, 2 }, the segment [e]-ui,j [e] starts with pi at [e] and ends with the direction pj at ui,j [e],

2. For every i, j ∈ { 1, 2 }, it holds distT ([e], ui,j [e]) > 10,

3. For every ω in L and every two pairs (i1, j1), (i2, j2) with i1, j1, i2, j2 ∈ { 1, 2 }, if the segment [e]-ui1,j1 [e]
intersects the segment ω[e]-ωui2,j2 [e] non-trivially, then the length of the intersection is bounded from above by

1

10
distT ([e], ui1,j1 [e]) .

If the two pairs (i1, j1), (i2, j2) are equal, we assume in addition that ω is not the identity element.

This last property is called small cancellation property of separators.

Notation 12. Given an isometry γ of a metric space X with base point x ∈ X, we denote µ(γ) := distX (x, γx).

Proof. Since η(S) is finite and u is finitely additive as an ultrafilter, there exists t1 ∈ η(S) such that

max
t∈η(S)

distT ([e], t[e]) = distT ([e], t1[e]) = 1.

Because [e] is a point of T that has minimal displacement for the ρ action of L on T , the isometry t1 is hyperbolic
and, without loss of generality, we assume t1 = η(s1). In addition, [e] is on the axis of η(s1) so that there exist at
least two distinct directions p1, p2 at [e] in T. Consider two generators of S, without loss of generality s1 and s2,
for which [e]-η(si)[e] starts with pi for i ∈ { 1, 2 }.
Claim: There exists y, z ∈ L such that the subgroups 〈 y, z 〉 , 〈 y, si 〉 , 〈 z, si 〉 of L are free for any i ∈ { 1, 2 }.
Proof: We proceed in several cases, looking at the characteristic axis of different hyperbolic elements in L.
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Axis(s1) = Axis(s2)

Axis(g)

Axis
(
s1gs

−1
1

)
= Axis(g) · s1

Axis(s1)

Axis(s2) Axis
(
s1s2s

−1
1

)

Axis
(
s2

1s2s
−2
1

)
= Axis (s2) · s2

1

Figure 5: The axes of s1, s2 and the construction of axes for y and z as translations of Axis(s1).

• If Axis(s1) = Axis(s2), there exists another hyperbolic element g ∈ L such that Axis(g) 6= Axis(s1). Indeed,
by Theorem 2.2.9, T is the union of all axes of hyperbolic elements in L and, by Corollary 3.3.9, it is not a
line. So, as seen in Figure 5, the three hyperbolic elements s1, g, s1gs

−1
1 of L have distinct characteristic axes.

If one of the subgroups of L 〈
g, s1gs

−1
1

〉
, 〈 g, si 〉 ,

〈
s1gs

−1
1 , si

〉
satisfies a non-trivial relation for i ∈ { 1, 2 }, then, as a 2–generated subgroup of a limit group, it is abelian
by Lemma 3.2.2. This produces a cycle in T which is a contradiction. Hence, these five groups are free.

• Otherwise, Axis(s1) 6= Axis(s2) and, as seen in Figure 5, the hyperbolic elements s1, s2, s1s2s
−1
1 and s2

1s2s
−2
1

in L have distinct characteristic axes. As above, if one of the subgroups of L〈
s1, s1s2s

−1
1

〉
,
〈
s2, s1s2s

−1
1

〉
,
〈
s1, s

2
1s2s

−2
1

〉
,
〈
s1, s

2
1s2s

−2
1

〉
or
〈
s1s2s

−1
1 , s2

1s2s
−2
1

〉
satisfies a non-trivial relation, then, as a 2–generated subgroup of a limit group, it is abelian by Lemma 3.2.2.
This produces a cycle in T which is a contradiction. Hence, these subgroups are free of rank 2 as wanted. �

Define the elements ui,j ∈ L for i, j ∈ { 1, 2 } as

ui,j := s βii y α1+i+3jzy α2+i+3jz · · · y α29+i+3jzy α30+i+3js
−βj
j ,

where the parameters βi for i ∈ { 1, 2 } and αk for k ∈ { 1, . . . , 30 } satisfy

• βi lg(si) > 5µ(si) and βi lg(si) > 5µ(y) for any i ∈ { 1, 2 },

• α1 lg(y) ≥ max(200µ(y), 20 (β1µ(s1) + β2µ(s2)) , 20µ(z), 1),

• The elements αk are defined recursively by αk := α1 + 6k for k ∈ { 2, . . . , 30 }.

