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Abstract. We define a notion of morphism between generalized affine
buildings, generalizing existing definitions appearing in the literature. For
buildings equipped with a transitive group action (such as Bruhat–Tits
buildings, homogeneous buildings, lattice buildings and norm buildings),
we provide sufficient conditions under which a morphism of apartments
extends to a morphism of buildings. As an application, we show relation-
ships between these different types of buildings via our notion of morphism
and prove functoriality results for homogeneous buildings under base field
extensions and group homomorphisms.
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1. Introduction

The goal of this article is to unify the study of generalized affine buildings
and their morphisms. Generalized affine buildings appear in a wide range
of mathematical contexts, including the asymptotic geometry of symmetric
spaces [KL97], the structure theory of Kac–Moody groups over valued fields
[Tit87, R9́9], and compactifications of character varieties [BIPP23]. While
buildings and their generalizations have been extensively studied in the lit-
erature, see e.g. [BT72, BT84, Ben94, KL97, Par00, KT02, Rou04, Ben09,
BS14, HIL20, App24], a unified theory of morphisms that applies to a large
class of examples and with good functoriality properties has not yet been es-
tablished. The central challenge is that different contexts naturally give rise
to different models of buildings of different types, making it difficult to con-
struct meaningful morphisms or discuss subbuildings systematically. In this
article we propose a new notion of morphism for generalized affine buildings
that addresses this challenge. It is especially well-suited to buildings endowed
with group actions. In this setting, morphisms can be constructed under some
verifiable conditions and we find conditions on when such morphisms are in-
jective, surjective, or isomorphisms see Theorem 1.4. The main advantage
of our approach is that the conditions in Theorem 1.4 are easy to verify in
explicit examples. This result can be applied to show certain functoriality
properties under subgroups (Theorem 6.3), group morphisms (Theorem 6.7)
and field extensions (Theorem 6.8) for a certain family of buildings. We then
use this new notion to relate examples of generalized affine buildings in the
literature, notably the norm buildings, the lattice buildings, the Bruhat–Tits
buildings and the homogeneous buildings; see Section 3.2. Let us now explain
the results in more detail.

1.1. A new notion of morphisms of apartments and buildings. We
begin by defining the new notions of morphisms of apartments and buildings.
Recall that a generalized affine building B is a set together with an atlas of
maps A from the model apartment A to B satisfying certain compatibility
axioms; see Definition 3.1 for the precise conditions. The model apartment
is given by A = SpanQ(Φ) ⊗Q Λ, where Φ is a crystallographic root system
and Λ an ordered abelian group, together with an action of the affine Weyl
group defined by WT,Φ :=Ws(Φ)⋉T . Here Ws(Φ) is the spherical Weyl group
associated to Φ and T is a subgroup of A ∼= Λn which acts by translation on
A. When T and Φ can be deduced from the context, we write Wa for the
restricted affine Weyl group. In this case the apartment A (and the building
(B,A) as well) is said to be of type A(Φ,Λ, T ). The main motivation for
our definition is to be able to account for buildings of different types. For
example, for buildings associated to algebraic groups, a subgroup generally
has a different root system than the ambient group, which makes it difficult
to talk about subbuildings. We would like to propose a solution to this.

Let now Φ,Φ′ be two crystallographic root systems and Λ,Λ′ two ordered
abelian groups, that are also Q-vector spaces.

Definition 1.1. Let A = SpanQ(Φ) ⊗Q Λ and A′ = SpanQ(Φ
′) ⊗Q Λ′ be two

model apartments. Let L : SpanQ(Φ) → SpanQ(Φ
′) be a Q-linear map and

γ : Λ→ Λ′ a morphism of ordered abelian groups. The map

L⊗Q γ : A→ A′

is called a morphism of apartments if it is equivariant for the action of the
affine Weyl groups, i.e. if there exists a map σ : WT,Φ → WT ′,Φ′ such that for
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all a ∈ A and w ∈WT,Φ we have

(L⊗Q γ)(w.a) = σ(w).((L⊗Q γ)(a)).

Even though two buildings might have the same apartment A, we do not
always use the identity map A→ A as the apartment morphism, but instead
the inversion i : A→ A, x 7→ −x, see e.g. Section 7.1.

Remark 1.2. Note that we cannot in general ask for the map σ to be a group
homomorphism, as shown in Figure 2 in the case Φ 6= Φ′.

Since a building is made out of copies of the model apartment, we use the
notion of morphism of apartments to define morphisms of buildings.

Definition 1.3. Let B = (B,A) be an affine building of type A = A(Φ,Λ, T )
and B′ = (B′,A′) an affine building of type A′ = A(Φ′,Λ′, T ′). A morphism
of generalized affine buildings is a collection of maps

ψ : B → B′, ϕ : A → A′, τ : A→ A′,

where τ is a morphism of apartments, such that for all f ∈ A it holds

ψ ◦ f = ϕ(f) ◦ τ.
On the one hand, this definition provides considerable flexibility compared

to existing notions of building morphisms in the literature, for example [BT84,
Tit86, KL97, Lan00, Rou04, LN04, Sch09, SS11, KP23]. The key feature is
that it allows to change the root system, which is the main new thing our
notion of morphism brings to the table. On the other hand, the notion is
still rigid enough to conclude that the only morphism from the R-building
R to the Q-building Q is the trivial morphism, since there is no non-trivial
order-preserving group homomorphism from R to Q.

Notions of isomorphisms of buildings have been studied since they were first
introduced by Tits and Bruhat–Tits, see e.g. [Tit74, Tit86, BT72], and [Sch09]
in the affine case. In the discrete case, i.e. when Λ is a discrete subgroup of
R, and the building has hence a simplicial structure, notions of morphisms
of buildings and subbuildings are suggested and studied in [Lan00, KP23].
A more metric approach is undertaking in [KL97, Sections 3.10 and 4.7].
Rousseau defines in [Rou04, Definitions 1.1.4.1 and 2.1.13.1] notions of (weak)
morphisms of apartments and R-buildings. There has been a notion of mor-
phism of apartments defined in [LN04], which however does not allow for flex-
ibility in changing the root system. More generally, in [SS11] Schwer–Struyve
show that an order-preserving homomorphism from Λ → Λ′, where Λ and
Λ′ are ordered abelian groups, induces a natural map from a Λ-building to a
Λ′-building. However still in this case, the two model apartments are modeled
on the same root system.

1.2. Extension of morphisms of apartments to morphisms of build-
ings. The goal now is to show that we can construct morphisms of generalized
affine buildings easily for those buildings that are endowed with an action of
a group that is transitive “enough”. The idea is to define only a morphism
between the standard apartments and then move this map around using the
group action. Let us now make this idea precise.

Let G be a group and (B,A) an affine Λ-building of type A = A(Φ,Λ, T ).
We say that B is a G-building if G acts on both B and A in a compatible way,
i.e. for all g ∈ G, f ∈ A and a ∈ A we have

(g.f)(a) = g.(f(a)).

Note that we do not ask G to act by morphisms of buildings. On the contrary,
we use this action and certain conditions on subsets of G to verify when we
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are able to extend a morphism of apartments to a morphism of buildings using
this action. Namely, for f ∈ A and w ∈Wa, we define

Af,w = {g ∈ G : g.f = f ◦ w} ⊆ G.
In other words, it is the subset of those elements of G that act on a chart f
the same as precomposition by the element w of the affine Weyl group.

If G′ is another group, a morphism from a G-building to a G′-building
is a morphism of (G,G′)-buildings if there exists a group homomomorphism
ρ : G→ G′ for which the morphism is equivariant. The main result about our
notions of morphisms is the following theorem, which gives sufficient condi-
tions on when to extend morphisms of apartments to (injective or surjective)
morphisms of (G,G′)-buildings.

Theorem 1.4. Let (B,A) be a G-building of type A = A(Φ,Λ, T ) with a
transitive G-action on A, and (B′,A′) a G′-building of type A′ = A(Φ′,Λ′, T ′).
Let τ = (L, γ, σ) : A→ A′ be a morphism of apartments and ρ : G→ G′ a group
homomorphism.

If there exist charts f ∈ A and f ′ ∈ A′ such that

(1) ρ(StabG(f(a))) ⊆ StabG′(f ′((L⊗ γ)(a))) for all a ∈ A, and
(2) ρ(Af,w) ⊆ Af ′,σ(w) for all w ∈Wa,

then there exists a morphism (ψ,ϕ, τ) of (G,G′)-buildings from B to B′ ex-
tending τ , that is ρ-equivariant. Moreover,

(a) if τ and ρ are injective and ρ(StabG(f)) = StabG′(f ′), then (ψ,ϕ, τ)
is injective;

(b) if G′ acts transitively on A′, and τ and ρ are surjective, then (ψ,ϕ, τ)
is surjective;

(c) if G′ acts transitively on A′, ρ is an isomorphism of groups, τ is an
isomorphism, and the two inclusions (1) and (2) are equalities, then
there exists an inverse morphism. That is, (B,A) and (B′,A′) are
isomorphic.

We say that the morphism of (G,G′)-buildings constructed in the above
theorem is induced by the group homomorphism ρ. The construction of the
map ϕ : A → A′ on the level of atlases is straight-forward, as by assumption G
acts transitively onA, and (1) applied to w = Id ∈Wa implies that StabG(f) ⊆
StabG(f

′), so ϕ is well-defined. To define ψ : B → B′ on the underlying
building we use again that G acts transitively on A and that every point in
B is in the image of some chart (see axiom (A3) in Definition 3.1). To check
that ψ is well-defined, one combines (1) and (2), and the axioms on buildings
(A1) and (A2). It is then easy to verify that ψ ◦ f = ϕ(f) ◦ (L ⊗ f) using
the transitivity of the action of G on A. The ρ-equivariance follows from the
construction of the maps. The proofs of (a) and (b) use only axiom (A3). To
prove (c) we construct an inverse morphism. The strength of this theorem is
that in concrete examples, an apartment morphism can be easily constructed,
and the conditions (1)-(2), as well as (a)-(c) are often directly verifiable. We
observe this in the proofs of the following results, which concern applications
of the notion of morphism, where we see the above theorem in action.

1.3. Applications and examples. The main applications of the above result
are two-fold. First it allows to relate existing models of apartments in the
literature. Secondly, in the example of one of such family of buildings, we can
prove certain functoriality properties.

1.3.1. Relationship between different models of buildings. In this article we fo-
cus on four models of (families of) buildings, namely the norm building BN ,
the lattice building BL, the Bruhat–Tits buildings BBT (for split algebraic



MORPHISMS OF GENERALIZED AFFINE BUILDINGS (IN PREPARATION) 5

groups) and the homogeneous buildings BH as defined by Kramer–Tent in
[KT02]. Their precise definitions are given in Section 3.2. It would be inter-
esting to compare these to the even more general model given in [HIL20], that
generalizes Bruhat–Tits buildings for higher rank Λ.

In Section 5.2 we first show that all these buildings constitute examples ofG-
buildings for some appropriate group G. In the lattice and norm buildings this
group will be SLn(F) for F a field endowed with a valuation, see Section 2.1.
One can think of the homogeneous buildings and the Bruhat–Tits buildings
as the generalizations of the lattice respectively norm building to Lie groups
different from SLn(F), where Bruhat–Tits buildings are defined for general
valued fields and split algebraic groups, and the homogeneous buildings for
real closed valued fields and (semi-)algebraic groups (that are not necessarily
split). The relations between these buildings are summarized in the following
diagram. For the precise statements of the results we refer to Section 7.

BL BN

BH BBT

Λ⊆R

G=SLn(F) (Theorem 7.11) ≃

Λ⊆R and G split

(Theorem 7.14)

Λ⊆R and G=SLn(F) (Theorem 7.15)

Figure 1. Morphisms between different buildings in the liter-
ature. When Λ = R, all morphisms are isomorphisms.

Through personal communication, we know that the isomorphism between
BBT and BN (see [Par00]) when Λ = R and G = SLn(F) has already been
known to Anne Parreau.

1.3.2. Functoriality properties. We now use the notion of morphism to address
certain functiorality properties. For this we restrict our attention to homoge-
neous buildings, but equivalent question have been discussed for Bruhat–Tits
buildings for example in [Lan00]. Homogeneous buildings are special general-
ized affine buildings associated to the F-points of semisimple linear algebraic
groups G defined over Q, where F is a real closed valued field. This means
that F is endowed with a total order such that F[

√
−1] is algebraically closed,

as well as a rank one valuation v : F× → R≥0, that is compatible with this
order, meaning that 0 < x ≤ y implies that v(x) ≥ v(y) for all x, y ∈ F. For a
precise definition of homogeneous buildings we refer to Example 3.5. In this
special case we apply Theorem 1.4 to prove certain functoriality properties.
A natural question is whether a (surjective, injective) group morphism from
ρ : G → G′, where G′ is a semisimple linear algebraic group defined over Q,
induces a natural (surjective, injective) morphism of the associated homoge-
neous buildings B, respectively B′. This question was answered positively for
(discrete) Bruhat–Tits buildings over quasi-local fields by Landvogt in [Lan00].
We now study this question in the context of homogeneous buildings for real
closed fields. The first example is when G is a subgroup of G′ and ρ is the
inclusion. In this case we have the following result.

Theorem 1.5 (Theorem 6.3). Let G < G′ < SLn be two semisimple self-
adjoint linear algebraic Q-groups. Let F be a non-Archimedean real closed
field and v : F× → Λ an order-compatible valuation. Let B (resp. B′) be the
associated homogeneous G(F)- (resp. G′(F)-) building. Then the inclusion
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G(F) →֒ G′(F) induces an injective morphism B → B′ of generalized affine
buildings.

In this theorem the full flexibility of our notion of morphism of apartments
becomes apparent, since we need to be able to change the root system in the
type of the model apartment. Namely, the idea is to show that there is an
inclusion of the model apartments, see Lemma 6.1, which is in fact an injective
morphism of apartments. The main difficulty in this step is the existence of
a map σ : Wa → W ′

a, which is the content of Lemma 6.2. We then conclude
using Theorem 1.4 (a). For more general group morphisms G → G′ we have
the following result generalizing the above.

Theorem 1.6 (Theorem 6.7). Let G, G′ < SLn be two semisimple selfadjoint
linear algebraic Q-groups. Let F be a non-Archimedean real closed field and
v : F× → Λ an order-compatible valuation. Let B (resp. B′) be the G(F)-
(resp. G′(F)-) homogeneous building defined as in Example 3.5. If there exists
an injective morphism of groups G(F) → G′(F), then it induces an injective
morphism of buildings B → B′.

The idea is to use Theorem 6.3. Now the main step towards the proof of
the above result is to show that if G and G′ are isomorphic, then there is
an isomorphism between their associated homogeneous buildings, see Theo-
rem 6.5. This first needs to be established for the associated model apartments
(Lemma 6.4), and then we apply again Theorem 1.4 (c). We also obtain certain
functoriality properties under real closed valued field extensions.

Theorem 1.7 (Theorem 6.8). Let G < SLn be a semisimple self-adjoint
linear algebraic Q-group, K,F non-Archimedean real closed fields with order-
compatible valuations vK, vF and B, B′ the homogeneous affine buildings asso-
ciated to G(K) and G(F) respectively (see Example 3.5). Suppose there exists
a morphism of valued fields η : K → F, that is vF(η(x)) = vK(x) for every
k ∈ K×, then there exists a building morphism B → B′.

This theorem demonstrates how morphisms of valued fields naturally in-
duce morphisms between the associated buildings. The proof proceeds by
constructing the building morphism in three steps: first, we show that the
valuation-preserving property of η allows us to define a well-behaved ordered
group morphism γ : ΛK → ΛF between the value groups. Second, we use this
to construct a morphism σ between the extended affine Weyl groups, which in
turn yields a morphism of apartments τ = (Id, γ, σ). Finally, we define maps
ψ and ϕ on the building charts by applying η entrywise to matrix entries.
The key technical challenge is then to verify that the resulting map leads to a
morphism of buildings by showing that the diagram commutes when we pass
to the homogeneous models via the isomorphisms of [App24, Proposition 7.7,
Theorem 7.8].

Remark 1.8. We believe that most of these functoriality properties can be
extended to other models of buildings, such as for example Bruhat–Tits build-
ings.