The conditions on the parameters βi and αk for i ∈ { 1, 2 } and k ∈ { 1, . . . , 30 } guarantee that the cancellations
between consecutive geodesics in the sequence

[e]-s βii [e], [e]-y α1 [e], [e]-zy αk [e] and [e]-s
−βj
j [e],

for i, j ∈ { 1, 2 } and k ∈ { 1, . . . , 30 } are limited to a small proportion of the lengths of these segments. Hence, the
segment [e]-ui,j [e] starts with the same direction as [e]-si[e] at [e] and ends with the same direction as [e]-s−1

j [e]

at ui,j (if [e]-s−1
j [e] ends with direction p3 at s−1

j , then [e]-ui,j [e] ends with the direction induced by p3 at ui,j).
Consequently, the element ui,j satisfy the conditions of the first item of this lemma.

The second item of Lemma 4.2.4 follows from the bound on the cancellations between consecutive geodesics and
the definition of α1.

The third item follows from the structure of the elements ui,j as products of high powers of an element y,
separated by an element that does not commute with it, and the bound on the cancellations between consecutive
segments that correspond to these high powers.

This result permits us to define feasible elements in L that have interesting geometric properties in order to
highlight a link between e (Γ, ϕi(S)) and e (L, η(S)). Let b be the maximum η(S)–length of the words ui,j for
i, j ∈ { 1, 2 } constructed in Lemma 4.2.4 and m a natural number. Because the sequence (Γ, ϕi(S)) converges to
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[e] ω1[e]ω−1
1 [e]

ω′1[e] ω1u1[e]

ω′1u
′
1[e]

u1[e]ω−1
1 ω′1[e]

ω−1
1 ω′1u

′
1[e]

≤ 1
10distT ([e], u1[e])

≤ 1
10distT ([e], u1[e])

Figure 6: Notations for two subpaths of [e]-ω1u1 · · ·ωquq[e] and their study.

the limit group (L, η(S)) in G`, there exists N ∈ N such that for every i ≥ N , the ball Bη(S) (L,m+ b) is isometric
to Bϕi(S) (Γ,m+ b) and thus, for every i ≥ N , the following diagram is commutative

BS (F`,m+ b) Bϕi(S) (Γ,m+ b)

Bη(S) (L,m+ b) .

η

ϕi

ψi:=φi|Bη(S)(L,m+b)

Definition 4.2.5. Let ω be an element in L and denote p1 the direction in which the segment [e]-ω[e] ends at ω[e].
By the first item of Lemma 4.2.4, there exists a separator u in L such that ω[e]-ωu[e] starts with a different direction
at ω[e] than p1. Any separator u verifying this property is called admissible for ω. Then, given ω, ω′ elements

in L, there exists similarly, a separator u which is admissible for ω and such that u−1 is admissible for ω′
−1

. Any
separator with this property is admissible for ω, ω′.

In other words, if ω, ω′ are elements in L such that [e]-ω[e] ends with a direction p1 at ω[e] and the geodesic
[e]-ω′[e] starts with a direction p2 at [e], then a separator u is admissible for ω, ω′ if [e]-u[e] starts with a direction
at [e] different than p1 and ends with a direction at u[e] different than p2.

For each pair of non-trivial elements ω1, ω2 ∈ Bη(S) (L,m+ b), choose a separator u1 that is admissible for ω1, ω2.
Then inductively, for q an arbitrary natural number, ω1, . . . , ωq a collection of non-trivial elements in Bη(S) (L,m)
and t ∈ { 1, . . . , q − 1 }, choose a separator ut that is admissible for ωt, ωt+1. So far, we know that all the elements
considered are mapped to non-trivial elements by the isometries ψi. But the maps ψi are not defined on all of L
and the epimorphisms φi are not isometries on all of L. However, we show that the map

νi :
Bη(S) (L,m)

q −→ Bϕi(S) (Γ, q(m+ b)) ;
(ω1, . . . , ωq) 7−→ φi(ω1u1 · · ·ωquq),

are injective on feasible elements of L.