Another loose end are spherical buildings at infinity. One may ask whether
a morphism of generalized affine buildings induces a simplicial morphism of
their respective buildings at infinity or, equivalently, their local buildings.
The answer in general is no, as soon as the generalized affine buildings are
not modeled on the same root system, see the example above of Sp4(F) <
SL4(F). In this case, a chamber of the smaller apartment is not sent to any
Weyl simplex (of any dimension) in the larger apartment. Correspondingly,
the sectorpanels in the building associated to Sp4(F) are not being sent to
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sectorpanels in the building associated to SL4(F), hence no map from the
building at infinity or the local building can be defined. However, as soon
as Φ = Φ′ we believe that our notion of morphism between generalized affine
buildings induces a simplicial morphism between the buildings at infinity.

1.4. Structure of the paper. The article is organized as follows. We give
preliminaries on valued and ordered fields in Section 2. In Section 3 we recall
the definition of generalized affine buildings. We then continue to present all
the examples of buildings that will be studied throughout this article in Sec-
tion 3.2. We define morphisms of apartments and buildings in Section 4. In
order to prove Theorem 1.4 in Section 5.4, we introduce G-buildings in Sec-
tion 5, and we investigate the notion of morphisms and the above examples of
buildings within this new context. We then apply Theorem 1.4 in Section 6
and Section 7 to prove Theorem 6.3, Theorem 6.7, Theorem 6.8 and the re-
sults announced in Figure 1 on the relations between the different examples.
Necessary background on real algebraic geometry, which is only needed for the
example of the homogeneous buildings, is summarized in Appendix A and can
be consulted at any moment.

Acknowledgments. We would like to thank Bertrand Rémy for helping us
understand Bruhat–Tits buildings, and Anne Parreau, Petra Schwer, Au-
guste Hébert, Marc Burger, and Guy Rousseau for interesting discussions that
helped develop this notion of morphism and work out the examples. We are
particularly grateful to Anne Parreau for sharing her extensive knowledge of
buildings with us. Her insights were especially valuable in finding the right
definition of morphisms of apartments and in developing the morphism from
Bruhat–Tits buildings to norm buildings, as well as in understanding the func-
toriality under subgroups.

X. F. is funded by the Max-Planck Institute for Mathematics in the Sciences
and the Labex Carmin project.

2. Preliminaries

2.1. Valued fields. For a thorough introduction to the theory of valuations
and valued fields we refer to [EP05]. Let K be a field and Λ an ordered abelian
group, i.e. Λ is an abelian group together with a total order that is compatible
with the group operations. A map v : K → Λ ∪ {∞} is called a Λ-valuation
(or short just valuation) if v is surjective and satisfies the following three
conditions for all x, y ∈ K:

(1) v(x) =∞ =⇒ x = 0,
(2) v(xy) = v(x) + v(y),
(3) v(x+ y) ≥ min{v(x), v(y)}.

If Λ = {0}, we call v the trivial valuation; if Λ has rank 1 (i.e. it is isomorphic
as an ordered abelian group to a subgroup of R), we call v a rank-1 valuation.
More generally, we define the rank of v as the rank (as an abelian group) of
the value group Λ = v(K×). The subset

O := {x ∈ K× | v(x) ≥ 0}
forms a subring, which is a valuation ring of K, i.e. a subring of K such that
for all x ∈ K× we have x ∈ O or x−1 ∈ O. A field together with a valuation
is called a valued field.

Example 2.1. Examples of valued fields are the p-adic numbers. Whenever
F is any field, the field of rational functions with coefficients in F is naturally a
valued field, where the valuation is given by v : F(X)→ Z, PQ 7→ degQ−degP .
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Ordered fields are naturally valued, and they play an important role in some
of the examples we consider in the following.

2.2. Ordered fields. Let F be an ordered field, i.e. a field together with a
total order that is compatible with the field operations. One says that F is
non-Archimedean if there exists x ∈ F with x > n for all n ∈ N.

An absolute value v on F is order-compatible if for all x, y ∈ F with 0 <
x ≤ y we have v(x) ≥ v(y). There is a general construction to define order-
compatible absolute values on ordered fields.

Example 2.2 (Order valuation). Let F be an ordered field. We say that two
elements x, y ∈ F are in the same Archimedean class if there exists n,m ∈ N

such that |x| < n|y| and |y| < m|x|. The set of Archimedean classes forms an
ordered abelian group Λ, where addition and the order are induced from the
ones in F. The map that assigns to an element 0 6= x ∈ F its Archimedean class
is a valuation, called the order valuation. It is furthermore order-compatible.
Note that Λ 6= {0}, i.e. the order valuation is non-trivial, if and only if F is
non-Archimedean.

An ordered field can admit many order-compatible valuations, where the
order valuation is in some sense the “coarsest” one. For example, if F has a
big element b, i.e. for all x ∈ F there exists n ∈ N with x < bn, then one can
define an order-compatible rank-1 valuation vb : F→ R≥0 ∪∞ by setting

vb(x) := − inf

{

p

q
∈ Q | xq < bp

}

,

mimicking the definition of the standard logarithm. In fact, any order-compatible
rank-1 valuation on F is a positive scalar multiple of vb for some big element
b ∈ F. Note that there are ordered fields that do not admit big elements, e.g.
the hyperreals.

An ordered field is real closed if every positive element is a square and every
odd degree polynomial has a root. Note that every ordered field has a real
closure, that means an algebraic field extension that is real closed and whose
order extends the original one [BCR98, §1.3].

Example 2.3. The real numbers R and the real algebraic numbers Q
r
are

both real closed. The field of real Puiseux series is the set of expressions

R(X)∧ :=
{

∞
∑

k=k0

ckX
k/m

∣

∣

∣
k0 ∈ Z, m ∈ N \ {0}, ck ∈ R

}

,

together with formal addition and multiplication. An element
∑∞

k=k0
ckX

k/m

is positive if ck0 > 0. With this order R(X)∧ is real closed, see e.g. [BPR06,

Theorem 2.91]. The real closure of Q is Q
r
. The real closure of R(X) (together

with the order X > 0 but X < λ for all λ ∈ R>0) is the field of real Puiseux
series that are algebraic over R(X).

Real closed fields play a crucial role in real algebraic geometry. Since real
algebraic geometry only appears in one of the models for buildings and are not
the subject of this article, we summarize the basics needed throughout this
article in Appendix A.

3. Generalized affine buildings

In this section we recall the definition of generalized affine buildings, and
then give several examples.
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3.1. Definition. For more details and a thorough introduction to generalized
affine buildings we recommend for example [Ben94, Sch09, App24].

Let Φ be a crystallographic1 root system in a Euclidean vector space (V, 〈·, ·〉)
and Λ a non-trivial ordered abelian group. As is usually done, we assume that
Λ is a Q-vector space, as otherwise we may replace Λ by Λ⊗ZQ. In particular,
both Λ and SpanQ(Φ) have the structure of Q-vector spaces and we define the
model apartment as

A := SpanQ(Φ)⊗Q Λ.

If ∆ ⊆ Φ is a basis of Φ, then a model for the apartment is given by

A =

{

∑

α∈∆

λαα : λα ∈ Λ

}

,

so that A is isomorphic as a group to Λn for n = |∆| ∈ N, which is called the
dimension of the apartment. Moreover, the root system Φ defines a spherical
Weyl group Ws. Let T be a subgroup of A ∼= Λn which acts by translation
on A and define the affine Weyl group with respect to T as Wa := T ⋊Ws.
Formally, we call the combined data (Φ,Λ, T ) an apartment. An apartment
determines the model apartment A together with the action of the affine Weyl
group Wa. It is customary to write A = A(Φ,Λ, T ). The scalar product 〈·, ·〉
on V extends to a bilinear pairing

〈·, ·〉 : A× SpanQ(Φ)→ Λ,

〈

∑

α∈∆

λαα,
∑

δ∈∆

λδδ

〉

:=
∑

α,δ∈∆

λαλδ〈α, δ〉,

which in general cannot be extended to all of A× A, since Λ may not have a
multiplication. Every root α ∈ Φ determines a reflection rα : A → A defined
by

rα

(

∑

δ∈∆

λδδ

)

:=
∑

δ∈∆

λδrα(δ) =
∑

δ∈∆

λδ

(

δ − 2
〈δ, α〉
〈α, α〉α

)

.

Elements of the affine Weyl group Wa that are conjugate to rα are called
reflections. Every reflection r determines a hyperplane

Hr := {x ∈ A : r(x) = x} ,
which is also called a wall. Associated to each wall there are two half-
apartments of A which are of the form

H+
α,k := {x ∈ A : 〈x, α〉 ≥ k} and H−

α,k := {x ∈ A : 〈x, α〉 ≤ k}
for α ∈ Φ and k ∈ Λ. The fundamental Weyl chamber associated to a basis
∆ ⊆ Φ is given by

C0 :=
⋂

α∈∆

H+
α,0.

AWeyl-chamber, or sector, of A is any of the sets w(C0) for w ∈Wa. If a sector
s is a subset of another sector s′, then s is called a subsector of s′. Following
[Ben94, §2.5], we say that a subset Ω ⊂ A is convex, if it is an intersection
of half-apartments. A convex set Ω ⊂ A is closed, if it is the intersection
of finitely many half-apartments. With these definitions we define affine Λ-
buildings as in [Ben94, §3.1], based on ideas of Tits [Tit86] and generalizing
the notion of Λ-trees in Morgan–Shalen [MS84].

1A root system is crystallographic if α(Hβ) ∈ Z for all roots α, β. It turns out all root
systems coming from Lie groups are crystallographic. An example of a non-crystallographic
root system is the one of type I(m) for m large enough.
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Definition 3.1. Let B be a set and A a set of maps from A to B. We say
that (B,A) is an affine Λ-building of type A = A(Φ,Λ, T ), if it satisfies the
following six axioms:

(A1) For all f ∈ A and w ∈Wa we have f ◦ w ∈ A.
(A2) For all f, f ′ ∈ A, the set Ω := f−1(f(A)∩f ′(A)) ⊆ A is a closed convex

set and there exists w ∈Wa such that f |Ω = f ′ ◦ w|Ω.
(A3) For any two points in B there is an apartment containing both. That

is, there exists a f ∈ A such that x, y ∈ f(A).
(A4) Given sectors S1, S2 ⊆ A, then there exist sectors S′

1, S
′
2 ⊆ A contained

in S1 respectively S2, such that S′
1 ∪ S′

2 ⊆ f(A).
(A5) If the images of three maps f1, f2, f3 ∈ A pairwise intersect in a halfa-

partment, then they intersect.
(A6) For any chart f ∈ A and any point p ∈ f(A), there is a distance-

diminishing retraction rf,p : B → f(A) with (rf,p)
−1(p) = p.

Note that axiom (A6) makes sense since axioms (A1)-(A3) imply that we
can define a Λ-distance on B, that is a function d : B × B → Λ satisfying
all conditions of the definition of a Λ-metric but the triangle inequality, see
[Ben94, Remarks 3.1 and 3.2]. Axiom (A6) implies that d in fact satisfies the
triangle inequality, hence defines a metric on B.

If Λ can be inferred from the context, we say that B is a generalized affine
building. The set A is called the atlas of the generalized affine building B, and
its elements are called charts.

3.2. Examples. We now give examples of generalized affine buildings, namely
the norm building BN , the lattice building BL, homogeneous buildings BH
and Bruhat–Tits buildings BBT. The goal is to relate these different models in
specific contexts, as illustrated in the following diagram from the introduction,
see Figure 1.

BL BN

BH BBT

Λ⊆R

G=SLn(F) (Theorem 7.11) ≃

Λ⊆R and G split

(Theorem 7.14)

Λ⊆R and G=SLn(F) (Theorem 7.15)

One can think thus of the homogeneous buildings and the Bruhat–Tits build-
ings as the generalizations of the lattice respectively norm building to algebraic
groups different from SLn, where Bruhat–Tits buildings are defined for general
valued fields, and homogeneous buildings for real closed fields.

Let us now define the buildings in question.

Example 3.2 (Norm building BN ). This model for an affine building has
been studied in various settings in [GI63, Ger81, BT84]; we follow [Par23, §3].

Let F be any field with a non-Archimedean rank one valuation v : F× →
Λ < R. For a ∈ F, set |a| := exp(−v(a)) ∈ R and let V := Fn. An ultrametric
norm is a function η : V → R≥0 that satisfies for all a ∈ F and v, w ∈ V

(a) η(v) = 0 if and only if v = 0,
(b) η(av) = |a|η(v), and
(c) η(v + w) ≤ max{η(v), η(w)}.

An ultrametric norm η is adapted to a basis E = {e1, . . . , en} of V if

η

(

n
∑

i=1

aiei

)

= max{|a1|η(e1), . . . , |an|η(en)},
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and η is adaptable if there exists a basis to which it is adapted. The norm
building BN is the set of all homothety classes of adaptable ultrametric norms.

The model apartment can be identified with

A ∼= Rn/R(1, . . . , 1) ∼=
{

(x1, . . . , xn) ∈ Rn :
n
∑

i=1

xi = 0

}

and the spherical Weyl group is the symmetric group on n letters acting on A

by permuting the entries. To a basis E and an ultrametric norm η adapted to
E , we associate a chart f[η],E : A→ BN by

f[η],E((x1, . . . , xn))

(

n
∑

i=1

aiei

)

:= max
i

{

e−xi |ai|η(ei)
}

.

Let A denote the set of charts. The pair (BN ,A) then is an affine R-building
of type (An−1,R,R

n/R(1, . . . , 1)), see [Par23, Sections 3B - 3F]. We note that
BN also admits a different atlas A′, so that (BN ,A′) is an affine R-building
of type (An−1,R,Λ

n
0 ), where Λn0 := {(λ1, . . . , λn) ∈ Λn :

∑n
i=1 λi = 0}, see

[Par23, Remark in Section 3B4].

Example 3.3 (Lattice building BL). We now recall what we call the lattice
building, i.e. the space of homethety classes of lattices for Fn. This was defined
in [Ron09, Section 9.2] in the discrete case, and in [Ben94, Example 3.2] in
general. We follow the latter exposition.

Let Λ be an ordered abelian group (not necessarily of rank one) and F a
field with a Λ-valuation v : F× → Λ (in particular non-Archimedean). Denote
by O := {x ∈ F | v(x) ≥ 0} the valuation ring. A lattice (sometimes called
O-lattice) of Fn is the set Oe1 + . . . + Oen, where {e1, . . . , en} is a basis of
Fn. Two lattices L1 and L2 are homothetic if there exists x ∈ F such that
xL1 = L2. We write [L] for the homothety class of a lattice L. The lattice
building BL is the set of all homothethy classes of lattices in Fn, i.e.

BL := {[L] | L is a lattice}.
The model apartment can be identified with A ∼= Λn−1. A basis E = {e1, . . . , en}
determines the lattice On of Fn. To a basis we define a chart fE : Λ

n−1 → BL
as follows. For (λ1, . . . , λn−1) ∈ Λn−1, we set

fE((λ1, . . . , λn−1)) :=

[O(xλ1e1) +O(xλ2−λ1e2) + . . .+O(xλn−1−λn−2
en−1) +O(x−λn−1

en)],

where xλi ∈ F with v(xλi) = λi. Note that the so obtained lattice is indepen-
dent of the choices of xλi .

Let A denote the set of charts. The pair (BL,A) is a generalized affine
building of type (An−1,Λ,Λ

n−1), see [Ben94, Example 3.2].

Example 3.4 (Bruhat–Tits buildings BBT). In [BT72, BT84] Bruhat–Tits
construct affine buildings from reductive algebraic groups that are quasi-split
with respect to F. We restrict our setting to the case when the groups is split,
see [BT72, Exemples (6.1.3)b), page 110]. More general cases in which the
Bruhat–Tits building exists have been investigated over the years for example
in [MSVM14, Str14, HIL20], and it would be interesting to extend our results
in these settings.

Let F be a field with a valuation ω : F → Λ ∪ {∞} ⊆ R ∪ {∞} and G a
semi-simple, connected, simply-connected algebraic F-group that is split over
F (such as SLn). Let S be a maximal F-split torus. For a root α ∈ Φ in the
relative root system Φ := FΦ, we consider the root group Uα. Let G = G(F),
Uα = Uα(F), T = CentG(S)(F) and N = NorG(S)(F). By [BT72, 6.1, page
107], there are subgroups Mα such that (T, (Uα,Mα)α∈Φ) is a generating root
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group datum that admits a valuation ϕα : Uα → R ∪ {0} for α ∈ Φ, [BT72,
Exemples (6.2.3)b), page 118]; for the classical groups see [BT72, Chapter 10,
page 208ff].

We consider the Euclidean vector space (V, 〈·, ·〉) such that the dual space
(V ⋆, 〈·, ·〉) is spanned by Φ. The group N acts on the root groups by conju-
gation nUαn

−1 = Un.α and this action descends to the action of the spherical
Weyl group FW := N/T on Φ ⊆ V ⋆. The dual root system Φ∨ ⊆ V of Φ ⊂ V ⋆

consists of the dual roots α∨ ∈ Φ∨ defined by

〈α∨, v〉 = 2α(v)

〈α, α〉 for all v ∈ V

where α ∈ Φ. The Euclidean space V ∼= SpanQ(Φ
∨)⊗R can be identified with

the affine space of root group valuations

A = {(ϕvα)α : ∃v ∈ V, ∀α ∈ Φ, ∀u ∈ Uα : ϕvα(u) = ϕα(u) + α(v)}
and we abbreviate the root group valuation (ϕvα)α by ϕ+ v. For n ∈ N ,

(n.ϕ)α(u) = ϕn−1.α(n
−1un)

defines a root group valuation and an action ν : N ×A→ A by

ν(n)(ϕ+ v) := n.ϕ+ n.v,

where the n.v comes from the action of the spherical Weyl group on V ⋆ and
V . The kernel of this action is denoted by H and N/H is called the affine
Weyl group. For x ∈ A ∼= V , let

Px = 〈u ∈ Uα : ∃λ ∈ Λ: ϕα(u) ≥ λ ≥ −α(x)〉 ·H.
The Bruhat–Tits building is now defined as the quotient BBT := (G × A)/∼
for the equivalence relation (g, x) ∼ (h, y) when

∃n ∈ N : g−1hn ∈ Px and ν(n)(x) = y.

The Bruhat–Tits building is a generalized affine building of type A(Φ∨,R, T/H).
The apartment A is modeled on A and we have the map f0 : A → BBT,
x 7→ [Id, x]. The natural action of G on G× A descends to an action on BBT

given by g.[h, x] = [gh, x]. The atlas of BBT is given by A := {g.f0 | g ∈ G},
where g.f(x) := [g, x] for all x ∈ A. Indeed, the affine Weyl group Wa is
defined as v(N) = Wa, N < G(F), and thus only translations by Λ-valued
vectors are possible.

We remark that the root group valuations (ϕα)α are compatible with the
field valuation ω [BT84, 4.2.7(2)], for all t ∈ T

ϕα(tut
−1) = ϕα(u) + ω(α(t)),(⋆)

which means that if t ∈ T and x ∈ A ∼= V satisfy (−ω)(α(t)) = α(x), then
[t, 0] = [id, x] ∈ I.
Example 3.5 (Homogeneous buildings BH). In [KT02], for more details see
[App24], Kramer–Tent define a building associated to the following data. Let
G be a semisimple self-adjoint linear algebraic Q-group G < SLn for some
n ∈ N and let F be a real closed field. To define a building, we need F

to be non-Archimedean with an order-compatible valuation v : F× → Λ (not
necessarily of rank one), but for now let F just be a real closed field, possibly
F = R. Denote by G := G(F) the F-points of the algebraic group G.

The group SLn(F) acts transitively on the set

P1(n,F) = {M ∈ Fn×n : M =MT , det(M) = 1,M ≫ 0}
of positive definite symmetric matrices of determinant one by congruence, i.e.
g.M := gMgT . Let XF be the orbit G. Id of Id ∈ P1(n,F). If F = R, XR is
a model of a symmetric space of non-compact type that is a totally geodesic



MORPHISMS OF GENERALIZED AFFINE BUILDINGS (IN PREPARATION) 13

submanifold of the symmetric space P1(n,R). When F is non-Archimedean, we
call XF a non-standard symmetric space. Given an order-preserving valuation
v : F× → Λ, it is then possible to define a G-invariant, Λ-valued pseudo-
distance d : XF × XF → Λ whose quotient BH = XF/∼ after identifying all
points of distance 0 is an affine Λ-building in the following sense.

LetK := G∩SOn. Let S < G be a maximal R-split torus that is self-adjoint.
Let AF be the semi-algebraically connected component of the identity in SF.
When F = R, g := Lie(GR) admits a Cartan decomposition g = k⊕ p given by
the Cartan involution θ : X 7→ −XT . The group AR is a connected real Lie
group whose Lie algebra a ⊆ p can be used to obtain the restricted root space
decomposition

Lie(GR) = g0 ⊕
⊕

α∈Φ

gα,

where (Φ, a) is a root system with spherical Weyl group

Ws = NorKR
(AR)/CentKR

(AR).

Associated to every root α ∈ Φ, there is an algebraic character χα : AF → F>0.
The Cartan decompositionGF = KFAFKF can then be used to define a Cartan
projection δF : XF → CF, where CF := {a ∈ AF : χα(a) ≥ 1, ∀α ∈ ∆}, where
∆ is a basis of Φ, see e.g. [App24, Lemma 7.2]. Then, NF : AF → F>0 defined
by

NF(a) :=
∏

α∈Φ

max
{

χα(a), χα(a)
−1
}

is a semi-algebraic multiplicative F≥1-valued G-invariant norm on AF. When F

is non-Archimedean, NF and δF together with an order-compatible valuation v,
gives a pseudo-metric d := −v◦NF◦δF onXF, and a metric on BH = XF/∼. Let
o = [Id] ∈ BH be a base point. It is then possible to show that the apartment
A := AF.o is a Q-vector space isomorphic to SpanQ(Φ

∨)⊗QΛ, where Φ∨ is the
dual root system, of dimension r = dim(a) = rank(GR). Taking T = Λr, BH
is an affine Λ-building of type (Φ∨,Λ,Λr) [App24, Theorem 8.1] in the case
that Φ∨ is reduced. If f0 : A → BH denotes the inclusion, the atlas is given
by A = {g.f0 : A→ BH | g ∈ GF}.
Remark 3.6. It was announced in [KT02, Theorem 5.7], and proven in
[App24], that in the setting of the above example, there is another descrip-
tion of the homogeneous building. Using the transitive action of G on BH ,
the underlying set of the homogeneous building BH can be identified with
G(F)/G(O). The model apartment A is given by A(F)/A(O), and an atlas of
charts by

A = {fg : A(F)/A(O)→ G(F)/G(O), [a] 7→ g.[a] | g ∈ G(F)}.

4. Morphisms of generalized affine buildings

The goal of this section is to introduce the definition of morphisms of gener-
alized affine buildings. Before we can do so we define morphism of apartments.

4.1. Morphisms of apartments. Let Φ and Φ′ be two crystallographic root
systems with respective basis Σ and Σ′. Let Λ and Λ′ be ordered abelian
groups and A = SpanQ(Φ)⊗Q Λ and A′ = SpanQ(Φ

′)⊗Q Λ′ the corresponding
model apartments. For T < A and T ′ < A′, we have the respective affine Weyl
groups with respect to T and T ′, denoted by Wa = T ⋊Ws(Φ) respectively
W ′

a = T ′⋊Ws(Φ
′). There is a natural action of the affine Weyl groups on their

respective model apartments. We will write A = A(Φ,Λ, T ) to highlight that
the apartment comes equipped with the action of the affine Weyl group Wa.
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Definition 4.1. Let A = A(Φ,Λ, T ) and A′ = A(Φ′,Λ′, T ′) be two model
apartments. Let L : SpanQ(Φ)→ SpanQ(Φ

′) be a Q-linear map, γ : Λ→ Λ′ a
morphism of ordered abelian groups (order preserving group homomorphism)
and σ : Wa → W ′

a a function (not necessarily a group homomorphism). The
triple (L, γ, σ) is called a morphism of apartments if for all a ∈ A and w ∈Wa

we have
(L⊗Q γ)(w.a) = σ(w).((L⊗Q γ)(a)).

This means that the following diagram commutes for every w ∈Wa.

A A′

A A′

L⊗γ

w σ(w)

L⊗γ

We will denote morphisms of apartments by τ = (L, γ, σ), and when it is
convenient we will write by slight abuse of notation τ : A→ A′ and τ = L⊗γ.

We call τ injective (resp. surjective) if L and γ are injective (resp. surjec-
tive). It is a linear algebra exercise to see that τ is injective (resp. surjective)
if and only if L⊗Q γ is injective (resp. surjective).

Example 4.2. Suppose Φ = Φ′ and γ : Λ → Λ′ is a morphism of ordered
abelian groups such that γ(T ) ⊂ T ′. Then Id⊗Qγ : A→ A′ defines a morphism
of apartments. Furthermore, this recovers the definition in [SS11].

Remark 4.3. The identity morphism is given by L = IdSpanQ(Φ), γ = IdΛ
with σ = IdWa

and composition of morphisms is given by composition of L, γ
and σ. It is not hard to check that with these notions, model apartments form
a category. A morphism τ : A → A′ then is an isomorphism of apartments if
there is a morphism τ−1 : A′ → A with τ−1 ◦ τ = IdA and τ ◦ τ−1 = IdA′ .

4.2. Morphisms of buildings. We use the notion of morphisms of apart-
ments to define a notion of morphisms of generalized affine buildings.

Definition 4.4. LetB = (B,A) be an affine Λ-building of type A = A(Φ,Λ, T )
and B′ = (B′,A′) an affine Λ′-building of type A′ = A(Φ′,Λ′, T ′). A morphism
of generalized affine buildings is a collection of maps

ψ : B → B′, ϕ : A → A′, τ : A→ A′,

where τ is a morphism of apartments, such that the following diagram com-
mutes for all f ∈ A.

A B

A′ B′

f

τ ψ

ϕ(f)

We will denote morphisms of generalized affine buildings bym = (ψ,ϕ, τ), and
when it is convenient we will write by slight abuse of notation m : (B,A) →
(B′,A′) or m : B → B′. We say that a morphism (ψ,ϕ, τ) is injective (resp.
surjective) if ψ, ϕ and τ are injective (resp. surjective).

Example 4.5. Since there is no order-preserving group homomorphism from
R to Q, we obtain with this definition that the only morphism from the R-
building R to the Q-building Q is the trivial morphism.

Remark 4.6. The identity morphism is given by ψ = IdA, ϕ = IdB and
τ = IdA and composition of morphisms is given by the composition of all
three ψ, ϕ and τ . It is not hard to check that with these notions, generalized
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affine buildings form a category. A morphism m = (ψ,ϕ, τ) : B → B′ is then
called an isomorphism if there exists m−1 : B′ → B with m−1 ◦m = IdB and
m ◦m−1 = IdB′ .

4.3. Relation to existing notions in the literature. We finish this section
by explaining how our definition relates to existing notions of morphisms and
isomorphisms of apartments and (generalized affine) buildings already present
in the literature.

There are a lot of notions for when the valuation is discrete, e.g. [Lan00,
KP23]. We will quickly explain Landvogt’s notion and result for Bruhat–Tits
buildings [Lan00], as it can be compared to Theorem 6.7. He showed a func-
toriality property, namely that a homomorphism of algebraic F-groups, where
F is a quasi-local field, induces an equivariant continuous map between the
associated Bruhat–Tits buildings, that is toral—a notion that ensures that
apartments are mapped to apartments. Furthermore, after suitable normal-
ization of the metric, this map is an isometry. In the case of inclusion of
connected, reductive F-subgroups the author also examines the set of all maps
with the above properties. A toral map should be thought of as the analog of
our notion of morphism of apartments, and it would be interesting to compare
these two notions in the discrete setting.

In the non-discrete case, but still in the setting of R-buildings, Rousseau de-
fines notions of (weak) morphisms of apartments, buildings and sub-buildings
[Rou04]. In [Rou04, Definition 1.1.4.1], Rousseau defines a weak morphism
of apartments (endowed with a Euclidean distance). This is an affine map
ϕ : A → A′ that satisfies three axioms related to the affine Weyl group ac-
tions, the walls of the apartments and their Euclidean distances. However
the composition of two weak morphisms is in general not a weak morphism.
Rousseau then defines a morphism of apartments to be a metric weak mor-
phism, meaning that ϕ preserves distances up to the kernel of the linear part
of ϕ, i.e.

dA′(ϕ(x), ϕ(y)) = dA(x+ ker(L(ϕ)), y + ker(L(ϕ))),

where L(ϕ) denotes the linear part of the affine map ϕ. Note that our definition
does à priori not taking the metrics on A and A′ into account.

In [LN04] Loos–Neher developed several notions of morphisms for root
systems: morphisms are linear maps L : SpanR(Φ) → SpanR(Φ

′) such that
L(Φ) ⊆ Φ′, possibly with some extra conditions. In our definition of mor-
phisms of apartments, we also have a linear map L, but roots may not be sent
to roots. This happens for instance in the context of functoriality under sub-
groups G < G′ (see Section 6.1, in particular the example in Figure 2), where
the linear map L does not send roots to roots. A morphism of root systems
in the category RCE defined in [LN04] satisfies the compatibility condition
on the Weyl groups [LN04, Theorem 5.7], and thus defines a morphism of
apartments (when Λ = R) in our setting. This means that our notion is a
generalisation of the one in [LN04].

The most general and at the same time closest to our notions are probably
[Sch09] and [SS11], where the latter generalizes the former. Let us discuss
these now in more detail.

In [Sch09, Definition 5.5], Schwer defines a notion of isomorphism of gen-
eralized affine buildings. This definition agrees with Definition 4.4 where the
author considers inverse maps to ψ and ϕ, and requires that τ is an automor-
phism of apartment, which according to personal communication with Petra
Schwer coincides with our definition. Thus the definition of isomorphism given
in [Sch09] agrees with Definition 4.4.
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Schwer–Struyve consider in [SS11, Sections 3 and 5] a generalized affine
building (B,A) of type A := A(Φ,Λ, T ) and an order-preserving surjective
(resp. injective) group morphism γ : Λ → Λ′. From this data, they construct
a model apartment A′ := A(Φ,Λ′, T ′), where T ′ is the component-wise image
of T under γ. In the first paragraph of Section 3, the authors construct a
surjective (resp. injective) map A→ A′, which in our notation corresponds to
two maps Id⊗γ : A → A′ and Id: Wa → Wa. In fact, they show that these
maps define a morphism of apartments in the sense of Definition 4.1. Note
however that the root system Φ is fixed. Let us denote by τ this morphism
of apartments. Secondly, Schwer–Struyve construct a topological space B′, a
surjective (injective) map φ : B → B′ and for each f ∈ A a map f ′ : A′ → B′. If
we denote by A′ the set of maps f ′ constructed, then we get a map ϕ : A → A′.
Then they show in [SS11, Sections 3 and 5] that (B′,A′) is a building and that
(φ, ϕ, τ) is a morphism (in the sense of Definition 4.4) between the buildings
(B,A) and (B′,A′) such that φ, ϕ, τ are surjective (resp. injective).

In [HIL20, §7], the authors associate to a quasi-split reductive algebraic
group G and a Henselian field F, equipped with a valuation v : F× → Λ,
a generalized affine building, denoted by I(F, v,G). They then construct,
given a surjective morphism of totally ordered abelian groups f : Λ → Λ′, a
projection map I(F, v,G)→ I(F, f ◦v,G), which is surjective and compatible
with the action of G(F). It would be interesting to investigate whether the
projection map they construct is a surjective morphism of G-buildings in the
sense of Definition 5.8.

The goal of the following sections is the construction of morphisms of gener-
alized affine buildings. We will state some existence theorems and then apply
them to the examples discussed in Section 3.2.

5. G-buildings and their morphisms

The goal of this section is to construct morphisms of generalized affine build-
ings eqipped with group actions. Under sufficient transitivity assumptions this
allows to define a morphism of generalized affine buildings by specifying a mor-
phism of one apartment, and then moving this map around under the action
of the group. This motivates the following definition.

Definition 5.1. Let G be a group and (B,A) an affine Λ-building. We call
B a G-building if G acts on both B and the atlas A such that the actions are
compatible, i.e.

(g.f)(a) = g.(f(a)) ∀ g ∈ G, f ∈ A, a ∈ A.

Note that we always have StabG(f) ⊆ StabG(f(0)). Often we may want to
require transitivity of the action of G on A or on B.