Definition 4.2.6. A non-trivial element ω1 ∈ Bm+b (L, η(S)) is forbidden if there exists an element ω2 in the
same ball and a separator u constructed in Lemma 4.2.4 such that:

1. the separator u is admissible for ω1,

2. distT (ω2[e], ω1u[e]) ≤ 5−1distT ([e], u[e]).

Then, an element ω1u1 · · ·ωquq as constructed inductively above is feasible of type q if all the elements ωt for
t ∈ { 1, . . . , q } are not forbidden.

Lemma 4.2.7 (Fujiwara and Sela). Let m and q be natural numbers. If i is a natural number large enough
so that Bη(S) (L,m+ b) and Bϕi(S) (Γ,m+ b) are isometric, then φi maps the collection of feasible elements of
type q in L to distinct elements in Bϕi(S) (Γ,m+ b).

Proof. We argue by induction on the type q of the feasible elements. If q = 1, then ω1u1 ∈ Bη(S) (L,m+ b)
and the restriction of φi to this set is an isometry. So, the morphism φi maps feasible elements of type 1 in L
to distinct elements in Γ. Suppose the conclusion holds for feasible elements of type less than q and suppose by
contradiction that φi maps two distinct feasible elements of type q, denoted ω1u1 · · ·ωquq and ω′1u

′
1 · · ·ω′qu′q, to the

same element of Γ. In one hand, assume u1 6= u′1 and refer to Figure 6 for the notations. Then, using the choice
of separators in the construction of feasible elements and the fact that T is a real tree, either the segment [e]-u1[e]
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[e] ω1[e]

ω2[e]
ω2uω2 [e]

ω1uω1
[e]

ω′[e]

Iω1

Iω2

2
10distT ([e], uω1 [e])

Figure 7: A representation of the subsegments Iω and notations for Lemma 4.2.8.

intersects the geodesic [e]-ω−1
1 ω′1u

′
1[e] or the segment [e]-u′1[e] intersects the geodesic [e]-ω′1

−1
ω1u1[e]. By choice

of u1, respectively u′1, the segment [e]-u1[e] intersects the geodesic ω−1
1 ω′1[e]-ω−1

1 ω′1u
′
1[e], or respectively [e]-u′1[e]

intersects the geodesic ω′1
−1
ω1[e]-ω′1

−1
ω1u1[e]. So, by the third item of Lemma 4.2.4, it holds

distT (ω′1[e], ω1u1[e]) ≤ 1

10
distT ([e], u1[e]) or distT (ω1[e], ω′1u

′
1[e]) ≤ 1

10
distT ([e], u′1[e]) .

Therefore, one of the element ω′1 or ω1 is forbidden. That is a contradiction so that u1 = u′1. In the other hand,
suppose u1 = u′1 and ω1 6= ω′1. Then, ω−1

1 ω′1 6= 1 and a similar reasoning as above, using the small cancellation
property of the separators, shows that ω′1 or ω1 is forbidden. That is a contradiction so that ω1 = ω′1.

Since φi is a morphism, it maps the two feasible elements ω2u2 · · ·ωquq and ω′2u
′
2 · · ·ω′qu′q of type q − 1 to the

same element of Γ. Consequently, by induction hypothesis, these two elements are equal so that ω1u1 · · ·ωquq and
ω′1u

′
1 · · ·ω′qu′q are also equal. Hence, φi maps the set of feasible elements of type q in L to distinct elements in Γ.

For i large enough, the morphism φi maps the feasible elements of L injectively into Γ. So, we can estimate
from below the cardinality of balls with a radius greater than b in Γ by counting the number of feasible elements
in L. That is the purpose of the upcoming lemma.

Lemma 4.2.8 (Fujiwara and Sela). If m is a natural number, then the following are lower bounds on the
number of non-forbidden and feasible elements in Bη(S) (L,m).

• The number of non-forbidden elements in Bη(S) (L,m) is at least 5/6 #Bη(S) (L,m),

• For every natural number q, the number of feasible elements of type q in L is at least
(
5/6 #Bη(S) (L,m)

)q
.