5.1. Transitivity properties of G-buildings. Here are some direct conse-
quences of the definition of G-buildings.

Proposition 5.2. Let (B,A) be a G-building of type A = A(Φ,Λ, T ). If G
acts transitively on B, then T = Λn.

Proof. Let f ∈ A and a ∈ A. By transitivity, there is g ∈ G such that
f(0) = g.f(a). Recall axiom (A2), that says that for all f , f ′ ∈ A, the set
Ω := f−1(f(A) ∩ f ′(A)) is Wa-convex and there exists w ∈ Wa such that
f |Ω = f ◦ w|Ω. We apply it to f and g.f . We note that 0 ∈ Ω. From the
second part we get w ∈ Wa such that f(0) = g.f ◦ w(0). Applying g−1 we
get f(w(0)) = g−1.f(0) = f(a). Since f is injective we have w(0) = a. The
element w ∈ Wa = T ⋊ Ws can be written as w = (t, ws) with t ∈ T and
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ws ∈ Ws. Since ws(0) = 0, we have w(0) = t(0) = a, hence t = wa. This
shows that for all a ∈ A, wa ∈ T , and hence T = Λn. �

Conversely we have the following.

Proposition 5.3. Let (B,A) be a G-building of type A = A(Φ,Λ, T ). If
T = Λn is the full translation group and G acts transitively on A, then G also
acts transitively on B.

Proof. We use axioms

(A1) ∀f ∈ A ∀w ∈Wa : f ◦ w ∈ A, and
(A3) ∀x, y ∈ B ∃f ∈ A : x, y ∈ f(A).

Let x, y ∈ B. By axiom (A3), there is a f ∈ A and a, b ∈ A such that
x = f(a), y = f(b). Since we assumed that T = Λn is the full translation
group, we have w = b − a ∈ Wa = T ⋊Ws. By axiom (A1), we have that
f ◦ w ∈ A. Since G acts transitively on A, there is a g ∈ G, such that
g.f = f ◦ w. In particular g.x = g.f(a) = f ◦ w(a) = f(b) = y, and hence G
acts transitively on B. �

5.2. Examples of G-buildings. All examples discussed in Section 3.2 fall in
fact in the framework of G-buildings for some appropriate group G. Let us
now explain this and discuss certain transitivity properties in more detail.

Example 5.4 (Norm building, Example 3.2 revisited). Recall that the norm
building BN associated to V = Fn, where F is a field with a rank one valuation
v : F× → Λ < R, is an R-building of type (An−1,R,R

n/R(1, . . . , 1)). We claim
that it is also a G-building for G = GLn(F). Indeed, for g ∈ GLn(F) the
action on BN given by g.η := η ◦g−1 for η (a homothety class of) an adaptable
ultrametric norm on V , and the action on A given by g.f[η],E := f[g.η],gE are
compatible; see also [Par23, Sections 3A and 3B2]. Note that GLn(F) acts
transitively the set of apartments (the images of charts in A), but not on BN
and A unless the valuation v is surjective onto R.

Example 5.5 (Lattice building, Example 3.3 revisited). The lattice building
BL associated to Fn, where F is a field with a valuation v : F× → Λ (not
necessarily of rank one), is an affine Λ-building of type (An−1,Λ,Λ

n−1). It
is also a G = SLn(F)-building. Indeed, BL consists of homothety classes of
lattices L, which are of the form Oe1 + Oe2 + . . . + Oen, where {e1, . . . , en}
is a basis of Fn. Thus SLn(F) acts on a lattice by acting on the basis, i.e.
g.L = Oge1 + . . . + Ogen. We also define an action of SLn(F) on a chart fE
for E a basis of Fn by setting g.fE = fgE . Then these two actions commute.

The atlas A consists of all charts fE for E a basis of Fn. Since F is real
closed, the group SLn(F) acts transitively on the set of homothety classes of
unordered bases of Fn. Thus SLn(F) acts transitively on A. Furthermore,
SLn(F) acts thus also transitively on the set of lattices up to homothety, and
thus SLn(F) acts transitively on the building BL.

Example 5.6 (Bruhat–Tits building, Example 3.4 revisited). Let BBT be
the Bruhat–Tits building associated to G(F) =: G, where G, F, Λ, and Φ are
as in Example 3.4. Then BBT is a G-building of type (Φ∨,R,Λn). Recall that
BBT = (G × A)/∼, where A is the affine space of root group valuations. We
already saw in Example 3.4, that G acts on BBT via g.[h, x] = [gh, x]. There
is a chart f0 : A → BBT, a 7→ [Id, a] and the atlas A is the orbit of this chart
under the action of G. Thus A is naturally endowed with a G-action and these
actions are compatible, hence BBT is a G-building of type (Φ∨,R,Λn).

Note that by definition G acts transitively on the atlas A. However when
Λ 6= R, then the action of G on BBT is not transitive, see e.g Proposition 5.2.
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Example 5.7 (Homogeneous building, Example 3.5 revisited). We claim that
the homogeneous building BH associated to a semisimple self-adjoint linear
algebraic Q-group G < SLn and a real closed field F endowed with a Λ-
valuation not necessarily of rank one, as defined in Example 3.5, is an example
of a G-building, where G := G(F).

Recall that G acts on XF = G. Id ⊆ P1(n,F) by congruence, and thus on
BH = XF/ ∼. It is left to define the action on the atlas A and to show
that these actions are compatible. Fix the base point o = [Id] ∈ BH . The
standard apartment is identified with A = AF.o, where AF is the F-extension
of exp(a), for a a Cartan subalgebra of the Lie algebra of G. Denote by f0
the inclusion from A to BH . The atlas A is the set {g.f0 : A→ BH | g ∈ G},
which is naturally endowed with a left G-action. Clearly, the two actions are
compatible, and hence BH is a G-building of type (Φ∨,Λ,Λn).

By definition, the action of G on A is transitive. Since T = Λn is the full
translation group, it follows from Proposition 5.2 that the action on BH is
transitive as well.

5.3. Morphisms of G-buildings. We have a natural notion of morphisms
for G-buildings.

Definition 5.8. Let (B,A) be aG-building, (B′,A′) aG′-building and ρ : G→
G′ a group homomorphism. A morphism of generalized affine buildings

(ψ : B → B′, ϕ : A → A′, τ : A→ A′)

is ρ-equivariant if for all g ∈ G, x ∈ B and f ∈ A we have

ψ(g.x) = ρ(g).ψ(x), and ϕ(g.f) = ρ(g).ϕ(f).

The goal of this section is to construct morphisms between buildings on
which groups act sufficiently transitively. To do so we find conditions for when
one can extend a morphism of apartments to a morphism of the buildings, and
check when it is injective, surjective or bijective.

Definition 5.9. Let G be a group and (B,A) a G-building of type (Φ,Λ, T ).
For f ∈ A and w ∈Wa =Ws(Φ)⋉T , we define the subset Af,w of G consisting
of w-translations of f by

Af,w := {g ∈ G : g.f = f ◦ w} ⊆ G.
In other words, it is the subset of those elements of G that act on a chart f
the same as precomposition by the element w of the affine Weyl group.

Note that Af,w can be empty. However if G acts transitively on the atlas
A, then axiom (A1) is equivalent to asking that Af,w 6= ∅ for all f ∈ A and
w ∈Wa.

The following properties about the sets Af,w are a consequence of the com-
patibility of the actions of G on the atlas and on the building.

Lemma 5.10. For every f ∈ A, the set Af :=
⋃

w∈Wa
Af,w forms a subgroup

of G.

Proof. Let g ∈ Af,w and g′ ∈ Af,w′ with w,w′ ∈ Wa, i.e. g.f = f ◦ w and
g′.f = f ◦ w′. Then for all a ∈ A we have

((gg′).f)(a) = g.(g′.f)(a) = g.(f ◦ w′)(a)

= (g.f)(w′(a)) = f ◦ w(w′(a)) = (f ◦ (ww′))(a),

thus gg′ ∈ Af,ww′ . Similarly we have g−1 ∈ Af,w−1 , since for all a ∈ A we have

(g−1.f)(a) = g−1.(f ◦ w)(w−1a) = g−1g.f(w−1a) = f ◦ w−1(a). �



MORPHISMS OF GENERALIZED AFFINE BUILDINGS (IN PREPARATION) 19

Note that when S is a subgroup of Wa, for example S = T , then the same
arguments as in the proof of the above lemma show that Af,S :=

⋃

w∈S Af,w
is a subgroup of G.

Proposition 5.11. With the above notations, the sets Af,w satisfy the follow-
ing properties.

(1) For all g ∈ G, f ∈ A and w ∈Wa, we have Agf,w = gAf,wg
−1.

(2) For all f ∈ A and w,w′ ∈ Wa, if Af,w, Af,w′ and StabG(f) are non-
empty, then Af,ww′ = Af,wAf,w′ StabG(f) = Af,w′w.

(3) If g ∈ Af,w for some f ∈ A and w ∈Wa, then Agf,e = Af,wg
−1.

Proof.

(1) Let h ∈ Agf,w then ghg−1f = g−1gfw = fw so that Agf,w ⊆ gAf,wg−1.
For the other direction, let h ∈ Af,w, then ghg−1(gf) = ghf = g(hf) =
gfw = (gf)w so that gAf,wg

−1 = Agf,w.
(2) Let a ∈ Af,w, b ∈ Af,w′ and c ∈ Af,e, then abcf = abf = afw′ = fww′

so that Af,wAf,w′ StabG(f) ⊆ Af,ww′ . Furthermore, if Af,w,Af,w′ and
StabG(f) are non-empty and g ∈ Af,ww′ , then gf = fww′ = afw′

for some a ∈ Af,w. Thus for some b ∈ Af,w′ , afw′ = abf so that
g−1ab ∈ StabG f . Hence Af,ww′ = Af,wAf,w′ StabG(f) as desired.

(3) Let h ∈ Af,w then hg−1(gf) = hf = fw = gf so that Af,wg
−1 ⊂ Agf,e.

Moreover, for h ∈ Agf,e it holds h(gf) = gf = fw so that hg ∈ Af,w.
Thus Agf,e = Af,wg

−1. �

5.4. Extending morphisms of apartments. The goal of this section is to
prove Theorem 1.4.

Let Λ, Λ′ be ordered abelian groups, Φ, Φ′ crystallographic root systems of
rank n, m respectively with spherical Weyl groups Ws respectively W

′
s , A, A

′

the associated model apartments and consider T < Λn ∼= A, T ′ < (Λ′)m ∼= A′

the translation subgroups of the affine Weyl groups Wa = T ⋊ Ws, W
′
a =

T ′ ⋊W ′
s .

Theorem 5.12 (Theorem 1.4). Let (B,A) be a G-building of type A =
A(Φ,Λ, T ) with a transitive G-action on A, and (B′,A′) a G′-building of type
A′ = A(Φ′,Λ′, T ′). Let τ = (L, γ, σ) : A→ A′ be a morphism of apartments.

If there exist a group homomorphism ρ : G → G′ and charts f ∈ A and
f ′ ∈ A′ such that

(1) ρ(StabG(f(a))) ⊆ StabG′(f ′((L⊗ γ)(a))) for all a ∈ A, and
(2) ρ(Af,w) ⊆ Af ′,σ(w) for all w ∈Wa,

then there exists a morphism (ψ,ϕ, τ) of (G,G′)-buildings from B to B′ ex-
tending τ , that is ρ-equivariant.

If, in addition,

(a) L and γ are injective, then ψ is injective. Also, if ρ is injective and
ρ(StabG(f)) = StabG′(f ′), then ϕ is injective;

(b) G′ acts transitively on A′, and the maps ρ, L and γ are surjective,
then ϕ and ψ are surjective;

(c) G′ acts transitively on A′, ρ is an isomorphism of groups, τ is an
isomorphism of apartments, and the two inclusions (1) and (2) are
equalities, then there exists an inverse morphism. That is, (B,A) and
(B′,A′) are isomorphic.

Proof. We start with the construction of ϕ : A → A′. Indeed, since G acts
transitively on A, every element of A is of the form g.fB for some g ∈ G, so
we define a ρ-equivariant function ϕ : A → A′ by

ϕ(g.fB) := ρ(g).fB′ .
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The map ϕ is well defined: indeed, if g.fB = g′.fB for some g, g′ ∈ G, then
g−1g′.fB = fB so that ρ(g−1g′) ∈ ρ(StabG(fB)) ⊆ StabG(fB′) and

ϕ(g.fB) = ρ(g).fB′ = ρ(g′).fB′ = ϕ(g′.fB).

Next we define ψ : B → B′. Any element in B is of the form g.fB(a) for
some g ∈ G and a ∈ A — this follows from axiom (A3) and the fact that G
acts transitively on A. For every g ∈ G and a ∈ A, we define ψ by

ψ (g.fB (a)) := ρ(g).fB′ ((L⊗ γ) (a)) .
We check that ψ is well defined. Let g, g′ ∈ G and a, a′ ∈ A such that
g.fB(a) = g′.fB(a

′). From axiom (A2) there exists w ∈Wa such that

(g.fB)|Ω =
(

g′.fB ◦ w
)

|Ω where Ω := (g.fB)
−1
(

g.fB (A) ∩ g′.fB (A)
)

.

Note that a ∈ Ω since g.fB(a) = g′.fB(a
′). In particular

g′.fB(a
′) = g.fB(a) = g′.fB(w(a)),

so that w(a) = a′ by injectivity of fB. The set AfB ,w is non-empty by transi-
tivity of the action of G on A and axiom (A1), so we can consider gw ∈ AfB ,w.
By definition of AfB ,w, it holds

g.fB(a) = g′.fB(w(a)) = g′gw.fB(a),

so that ρ(g−1g′gw) ∈ ρ(StabG(fB(a))) ⊆ StabG(fB′((L⊗ γ)(a))) and
ρ(g).fB′((L⊗ γ)(a)) = ρ(g′gw).fB′((L⊗ γ)(a)).

The fourth condition of the theorem implies ρ(gw) ∈ ρ(AfB ,w) ⊆ AfB′ ,σ(w) so
that

ρ(g).fB′((L⊗ γ)(a)) = ρ(g′gw).fB′((L⊗ γ)(a))
= ρ(g′).fB′ (σ (w) ((L⊗ γ) (a)))
= ρ(g′).fB′((L⊗ γ)(w(a)))
= ρ(g′).fB′((L⊗ γ)(a′)).

This shows that ψ is well defined. By construction, ϕ and ψ are ρ-equivariant.
To show that (ψ,ϕ, τ) is a morphism of (G,G′)-buildings, it remains to

check that the following diagram commutes for every f ∈ A

A B

A′ B′.

f

L⊗γ ψ

ϕ(f)

Let f ∈ A and a ∈ A. By transitivity of the G-action on A, there exists g ∈ G
with g.fB = f . Then

(ψ ◦ f)(a) = ψ(g.fB(a)) = ρ(g).fB′((L⊗ γ)(a))
= ϕ(g.fB)((L⊗ γ)(a)) = ϕ(f)((L⊗ γ)(a)),

so the diagram commutes.
We now prove the three additional statements (a)-(c).
Proof of (a): For every b ∈ B, there exists g ∈ G and a ∈ A such that

g.fB(a) = b. So to show that ψ is injective, consider g, g′ ∈ G and a, a′ ∈ A

such that ψ(g.fB(a)) = ψ(g′.fB(a
′)) and we check that g.fB(a) = g′.fB(a

′).
From axiom (A3) and the fact that G acts transitively on A, there exists
g′′ ∈ G and a1, a

′
1 ∈ A, so that

g′′.fB(a1) = g.fB(a) and g
′′.fB(a

′
1) = g′.fB(a

′).
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We compose with ψ and obtain

ρ(g′′).fB′((L⊗ γ))(a1)) = ψ(g′′.fB(a1)) = ψ(g.fB(a)) = ψ(g′.fB(a
′))

= ψ(g′′.fB(a
′
1)) = ρ(g′′).fB′((L⊗ γ)(a′1)).

Thus by the injectivity of L⊗ γ and the injectivity of the charts in the atlas,
it holds a1 = a′1 so that

g.fB(a) = g′′.fB(a1) = g′.fB(a
′)

as desired. So ψ is injective.
Now suppose ρ is injective and ρ(StabG(fB)) = StabG′(fB′). For f, f ′ ∈ A

there exist g, g′ ∈ G such that f = g.fB and f ′ = g.fB. If ϕ(f) = ϕ(f ′), then
ρ(g).fB′ = ρ(g′).fB′ , so

ρ(g−1g′) ∈ StabG′(fB′) = ρ(StabG(fB)).

So there exists g′′ ∈ StabG(fB) such that ρ(g−1g′) = ρ(g′′) and by injectivity
of ρ, g−1g′ = g′′ so that g−1g′ ∈ StabG(fB) and f = g.fB = g′.fB = f ′ so that
ϕ is injective.

Proof of (b): Let f ′ ∈ A′. By transitivity of the G′-action onA′, there exists

g′ ∈ G′ such that f ′ = g′.fB′ . Moreover ρ is surjective such that g′ = ρ(g) for
some g ∈ G. Hence ϕ(g.fB) = g′.fB′ = f ′, so ϕ is surjective.

We now prove surjectivity of ψ. Let b′ ∈ B′. By axiom (A3) of buildings,
there exists a′ ∈ A′ and f ′ ∈ A′ such that y = f(a′). Since the action of G′

on A′ is transitive and ρ is surjective, there exists g ∈ G with b′ = f(a′) =
ρ(g).fB′(a′). By surjectivity of the maps L and γ, there exists a ∈ A such that
a′ = L⊗ γ(a). Hence

ψ(g.fB(a)) = ρ(g).fB′((L⊗ γ))(a)) = f ′(a′) = b′

and both ϕ and ψ are surjective.
Proof of (c): Suppose that τ : A → A′ is an isomorphism of apartments,

G′ acts transitively on A′, ρ is an isomoprhism and the two inclusions in
the conditions of the theorem are equalities. We construct, as above, a ρ−1-
equivariant morphism (ψ′, ϕ′, τ−1) from (B′,A′) to (B,A), that sends fB′ to
fB. By ρ- and ρ

−1-equivariance we have for every g ∈ G and a ∈ A

ψ′ ◦ ψ(g.fB(a)) = ψ′(ρ(g).fB′(a)) = g.fB(a)

ϕ′ ◦ ϕ(g.fB) = ϕ′(ρ(g).fB′) = g.fB,

and similarly ψ ◦ψ′ = idB′ and ϕ ◦ϕ′ = idA′ . Hence B and B′ are isomorphic
as generalized affine buildings. �

Remark 5.13. For w = IdA, the condition ρ(Af,IdA) ⊆ Af ′,σ(IdA) in (2) is
equivalent to ρ(StabG(f)) ⊆ StabG′(f ′).

6. Functoriality for homogeneous buildings

We would like to apply our notion of morphism of generalized affine build-
ings and their construction using Theorem 1.4 to prove certain natural func-
toriality properties. For this we put ourself in the setting of homogeneous
buildings (Example 3.5), but we expect similar results also in the context of
the other models of buildings introduced in Section 3.2.

6.1. Functoriality under subgroups. Let G < G′ < SLn be two Zariski-
connected semisimple selfadjoint linear algebraic Q-groups. Let S < S′ be self-
adjoint maximal R-split tori of G,G′ and let AF, A

′
F be the semi-algebraically

connected components of the F-extensions SF,S
′
F of S respectively S′ that con-

tain the identity. Let F be a non-Archimedean real closed field and v : F× → Λ
an order-compatible valuation. In this section we will show that the inclusion



22 APPENZELLER, FLAMM, JAECK

G(F) < G′(F) induces an injective morphism from the homogeneous building
B associated to G(F), to B′ associated to G′(F). For more detailed definitions
see Example 3.5.

As sets it is clear that the non-standard symmetric spaces satisfy XF ⊆ X ′
F,

and that the distances on XF and X ′
F can be chosen to coincide2 on their

intersection B ⊆ B′.

Lemma 6.1. For every α ∈ Φ there exists β ∈ Φ′ such that β|a = α. In fact,
for all α ∈ Φ,

gα =
⊕

β∈Φ′,β|a=α

g′β ∩ g.

Proof. Let g = Lie(GR) and g′ = Lie(G′
R) and

g = g0 ⊕
⊕

α∈Φ

gα, g′ = g′0 ⊕
⊕

β∈Φ′

g′β

the root decompositions. Let α ∈ Φ andX ∈ gα\{0}, in particularX ∈ g ⊆ g′.
Let X0 ∈ g′0 and Xβ ∈ g′β for β ∈ Φ′ such that

X = X0 +
∑

β∈Φ′

Xβ .

For any H ∈ a ⊆ a′, we now have

[H,X] = α(H)X = α(H)X0 +
∑

β∈Φ′

α(H)Xβ

= [H,X0] +
∑

β∈Φ′

[H,Xβ ] =
∑

β∈Φ′

β(H)Xβ

and note that the non-zero elements in {X0} ∪ {Xβ : β ∈ Φ′} are linearly
independent. In particular, X0 = 0 and for at least one β ∈ Φ′, Xβ 6= 0. We
have shown that for all α ∈ Φ, there exists β ∈ Φ′ such that β|a = α. �

Lemma 6.1 tells us that Φ′
α := {β ∈ Φ′ : β|a = α} is nonempty for every

α ∈ Φ. This lets us describe the inclusion

L : SpanQ(Φ)→ SpanQ(Φ
′)

∑

α∈∆

qαα 7→
∑

α∈∆

qα
1

|Φ′
α|
∑

β∈Φ′

α

β

as a Q-linear map. The inclusion extends to a Q-linear map L⊗Q IdΛ between
the model apartments A ∼= SpanQ(Φ) ⊗Q Λ and A′ ∼= SpanQ(Φ

′) ⊗Q Λ. The
following lemma allows us to show that the inclusion is a morphism of apart-
ments. Recall that in the homogenous building, A can be identified with AF.o
where o = [Id] ∈ P1(n,F) is the base point.

Lemma 6.2. For every w ∈Ws there exists w′ ∈W ′
s such that w′|A = w. For

every w ∈Wa =Ws ⋉A there exists w′ ∈W ′
a =W ′

s ⋉A′ such that w′|A = w.

Proof. We first prove that for every w ∈ Ws there is a w′ ∈ W ′
s such that for

all a ∈ AR, w(a. Id) = w′(a. Id).
Let p be maximally regular as an element of exp(a′), in particular p is

regular in exp(a). Let C be the chamber of exp(a) that contains p and let C ′

be a chamber of exp(a′) that contains p. Recall that the Cartan projection
δ : X ′

R → C ′ is invariant under the action ofK ′
R in the sense that for all p ∈ X ′

R,
k ∈ K ′

R we have δ(k.p) = δ(p). Hence for all a ∈ AR, and w ∈Ws, or w
′ ∈W ′

s ,

2Note that even though the two multiplicative norms may not coincide, they are equiva-
lent, and thus after applying the valuation, the distances coincide.
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β1

β2

β3

α2

α1

Figure 2. In the inclusion G = Sp4 < SL4 = G′, the
root system Φ is not a subset of Φ′, as illustrated. For
H = Diag(a, b, c, d) ∈ a′, we have a + b + c + d = 0 and a
basis ∆′ = {β1, β2, β3} of Φ′ is given by the roots β1(H) =
a − b, β2(H) = b − c, β3(H) = c − d. For H ∈ a, we have
additionally a = −c, b = −d and a basis ∆ = {α1, α2} of Φ
is given by α1(H) = a − b and α2(H) = 2b. The restrictions
α1 = β1|a and α2 = (β2 + β3)|a illustrate Lemma 6.1.

δ(w(a. Id)) = δ(a. Id) = δ(w′(a. Id)). For any w ∈ Ws, w(p) ∈ exp(a) ⊆
exp(a′). Now there exists an element w′ ∈W ′

s such that w′(w(p)) ∈ C ′ and in
fact since C ′ is a fundamental domain and p ∈ C ′,

w′(w(p)) = δ(w′(w(p)) = δ(w(p)) = δ(p) = p.

Any element q ∈ exp(a) can be written as a finite linear combination q =
∑

i λipi of elements pi ∈ C. Since spherical Weyl groups act linearly, w′(w(q)) =
∑

i λiw
′(w(pi)) =

∑

i λipi = q. This means that for all w ∈ Ws there exists
w′ ∈ W ′

s such that for all a ∈ AR, (w
′)−1(a) = w(a). By Tarski–Seidenberg’s

transfer principle (Theorem A.7), the above statement also holds for all a ∈ AF.
It then also follows that w′−1|A = w as elements of the spherical Weyl group
of A.

If (w, t) ∈Wa =Ws⋉A, then there is a (w′, t) ∈W ′
s⋉A′ with any w′|Φ = w|Φ

that satisfies (w′, t)|A = (w, t). �

Picking for every w ∈Wa an element σ(w) ∈W ′
a as in Lemma 6.2, turns the

inclusion A ⊆ A′ into an injective morphism of apartments, see Definition 4.1.
We do not rely on Theorem 1.4 (a) in the proof of the following theorem.

Theorem 6.3. Let G, G′ < SLn be two semisimple selfadjoint linear algebraic
Q-groups. Let F be a non-Archimedean real closed field and v : F× → Λ an
order-compatible valuation. Let B (resp. B′) be the associated homogeneous
G(F)- (resp. G′(F)-)building as in Example 3.5. If G(F) < G′(F), then the
inclusion induces a morphism B → B′.

Proof. By Lemma 6.2 and the preceding remarks, the inclusion τ : A→ A′ is a
morphism of apartments. We consider the charts f : A→ B and f ′ : A′ → B′

defined by the inclusion of subsets. By definition, A = G(F).f and A′ =
G′(F).f ′. For g.f ∈ A, let ϕ(g.f) := g.f ′ ∈ A′. Let ψ : B → B′ be the
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inclusion. It is immediate that the diagram

A B

A′ B′

g.f

τ ψ

g.f ′

from Definition 4.4 commutes for every g ∈ G(F). Clearly ψ and ϕ intertwine
the actions of G(F) and G′(F) and thus (ψ,ϕ, τ) is a morphism from the
G(F)-building B to the G′(F)-building B′ as in Definition 5.8. �

Examples are given by the subgroups SLm < SLn form ≤ n or Sp2n < SL2n,
as well as inclusions SL2 < G or PGL2 < G arising from the Jacobson–Morozov
theorem [BT72, (6.1.3.b.2), (6.2.3.b)].

6.2. Functoriality under group morphisms. We use Theorem 1.4 to strengthen
Theorem 6.3 to any injective morphism instead of restricting it to subgroups.
To do this, we first show that changing the maximal flat in the homogeneous
building, see Example 3.5, gives rise to isomorphic buildings.

Lemma 6.4. Let F be a non-Archimedean real closed field and v : F× → Λ an
order-compatible valuation. Let ρ : G→ G′ be an isomorphism of semisimple
linear algebraic Q-groups. Let S be a maximal R-split tori of G and A =
A(Φ∨,Λ,Λn) the model apartment of the homogeneous building of G(F), where
Φ∨ is the dual root system of G associated to S.

Then ρ induces an isomorphism of model apartments from A → A′, where
A′ = A′((Φ′)∨,Λ,Λn) is the model apartment of the homogeneous building of
G′(F) and Φ′ is the dual root system of G′ associated to the maximal R-split
torus ρ(S) of G′.

Proof. We abbreviate S′ := ρ(S). Consider τ = (L, γ, σ), where

L : SpanQ(Φ)→ SpanQ(Φ
′),

∑

λαα 7→
∑

λα(α ◦Dρ),
σ : Wa → W ′

a sends [w] ∈ Wa
∼= NorK(A)/CentK(A) to [ρ(w)] ∈ W ′

a
∼=

NorK′(A′)/CentK′(A′) where K ′ := ρ(K) and γ : Λ → Λ is the identity. We
claim that τ is a morphism of apartments. For this we only need to show
that the diagram in Definition 4.1 commutes. If

∑

λαχα ∈ SpanQ(Φ)⊗Λ and
(w, t) ∈Wa, then

L⊗ γ
(

(w, t)
∑

λαχα

)

= L⊗ γ
(

∑

t(λα)χw(α)

)

=
∑

t(λα)χρ(w)(α◦ρ),

σ(w)L⊗ γ
(

∑

λαχα

)

= σ(w)
∑

λαχα◦ρ =
∑

t(λα)χρ(w)(α◦ρ).

Hence τ is a morphism of apartments. Inverting the roles of G and G′ using
ρ−1, we show that τ is an isomorphism of apartments. �

The main difficulty in constructing a building morphism from an apartment
morphism arises, in our study, from understanding the charts in the atlases
of our buildings. For this reason, the following results on buildings are given
for the homogeneous buildings only, even though we think it is possible to
generalize them to other models of buildings, where the action describes the
building structure sufficiently well.

Theorem 6.5. Let G,G′ < SLn be semisimple algebraic linear Q-groups, F
be a non-Archimedean closed real field and v : F× → Λ an order compatible
valuation. If ρ : G → G′ is an isomorphism of algebraic groups, then the
homogeneous buildings B and B′ of G(F) and G′(F) with respect to maximal
R-split tori S and ρ(S) are isomorphic.
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Proof. As in Lemma 6.4, consider S a maximal R-split tori of G and A =
A(Φ,Λ,Λn) its model apartment where Φ is the root system of G associated
to S. Define S′ := ρ(S) a maximal R-split tori of G′ and A = A(Φ′,Λ,Λn) its
model apartment where Φ′ is the root system of G′ associated to S′. Consider
the isomorphism of apartments τ = (L, γ, σ) as in Lemma 6.4 and

ξρ : A := A(F)/A(O) −→ A′(F)/A′(O) =: A′;
[b]A 7−→ [ρ(b)]A′ .

Claim: If gf−1
Λ is an affine Weyl group equivariant isomorphism of groups as

defined in [App24, Proposition 7.9], then the following diagram is commutative

AF/AO A′
F/A

′
O

SpanQ(Φ)⊗Q Λ SpanQ(Φ
′)⊗Q Λ.

ξ
ρ−1

gf−1

Λ
gf−1

Λ

L⊗γ

Proof: To do this, we first describe ξρ(
∏

δ∈∆ t
Λ
δ (λδ)) for tΛδ as described in

[App24, Lemma 6.2, Proposition 7.6]. We start with the real case. For
∏

δ∈∆ t
R
δ (λδ) ∈ AR it holds

ξρ
∏

δ∈∆

tRδ (λδ) =
∏

δ∈∆

ρ (exp (log(λδ)xδ)) =
∏

δ∈∆

(exp (log(λδ)dIdρ(xδ)))

where xδ = 2
Bθ(Hδ,Hδ)

Hδ with Hδ ∈ a, the Lie algebra of A, such that

Bθ(Hδ, H) = dIdδ(H) for every H ∈ a. Thus

dIdρ(xδ) =
2

Bθ(dIdρ(Hδ), dIdρ(Hδ))
dIdρ(Hδ)

because dIdρ is an isomorphism of Lie algebra and Bθ is invariant under Lie
algebras isomorphisms. Moreover, for the same reason

Bθ(dIdρ(Hδ), H) = Bθ
(

Hδ, dIdρ
−1(H)

)

= dIdδ
(

dIdρ
−1H

)

= dId
(

δρ−1
)

(H)

Hence, we obtain

ξρ
∏

δ∈∆

tRδ (λδ) =
∏

δ∈∆

tRδ◦ρ−1 (λδ) .