Proof. The second item follows from the first one. Indeed, given natural numbers m and q, feasible elements of
type q in L are built from all the possible q concatenations of non-forbidden elements in Bη(S) (L,m) with separators
between the non-forbidden elements.

To prove the first item, define for every natural number m the finite subtree of T spanned by Bη(S) (L,m) · [e]

Tm :=
⋃

g∈Bη(S)(L,m)

[e]-g[e] ⊂ T.

By construction, T1 ⊂ T2 ⊂ · · · ⊂ Tm and since |η|[e] = 1, every element in Bη(S) (L,m) adds at most one to the
total length of the edges in Tm. Therefore, the sum of the lengths of the edges in the finite tree Tm is bounded
by #Bη(S) (L,m). We use this fact to count the number of forbidden elements in Bη(S) (L,m). By Lemma 4.2.4 and
the definition of forbidden element, for every forbidden element ω ∈ Bη(S) (L,m), there exists ω′ ∈ Bη(S) (L,m)
and an element uω constructed in Lemma 4.2.4 so that

distT (ω′[e], ω uω[e]) < 5−1distT ([e], uω[e]) . (7)

With these notations, define for every forbidden element ω ∈ Bη(S) (L,m), a subsegment Iω of the segment
ω[e]-ωuω[e] which starts after the first 1/10 of the segment ω[e]-ωuω[e] and ends at 7/10 of the segment ω[e]-ωuω[e].
Then, by construction, the total length of the edges in Iω is 6/10 distT ([e], uω[e]) and the following holds.
Claim: Let ω be a forbidden element and ω1, ω2 two distinct forbidden elements.

1. The segment Iω is a subset of Tm,

2. The intersection Iω1
∩ Iω2

is either empty or a point.
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Proof: The first item follows from equation (7). Indeed, by uniqueness of the geodesics between two elements in T ,
the element ω′[e] is on the geodesic [e]-ωuω[e] and the segment [e]-ω′[e] is a subset of Tm. By equation (7), the
first 8/10 of the segment ω[e]-ωuω[e] is in Tm so that Iω ⊂ Tm, see Figure 7. We prove the second item of the claim
using the small cancellation property of the separators. Given two distinct forbidden elements ω1, ω2, the overlap
between the geodesics ω1[e]-ω1uω1 [e] and ω2[e]-ω2uω2 [e] is bounded by

10−1distT ([e], uωk [e]) for every k ∈ { 1, 2 }.

Then, by uniqueness of the geodesics between two elements in T and the construction of the segments Iω as
subsegments of ω[e]-ωuω[e], the intersection Iω1

∩Iω2
is either empty or a point for every distinct forbidden elements

ω1, ω2 ∈ Bη(S) (L,m). �
By the second item of Lemma 4.2.4, the length of a geodesic [e]-ui,j [e] is at least 10 for any element ui,j

constructed in Lemma 4.2.4. Thus, for every forbidden element ω, the length of Iω is at least 6. Hence, the
collection of subintervals Iω covers the edges of Tm for a total length of 6 times the number of forbidden elements
in Bη(S) (L,m). Since the total length of the edges in Tm is bounded by #Bη(S) (L,m), the number of forbidden
elements in Bη(S) (L,m) is bounded by 6−1#Bη(S) (L,m). That is, the lower bound on the number of non-forbidden
elements stated in the first item of this lemma.

We finally conclude the proofs of Lemma 4.2.2 and Theorem 4.2.1. Fix m a natural number and i large enough so
that the conclusion of Lemma 4.2.7 holds. By Lemma 4.2.7, for any q ∈ N, the ball Bϕi(S) (Γ, q(m+ b)) contains all
the distinct elements φi(ω1u1 · · ·ωquq) where ω1u1 · · ·ωquq are feasible elements of type q. So, using Lemma 4.2.8
(for large enough i, where large enough does not depend on q), the cardinality of the ball Bϕi(S) (Γ, q(m+ b)) is
bounded from below by

#Bϕi(S) (Γ, q(m+ b)) ≥
(

5

6
#Bη(S) (L,m)

)q
.