By the transfer principle (Theorem A.7), the same algebraic equation holds for
AF and tFδ . Finally by commutativity of the diagram in [App24, Proposition

7.6], the same algebraic equation holds for AΛ and tΛδ . Now we can prove the
claim. Let

∑

δ∈∆ δ ⊗ λδ ∈ spanQ(Φ) such that

gf−1
Λ

(

ξρfΛg
−1
∑

δ∈∆

δ ⊗ λδ
)

= gf−1
Λ

(

ξρ
∏

δ∈∆

tΛδ (λδ)

)

= gf−1
Λ

(

∏

δ∈∆

ρ
(

tΛδ (λδ)
)

)

= gf−1
Λ

(

∏

δ∈∆

tΛδ◦ρ−1 (λδ)

)

=
∑

δ∈∆

δ ◦ ρ−1 ⊗ λδ

where we use in the third equality the above computation.
Thus in the following, we write L ⊗ γ for ξρ when we work at the level of

homogeneous models. We use this identification and Theorem 1.4 to construct
an isomorphism between the two buildings B and B′. Consider the two charts
fId : A → B, which sends [b]A to [b]B ∈ B, and f ′Id : A′ → B′, which
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sends [b]A′ to [b]B′ ∈ B′ in A and A′ respectively. By definition of ρ and
the atlas in the homogeneous models, ρ is an isomorphism of groups and
G(F),G′(F) act transitively on both A and A′. Moreover, for [b]A ∈ A and
k ∈ StabG(F)(fId([b]A))

ρ(k).f ′Id(L⊗ γ[b]A) = ρ(k). [ρ(b)]B′ =
[

ρ(kbk−1)
]

B′

= [ρ(b)]B′ = f ′Id(L⊗ γ[b]A)
Hence ρ(StabG(F)(fId([b]A))) ⊂ StabG′(F)(f

′
Id(L ⊗ γ[b]A)) and the reverse in-

clusion is similar using that ρ has an inverse morphism such that we obtain the
equality ρ(StabG(F)(fg([b]A))) = StabG(F)(fId(L ⊗ γ[b]A)). Finally, for every
w ∈Wa, k ∈ AfId,w and [b′]A′ ∈ A′ it holds

ρ(k).f ′Id
([

b′
]

A′

)

= ρ(k). ([ρ(b)]B′) =
[

ρ(kbk−1)
]

B′

= [ρ(wb)]B′ = [σ(w)ρ(b)]B′ = f ′Idσ(w)
([

b′
]

A′

)

,

where the third equality is due to the definition of AfId,w and the fourth one to
the fact that ξρ induces a morphism of apartments. Thus ρ(AfId,w) ⊂ Af ′Id,σ(w).
Using that σ is an isomorphism of affine Weyl groups and ρ an isomorphism
of groups, they have inverses. Hence the reverse inclusion also holds and
ρ(AfId,w) = AfId,σ(w) for every w ∈Wa. Hence by condition (c) in Theorem 1.4,
there exists an isomorphism of buildings between B and B′. �

With this, we can now show that an isomorphism of algebraic groups induces
an isomorphism of their associated buildings for the homogeneous model.

Corollary 6.6. Let G < SLn be a semisimple linear algebraic Q-group, F a
non-Archimedean real closed field with an order-compatible valuation v : F× →
Λ. If a, a′ ⊂ p are two maximal abelian subalgebras and A,A′ are their re-
spective model apartments. Then the homogeneous buildings B and B′ defined
using A, A′ are isomorphic.

Proof. From symmetric space theory, see e.g. [Hel68, Theorem 5.2], there exists
k ∈ K such that a′ = Ad(k)a. So, A′ = exp(a′) = exp(Ad(k)a) = kAk−1. Thus
the result follows from Theorem 6.5 using the group isomorphim ρ : G → G
given by conjugation by k. �

As a corollary, we strengthen our result in Theorem 6.3. Indeed, we no
longer need to consider a functoriality for inclusion, but now have a functori-
ality for any injective group morphism.

Theorem 6.7. Let G, G′ < SLn be two semisimple selfadjoint linear algebraic
Q-groups. Let F be a non-Archimedean real closed field and v : F× → Λ an
order-compatible valuation. Let B (resp. B′) be the G(F)- (resp. G′(F)-)
homogeneous building defined as in Example 3.5. If there exists an injective
morphism of groups G(F)→ G′(F), then it induces an injective morphism of
buildings B → B′.

6.3. Functoriality under field extensions. We now discuss functoriality
for homogeneous buildings under valued field extensions K ⊆ F. This is a
generalization of [BIPP21, Corollary 5.19] for when the valuation is given by
a big element.

Theorem 6.8. Let G < SLn be a semisimple self-adjoint linear algebraic
Q-group, K,F non-Archimedean real closed fields with order-compatible valu-
ations vK, vF and B, B′ the homogeneous affine buildings associated to G(K)
and G(F) respectively (see Example 3.5). Suppose there exists a morphism of
valued fields η : K→ F, that is vF(η(x)) = vK(x) for every k ∈ K×, then there
exists a building morphism B → B′.
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Proof. Denote by Φ the root system of G, by A := A(Φ∨, T,ΛK) the apart-
ments of B, and by A′ := A(Φ∨, T ′,ΛF) the apartments of B′. Since valuations
are surjective, we define a map

γ : ΛK −→ ΛF;
vK(k) 7−→ vF(η(k)),

which we verify is a well defined ordered group morphism. Suppose vK(k1) =
vK(k2). Then v(k1/k2) = 0, so that vF(η(k1)/η(k2)) = 0 since η preserves
the valuation. Hence vF(η(k1)) = vF(η(k2)) and γ is well defined. Next, for
vK(k1), vK(k2) ∈ ΛK, it holds

γ (vK (k1) + vK(k2)) = γ(vK(k1k2)) = vF(η(k1k2)) = vF(η(k1)) + vF(η(k2)).

Thus γ (vK (k1) + vK(k2)) = γ(vK(k1)) + e(vK(k2)) as wanted. Finally, we
check that e preserves the order. If vK(k1) ≤ vK(k2), then vK(k1/k2) ≤ 0.
Since η preserves the valuations, it holds vF(η(k1/k2)) ≤ 0 so that vF(η(k1)) ≤
vF(η(k2)) as wanted.

Using this group morphism, define

σ : Wa −→ W ′
a;

(w, (t1, . . . , tn)) 7−→ (w, (γ(t1), . . . , γ(tn))).

By construction, for every w ∈Wa, the following diagram is commutative

SpanQ(An−1)⊗Q Λ SpanQ(An−1)⊗Q Λ

SpanQ(An−1)⊗Q Λ′ SpanQ(An−1)⊗Q Λ′

w

Id⊗γ Id⊗γ

σ(w)

so that τ := (Id, γ, σ) is a morphism of apartments between A and A′. If ρ
denotes the inclusion SLn(K) → SLn(F) induced by η entrywise on matrices,
then

ψ : G(K)/G(OK) −→ G(F)/G(OF);
[g]BK

7−→ [ρ(g)]BF
,

is well defined. Indeed, let h ∈ G(OK) so that its matrix entries lie in OK. Ap-
plying the field homomorphism η entrywise to h, we obtain ρ(h) ∈ G(F). Be-
cause η is valuation-preserving η(OK) ⊆ OF so that ρ(h) ∈ G(OF) as wanted.
Finally, with the notation from Example 3.5, define

ϕ : A → A′, fg 7→ fρ(g).

Claim: In our setting, the following diagram commutes:

A(K)/A(OK) A(F)/A(OF)

SpanQ(Φ)⊗Q Λ SpanQ(Φ)⊗Q Λ′

ξρ

f−1

Λ
f−1

Λ′

Id⊗γ

,

where ξρ([b]AΛ
) := [ρ(b)]A

Λ′
, and the maps f−1

Λ , f−1
Λ′ are as in [App24, Propo-

sition 7.9].
Proof: Let ∆ ⊂ Φ be a fixed simple root basis. Consider an element

∑

α∈∆

rαα ∈ K>0 ⊗ SpanQ(∆).

Using the isomorphism presented in [App24, Proposition 7.7], we have on the
one hand

fF ◦ Id⊗η
(

∑

α∈∆

rαα

)

= fF

(

∑

α∈∆

η(rα)α

)

=
∏

α∈∆

tFα(η(rα)),
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and on the other hand

ρ ◦ fK
(

∑

α∈∆

rαα

)

= ρ

(

∏

α∈∆

tKα(rα)

)

=
∏

α∈∆

ρ
(

tKα(rα)
)

.

Since tα is described entrywise by algebraic formulas [App24, Lemma 6.2],
there exists for every α ∈ ∆ a polynomial with tLα(sα) = Tα(sα) for any field
L. So componentwise, we obtain

ρ
(

tKα(rα)i,j

)

= η(Tα(sα)) = Tα(η(sα)) = tFα(η(rα))i,j .

Thus,

ρ ◦ fK
(

∑

α∈∆

rαα

)

=
∏

α∈∆

tFα(η(rα)),

so that the following diagram is commutative:

K>0 ⊗ SpanQ(Φ) F>0 ⊗ SpanQ(Φ)

A(K) A(F)

η⊗id

fK fF

ρ

Now, using [App24, Theorem 7.8], we obtain the following commutative dia-
gram:

SpanQ(Φ)⊗K>0 SpanQ(Φ)⊗ F>0

ΛK ⊗ SpanQ(Φ) ΛF ⊗ SpanQ(Φ)

A(K) A(F)

AΛ AΛ′

Id⊗η

prK⊗Id

fK

fF

fF
Id⊗γ

fλ f
Λ′

ρ

πK πF

ξρ

Since fK, fF, fΛ and fΛ′ are bijective, there exists a unique map ξρ : AΛ → AΛ′

that makes the whole diagram commutative and by commutativity

ξρ([b]AΛ
) := [ρ(b)]A

Λ′

as wanted.
Thus in the following, we write ξρ for L ⊗ γ when we work at the level of

homogeneous models. Now, if fg ∈ A and [b]A ∈ A, then

ϕ(fg)(ξρ[b]A) = fρ(g)[ρ(b)]A′ =
[

ρ
(

gbg−1
)]

B′
= ψ(g[b]B′) = ψ(fg[b]A)

so that (ψ,ϕ, σ) is a morphism of affine buildings. �

Corollary 6.9. (or a remark) Take K = F and two different valuations that
are compatible, in the sense that the identity is a morphism of valued fields,
then we should get a (surjective) morphism of buildings
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7. Relations between the different buildings

The goal of this section is to prove the existence of morphisms as discussed
in Figure 1. All morphisms are injective morphisms, and when Λ = R (the
valuation is surjective to R), all morphisms are isomorphisms. When Λ ⊆ R

concatenating the morphisms yields an injective morphism from the lattice
building BL to the norm building BN .

7.1. Lattice and homogeneous buildings. In this section we construct an
isomorphism from the lattice building BL (Example 3.3) to the homogeneous
building BH (Example 3.5), in the case where G = SLn and F is a non-
Archimedean real closed field with an order-compatible valuation v : F× →
Λ = F×/O×. Both buildings are of type A(Φ,Λ,Λn−1), where the underlying
root system of type An−1 is

Φ = {xij ∈ V : xij = ei − ej ∈ V }
where V = Rn is the standard Euclidean space with standard basis {e1, . . . , en}.
The basis ∆ = {xi,i+1 : i ∈ {1, 2, . . . , n− 1}} of Φ induces an isomorphism

SpanQ(Φ)⊗ Λ→ Λn−1,
n−1
∑

i=1

xi,i+1 ⊗ λi 7→ (λ1, . . . , λn−1)

of the apartment A = SpanQ(Φ) ⊗ Λ. The spherical Weyl group Ws is the
symmetric group Sn on n elements and acts by σ(xij) = xσ(i)σ(j) for σ ∈Ws on
Φ and by linear extension on A. The translation group T is the full translation
group T ∼= Λn−1.

7.1.1. Setup for the lattice building. Recall from Example 3.3 that lattices
are of the form Ov1 + Ov2 + . . . + Ovn where {v1, . . . , vn} is a basis of Fn,
the lattice building BL is the set of homothety classes of lattices, and that
SLn(F) acts transitively on BL (Example 5.5). Viewing SLn(F) ⊆ Fn×n we
define SLn(O) := SLn(F) ∩ On×n. The lattice L0 = On corresponding to the
standard basis is called the standard lattice and we call [L0] the base point of
BL. The following is well known in the discrete case.

Proposition 7.1. We have StabSLn(F)([L0]) = SLn(O).
Proof. If g ∈ SLn(O), g(ei) ∈ Oe1 + . . .+Oen, so g.[L0] = [L0].

For the converse we first establish the following fact: If E and E ′ are bases
of Fn that represent the same O-lattice L, then v(det(E)) = v(det(E ′)) ∈ Λ =
F×/O×. Indeed if M,M ′ ∈ GLn(F) represent the bases E and E ′, they sat-
isfy M(On) =M ′(On). Since M−1M ′(On) ⊆ On, we have M−1M ′ ∈ GLn(O)
(because the elements of the standard basis of Fn lie in On). Since the determi-
nant is a polynomial we obtain det(M−1M ′) ∈ O, so v(det(M)−1 det(M ′)) ≥ 0
and v(det(E ′)) ≥ v(det(E)). In fact these are equalities since also (M ′)−1M ∈
GLn(O).

Now if g ∈ SLn(F) fixes [L0], there exists λ ∈ F× such that g(On) = λOn.
The basis given by the columns of g and the basis λei are two bases that
represent the same lattice, so by the fact, v(det(g)) = v(λn) = nv(λ). Since
g ∈ SLn(F), v(det(g)) = 0, so λ = 0 and g(On) = On. Since the standard
basis is part of On, the columns of g all lie in On, so g ∈ SLn(O). �

Recall that the chart given by [Ben94] corresponding to the standard basis
is given by

fE : A ∼= Λn−1 → BL

(λ1, . . . , λn−1) 7→
[

Oxλ1e1 +O
xλ2
xλ1

e2 + . . .+Oxλn−1

xλn−2

en−1 +O
1

xλn−1

en

]

,
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where xλ ∈ F× such that v(xλ) = λ.

Lemma 7.2. For a = Diag(a1, . . . , an) ∈ SLn(F) and λk = v
(

∏k
i=1 ai

)

, we

have

fE((λ1, . . . , λn−1)) = a.[L0].

Every point in the image of fE is of the form a.[L0] for some a = Diag(a1, . . . , an)
with ai > 0.

Proof. We take xλk =
∏k
i=1 ai, so that xλk/xλk−1

= ak for k ∈ {2, 3, . . . , n− 1}
and 1/xλn−1

= an since det(a) = 1. The first description then follows directly

from the definition of fE . If we start with some λ = (λ1, . . . , λn−1) ∈ Λn−1,
we can choose a1 ∈ F>0 with v(a1) = λ1, and then iteratively ak ∈ F>0

with v(ak) = λk − λk−1 for all k ∈ {2, 3, . . . , n − 1}. Finally define an :=
1/(a1 · · · an−1) ∈ F>0. Then

v

(

k
∏

i=1

ai

)

=

k
∑

i=1

v(ai) = λ1 + (λ2 − λ1) + . . .+ (λk − λk−1) = λk,

so fE(λ1, . . . , λn−1) = a.[L0]. �

The dual roots αij ∈ V ⋆, (v1, . . . , vn) 7→ vj − vi extend to linear maps

αij : SpanQ(Φ)⊗ Λ→ Λ,
n−1
∑

k=1

xk,k+1 ⊗ λk 7→
n−1
∑

k=1

λkαij(xk,k+1),

that can be used to characterize the diagonal element a in Lemma 7.2.

Lemma 7.3. A point x ∈ A satisfies fE(x) = a.[L0] if and only if αij(x) =
v(ai/aj) for all αij ∈ FΦ.

Proof. Let a ∈ AF. We will describe the point x ∈ A that corresponds to
a.[L0] via the identifications

A← Λn → AF.[L0]

n−1
∑

k=1

xk,k+1 ⊗ λi ←[ (λk)
n−1
k=1 7→ fE(λ1, . . . , λn−1)

By Lemma 7.2, λk =
∑k

ℓ=1 v(aℓ), so

x =
n−1
∑

k=1

xk,k+1 ⊗ v
(

k
∏

ℓ=1

aℓ

)

.

Now applying αij and using αij(xk,k+1) = δik + δj,k+1 − δi,k+1 − δjk, where δ
is the Kronecker-symbol, we obtain

αij(x) =
n−1
∑

k=1

v

(

k
∏

ℓ=1

aℓ

)

αij(xk,k+1)

= v

(

i
∏

ℓ=1

aℓ

)

+ v

(

j−1
∏

ℓ=1

aℓ

)

− v
(

i−1
∏

ℓ=1

aℓ

)

− v
(

j
∏

ℓ=1

aℓ

)

= v(ai/aj).

On the other hand, if we know that αij(x) = v(ai/aj) for some x =
∑n−1

k=1 xk,k+1⊗
λk, then we know by the same calculation and by uniqueness of the λk that

λk = v
(

∏k
ℓ=1 aℓ

)

. Then by Lemma 7.2, x corresponds to a.[L0]. �
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Proposition 7.4. The pointwise stabilizer of the standard appartment in BL
is given by

StabSLn(F)(fE(A)) = {Diag(a1, . . . , an) ∈ SLn(F) : v(ai) = 0} .
Proof. A point p ∈ fE(A) is an homothety class of lattices of the form p =
[
∑n

i=1Oxiei] where xi ∈ F×. Acting by g = Diag(a1, . . . , an) with v(ai) = 0
gives g.p = [

∑n
i=1Oaixiei] = p since Oai = O when ai ∈ O×. On the other

hand if

g =







g11 · · · g1n
...

. . .
...

gn1 · · · gnn






∈ SLn(F)

fixes all points p ∈ fE(A), then writing p = a.[L0] for a = Diag(a1, . . . , an) (us-
ing Lemma 7.2 ) this means that g.a.[L0] = a.[L0], so a

−1ga ∈ StabSLn(F)([L0]) =
SLn(O) by Proposition 7.1. In coordinates gijaj/ai ∈ O for all such a. For
i 6= j, this implies gij = 0, so g has to be diagonal and the diagonal entries
have to satisfy gii = giiai/ai ∈ O. Since the stabilizer is closed under inverses,
also g−1

ii ∈ O, so v(gii) = 0. �

7.1.2. Setup for the homogeneous building. For G = SLn(F), we have KF =
SOn(F) and for the maximal torus given by the diagonal subgroup its semi-
algebraically connected component of the identity is

AF := {diag(a1, . . . , an) ∈ SLn(F) : ai > 0} .
The root system relative to the maximal torus can be identified with

FΦ = {αij ∈ V ⋆ : αij(x1, . . . , xn) = xj − xi for all (x1, . . . , xn) ∈ V } ,
so that the dual root system FΦ

∨ is Φ as defined earlier. Similar to Lemma 7.3,
we set up a characterization of those a ∈ AF, where a.o corresponds to a point
x ∈ A.

Lemma 7.5. A point x ∈ A satisfies f0(x) = a.o for a ∈ AF if and only if
αij(x) = (−v)(ai/aj) for all αij ∈ FΦ.

Proof. From [?, Proposition 4.11] we get that for α ∈ FΦ,

(−v)(χα(a)) = α(x).

In our specific case, if a.o corresponds to x ∈ A, setting α = αij we obtain

exactly (−v)(ai/aj) = αij(x). On the other hand, any x =
∑n−1

k=1 xi,i+1 ⊗ λk
is uniquely determined by the λi ∈ Λ. So if (−v)(ai/aj) = αij(x), then

(−v)(ai/aj) =
n−1
∑

k=1

λkαij(xk,k+1) = λi + λj−1 − λi−1 − λj

(with the convention λ0 = 0). This results in the system of linear equations
















2 −1 0 · · ·
−1 2 −1 . . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
· · · 0 −1 2































λ1
λ2
...

λk















=















(−v)(a1/a2)
(−v)(a2/a3)

...

(−v)(an−1/an)















,

which determines the solution uniquely since the matrix is invertible. �

The stabilizers for BL in Propositions 7.1 and 7.4 coincide with the stabi-
lizers for the action on BH .
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Proposition 7.6. The stabilizer of the base point o ∈ BH is StabSLn(F)(o) =
SLn(O) and the pointwise stabilizer of the standard apartment is

StabSLn(F)(f0(A)) = {Diag(a1, . . . , an) ∈ SLn(F) : v(ai) = 0} .

Proof. For o this is [App24, Theorem 7.11], and for the standard apartment
the statement follows from [App24, Theorem 8.19]. Indeed, the latter shows
that StabSLn(F)(f0(A)) = MFAF(O), where MF := CentSOn(F)(AF) consists of
all diagonal matrices in SLn(F) with entries ±1. �

7.1.3. Isomorphism between lattice and homogeneous building. In this subsec-
tion we will show that the lattice buildingBL is isomorphic to the homogeneous
building BH . Even though these two buildings have the same apartment A, we
will not use the identity map A→ A as our apartment morphism, but instead
the inversion i : A → A, x 7→ −x. In the discrete setting this corresponds to
an isomorphism that does not preserve the type of the vertices.

Lemma 7.7. Let L : SpanQ(Φ) → SpanQ(Φ), x 7→ −x, γ = id: Λ → Λ
and σ : Wa → Wa, w 7→ i ◦ w ◦ i. Then τ = (L, γ, σ) is an isomorphism of
apartments A→ A of type (Φ,Λ,Λn−1).

Proof. By definition, L is linear, γ is a group homomorphism, and L, γ and σ
clearly verify

(L⊗Q γ)(w.a) = σ(w).((L⊗Q γ)(a))

for all w ∈Wa. Thus τ is a morphism of apartments. Since τ is also its own
inverse, it is an isomorphism. �

In the following three lemmas we investigate the action of the spherical and
affine Weyl groups on A. Then we are ready to prove that the lattice building
BL is isomorphic to BH .

Lemma 7.8. For every w ∈Ws
∼= Sn, x ∈ A and a ∈ (F×)n, we have

∀i, j : αij(x) = v

(

ai
aj

)

⇐⇒ ∀i, j : αij(w(x)) = v

(

aw−1(i)

aw−1(j)

)

.

Proof. Recall that αij(xk,k+1) = δik + δj,k+1 − δi,k+1 − δjk, where δ is the

Kronecker-symbol. So if x =
∑n−1

k=1 xk,k+1 ⊗ λk ∈ A, then

αij(x) =
n−1
∑

k=1

λkαij(xk,k+1) = λi + λj−1 − λi−1 − λj ,

with the convention that λ0 = 0. Moreover

αij(w(x)) =
n−1
∑

k=1

λkαij(xw(k),w(k+1)) =
n−1
∑

k=1

λw−1(k)αij(xk,k+1)

= λw−1(i) + λw−1(j−1) − λw−1(i−1) − λw−1(j)

= αw−1(i),w−1(j)(x) = v

(

aw−1(i)

aw−1(j)

)

where the last equality holds if and only if αij(x) = v(ai/aj) for all i, j. �

Lemma 7.9. For every w ∈ Ws
∼= Sn there exists k ∈ SOn(F) such that for

all a ∈ AF

(1) if fE(x) = a.[L0], then fE(w(x)) = k.fE(x),
(2) if f0(x) = a.o, then f0(w(x)) = k.f0(x).
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Proof. For the permutation w ∈ Ws = Sn consider a permutation matrix
k ∈ SOn(F) defined by kij = ±δi,w(j) (choose +1 or −1 so that det(k) = 1).
Then

(kak−1)ij =

n
∑

k,ℓ=1

kikakℓ(k
−1)ℓj =

n
∑

k,ℓ=1

(

±δi,w(k)
)

akℓ
(

±δw(ℓ),j
)

=
n
∑

k,ℓ=1

(

±δw−1(i),k

)

akℓ
(

±δℓ,w−1(j)

)

= aw−1(i),w−1(j),

where we note that only when i = j is aw−1(i),w−1(j) non-zero, and in that case
the ±1 cancel. Now if fE(x) = a.[L0], then αij(x) = v(ai/aj) by Lemma 7.3
and

fE(w(x)) = kak−1.[L0] = ka.[L0] = k.fE(x)

by Lemmas 7.8 and 7.3 and the fact that k−1 ∈ SOn(F) ⊆ SLn(O), so k.[L0] =
[L0] by Proposition 7.1. If f0(x) = a.o, then αij(x) = −v(ai/aj) by Lemma
7.5 and

f0(w(x)) = kak−1.o = ka.o = k.f0(x)

by Lemmas 7.8 and 7.5 and the fact that k−1 ∈ SOn(F) ⊆ SLn(O), so k.[L0] =
[L0] by Proposition 7.6. �

Lemma 7.10. Let t ∈ T = A be the translation of A by a vector y ∈ A that
satisfies aij(y) = v(ai/aj) for some a = diag(a1, . . . , an) ∈ AF. Then

fE(t(x)) = a.fE(x) and f0(t(x)) = a−1.f0(x).

Proof. Let b = diag(b1, . . . , bn) ∈ AF such that x ∈ A satisfies αij(x) =
v(bi/bj). Then αij(x + y) = αij(x) + αij(y) = v(aibi/ajbj), so by Lemma
7.3,

fE(t(x)) = fE(x+ y) = ab.[L0] = a.fE(x).

Similarly

f0(t(x)) = f0(x+ y) = (ab)−1.o = a−1.b−1.o = a−1.f0(x).

using Lemma 7.5. �

Theorem 7.11. There is an isomorphism of affine Λ-buildings between the
lattice building BL and the homogeneous building BH .

Proof. We use Theorem 1.4 as SLn(F) acts transitively on BL, see Example 5.5.
Let G = G′ = SLn(F) and ρ the identity map. We take the apartment
isomorphism τ = (L, γ, σ) from Lemma 7.7. We consider the charts

f = fE : A→ BL and f ′ = f0 : A→ BH .

For x ∈ A, let a ∈ AF such that αij(x) = v(ai/aj) as in Lemma 7.3. Then by
Lemma 7.5 we have a.o = f ′(−x) = f ′(τ(x)). The Propositions 7.1 and 7.6
imply

ρ
(

StabSLn(F)(f(x))
)

= StabSLn(F)(a.[L0]) = a−1 StabSLn(F)([L0])a

= a−1 SLn(O)a = a−1 StabSLn(F)(o)a = StabSLn(F)(a.o)

= StabSLn(F)(f
′(−x)) = StabSLn(F)(f

′(τ(x))

as required for condition (1).
For condition (2) we have to show that Af,w = ρ(Af ′,σ(w)) for all w ∈ Wa,

where Af,w = {g ∈ SLn(F) : g.f = f ◦ w}. Recall that if w = t◦ws ∈ T⋊Ws =
Wa, then σ(w) = i◦w◦i = i◦t◦i◦ws = t−1◦ws since elements ofWs commute
with the inversion i. The statement g ∈ Af,w means that for all x ∈ A we
have g.f(x) = f(w(x)). By Lemmas 7.9 and 7.10 there are suitable k ∈
SOn(F) and a ∈ AF such that f(w(x)) = f(t(ws(x))) = a.f(ws(x)) = ak.f(x).
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so g ∈ Af,w is equivalent to (ak)−1g.f(x) = f(x) for all x ∈ A, which is
equivalent to (ak)−1g ∈ StabSLn(F)(f(A)) = MFAF(O) by Proposition 7.4. But

by Proposition 7.6 this is in turn equivalent to (ak)−1g.f ′(x) = f ′(x) for all
x ∈ A, or g.f ′(x) = ak.f ′(x) = a.f ′(ws(x)) = f ′(t−1(ws(x))) = f ′(σ(w)(x)) by
Lemmas 7.9 and 7.10 with the same k and a as above. Thus Af,w = Af ′,σ(w).

In fact, SLn(F) also acts transitively on BH (Example 5.7), ρ = Id is an
isomorphism of groups, L, γ and σ are injective, and the inclusions in the
conditions (1) and (2) are equalities. By (c) we can conclude that BL and BH
are isomorphic. �

7.2. Homogeneous and Bruhat–Tits buildings. In this section we show
that there is an injective morphism from the homogeneous building BH to the
Bruhat-Tits building BBT. When Λ = R, it is an isomorphism. Let F be a real
closed field with an order-compatible rank-1 valuation v : F× → Λ ⊆ R and
denote by O the valuation ring of v. Set G = G(F), where G is a semi-simple,
connected, self-adjoint, F-split algebraic group G < SLn. Let S be a maximal
(F-split) torus and assume that the root system Φ = FΦ is reduced. These
conditions ensure that both the Bruhat–Tits building BBT (Example 3.4) and
the homogeneous building BH (Example 3.5) are defined.

Let K = G ∩ SOn(F), T = CentG(S(F)) and Uα the root groups for α ∈ Φ.

Lemma 7.12. For the base points [Id, 0] ∈ BBT and o ∈ BH , we have
StabG([Id, 0]) = StabG(o) = G(O) := G ∩ On×n.
Proof. We will first show the statement for g ∈ N = NorG(S). The action
ν : N → Isom(V ) of N as the affine Weyl group decomposes as a semi-direct
product N = A · NorK(A), where A ⊆ T is the semi-algebraically connected
component of the identity of S(F) [App24, Proposition 6.4]. By the compati-
bility

ϕα(aua
−1) = ϕα(a) + ω(α(a))

for all u ∈ Uα, α ∈ Φ, we have that

ν(a) = IdV if and only if ∀α ∈ Φ, ω(α(a)) = 0.(1)

If g ∈ StabG([Id, 0]), then ∃n ∈ N with g−1n ∈ P0 and ν(n)(0) = 0, and
since g−1n ∈ N∩P0 =: N0, we have ν(g

−1n)(0) = (0) [BT72, (7.1.8)], and thus
ν(g)(0) = 0. Now if g = ak ∈ A ·NorK(A), ν(a) = idV , since ν(k)(0) = 0. By
(1) and [App24, Proposition 7.10], a ∈ StabG(o). Moreover k ∈ K ⊆ StabG(o)
[App24, Theorem 7.11 and Corollary 7.12], and so g ∈ StabG(o).

If however g ∈ StabG(O), then let g = ak ∈ A ·NorK(A) and where a ∈ A∩
On×n [App24, Corollary 7.12]. Then by [App24, Proposition 7.10], ω(α(a)) =
0 for all α ∈ Φ, so ν(a) = IdV . To prove g.[Id, 0] = [Id, 0], we can take

n := a ∈ N to obtain g−1n = k−1 ∈ N̂0 := {n ∈ N : ν(n)(0) = 0} and
ν(n)(0) = 0. By the original definition of BBT in [BT72, (7.4.1)], this means
that g ∈ StabG([Id, 0]), when g ∈ N .

For general g ∈ G, we use the objects Uα,0 = {u ∈ Uα : ϕα(u) ≥ 0} where ϕα
is the root group valuation defined via the Jacobson–Morozov maps SL2 → G
[BT72, (6.1.3.b.2), (6.2.3.b)]. We would like to emphasize that while Uα,0 is
defined differently in [App24], the two concepts agree due to [App24, Lemmas
8.22 and 8.26]. Recall that

P0 = 〈u ∈ Uα,0, h ∈ H := ν−1(IdV )〉.
If g ∈ StabG([Id, 0]), there exists n ∈ N such that g−1n ∈ P0 and ν(n)(0) = 0.
Since n ∈ StabG([Id, 0]) ∩N , n ∈ StabG(o). Any h ∈ H = ν−1(IdV ) satisfies
h.[Id, 0] = [Id, ν(h)(0)] = [Id, 0] and by [App24, Lemma 8.22] Uα,0 ⊆ StabG(o),
so g = n(g−1n)−1 ∈ StabG(o).
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If we start with g ∈ StabG(o), then we use [App24, Theorem 8.45] for

g ∈ 〈N0, Uα,0〉 ⊆ P̂0,

so we can take n = Id ∈ N with g−1n ∈ P̂0 and ν(n)(0) = 0 to obtain
g ∈ StabG([Id, 0]). �

Remark 7.13. In [BT84, Corollaire 4.6.7], Bruhat–Tits show that Stab([Id, 0]) =
G(O), where G is a group O-scheme defined in terms of some Chevalley
basis. In our definition G is just a group of matrices and the definition
G(O) = G ∩ On×n avoids any algebraic geometry.

We can now prove the existence of an injective morphism from BH to BBT.

Theorem 7.14. There is an injective morphism of G-buildings from the ho-
mogeneous G-building (BH ,A) of type A(Φ∨,Λ,Λn), see Example 5.7, to the
Bruhat–Tits G-building (BBT,A′) of type A′(Φ∨,R,Λn), see Example 5.6. If
Λ = R, this morphism is an isomorphism BH ∼= BBT.

Proof. We apply Theorem 1.4 (a), asG acts transitively onA, see Example 5.7.
Let γ : Λ → R be the inclusion, L = IdSpanQ(Φ), σ = IdWa

and ρ = IdG. For

all w ∈ Wa and a ∈ A we have (L ⊗ γ)(w(a)) = σ(w) ((L⊗ γ)) (a) and thus
L⊗ γ : A→ A′ is a morphism of apartments, see Definition 4.1.