Therefore, the following inequalities hold.

log (e (L, η(S))) ≥ lim
i→∞

log (e (Γ, ϕi(S)))

= lim
i→∞

lim
q→∞

log
(
#Bϕi(S) (Γ, q(m+ b))

)
q(m+ b)

≥ lim
m→∞

lim
q→∞

q log
(
#Bη(S) (L,m)

)
+ q log

(
5
6

)
q(m+ b)

= log(e (L, η(S))),

where the second inequality holds because i does not depend on q. Hence, this concludes the proof of Lemma 4.2.2
and so the proof of Theorem 4.2.1.

Using a diagonal argument, we extend the result of Theorem 4.2.1 to all non-abelian limit groups.

Theorem 4.2.9 (Fujiwara and Sela). If L is a limit group, then the set ξ(L) is well-ordered.

Proof. If L is abelian, then ξ(L) = { 1 } is well-ordered. So, assume L is a non-abelian limit group and suppose by
contradiction that ξ(L) is not well-ordered. Then, there exists a sequence (Si) of finite generating sets of the limit
group L such that the sequence (e (L, Si)) is strictly decreasing. Since L is a limit group and F2 is equationally
Noetherian, there exists a sequence of epimorphisms (ϕi : L → F2) that converges towards the identity. By
Lemma 4.2.2 and because F2 is a hyperbolic limit group, for every index n

lim
i→∞

e (F2, ϕi(Sn)) = e (L, Sn) .

Since the sequence (e (L, Si)) is strictly decreasing, for every n ∈ N, there exists an index in such that

e (L, Sn+1) < e (F2, ϕin(Sn)) ≤ e (L, Sn) .

Therefore, the sequence (e (F2, ϕin(Sn)))n∈N is strictly decreasing. That is a contradiction with Theorem 4.2.1.
Hence, ξ(L) is well-ordered as wanted.

Using the theory developed in the previous sections, we showed that the set of growth rates of any limit group
is well-ordered. In particular, we prove that it admits a minimum and therefore associate to the set of growth rates
of any limit group an ordinal. Actually, the techniques exposed in this thesis permit us to study a wider class of
groups. Fujiwara and Sela prove in [FS20], using similar methods, that the set of growth rates of any hyperbolic
group is well-ordered. In addition, using that any hyperbolic group relative to equationally Noetherian groups is
equationally Noetherian, see [GH19, Theorem D], Fujiwara generalize in [Fuj21] the results obtained in this section.
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Theorem 4.2.10 (Fujiwara, [Fuj21, Theorem 1.3]). Let Γ be a group that is hyperbolic relative to a
collection of subgroups {P1, . . . , Pn }. Suppose Γ is not virtually cyclic and not equal to Pk for any k ∈ { 1, . . . , n }.
If each Pi is finitely generated and equationnaly Noetherian, then ξ(Γ) is well-ordered.

In particular, this theorem extend the conclusion of Theorem 4.2.1 to many other groups.

Corollary 4.2.11 (Fujiwara, [Fuj21, Theorem 1.2]). Let Γ be one of the following groups

• A lattice in a simple Lie group of rank one,

• The fundamental group of a complete Riemannian manifold M of finite volume such that there exists a, b > 0
with −b2 ≤ K ≤ −a2, where K denotes the sectional curvature.

Then, the set of growth rates of Γ is well-ordered.

One question that remains open is the well-ordering of the set of growth rates of the mapping class group,
denoted MCG (Σg,p), of a compact oriented surface Σg,p with genus g, punctures p and complexity c (Σg,p) := 3g+p.
By studying its action on its curve graph, Fujiwara proves this set to be well-ordered assuming MCG (Σg,p) is
equationally Noetherian, see [GH19, page 7] for advances on whether MCG (Σg,p) is equationally Noetherian.

Theorem 4.2.12 (Fujiwara, [Fuj21, Theorem 6.6]). Let Σg,p be a compact oriented surface of complexity
greater than 4. If MCG (Σg,p) is equationally Noetherian, then ξ (MCG (Σg,p)) is well-ordered.
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[Sha00] Y. Shalom. Rigidity of commensurators and irreducible lattices. In Invent. Math. Citeseer, 2000.
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