We choose f0 : A → BH ∈ A as in Example 3.5, see also [App24, Section
8]. In particular, for all x ∈ A there exists t ∈ T such that f0(x) = t.o with
(−ω)(χα(t)) = α(x) for all α ∈ Φ. For BBT we choose f ′0 : A

′ → BBT by
f ′0(x

′) = [Id, x′]. If f0(x) = t.o as above, then we have by Equation (⋆) of
Example 3.4 that [t, 0] = [Id, L ⊗ γ(x)] ∈ BBT. Using Lemma 7.12 we can
then verify condition (1) of Theorem 1.4 by calculating

ρ (StabG(f0(x))) = StabG(t.o) = t StabG(o)t
−1 = t StabG([Id, 0])t

−1

= StabG([t, 0]) = StabG([Id, L⊗ γ(x)])
= StabG(f

′
0(L⊗ γ(x)))

for all x ∈ A.
It remains to show (2), i.e. ρ(Af0,w) ⊆ Af ′

0
,σ(w), and (a) to conclude that

the maps φ and ψ are injective. If w = Id ∈Wa, Af0,w = T (O) := T ∩On×n is

the pointwise stabilizer of f0(A) [App24, Theorem 8.19]3. By Equation (⋆) in
Example 3.4 and Lemma 7.12, for t ∈ T (O) we have t.[Id, x] = [Id, x] for all
x ∈ A′, so t.f ′0 = f0 and thus Af0,Id ⊆ Af ′0,σ(Id). On the other hand, if we start

with g ∈ Af ′
0
,Id, then g ∈ H := {n ∈ NorG(S(F)) : [n, x] = [Id, x] ∀x ∈ A′} by

[BT72, Corollaire 7.4.10]. Thus, the spherical Weyl group action of g ∈ N on
A′ is trivial, hence n ∈ T . By Lemma 7.12, g ∈ T (O), so g ∈ Af0,Id as above.
This shows Af0,Id = Af ′

0
,Id and in particular condition (a) of Theorem 1.4.

If w ∈ Wa represents a translation by x ∈ A where x = t.o ∈ B for t ∈ T ,
then t.f ′0(y) = [t, y] = [Id, L⊗ γ(x) + y] = f ′0(w(y)) for all y ∈ A′ by Equation
(⋆), so Af0,w = tAf0,Id ⊆ tAf ′

0
,Id = Af ′

0
,w as required. If w = ra ∈ Ws ⊆ Wa

represents the reflection along the hyperplane perpendicular to a root α ∈ Σ,
then there exists an element mα ∈ NorG(S(F)) representing w, mα ∈ Af0,w by

[App24, Proposition 8.28]4. By the compatibility of the various root systems

3Here we defined T = CentG(S(F)), but in [App24], T = CentG(A), where A is the semi-
algebraically connected component of S(F). These two notions agree since S(F) = F ·A for
a finite group F < Z(G).

4In [App24], we used that NorG(A) = NorG(S(F)), where A is the semi-algebraically
connected component of the identity of S(F).
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and spherical Weyl groups [App24, Proposition 6.3], mα also represents the
reflection rα = w in A′. Thus, Af0,w = mαAf0,Id ⊆ mαAf ′

0
,id = Af ′

0
,w. Finally,

Af0,ww̃ = Af0,wAf0,w̃ and Af ′
0
,ww̃ = Af ′

0
,wAf ′

0
,w̃

for all w, w̃ ∈ Wa, see Proposition 5.11 (2) (note that all involved sets are
non-empty). Since translations and reflections as above generate Wa we have
that Af0,w = Af ′

0
,w for all w ∈Wa.

By Example 5.6, G also acts transitively on A′, τ and ρ are injective and
ρ (StabG(f0(x))) = StabG(f

′
0(L⊗γ(x))), so the morphism (ψ,ϕ, τ) is injective

by Theorem 1.4(a). If Λ = R, then γ is an isomorphism, so τ is an isomorphism
of apartments. We verified the other conditions of Theorem 1.4(c) above, so
when Λ = R, then the above morphism is an isomorphism BH ∼= BBT. �

7.3. Bruhat–Tits and norm buildings. In this section, we we use Theorem
1.4 to show that there is a morphism from the Bruhat–Tits building BBT for
GLn to the norms building BN . For the definitions of the buildings we refer to
Example 3.4 and Example 3.2. Note that the morphism we construct in the
proof consists of a bijective map ψ : BBT → BN on the buildings themselves,
but when Λ 6= R, the atlas map ϕ is not bijective. Therefore the morphism is
not an isomorphism. However, as remarked in [Par23, Remark in Section 3B4],
BN could also be equipped with a different atlas by restricting the translation
part of the affine Weyl group. For that that atlas, the morphism we construct
would be an isomorphism.

Let now G = GLn(F), where F is a field with a non-Archimedean rank one
valuation v : F× → Λ ⊆ R.

Theorem 7.15. There is an injective morphism from the Bruhat–Tits building
BBT of type A = A(An−1,R,Λ

n/〈(1, . . . , 1)〉) to the norm building BN of type
A′ = A′(An−1,R,R

n/〈(1, . . . , 1)〉). When Λ = R, then this morphism is an
isomorphism BBT

∼= BN .

Proof. We note that the apartments A, A′ are the same as sets. In general,
the affine Weyl group of the Bruhat–Tits building only includes in the Weyl
group of the norms building. Together with the identity map A → A′ this
inclusion gives a morphism τ of apartments.

Both buildings are G-buildings for G = GLn(F), so we take ρ = IdG. Let
f : A→ BBT be the standard chart given by x 7→ [Id, x] and let f ′ : A→ BN ,
λ 7→ ηλ be the chart associated to the standard basis defined by

ηλ







a1
...
an






= max

{

e−λ1 |a1|, . . . , e−λn |an|
}

,

where λ = (λ1, . . . , λn) with
∑

i λi = 0 and |a| = exp(−v(a)).
We apply Theorem 1.4. since G acts transitively on the atlas of the Bruhat–

Tits building BBT, see Example 5.6, it remains to show that the following
conditions in Theorem 1.4 hold:

(1) StabG(f(a)) ⊆ StabG(f
′(a)) for all a ∈ A, and

(2) Af,w ⊆ Af ′,w for all w ∈Wa.

In the special case a = 0, we claim that StabG(f(a)) = StabG(f
′(a)) =

GLn(O), where
GLn(O) :=

{

g ∈ GLn(F) : gij ∈ O, det(g) ∈ O×
}

= {g ∈ GLn(F) : v(gij) ≥ 0, v(det(g)) = 0} .
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Indeed, for g ∈ StabG(f(0)) we use the fact that the determinant is a poly-
nomial with coefficients in Z and the description of g in [BT72, Corollaire
(10.2.9)] to see that

v(det(g)) ≥ min
i,j
{v(gij)} ≥

v(det(g))

n

from which it follows that v(det(g)) ≥ 0. Similarly, since also g−1 ∈ StabG(f(0)),
v(det(g−1)) ≥ 0, so v(det(g)) = 0 and by the description in [BT72, Corollaire
(10.2.9)] v(gij) ≥ 0 and thus g ∈ GLn(O). The other inclusion follows di-
rectly from the description in Bruhat–Tits. For the norms building, [Par00,
Corollaire 3.4] states that g ∈ StabG(f

′(0)) if and only if exp(−v(det(g))) = 1
and

exp(−v(gij)) ≤
η0(ej)

η0(ei)
= 1,

which is equivalent to g ∈ GLn(O). This shows the claim and statement (1)
in the special case a = 0.

For a general a ∈ A, there exists a diagonal matrix t = Diag(t1, . . . , tn) ∈
SLn(F) with (−v)(ti) = ai. For the roots αij this means (−v)(αij(t)) =
(−v)(ti/tj) = αij(a), so t.[id, 0] = [t, 0] = [id, a] by the compatibility con-
dition (⋆) on the valuations for the Bruhat–Tits building, see Example 3.4.
Thus StabG(f(a)) = tGLn(O)t−1. In the norm building we have for all
x = (x1, . . . , xn) ∈ Fn

(t.η0) (x) = (η0 ◦ t)(x) = η0

(

x1
t1
, . . . ,

xn
tn

)

= max
i

{∣

∣

∣

∣

xi
ti

∣

∣

∣

∣

}

= max
i

{

ev(ti)|xi|
}

= max
i

{

e−ai |xi|
}

= ηa(x).

Therefore also StabG(f
′(a)) = tGLn(O)t−1, concluding the proof of condition

(1) using the case a = 0. We actually showed StabG(f(a)) = StabG(f
′(a)) for

all a ∈ A.
For w ∈Ws

∼= Sn there exists a permutation matrix k ∈ SOn(F) ⊆ GLn(F)
such that for all t = Diag(t1, . . . , tn) ∈ SLn(F), ktk

−1 = Diag(tw−1(1), . . . , tw−1(n))

as in the proof of Lemma 7.9. If ai = (−v)(ti), we use k−1 ∈ SOn(F) ⊆ GLn(O)
to obtain

k.f (a) = [k, a] = k. [t, 0] = ktk−1. [Id, 0] =
[

Diag(tw−1(1), . . . , tw−1(n)), 0
]

=
[

Id, (aw−1(1), . . . , aw−1(n))
]

= [Id, w(a)] = f(w(a))

and similarly

k.f ′(a) = k.ηa = k.t.η0 = ktk−1.η0 = ηw(a) = f ′(w(a)).

Finally, we know from [BT72, Corollaire (10.2.9)] that the pointwise stabilizer
of the apartment Ω := f(A) is described by

P̂Ω := {g ∈ GLn(O) : g.f(a) = f(a) for all a ∈ A}
= {Diag(t1, . . . , tn) : v(ti) = 0} ,

since there are x ∈ A with arbitrarily large xi − xj when i 6= j. Similarly, we
know that if g ∈ G satisfies g.f ′ = f ′, then t−1gt.η0 = η0, so t

−1gt ∈ GLn(O),
for all t = Diag(t1, . . . , tn) with (−v)(ti) = ai for some a ∈ A. Since there are
a ∈ A with ai − aj arbitrarily large (when i 6= j), the condition

(t−1gt)ij = gij
tj
ti
∈ O

forces t−1gt and hence g to be diagonal. Thus also
{

g ∈ G : g.f ′(a) = f ′(a) for all a ∈ A
}

= {Diag(t1, . . . , tn) : v(ti) = 0} = P̂Ω.
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If now w = (a, ws) ∈ Wa = Λn/Λ(1, . . . , 1) ⋊Ws, let t = Diag(t1, . . . , tn) ∈
SLn(F) with ai = (−v)(ti) and let k ∈ SOn(F) as above. Now for g ∈ Af,w =
{h ∈ GLn(F) : h.f = f ◦ w} we have g.f = f ◦w = t.f ◦ws = tk.f , so g−1tk ∈
P̂f(A), which is equivalent to g.f ′ = tk.f ′ = t.f ′ ◦ ws = f ′ ◦ (a, ws) = f ′ ◦ w,
so g ∈ Af ′,w as required for the condition (2). In fact, we have shown Af,w =
Af ′,w for all w ∈Wa.

When Λ = R (meaning v : F× → Λ is surjective), then we claim that for
every ultra-norm η′ adapted to the standard basis E0 = {e1, . . . , en} there is
some g ∈ GLn(F) such that η′ = g.η0. Indeed, take g = Diag(g1, . . . , gn) ∈
GLn(F) such that exp((−v)(gi)) = η′(ei) (use the surjectivity of v). Then
since η′ is adapted to E0,

g.η0

(

n
∑

i=1

aiei

)

= η0

(

n
∑

i=1

giaiei

)

= max
i

{

e−v(giai)
}

= max
i

{

|ai|η′(ei)
}

= η′

(

n
∑

i=1

aiei

)

for all ai ∈ F, where we used the fact that η′ is adapted to E0. Note that
GLn(F) acts transitively on the bases of Fn (and the action preserves adapt-
edness), so together with the claim, we obtain that GLn(F) acts transitively
on the atlas A′. Moreover, ρ is an isomorphism and the inclusions in condi-
tions (1) and (2) are equalities. If Λ = R, then τ is an isomorphism, all the
conditions of (c) are satisfied and we can conclude that BBT

∼= BN . �

Appendix A. Basics from real algebraic geometry

We summarize general definitions and results from real algebraic geometry
and set up notation. We refer the reader to [BCR98], in particular Chapters
1, 2 and 5, for more details and proofs. The main objects of study in real
algebraic geometry are semi-algebraic sets. From now on let F be a real closed
field.

Definition A.1. A subset B ⊆ Fn is a basic semi-algebraic set, if there exists
a polynomial f ∈ F[X1, . . . , Xn] such that

B = B(f) = {x ∈ Fn | f(x) > 0}.
A subset X ⊆ Fn is semi-algebraic if it is a Boolean combination of basic
semi-algebraic sets, i.e. X is obtained by taking finite unions and intersections
of basic semi-algebraic sets and their complements.

Let X ⊆ Fn and Y ⊆ Fm be two semi-algebraic sets. A map f : X → Y
is called semi-algebraic if its graph Graph(f) ⊆ X × Y is semi-algebraic in
Fn+m.

Algebraic sets are semi-algebraic and any polynomial or rational map is
semi-algebraic.

Proposition A.2 ([BCR98, Proposition 2.2.7]). Let f : X → Y be a semi-
algebraic map. If S ⊆ X is semi-algebraic, then so is its image f(S). If T ⊆ Y
is semi-algebraic, then so is its preimage f−1(T ).

Note that if F 6= R, then F is totally-disconnected in the order topology on
F. However we have the following notion of connectedness for semi-algebraic
sets.

Definition A.3. A semi-algebraic set X ⊆ Fn is semi-algebraically connected
if it cannot be written as the disjoint union of two non-empty semi-algebraic
subsets of Fn both of which are closed in X.
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Theorem A.4 ([BCR98, Theorem 2.4.5]). A semi-algebraic set of Rn is con-
nected if and only if it is semi-algebraically connected. Every semi-algebraic set
of Rn has a finite number of connected components, which are semi-algebraic.

We record the following proposition which justifies why closed and bounded
semi-algebraic sets are the right analogue of compact sets in real algebraic
geometry.

Proposition A.5 ([BCR98, Theorem 2.5.7]). Let X be a closed and bounded
semi-algebraic subset of Fn and pr: Fn → Fn−1 the projection on the space of
the first n−1 coordinates. Then pr(X) is a closed and bounded semi-algebraic
set.

From now on, denote by K a real closed extension of F.

Definition A.6. Let X ⊆ Fn be a semi-algebraic set given as

X =

s
⋃

i=1

ri
⋂

j=1

{x ∈ Fn | fij(x) ∗ij 0},

with fij ∈ F[X1, . . . , Xn] and ∗ij is either < or = for i = 1, . . . , s and j =
1, . . . , ri. The K-extension XK of X is the set given by the same Boolean
combination of sign conditions as X, more precisely

XK =

s
⋃

i=1

ri
⋂

j=1

{x ∈ Kn | fij(x) ∗ij 0}.

Note that XK is semi-algebraic and depends only on the set X, and not on
the Boolean combination describing it, see [BCR98, Proposition 5.1.1]. The
proof of this is based on the Tarski–Seidenberg transfer principle.

Theorem A.7 (Tarski–Seidenberg transfer principle, [BCR98, Theorem 5.2.1]).
Let X ⊆ Fn+1 be a semi-algebraic set. Denote the projection pr: Fn+1 → Fn

onto the first n coordinates by pr. Then pr(X) ⊆ Fn is semi-algebraic. Fur-
thermore, if K is a real closed extension of F, and prK : Kn+1 → K is the
projection on the first n coordinates, then

prK(XK) = pr(X)K.

Using this one can prove an extension theorem for semi-algebraic maps.

Theorem A.8 ([BCR98, Propositions 5.3.1, 5.3.3, 5.3.5]). Let X ⊆ Fn and
Y ⊆ Fm be two semi-algebraic sets, and f : X → Y a semi-algebraic map.
Then (Graph(f))K is the graph of a semi-algebraic map fK : XK → YK, that is
called the K-extension of f . Furthermore, f is injective (respectively surjec-
tive, respectively bijective) if and only if fK is injective (respectively surjective,
respectively bijective), and f is continuous if and only if fK is continuous.

Finally, we have the following relation between extension of semi-algebraic
sets and semi-algebraically connected components.

Theorem A.9 ([BCR98, Proposition 5.3.6 (ii)]). Let X ⊆ Fn be semi-algebraic.
Then X is semi-algebraically connected if and only if XK is semi-algebraically
connected. More generally, if C1, . . . , Cm are the semi-algebraically connected
components of X, then (C1)K, . . . , (Cm)K are the semi-algebraically connected
components of XK.
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